WO2015173443A1 - Bioimpedance measuring system for wirelessly monitoring cell cultures in real time, based on cmos circuits and electrical modelling - Google Patents

Bioimpedance measuring system for wirelessly monitoring cell cultures in real time, based on cmos circuits and electrical modelling Download PDF

Info

Publication number
WO2015173443A1
WO2015173443A1 PCT/ES2015/000064 ES2015000064W WO2015173443A1 WO 2015173443 A1 WO2015173443 A1 WO 2015173443A1 ES 2015000064 W ES2015000064 W ES 2015000064W WO 2015173443 A1 WO2015173443 A1 WO 2015173443A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell cultures
bioimpedance
real
cmos circuits
electrical
Prior art date
Application number
PCT/ES2015/000064
Other languages
Spanish (es)
French (fr)
Inventor
Alberto OLMO FERNÁNDEZ
Gloria HUERTAS SÁNCHEZ
Alberto YÚFERA GARCÍA
Original Assignee
Universidad De Sevilla
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Sevilla filed Critical Universidad De Sevilla
Publication of WO2015173443A1 publication Critical patent/WO2015173443A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/08Measuring resistance by measuring both voltage and current

Definitions

  • Bioimpedance measurement system for real-time and wireless monitoring of cell cultures based on CMOS circuits and electrical modeling
  • the invention patent refers to a new bioimpedance measurement system for real-time and wireless monitoring of cell cultures.
  • the system uses a two-dimensional (2D) array of electrodes as bioimpedance sensors and implements the measurement circuit with CMOS technology, using electrical modeling for image reconstruction.
  • the invention is framed within the measure of electrical impedance of biological material. It also refers to a sensor microelectronic device for carrying out said measurement.
  • bioimpedance measurement system was registered in 2005 by B. Rubinsky et al. [8]. This system uses two electrodes between which a potential difference is applied and a dielectric membrane with micro-holes through which the passage of electric current is forced. In Spain methods have also been registered for the simultaneous determination and visualization of electrical bioimpedance signals in biological material at various frequencies [9], using a treatment of the excitation and response signal as two independent functions in the time domain, and applying signal processing techniques ( cross correlation and Fourier transformation) for best results.
  • This paper presents a new impedance measurement system for biological samples useful for obtaining 2D images of a cell culture in real time and wirelessly, unlike other systems found in the literature. It is based on the use of a two-dimensional array of electrodes as bioimpedance sensors, CMOS technology for the implementation of the measurement circuit and the novel use of electrical modeling for image reconstruction, another characteristic that gives the system a greater precision in the task of reconstruction based on bioimpedance.
  • Figure 1 Scheme of the complete system architecture.
  • the system consists of a 2D array of electrodes, on which cell culture is performed, an excitation and impedance measurement circuit, a radio frequency transmitter circuit for wireless data transmission, and software for decoding and reconstruction. of the image, based on electrical modeling.
  • FIG. 1 Block diagram of the excitation circuit and impedance measurement.
  • the main components of the circuit are: an instrumentation amplifier (Al), the AC - DC converter or rectifier, the error amplifier (AE) and the current oscillator with the programmable current output
  • the system object of the present invention is composed of a 2D array of electrodes, on which the cell culture is carried out, an excitation and impedance measurement circuit, a radio frequency transmitter circuit for wireless data transmission, and software for decoding and reconstruction of the image, based on electrical modeling.
  • the scheme of the system architecture is shown in Figure 1.
  • Each cell in the electrode array will consist of two electrodes, a central electrode (e- ⁇ ) and one of a larger area called a reference electrode (e 2 ), among which an AC current is established at a given frequency, and an impedance Z x is measured.
  • the electrical modeling later described, allows the measured impedance, Z x , to correspond with the area covered by the cell culture in the AC electrodes.
  • the electrodes can be manufactured with CMOS technology.
  • the block diagram of the circuit proposed for the excitation and impedance measurement is in a closed loop and is shown in Figure 2.
  • the excitation signal is AC current, at a given frequency ⁇ .
  • the circuits are designed to work at a constant amplitude on the V x sensor, which is known as the P sta i condition.
  • the main components of the circuit are: an instrumentation amplifier (Al), the AC - DC converter or rectifier, the error amplifier (AE) and the current oscillator with the programmable current output.
  • the voltage gain of the instrumentation amplifier in its bandpass is ai .
  • the rectifier functions as a full-wave peak detector, to measure the largest (and smallest) voltage amplitude of V 0 . Its output is a DC voltage, directly proportional to the amplitude of the output voltage of the instrumentation amplifier, with a gain of dc .
  • the error amplifier with a gain at ea , compares the DC signal with a reference V ref , to amplify the difference.
  • the current generator generates the AC current to excite the sensor.
  • V s an external AC voltage source
  • OTA transconductance amplifier
  • Equation 3 allows the calculation of the magnitude of impedance Z x from the voltage V m , since V x and G m are known from equation 1 and the design parameters.
  • the impedance phase can also be measured from ⁇ ⁇ as shown in Figure 2.
  • CMOS 0.35 ⁇ technology is proposed for circuit implementation, with a supply voltage of 3V.
  • the radio frequency signal transmitter and receiver circuit will emit, in digital or analog form, the bioimpedance signal. This allows the wireless monitoring of the cell culture, without the need to extract the samples from the incubator or to interfere with the processes of the cell culture. Likewise, this radio frequency signal transmitter and receiver circuit allows wireless programming of the excitation and bioimpedance measurement circuit, parameters such as the sampling frequency, amplitude of the excitation current and other described parameters being remotely established. previously.
  • This radio frequency signal transmitter and receiver circuit may be implemented so that the data is transmitted at a frequency of 2.4 Ghz or other available bands, and so that it is compatible with 802.11, 802.15 or similar standards.
  • the monitoring software obtains several graphs that allow monitoring the behavior of the cell culture, among which are the temporal evolution of the absolute value of the impedance and the phase, for different frequencies and for each of the electrodes of the matrix.
  • the software will integrate an electrical modeling for the characterization of the electrode - cell interface in each electrode, which will allow advanced functionalities in the reconstruction of the image based on bioimpedance.
  • the cell-electrode electrical models are keys for the correspondence between simulations and real behavior of the systems, and therefore, for the correct decoding of the results obtained experimentally, which is generally known as the reconstruction problem. [3, 13, 14].
  • the impedance of the electrodes in ionic liquids has been extensively studied.
  • a solid including metals, semiconductors and insulators
  • the ions in the solution can react with the electrode and the solid ions of the electrode can be added to the solution.
  • the result is a complex, electrified or double layer interface.
  • This complex system can be modeled using passive circuit elements, as has been described in numerous biomedicine and electrochemical texts.
  • the Helmholtz-Gouy-Chapman-Stern model is the commonly accepted model for electrically describing the distribution of charges at the electrode interface, being able to approximate by the following expression for the double layer:
  • ⁇ ⁇ ⁇ and Edi are the conductivity and the dielectric permittivity
  • t is the thickness of the region
  • Q is the capacity of the interface per unit area, which consists of the serial combination of the Helmholtz layer and the double diffuse layer
  • K is a constant related to Warburg impedance (associated with mass diffusion processes in the interface).
  • Electrode-cell space (eiectrode) by means of a region of thickness t with a gap conductivity value, with the following value:
  • a ce is the surface of the attached membrane, ⁇ 0 is the dielectric permittivity of free space; £
  • A is the area of the membrane
  • g mem is the conductivity of the membrane
  • C mem the capacity of the membrane per unit area.
  • control software allows remote selection of parameters such as the sampling frequency or the output current level, wirelessly programming the excitation circuit and bioimpedance measurement.
  • the particularization of the system for the measurement of impedance in a cell culture of MCF-7 cancer epithelial cells, through an 8x8 electrode array is presented.
  • the size of the selected pixel is 50 ⁇ x 50 ⁇ , similar to the dimensions of the cell.
  • the excitation frequency of the electrodes varies from 10 kHz to 100 kHz, obtaining for each frequency an impedance measurement in each pixel of the electrode array.
  • the monitoring software allows to obtain wireless signals that show the evolution of cell culture over time, for different sampling frequencies.
  • Figure 3 shows an example of the history recorded for a culture of MCF-7 cells.
  • the wireless sending of the impedance data for each pixel the growth of the cell culture can be monitored in real time, without the need for a visual inspection of the culture, with the consequent saving of time and with the possibility of implementing automatic alarm signals to unexpected changes.
  • automation in obtaining the information in digital form through a 2D matrix allows further processing of the data of each pixel for a more advanced study of the evolution of the crop.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention relates to a novel bioimpedance measuring system for wirelessly monitoring cell cultures in real time. The system uses a two-dimensional (2D) array of electrodes as bioimpedance sensors and implements the measuring circuit with CMOS technology, using electrical modelling for image reconstruction.

Description

Título  Title
Sistema de medida de bioimpedancia para la monitorizacion en tiempo real e inalámbrica de cultivos celulares basado en circuitos CMOS y modelado eléctrico  Bioimpedance measurement system for real-time and wireless monitoring of cell cultures based on CMOS circuits and electrical modeling
Objeto de la invención Object of the invention
La patente de invención se refiere a un nuevo sistema de medida de bioimpedancia para la monitorización en tiempo real y de forma inalámbrica de cultivos celulares. El sistema utiliza un array bidimensional (2D) de electrodos como sensores de bioimpedancia e implementa el circuito de medida con tecnología CMOS, utilizando modelado eléctrico para la reconstrucción de imagen.  The invention patent refers to a new bioimpedance measurement system for real-time and wireless monitoring of cell cultures. The system uses a two-dimensional (2D) array of electrodes as bioimpedance sensors and implements the measurement circuit with CMOS technology, using electrical modeling for image reconstruction.
La invención se enmarca dentro de la medida de impedancia eléctrica de material biológico. También se refiere a un dispositivo microelectrónico sensor para llevar a cabo dicha medida. The invention is framed within the measure of electrical impedance of biological material. It also refers to a sensor microelectronic device for carrying out said measurement.
Estado de la técnica State of the art
Muchos parámetros biológicos y procesos pueden ser detectados y controlados mediante la medida de su bioimpedancia, con la ventaja de ser una técnica no invasiva y relativamente barata. El crecimiento de la célula, los cambios en la composición celular o los cambios en la ubicación de la célula son sólo algunos ejemplos de procesos que pueden ser detectados por microelectrodos mediante cambios de impedancia [1-4].  Many biological parameters and processes can be detected and controlled by measuring their bioimpedance, with the advantage of being a non-invasive and relatively cheap technique. Cell growth, changes in cell composition or changes in cell location are just a few examples of processes that can be detected by microelectrodes through impedance changes [1-4].
Esta técnica fue inventada por Ivar Giaever y Charles Keese en 1993 [5], registrando en una patente un aparato para la monitorización de cultivos celulares, basado en una serie de pocilios donde se realiza el cultivo celular, cada uno de ellos con un array de microelectrodos por los que se introduce una corriente alterna, midiéndose la impedancia eléctrica resultante. Esta patente inicial fue completada con una serie de patentes relacionadas, aplicadas al tema del estudio de la movilidad celular [6] o de la actividad metastásica de células cancerígenas [7]· This technique was invented by Ivar Giaever and Charles Keese in 1993 [5], registering in a patent an apparatus for cell culture monitoring, based on a series of wells where cell culture is performed, each with an array of microelectrodes through which an alternating current is introduced, measuring the resulting electrical impedance. This initial patent was completed with a series of related patents, applied to the subject of the study of cell mobility [6] or metastatic activity of cancer cells [7] ·
Otro sistema de medida de bioimpedancia fue registrado en 2005 por B. Rubinsky et al. [8]. Este sistema utiliza dos electrodos entre los que se aplica una diferencia de potencial y una membrana dieléctrica con microagujeros por los que se fuerza el paso de la corriente eléctrica. En España también se han registrado métodos para la determinación y visualización simultánea de señales de bioimpedancia eléctrica en material biológico a varias frecuencias [9], utilizando un tratamiento de la señal de excitación y de respuesta como dos funciones independientes en el dominio del tiempo, y aplicando técnicas de procesamiento de señal (correlación cruzada y transformación de Fourier) para obtener mejores resultados. Another bioimpedance measurement system was registered in 2005 by B. Rubinsky et al. [8]. This system uses two electrodes between which a potential difference is applied and a dielectric membrane with micro-holes through which the passage of electric current is forced. In Spain methods have also been registered for the simultaneous determination and visualization of electrical bioimpedance signals in biological material at various frequencies [9], using a treatment of the excitation and response signal as two independent functions in the time domain, and applying signal processing techniques ( cross correlation and Fourier transformation) for best results.
En general, para el problema de medir una impedancia Zx dada, de magnitud Zx0 y fase φ, se han descrito varios métodos, los cuales requieren circuitos de excitación y de procesamiento. La excitación se suele implementar con corriente alterna (AC), mientras que el procesamiento se basa en el principio de demodulación coherente [10] o muestreo síncrono [11], [12]. En ambos, el procesamiento de circuitos debe estar sincronizado con las señales de excitación, como un requisito para que la técnica funcione, obteniendo el mejor ruido el rendimiento cuando se incorporan las funciones de filtro adecuado (High-Pass (HP) o Low-Pass (LP)). In general, for the problem of measuring a given impedance Z x , of magnitude Z x0 and phase φ, several methods have been described, which require excitation and processing circuits. The excitation is usually implemented with alternating current (AC), while the processing is based on the principle of coherent demodulation [10] or synchronous sampling [11], [12]. In both, the circuit processing must be synchronized with the excitation signals, as a requirement for the technique to work, obtaining the best noise performance when the appropriate filter functions (High-Pass (HP) or Low-Pass are incorporated) (LP)).
Este trabajo presenta un nuevo sistema de medida de impedancia para muestras biológicas útil para obtener imágenes 2D de un cultivo celular en tiempo real y de forma inalámbrica, a diferencia de otros sistemas encontrados en la bibliografía. Se basa en el uso de un array bidimensional de electrodos como sensores de bioimpedancia, tecnología CMOS para la implementación del circuito de medida y en la novedosa utilización de modelado eléctrico para la reconstrucción de imágenes, otra de las características que dota al sistema de una mayor precisión en la tarea de reconstrucción basada en bioimpedancia. This paper presents a new impedance measurement system for biological samples useful for obtaining 2D images of a cell culture in real time and wirelessly, unlike other systems found in the literature. It is based on the use of a two-dimensional array of electrodes as bioimpedance sensors, CMOS technology for the implementation of the measurement circuit and the novel use of electrical modeling for image reconstruction, another characteristic that gives the system a greater precision in the task of reconstruction based on bioimpedance.
DOCUMENTOS RELEVANTES RELEVANT DOCUMENTS
[1] I. Giaever et al., "Use of Electric Fields to Monitor the Dynamical Aspect of Cell Behaviour ¡n Tissue Culture," IEEE Transaction on Biomedical Engineering, vol BME-33, n° 2, pp: 242-247, Feb. 1986. [1] I. Giaever et al., "Use of Electric Fields to Monitor the Dynamical Aspect of Cell Behavior in Tissue Culture," IEEE Transaction on Biomedical Engineering, vol BME-33, No. 2, pp: 242-247, Feb. 1986.
[2] S. M. Radke and E. C. Alocilja, "Design and Fabrication of a Microimpedance Biosensor for Bacterial Detection," IEEE Sensor Journal, vol 4, n° 4, pp: 434-440, Aug. 2004. [2] S. M. Radke and E. C. Alocilja, "Design and Fabrication of a Microimpedance Biosensor for Bacterial Detection," IEEE Sensor Journal, vol 4, n ° 4, pp: 434-440, Aug. 2004.
[3] D. A. Borkholder: "Cell-Based Biosensors Using Microelectrodes," PhD Thesis, Stanford University. Nov. 1998. [4] A. Yúfera et al., "A Tissue Impedance Measurement Chip for Myocardial Ischemia Detection". IEEE transaction on Circuits and Systems: Part I. vol.52, n°:12, pp: 2620-2628. Dec. 2005. [3] DA Borkholder: "Cell-Based Biosensors Using Microelectrodes," PhD Thesis, Stanford University. Nov. 1998. [4] A. Yúfera et al., "A Tissue Impedance Measurement Chip for Myocardial Ischemia Detection". IEEE transaction on Circuits and Systems: Part I. vol.52, no .: 12, pp: 2620-2628. Dec. 2005.
[5] I. Giaever, C. R. Keese, Cell susbstrate electrical impedance sensor with múltiple electrode array, , US 5,187,096, Feb. 16, 1993. [5] I. Giaever, C. R. Keese, Cell susbstrate electrical impedance sensor with multiple electrode array,, US 5,187,096, Feb. 16, 1993.
[6] I. Giaever, C. R. Keese, Electrical wounding assay for cells in vitro, US 7,332,313 Feb. 19, 2008. [6] I. Giaever, C. R. Keese, Electrical wounding assay for cells in vitro, US 7,332,313 Feb. 19, 2008.
[7] I. Giaever, C. R. Keese, Real-time impedance assay to follow the invasive activities of metastatic cells in culture, US 7,399,631 , July 15, 2008. [7] I. Giaever, C. R. Keese, Real-time impedance assay to follow the invasive activities of metastatic cells in culture, US 7,399,631, July 15, 2008.
[8] B. Rubinsky, Y. Huang, Cell viability detection using electrical measurements, US 6,927,049 B2, Aug. 9, 2005. [8] B. Rubinsky, Y. Huang, Cell viability detection using electrical measurements, US 6,927,049 B2, Aug. 9, 2005.
[9] P. Owen Whiters, Método y aparato para mostrar bio-impedancia en múltiples frecuencias, ES 2 1 18 133 T3. [9] P. Owen Whiters, Method and apparatus for displaying bio-impedance at multiple frequencies, ES 2 1 18 133 T3.
[10] J.J. Ackmann, Complex bioelectric impedance measurement system for the frequency range from 5-1 MHz, Annals of Biomedical Engineering 21 (1993) 135— 146. [10] J.J. Ackmann, Complex bioelectric impedance measurement system for the frequency range from 5-1 MHz, Annals of Biomedical Engineering 21 (1993) 135-146.
[1 1] R.PalIzs, J.G.Webster, Bioelectric impedance measurements using synchronous sampling, IEEE Transactions on Biomedical Engineering 40 (8) (1993) 824-829. [1 1] R.PalIzs, J.G. Webbster, Bioelectric impedance measurements using synchronous sampling, IEEE Transactions on Biomedical Engineering 40 (8) (1993) 824-829.
[12] M. Min, A. Kink, R. Land and T. Parve, Method and device for measurement of electrical bioimpedance, US 7,706,872 B2, Apr 27, 2010. [12] M. Min, A. Kink, R. Land and T. Parve, Method and device for measurement of electrical bioimpedance, US 7,706,872 B2, Apr 27, 2010.
[13] X.Huang et al., "Simulation of Microelectrode Impedance Changes Due to Cell Growth," IEEE Sensors Journal, vol.4, n°5, pp: 576-583. 2004. [13] X. Huang et al., "Simulation of Microelectrode Impedance Changes Due to Cell Growth," IEEE Sensors Journal, vol.4, n ° 5, pp: 576-583. 2004
[14] N. Joye, et al.,"An Electrical Model of the Cell-Electrode Interface for High- density Microelectrode Arrays," IEEE EMBS pp: 559-562. 2008. Descripción del contenido de las figuras [14] N. Joye, et al., "An Electrical Model of the Cell-Electrode Interface for High-density Microelectrode Arrays," IEEE EMBS pp: 559-562. 2008 Description of the content of the figures
Figura 1. Esquema de la arquitectura del sistema completo. El sistema se compone de una matriz 2D de electrodos, sobre la cual se realiza el cultivo celular, un circuito de excitación y de medida de impedancia, un circuito transmisor de radiofrecuencia para el envío inalámbrico de datos, y un software para la decodificación y reconstrucción de la imagen, basado en modelado eléctrico.  Figure 1. Scheme of the complete system architecture. The system consists of a 2D array of electrodes, on which cell culture is performed, an excitation and impedance measurement circuit, a radio frequency transmitter circuit for wireless data transmission, and software for decoding and reconstruction. of the image, based on electrical modeling.
Figura 2. Diagrama de bloques del circuito de excitación y medida de impedancia. Los componentes principales del circuito son: un amplificador de instrumentación (Al), el convertidor AC - DC o rectificador, el amplificador de error (AE) y el oscilador de corriente con la salida de corriente programable Figure 2. Block diagram of the excitation circuit and impedance measurement. The main components of the circuit are: an instrumentation amplifier (Al), the AC - DC converter or rectifier, the error amplifier (AE) and the current oscillator with the programmable current output
Figura 3. Evolución temporal de un cultivo de MCF-7, en el que se observa el crecimiento inicial, introducción de una dosis tóxica (inhibidor de proteasa) y un último proceso (a partir del minuto 4369) de lavado, a partir del cual el cultivo celular vuelve a crecer. Figure 3. Temporal evolution of a culture of MCF-7, in which the initial growth is observed, introduction of a toxic dose (protease inhibitor) and a final process (from minute 4369) of washing, from which The cell culture grows again.
Figura 4. a) Selección de matriz 8x8 en cultivo celular MCF-7 b) Fill factor obtenido mediante modelado eléctrico para la matriz 8x8, definiéndose el fill factor como el porcentaje de área ocupada en cada píxel por células del cultivo, variando desde ff=0, si no se detecta la presencia de ninguna célula, hasta ff=1 , con la totalidad del área ocupada por células. Figure 4. a) Selection of 8x8 matrix in MCF-7 cell culture b) Fill factor obtained by electric modeling for the 8x8 matrix, defining the fill factor as the percentage of area occupied in each pixel by cells of the culture, varying from ff = 0, if the presence of any cell is not detected, up to ff = 1, with the entire area occupied by cells.
Descripción de la invención Description of the invention
El sistema objeto de la presente invención se compone de una matriz 2D de electrodos, sobre la cual se realiza el cultivo celular, un circuito de excitación y de medida de impedancia, un circuito transmisor de radiofrecuencia para el envío inalámbrico de datos, y un software para la decodificación y reconstrucción de la imagen, basado en modelado eléctrico. El esquema de la arquitectura del sistema se muestra en la figura 1.  The system object of the present invention is composed of a 2D array of electrodes, on which the cell culture is carried out, an excitation and impedance measurement circuit, a radio frequency transmitter circuit for wireless data transmission, and software for decoding and reconstruction of the image, based on electrical modeling. The scheme of the system architecture is shown in Figure 1.
Cada celda de la matriz de electrodos estará compuesto por dos electrodos, un electrodo central (e-ι) y uno de mayor área llamado electrodo de referencia (e2), entre los cuales se establece una corriente AC a una frecuencia dada, y se mide una impedancia Zx. El modelado eléctrico, posteriormente descrito, permite corresponder la impedancia medida, Zx, con el área cubierta por el cultivo celular en los electrodos AC. Los electrodos podrán ser fabricados con tecnología CMOS. Each cell in the electrode array will consist of two electrodes, a central electrode (e-ι) and one of a larger area called a reference electrode (e 2 ), among which an AC current is established at a given frequency, and an impedance Z x is measured. The electrical modeling, later described, allows the measured impedance, Z x , to correspond with the area covered by the cell culture in the AC electrodes. The electrodes can be manufactured with CMOS technology.
El diagrama de bloques del circuito propuesto para la excitación y medida de impedancia es en bucle cerrado y se muestra en la figura 2. Para la medida de la magnitud de impedancia, Zx, se considera que la señal de excitación es corriente AC, a una frecuencia ω dada. Los circuitos están diseñados para trabajar a una amplitud constante en el sensor Vx, lo cual es conocido como condición Pstai. The block diagram of the circuit proposed for the excitation and impedance measurement is in a closed loop and is shown in Figure 2. For the measurement of the magnitude of impedance, Z x , it is considered that the excitation signal is AC current, at a given frequency ω. The circuits are designed to work at a constant amplitude on the V x sensor, which is known as the P sta i condition.
Los componentes principales del circuito son: un amplificador de instrumentación (Al), el convertidor AC - DC o rectificador, el amplificador de error (AE) y el oscilador de corriente con la salida de corriente programable. La ganancia de voltaje del amplificador de instrumentación en su paso de banda es aia. El rectificador funciona como un detector de pico de onda completo, para medir la mayor (y la menor) amplitud de voltaje de V0. Su salida es un voltaje DC, directamente proporcional a la amplitud del voltaje de salida del amplificador de instrumentación, con una ganancia adc. El amplificador de error, con una ganancia aea, compara la señal DC con una referencia Vref, para amplificar la diferencia. El generador de corriente genera la corriente AC para excitar el sensor. Se compone de una fuente externa de voltaje AC (Vs), un amplificador de transconductancia (OTA) con transconductancia gm y un multiplicador de voltaje cuatro cuadrantes de constante K. El voltaje generado por Vs se multiplica por Vm y es convertido a corriente por el OTA. Un simple análisis del sistema completo da la expresión aproximada para la amplitud de voltaje en Vx: The main components of the circuit are: an instrumentation amplifier (Al), the AC - DC converter or rectifier, the error amplifier (AE) and the current oscillator with the programmable current output. The voltage gain of the instrumentation amplifier in its bandpass is ai . The rectifier functions as a full-wave peak detector, to measure the largest (and smallest) voltage amplitude of V 0 . Its output is a DC voltage, directly proportional to the amplitude of the output voltage of the instrumentation amplifier, with a gain of dc . The error amplifier, with a gain at ea , compares the DC signal with a reference V ref , to amplify the difference. The current generator generates the AC current to excite the sensor. It consists of an external AC voltage source (V s ), a transconductance amplifier (OTA) with transconductance g m and a four quadrant voltage multiplier of constant K. The voltage generated by V s is multiplied by V m and is converted current by the OTA. A simple analysis of the complete system gives the approximate expression for the voltage amplitude in V x :
V., (1) V., (1)
Vr V r
a,„ a de cuando se satisface la condición de que a, „ a when the condition that
Z - GL -a. a,a « de » 1 (2) permaneciendo constante el voltaje Vx en la ecuación 1 e independiente de la carga Zx. Considerando la relación entre la corriente ix y el voltaje Vmx=GmVm), la magnitud de la impedancia puede ser expresada como: Z-GL -a. a, a «de» 1 (2) the voltage V x remains constant in equation 1 and independent of the load Z x . Considering the relationship between the current i x and the voltage V mx = G m V m ), the magnitude of the impedance can be expressed as:
G V G V
La ecuación 3 permite el cálculo de la magnitud de impedancia Zx a partir del voltaje Vm, ya que Vx y Gm son conocidos de la ecuación 1 y de los parámetros de diseño. La fase de la impedancia puede ser también medida a partir de νΦι como se muestra en la figura 2. En particular, se propone la utilización de tecnología CMOS 0.35μιη para la implementación del circuito, con un voltaje de alimentación de 3V. Equation 3 allows the calculation of the magnitude of impedance Z x from the voltage V m , since V x and G m are known from equation 1 and the design parameters. The impedance phase can also be measured from ν Φι as shown in Figure 2. In particular, the use of CMOS 0.35μιη technology is proposed for circuit implementation, with a supply voltage of 3V.
El circuito transmisor y receptor de señales de radiofrecuencia emitirá, en forma digital o analógica, la señal de bioimpedancia. Esto permite la monitorización de forma inalámbrica del cultivo celular, sin necesidad de extraer las muestras de la incubadora o de interferir en los procesos propios del cultivo celular. De igual forma, este circuito transmisor y receptor de señales de radiofrecuencia permite la programación inalámbrica del circuito de excitación y de medida de bioimpedancia, pudiendo ser establecidos remotamente parámetros tales como la frecuencia de muestreo, amplitud de la de corriente de excitación y demás parámetros descritos anteriormente. The radio frequency signal transmitter and receiver circuit will emit, in digital or analog form, the bioimpedance signal. This allows the wireless monitoring of the cell culture, without the need to extract the samples from the incubator or to interfere with the processes of the cell culture. Likewise, this radio frequency signal transmitter and receiver circuit allows wireless programming of the excitation and bioimpedance measurement circuit, parameters such as the sampling frequency, amplitude of the excitation current and other described parameters being remotely established. previously.
Este circuito transmisor y receptor de señales de radiofrecuencia podrá ser implementado de forma que los datos se transmitan a una frecuencia de 2.4 Ghz u otras bandas disponibles, y de forma que sea compatible con los estándares 802.11 , 802.15 o similares. This radio frequency signal transmitter and receiver circuit may be implemented so that the data is transmitted at a frequency of 2.4 Ghz or other available bands, and so that it is compatible with 802.11, 802.15 or similar standards.
El software de monitorización obtiene varias gráficas que permiten monitorizar el comportamiento del cultivo celular, entre las que se encuentran la evolución temporal del valor absoluto de la impedancia y de la fase, para distintas frecuencias y para cada uno de los electrodos de la matriz. Asimismo, el software integrará un modelado eléctrico para la caracterización de la ¡nterfaz electrodo - célula en cada electrodo, que permitirá avanzadas funcionalidades en la reconstrucción de la imagen basada en bioimpedancia. Los modelos eléctricos célula-electrodo son claves para la correspondencia entre simulaciones y comportamiento real de los sistemas, y por lo tanto, para la decodificación correcta de los resultados obtenidos experimentalmente, lo que se conoce en general como el problema de reconstrucción. [3, 13, 14]. The monitoring software obtains several graphs that allow monitoring the behavior of the cell culture, among which are the temporal evolution of the absolute value of the impedance and the phase, for different frequencies and for each of the electrodes of the matrix. Likewise, the software will integrate an electrical modeling for the characterization of the electrode - cell interface in each electrode, which will allow advanced functionalities in the reconstruction of the image based on bioimpedance. The cell-electrode electrical models are keys for the correspondence between simulations and real behavior of the systems, and therefore, for the correct decoding of the results obtained experimentally, which is generally known as the reconstruction problem. [3, 13, 14].
La impedancia de los electrodos en líquidos iónicos ha sido ampliamente estudiada. Cuando un sólido (incluyendo metales, semiconductores y aislantes) se sumerge en una solución iónica o electrolito, los iones en la solución pueden reaccionar con el electrodo y los iones sólidos del electrodo pueden añadirse a la solución. El resultado es una interfaz compleja, electrificada o doble capa. Este complejo sistema puede ser modelado usando elementos circuitales pasivos, como ha sido descrito en numerosos textos de biomedicina y electroquímica. El modelo Helmholtz-Gouy-Chapman-Stern es el modelo comúnmente aceptado para describir eléctricamente la distribución de cargas en la interfaz del electrodo, pudiendo aproximarse por la siguiente expresión para la doble capa: The impedance of the electrodes in ionic liquids has been extensively studied. When a solid (including metals, semiconductors and insulators) is immersed in an ionic solution or electrolyte, the ions in the solution can react with the electrode and the solid ions of the electrode can be added to the solution. The result is a complex, electrified or double layer interface. This complex system can be modeled using passive circuit elements, as has been described in numerous biomedicine and electrochemical texts. The Helmholtz-Gouy-Chapman-Stern model is the commonly accepted model for electrically describing the distribution of charges at the electrode interface, being able to approximate by the following expression for the double layer:
{2nf)V2 { j{2nf) (4) {2nf) V2 { j {2nf) (4)
K K donde σύ\ y Edi son la conductividad y la permitividad dieléctrica, t es el espesor de la región, Q es la capacidad de la interfase por unidad de superficie, que consiste en la combinación en serie de la capa de Helmholtz y la doble capa difusa, y K es una constante relacionada con la impedancia de Warburg (asociada a procesos de difusión de masa en la interfaz). KK where σ ύ \ and Edi are the conductivity and the dielectric permittivity, t is the thickness of the region, Q is the capacity of the interface per unit area, which consists of the serial combination of the Helmholtz layer and the double diffuse layer, and K is a constant related to Warburg impedance (associated with mass diffusion processes in the interface).
Modelamos el espacio electrodo - célula ( eiectrodo) mediante una región de espesor t con valor de conductividad agap, con el siguiente valor: We model the electrode-cell space (eiectrode) by means of a region of thickness t with a gap conductivity value, with the following value:
t cell-electrode (5) ' t cell-electrode (5) '
gap médium  medium gap
Modelamos la región de carga (también llamado de la doble capa eléctrica) que se forma en el electrolito en la inferíase con la célula con una capacidad Chd, definida como la serie de tres capacidades [14]: ε0£1ΗΡ (6) We model the charging region (also called the electrical double layer) that is form in the electrolyte in the inferred with the cell with a capacity C hd , defined as the series of three capacities [14]: ε0 £ 1ΗΡ (6)
l IHP  l IHP
C ε0£ΟΗΡ C ε 0 £ ΟΗΡ
" OHP ~ " IHP "OHP ~ " IHP
cd = qj2s0sdKTz2n°N c d = qj2s 0 s d KTz 2 n ° N
KT donde Ace es la superficie de la membrana adjunta, ε0 es la permitividad dieléctrica del espacio libre; £|Hp y ε0ΗΡ son, respectivamente, interior y exterior de Helmholtz plano relativo constante dieléctrica; d|Hp es la distancia del plano interior de Helmholtz a la membrana; d0HP es el distancia del plano exterior de Helmholtz a la membrana; £d es la capa difusa constante dieléctrica relativa; K es la constante de Boltzmann; T es la temperatura absoluta; q es la carga del electrón; z es la valencia de los iones en disolución; N0 es la concentración masiva de iones en disolución, y N es el número de Avogadro. KT where A ce is the surface of the attached membrane, ε 0 is the dielectric permittivity of free space; £ | H p and ε 0 ΗΡ are, respectively, interior and exterior of Helmholtz relative plane dielectric constant; d | H p is the distance from the inner plane of Helmholtz to the membrane; d 0 HP is the distance from the outer plane of Helmholtz to the membrane; £ d is the relative dielectric constant diffuse layer; K is Boltzmann's constant; T is the absolute temperature; q is the charge of the electron; z is the valence of the ions in solution; N 0 is the mass concentration of ions in solution, and N is Avogadro's number.
Por último, el circuito equivalente de la membrana la modelamos como una resistencia Rm en paralelo con una capacidad de Cm, en una forma similar a la reportada por Joye et al. [14]. Finally, the equivalent circuit of the membrane is modeled as a resistance R m in parallel with a capacity of C m , in a manner similar to that reported by Joye et al. [14].
R- = A R- = A
Donde A es el área de la membrana, gmem es la conductividad de la membrana y Cmem la capacidad de la membrana por unidad de área. Where A is the area of the membrane, g mem is the conductivity of the membrane and C mem the capacity of the membrane per unit area.
Por tanto, integrando el modelado eléctrico descrito en un software de análisis de elementos finitos, en el que describimos la geometría de los electrodos, podemos estudiar la correspondencia entre simulaciones y comportamiento real de los sistemas, y por lo tanto, decodificar correctamente los resultados obtenidos experimentalmente. De igual forma, como se ha comentado anteriormente, el software de control permite seleccionar de forma remota parámetros tales como la frecuencia de muestreo o el nivel de corriente de salida, programando de forma inalámbrica el circuito de excitación y medida de bioimpedancia. Therefore, by integrating the electrical modeling described in a finite element analysis software, in which we describe the geometry of the electrodes, we can study the correspondence between simulations and real behavior of the systems, and therefore, correctly decode the results obtained experimentally. Similarly, as mentioned above, the control software allows remote selection of parameters such as the sampling frequency or the output current level, wirelessly programming the excitation circuit and bioimpedance measurement.
Modo de realización de la invención Embodiment of the invention
Ejemplo. Análisis de cultivo celular de MCF-7 a partir de una matriz de electrodos 8x8.  Example. Analysis of cell culture of MCF-7 from an 8x8 electrode array.
En este ejemplo se presenta la particularización del sistema para la medida de impedancia en un cultivo celular de células epiteliales cancerígenas MCF-7, a través de una matriz de electrodos 8x8. El tamaño del píxel seleccionado es de 50 μιη x 50 μιη, similar a las dimensiones de la célula. La frecuencia de excitación de los electrodos varía desde 10 kHz a 100 kHz, obteniéndose para cada frecuencia una medida de impedancia en cada píxel de la matriz de electrodos. In this example the particularization of the system for the measurement of impedance in a cell culture of MCF-7 cancer epithelial cells, through an 8x8 electrode array is presented. The size of the selected pixel is 50 μιη x 50 μιη, similar to the dimensions of the cell. The excitation frequency of the electrodes varies from 10 kHz to 100 kHz, obtaining for each frequency an impedance measurement in each pixel of the electrode array.
El software de monitorización permite obtener de forma inalámbrica señales que muestran la evolución del cultivo celular en el tiempo, para distintas frecuencias de muestreo. La figura 3 muestra un ejemplo del histórico registrado para un cultivo de células MCF-7. The monitoring software allows to obtain wireless signals that show the evolution of cell culture over time, for different sampling frequencies. Figure 3 shows an example of the history recorded for a culture of MCF-7 cells.
Mediante el modelado eléctrico podemos obtener una estimación del área ocupada en cada píxel por células del cultivo. Podemos utilizar el parámetro fill factor (ff), como el porcentaje de área ocupada en cada píxel por células del cultivo, variando desde ff=0, si no se detecta la presencia de ninguna célula, hasta ff=1 , con la totalidad del área ocupada por células. En la figura 4 se muestra el fill factor obtenido para cada píxel de la matriz 8x8. Through electrical modeling we can obtain an estimate of the area occupied in each pixel by crop cells. We can use the parameter fill factor (ff), as the percentage of area occupied in each pixel by cells of the culture, varying from ff = 0, if the presence of any cell is not detected, up to ff = 1, with the entire area occupied by cells. Figure 4 shows the fill factor obtained for each pixel of the 8x8 matrix.
Con el envío inalámbrico de los datos de impedancia para cada píxel se puede monitorizar el crecimiento del cultivo celular en tiempo real, sin necesidad de realizar una inspección visual del cultivo, con el consiguiente ahorro de tiempo y con la posibilidad de implementar señales de alarma automáticas ante cambios inesperados. De igual forma, la automatización en la obtención de la información en forma digital mediante una matriz 2D permite un posterior procesado de los datos de cada píxel para un estudio más avanzado de la evolución del cultivo. With the wireless sending of the impedance data for each pixel, the growth of the cell culture can be monitored in real time, without the need for a visual inspection of the culture, with the consequent saving of time and with the possibility of implementing automatic alarm signals to unexpected changes. Similarly, automation in obtaining the information in digital form through a 2D matrix allows further processing of the data of each pixel for a more advanced study of the evolution of the crop.

Claims

Reivindicaciones  Claims
1 - Sistema de medida de bioimpedancia para la monitorización en tiempo real e inalámbrica de cultivos celulares basado en circuitos CMOS y modelado eléctrico, caracterizado por comprender; 1 - Bioimpedance measurement system for real-time and wireless monitoring of cell cultures based on CMOS circuits and electrical modeling, characterized by understanding;
a) una matriz o vector 2D de electrodos; un electrodo central (e^ y uno de mayor área llamado electrodo de referencia (e2), a) a matrix or 2D vector of electrodes; a central electrode (e ^ and one of greater area called reference electrode (e 2 ),
b) un circuito de excitación y medida de bioimpedancia en bucle cerrado, c) un circuito de transmisión y recepción de señales de radiofrecuencia compatible con los estándares 802.11 , 802.15 o similares  b) a closed loop bioimpedance excitation and measurement circuit, c) a radio frequency signal transmission and reception circuit compatible with 802.11, 802.15 or similar standards
d) y un software de monitorización y programación basado en modelado eléctrico.  d) and a monitoring and programming software based on electrical modeling.
2 - Sistema de medida de bioimpedancia para la monitorización en tiempo real e inalámbrica de cultivos celulares basado en circuitos CMOS y modelado eléctrico, según reivindicación 1 , caracterizado por la utilización de tecnología basada en procesos CMOS para la implementación de la matriz o vector de microelectrodos. 2 - Bioimpedance measurement system for real-time and wireless monitoring of cell cultures based on CMOS circuits and electrical modeling, according to claim 1, characterized by the use of technology based on CMOS processes for the implementation of the array or vector of microelectrodes .
3 - Sistema de medida de bioimpedancia para la monitorización en tiempo real e inalámbrica de cultivos celulares basado en circuitos CMOS y modelado eléctrico, según reivindicaciones anteriores, caracterizado por la utilización de tecnología basada en procesos CMOS para la implementación de los circuitos integrados. 3 - Bioimpedance measurement system for real-time and wireless monitoring of cell cultures based on CMOS circuits and electrical modeling, according to previous claims, characterized by the use of technology based on CMOS processes for the implementation of integrated circuits.
4 - Sistema de medida de bioimpedancia para la monitorización en tiempo real e inalámbrica de cultivos celulares basado en circuitos CMOS y modelado eléctrico, según reivindicaciones anteriores, caracterizado por la utilización de un amplificador de instrumentación, un convertidor AC - DC o rectificador, un amplificador de error y un oscilador de corriente con la salida de corriente programable para el circuito de excitación y medida de bioimpedancia. 4 - Bioimpedance measurement system for real-time and wireless monitoring of cell cultures based on CMOS circuits and electrical modeling, according to previous claims, characterized by the use of an instrumentation amplifier, an AC-DC converter or rectifier, an amplifier error and a current oscillator with the programmable current output for the excitation circuit and bioimpedance measurement.
5 - Sistema de medida de bioimpedancia para la monitorización en tiempo real e inalámbrica de cultivos celulares basado en circuitos CMOS y modelado eléctrico, según reivindicaciones anteriores, caracterizado por la utilización del parámetro fill factor (ff, porcentaje de área ocupada en cada píxel por células del cultivo) para la decodificación de los resultados experimentales y la reconstrucción de imagen. 5 - Bioimpedance measurement system for real-time and wireless monitoring of cell cultures based on CMOS circuits and electrical modeling, according to previous claims, characterized by the use of the fill factor parameter (ff, percentage of area occupied in each pixel by cells of the culture) for the decoding of the experimental results and the reconstruction of image.
PCT/ES2015/000064 2014-05-13 2015-05-12 Bioimpedance measuring system for wirelessly monitoring cell cultures in real time, based on cmos circuits and electrical modelling WO2015173443A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201400401 2014-05-13
ES201400401A ES2551249B1 (en) 2014-05-13 2014-05-13 Bioimpedance measurement system for real-time and wireless monitoring of cell cultures based on CMOS circuits and electrical modeling

Publications (1)

Publication Number Publication Date
WO2015173443A1 true WO2015173443A1 (en) 2015-11-19

Family

ID=54478474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/000064 WO2015173443A1 (en) 2014-05-13 2015-05-12 Bioimpedance measuring system for wirelessly monitoring cell cultures in real time, based on cmos circuits and electrical modelling

Country Status (2)

Country Link
ES (1) ES2551249B1 (en)
WO (1) WO2015173443A1 (en)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MORRISON TIM ET AL.: "A 0.5 cm3 Four-Channel 1.1 mW Wireless Biosignal Interface With 20 m Range.", IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, vol. 8, no. 1, 1 February 2014 (2014-02-01), US, pages 138 - 147, XP011544022, ISSN: 1932-4545 *
WISSENWASSER J ET AL.: "Signal Generator for Wireless Impedance Monitoring of Microbiological Systems.", IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, vol. 60, no. 6, 1 June 2011 (2011-06-01), PISCATAWAY, NJ, US, pages 2039 - 2046, XP011477060, ISSN: 0018-9456 *
YUFERA A ET AL.: "A CMOS bio-impedance measurement system.Design and Diagnostics of Electronic Circuits&Systems", 2009. DDECS '09. 12TH INTERNATIONAL SYMPOSIUM ON, 15 April 2009 (2009-04-15), Piscataway, NJ, USA, pages 252 - 257, XP031466885, ISBN: 978-1-4244-3341-4 *

Also Published As

Publication number Publication date
ES2551249A1 (en) 2015-11-17
ES2551249B1 (en) 2016-10-07

Similar Documents

Publication Publication Date Title
Yang et al. A miniature electrical impedance tomography sensor and 3-D image reconstruction for cell imaging
Daza et al. Monitoring living cell assays with bio-impedance sensors
US10094818B2 (en) Bacterial/cellular recognition impedance algorithm
JP2017509407A (en) A device for measuring the condition of human skin
Olmo et al. Computer simulation of microelectrode based bio-impedance measurements with COMSOL
CN108700536B (en) Method and system for determining at least one cell type and/or condition
Yúfera et al. Cell biometrics based on bio-impedance measurements
Wu et al. Calibrated frequency-difference electrical impedance tomography for 3D tissue culture monitoring
ES2551249B1 (en) Bioimpedance measurement system for real-time and wireless monitoring of cell cultures based on CMOS circuits and electrical modeling
Gómez-Sánchez et al. Description of corrections on electrode polarization impedance using isopotential interface factor
Canali et al. Electrical impedance tomography methods for miniaturised 3D systems
Yang Advanced digital electrical impedance tomography system for biomedical imaging
Serrano et al. Practical characterization of cell-electrode electrical models in bio-impedance assays
González et al. Frequency dependence of phase shift in edema: a theoretical study with magnetic induction
WO2016020561A1 (en) Bioimpedance measurement system for wirelessly monitoring cell cultures in real time, based on an oscillation test using integrated circuits
Palla et al. Kalman-based approach to bladder volume estimation for people with neurogenic dysfunction of the urinary bladder
Pérez-García et al. Towards bio-impedance based labs: A review
Yufera et al. A CMOS bio-impedance measurement system
Dudzinski et al. Skin impedance measurements by means of novel gold sensors fabricated by direct writing
Solis et al. Electrical properties of tissues from a microscopic model of confined electrolytes
Maldonado et al. Monitoring tissue evolution on electrodes with bio-impedance test
Daza et al. Cell-culture real time monitoring based on bio-impedance measurements
Yúfera et al. A microelectrode-cell sensor model for real time monitoring
Yúfera et al. Using microelectrode models for real time cell-culture monitoring
Tomasz et al. A hybrid tomography system for the analysis of wall dampness

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15792866

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15792866

Country of ref document: EP

Kind code of ref document: A1