WO2015172275A1 - 传输下行信号的方法、基站和用户设备 - Google Patents

传输下行信号的方法、基站和用户设备 Download PDF

Info

Publication number
WO2015172275A1
WO2015172275A1 PCT/CN2014/077208 CN2014077208W WO2015172275A1 WO 2015172275 A1 WO2015172275 A1 WO 2015172275A1 CN 2014077208 W CN2014077208 W CN 2014077208W WO 2015172275 A1 WO2015172275 A1 WO 2015172275A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
frequency band
base station
exclusive
downlink signal
Prior art date
Application number
PCT/CN2014/077208
Other languages
English (en)
French (fr)
Inventor
周勋
王昭
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480014169.0A priority Critical patent/CN105264994A/zh
Priority to EP14891640.6A priority patent/EP3104655B1/en
Priority to PCT/CN2014/077208 priority patent/WO2015172275A1/zh
Publication of WO2015172275A1 publication Critical patent/WO2015172275A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • Embodiments of the present invention relate to the field of wireless communications, and more particularly to a method of transmitting a downlink signal, a base station, and a user equipment. Background technique
  • LTE Long Term Evolution
  • 3rd Generation 3rd generation
  • LTE Long Term Evolution
  • a series of new technologies are used to increase the band efficiency and communication rate of the system.
  • LTE supports flexible frequency band configuration with a maximum system bandwidth of 20MHz and can support downlink transmission rates of up to 150Mbps to meet the growing business needs.
  • GSM Global System for Mobile Communications
  • Embodiments of the present invention provide a method, a base station, and a user equipment for transmitting a downlink signal, which can improve a transmission rate of a downlink signal in a frequency band.
  • a method including: when a base station allocates an exclusive frequency band of a long term evolution system in a transmission band, the first user equipment preferentially allocates frequency resources of the exclusive frequency band, wherein the transmission frequency band further includes The shared frequency band of the long term evolution system and the global mobile communication system; the base station transmits the first downlink signal to the first user equipment on the frequency resource of the exclusive frequency band.
  • Priority allocation of frequency resources in the exclusive frequency band includes: preferentially allocating frequency resources in the exclusive frequency band within a predetermined transmission time interval to the first user equipment.
  • the method further includes: the frequency of the base station in the exclusive frequency band within a predetermined transmission time interval When the resource has been allocated, the second user equipment is allocated a frequency resource of the shared frequency band within a predetermined transmission time interval; the base station transmits the second frequency to the second user equipment on the frequency resource of the shared frequency band within a predetermined transmission time interval. Downstream signal.
  • the method further includes: determining, by the base station, a priority of the first user equipment, The priority of the first user equipment indicates the order in which the base station allocates the frequency resource to the first user equipment, and the first user equipment is preferentially allocated the frequency resource in the exclusive frequency band, including: assigning the first user to the first user according to the priority of the first user equipment The device allocates frequency resources in the exclusive band.
  • the determining, by the base station, the priority of the first user equipment includes: the base station is in the exclusive frequency band according to the first user equipment The transmission rate and band efficiency determine the priority of the first user equipment.
  • the base station determines, according to the transmission rate and the frequency band efficiency of the first user equipment in the exclusive frequency band, the first user equipment The priority includes: determining, by the base station, a priority of the first user equipment according to a transmission rate and a frequency band efficiency of the first user equipment in the exclusive frequency band within a predetermined transmission time interval.
  • the method further includes: receiving, by the base station, the first user a first channel quality indicator sent by the device; the base station determines, by adjusting the first channel quality indicator, a first modulation and coding strategy for the first downlink signal of the first user equipment in the exclusive frequency band; the frequency resource of the base station in the exclusive frequency band
  • the sending the first downlink signal to the first user equipment includes: transmitting, by the base station, the first downlink signal to the first user equipment on the frequency resource of the exclusive frequency band according to the first modulation and coding policy.
  • the method further includes: receiving, by the base station, a second channel quality indicator sent by the second user equipment;
  • the second channel quality indicator determines a second modulation and coding strategy for the second downlink signal of the second user equipment in the shared frequency band, and the base station sends the second user equipment to the second user equipment on the frequency resource within the predetermined transmission time interval.
  • Downlink signal including: base station according to the second tone And a coding strategy, sending a second downlink signal to the second user equipment on a frequency resource within a predetermined transmission time interval.
  • the receiving, by the base station, the first channel quality indicator sent by the first user equipment Determining, by the user equipment, the first channel quality indicator periodically sent by the user equipment, the base station determining, by adjusting the first channel quality indicator, the first modulation and coding policy in the exclusive frequency band for the first user equipment, where: the base station is according to the first user equipment The measured value of the initial transmission error block rate in the exclusive frequency band and the target value of the set initial transmission error block rate determine an adjustment amount of the first channel quality indicator; the base station determines, according to the adjustment amount of the first channel quality indicator, the first user The first modulation and coding strategy of the device in the exclusive frequency band.
  • a method including: determining, by a first user equipment, a frequency resource of an exclusive frequency band of a long-term evolution system in a transmission frequency band allocated by the base station for the first user equipment; and receiving, by the first user equipment, the base station in the exclusive frequency band
  • the first downlink signal sent on the frequency resource, the frequency resource of the exclusive frequency band is preferentially allocated by the base station if the exclusive frequency band is not allocated, wherein the transmission frequency band further includes a shared frequency band of the long term evolution system and the global mobile communication system.
  • the frequency resource of the exclusive frequency band is a frequency resource within a predetermined transmission time interval.
  • the frequency resource of the exclusive frequency band is that the base station does not allocate the exclusive frequency band.
  • the priority of the first user equipment is determined by the base station according to the priority of the first user equipment, and the priority of the first user equipment indicates the order in which the base station allocates frequency resources to the first user equipment.
  • the priority of the first user equipment is determined by the base station according to the transmission rate of the first user equipment in the exclusive frequency band. Band efficiency is determined.
  • the priority of the first user equipment is exclusive to the first user equipment according to the first user equipment in a predetermined transmission time interval.
  • the transmission rate and band efficiency in the frequency band are determined.
  • the method further includes: The base station sends a first channel quality indicator, and the first user equipment receives the base station to perform in the transmission frequency band for a long time
  • the first downlink signal sent on the frequency resource of the exclusive frequency band of the system includes: the first user equipment receives the first modulation and coding strategy of the base station in the exclusive frequency band according to the first downlink signal, and is long-term in the transmission frequency band.
  • the first user equipment sends the first channel quality indicator to the base station, where: the first user equipment periodically sends the base station to the base station. Transmitting a first channel quality indicator, where the first modulation and coding strategy is determined by the base station according to the adjustment quantity of the first channel quality indication, where the adjustment quantity of the first channel quality indicator is the initial transmission error block rate of the base station through the exclusive frequency band The measured value and the target value of the set initial transmission error block rate are determined.
  • a method including: determining, by a second user equipment, a frequency resource of a shared frequency band allocated by a base station for a second user equipment within a predetermined transmission time interval; and transmitting, by the second user equipment, within a predetermined transmission time interval
  • the second downlink signal sent by the base station is received on the frequency resource of the shared frequency band in the frequency band, and the transmission frequency band includes the shared frequency band and the exclusive frequency band of the long term evolution system, and the shared frequency band is shared by the long term evolution system and the global mobile communication system, and the frequency resource of the shared frequency band is shared. It is assigned by the second user equipment.
  • the method further includes: the second user equipment sends a second channel quality indicator to the base station; and the second user equipment is in the transmission frequency band in a predetermined transmission time interval.
  • the method includes: the second user equipment base station, according to the second modulation and coding strategy of the second downlink signal, on the frequency resource in the shared frequency band within a predetermined time interval Sending a second downlink signal to the second user equipment, where the second modulation and coding strategy is determined by the base station by adjusting the second channel quality indicator.
  • a base station including: an allocation module, configured to preferentially allocate a frequency resource of an exclusive frequency band to a first user equipment, where an exclusive frequency band of a long term evolution system is not allocated in a transmission frequency band, where The transmission band further includes a shared frequency band of the long term evolution system and the global mobile communication system; and a sending module, configured to send the first downlink signal to the first user equipment on the frequency resource of the exclusive frequency band.
  • the allocating module is specifically configured to preferentially allocate the frequency resource in the exclusive frequency band within the predetermined transmission time interval to the first user equipment.
  • the allocating module is further configured to use the frequency in the exclusive frequency band within a predetermined transmission time interval When the resource has been allocated, the second user equipment is allocated a frequency resource in which the shared frequency band is within a predetermined transmission time interval; and the sending module is further configured to send the shared frequency band to the second user on the frequency resource within the predetermined transmission time interval.
  • the device sends a second downlink signal.
  • the base station further includes: a first determining module, configured to determine the first The priority of the user equipment, the priority of the first user equipment is used to indicate the order in which the base station allocates frequency resources to the first user equipment, where the allocation module is specifically configured to allocate exclusive rights to the first user equipment according to the priority allocation of the first user equipment. Frequency resources in the frequency band.
  • the first determining module is specifically configured to use the transmission rate and the frequency band efficiency of the first user equipment in the exclusive frequency band. Determine the priority of the first user equipment.
  • the first determining module is configured to perform a transmission rate in the exclusive frequency band according to the first user equipment in a predetermined transmission time interval. And the band efficiency determines the priority of the first user equipment.
  • the base station further includes: a receiving module, configured to: Receiving a first channel quality indicator sent by the first user equipment, where the second determining module is configured to determine, by adjusting the first channel quality indicator, the first modulation and coding in the exclusive frequency band of the first downlink signal for the first user equipment
  • the policy where the sending module is specifically configured to send, by the base station, the first downlink signal to the first user equipment according to the first modulation and coding policy, on the frequency resource of the exclusive frequency band.
  • the receiving module is further configured to receive a second channel quality indicator that is sent by the second user equipment, where the second determining module further And determining, by adjusting the second channel quality indicator, a second modulation and coding policy in the shared frequency band of the second downlink signal for the second user equipment, where the sending module is further configured to perform, in the predetermined transmission, the base station according to the second modulation and coding policy The second downlink signal is sent to the second user equipment on the frequency resource in the time interval.
  • the receiving module is configured to receive, by the first user equipment, the first channel quality indicator that is periodically sent by the first user equipment.
  • the second determining module is specifically configured to: according to the first user equipment in the exclusive frequency band The measured value of the initial transmission error block rate and the set target value of the initial transmission error block rate determine an adjustment amount of the first channel quality indication; determining the exclusive frequency band for the first user equipment according to the adjustment amount of the first channel quality indication The first modulation and coding strategy.
  • the fifth aspect provides a user equipment, including: a determining module, configured to determine a frequency resource of an exclusive frequency band of a long-term evolution system in a transmission frequency band allocated by the base station for the user equipment; and a receiving module, configured to receive the base station in an exclusive frequency band
  • the first downlink signal transmitted on the frequency resource, the frequency resource of the exclusive frequency band is preferentially allocated by the base station if the exclusive frequency band is not allocated, wherein the transmission frequency band further includes a shared frequency band of the long term evolution system and the global mobile communication system.
  • the frequency resource of the exclusive frequency band is a frequency resource within a predetermined transmission time interval.
  • the frequency resource of the exclusive frequency band is that the base station is not allocated in the exclusive frequency band
  • the priority of the user equipment is determined by the priority of the user equipment, and the priority of the user equipment indicates the order in which the base station allocates frequency resources to the user equipment.
  • the priority of the user equipment is determined by the base station according to the transmission rate and the band efficiency of the user equipment in the exclusive frequency band.
  • the priority of the user equipment is transmitted by the base station in the exclusive frequency band according to the user equipment according to the predetermined transmission time interval. Rate and band efficiency are determined.
  • the user equipment further includes: a sending module, Transmitting, by the base station, a first channel quality indicator, where the receiving module is specifically configured to receive, by the base station, a first modulation and coding strategy according to the first downlink signal in the exclusive frequency band, and the exclusive frequency band of the long term evolution system in the transmission frequency band And a first downlink signal sent on the frequency resource, where the first modulation and coding strategy is determined by the base station by adjusting the first channel quality indicator.
  • the sending module is configured to periodically send, to the base station, a first channel quality indicator, where the first modulation and coding
  • the policy is determined by the base station according to the adjustment quantity of the first channel quality indication, where the adjustment quantity of the first channel quality indicator is a measurement value of the initial transmission error block rate by the base station through the exclusive frequency band and the set initial transmission error block rate.
  • the target value is determined.
  • a user equipment including: a determining module, configured to determine a frequency resource of a shared frequency band allocated by the base station for the user equipment in a predetermined transmission time interval; a receiving module, a second downlink signal sent by the base station,
  • the transmission frequency band includes a shared frequency band and an exclusive frequency band of the long term evolution system, and the shared frequency band is shared by the long term evolution system and the global mobile communication system, and is allocated to the user equipment under the frequency condition of the shared frequency band.
  • the user equipment further includes: a sending module, configured to send a second channel quality indicator to the base station, where the receiving module is specifically configured to use the second downlink
  • the second modulation and coding strategy of the signal is to send the second downlink signal to the user equipment on the frequency resource in the shared frequency band within a predetermined time interval, where the second modulation and coding strategy is determined by the base station by adjusting the second channel quality indicator.
  • the embodiment of the present invention preferentially allocates frequency resources on the exclusive band of LTE having higher channel quality, thereby increasing the transmission rate of the downlink signal in the transmission band.
  • FIG. 1 is a schematic structural diagram of a system for transmitting a downlink signal according to an embodiment of the present invention.
  • FIG. 2 is a schematic flow diagram of a method of transmitting a downlink signal in accordance with one embodiment of the present invention.
  • FIG. 3 is a schematic flow diagram of a method of transmitting a downlink signal in accordance with another embodiment of the present invention.
  • FIG. 4 is a schematic flow diagram of a method of transmitting a downlink signal in accordance with one embodiment of the present invention.
  • FIG. 5 is a schematic flow chart of a method of transmitting a downlink signal according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a base station transmitting a downlink signal according to an embodiment of the present invention.
  • Figure 7 is a schematic block diagram of a user equipment transmitting downlink signals in accordance with one embodiment of the present invention.
  • Figure 8 is a schematic block diagram of a user equipment transmitting downlink signals in accordance with one embodiment of the present invention.
  • Figure 9 is a schematic structural diagram of a base station transmitting a downlink signal according to an embodiment of the present invention.
  • Figure 10 is a schematic block diagram of a user equipment transmitting downlink signals in accordance with one embodiment of the present invention.
  • FIG 11 is a schematic block diagram of a user equipment transmitting downlink signals in accordance with one embodiment of the present invention. detailed description
  • the system 100 of FIG. 1 is a schematic structural diagram of a system for transmitting a downlink signal according to an embodiment of the present invention.
  • the system 100 of FIG. 1 is a communication system shared by a Global System for Mobile Community (GSM) system and a Long Term Evolution (LTE) system, and includes a base station 110, a user equipment 120, and a user equipment 130. It should be understood that base station 110, user equipment 120, and user equipment 130 can communicate over a global mobile communication system and a long term evolution system.
  • GSM Global System for Mobile Community
  • LTE Long Term Evolution
  • the user equipment includes but is not limited to a mobile station (MS, Mobile Station), a mobile terminal (Mobile Terminal), a mobile telephone (Mobile Telephone), a mobile phone (handset). And a portable device (ortable equipment), etc., the user equipment can communicate with one or more core networks via a radio access network (RAN), for example, the user equipment can be a mobile phone (or "cellular"
  • RAN radio access network
  • the user equipment can be a mobile phone (or "cellular"
  • the telephone, the computer with wireless communication function, etc. the user equipment can also be a portable, pocket, handheld, computer built-in or vehicle-mounted mobile device.
  • 2 is a schematic flow chart of a method of transmitting a downlink signal according to an embodiment of the present invention. The method of Figure 2 is performed by a base station. The method includes the following.
  • the base station preferentially allocates frequency resources of the exclusive frequency band to the first user equipment when the exclusive frequency band of the long term evolution system is not allocated in the transmission frequency band, where the transmission frequency band further includes a long term evolution system and a global mobile communication system GSM. Shared frequency band.
  • the base station sends a first downlink signal to the first user equipment on the frequency resource of the exclusive frequency band.
  • the transmission band of the base station can include the exclusive frequency band of the LTE system and the shared frequency band of the LTE system and GSM.
  • the base station may preferentially allocate the frequency resource of the exclusive frequency band to the user equipment to be scheduled, and allocate the frequency of the shared frequency band to the user equipment to be scheduled in the case that the exclusive frequency band is saturated. Resources.
  • the first user equipment may be preferentially allocated frequency resources in the exclusive frequency band within a predetermined Transmission Time Interval (TTI), for example, a frequency resource in an exclusive frequency band within a transmission time interval or a plurality of transmission time intervals, but the embodiment of the present invention is not limited thereto, that is, the first user equipment may be preferentially allocated in the exclusive frequency band in any manner.
  • TTI Transmission Time Interval
  • the first user device can be any form of user device as described in FIG.
  • the embodiment of the present invention preferentially allocates frequency resources on the exclusive band of LTE having higher channel quality, thereby increasing the transmission rate of the downlink signal in the transmission band.
  • the base station may preferentially allocate the frequency resources in the exclusive frequency band within the predetermined transmission time interval ⁇ to the first user equipment.
  • the base station preferentially allocates frequency resources in the exclusive frequency band within the predetermined transmission time interval to the first user equipment, the frequency resources can be flexibly allocated and scheduled as needed.
  • the method of FIG. 2 further includes: when the frequency resource of the exclusive frequency band within the predetermined transmission time interval has been allocated, the base station allocates the shared frequency band to the predetermined second user equipment. a frequency resource within a transmission time interval; the base station transmits a second downlink signal to the second user equipment on the frequency resource of the shared frequency band within a predetermined transmission time interval.
  • the base station can allocate the frequency resource of the shared frequency band to the user equipment that does not allocate the exclusive frequency band within a preset transmission time interval, so as to avoid the independence within the same transmission time interval.
  • Frequency resources of the frequency band and frequency resources of the shared frequency band are allocated to the same User devices.
  • the second user equipment may be any form of user equipment described in FIG. 1.
  • the first user equipment and the second user equipment are different user equipments, but may be the same type of user equipment, for example, all mobile Handheld devices. Since the frequency resources are allocated to the user equipment in the shared frequency band, more data can be transmitted, and therefore, the utilization of the frequency band is further improved on the basis of making full use of the exclusive frequency band.
  • the method of FIG. 2 further includes: determining, by the base station, a priority of the first user equipment, where the priority of the first user equipment indicates an order in which the base station allocates frequency resources to the first user equipment, is first
  • the user equipment preferentially allocates frequency resources in the exclusive frequency band, including: allocating frequency resources in the exclusive frequency band to the first user equipment according to the priority allocation of the first user equipment.
  • the base station may first allocate frequency resources of the exclusive frequency band to the user equipment with higher priority according to the priority of the user equipment from high to low order, and allocate the shared frequency band to the remaining user equipment after the exclusive frequency band allocation is completed.
  • the base station may determine the priority of the user equipment according to the needs of the user, and may also determine the priority of the user equipment according to the transmission rate in the transmission band of the user equipment, for example, the transmission rate information reported by the user equipment, or may be based on Other parameters or indicators are used to determine the priority of the user equipment, which is not limited by the embodiment of the present invention. Since resources are allocated according to the priority of the user equipment, different priorities can be used for different users, and the flexibility of allocation is improved. In addition, since frequency resources are preferentially allocated to user equipments having a high priority, frequency efficiency can be improved.
  • the determining, by the base station, the priority of the first user equipment comprises: determining, by the base station, the priority of the first user equipment according to the transmission rate and the frequency band efficiency of the first user equipment in the exclusive frequency band.
  • the transmission rate in the above may be the historical transmission rate of the user equipment, that is, the accumulation of the transmission rate values before the allocation of the frequency resource to the user equipment, wherein the base station may obtain the transmission rate value by means of the user equipment reporting.
  • the band efficiency is spectral efficiency, and the user equipment can report the band efficiency information to the base station.
  • the priority may be a function of time, e.g., when the transmission rate and frequency efficiency are for the Nth transmission time interval (N is an integer), the priority of the user equipment is a function of time. Priority can also be independent of time. Since the transmission rate and the frequency band efficiency are used to determine the priority of the user equipment, the spectrum utilization and frequency efficiency are further improved on the basis of increasing the flexibility of the allocated frequency resources.
  • the base station according to the transmission rate of the first user equipment in the exclusive frequency band Determining the priority of the first user equipment with the frequency band efficiency includes: determining, by the base station, a priority of the first user equipment according to a transmission rate and a frequency band efficiency of the first user equipment in the exclusive frequency band within a predetermined transmission time interval.
  • the predetermined transmission time interval herein may be one transmission time interval or several transmission time intervals. Since the priorities are for different transmission time intervals, the base station can allocate resources for different priority user equipments in different transmission time intervals, thereby further increasing the flexibility of allocation and scheduling.
  • the method of FIG. 2 further includes: receiving, by the base station, a first channel quality indication (CQI) sent by the first user equipment; the base station determining, by adjusting the first channel quality indicator, that the first a first modulation and coding scheme (MCS) of the first downlink signal of the user equipment in the exclusive frequency band; the base station sends the first downlink signal to the first user equipment on the frequency resource of the exclusive frequency band,
  • the method includes: the base station transmitting, by using the first modulation and coding policy, the first downlink signal to the first user equipment on the frequency resource of the exclusive frequency band.
  • the base station Since the base station modulates and codes according to the received CQI and for different user equipments, the channel with high transmission quality can have a higher transmission rate, thereby further improving the spectral efficiency.
  • the method of FIG. 2 further includes: receiving, by the base station, a second channel quality indicator sent by the second user equipment; and determining, by adjusting, the second channel quality indicator, the second downlink signal for the second user equipment a second modulation and coding strategy in the shared frequency band, the base station transmitting, by the shared frequency band, the second downlink signal to the second user equipment on the frequency resource within the predetermined transmission time interval, including: the base station according to the second modulation and coding strategy, Sending a second downlink signal to the second user equipment on the frequency resource within the predetermined transmission time interval.
  • adaptive modulation and coding strategies are used in the shared frequency band, that is, the modulation and coding strategy of the exclusive frequency band and the modulation and coding of the shared frequency band.
  • the strategy can be independently determined, thus avoiding the spectral efficiency of the exclusive frequency band being pulled down by the shared frequency band, thereby further improving the spectral efficiency of the shared frequency band.
  • the receiving, by the base station, the first channel quality indicator sent by the first user equipment includes: receiving, by the base station, a first channel quality indicator periodically sent by the first user equipment. Determining, by the base station, the first modulation and coding policy in the exclusive frequency band for the first user equipment by adjusting the first channel quality indicator, the method includes: the base station according to the first transmission error block of the first user equipment in the exclusive frequency band The measured value of the rate and the target value of the set initial transmission error block rate determine an adjustment amount of the first channel quality indicator; the base station determines, according to the adjustment amount of the first channel quality indicator, the first frequency band in the exclusive frequency band for the first user equipment A modulation and coding strategy.
  • the base station receives the first channel quality indicator periodically sent by the first user equipment, and may be sent once every predetermined transmission time interval, for example, every other transmission time interval. It can also be transmitted in a predetermined cycle. Alternatively, the adjustment step size can also be set when determining the amount of modulation. Because the channel quality indicator periodically sent by the user equipment is received, the modulation and coding strategy can be updated in time according to the channel quality information fed back by the user equipment, which not only ensures the transmission quality but also improves the frequency efficiency. Since the measurement value of the initial transmission error block rate is a measurement value for the exclusive frequency band, it is possible to adjust the channel quality indication more efficiently, and thus more efficiently modulate and encode, further improving the frequency efficiency.
  • FIG. 3 is a schematic flow diagram of a method of transmitting a downlink signal in accordance with another embodiment of the present invention.
  • the method of Figure 3 is performed by a user equipment and corresponds to the method of Figure 2, including the following.
  • the first user equipment determines a frequency resource of an exclusive frequency band of the long-term evolution system in the transmission frequency band allocated by the base station to the first user equipment.
  • the first user equipment receives the first downlink signal sent by the base station on the frequency resource of the exclusive frequency band, and the frequency resource of the exclusive frequency band is preferentially allocated by the base station when the exclusive frequency band is not allocated, wherein the transmission frequency band is further allocated.
  • the frequency resource of the exclusive frequency band is preferentially allocated by the base station when the exclusive frequency band is not allocated, wherein the transmission frequency band is further allocated.
  • the embodiment of the present invention preferentially allocates frequency resources on the exclusive band of LTE having higher channel quality, thereby increasing the transmission rate of the downlink signal in the transmission band.
  • the frequency resource of the exclusive frequency band is a frequency resource within a predetermined transmission time interval.
  • the frequency resource of the exclusive frequency band is allocated by the base station according to the priority of the first user equipment, and the priority of the first user equipment is determined by the base station,
  • the priority of a user equipment indicates the order in which the base station allocates frequency resources to the first user equipment.
  • the priority of the first user equipment is determined by the base station based on the transmission rate and band efficiency of the first user equipment in the exclusive frequency band.
  • the priority of the first user equipment is determined by the base station according to the transmission rate and the band efficiency of the first user equipment in the exclusive frequency band within a predetermined transmission time interval.
  • the method of FIG. 3 further includes: the first user equipment sends a first channel quality indicator to the base station, where the first user equipment receives the frequency resource of the exclusive frequency band of the long term evolution system of the base station in the transmission frequency band.
  • the first user equipment sends the first channel quality indicator to the base station, where: the first user equipment periodically sends a first channel quality indicator to the base station, where the first modulation and coding strategy is performed by the base station according to the first channel.
  • the adjustment amount of the quality indication is determined by the base station by the measurement value of the initial transmission error block rate in the exclusive frequency band and the target value of the set initial transmission error block rate.
  • FIG. 4 is a schematic flow diagram of a method of transmitting a downlink signal in accordance with one embodiment of the present invention.
  • the method of Figure 4 is performed by the user equipment, including: 410, the second user equipment determines a frequency resource of the shared frequency band allocated by the base station for the second user equipment in a predetermined transmission time interval; 420, the second user equipment is at a predetermined transmission time.
  • the second downlink signal sent by the base station is received on the frequency resource of the shared frequency band in the transmission frequency band, and the transmission frequency band includes the shared frequency band and the exclusive frequency band of the long term evolution system, and the shared frequency band is shared by the long term evolution system and the global mobile communication system, and the shared frequency band is shared.
  • the frequency resource is allocated by the base station to the second user equipment in the case that the frequency resource of the exclusive frequency band within the predetermined transmission time interval has been allocated.
  • the embodiment of the present invention preferentially allocates frequency resources on the exclusive band of LTE having higher channel quality, thereby increasing the transmission rate of the downlink signal in the transmission band.
  • the method of FIG. 4 further includes: the second user equipment sends a second channel quality indicator to the base station; and the frequency resource of the shared frequency band in the transmission frequency band of the second user equipment in the predetermined transmission time interval Receiving, by the second base station, the second downlink signal, the second user equipment base station sends, according to the second modulation and coding policy of the second downlink signal, the shared frequency band to the second user equipment on the frequency resource within the predetermined time interval.
  • the second downlink signal, the second modulation and coding strategy is determined by the base station by adjusting the second channel quality indicator.
  • FIG. 5 is a schematic flow chart of a method of transmitting a downlink signal according to an embodiment of the present invention.
  • the embodiment of Figure 5 is performed by the base station of Figure 1, which is an example of the method of the embodiment of Figure 2,
  • three user equipments are taken as an example and the Kth transmission time interval is taken as an example for description.
  • the names of the user equipment VIII, the user equipment B, and the user equipment C are merely for distinguishing a plurality of different user equipments, and should not be construed as limiting the constitution of the embodiments of the present invention, nor should they be construed as being inconsistent with the above-described embodiments.
  • a preferred solution in which the same user equipment does not simultaneously allocate frequency resources in the Kth transmission time interval in the exclusive frequency band and the shared frequency band.
  • the user equipment C and the user B are the first user equipment, that is, the frequency resource in the exclusive frequency band is allocated thereto;
  • the user equipment A is the second user equipment, that is, the frequency resource in the shared frequency band is allocated thereto.
  • the base station determines a priority of the user equipment.
  • the base station determines the priorities of user equipment A, user equipment B, and user equipment C.
  • the base station can use a Proportional Fair (PF) scheduling algorithm to determine the priority of the user equipment, for example, using the following formula 5.0
  • PF Proportional Fair
  • P n , k represents a frequency resource of the nth user equipment in the Kth transmission time interval
  • R n , k represents a historical transmission rate of the nth user equipment before the Kth transmission time interval
  • E n , k is the spectral efficiency of the exclusive band of the nth user equipment at the Kth transmission time interval.
  • n represents the frequency resource of the nth user equipment in the Kth transmission time interval
  • d, n , k represents the maximum transmission rate that n user equipments can reach in the Kth transmission time interval
  • r n , k represents the average rate before the Kth transmission time interval, that is, the average rate from the K-1 transmission time interval.
  • the values of n are 1, 2, and 3, respectively corresponding to user equipments A, B, and C.
  • the priority of the user equipment calculated according to Equation 5.0 is: ⁇ ⁇ , ⁇ . That is, in the first transmission interval, the priority of the user equipment C is greater than the priority of the user equipment, and the priority of the user equipment is greater than the priority of the user equipment.
  • the base station allocates frequency resources of the first user equipment in the exclusive frequency band.
  • the base station allocates the frequency resources of the user equipment C and the user equipment B in the Kth transmission time interval in the exclusive frequency band according to the determined priority of the user equipment. In other words, since the priority of the user equipment C is higher than the priority of the user equipment B, the priority of the user equipment B is higher than the priority of the user equipment A. Therefore, the frequency resources of the user equipment C are preferentially allocated. In addition, by Since the exclusive frequency band is not allocated, that is, there is an assignable frequency resource in the exclusive frequency band, the base station allocates resources for the user equipment C in the exclusive frequency band.
  • the base station determines that the exclusive frequency band is not allocated. Next, the base station allocates frequency resources to the user equipment B in order of priority. Since the exclusive frequency band is not allocated, the base station still allocates resources for the user equipment B in the exclusive frequency band.
  • the base station allocates a frequency resource to the user equipment, and allocates the frequency resource in the Kth transmission time interval to the user equipment, and details are not described herein again.
  • the base station determines that the exclusive frequency band has been allocated.
  • the base station allocates frequency resources of the second user equipment in the shared frequency band.
  • the base station allocates frequency resources of the user equipment A at the Kth transmission time interval in the shared frequency band. 4 ⁇ In the Kth transmission time interval, the exclusive frequency band has been allocated, so the frequency resources of the user equipment can be allocated in the shared frequency band. Since the frequency resources of the Kth transmission time interval are not allocated in the exclusive frequency band and the shared frequency band for the same user equipment, the base station cannot serve the user equipment C and the user equipment B in the shared frequency band corresponding to the Kth transmission time interval. Allocating frequency resources can only allocate frequency resources to user equipment A.
  • the base station determines which user equipment is allocated frequency resources in the shared frequency band according to the priority of the user equipment.
  • the base station receives the CQI sent by the first user equipment
  • the base station receives the CQI sent by the second user equipment.
  • the base station receives the CQI sent by the user equipment A, the user equipment B, and the user equipment C, and then performs corresponding modulation and coding.
  • CQI n , k represents the CQI of the nth user equipment during the Kth transmission time interval.
  • the base station performs adaptive modulation and coding on the first user equipment and the second user equipment. For example, the base station performs corresponding adaptive modulation and coding for the exclusive frequency band or the shared frequency band of the Kth transmission time interval for different user equipments to determine the MCS.
  • the values of the modulation and coding mode (MCS) in the exclusive frequency band in the Kth transmission time interval are calculated for the user equipment C and the user equipment B, for example, by using the following formula 5.2:
  • MCS n , k dedieate - band represents the value of the modulation and coding mode of the nth user equipment in the exclusive frequency band of the Kth transmission time interval
  • the modulation And the encoding method consists of two parts, that is, The CQI n , k directly reported by the user equipment and the adjustment amount of the CQI for the exclusive frequency band.
  • n is the identifier of the user equipment
  • k indicates that the modulation and coding mode is for the Kth transmission time interval
  • the specific calculation method of the adjustment amount of the CQI can use the following formula 5.3:
  • IBLE is the target value of the IBLER
  • IBLER2 d w- band is the measured value obtained by the nth user equipment measuring the IBLER of the exclusive frequency band of the Kth transmission time interval
  • STEP is the adjustment step size.
  • the base station calculates the modulation and coding mode for the user equipment A according to the CQI sent by the user equipment A. Similar to the exclusive frequency band, the following modulation formula can be calculated by using the following formula 5.4:
  • the MCS n , k shared - band represents the modulation and coding mode of the nth user equipment in the shared frequency band of the Kth transmission time interval, and the modulation and coding mode is composed of two parts, that is, the CQI directly reported by the user equipment.
  • n , k and the amount of adjustment for the CQI of the shared frequency band.
  • n is the identifier of the user equipment
  • k is the specific calculation method of the modulation and coding method for the Kth transmission time interval, wherein the CQI adjustment amount can be referred to the following formula 5.5:
  • IBLEI ⁇ is the target value of IBLER
  • jBLER edi ⁇ -band is the measured value obtained by the nth user equipment measuring the IBLER of the exclusive frequency band of the Kth transmission time interval
  • STEP is the adjustment step size .
  • the first user equipment determines a frequency resource allocated by the base station to the first user equipment.
  • the base station sends a downlink transmission signal to the first user equipment on the frequency resource allocated by the first user equipment, where the first user equipment receives the downlink transmission signal.
  • the second user equipment determines a frequency resource allocated by the base station to the second user equipment.
  • the base station sends a downlink transmission signal to the second user equipment on the frequency resource allocated by the second user equipment, where the second user equipment receives the downlink transmission signal.
  • the base station may send a downlink transmission signal to the user equipment on the allocated frequency resource, where the transmission signal has been used correspondingly Modulation and coding methods.
  • the user equipment receives the downlink transmission signal on each of the allocated frequency resources.
  • FIG. 6 is a schematic structural diagram of a base station transmitting a downlink signal according to an embodiment of the present invention.
  • the base station 600 of FIG. 6 includes: an allocating module 610, configured to preferentially allocate frequency resources of the exclusive frequency band to the first user equipment, where the transmission frequency band is further allocated, if the exclusive frequency band of the long term evolution system is not allocated in the transmission frequency band.
  • the shared frequency band of the long term evolution system and the global mobile communication system is included; the sending module 620 is configured to send the first downlink signal to the first user equipment on the frequency resource of the exclusive frequency band.
  • the embodiment of the present invention preferentially allocates frequency resources on the exclusive band of LTE having higher channel quality, thereby increasing the transmission rate of the downlink signal in the transmission band.
  • the allocation module is specifically configured to preferentially allocate the frequency resources in the exclusive frequency band within the predetermined transmission time interval for the first user equipment.
  • the allocating module is further configured to allocate, for the second user equipment, a frequency of the shared frequency band within a predetermined transmission time interval in a case that the frequency resource of the exclusive frequency band has been allocated within a predetermined transmission time interval.
  • the sending module is further configured to send, by the shared frequency band, the second downlink signal to the second user equipment on the frequency resource within the predetermined transmission time interval.
  • the base station of FIG. 6 further includes: a first determining module, configured to determine a priority of the first user equipment, where the priority of the first user equipment indicates that the base station allocates frequency resources to the first user equipment
  • the ordering module is further configured to allocate a frequency resource in the exclusive frequency band to the first user equipment according to the priority allocation of the first user equipment.
  • the first determining module is specifically configured to determine a priority of the first user equipment according to a transmission rate and a frequency band efficiency of the first user equipment in the exclusive frequency band.
  • the first determining module is specifically configured to determine a priority of the first user equipment according to a transmission rate and a frequency band efficiency of the first user equipment in the exclusive frequency band, where: the base station is in accordance with the first user equipment according to the predetermined The transmission rate and band efficiency in the exclusive frequency band during the transmission time interval determines the priority of the first user equipment.
  • the base station of FIG. 6 further includes: a receiving module, configured to receive a first channel quality indicator sent by the first user equipment; the second determining module is further configured to determine, by adjusting the first channel quality indicator The first adjustment of the first downlink signal of the first user equipment in the exclusive frequency band And the coding module is configured to send, by the base station, the first downlink signal to the first user equipment on the frequency resource of the exclusive frequency band according to the first modulation and coding strategy.
  • the receiving module is further configured to receive a second channel quality indicator sent by the second user equipment, where the second determining module is further configured to determine, by adjusting the second channel quality indicator, the second downlink signal for the second user equipment.
  • the second modulation and coding policy in the shared frequency band the sending module is further configured to: send, by the base station, the second downlink signal to the second user equipment on the frequency resource within the predetermined transmission time interval according to the second modulation and coding policy.
  • the receiving module is further configured to receive a first channel quality indicator that is periodically sent by the first user equipment, where the second determining module is further configured to: according to the first transmission of the first user equipment in the exclusive frequency band The measured value of the block error rate and the set target value of the initial transmission error block rate determine an adjustment amount of the first channel quality indicator; determining, in the exclusive frequency band, the first user equipment according to the adjustment amount of the first channel quality indicator The first modulation and coding strategy.
  • FIG. 7 is a schematic block diagram of a user equipment transmitting downlink signals in accordance with one embodiment of the present invention.
  • the user equipment 700 of FIG. 7 includes: a determining module 710, configured to determine a frequency resource of an exclusive frequency band of a long-term evolution system in a transmission frequency band allocated by the base station for the user equipment; and a receiving module 720, configured to receive a frequency of the base station in the exclusive frequency band
  • the first downlink signal sent on the resource, the frequency resource of the exclusive frequency band is preferentially allocated by the base station if the exclusive frequency band is not allocated, wherein the transmission frequency band further includes a shared frequency band of the long term evolution system and the global mobile communication system.
  • the embodiment of the present invention preferentially allocates frequency resources on the exclusive band of LTE having higher channel quality, thereby increasing the transmission rate of the downlink signal in the transmission band.
  • the frequency resource of the exclusive frequency band is a frequency resource within a predetermined transmission time interval.
  • the frequency resource of the exclusive frequency band is that the base station preferentially allocates according to the priority of the user equipment when the exclusive frequency band is not allocated, and the priority of the user equipment is determined by the base station, and the priority of the user equipment Instructing the base station to allocate frequency resources to the user equipment.
  • the priority of the user equipment is determined by the base station based on the transmission rate and band efficiency of the user equipment in the exclusive frequency band.
  • the priority of the user equipment is predetermined by the base station according to the user equipment.
  • the transmission rate and band efficiency in the exclusive frequency band are determined during the transmission time interval.
  • the user equipment of FIG. 7 further includes: a sending module, configured to send a first channel quality indicator to the base station, where the receiving module is specifically configured to receive, by the base station, the exclusive downlink frequency band according to the first downlink signal. a first modulation and coding strategy, a first downlink signal transmitted on a frequency resource of an exclusive frequency band of a long term evolution system in a transmission band, wherein the first modulation and coding strategy is determined by the base station by adjusting a first channel quality indicator .
  • a sending module configured to send a first channel quality indicator to the base station
  • the receiving module is specifically configured to receive, by the base station, the exclusive downlink frequency band according to the first downlink signal.
  • a first modulation and coding strategy a first downlink signal transmitted on a frequency resource of an exclusive frequency band of a long term evolution system in a transmission band, wherein the first modulation and coding strategy is determined by the base station by adjusting a first channel quality indicator .
  • the sending module is specifically configured to periodically send a first channel quality indicator to the base station, where the first modulation and coding policy is determined by the base station according to the adjustment quantity of the first channel quality indicator, where the first channel quality indicator is The adjustment amount is determined by the base station through the measurement value of the initial transmission error block rate in the exclusive frequency band and the target value of the set initial transmission error block rate.
  • FIG. 8 is a schematic block diagram of a user equipment transmitting downlink signals in accordance with one embodiment of the present invention.
  • the user equipment 800 of FIG. 8 includes: a determination module 810 and a reception module 820.
  • the receiving module 820 determines that the shared frequency band allocated by the base station for the user equipment receives the second downlink signal sent by the base station on the frequency resource of the frequency band shared by the predetermined transmission time, and the transmission frequency band includes the shared frequency band and the exclusive frequency band of the long term evolution system, and the shared frequency band is The long-term evolution system is shared with the global mobile communication system, and the frequency resource of the shared frequency band is allocated by the base station to the user equipment in the case where the frequency resource of the exclusive frequency band within the predetermined transmission time interval has been allocated.
  • the embodiment of the present invention preferentially allocates frequency resources on the exclusive band of LTE having higher channel quality, thereby increasing the transmission rate of the downlink signal in the transmission band.
  • the user equipment of FIG. 8 further includes: a sending module.
  • the sending module sends a second channel quality indicator to the base station.
  • the receiving module is specifically configured to send the second downlink signal according to the second downlink signal.
  • the second modulation and coding strategy is determined by the base station by adjusting the second channel quality indicator.
  • the base station 900 of FIG. 9 includes: a processor 910, a memory 920, a transmitter 930, and a communication bus 940.
  • the processor 910 calls the code in the memory 920 through the communication bus 940 to preferentially allocate the frequency resource of the exclusive frequency band to the first user equipment in the case where the exclusive frequency band of the long term evolution system is not allocated in the transmission frequency band, wherein the transmission frequency band It also includes shared frequency bands for long term evolution systems and global mobile communication systems.
  • the transmitter 930 transmits a first downlink signal to the first user equipment on the frequency resource of the exclusive frequency band.
  • the embodiment of the present invention preferentially allocates frequency resources on the exclusive band of LTE having higher channel quality, thereby increasing the transmission rate of the downlink signal in the transmission band.
  • the processor 910 is specifically configured to preferentially allocate, by the first user equipment, frequency resources in an exclusive frequency band within a predetermined transmission time interval.
  • the processor 910 is further configured to: when the frequency resource of the exclusive frequency band is allocated in the predetermined transmission time interval, allocate the shared frequency band to the second user equipment within a predetermined transmission time interval.
  • the frequency resource; the transmitter 930 is further configured to send the second downlink signal to the second user equipment on the frequency resource in the shared frequency band within a predetermined transmission time interval.
  • the processor 910 is further configured to determine a priority of the first user equipment, where the priority of the first user equipment indicates an order in which the base station allocates frequency resources to the first user equipment, and the processor 910 is further configured to The priority allocation of the first user equipment allocates frequency resources in the exclusive frequency band to the first user equipment.
  • the processor 910 is further configured to determine a priority of the first user equipment according to a transmission rate and a frequency band efficiency of the first user equipment in the exclusive frequency band.
  • the processor 910 is further configured to determine, according to a transmission rate and a frequency band efficiency of the first user equipment in the exclusive frequency band, a priority of the first user equipment, where: the base station is in accordance with the first user equipment according to the predetermined The transmission rate and band efficiency in the exclusive frequency band during the transmission time interval determines the priority of the first user equipment.
  • the base station of FIG. 9 further includes: a receiver 950, configured to receive a first channel quality indicator sent by the first user equipment, where the processor is further configured to determine, by adjusting the first channel quality indicator, a first modulation and coding strategy of the first downlink signal of the first user equipment in the exclusive frequency band; the transmitter 930 is specifically configured to: send, by the base station, the first user to the frequency resource of the exclusive frequency band according to the first modulation and coding strategy The device sends the first downlink signal.
  • a receiver 950 configured to receive a first channel quality indicator sent by the first user equipment
  • the processor is further configured to determine, by adjusting the first channel quality indicator, a first modulation and coding strategy of the first downlink signal of the first user equipment in the exclusive frequency band
  • the transmitter 930 is specifically configured to: send, by the base station, the first user to the frequency resource of the exclusive frequency band according to the first modulation and coding strategy The device sends the first downlink signal.
  • the receiver 950 is further configured to receive a second channel quality indicator sent by the second user equipment, where the processor 910 is further configured to determine, by adjusting the second channel quality indicator, the second downlink signal for the second user equipment.
  • the second modulation and coding strategy in the shared frequency band, the transmitter 930 is further configured to: send, by the base station, the second downlink signal to the second user equipment on the frequency resource in the predetermined transmission time interval according to the second modulation and coding policy.
  • the receiver 950 is further configured to receive a first channel quality indicator that is periodically sent by the first user equipment, where the processor 910 is further configured to: according to the first transmission of the first user equipment in the exclusive frequency band.
  • the measured value of the block error rate and the set target value of the initial transmission error block rate determine an adjustment amount of the first channel quality indicator; determining, in the exclusive frequency band, the first user equipment according to the adjustment amount of the first channel quality indicator
  • the first modulation and coding strategy is further configured to receive a first channel quality indicator that is periodically sent by the first user equipment, where the processor 910 is further configured to: according to the first transmission of the first user equipment in the exclusive frequency band.
  • FIG. 10 is a schematic block diagram of a user equipment transmitting downlink signals in accordance with one embodiment of the present invention.
  • the user device 1000 of FIG. 10 includes: a processor 1010, a memory 1020, a receiver 1040, and a communication bus 1030.
  • the processor 1010 calls the code in the memory 1020 through the communication bus 1030 to allocate the frequency resource of the exclusive frequency band of the long-term evolution system in the transmission band allocated for the user equipment, and the receiver 1040 is configured to receive the base station to transmit on the frequency resource of the exclusive frequency band.
  • the first downlink signal, the frequency resource of the exclusive frequency band is preferentially allocated by the base station if the exclusive frequency band is not allocated, wherein the transmission frequency band further includes a shared frequency band of the long term evolution system and the global mobile communication system.
  • the embodiment of the present invention preferentially allocates frequency resources on the exclusive band of LTE having higher channel quality, thereby increasing the transmission rate of the downlink signal in the transmission band.
  • the frequency resource of the exclusive frequency band is a frequency resource within a predetermined transmission time interval.
  • the frequency resource of the exclusive frequency band is that the base station preferentially allocates according to the priority of the user equipment when the exclusive frequency band is not allocated, and the priority of the user equipment is determined by the base station, and the priority of the user equipment Instructing the base station to allocate frequency resources to the user equipment.
  • the priority of the user equipment is determined by the base station based on the transmission rate and band efficiency of the user equipment in the exclusive frequency band.
  • the priority of the user equipment is determined by the base station according to the transmission rate and band efficiency of the user equipment in the exclusive frequency band within a predetermined transmission time interval.
  • the user equipment of FIG. 10 further includes: a transmitter 1050, configured to send a first channel quality indicator to the base station, where the receiver is specifically configured to receive, by the base station, the exclusive frequency band according to the first downlink signal. a first modulation and coding strategy, a first downlink signal transmitted on a frequency resource of an exclusive frequency band of a long term evolution system in a transmission band, wherein the first modulation and coding strategy is determined by the base station by adjusting a first channel quality indicator of.
  • the transmitter 1050 is specifically configured to periodically send, to the base station, a first channel quality indicator, where the first modulation and coding policy is determined by the base station according to the adjustment quantity of the first channel quality indicator, the first channel quality indicator.
  • the adjustment amount is determined by the base station through the measurement value of the initial transmission error block rate in the exclusive frequency band and the target value of the set initial transmission error block rate.
  • FIG 11 is a schematic block diagram of a user equipment transmitting downlink signals in accordance with one embodiment of the present invention.
  • the user equipment of Figure 11 includes: a processor 1110, a memory 1120, a receiver 1140, and a communication bus 1130.
  • the processor 1110 calls the code in the memory 1120 via the communication bus 1130, and the processor 1110 is configured to determine a frequency resource of the shared frequency band allocated by the base station for the user equipment in a predetermined transmission time interval; the receiver 1140 is configured to be in a predetermined Receiving, in a transmission time interval, a second downlink signal sent by the base station on a frequency resource of the shared frequency band in the transmission frequency band, where the transmission frequency band includes a shared frequency band and an exclusive frequency band of the long term evolution system, and the shared frequency band is shared by the long term evolution system and the global mobile communication system.
  • the frequency resource of the shared frequency band is allocated by the base station to the user equipment in the case where the frequency resource of the exclusive frequency band within the predetermined transmission time interval
  • the embodiment of the present invention preferentially allocates frequency resources on the exclusive band of LTE having higher channel quality, thereby increasing the transmission rate of the downlink signal in the transmission band.
  • the user equipment of FIG. 11 further includes: a transmitter 1150, configured to send a second channel quality indicator to the base station; and the processor is specifically configured to use the second modulation and coding strategy according to the second downlink signal And transmitting, by the shared frequency band, the second downlink signal to the user equipment on the frequency resource within the predetermined time interval, where the second modulation and coding strategy is determined by the base station by adjusting the second channel quality indicator.
  • a transmitter 1150 configured to send a second channel quality indicator to the base station
  • the processor is specifically configured to use the second modulation and coding strategy according to the second downlink signal And transmitting, by the shared frequency band, the second downlink signal to the user equipment on the frequency resource within the predetermined time interval, where the second modulation and coding strategy is determined by the base station by adjusting the second channel quality indicator.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct connection or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in electrical, mechanical or other form.
  • the components displayed for the unit may or may not be physical units, ie may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software function unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention may contribute to the prior art or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a USB flash drive, a mobile hard disk, and a read only memory (ROM, Read-Only Memory), random access memory (RAM), disk or optical disk, and other media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明的实施例提供了一种传输下行信号的方法、基站和用户设备。该方法包括:基站在传输频带中长期演进系统的独享频带未分配完的情况下,为第一用户设备优先分配独享频带的频率资源,其中传输频带还包括长期演进系统和全球移动通信系统的共享频带;基站在独享频带的频率资源上向第一用户设备发送第一下行信号。本发明的实施例在包括共享频带和独享频带的传输频带中,优先在具有更高的信道质量的长期演进系统的独享频带上分配频率资源,从而提高了传输频带中下行信号的传输速率。

Description

传输下行信号的方法、 基站和用户设备
技术领域
本发明的实施例涉及无线通信领域, 并且更具体地涉及一种传输下行信 号的方法、 基站和用户设备。 背景技术
随着无线接入技术的发展, 当前 3G ( 3rd Generation , 第三代)移动通 信系统已经不能满足新业务的需求, 长期演进( Long Term Evolution, LTE ) 系统作为下一代移动通信系统, 在现有的 3G频带上釆用一系列新的技术提 高系统的频带效率和通信速率。 LTE支持灵活的频带配置, 最大系统带宽为 20MHz, 可以支持高达 150Mbps 的下行传输速率, 满足日益增长的业务需 求。
由于频率资源是有限的, 随着 2G ( 2nd Generation, 第二代) 全球移动 通信系统(Global System for Mobile Communications, GSM )业务的萎缩, 运营商一般会在原来部署 GSM的频带中, 静态地对部分带宽进行翻频来部 署 LTE网络, GSM和 LTE各自独立占用一部分频带。 由于 GSM话务会逐 渐向高制式 LTE迁移,现有技术釆用 GSM的部分频带用来和 LTE进行动态 共享。 LTE就可以将对应的独享频率资源和共享频率资源作为一个整体进行 分配。
然而,由于共享频带受到 GSM通信信号的干扰,信道质量比仅受到 LTE 网内干扰的独享频带差很多,会使频带中信号最终的传输速率只能达到信道 质量较差的共享频带的水平。 发明内容
本发明的实施例提出了一种传输下行信号的方法、 基站和用户设备, 能 够提高频带中下行信号的传输速率。
第一方面, 提供了一种方法, 包括: 基站在传输频带中长期演进系统的 独享频带未分配完的情况下, 为第一用户设备优先分配独享频带的频率资 源, 其中传输频带还包括长期演进系统和全球移动通信系统的共享频带; 基 站在独享频带的频率资源上向第一用户设备发送第一下行信号。
结合第一方面, 在第一方面的第一种可能的实现方式中, 为第一用户设 备优先分配独享频带中的频率资源, 包括: 为第一用户设备优先分配预定的 传输时间间隔内的独享频带中的频率资源。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二 种可能的实现方式中, 该方法还包括: 基站在独享频带在预定的传输时间间 隔内的频率资源已分配完的情况下, 为第二用户设备分配共享频带在预定的 传输时间间隔内的频率资源; 基站在共享频带在预定的传输时间间隔内的频 率资源上向第二用户设备发送第二下行信号。
结合第一方面、 第一方面的第一种或第二种可能的实现方式, 在第一方 面的第三种可能的实现方式中, 该方法还包括: 基站确定第一用户设备的优 先级, 第一用户设备的优先级指示基站为第一用户设备分配频率资源的次 序, 为第一用户设备优先分配独享频带中的频率资源, 包括: 根据第一用户 设备的优先级分配为第一用户设备分配独享频带中的频率资源。
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实 现方式中, 基站确定第一用户设备的优先级, 包括: 基站根据第一用户设备 在独享频带中的传输速率和频带效率确定第一用户设备的优先级。
结合第一方面的第四种可能的实现方式,在第一方面的第五种可能的实 现方式中,基站根据第一用户设备在独享频带中的传输速率和频带效率确定 第一用户设备的优先级, 包括: 基站根据第一用户设备在预定的传输时间间 隔内在独享频带中的传输速率和频带效率确定第一用户设备的优先级。
结合第一方面和第一方面的第一种至第五种中的任一种可能的实现方 式, 在第一方面的第六种可能的实现方式中, 该方法还包括: 基站接收第一 用户设备发送的第一信道质量指示; 基站通过调整第一信道质量指示确定针 对第一用户设备的第一下行信号在独享频带中的第一调制与编码策略; 基站 在独享频带的频率资源上向第一用户设备发送第一下行信号, 包括: 基站根 据第一调制与编码策略,在独享频带的频率资源上向第一用户设备发送第一 下行信号。
结合第一方面的第六种可能的实现方式,在第一方面的第七种可能的实 现方式中,该方法还包括:基站接收第二用户设备发送的第二信道质量指示; 基站通过调整第二信道质量指示确定针对第二用户设备的第二下行信号在 共享频带中的第二调制与编码策略,基站在共享频带在预定的传输时间间隔 内的频率资源上向第二用户设备发送第二下行信号, 包括: 基站根据第二调 制与编码策略,在预定的传输时间间隔内的频率资源上向第二用户设备发送 第二下行信号。
结合第一方面的第六种或第七种可能的实现方式,在第一方面的第八种 可能的实现方式中,基站接收第一用户设备发送的第一信道质量指示,包括: 基站接收第一用户设备周期地发送的第一信道质量指示,基站通过调整第一 信道质量指示确定针对第一用户设备的在独享频带中的第一调制与编码策 略, 包括: 基站根据第一用户设备在独享频带中的初次传输误块率的测量值 和所设置的初次传输误块率的目标值确定第一信道质量指示的调整量; 基站 根据第一信道质量指示的调整量确定针对第一用户设备的在独享频带中的 第一调制与编码策略。
第二方面, 提供了一种方法, 包括: 第一用户设备确定基站为第一用户 设备分配的传输频带中长期演进系统的独享频带的频率资源; 第一用户设备 接收基站在独享频带的频率资源上发送的第一下行信号,独享频带的频率资 源是基站在独享频带未分配完的情况下优先分配的, 其中传输频带还包括长 期演进系统和全球移动通信系统的共享频带。
结合第二方面, 在第二方面的第一种可能的实现方式中, 独享频带的频 率资源是在预定的传输时间间隔内的频率资源。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二 种可能的实现方式中,独享频带的频率资源是基站在独享频带未分配完的情 况下, 根据第一用户设备的优先级优先分配的, 第一用户设备的优先级由基 站确定, 第一用户设备的优先级指示基站为第一用户设备分配频率资源的次 序。
结合第二方面的第二种可能的实现方式,在第二方面的第三种可能的实 现方式中, 第一用户设备的优先级由基站根据第一用户设备在独享频带中的 传输速率和频带效率确定。
结合第二方面的第三种可能的实现方式,在第二方面的第四种可能的实 现方式中, 第一用户设备的优先级由基站根据第一用户设备在预定的传输时 间间隔内在独享频带中的传输速率和频带效率确定。
结合第二方面、 第二方面的第一种至第四种中的任一种可能的实现方 式, 在第二方面的第五种可能的实现方式中, 该方法还包括: 第一用户设备 向基站发送第一信道质量指示, 第一用户设备接收基站在传输频带中长期演 进系统的独享频带的频率资源上发送的第一下行信号, 包括: 第一用户设备 接收基站根据第一下行信号在独享频带中的第一调制与编码策略,在传输频 带中长期演进系统的独享频带的频率资源上发送的第一下行信号, 其中第一 调制与编码策略是由基站通过调整第一信道质量指示确定的。
结合第二方面的第五种可能的实现方式,在第二方面的第六种可能的实 现方式中, 第一用户设备向基站发送第一信道质量指示, 包括: 第一用户设 备向基站周期地发送第一信道质量指示, 第一调制与编码策略是由基站根据 第一信道质量指示的调整量确定的, 第一信道质量指示的调整量是由基站通 过独享频带中的初次传输误块率的测量值和所设置的初次传输误块率的目 标值确定的。
第三方面, 提供了一种方法, 包括: 第二用户设备确定基站为第二用户 设备分配的共享频带在预定的传输时间间隔内的频率资源; 第二用户设备在 预定的传输时间间隔内在传输频带中的共享频带的频率资源上接收基站发 送的第二下行信号, 传输频带包括共享频带和长期演进系统的独享频带, 共 享频带由长期演进系统和全球移动通信系统共享,共享频带的频率资源是由 第二用户设备分配的。
结合第三方面,在第三方面的第一种可能的实现方式中,该方法还包括: 第二用户设备向基站发送第二信道质量指示; 第二用户设备在预定的传输时 间间隔内在传输频带中的共享频带的频率资源上接收基站发送的第二下行 信号, 包括: 第二用户设备基站根据第二下行信号的第二调制与编码策略, 在共享频带在预定的时间间隔内的频率资源上向第二用户设备发送第二下 行信号, 第二调制与编码策略是由基站通过调整第二信道质量指示确定的。
第四方面, 提供了一种基站, 包括: 分配模块, 用于在传输频带中长期 演进系统的独享频带未分配完的情况下, 为第一用户设备优先分配独享频带 的频率资源, 其中传输频带还包括长期演进系统和全球移动通信系统的共享 频带; 发送模块, 用于在独享频带的频率资源上向第一用户设备发送第一下 行信号。
结合第四方面, 在第四方面的第一种可能的实现方式中, 分配模块具体 用于为第一用户设备优先分配预定的传输时间间隔内的独享频带中的频率 资源。 结合第第四方面或第一方面的第一种可能的实现方式,在第四方面的第 二种可能的实现方式中, 分配模块还用于在独享频带在预定的传输时间间隔 内的频率资源已分配完的情况下, 为第二用户设备分配共享频带在预定的传 输时间间隔内的频率资源; 发送模块还用于在共享频带在预定的传输时间间 隔内的频率资源上向第二用户设备发送第二下行信号。
结合第四方面、 第四方面的第一种或第二种可能的实现方式, 在第四方 面的第三种可能的实现方式中, 该基站还包括: 第一确定模块, 用于确定第 一用户设备的优先级, 第一用户设备的优先级指示基站为第一用户设备分配 频率资源的次序, 其中, 分配模块具体用于根据第一用户设备的优先级分配 为第一用户设备分配独享频带中的频率资源。
结合第四方面的第三种可能的实现方式,在第四方面的第四种可能的实 现方式中, 第一确定模块具体用于根据第一用户设备在独享频带中的传输速 率和频带效率确定第一用户设备的优先级。
结合第四方面的第四种可能的实现方式,在第四方面的第五种可能的实 现方式中, 第一确定模块根据第一用户设备在预定的传输时间间隔内在独享 频带中的传输速率和频带效率确定第一用户设备的优先级。
结合第四方面和第四方面的第一种至第五种中的任一种可能的实现方 式, 在第四方面的第六种可能的实现方式中, 该基站还包括: 接收模块, 用 于接收第一用户设备发送的第一信道质量指示; 第二确定模块, 用于通过调 整第一信道质量指示确定针对第一用户设备的第一下行信号在独享频带中 的第一调制与编码策略, 其中, 发送模块具体用于基站根据第一调制与编码 策略, 在独享频带的频率资源上向第一用户设备发送第一下行信号。
结合第四方面的第六种可能的实现方式,在第四方面的第七种可能的实 现方式中, 接收模块还用于接收第二用户设备发送的第二信道质量指示; 第 二确定模块还用于通过调整第二信道质量指示确定针对第二用户设备的第 二下行信号在共享频带中的第二调制与编码策略,发送模块还用于基站根据 第二调制与编码策略,在预定的传输时间间隔内的频率资源上向第二用户设 备发送第二下行信号。
结合第四方面的第六种或第七种可能的实现方式,在第四方面的第八种 可能的实现方式中,接收模块具体用于接收第一用户设备周期地发送的第一 信道质量指示, 第二确定模块具体用于: 根据第一用户设备在独享频带中的 初次传输误块率的测量值和所设置的初次传输误块率的目标值确定第一信 道质量指示的调整量; 根据第一信道质量指示的调整量确定针对第一用户设 备的在独享频带中的第一调制与编码策略。
第五方面, 提供了一种用户设备, 包括: 确定模块, 用于确定基站为用 户设备分配的传输频带中长期演进系统的独享频带的频率资源; 接收模块, 用于接收基站在独享频带的频率资源上发送的第一下行信号,独享频带的频 率资源是基站在独享频带未分配完的情况下优先分配的, 其中传输频带还包 括长期演进系统和全球移动通信系统的共享频带。
结合第五方面,在第五方面的第一种可能的实现方式中独享频带的频率 资源是在预定的传输时间间隔内的频率资源。
结合第五方面或第五方面的第一种可能的实现方式,在第五方面的第二 种可能的实现方式中,独享频带的频率资源是基站在独享频带未分配完的情 况下, 根据用户设备的优先级优先分配的, 用户设备的优先级由基站确定, 用户设备的优先级指示基站为用户设备分配频率资源的次序。
结合第五方面的第二种可能的实现方式,在第五方面的第三种可能的实 现方式中, 用户设备的优先级由基站根据用户设备在独享频带中的传输速率 和频带效率确定。
结合第五方面的第三种可能的实现方式,在第五方面的第四种可能的实 现方式中, 用户设备的优先级由基站根据用户设备在预定的传输时间间隔内 在独享频带中的传输速率和频带效率确定。
结合第五方面、 第五方面的第一种至第四种中的任一种可能的实现方 式,在第五方面的第五种可能的实现方式中,该用户设备还包括:发送模块, 用于向基站发送第一信道质量指示, 其中, 接收模块具体用于接收基站根据 第一下行信号在独享频带中的第一调制与编码策略,在传输频带中长期演进 系统的独享频带的频率资源上发送的第一下行信号, 其中第一调制与编码策 略是由基站通过调整第一信道质量指示确定的。
结合第五方面的第五种可能的实现方式,在第五方面的第六种可能的实 现方式中, 发送模块具体用于向基站周期地发送第一信道质量指示, 其中, 第一调制与编码策略是由基站根据第一信道质量指示的调整量确定的, 第一 信道质量指示的调整量是由基站通过独享频带中的初次传输误块率的测量 值和所设置的初次传输误块率的目标值确定的。 第六方面, 提供了一种用户设备, 包括: 确定模块, 用于备确定基站为 用户设备分配的共享频带在预定的传输时间间隔内的频率资源; 接收模块, 基站发送的第二下行信号,传输频带包括共享频带和长期演进系统的独享频 带, 共享频带由长期演进系统和全球移动通信系统共享, 共享频带的频率资 况下, 为用户设备分配的。
结合第六方面, 在第六方面的第一种可能的实现方式中, 该用户设备还 包括: 发送模块, 用于向基站发送第二信道质量指示, 其中, 接收模块具体 用于根据第二下行信号的第二调制与编码策略,在共享频带在预定的时间间 隔内的频率资源上向用户设备发送第二下行信号, 第二调制与编码策略是由 基站通过调整第二信道质量指示确定的。
本发明的实施例在包括共享频带和独享频带的传输频带中,优先在具有 更高的信道质量的 LTE的独享频带上分配频率资源,从而提高了传输频带中 下行信号的传输速率。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对本发明实施例中 所需要使用的附图作简单地介绍, 显而易见地, 下面所描述的附图仅仅是本 发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。
图 1 是根据本发明的一个实施例的传输下行信号的系统的示意性结构 图。
图 2 是根据本发明的一个实施例的传输下行信号的方法的示意性流程 图。
图 3 是根据本发明的另一实施例的传输下行信号的方法的示意性流程 图。
图 4 是根据本发明的一个实施例的传输下行信号的方法的示意性流程 图。
图 5 是根据本发明的一个实施例的传输下行信号的方法的示意性流程 图。 图 6 是根据本发明的一个实施例的传输下行信号的基站的示意性结构 图。
图 7是根据本发明的一个实施例的传输下行信号的用户设备的示意性结 构图。
图 8是根据本发明的一个实施例的传输下行信号的用户设备的示意性结 构图。
图 9 是根据本发明的一个实施例的传输下行信号的基站的示意性结构 图。
图 10是根据本发明的一个实施例的传输下行信号的用户设备的示意性 结构图。
图 11是根据本发明的一个实施例的传输下行信号的用户设备的示意性 结构图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创 造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
图 1 是根据本发明的一个实施例的传输下行信号的系统的示意性结构 图。 图 1 的系统 100 为全球移动通信系统 (Global System for Mobile comrauni cation , GSM )和长期演进 ( Long Term Evolution, LTE ) 系统共用 的通信系统, 包括基站 110、 用户设备 120和用户设备 130。 应理解, 基站 110、 用户设备 120和用户设备 130可以通过全球移动通信系统和长期演进 系统进行通信。
还应理解, 在本发明实施例中, 用户设备( UE, User Equipment ) 包括 但不限于移动台 (MS, Mobile Station )、 移动终端( Mobile Terminal )、 移动 电话 ( Mobile Telephone )、 手机 ( handset )及便携设备 ( ortable equipment ) 等, 该用户设备可以经无线接入网( RAN, Radio Access Network )与一个或 多个核心网进行通信, 例如, 用户设备可以是移动电话(或称为 "蜂窝" 电 话)、 具有无线通信功能的计算机等, 用户设备还可以是便携式、 袖珍式、 手持式、 计算机内置的或者车载的移动装置。 图 2 是根据本发明的一个实施例的传输下行信号的方法的示意性流程 图。 图 2的方法由基站执行。 该方法包括如下内容。
210, 基站在传输频带中长期演进系统的独享频带未分配完的情况下, 为第一用户设备优先分配独享频带的频率资源, 其中传输频带还包括长期演 进系统和全球移动通信系统 GSM的共享频带。
220,基站在独享频带的频率资源上向第一用户设备发送第一下行信号。 换句话说, 在 GSM和 LTE系统共享频带的场景下, 基站的传输频带可 以包括 LTE系统的独享频带以及 LTE系统和 GSM的共享频带。在独享频带 未饱和的情况下,基站可以优先向待调度的用户设备分配独享频带的频率资 源, 而在独享频带饱和的情况下, 才会向待调度的用户设备分配共享频带的 频率资源。
应理解, 为第一用户设备优先分配独享频带中的频率资源, 可以是为第 一用户设备优先分配预定的传输时间间隔( Transmission Time Interval, TTI ) 内的独享频带中的频率资源, 例如, 一个传输时间间隔或几个传输时间间隔 内的独享频带中的频率资源, 但本发明的实施例并不限于此, 即可以釆用任 何方式为第一用户设备优先分配独享频带中的频率资源。 还应理解, 第一用 户设备可以是图 1中描述的任何形式的用户设备。
本发明的实施例在包括共享频带和独享频带的传输频带中,优先在具有 更高的信道质量的 LTE的独享频带上分配频率资源,从而提高了传输频带中 下行信号的传输速率。
根据本发明的实施例, 在 210中, 基站可以为第一用户设备优先分配预 定的传输时间间隔 ΤΤΙ内的独享频带中的频率资源。
由于基站为第一用户设备优先分配预定的传输时间间隔内的独享频带 中的频率资源, 因此可以根据需要来灵活的分配和调度频率资源。
可选地, 作为另一实施例, 图 2的方法还包括: 基站在独享频带在预定 的传输时间间隔内的频率资源已分配完的情况下, 为第二用户设备分配共享 频带在预定的传输时间间隔内的频率资源; 基站在共享频带在预定的传输时 间间隔内的频率资源上向第二用户设备发送第二下行信号。
换句话说, 在独享频带饱和的情况下, 基站可以在预设的传输时间间隔 内为未分配独享频带的用户设备分配共享频带的频率资源, 以避免将同一个 传输时间间隔内的独享频带的频率资源和共享频带的频率资源分配给同一 个用户设备。
应理解, 第二用户设备可以是图 1中描述的任何形式的用户设备, 第一 用户设备和第二用户设备为不同的用户设备,但可以是同一种类型的用户设 备, 例如, 都是移动手持设备。 由于在共享频带中为用户设备分配了频率资 源, 可以传输更多的数据, 因此在充分利用了独享频带的基础上, 进一步提 高了频带的利用率。
可选地, 作为另一实施例, 图 2的方法还包括: 基站确定第一用户设备 的优先级, 第一用户设备的优先级指示基站为第一用户设备分配频率资源的 次序, 为第一用户设备优先分配独享频带中的频率资源, 包括: 根据第一用 户设备的优先级分配为第一用户设备分配独享频带中的频率资源。
换句话说,基站可以先根据用户设备的优先级从高到低顺序为优先级较 高的用户设备分配独享频带的频率资源, 独享频带分配完成之后, 再为剩余 的用户设备分配共享频带。 应理解, 基站可以根据用户的需要确定该用户设 备的优先级, 也可以根据用户设备的传输频带中的传输速率, 例如, 用户设 备上报的传输速率信息, 确定用户设备的优先级, 也可以基于其他的参数或 指标来确定用户设备的优先级, 本发明的实施例对此不作限定。 由于釆用根 据用户设备的优先级来分配资源, 因此可以针对不同的用户釆用不同的优先 级, 提高了分配的灵活度。 另外, 由于优先为优先级高的用户设备分配频率 资源, 因此, 能够提高频率效率。
根据本发明的实施例, 基站确定第一用户设备的优先级, 包括: 基站根 据第一用户设备在独享频带中的传输速率和频带效率确定第一用户设备的 优先级。
应理解, 上文中的传输速率可以是该用户设备的历史传输速率, 即为该 用户设备分配频率资源时刻之前的传输速率值的累加,其中基站可以通过用 户设备上报的方式获得传输速率值。 频带效率即频谱效率, 用户设备可以向 基站上报频带效率的信息。 还应理解, 该优先级可以是时间的函数, 例如当 传输速率和频率效率针对第 N个传输时间间隔时( N为整数), 用户设备的 优先级为时间的函数。 优先级也可以独立于时间。 由于釆用了传输速率和频 带效率来确定用户设备的优先级, 因此在提高了分配频率资源灵活度的基础 上, 进一步提高了频谱利用率以及频率效率。
根据本发明的实施例,基站根据第一用户设备在独享频带中的传输速率 和频带效率确定第一用户设备的优先级, 包括: 基站根据第一用户设备在预 定的传输时间间隔内在独享频带中的传输速率和频带效率确定第一用户设 备的优先级。
应理解, 文中的预定传输时间间隔可以是一个传输时间间隔, 也可以是 若干个传输时间间隔。 由于优先级针对不同的传输时间间隔, 基站可以在不 同的传输时间间隔内针对优先级不同的用户设备分配资源, 因此进一步增加 了分配和调度的灵活性。
可选地, 作为另一实施例, 图 2的方法还包括: 基站接收第一用户设备 发送的第一信道质量指示( Channel Quality Indication, CQI ); 基站通过调整 第一信道质量指示确定针对第一用户设备的第一下行信号在独享频带中的 第一调制与编码策略 ( Modulation and Coding Scheme, MCS ); 基站在独享 频带的频率资源上向第一用户设备发送第一下行信号, 包括: 基站根据第一 调制与编码策略,在独享频带的频率资源上向第一用户设备发送第一下行信 号。
由于基站根据接收到的 CQI并针对不同的用户设备进行调制与编码,因 此传输质量高的信道可以具有更高的传输速率, 从而进一步提高了频谱效 率。
可选地, 作为另一实施例, 图 2的方法还包括: 基站接收第二用户设备 发送的第二信道质量指示;基站通过调整第二信道质量指示确定针对第二用 户设备的第二下行信号在共享频带中的第二调制与编码策略,基站在共享频 带在预定的传输时间间隔内的频率资源上向第二用户设备发送第二下行信 号, 包括: 基站根据第二调制与编码策略, 在预定的传输时间间隔内的频率 资源上向第二用户设备发送第二下行信号。
由于在独享频带中釆用了自适应调制与编码策略的基础上, 又在共享频 带中釆用了自适应调制与编码策略, 即独享频带的调制与编码策略与共享频 带的调制与编码策略能够独立确定, 因此, 避免了独享频带的频谱效率被共 享频带拉低, 从而进一步提高了共享频带的频谱效率。
根据本发明的实施例, 基站接收第一用户设备发送的第一信道质量指 示, 包括: 基站接收第一用户设备周期地发送的第一信道质量指示。 基站通 过调整第一信道质量指示确定针对第一用户设备的在独享频带中的第一调 制与编码策略, 包括: 基站根据第一用户设备在独享频带中的初次传输误块 率的测量值和所设置的初次传输误块率的目标值确定第一信道质量指示的 调整量; 基站根据第一信道质量指示的调整量确定针对第一用户设备的在独 享频带中的第一调制与编码策略。
应理解, 基站接收第一用户设备周期地发送的第一信道质量指示, 可以 是每隔预定的传输时间间隔发送一次, 例如, 每隔一个传输时间间隔发送一 次。 也可以是以预定的周期发送。 可选地, 在确定调制量时还可以设定调整 步长。 由于接收用户设备周期性发送的信道质量指示, 因此可以根据用户设 备反馈的信道质量信息及时的更新调制与编码策略, 既保证了传输质量, 又 提高了频率效率。 由于初次传输误块率的测量值是针对独享频带的测量值, 因此可能更有效地调整信道质量指示, 因此更有效地调制和编码, 进一步提 高了频率效率。
图 3 是根据本发明的另一实施例的传输下行信号的方法的示意性流程 图。 图 3的方法由用户设备执行,并且与图 2的方法相对应, 包括如下内容。
310, 第一用户设备确定基站为第一用户设备分配的传输频带中长期演 进系统的独享频带的频率资源。
320, 第一用户设备接收基站在独享频带的频率资源上发送的第一下行 信号, 独享频带的频率资源是基站在独享频带未分配完的情况下优先分配 的, 其中传输频带还包括长期演进系统和全球移动通信系统的共享频带。
本发明的实施例在包括共享频带和独享频带的传输频带中,优先在具有 更高的信道质量的 LTE的独享频带上分配频率资源,从而提高了传输频带中 下行信号的传输速率。
根据本发明的实施例,独享频带的频率资源是在预定的传输时间间隔内 的频率资源。
根据本发明的实施例,独享频带的频率资源是基站在独享频带未分配完 的情况下, 根据第一用户设备的优先级优先分配的, 第一用户设备的优先级 由基站确定, 第一用户设备的优先级指示基站为第一用户设备分配频率资源 的次序。
根据本发明的实施例, 第一用户设备的优先级由基站根据第一用户设备 在独享频带中的传输速率和频带效率确定。
根据本发明的实施例, 第一用户设备的优先级由基站根据第一用户设备 在预定的传输时间间隔内在独享频带中的传输速率和频带效率确定。 可选地, 作为另一实施例, 图 3的方法还包括: 第一用户设备向基站发 送第一信道质量指示, 第一用户设备接收基站在传输频带中长期演进系统的 独享频带的频率资源上发送的第一下行信号, 包括: 第一用户设备接收基站 根据第一下行信号在独享频带中的第一调制与编码策略,在传输频带中长期 演进系统的独享频带的频率资源上发送的第一下行信号, 其中第一调制与编 码策略是由基站通过调整第一信道质量指示确定的。
根据本发明的实施例, 第一用户设备向基站发送第一信道质量指示, 包 括: 第一用户设备向基站周期地发送第一信道质量指示, 第一调制与编码策 略是由基站根据第一信道质量指示的调整量确定的, 第一信道质量指示的调 整量是由基站通过独享频带中的初次传输误块率的测量值和所设置的初次 传输误块率的目标值确定的。
图 4 是根据本发明的一个实施例的传输下行信号的方法的示意性流程 图。 图 4的方法由用户设备执行, 包括: 410, 第二用户设备确定基站为第 二用户设备分配的共享频带在预定的传输时间间隔内的频率资源; 420, 第 二用户设备在预定的传输时间间隔内在传输频带中的共享频带的频率资源 上接收基站发送的第二下行信号,传输频带包括共享频带和长期演进系统的 独享频带, 共享频带由长期演进系统和全球移动通信系统共享, 共享频带的 频率资源是由基站在独享频带在预定的传输时间间隔内的频率资源已分配 完的情况下, 为第二用户设备分配的。
本发明的实施例在包括共享频带和独享频带的传输频带中,优先在具有 更高的信道质量的 LTE的独享频带上分配频率资源,从而提高了传输频带中 下行信号的传输速率。
可选地, 作为另一实施例, 图 4的方法还包括: 第二用户设备向基站发 送第二信道质量指示; 第二用户设备在预定的传输时间间隔内在传输频带中 的共享频带的频率资源上接收基站发送的第二下行信号, 包括: 第二用户设 备基站根据第二下行信号的第二调制与编码策略,在共享频带在预定的时间 间隔内的频率资源上向第二用户设备发送第二下行信号, 第二调制与编码策 略是由基站通过调整第二信道质量指示确定的。
下面结合具体例子, 更加详细地描述本发明的实施例。
图 5 是根据本发明的一个实施例的传输下行信号的方法的示意性流程 图。 图 5的实施例由图 1的基站来执行, 是图 2的实施例的方法的例子, 其 中在本实施例中,以三个用户设备为例并以第 K个传输时间间隔为例进行说 明。 用户设备八、 用户设备 B和用户设备 C的名称只是为了区分多个不同 的用户设备, 而不应该对本发明的实施例的构成限定, 也不应该被理解为与 上述的实施例构成不一致。 此外, 本实施例釆用优选的方案, 同一用户设备 不同时在独享频带和共享频带中分配第 K个传输时间间隔内的频率资源。此 夕卜, 用户设备 C和用户 B为第一用户设备, 即对其分配独享频带中的频率 资源; 用户设备 A为第二用户设备, 即对其分配共享频带中的频率资源。 具 体的实现方式如下:
510, 基站确定用户设备的优先级。
具体而言, 基站确定用户设备 A、 用户设备 B和用户设备 C的优先级。 例如, 基站可以釆用比例公平(Proportional Fair, PF )调度算法来确定 用户设备的优先级, 例如釆用下面的公式 5.0
Pn,k=En,k/Rn,k ( 5.0 )
其中, Pn,k表示第 n个用户设备在第 K个传输时间间隔内的频率资源; Rn,k 表示第 n个用户设备在第 K个传输时间间隔前的历史传输速率; En,k为第 n 个用户设备在第 K个传输时间间隔的独享频带的频谱效率。
可替代的, 可以釆用如下公式 5.1 :
Figure imgf000016_0001
其中, pn,k表示第 n个用户设备在第 K个传输时间间隔内的频率资源, d,n,k表示 n个用户设备在第 K个传输时间间隔内能达到的最大传输速率, rn,k 表示在第 K个传输时间间隔之前的平均速率,即之前从 K-1个传输时间间隔 内的平均速率。 针对本实施例的三个用户设备, n的取值为 1、 2、 3, 分别 对应用户设备 A、 B、 C。
例如, 根据公式 5.0计算得到的用户设备的优先级为: Ρ Ρζ, Ρ 。 即 在第 Κ个传输时间间隔中用户设备 C的优先级大于用户设备 Β的优先级, 用户设备 Β的优先级大于用户设备 Α的优先级。
520, 基站在独享频带中分配第一用户设备的频率资源。
具体而言,基站根据所确定的用户设备的优先级在独享频带中分配用户 设备 C和用户设备 B在第 K个传输时间间隔的频率资源。 换句话说, 由于 用户设备 C的优先级比用户设备 B的优先级高, 用户设备 B的优先级比用 户设备 A的优先级高, 因此, 优先分配用户设备 C的频率资源。 此外, 由 于独享频带没有分配完, 即独享频带中还存在可分配的频率资源, 因此基站 在独享频带中为用户设备 C分配资源。
然后, 基站确定独享频带未分配完。 接下来, 基站按照优先级的次序为 用户设备 B分配频率资源, 由于独享频带未分配完,基站仍然在独享频带中 为用户设备 B分配资源。
以上所述,基站为用户设备分配频率资源都是为用户设备分配在第 K个 传输时间间隔的频率资源, 在此不再赘述。
530, 基站确定独享频带已经分配完。
540, 基站在共享频带中分配第二用户设备的频率资源。
具体而言, 基站在共享频带中分配用户设备 A在第 K个传输时间间隔 的频率资源。 4叚设在第 K个传输时间间隔内, 独享频带已经分配完, 因此可 以在共享频带中分配用户设备的频率资源。 由于针对同一用户设备不在独享 频带和共享频带中分配在第 K个传输时间间隔的频率资源, 因此,基站在对 应该第 K个传输时间间隔的共享频带中不能对用户设备 C和用户设备 B分 配频率资源, 只能为用户设备 A分配频率资源。
应理解, 如果在具有更多的用户设备的情况下, 基站根据用户设备的优 先级确定为哪个用户设备在共享频带中分配的频率资源。
550, 基站接收第一用户设备发送的 CQI;
555, 基站接收第二用户设备发送的 CQI。
具体而言,基站接收用户设备 A、用户设备 B和用户设备 C发送的 CQI, 然后进行相应的调制与编码。 CQIn,k表示第 n个用户设备在第 K个传输时间 间隔内的 CQI。
560, 基站针对第一用户设备和第二用户设备进行自适应调制与编码。 例如,基站为不同的用户设备针对第 K个传输时间间隔的独享频带或共 享频带进行相应的自适应调制与编码, 确定 MCS。
具体地, 针对用户设备 C和用户设备 B计算在第 K个传输时间间隔内 的独享频带中的调制与编码方式(MCS )的数值, 例如可以釆用下面的公式 5.2来计算:
dedicate— band― ^ ΛΊ dedicate— band ί s: Λ 其中, MCSn,k dedieate-band表示第 n个用户设备在第 K个传输时间间隔的独 享频带中的调制与编码方式的数值, 该调制与编码方式由两部分构成, 即用 户设备直接上报的 CQIn,k以及针对独享频带的 CQI的调整量。公式中的 n为 用户设备的标识, k表示该调制与编码方式针对第 K个传输时间间隔, 其中 CQI的调整量的具体计算方法可以釆用下面的公式 5.3:
△ CQIn,k dedicate- band=STEP (IBLER! -IBLER2 dedicate-band)/ ( l-IBLERi )
( 5.3 ) 其中, IBLE 为 IBLER的目标值, IBLER2 dw-band为第 n个用户设备 对第 K个传输时间间隔的独享频带的 IBLER进行测量所得到的测量值, STEP为调整步长。
此外, 基站还根据用户设备 A发送的 CQI计算针对用户设备 A的调制 编码方式, 与在独享频带中相似, 可以釆用下面的公式 5.4来计算相应的调 制编码方式:
Figure imgf000018_0001
其中, MCSn,k shared-band表示第 n个用户设备在第 K个传输时间间隔的共 享频带中的调制与编码方式, 该调制与编码方式并由两部分构成, 即用户设 备直接上报的 CQIn,k以及针对共享频带的 CQI的调整量。公式中的 n为用户 设备的标识, k表示该调制与编码方式针对第 K个传输时间间隔其中 CQI 调整量的具体计算方式可以参考下面的公式 5.5:
△ CQIn,k shared- band=Step χ ((IBLER! -IBLER2 shared-band)/ ( 1- IBLE )
( 5.5 ) 其中, IBLEI^为 IBLER的目标值, jBLER edi^-band为第 n个用户设备 对第 K个传输时间间隔的独享频带的 IBLER进行测量所得到的测量值, STEP为调整步长。
570, 第一用户设备确定基站为第一用户设备分配的频率资源。
575, 基站在为第一用户设备分配的频率资源上向第一用户设备发送下 行传输信号, 第一用户设备在该频率资源上接收该下行传输信号。
580, 第二用户设备确定基站为第二用户设备分配的频率资源。
585, 基站在为第二用户设备分配的频率资源上向第二用户设备发送下 行传输信号, 第二用户设备在该频率资源上接收该下行传输信号。
由于确定了用户设备在第 K个传输时间间隔的频率资源以及相应的调 制与编码方式, 因此, 基站可以在已分配的频率资源上向用户设备发送下行 传输信号, 其中该传输信号已釆用相应的调制与编码方式处理。 用户设备分别在各自分配的频率资源上接收该下行传输信号。
上面描述了根据本发明实施例的传输下行信号的方法, 下面分别结合图 6至图 11描述根据本发明实施例的基站和用户设备。
图 6 是根据本发明的一个实施例的传输下行信号的基站的示意性结构 图。 图 6的基站 600, 包括: 分配模块 610, 用于在传输频带中长期演进系 统的独享频带未分配完的情况下, 为第一用户设备优先分配独享频带的频率 资源, 其中传输频带还包括长期演进系统和全球移动通信系统的共享频带; 发送模块 620, 用于在独享频带的频率资源上向第一用户设备发送第一下行 信号。
本发明的实施例在包括共享频带和独享频带的传输频带中,优先在具有 更高的信道质量的 LTE的独享频带上分配频率资源,从而提高了传输频带中 下行信号的传输速率。
根据本发明的实施例, 分配模块具体用于为第一用户设备优先分配预定 的传输时间间隔内的独享频带中的频率资源。
根据本发明的实施例, 分配模块还用于在独享频带在预定的传输时间间 隔内的频率资源已分配完的情况下, 为第二用户设备分配共享频带在预定的 传输时间间隔内的频率资源; 发送模块还用于在共享频带在预定的传输时间 间隔内的频率资源上向第二用户设备发送第二下行信号。
可选地, 作为另一实施例, 图 6的基站还包括: 第一确定模块, 用于确 定第一用户设备的优先级, 第一用户设备的优先级指示基站为第一用户设备 分配频率资源的次序, 分配模块还具体用于根据第一用户设备的优先级分配 为第一用户设备分配独享频带中的频率资源。
根据本发明的实施例, 第一确定模块具体用于根据第一用户设备在独享 频带中的传输速率和频带效率确定第一用户设备的优先级。
根据本发明的实施例, 第一确定模块具体用于根据第一用户设备在独享 频带中的传输速率和频带效率确定第一用户设备的优先级, 包括: 基站根据 第一用户设备在预定的传输时间间隔内在独享频带中的传输速率和频带效 率确定第一用户设备的优先级。
可选地, 作为另一实施例, 图 6的基站还包括: 接收模块, 用于接收第 一用户设备发送的第一信道质量指示; 第二确定模块还用于通过调整第一信 道质量指示确定针对第一用户设备的第一下行信号在独享频带中的第一调 制与编码策略 MCS; 发送模块具体用于基站根据第一调制与编码策略, 在 独享频带的频率资源上向第一用户设备发送第一下行信号。
根据本发明的实施例,接收模块还用于接收第二用户设备发送的第二信 道质量指示; 第二确定模块还用于通过调整第二信道质量指示确定针对第二 用户设备的第二下行信号在共享频带中的第二调制与编码策略,发送模块还 具体用于基站根据第二调制与编码策略,在预定的传输时间间隔内的频率资 源上向第二用户设备发送第二下行信号。
根据本发明的实施例,接收模块还具体用于接收第一用户设备周期地发 送的第一信道质量指示, 第二确定模块还具体用于: 根据第一用户设备在独 享频带中的初次传输误块率的测量值和所设置的初次传输误块率的目标值 确定第一信道质量指示的调整量; 根据第一信道质量指示的调整量确定针对 第一用户设备的在独享频带中的第一调制与编码策略。
基站 600的各个模块的操作和功能可以参考上述图 2的方法, 为了避免 重复, 在此不再赘述。
图 7是根据本发明的一个实施例的传输下行信号的用户设备的示意性结 构图。 图 7的用户设备 700, 包括: 确定模块 710, 用于确定基站为用户设 备分配的传输频带中长期演进系统的独享频带的频率资源; 接收模块 720, 用于接收基站在独享频带的频率资源上发送的第一下行信号,独享频带的频 率资源是基站在独享频带未分配完的情况下优先分配的, 其中传输频带还包 括长期演进系统和全球移动通信系统的共享频带。
本发明的实施例在包括共享频带和独享频带的传输频带中,优先在具有 更高的信道质量的 LTE的独享频带上分配频率资源,从而提高了传输频带中 下行信号的传输速率。
根据本发明的实施例,独享频带的频率资源是在预定的传输时间间隔内 的频率资源。
根据本发明的实施例,独享频带的频率资源是基站在独享频带未分配完 的情况下, 根据用户设备的优先级优先分配的, 用户设备的优先级由基站确 定, 用户设备的优先级指示基站为用户设备分配频率资源的次序。
根据本发明的实施例, 用户设备的优先级由基站根据用户设备在独享频 带中的传输速率和频带效率确定。
根据本发明的实施例, 用户设备的优先级由基站根据用户设备在预定的 传输时间间隔内在独享频带中的传输速率和频带效率确定。
可选地, 作为另一实施例, 图 7的用户设备还包括: 发送模块, 用于向 基站发送第一信道质量指示,接收模块具体用于接收基站根据第一下行信号 在独享频带中的第一调制与编码策略,在传输频带中长期演进系统的独享频 带的频率资源上发送的第一下行信号, 其中第一调制与编码策略是由基站通 过调整第一信道质量指示确定的。
根据本发明的实施例,发送模块具体用于向基站周期地发送第一信道质 量指示, 第一调制与编码策略是由基站根据第一信道质量指示的调整量确定 的, 第一信道质量指示的调整量是由基站通过独享频带中的初次传输误块率 的测量值和所设置的初次传输误块率的目标值确定的。
用户设备 700的各个模块的操作和功能可以参考上述图 3的方法, 为了 避免重复, 在此不再赘述。
图 8是根据本发明的一个实施例的传输下行信号的用户设备的示意性结 构图。 图 8的用户设备 800包括: 确定模块 810和接收模块 820。
接收模块 820确定基站为用户设备分配的共享频带在预定的传输时间间 享频带的频率资源上接收基站发送的第二下行信号,传输频带包括共享频带 和长期演进系统的独享频带,共享频带由长期演进系统和全球移动通信系统 共享,共享频带的频率资源是由基站在独享频带在预定的传输时间间隔内的 频率资源已分配完的情况下, 为用户设备分配的。
本发明的实施例在包括共享频带和独享频带的传输频带中,优先在具有 更高的信道质量的 LTE的独享频带上分配频率资源,从而提高了传输频带中 下行信号的传输速率。
可选地, 作为另一实施例, 图 8的用户设备还包括: 发送模块。 发送模 块向基站发送第二信道质量指示;接收模块具体用于根据第二下行信号的第 备发送第二下行信号, 第二调制与编码策略是由基站通过调整第二信道质量 指示确定的。
用户设备 800的各个模块的操作和功能可以参考上述图 4的方法, 为了 避免重复, 在此不再赘述。
图 9 是根据本发明的一个实施例的传输下行信号的基站的示意性结构 图。 图 9的基站 900包括: 处理器 910、 存储器 920、 发送器 930和通信总 线 940。
处理器 910通过通信总线 940调用存储器 920中的代码, 以在传输频带 中长期演进系统的独享频带未分配完的情况下, 为第一用户设备优先分配独 享频带的频率资源, 其中传输频带还包括长期演进系统和全球移动通信系统 的共享频带。发送器 930在独享频带的频率资源上向第一用户设备发送第一 下行信号。
本发明的实施例在包括共享频带和独享频带的传输频带中,优先在具有 更高的信道质量的 LTE的独享频带上分配频率资源,从而提高了传输频带中 下行信号的传输速率。
根据本发明的实施例, 处理器 910具体用于为第一用户设备优先分配预 定的传输时间间隔内的独享频带中的频率资源。
根据本发明的实施例, 处理器 910还用于在独享频带在预定的传输时间 间隔内的频率资源已分配完的情况下, 为第二用户设备分配共享频带在预定 的传输时间间隔内的频率资源; 发送器 930还用于在共享频带在预定的传输 时间间隔内的频率资源上向第二用户设备发送第二下行信号。
根据本发明的实施例, 处理器 910还用于确定第一用户设备的优先级, 第一用户设备的优先级指示基站为第一用户设备分配频率资源的次序, 处理 器 910还具体用于根据第一用户设备的优先级分配为第一用户设备分配独享 频带中的频率资源。
根据本发明的实施例, 处理器 910还具体用于根据第一用户设备在独享 频带中的传输速率和频带效率确定第一用户设备的优先级。
根据本发明的实施例, 处理器 910还具体用于根据第一用户设备在独享 频带中的传输速率和频带效率确定第一用户设备的优先级, 包括: 基站根据 第一用户设备在预定的传输时间间隔内在独享频带中的传输速率和频带效 率确定第一用户设备的优先级。
可选地, 作为另一实施例, 图 9的基站还包括: 接收器 950, 用于接收 第一用户设备发送的第一信道质量指示; 处理器还用于通过调整第一信道质 量指示确定针对第一用户设备的第一下行信号在独享频带中的第一调制与 编码策略; 发送器 930具体用于基站根据第一调制与编码策略, 在独享频带 的频率资源上向第一用户设备发送第一下行信号。 根据本发明的实施例,接收器 950还用于接收第二用户设备发送的第二 信道质量指示; 处理器 910还用于通过调整第二信道质量指示确定针对第二 用户设备的第二下行信号在共享频带中的第二调制与编码策略, 发送器 930 还具体用于基站根据第二调制与编码策略,在预定的传输时间间隔内的频率 资源上向第二用户设备发送第二下行信号。
根据本发明的实施例,接收器 950还具体用于接收第一用户设备周期地 发送的第一信道质量指示, 处理器 910还具体用于: 根据第一用户设备在独 享频带中的初次传输误块率的测量值和所设置的初次传输误块率的目标值 确定第一信道质量指示的调整量; 根据第一信道质量指示的调整量确定针对 第一用户设备的在独享频带中的第一调制与编码策略。
基站 900的各个模块的操作和功能可以参考上述图 2的方法, 为了避免 重复, 在此不再赘述。
图 10是根据本发明的一个实施例的传输下行信号的用户设备的示意性 结构图。 图 10的用户设备 1000包括: 处理器 1010、 存储器 1020、 接收器 1040和通信总线 1030。处理器 1010通过通信总线 1030调用存储器 1020中 的代码, 以为用户设备分配的传输频带中长期演进系统的独享频带的频率资 源;接收器 1040,用于接收基站在独享频带的频率资源上发送的第一下行信 号, 独享频带的频率资源是基站在独享频带未分配完的情况下优先分配的, 其中传输频带还包括长期演进系统和全球移动通信系统的共享频带。
本发明的实施例在包括共享频带和独享频带的传输频带中,优先在具有 更高的信道质量的 LTE的独享频带上分配频率资源,从而提高了传输频带中 下行信号的传输速率。
根据本发明的实施例,独享频带的频率资源是在预定的传输时间间隔内 的频率资源。
根据本发明的实施例,独享频带的频率资源是基站在独享频带未分配完 的情况下, 根据用户设备的优先级优先分配的, 用户设备的优先级由基站确 定, 用户设备的优先级指示基站为用户设备分配频率资源的次序。
根据本发明的实施例, 用户设备的优先级由基站根据用户设备在独享频 带中的传输速率和频带效率确定。
根据本发明的实施例, 用户设备的优先级由基站根据用户设备在预定的 传输时间间隔内在独享频带中的传输速率和频带效率确定。 可选地, 作为另一实施例, 图 10 的用户设备还包括: 发送器 1050, 用 于向基站发送第一信道质量指示,接收器具体用于接收基站根据第一下行信 号在独享频带中的第一调制与编码策略,在传输频带中长期演进系统的独享 频带的频率资源上发送的第一下行信号,其中第一调制与编码策略是由基站 通过调整第一信道质量指示确定的。
根据本发明的实施例, 发送器 1050具体用于向基站周期地发送第一信 道质量指示, 第一调制与编码策略是由基站根据第一信道质量指示的调整量 确定的, 第一信道质量指示的调整量是由基站通过独享频带中的初次传输误 块率的测量值和所设置的初次传输误块率的目标值确定的。
用户设备 1000的各个模块的操作和功能可以参考上述图 3的方法, 为 了避免重复, 在此不再赘述。
图 11是根据本发明的一个实施例的传输下行信号的用户设备的示意性 结构图。 图 11 的用户设备包括: 处理器 1110、 存储器 1120、 接收器 1140 和通信总线 1130。 处理器 1110通过通信总线 1130调用存储器 1120中的代 码, 处理器 1110, 用于备确定基站为用户设备分配的共享频带在预定的传 输时间间隔内的频率资源;接收器 1140, 用于在预定的传输时间间隔内在传 输频带中的共享频带的频率资源上接收基站发送的第二下行信号,传输频带 包括共享频带和长期演进系统的独享频带,共享频带由长期演进系统和全球 移动通信系统共享,共享频带的频率资源是由基站在独享频带在预定的传输 时间间隔内的频率资源已分配完的情况下, 为用户设备分配的。
本发明的实施例在包括共享频带和独享频带的传输频带中,优先在具有 更高的信道质量的 LTE的独享频带上分配频率资源,从而提高了传输频带中 下行信号的传输速率。
可选地, 作为另一实施例, 图 11的用户设备还包括: 发送器 1150, 用 于向基站发送第二信道质量指示; 处理器具体用于根据第二下行信号的第二 调制与编码策略,在共享频带在预定的时间间隔内的频率资源上向用户设备 发送第二下行信号, 第二调制与编码策略是由基站通过调整第二信道质量指 示确定的。
用户设备 1100的各个模块的操作和功能可以参考上述图 4的方法, 为 了避免重复, 在此不再赘述。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 计算机软件或者二者的结合来实 现, 为了清楚地说明硬件和软件的可互换性, 在上述说明中已经按照功能一 般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执 行, 取决于技术方案的特定应用和设计约束条件。 专业技术人员可以对每个 特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超 出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述描 述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应 过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间 的耦合或直接辆合或通信连接可以是通过一些接口, 装置或单元的间接耦合 或通信连接, 可以是电性, 机械或其它的形式。 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一 个单元中。 上述集成的单元既可以釆用硬件的形式实现, 也可以釆用软件功 能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销 售或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方 案的全部或部分可以以软件产品的形式体现出来, 该计算机软件产品存储在 一个存储介质中, 包括若干指令用以使得一台计算机设备(可以是个人计算 机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部 分步骤。 而前述的存储介质包括: U盘、 移动硬盘、 只读存储器 (ROM, Read-Only Memory )、 随机存取存 4诸器 ( RAM, Random Access Memory )、 磁碟或者光盘等各种可以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应以所述权利要求的保护范围为准。

Claims

权利要求
1、 一种传输下行信号的方法, 其特征在于, 包括:
基站在传输频带中长期演进系统的独享频带未分配完的情况下, 为第一 用户设备优先分配所述独享频带的频率资源, 其中所述传输频带还包括长期 演进系统和全球移动通信系统的共享频带;
所述基站在所述独享频带的频率资源上向所述第一用户设备发送第一 下行信号。
2、 根据权利要求 1 所述的方法, 其特征在于, 所述为第一用户设备优 先分配所述独享频带中的频率资源, 包括:
为所述第一用户设备优先分配预定的传输时间间隔内的所述独享频带 中的频率资源。
3、 根据权利要求 2所述的方法, 其特征在于, 还包括:
所述基站在所述独享频带在所述预定的传输时间间隔内的频率资源已 分配完的情况下, 为第二用户设备分配所述共享频带在所述预定的传输时间 间隔内的频率资源;
所述基站在所述共享频带在所述预定的传输时间间隔内的频率资源上 向所述第二用户设备发送第二下行信号。
4、 根据权利要求 1-3中的任一项所述的方法, 其特征在于, 还包括: 所述基站确定所述第一用户设备的优先级, 所述第一用户设备的优先级 指示所述基站为所述第一用户设备分配频率资源的次序,
所述为第一用户设备优先分配所述独享频带中的频率资源, 包括: 根据所述第一用户设备的优先级分配为所述第一用户设备分配所述独 享频带中的频率资源。
5、 根据权利要求 4所述的方法, 其特征在于, 所述基站确定所述第一 用户设备的优先级, 包括: 所述基站根据所述第一用户设备在所述独享频带 中的传输速率和频带效率确定所述第一用户设备的优先级。
6、 根据权利要求 5所述的方法, 其特征在于, 所述基站根据所述第一 用户设备在所述独享频带中的传输速率和频带效率确定所述第一用户设备 的优先级, 包括: 所述基站根据所述第一用户设备在预定的传输时间间隔内 在所述独享频带中的传输速率和频带效率确定所述第一用户设备的优先级。
7、 根据权利要求 1-6中的任一项所述的方法, 其特征在于, 还包括: 所述基站接收所述第一用户设备发送的第一信道质量指示; 所述基站通过调整所述第一信道质量指示确定针对所述第一用户设备 的所述第一下行信号在所述独享频带中的第一调制与编码策略;
所述基站在所述独享频带的频率资源上向所述第一用户设备发送第一 下行信号, 包括:
所述基站根据所述第一调制与编码策略,在所述独享频带的频率资源上 向所述第一用户设备发送所述第一下行信号。
8、 根据权利要求 7所述的方法, 其特征在于, 还包括:
所述基站接收所述第二用户设备发送的第二信道质量指示;
所述基站通过调整所述第二信道质量指示确定针对所述第二用户设备 的第二下行信号在所述共享频带中的第二调制与编码策略,
所述基站在所述共享频带在所述预定的传输时间间隔内的频率资源上 向所述第二用户设备发送第二下行信号, 包括:
所述基站根据所述第二调制与编码策略,在所述预定的传输时间间隔内 的频率资源上向所述第二用户设备发送第二下行信号。
9、 根据权利要求 7或 8所述的方法, 其特征在于, 所述基站接收所述 第一用户设备发送的第一信道质量指示, 包括:
所述基站接收所述第一用户设备周期地发送的第一信道质量指示, 所述基站通过调整所述第一信道质量指示确定针对所述第一用户设备 的在所述独享频带中的第一调制与编码策略, 包括:
所述基站根据所述第一用户设备在所述独享频带中的初次传输误块率 的测量值和所设置的初次传输误块率的目标值确定所述第一信道质量指示 的调整量;
所述基站根据第一信道质量指示的调整量确定针对所述第一用户设备 的在所述独享频带中的第一调制与编码策略。
10、 一种传输下行信号的方法, 其特征在于, 包括:
第一用户设备确定基站为所述第一用户设备分配的传输频带中长期演 进系统的独享频带的频率资源;
所述第一用户设备接收所述基站在所述独享频带的频率资源上发送的 第一下行信号, 所述独享频带的频率资源是基站在所述独享频带未分配完的 情况下优先分配的, 其中所述传输频带还包括长期演进系统和全球移动通信 系统的共享频带。
11、 根据权利要求 10所述的方法, 其特征在于, 所述独享频带的频率 资源是在预定的传输时间间隔内的频率资源。
12、 根据权利要求 10或 11所述的方法, 其特征在于, 所述独享频带的 频率资源是基站在所述独享频带未分配完的情况下,根据所述第一用户设备 的优先级优先分配的, 所述第一用户设备的优先级由所述基站确定, 所述第 一用户设备的优先级指示所述基站为所述第一用户设备分配频率资源的次 序。
13、 根据权利要求 12所述的方法, 其特征在于, 所述第一用户设备的 优先级由所述基站根据所述第一用户设备在所述独享频带中的传输速率和 频带效率确定。
14、 根据权利要求 13所述的方法, 其特征在于, 所述第一用户设备的 优先级由所述基站根据所述第一用户设备在预定的传输时间间隔内在所述 独享频带中的传输速率和频带效率确定。
15、根据权利要求 10-14中的任一项所述的方法, 其特征在于,还包括: 所述第一用户设备向所述基站发送第一信道质量指示,
所述第一用户设备接收基站在传输频带中长期演进系统的独享频带的 频率资源上发送的第一下行信号, 包括:
所述第一用户设备接收基站根据所述第一下行信号在独享频带中的第 一调制与编码策略,在传输频带中长期演进系统的独享频带的频率资源上发 送的第一下行信号, 其中所述第一调制与编码策略是由所述基站通过调整所 述第一信道质量指示确定的。
16、 根据权利要求 15所述的方法, 其特征在于, 所述第一用户设备向 所述基站发送第一信道质量指示, 包括:
所述第一用户设备向所述基站周期地发送所述第一信道质量指示, 所述第一调制与编码策略是由所述基站根据所述第一信道质量指示的 调整量确定的, 所述第一信道质量指示的调整量是由所述基站通过所述独享 频带中的初次传输误块率的测量值和所设置的初次传输误块率的目标值确 定的。
17、 一种传输下行信号的方法, 其特征在于, 包括:
第二用户设备确定基站为所述第二用户设备分配的共享频带在所述预 定的传输时间间隔内的频率资源; 频带的频率资源上接收所述基站发送的第二下行信号, 所述传输频带包括所 述共享频带和长期演进系统的独享频带, 所述共享频带由长期演进系统和全 球移动通信系统共享, 所述共享频带的频率资源是由所述基站在独享频带在 分配的。
18、 根据权利要求 17所述的方法, 其特征在于, 还包括:
所述第二用户设备向所述基站发送第二信道质量指示; 共享频带的频率资源上接收所述基站发送的第二下行信号, 包括:
所述第二用户设备所述基站根据所述第二下行信号的第二调制与编码 策略,在所述共享频带在所述预定的时间间隔内的频率资源上向所述第二用 户设备发送所述第二下行信号, 第二调制与编码策略是由所述基站通过调整 所述第二信道质量指示确定的。
19、 一种基站, 其特征在于, 包括:
分配模块,用于在传输频带中长期演进系统的独享频带未分配完的情况 下, 为第一用户设备优先分配所述独享频带的频率资源, 其中所述传输频带 还包括长期演进系统和全球移动通信系统的共享频带;
发送模块,用于在所述独享频带的频率资源上向所述第一用户设备发送 第一下行信号。
20、 根据权利要求 19所述的基站, 其特征在于, 所述分配模块具体用 于为所述第一用户设备优先分配预定的传输时间间隔内的所述独享频带中 的频率资源。
21、 根据权利要求 20所述的基站, 其特征在于, 所述分配模块还用于 下, 为第二用户设备分配所述共享频带在所述预定的传输时间间隔内的频率 资源;
所述发送模块还用于在所述共享频带在所述预定的传输时间间隔内的 频率资源上向所述第二用户设备发送第二下行信号。
22、根据权利要求 19-21中的任一项所述的基站, 其特征在于,还包括: 第一确定模块, 用于确定所述第一用户设备的优先级, 所述第一用户设 备的优先级指示所述基站为所述第一用户设备分配频率资源的次序,
其中, 所述分配模块具体用于根据所述第一用户设备的优先级分配为所 述第一用户设备分配所述独享频带中的频率资源。
23、 根据权利要求 22所述的基站, 其特征在于, 所述第一确定模块具 体用于根据所述第一用户设备在所述独享频带中的传输速率和频带效率确 定所述第一用户设备的优先级。
24、 根据权利要求 23所述的基站, 其特征在于, 所述第一确定模块根 据所述第一用户设备在预定的传输时间间隔内在所述独享频带中的传输速 率和频带效率确定所述第一用户设备的优先级。
25、根据权利要求 19-24中的任一项所述的基站, 其特征在于,还包括: 接收模块, 用于接收所述第一用户设备发送的第一信道质量指示; 第二确定模块, 用于通过调整所述第一信道质量指示确定针对所述第一 用户设备的所述第一下行信号在所述独享频带中的第一调制与编码策略, 其中, 所述发送模块具体用于所述基站根据所述第一调制与编码策略, 在所述独享频带的频率资源上向所述第一用户设备发送所述第一下行信号。
26、 根据权利要求 25所述的基站, 其特征在于, 所述接收模块还用于 接收所述第二用户设备发送的第二信道质量指示;
所述第二确定模块还用于通过调整所述第二信道质量指示确定针对所 述第二用户设备的第二下行信号在所述共享频带中的第二调制与编码策略, 所述发送模块还用于所述基站根据所述第二调制与编码策略,在所述预 定的传输时间间隔内的频率资源上向所述第二用户设备发送第二下行信号。
27、 根据权利要求 25或 26所述的基站, 其特征在于, 所述接收模块具 体用于接收所述第一用户设备周期地发送的第一信道质量指示,
所述第二确定模块具体用于:
根据所述第一用户设备在所述独享频带中的初次传输误块率的测量值 和所设置的初次传输误块率的目标值确定所述第一信道质量指示的调整量; 根据第一信道质量指示的调整量确定针对所述第一用户设备的在所述 独享频带中的第一调制与编码策略。
28、 一种用户设备, 其特征在于, 包括:
确定模块,用于确定基站为所述用户设备分配的传输频带中长期演进系 统的独享频带的频率资源;
接收模块,用于接收所述基站在所述独享频带的频率资源上发送的第一 下行信号, 所述独享频带的频率资源是基站在所述独享频带未分配完的情况 下优先分配的, 其中所述传输频带还包括长期演进系统和全球移动通信系统 的共享频带。
29、 根据权利要求 28所述的用户设备, 其特征在于, 所述独享频带的
30、 根据权利要求 28或 29所述的用户设备, 其特征在于, 所述独享频 带的频率资源是基站在所述独享频带未分配完的情况下,根据所述用户设备 的优先级优先分配的, 所述用户设备的优先级由所述基站确定, 所述用户设 备的优先级指示所述基站为所述用户设备分配频率资源的次序。
31、 根据权利要求 30所述的用户设备, 其特征在于, 所述用户设备的 优先级由所述基站根据所述用户设备在所述独享频带中的传输速率和频带 效率确定。
32、 根据权利要求 31 所述的用户设备, 其特征在于, 所述用户设备的 优先级由所述基站根据所述用户设备在预定的传输时间间隔内在所述独享 频带中的传输速率和频带效率确定。
33、 根据权利要求 28-32中的任一项所述的用户设备, 其特征在于, 还 包括:
发送模块, 用于向所述基站发送第一信道质量指示,
其中, 所述接收模块具体用于接收基站根据所述第一下行信号在独享频 带中的第一调制与编码策略,在传输频带中长期演进系统的独享频带的频率 资源上发送的第一下行信号, 其中所述第一调制与编码策略是由所述基站通 过调整所述第一信道质量指示确定的。
34、 根据权利要求 33所述的用户设备, 其特征在于, 所述发送模块具 体用于向所述基站周期地发送所述第一信道质量指示,
其中, 所述第一调制与编码策略是由所述基站根据所述第一信道质量指 示的调整量确定的, 所述第一信道质量指示的调整量是由所述基站通过所述 独享频带中的初次传输误块率的测量值和所设置的初次传输误块率的目标 值确定的。
35、 一种用户设备, 其特征在于, 包括: 确定模块,用于备确定基站为所述用户设备分配的共享频带在所述预定 的传输时间间隔内的频率资源; 的频率资源上接收所述基站发送的第二下行信号, 所述传输频带包括所述共 享频带和长期演进系统的独享频带, 所述共享频带由长期演进系统和全球移 动通信系统共享, 所述共享频带的频率资源是由所述基站在独享频带在所述
36、 根据权利要求 35所述的用户设备, 其特征在于, 还包括: 发送模块, 用于向所述基站发送第二信道质量指示,
其中, 所述接收模块具体用于根据所述第二下行信号的第二调制与编码 策略,在所述共享频带在所述预定的时间间隔内的频率资源上向所述用户设 备发送所述第二下行信号, 第二调制与编码策略是由所述基站通过调整所述 第二信道质量指示确定的。
PCT/CN2014/077208 2014-05-12 2014-05-12 传输下行信号的方法、基站和用户设备 WO2015172275A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480014169.0A CN105264994A (zh) 2014-05-12 2014-05-12 传输下行信号的方法、基站和用户设备
EP14891640.6A EP3104655B1 (en) 2014-05-12 2014-05-12 Downlink signal transmission method, base station and user equipment
PCT/CN2014/077208 WO2015172275A1 (zh) 2014-05-12 2014-05-12 传输下行信号的方法、基站和用户设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/077208 WO2015172275A1 (zh) 2014-05-12 2014-05-12 传输下行信号的方法、基站和用户设备

Publications (1)

Publication Number Publication Date
WO2015172275A1 true WO2015172275A1 (zh) 2015-11-19

Family

ID=54479106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/077208 WO2015172275A1 (zh) 2014-05-12 2014-05-12 传输下行信号的方法、基站和用户设备

Country Status (3)

Country Link
EP (1) EP3104655B1 (zh)
CN (1) CN105264994A (zh)
WO (1) WO2015172275A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112469045B (zh) * 2019-09-06 2023-11-17 上海华为技术有限公司 一种共享频谱资源的方法、装置及设备
US11711862B1 (en) 2021-07-15 2023-07-25 T-Mobile Usa, Inc. Dual connectivity and carrier aggregation band selection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101646198A (zh) * 2008-08-07 2010-02-10 夏普株式会社 LTE-Advanced系统下行链路的实现方法、基站和用户设备
CN102098792A (zh) * 2011-03-23 2011-06-15 西安电子科技大学 基于服务质量的轮询资源调度方法
CN102685753A (zh) * 2011-03-07 2012-09-19 北京邮电大学 Lte保护频带的使用方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110077015A1 (en) * 2006-12-29 2011-03-31 Nokia Corporation Methods, Computer Program Products And Apparatus Providing Shared Spectrum Allocation
CN101584233B (zh) * 2007-01-15 2013-09-25 艾利森电话股份有限公司 无线电通信网络之间的动态频带分配
CN102256257B (zh) * 2010-05-17 2016-02-24 中兴通讯股份有限公司 基于感知技术的切换方法及系统
US8442579B2 (en) * 2011-03-31 2013-05-14 Intel Corporation Distributed adaptive resource allocation to enhance cell edge throughput
US8824404B2 (en) * 2012-05-17 2014-09-02 Nokia Siemens Networks Oy Reuse of legacy radio access technology

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101646198A (zh) * 2008-08-07 2010-02-10 夏普株式会社 LTE-Advanced系统下行链路的实现方法、基站和用户设备
CN102685753A (zh) * 2011-03-07 2012-09-19 北京邮电大学 Lte保护频带的使用方法和装置
CN102098792A (zh) * 2011-03-23 2011-06-15 西安电子科技大学 基于服务质量的轮询资源调度方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3104655A4 *

Also Published As

Publication number Publication date
EP3104655A4 (en) 2017-03-15
EP3104655A1 (en) 2016-12-14
CN105264994A (zh) 2016-01-20
EP3104655B1 (en) 2019-05-01

Similar Documents

Publication Publication Date Title
US10237750B2 (en) Method and apparatus for transmitting pattern information
CN109041115B (zh) 一种发送缓存状态报告的方法及用户设备
CN114466461A (zh) 数据传输的方法和设备
WO2019242776A1 (zh) 无线通信方法及装置
CN108540986B (zh) 网络侧设备、用户设备及其频谱共享方法
CN110383748B (zh) 下行控制信息发送方法、装置及可读存储介质
CN109792727B (zh) 通信方法、终端和网络设备
CN106550468B (zh) 数据传输方法和基站
KR102142363B1 (ko) 기지국 장치, 단말 장치, 무선 통신 시스템 및 무선 통신 시스템 제어 방법
EP2908569A1 (en) Dynamic spectrum management method, device and system
WO2014139095A1 (zh) 一种频带资源的调度方法及装置
WO2014005446A1 (zh) 数据传输方法及窄带终端、基站
JP2012138809A5 (zh)
CN104661296A (zh) 决定用户设备的发送功率的装置和方法
KR102231454B1 (ko) 적응적 변조 및 코딩 방법 및 기지국
US10142850B2 (en) Method and device for using unlicensed spectrum
US11943026B2 (en) Method for obtaining channel state information, apparatus, and computer storage medium
CN108811126B (zh) 信息传输方法及装置
CN113424623B (zh) 分配用于信道状态信息csi传输的资源的相关方法
WO2015172275A1 (zh) 传输下行信号的方法、基站和用户设备
EP2608476B1 (en) Method, device and system for encoding and modulating data
CN105766040A (zh) 对mtc ue进行组调度的方法和装置
WO2013152631A1 (zh) 干扰管理方法及基站
CN112673671B (zh) 使用增强的信号频谱tx模板改进多用户分组并提高频谱效率
RU2777044C1 (ru) Способ и устройство для передачи информации управления нисходящей линии связи и машиночитаемый носитель данных

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480014169.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14891640

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014891640

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014891640

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE