WO2015170721A1 - Optical element molding method, molding mold, and optical element - Google Patents

Optical element molding method, molding mold, and optical element Download PDF

Info

Publication number
WO2015170721A1
WO2015170721A1 PCT/JP2015/063238 JP2015063238W WO2015170721A1 WO 2015170721 A1 WO2015170721 A1 WO 2015170721A1 JP 2015063238 W JP2015063238 W JP 2015063238W WO 2015170721 A1 WO2015170721 A1 WO 2015170721A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
optical element
molding
mold
peripheral
Prior art date
Application number
PCT/JP2015/063238
Other languages
French (fr)
Japanese (ja)
Inventor
富波徹
古田勝己
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016517925A priority Critical patent/JP6409870B2/en
Priority to CN201580024058.2A priority patent/CN106457622B/en
Publication of WO2015170721A1 publication Critical patent/WO2015170721A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/26Moulds or cores
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Definitions

  • the present invention relates to a method for molding an optical element using a molding die, and more particularly to a molding method and a molding die for an optical element suitable for molding an energy curable resin, and an optical element obtained by these.
  • a molding method of a composite element in which an ultraviolet curable resin is attached to a base material such as a glass lens with a molding die for example, see Patent Document 2.
  • the resin is supplied onto the transfer surface of the mold, the substrate is brought close to the mold until the resin thickness is appropriate, and the ultraviolet light is applied from the outside of the mold while maintaining the appropriate proximity. Irradiate light.
  • the present invention has been made in view of the above-mentioned problems of the background art, and is an optical element that can prevent burr of an optical element obtained by an energy curable resin or other molding material from interfering with assembly to other parts.
  • An object is to provide a forming method.
  • Another object of the present invention is to provide a mold for realizing the above-described method for molding an optical element, and an optical element manufactured thereby.
  • a method for molding an optical element according to the present invention is to solidify a molding material between a lower mold and an upper mold, and the lower mold is a lower optical mold.
  • the upper mold has a transfer surface, an inner wall forming an outer side surface of the optical element, and a lower outer wall adjacent to the outer side of the inner wall.
  • the upper mold extends substantially perpendicular to the upper optical transfer surface and a vertical reference axis.
  • An angle ⁇ 1 of the lower outer wall with respect to the inner side wall is larger than 180 °
  • an angle ⁇ 2 of the upper outer wall with respect to the circumferential wall Is larger than 180 °, and the end portion on the lower outer wall side of the inner wall is outside the end portion on the upper outer wall side of the circumferential flat wall in a state where the lower mold and the upper mold are positioned.
  • the inner wall is provided in the lower mold, it is easy to keep the spread of the resin in the inner wall. Furthermore, the angle ⁇ 1 of the lower outer wall with respect to the inner wall is larger than 180 °, and it is easy to prevent the resin from spreading over the inner wall and the peripheral flat wall. At this time, since the end on the lower outer wall side of the inner wall is outside the end on the upper outer wall side of the circumferential flat wall, even if there is a molding material that contacts the inner wall and reaches the end, It becomes easy to reach the peripheral flat wall which extends in the opposite direction.
  • the angle ⁇ 2 of the upper outer wall with respect to the circumferential flat wall is larger than 180 °, the amount of outward spreading can be reduced even if the molding material that has reached the circumferential flat wall reaches outside the end portion. As described above, it becomes easy to prevent the molding material from spreading from the end of the inner wall to the outside, so the optical element after molding can be easily and precisely assembled to a holder or the like using the side surface corresponding to the inner wall. It will be a thing.
  • the inner wall has a portion extending in a cylindrical shape along the reference axis on the upper end side.
  • a cylindrical side surface can be formed on the optical element, and the assembly to the holder or the like can be further stabilized.
  • the end portion on the lower outer wall side of the inner wall and the end portion on the upper outer wall side of the circumferential wall are substantially the same. Placed at height.
  • the molding material can be accumulated on the lower molding die side, and the molding material can be kept inside by the upper molding die, so that the molding material can be more reliably prevented from spreading outward from the end portion of the inner wall.
  • the viscosity of the molding material before solidification is 5000 mPa ⁇ s or less.
  • the molding material is an energy curable resin.
  • the viscosity at the time of supplying the molding material between the molds can be sufficiently lowered even at a low temperature, and a thin optical element with a biased thickness can be molded with relatively high accuracy.
  • the molding material is a photocurable resin.
  • a highly accurate optical element can be molded at a low temperature.
  • a molding die includes a lower molding die for receiving a molding material, and an upper molding die arranged to face the lower molding die, and the lower molding die and the upper molding die.
  • the upper mold has an upper optical transfer surface, a peripheral flat wall extending substantially perpendicular to a vertical reference axis to form a peripheral plane of the optical element, and an upper outer wall adjacent to the outside of the peripheral flat wall.
  • the angle ⁇ 1 of the lower outer wall with respect to the inner wall is greater than 180 °
  • the angle ⁇ 2 of the upper outer wall with respect to the circumferential flat wall is larger than 180 °
  • the end on the lower outer wall side of the inner wall is above the circumferential flat wall. It is outside the end on the outer wall side.
  • the inner wall is provided in the lower mold, it is easy to keep the spread of the resin in the inner wall. Furthermore, the angle ⁇ 1 of the lower outer wall with respect to the inner wall is larger than 180 °, and it is easy to prevent the resin from spreading over the inner wall and the peripheral flat wall. Furthermore, since the end portion on the lower outer wall side of the inner wall is outside the end portion on the upper outer wall side of the circumferential flat wall, even if there is a molding material that contacts the inner wall and reaches the end portion, the inner wall is inward from the inner wall. It becomes easy to extend and to reach the opposing surrounding flat wall.
  • the angle ⁇ 2 of the upper outer wall with respect to the circumferential flat wall is larger than 180 °, the amount of outward spreading can be reduced even if the molding material that has reached the circumferential flat wall reaches outside the end portion. As described above, it becomes easy to prevent the molding material from spreading from the end of the inner wall to the outside. Therefore, the optical element molded by this molding die can be assembled to a holder or the like using the side surface corresponding to the inner wall. Simple and precise.
  • the optical element according to the present invention is formed by cast molding using the above-described mold and has an outer shape reference corresponding to the inner wall.
  • 1A and 1B are an end view and a side cross-sectional view of a lower mold among molds for carrying out the optical element molding method of the embodiment.
  • 2A and 2B are a side sectional view and an end view of the upper mold among the molds. It is a conceptual diagram explaining the shaping
  • 5A and 5B are a side cross-sectional view and a partially enlarged cross-sectional view for explaining a casting process in which a resin is supplied.
  • 6A and 6B are conceptual diagrams for explaining the spread state of the resin around the upper and lower molds. It is side sectional drawing explaining the assembly
  • the lower mold 30 shown in FIGS. 1A and 1B is one mold part that constitutes a mold for carrying out the optical element molding method according to the present embodiment.
  • the lower mold 30 shown in the figure is formed of a glass or other material having optical transparency.
  • the lower mold 30 includes a transfer portion 31 on the center side of the surface and a substrate portion 32 that supports the transfer portion 31 from behind.
  • the transfer portion 31 protrudes from the substrate portion 32 and has an outer ring protrusion 33 on the outermost side.
  • the substrate portion 32 has a flat plate shape and has a circular outline as shown in the figure, but may have a rectangular outline.
  • the transfer portion 31 includes a lower optical transfer surface 35 for forming an optical surface of the optical element, a peripheral flat wall 36 for forming a peripheral plane of the optical element, an inner wall 37 for forming an outer side surface of the optical element, and an inner wall. 37 and a lower outer wall 38 adjacent to the outside of 37.
  • the lower optical transfer surface 35 has a convex aspheric shape as a whole, but is not limited thereto, and may be a concave surface or a spherical shape.
  • the circumferential flat wall 36 is an annular plane extending perpendicularly to the vertical reference axis AX, and surrounds the lower optical transfer surface 35 at a low position.
  • a step is formed between the lower optical transfer surface 35 and the peripheral flat wall 36, but the step can be eliminated depending on the shape of the lower optical transfer surface 35.
  • the inner wall 37 includes a cylindrical surface portion 37a extending in a cylindrical shape parallel to the vertical reference axis AX, and a tapered surface portion 37b inclined inward with respect to the cylindrical surface portion 37a.
  • the lower outer wall 38 is a donut surface-like annular surface and constitutes an annular side surface of the transfer portion 31. The lower outer wall 38 is continuously formed so as to protrude from the surface 32 a of the substrate portion 32.
  • the upper mold 40 is the other mold part constituting the mold for carrying out the optical element molding method of the embodiment.
  • the upper mold 40 is made of light-transmitting glass or other material.
  • the upper mold 40 includes a transfer portion 41 on the center side of the surface and a substrate portion 42 that supports the transfer portion 41 from behind.
  • the transfer portion 41 protrudes from the substrate portion 42 and has an outer ring protrusion 43 on the outermost side.
  • the substrate portion 42 has a flat plate shape and has a circular outline as shown in the figure, but may have a rectangular outline.
  • the transfer portion 41 has an upper optical transfer surface 45 for forming an optical surface of the optical element, a peripheral flat wall 46 forming a peripheral plane of the optical element, and an upper outer wall 48 adjacent to the outside of the peripheral flat wall 46.
  • the upper optical transfer surface 45 has a concave aspherical shape as a whole, but is not limited thereto, and may be a convex surface or a spherical shape.
  • the circumferential flat wall 46 is an annular plane extending perpendicularly to the vertical reference axis AX, and surrounds the upper optical transfer surface 45 at a higher position or a more protruding position. In the illustrated example, the upper optical transfer surface 45 and the peripheral flat wall 46 are continuously connected, but a step can be formed between them.
  • the upper outer wall 48 is a tapered annular surface extending on the base side, and constitutes an annular side surface of the transfer portion 41. The upper outer wall 48 is continuously formed so as to protrude from the surface 42 a of the substrate portion 42.
  • FIG. 3 is a conceptual diagram for explaining a manufacturing apparatus in which the molds 30 and 40 of FIG. 1 are incorporated, and a method for molding an optical element, specifically, cast molding is performed.
  • the illustrated manufacturing apparatus 100 stores a lower stage 11, a lower drive unit 12, an upper stage 13, and an upper drive unit 14 in a processing chamber 10. Outside the processing chamber 10, there are provided a UV light source 22 that irradiates the appropriate position of the work from the back side of the lower stage 11 during the curing process, and a main driving unit 23 that moves the upper driving unit 14 up and down. Yes.
  • the inside of the processing chamber 10 can be an environment of vacuum or nitrogen purge. In this case, it is possible to perform molding using an anaerobic photocurable resin RA.
  • the lower stage 11 has a chuck portion (not shown) and the like, and holds the lower molding die 30 as a workpiece.
  • the lower drive unit 12 moves the lower stage 11 up and down.
  • the upper stage 13 has a chuck portion (not shown) and the like, and holds an upper mold 40 as a workpiece.
  • the upper drive unit 14 adjusts the position and posture of the upper stage 13. That is, the upper drive unit 14 is provided with a triaxial drive unit, an inclination drive unit that adjusts an inclination posture, and the like. Accordingly, the upper stage 13 can be displaced three-dimensionally while supporting the upper mold 40 and can be rotated, for example, around the vertical axis. In the adjustment, the vertical axis of the upper drive unit 14 is set to coincide with the reference axis AX of the lower mold 30.
  • the upper drive unit 14 is driven by the main drive unit 23 to move up and down.
  • the three-dimensional translation and rotation of the lower mold 30 and the upper mold 40 can be aligned, and alignment marks (not shown) formed on both molds 30 and 40 are used.
  • alignment marks not shown
  • the relative arrangement relationship between the lower mold 30 and the upper mold 40 can be set precisely.
  • An optical element molding method using the manufacturing apparatus 100 of FIG. The lower mold 30 and the upper mold 40 are set apart from each other in the manufacturing apparatus 100, and an appropriate amount of a photocurable resin RA (energy curable resin) that is a molding material is supplied onto the lower mold 30. .
  • the viscosity of the photocurable resin (molding material) RA is set to 1000 to 5000 mPa ⁇ s or less.
  • the upper mold 40 is gradually lowered to set the lower mold 30 and the upper mold 40 at an appropriate distance. That is, both molds 30 and 40 are positioned for molding.
  • the photocurable resin RA between the molds 30 and 40 can be cured or solidified by the curing light KK.
  • the molded product obtained from the photocurable resin RA is taken out by opening the mold that separates the lower mold 30 and the upper mold 40. This molded product can be post-processed to achieve a stable state by further curing by heat treatment.
  • FIG. 4 is a diagram for explaining the shapes and arrangement relationships of the upper and lower molding dies 30 and 40.
  • the angle ⁇ ⁇ b> 1 of the lower outer wall 38 adjacent to the inner wall 37 is set to be greater than 180 ° and is equal to or greater than 270 °.
  • the angle ⁇ 2 of the upper outer wall 48 adjacent to the peripheral flat wall 46 is set to be larger than 180 °, and is 210 ° or more and 270 ° or less.
  • the end E1 on the lower outer wall 38 side of the inner wall 37 is more than the end E2 on the upper outer wall 48 side of the circumferential wall 46.
  • the outer diameter of the inner wall 37 is larger than the outer diameter of the circumferential flat wall 46 by a width 2h that is greater than or equal to a predetermined value.
  • the width 2h is adjusted in consideration of the variation of the photocurable resin RA.
  • the end E1 on the lower outer wall 38 side of the inner wall 37 and the end E2 on the upper outer wall 48 side of the circumferential flat wall 46 are Arranged at approximately the same height. More specifically, the end E1 of the inner wall 37 is slightly higher than the end E2 of the circumferential flat wall 46 disposed on the inner side.
  • the end E1 of the inner wall 37 can be made lower than the end E2 of the circumferential flat wall 46.
  • the end E1 of the inner wall 37 is made higher than the end E2 of the circumferential flat wall 46, the end E1 does not contact the upper mold 40 or the end E2 does not contact the lower mold 30. Like that.
  • FIGS. 5A and 5B are views for explaining a state before the photocurable resin (molding material) RA is sandwiched between the lower mold 30 and the upper mold 40 and cured.
  • the photocurable resin RA supplied on the lower mold 30 is spread by the upper mold 40 and fills the inside of the inner wall 37, but gets over the end E ⁇ b> 1 of the inner wall 37 to the lower outer wall 38 side. Not enough to overflow.
  • the photocurable resin RA fills the lower side of the peripheral flat wall 46 and gets over the end E ⁇ b> 2 of the peripheral flat wall 46, but receives a force that prevents it from spreading greatly toward the upper outer wall 48.
  • the photocurable resin RA supplied to the inner wall 37 rises along the inner wall 37, but the angle ⁇ 1 at the end E1 greatly exceeds 180 °. Therefore, the pinning effect by the end E1 prevents the photocurable resin RA from getting over the end E1 and overflowing to the lower outer wall 38 side.
  • the photocurable resin RA spreads outward along the peripheral flat wall 46.
  • the angle ⁇ 2 at the end portion E2 exceeds 180 °, so that the photocurable resin RA gets over the end portion E2 due to the pinning effect by the end portion E2.
  • the overflow to the upper outer wall 48 side is prevented.
  • the angle ⁇ 2 at the end portion E2 does not greatly exceed 180 °, so that even if the photocurable resin RA does not get over the end portion E1, A state occurs in which the curable resin RA gets over the end E2 and spreads toward the upper outer wall 48 side.
  • the photocurable resin RA can be prevented from greatly spreading to the upper outer wall 48 side, and spread beyond the end portion E1 of the lower mold 30 to the outside. Can be surely prevented.
  • the discharge or dropping of the photocurable resin RA may cause a variation of several percent or less, but it is certain that the photocurable resin RA gets over the end E2 and greatly spreads toward the upper outer wall 48 as described above. It can be prevented.
  • a molded product (optical element) 50 formed by curing the photocurable resin RA between the lower mold 30 and the upper mold 40 includes a pair of opposed optical transfer surfaces 35, And a flange portion 52 formed by a pair of opposed peripheral flat walls 36 and 46 and an inner wall 37.
  • the main body 51 has a pair of optical surfaces 51a and 51b.
  • a burr-like protruding portion 53 caused by the upper outer wall 48 is formed on the upper portion of the flange portion 52, but extends upward and extends outward beyond the side surface 52a of the flange portion 52. Absent.
  • the inner side surface 53a of the burr-like protrusion 53 forms an angle ⁇ with respect to the upper surface 52u of the flange portion 52, and this angle ⁇ is 90 to 180 °.
  • the side surface 52 a of the flange portion 52 is an outer shape reference of the molded product (optical element) 50.
  • the optical axis OA of the molded product (optical element) 50 coincides with the reference axis AX of the molds 30 and 40.
  • the molded product 50 is assembled so as to be stored in the holder 60.
  • the holder 60 has a cylindrical side wall 61 and an annular bottom wall 62.
  • the flange portion 52 of the molded product 50 is held by the side wall 61 so as to be prevented from moving outward, and the side surface 52a that is the outer side surface is in contact with the inner surface 61a.
  • the bottom wall 62 is held so as to prevent downward movement, and the lower surface 52b is in contact with the bottom surface 62a.
  • the spread of the photocurable resin (molding material) RA is increased in the inner wall 37. Easy to stay. Furthermore, the angle ⁇ 1 of the lower outer wall 38 with respect to the inner wall 37 is larger than 180 °, and it is easy to prevent the photocurable resin RA from spreading over the inner wall 37 and the like. At this time, since the end E1 on the lower outer wall 38 side of the inner wall 37 is outside the end E2 on the upper outer wall 48 side of the circumferential flat wall 46, the photocuring property that contacts the inner wall 37 and reaches the end E1.
  • the resin RA Even if the resin RA is present, it extends from the inner side wall 37 to the inside and easily reaches the peripheral flat wall 46. Moreover, since the angle ⁇ 2 of the upper outer wall 48 with respect to the circumferential flat wall 46 is larger than 180 °, the amount of outward spreading is reduced even if the photocurable resin RA reaching the circumferential flat wall 46 reaches outside the end E2. be able to. As described above, it is easy to prevent the photocurable resin (molding material) RA from spreading outward from the end E1 of the inner wall 37, so that the molded product (optical element) 50 after molding corresponds to the inner wall 37. Assembling to the holder 60 or the like using the side surface 52a is simple and precise.
  • the peripheral flat wall 46 is not limited to extending perpendicularly to the reference axis AX, and may have a slight inclination or curvature with respect to a plane orthogonal to the reference axis AX.
  • the inner wall 37 of the lower mold 30 can also be a tapered surface that is inclined with respect to the reference axis AX and spreads upward.
  • the transfer portions 31 and 41 and the optical transfer surfaces 35 and 45 are not limited to a circle but may be an ellipse, a rectangle, or another polygon.
  • thermosetting resin instead of the photocurable resin RA, a thermosetting resin or the like may be used. It can. When the thermosetting resin is used, the molds 30 and 40 do not need to transmit ultraviolet rays or other light.
  • the pair of molds 30 and 40 are positioned using the stages 11 and 13.
  • the molds 30 and 40 may be positioned and fixed using a positioning jig. it can.
  • the molds 30 and 40 may be capable of molding a large number of optical elements at once, and may be a lens array having a large number of lens portions.

Abstract

Provided is an optical element molding method which can prevent the burrs on an optical element obtained from a molding material from blocking assembly with other components. An inner wall (37) is provided to a lower molding mold (30), and thus the spreading of a photocurable resin (molding material) (RA) can be easily contained within the inner wall (37). The angle (θ1) of a lower outer wall (38) is set to be greater than 180° with respect to the inner wall (37), and thus it becomes easier to block the spreading of the photocurable resin (RA) when the same overflows the inner wall (37) and the like. An end part (E1) of the lower outer wall (38) side of the inner wall (37) is located farther outward than an end part (E2) of an upper outer wall (48) side of a perimeter flat wall (46), and thus even if the photocurable resin (RA) comes into contact with the inner wall (37) and reaches the end part (E1), it becomes easier for the photocurable resin (RA) to extend inward from the inner wall (37) and reach the perimeter flat wall (46). The angle (θ2) of the upper outer wall (48) is set to be greater than 180° with respect to the perimeter flat wall (46), and thus even if the photocurable resin (RA) which has reached the perimeter flat wall (46) reaches a location farther outward than the end part (E2), the amount of the photocurable resin that spreads outward can be made less.

Description

光学素子の成形方法、成形型、及び光学素子Optical element molding method, mold, and optical element
 本発明は、成形型を用いた光学素子の成形方法に関し、特にエネルギー硬化性樹脂の成形に適する光学素子の成形方法及び成形型、並びに、これらによって得られる光学素子に関する。 The present invention relates to a method for molding an optical element using a molding die, and more particularly to a molding method and a molding die for an optical element suitable for molding an energy curable resin, and an optical element obtained by these.
 撮影素子等に用いられるレンズにおいては、携帯端末の普及によって極端な小型化が求められている。これに伴い、それに使用されるレンズも薄肉かつ偏肉のレンズが求められるようになっている。しかし、薄肉かつ偏肉のレンズを射出成形で成形するのは難しいことがわかっている。そこで、薄肉かつ偏肉の成形品に関して優位性のある光硬化性樹脂その他のエネルギー硬化性樹脂を用いてレンズを成形することが考えられる。 In lenses used for imaging elements, extreme miniaturization is required due to the spread of mobile terminals. Along with this, a thin and uneven lens is also required for the lenses used therefor. However, it has been found difficult to mold thin and uneven lenses by injection molding. Therefore, it is conceivable to mold the lens using a photocurable resin or other energy curable resin that has an advantage with respect to a thin and uneven molded product.
 光硬化性樹脂製のレンズの成形方法として、透明材料からなる上型と下型との間に紫外線硬化樹脂を挟んで、上型と下型とを支持するステージに組み込んだ光源からの紫外光線を型間の紫外線硬化樹脂に照射して、レンズを成形する技術が存在する(例えば特許文献1参照)。 As a method of molding a lens made of a photocurable resin, an ultraviolet ray from a light source incorporated in a stage that supports the upper mold and the lower mold by sandwiching an ultraviolet curable resin between the upper mold and the lower mold made of a transparent material. There is a technique for forming a lens by irradiating an ultraviolet curable resin between molds (see, for example, Patent Document 1).
 また、ガラスレンズ等の基材に対して紫外線硬化樹脂を成形型にて被着させる複合素子の成形方法がある(例えば特許文献2参照)。この成形方法では、成形型の転写面上に樹脂を供給し、樹脂の肉厚が適当になるまで基材を成形型に近接させ、適当に近接した状態を維持して成形型の外側から紫外光線を照射する。 Also, there is a molding method of a composite element in which an ultraviolet curable resin is attached to a base material such as a glass lens with a molding die (for example, see Patent Document 2). In this molding method, the resin is supplied onto the transfer surface of the mold, the substrate is brought close to the mold until the resin thickness is appropriate, and the ultraviolet light is applied from the outside of the mold while maintaining the appropriate proximity. Irradiate light.
 紫外線硬化樹脂等のエネルギー硬化性樹脂の成形では、外周部が開放された成形型が用いられることから、精密な外形を形成することは難しく、レンズの目的とする外形の外側に樹脂が漏れてバリが形成される。このようなバリが形成された場合、レンズをホルダーに組み込む際にホルダーの内壁面又は内面と干渉してしまう。つまり、レンズの組み付けが困難になったり、レンズの組み付け精度が下がってしまう。なお、バリを切除する工程を設けることもできるが、工程が増加してコスト増加の原因となり、また、切除工程で偏芯が生じる可能性もある。 In the molding of energy curable resins such as ultraviolet curable resins, it is difficult to form a precise outer shape because a mold with an open outer periphery is used, and the resin leaks outside the target outer shape of the lens. A burr is formed. When such a burr | flash is formed, when incorporating a lens in a holder, it will interfere with the inner wall surface or inner surface of a holder. That is, it becomes difficult to assemble the lens, or the accuracy of assembling the lens decreases. In addition, although the process of cutting a burr | flash can also be provided, a process increases, it causes a cost increase, and eccentricity may arise in a cutting process.
特開2011-242478号公報JP 2011-242478 A 特開2007-15240号公報JP 2007-15240 A
 本発明は、上記背景技術の問題に鑑みてなされたものであり、エネルギー硬化性樹脂その他の成形材料によって得た光学素子のバリが他の部品に対する組み付けの妨げとなることを防止できる光学素子の成形方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems of the background art, and is an optical element that can prevent burr of an optical element obtained by an energy curable resin or other molding material from interfering with assembly to other parts. An object is to provide a forming method.
 また、本発明は、上記のような光学素子の成形方法を実現するための成形型やこれによって作製される光学素子を提供することを目的とする。 Another object of the present invention is to provide a mold for realizing the above-described method for molding an optical element, and an optical element manufactured thereby.
 上記目的を達成するため、本発明に係る光学素子の成形方法は、下側成形型と上側成形型との間に成形材料を挟んで固化させるものであって、下側成形型は、下光学転写面と、光学素子の外形側面を形成する内側壁と、内側壁の外側に隣接する下外壁とを有し、上側成形型は、上光学転写面と、鉛直の基準軸に略垂直に延び光学素子の周平面を形成する周平壁と、周平壁の外側に隣接する上外壁とを有し、内側壁に対する下外壁の角度θ1は、180°よりも大きく、周平壁に対する上外壁の角度θ2は、180°よりも大きく、内側壁の下外壁側の端部は、下側成形型と上側成形型とを位置決めした状態で、周平壁の上外壁側の端部よりも外側にある。 In order to achieve the above object, a method for molding an optical element according to the present invention is to solidify a molding material between a lower mold and an upper mold, and the lower mold is a lower optical mold. The upper mold has a transfer surface, an inner wall forming an outer side surface of the optical element, and a lower outer wall adjacent to the outer side of the inner wall. The upper mold extends substantially perpendicular to the upper optical transfer surface and a vertical reference axis. An angle θ1 of the lower outer wall with respect to the inner side wall is larger than 180 °, and an angle θ2 of the upper outer wall with respect to the circumferential wall. Is larger than 180 °, and the end portion on the lower outer wall side of the inner wall is outside the end portion on the upper outer wall side of the circumferential flat wall in a state where the lower mold and the upper mold are positioned.
 上記成形方法では、下側成形型に内側壁を設けているので、樹脂の広がりを内側壁内にとどめやすい。さらに、内側壁に対する下外壁の角度θ1が180°よりも大きく、内側壁及び周平壁を乗り越えて樹脂が広がることを阻止しやすくなる。この際、内側壁の下外壁側の端部が、周平壁の上外壁側の端部よりも外側にあるので、内側壁に接して端部に達する成形材料があっても、内側壁から内側に延びて対向する周平壁に達しやすくなる。しかも、周平壁に対する上外壁の角度θ2が180°よりも大きいので、周平壁に達した成形材料が端部よりも外側に達しても外側への広がり量を少なくすることができる。以上により、成形材料が内側壁の端部から外側に広がることを阻止しやすくなるので、成形後の光学素子は、内側壁に対応する側面を利用してホルダー等への組み付けが簡易で精密なものとなる。 In the above molding method, since the inner wall is provided in the lower mold, it is easy to keep the spread of the resin in the inner wall. Furthermore, the angle θ1 of the lower outer wall with respect to the inner wall is larger than 180 °, and it is easy to prevent the resin from spreading over the inner wall and the peripheral flat wall. At this time, since the end on the lower outer wall side of the inner wall is outside the end on the upper outer wall side of the circumferential flat wall, even if there is a molding material that contacts the inner wall and reaches the end, It becomes easy to reach the peripheral flat wall which extends in the opposite direction. Moreover, since the angle θ2 of the upper outer wall with respect to the circumferential flat wall is larger than 180 °, the amount of outward spreading can be reduced even if the molding material that has reached the circumferential flat wall reaches outside the end portion. As described above, it becomes easy to prevent the molding material from spreading from the end of the inner wall to the outside, so the optical element after molding can be easily and precisely assembled to a holder or the like using the side surface corresponding to the inner wall. It will be a thing.
 本発明の具体的な側面によれば、上記成形方法において、内側壁は、上端側に基準軸に沿って筒状に延びる部分を有する。この場合、光学素子に筒状の側面を形成でき、ホルダー等への組み付けをより安定化させることができる。 According to a specific aspect of the present invention, in the molding method, the inner wall has a portion extending in a cylindrical shape along the reference axis on the upper end side. In this case, a cylindrical side surface can be formed on the optical element, and the assembly to the holder or the like can be further stabilized.
 本発明の別の側面によれば、下光学転写面と上側成形型とを位置決めした状態で、内側壁の下外壁側の端部と、周平壁の上外壁側の端部とは、略同じ高さに配置される。この場合、下側成形型側に成形材料を溜めて上側成形型によって成形材料を内側にとどめるようにでき、成形材料が内側壁の端部から外側に広がることをより確実に阻止できる。 According to another aspect of the present invention, in a state where the lower optical transfer surface and the upper mold are positioned, the end portion on the lower outer wall side of the inner wall and the end portion on the upper outer wall side of the circumferential wall are substantially the same. Placed at height. In this case, the molding material can be accumulated on the lower molding die side, and the molding material can be kept inside by the upper molding die, so that the molding material can be more reliably prevented from spreading outward from the end portion of the inner wall.
 本発明のさらに別の側面によれば、成形材料の固化前の粘度が5000mPa・s以下である。成形材料の粘度を5000mPa・s以下とすることで、良好な形状転写性を保つことができる。 According to still another aspect of the present invention, the viscosity of the molding material before solidification is 5000 mPa · s or less. By setting the viscosity of the molding material to 5000 mPa · s or less, good shape transferability can be maintained.
 本発明のさらに別の側面によれば、成形材料は、エネルギー硬化性樹脂である。この場合、成形材料を成形型間に供給する際の粘度を低温でも十分低くすることができ、かつ、薄肉で肉厚に偏りのある光学素子を比較的高精度で成形できる。 According to still another aspect of the present invention, the molding material is an energy curable resin. In this case, the viscosity at the time of supplying the molding material between the molds can be sufficiently lowered even at a low temperature, and a thin optical element with a biased thickness can be molded with relatively high accuracy.
 本発明のさらに別の側面によれば、成形材料は、光硬化性樹脂である。この場合、低温で高精度の光学素子を成形することができる。 According to still another aspect of the present invention, the molding material is a photocurable resin. In this case, a highly accurate optical element can be molded at a low temperature.
 上記目的を達成するため、本発明に係る成形型は、成形材料を受ける下側成形型と、下側成形型に対向して配置される上側成形型とを備え、下側成形型及び上側成形型間に成形材料を挟んで固めるキャスト成形用の成形型であって、下側成形型は、下光学転写面と、光学素子の外形側面を形成する内側壁と、内側壁の外側に隣接する下外壁とを有し、上側成形型は、上光学転写面と、鉛直の基準軸に略垂直に延び光学素子の周平面を形成する周平壁と、周平壁の外側に隣接する上外壁とを有し、内側壁に対する下外壁の角度θ1は、180°よりも大きく、周平壁に対する上外壁の角度θ2は、180°よりも大きく、内側壁の下外壁側の端部は、周平壁の上外壁側の端部よりも外側にある。 In order to achieve the above object, a molding die according to the present invention includes a lower molding die for receiving a molding material, and an upper molding die arranged to face the lower molding die, and the lower molding die and the upper molding die. A molding die for cast molding in which a molding material is sandwiched between molds, and the lower molding die is adjacent to the lower optical transfer surface, the inner side wall forming the outer side of the optical element, and the outer side of the inner side wall. The upper mold has an upper optical transfer surface, a peripheral flat wall extending substantially perpendicular to a vertical reference axis to form a peripheral plane of the optical element, and an upper outer wall adjacent to the outside of the peripheral flat wall. The angle θ1 of the lower outer wall with respect to the inner wall is greater than 180 °, the angle θ2 of the upper outer wall with respect to the circumferential flat wall is larger than 180 °, and the end on the lower outer wall side of the inner wall is above the circumferential flat wall. It is outside the end on the outer wall side.
 上記成形型では、下側成形型に内側壁を設けているので、樹脂の広がりを内側壁内にとどめやすい。さらに、内側壁に対する下外壁の角度θ1が180°よりも大きく、内側壁及び周平壁を乗り越えて樹脂が広がることを阻止しやすくなる。さらに、内側壁の下外壁側の端部が、周平壁の上外壁側の端部よりも外側にあるので、内側壁に接して端部に達する成形材料があっても、内側壁から内側に延びて対向する周平壁に達しやすくなる。しかも、周平壁に対する上外壁の角度θ2が180°よりも大きいので、周平壁に達した成形材料が端部よりも外側に達しても外側への広がり量を少なくすることができる。以上により、成形材料が内側壁の端部から外側に広がることを阻止しやすくなるので、本成形型によって成形された光学素子は、内側壁に対応する側面を利用してホルダー等への組み付けが簡易で精密なものとなる。 In the above mold, since the inner wall is provided in the lower mold, it is easy to keep the spread of the resin in the inner wall. Furthermore, the angle θ1 of the lower outer wall with respect to the inner wall is larger than 180 °, and it is easy to prevent the resin from spreading over the inner wall and the peripheral flat wall. Furthermore, since the end portion on the lower outer wall side of the inner wall is outside the end portion on the upper outer wall side of the circumferential flat wall, even if there is a molding material that contacts the inner wall and reaches the end portion, the inner wall is inward from the inner wall. It becomes easy to extend and to reach the opposing surrounding flat wall. Moreover, since the angle θ2 of the upper outer wall with respect to the circumferential flat wall is larger than 180 °, the amount of outward spreading can be reduced even if the molding material that has reached the circumferential flat wall reaches outside the end portion. As described above, it becomes easy to prevent the molding material from spreading from the end of the inner wall to the outside. Therefore, the optical element molded by this molding die can be assembled to a holder or the like using the side surface corresponding to the inner wall. Simple and precise.
 上記目的を達成するため、本発明に係る光学素子は、上述の成形型を用いたキャスト成形によって形成され、内側壁に対応する外形基準を有する。 In order to achieve the above object, the optical element according to the present invention is formed by cast molding using the above-described mold and has an outer shape reference corresponding to the inner wall.
図1A及び1Bは、実施形態の光学素子の成形方法を実施するための成形型のうち、下側成形型の端面図及び側方断面図である。1A and 1B are an end view and a side cross-sectional view of a lower mold among molds for carrying out the optical element molding method of the embodiment. 図2A及び2Bは、上記成形型のうち、上側成形型の側方断面図及び端面図である。2A and 2B are a side sectional view and an end view of the upper mold among the molds. 成形型を組み込んだ成形装置を説明する概念図である。It is a conceptual diagram explaining the shaping | molding apparatus incorporating a shaping | molding die. キャスト成形時に相互に位置決めされる上下成形型の配置関係を説明する側方断面図である。It is a sectional side view explaining the arrangement | positioning relationship of the upper and lower shaping die mutually positioned at the time of cast shaping | molding. 図5A及び5Bは、樹脂を供給したキャスト成形の工程を説明する側方断面図及び部分拡大断面図である。5A and 5B are a side cross-sectional view and a partially enlarged cross-sectional view for explaining a casting process in which a resin is supplied. 図6A及び6Bは、上下成形型の周辺での樹脂の広がり状態を説明する概念図である。6A and 6B are conceptual diagrams for explaining the spread state of the resin around the upper and lower molds. 光学素子ホルダーへの組み付けを説明する側方断面図である。It is side sectional drawing explaining the assembly | attachment to an optical element holder.
 以下、図面を参照して、本発明に係る一実施形態の光学素子の成形方法について説明する。 Hereinafter, an optical element molding method according to an embodiment of the present invention will be described with reference to the drawings.
 図1A及び1Bに示す下側成形型30は、本実施形態に係る光学素子の成形方法を実施するための成形型を構成する一方の型部分である。図示の下側成形型30は、光透過性を有するガラスその他の材料で形成されている。下側成形型30は、表面中央側の転写部分31と、転写部分31を背後から支持する基板部分32とを備える。転写部分31は、基板部分32から突起しており、最も外側に外輪突起33を有する。基板部分32は、平板状であり、図示のように円形輪郭を有するが、矩形輪郭を有するものとすることもできる。 The lower mold 30 shown in FIGS. 1A and 1B is one mold part that constitutes a mold for carrying out the optical element molding method according to the present embodiment. The lower mold 30 shown in the figure is formed of a glass or other material having optical transparency. The lower mold 30 includes a transfer portion 31 on the center side of the surface and a substrate portion 32 that supports the transfer portion 31 from behind. The transfer portion 31 protrudes from the substrate portion 32 and has an outer ring protrusion 33 on the outermost side. The substrate portion 32 has a flat plate shape and has a circular outline as shown in the figure, but may have a rectangular outline.
 転写部分31は、光学素子の光学面を形成するための下光学転写面35と、光学素子の周平面を形成する周平壁36と、光学素子の外形側面を形成する内側壁37と、内側壁37の外側に隣接する下外壁38とを有する。下光学転写面35は、全体として凸の非球面形状を有するが、これに限らず凹面とし、或いは球面形状とすることができる。周平壁36は、鉛直の基準軸AXに垂直に延びる輪帯平面であり、下光学転写面35を低い位置で囲んでいる。また、図示の例では、下光学転写面35と周平壁36との間に段差が形成されているが、下光学転写面35の形状に応じて段差を無くすこともできる。内側壁37は、鉛直の基準軸AXに平行に筒状に延びる円筒面部分37aと、円筒面部分37aに対して内側に傾斜したテーパー面部分37bとを有する。下外壁38は、ドーナッツの表面状の環状面であり、転写部分31の環状の側面を構成する。下外壁38は、基板部分32の表面32aから隆起するようにこれから連続して形成されている。 The transfer portion 31 includes a lower optical transfer surface 35 for forming an optical surface of the optical element, a peripheral flat wall 36 for forming a peripheral plane of the optical element, an inner wall 37 for forming an outer side surface of the optical element, and an inner wall. 37 and a lower outer wall 38 adjacent to the outside of 37. The lower optical transfer surface 35 has a convex aspheric shape as a whole, but is not limited thereto, and may be a concave surface or a spherical shape. The circumferential flat wall 36 is an annular plane extending perpendicularly to the vertical reference axis AX, and surrounds the lower optical transfer surface 35 at a low position. In the illustrated example, a step is formed between the lower optical transfer surface 35 and the peripheral flat wall 36, but the step can be eliminated depending on the shape of the lower optical transfer surface 35. The inner wall 37 includes a cylindrical surface portion 37a extending in a cylindrical shape parallel to the vertical reference axis AX, and a tapered surface portion 37b inclined inward with respect to the cylindrical surface portion 37a. The lower outer wall 38 is a donut surface-like annular surface and constitutes an annular side surface of the transfer portion 31. The lower outer wall 38 is continuously formed so as to protrude from the surface 32 a of the substrate portion 32.
 図2A及び2Bに示す上側成形型40は、実施形態の光学素子の成形方法を実施するための成形型を構成する他方の型部分である。上側成形型40は、光透過性を有するガラスその他の材料で形成されている。上側成形型40は、表面中央側の転写部分41と、転写部分41を背後から支持する基板部分42とを備える。転写部分41は、基板部分42から突起しており、最も外側に外輪突起43を有する。基板部分42は、平板状であり、図示のように円形輪郭を有するが、矩形輪郭を有するものとすることもできる。 2A and 2B, the upper mold 40 is the other mold part constituting the mold for carrying out the optical element molding method of the embodiment. The upper mold 40 is made of light-transmitting glass or other material. The upper mold 40 includes a transfer portion 41 on the center side of the surface and a substrate portion 42 that supports the transfer portion 41 from behind. The transfer portion 41 protrudes from the substrate portion 42 and has an outer ring protrusion 43 on the outermost side. The substrate portion 42 has a flat plate shape and has a circular outline as shown in the figure, but may have a rectangular outline.
 転写部分41は、光学素子の光学面を形成するための上光学転写面45と、光学素子の周平面を形成する周平壁46と、周平壁46の外側に隣接する上外壁48とを有する。上光学転写面45は、全体として凹の非球面形状を有するが、これに限らず凸面とし、或いは球面形状とすることができる。周平壁46は、鉛直の基準軸AXに垂直に延びる輪帯平面であり、上光学転写面45を高い位置又はより突出した位置で囲んでいる。また、図示の例では、上光学転写面45と周平壁46とが連続的につながっているが、これらの間に段差を形成することもできる。上外壁48は、根元側で広がるテーパー状の環状面であり、転写部分41の環状の側面を構成する。上外壁48は、基板部分42の表面42aから隆起するようにこれから連続して形成されている。 The transfer portion 41 has an upper optical transfer surface 45 for forming an optical surface of the optical element, a peripheral flat wall 46 forming a peripheral plane of the optical element, and an upper outer wall 48 adjacent to the outside of the peripheral flat wall 46. The upper optical transfer surface 45 has a concave aspherical shape as a whole, but is not limited thereto, and may be a convex surface or a spherical shape. The circumferential flat wall 46 is an annular plane extending perpendicularly to the vertical reference axis AX, and surrounds the upper optical transfer surface 45 at a higher position or a more protruding position. In the illustrated example, the upper optical transfer surface 45 and the peripheral flat wall 46 are continuously connected, but a step can be formed between them. The upper outer wall 48 is a tapered annular surface extending on the base side, and constitutes an annular side surface of the transfer portion 41. The upper outer wall 48 is continuously formed so as to protrude from the surface 42 a of the substrate portion 42.
 図3は、図1の成形型30,40を組み込んだ製造装置を説明する概念図であり、光学素子の成形方法、具体的にはキャスト成形が実施される。図示の製造装置100は、処理室10中に、下側ステージ11と、下側駆動部12と、上側ステージ13と、上側駆動部14とを収納している。処理室10の外側には、硬化処理時に下側ステージ11の背面側からワークの適所に硬化光KKを照射するUV光源22と、上側駆動部14を昇降させるメイン駆動部23とが設けられている。なお、処理室10内は、真空や窒素パージの環境とできる。この場合、嫌気性のある光硬化性樹脂RAを用いた成形を行うことができる。 FIG. 3 is a conceptual diagram for explaining a manufacturing apparatus in which the molds 30 and 40 of FIG. 1 are incorporated, and a method for molding an optical element, specifically, cast molding is performed. The illustrated manufacturing apparatus 100 stores a lower stage 11, a lower drive unit 12, an upper stage 13, and an upper drive unit 14 in a processing chamber 10. Outside the processing chamber 10, there are provided a UV light source 22 that irradiates the appropriate position of the work from the back side of the lower stage 11 during the curing process, and a main driving unit 23 that moves the upper driving unit 14 up and down. Yes. Note that the inside of the processing chamber 10 can be an environment of vacuum or nitrogen purge. In this case, it is possible to perform molding using an anaerobic photocurable resin RA.
 下側ステージ11は、不図示のチャック部等を有しており、ワークとしての下側成形型30を保持する。下側駆動部12は、下側ステージ11を昇降させる。上側ステージ13は、不図示のチャック部等を有しており、ワークとしての上側成形型40を保持する。上側駆動部14は、上側ステージ13の位置や姿勢を調整する。すなわち、上側駆動部14には、3軸の駆動部、傾斜姿勢を調節する傾斜駆動部等が設けられている。これにより、上側ステージ13は、上側成形型40を支持して3次元的に変位させるとともに例えば鉛直軸の周りに回転させることができる。調整に際して、上側駆動部14の鉛直軸は、下側成形型30の基準軸AXと一致するように設定される。なお、上側駆動部14は、メイン駆動部23に駆動されて昇降する。 The lower stage 11 has a chuck portion (not shown) and the like, and holds the lower molding die 30 as a workpiece. The lower drive unit 12 moves the lower stage 11 up and down. The upper stage 13 has a chuck portion (not shown) and the like, and holds an upper mold 40 as a workpiece. The upper drive unit 14 adjusts the position and posture of the upper stage 13. That is, the upper drive unit 14 is provided with a triaxial drive unit, an inclination drive unit that adjusts an inclination posture, and the like. Accordingly, the upper stage 13 can be displaced three-dimensionally while supporting the upper mold 40 and can be rotated, for example, around the vertical axis. In the adjustment, the vertical axis of the upper drive unit 14 is set to coincide with the reference axis AX of the lower mold 30. The upper drive unit 14 is driven by the main drive unit 23 to move up and down.
 上記製造装置100において、下側成形型30と上側成形型40との3次元的な並進及び回転に関するアライメントが可能になり、両成形型30,40に形成された不図示のアライメントマークを利用することで下側成形型30と上側成形型40との相対的な配置関係を精密に設定できる。 In the manufacturing apparatus 100, the three-dimensional translation and rotation of the lower mold 30 and the upper mold 40 can be aligned, and alignment marks (not shown) formed on both molds 30 and 40 are used. Thus, the relative arrangement relationship between the lower mold 30 and the upper mold 40 can be set precisely.
 図3の製造装置100等を用いた光学素子の成形方法について説明する。製造装置100に下側成形型30と上側成形型40とを離間させた状態でセットし、下側成形型30上に成形材料である光硬化性樹脂RA(エネルギー硬化性樹脂)を適量供給する。この際、光硬化性樹脂(成形材料)RAの粘度は、1000~5000mPa・s以下とする。光硬化性樹脂RAの粘度を5000mPa・s以下とすることで、良好な形状転写性を保つことができる。その後、上側成形型40を徐々に降下させて下側成形型30と上側成形型40とを適切な距離に設定する。つまり、両成形型30,40は、成形のため位置決めされた状態とされる。その後は、UV光源22を動作させることで、両成形型30,40間の光硬化性樹脂RAを硬化光KKによって硬化又は固化させることができる。その後、下側成形型30と上側成形型40とを離間させる型開きにより、光硬化性樹脂RAから得た成形品が取り出される。この成形品に対しては、熱処理によってより硬化を進行させ安定した状態にする後加工が可能である。 An optical element molding method using the manufacturing apparatus 100 of FIG. The lower mold 30 and the upper mold 40 are set apart from each other in the manufacturing apparatus 100, and an appropriate amount of a photocurable resin RA (energy curable resin) that is a molding material is supplied onto the lower mold 30. . At this time, the viscosity of the photocurable resin (molding material) RA is set to 1000 to 5000 mPa · s or less. By setting the viscosity of the photocurable resin RA to 5000 mPa · s or less, good shape transferability can be maintained. Thereafter, the upper mold 40 is gradually lowered to set the lower mold 30 and the upper mold 40 at an appropriate distance. That is, both molds 30 and 40 are positioned for molding. Thereafter, by operating the UV light source 22, the photocurable resin RA between the molds 30 and 40 can be cured or solidified by the curing light KK. Thereafter, the molded product obtained from the photocurable resin RA is taken out by opening the mold that separates the lower mold 30 and the upper mold 40. This molded product can be post-processed to achieve a stable state by further curing by heat treatment.
 図4は、上下の成形型30,40の形状と配置関係とを説明する図である。下側成形型30において、内側壁37に対するこれに隣接する下外壁38の角度θ1は、180°よりも大きく設定されており、270°以上になっている。一方、上側成形型40において、周平壁46に対するこれに隣接する上外壁48の角度θ2は、180°よりも大きく設定されており、210°以上270°以下になっている。図示のように、下側成形型30に対して上側成形型40を位置決めした状態で、内側壁37の下外壁38側の端部E1は、周平壁46の上外壁48側の端部E2よりも幅hだけ外側にある。つまり、内側壁37の外径は、周平壁46の外径よりも所定以上の幅2hだけ大きくなっている。この幅2hは、光硬化性樹脂RAの変動分を考慮して調整される。同様に、下側成形型30に対して上側成形型40を位置決めした状態で、内側壁37の下外壁38側の端部E1と、周平壁46の上外壁48側の端部E2とは、略同じ高さに配置される。さらに具体的には、内側壁37の端部E1は、これより内側に配置される周平壁46の端部E2よりも若干高くなっている。ただし、内側壁37の端部E1は、周平壁46の端部E2よりも低くすることができる。なお、内側壁37の端部E1を周平壁46の端部E2よりも高くする場合、端部E1が上側成形型40に接触しないようにし、或いは端部E2が下側成形型30に接触しないようにする。 FIG. 4 is a diagram for explaining the shapes and arrangement relationships of the upper and lower molding dies 30 and 40. In the lower mold 30, the angle θ <b> 1 of the lower outer wall 38 adjacent to the inner wall 37 is set to be greater than 180 ° and is equal to or greater than 270 °. On the other hand, in the upper mold 40, the angle θ2 of the upper outer wall 48 adjacent to the peripheral flat wall 46 is set to be larger than 180 °, and is 210 ° or more and 270 ° or less. As shown in the drawing, in a state where the upper mold 40 is positioned with respect to the lower mold 30, the end E1 on the lower outer wall 38 side of the inner wall 37 is more than the end E2 on the upper outer wall 48 side of the circumferential wall 46. Is also on the outside by a width h. That is, the outer diameter of the inner wall 37 is larger than the outer diameter of the circumferential flat wall 46 by a width 2h that is greater than or equal to a predetermined value. The width 2h is adjusted in consideration of the variation of the photocurable resin RA. Similarly, with the upper mold 40 positioned relative to the lower mold 30, the end E1 on the lower outer wall 38 side of the inner wall 37 and the end E2 on the upper outer wall 48 side of the circumferential flat wall 46 are Arranged at approximately the same height. More specifically, the end E1 of the inner wall 37 is slightly higher than the end E2 of the circumferential flat wall 46 disposed on the inner side. However, the end E1 of the inner wall 37 can be made lower than the end E2 of the circumferential flat wall 46. When the end E1 of the inner wall 37 is made higher than the end E2 of the circumferential flat wall 46, the end E1 does not contact the upper mold 40 or the end E2 does not contact the lower mold 30. Like that.
 図5A及び5Bは、下側成形型30と上側成形型40との間に光硬化性樹脂(成形材料)RAを挟んで硬化させる前の状態を説明する図である。下側成形型30上に供給された光硬化性樹脂RAは、上側成形型40によって押し広げられて内側壁37の内側を満たすが、内側壁37の端部E1を乗り越えて下外壁38側にあふれ出すほどに至っていない。上側成形型40において、光硬化性樹脂RAは、周平壁46の下側を満たし、周平壁46の端部E2を乗り越えるが、上外壁48側に大きく広がることを阻止する力を受ける。 FIGS. 5A and 5B are views for explaining a state before the photocurable resin (molding material) RA is sandwiched between the lower mold 30 and the upper mold 40 and cured. The photocurable resin RA supplied on the lower mold 30 is spread by the upper mold 40 and fills the inside of the inner wall 37, but gets over the end E <b> 1 of the inner wall 37 to the lower outer wall 38 side. Not enough to overflow. In the upper mold 40, the photocurable resin RA fills the lower side of the peripheral flat wall 46 and gets over the end E <b> 2 of the peripheral flat wall 46, but receives a force that prevents it from spreading greatly toward the upper outer wall 48.
 図6Aに示すように、下側成形型30において、内側壁37に供給された光硬化性樹脂RAは、内側壁37に沿って上昇するが、端部E1における角度θ1が180°を大きく超えているので、端部E1によるピンニング効果によって光硬化性樹脂RAが端部E1を乗り越えて下外壁38側にあふれ出すことを阻止する。
 図6Bに示すように、上側成形型40において、光硬化性樹脂RAは、周平壁46に沿って外側に広がる。そして、光硬化性樹脂RAの供給量があまり多くない場合、端部E2における角度θ2が180°を超えているので、端部E2によるピンニング効果によって光硬化性樹脂RAが端部E2を乗り越えて上外壁48側にあふれ出すことを阻止する。しかしながら、光硬化性樹脂RAの供給量がさらに多い場合、端部E2における角度θ2が180°を大きく超えていないので、光硬化性樹脂RAが端部E1を乗り越えない場合であっても、光硬化性樹脂RAが端部E2を乗り越えて上外壁48側に広がる状態が生じる。ただし、端部E2における角度θ2が180°を超えているので、光硬化性樹脂RAが上外壁48側に大きく広がることを抑制でき、下側成形型30の端部E1を超えて外側に広がることを確実に防止できる。なお、光硬化性樹脂RAの吐出又は滴下については、数%以下のバラツキが生じ得るが、上記ように光硬化性樹脂RAが端部E2を乗り越えて上外壁48側に大きく広がることは確実に防止可能である。
As shown in FIG. 6A, in the lower mold 30, the photocurable resin RA supplied to the inner wall 37 rises along the inner wall 37, but the angle θ1 at the end E1 greatly exceeds 180 °. Therefore, the pinning effect by the end E1 prevents the photocurable resin RA from getting over the end E1 and overflowing to the lower outer wall 38 side.
As shown in FIG. 6B, in the upper mold 40, the photocurable resin RA spreads outward along the peripheral flat wall 46. When the supply amount of the photocurable resin RA is not so large, the angle θ2 at the end portion E2 exceeds 180 °, so that the photocurable resin RA gets over the end portion E2 due to the pinning effect by the end portion E2. The overflow to the upper outer wall 48 side is prevented. However, when the supply amount of the photocurable resin RA is larger, the angle θ2 at the end portion E2 does not greatly exceed 180 °, so that even if the photocurable resin RA does not get over the end portion E1, A state occurs in which the curable resin RA gets over the end E2 and spreads toward the upper outer wall 48 side. However, since the angle θ2 at the end portion E2 exceeds 180 °, the photocurable resin RA can be prevented from greatly spreading to the upper outer wall 48 side, and spread beyond the end portion E1 of the lower mold 30 to the outside. Can be surely prevented. Note that the discharge or dropping of the photocurable resin RA may cause a variation of several percent or less, but it is certain that the photocurable resin RA gets over the end E2 and greatly spreads toward the upper outer wall 48 as described above. It can be prevented.
 図7に示すように、下側成形型30と上側成形型40との間で光硬化性樹脂RAの硬化によって形成された成形品(光学素子)50は、一対の対向する光学転写面35,45の転写によって形成された本体部51と、一対の対向する周平壁36,46及び内側壁37によって形成されたフランジ部52とを備える。本体部51は、一対の光学面51a,51bを有する。フランジ部52の上部には、上外壁48に起因するバリ状の突起部分53が形成されているが、上側に延びており、フランジ部52の側面52aを超えて外側に広がるものとはなっていない。バリ状の突起部分53の内側面53aは、フランジ部52の上面52uに対して角度γをなし、この角度γは、90~180°となっている。なお、フランジ部52の側面52aは、成形品(光学素子)50の外形基準となっている。また、成形品(光学素子)50の光軸OAは、成形型30,40の基準軸AXと一致するものとなっている。 As shown in FIG. 7, a molded product (optical element) 50 formed by curing the photocurable resin RA between the lower mold 30 and the upper mold 40 includes a pair of opposed optical transfer surfaces 35, And a flange portion 52 formed by a pair of opposed peripheral flat walls 36 and 46 and an inner wall 37. The main body 51 has a pair of optical surfaces 51a and 51b. A burr-like protruding portion 53 caused by the upper outer wall 48 is formed on the upper portion of the flange portion 52, but extends upward and extends outward beyond the side surface 52a of the flange portion 52. Absent. The inner side surface 53a of the burr-like protrusion 53 forms an angle γ with respect to the upper surface 52u of the flange portion 52, and this angle γ is 90 to 180 °. Note that the side surface 52 a of the flange portion 52 is an outer shape reference of the molded product (optical element) 50. In addition, the optical axis OA of the molded product (optical element) 50 coincides with the reference axis AX of the molds 30 and 40.
 成形品50は、ホルダー60に収納されるように組み付けられる。ホルダー60は、筒状の側壁61と、環状の底部壁62とを有する。成形品50のフランジ部52は、側壁61によって外側への移動が阻止されるように保持され、外形側面である側面52aが内面61aに接する。また、底部壁62によって下側への移動が阻止されるように保持され、下面52bが底面62aに接する。 The molded product 50 is assembled so as to be stored in the holder 60. The holder 60 has a cylindrical side wall 61 and an annular bottom wall 62. The flange portion 52 of the molded product 50 is held by the side wall 61 so as to be prevented from moving outward, and the side surface 52a that is the outer side surface is in contact with the inner surface 61a. In addition, the bottom wall 62 is held so as to prevent downward movement, and the lower surface 52b is in contact with the bottom surface 62a.
 以上のように、本実施形態に係る光学素子の成形方法によれば、下側成形型30に内側壁37を設けているので、光硬化性樹脂(成形材料)RAの広がりを内側壁37内にとどめやすい。さらに、内側壁37に対する下外壁38の角度θ1が180°よりも大きく、内側壁37等を乗り越えて光硬化性樹脂RAが広がることを阻止しやすくなる。この際、内側壁37の下外壁38側の端部E1が、周平壁46の上外壁48側の端部E2よりも外側にあるので、内側壁37に接して端部E1に達する光硬化性樹脂RAがあっても、内側壁37から内側に延びて周平壁46に達しやすくなる。しかも、周平壁46に対する上外壁48の角度θ2が180°よりも大きいので、周平壁46に達した光硬化性樹脂RAが端部E2よりも外側に達しても外側への広がり量を少なくすることができる。以上により、光硬化性樹脂(成形材料)RAが内側壁37の端部E1から外側に広がることを阻止しやすくなるので、成形後の成形品(光学素子)50は、内側壁37に対応する側面52aを利用してホルダー60等への組み付けが簡易で精密なものとなる。 As described above, according to the method for molding an optical element according to the present embodiment, since the inner wall 37 is provided in the lower mold 30, the spread of the photocurable resin (molding material) RA is increased in the inner wall 37. Easy to stay. Furthermore, the angle θ1 of the lower outer wall 38 with respect to the inner wall 37 is larger than 180 °, and it is easy to prevent the photocurable resin RA from spreading over the inner wall 37 and the like. At this time, since the end E1 on the lower outer wall 38 side of the inner wall 37 is outside the end E2 on the upper outer wall 48 side of the circumferential flat wall 46, the photocuring property that contacts the inner wall 37 and reaches the end E1. Even if the resin RA is present, it extends from the inner side wall 37 to the inside and easily reaches the peripheral flat wall 46. Moreover, since the angle θ2 of the upper outer wall 48 with respect to the circumferential flat wall 46 is larger than 180 °, the amount of outward spreading is reduced even if the photocurable resin RA reaching the circumferential flat wall 46 reaches outside the end E2. be able to. As described above, it is easy to prevent the photocurable resin (molding material) RA from spreading outward from the end E1 of the inner wall 37, so that the molded product (optical element) 50 after molding corresponds to the inner wall 37. Assembling to the holder 60 or the like using the side surface 52a is simple and precise.
 以上、本実施形態に係る光学素子の成形方法、成形型等について説明したが、本発明に係る光学素子の成形方法等は、上記のものには限られない。例えば、上記実施形態の上側成形型40において、周平壁46は、基準軸AXに垂直に延びるものに限らず、基準軸AXに直交する平面に対して若干の傾斜や湾曲を有するものとできる。また、下側成形型30の内側壁37も基準軸AXに対して傾斜し上側で広がるテーパー面とできる。 The optical element molding method and mold according to the present embodiment have been described above, but the optical element molding method and the like according to the present invention are not limited to those described above. For example, in the upper mold 40 of the above-described embodiment, the peripheral flat wall 46 is not limited to extending perpendicularly to the reference axis AX, and may have a slight inclination or curvature with respect to a plane orthogonal to the reference axis AX. Further, the inner wall 37 of the lower mold 30 can also be a tapered surface that is inclined with respect to the reference axis AX and spreads upward.
 転写部分31,41や光学転写面35,45は、円形に限らず、楕円、四角形その他の多角形とすることができる。 The transfer portions 31 and 41 and the optical transfer surfaces 35 and 45 are not limited to a circle but may be an ellipse, a rectangle, or another polygon.
 以上では、成形型30,40間に成形材料として光硬化性樹脂RAを供給して成形品を得る場合について説明したが、光硬化性樹脂RAに代えて、熱硬化性樹脂等を用いることができる。熱硬化性樹脂を用いる場合、成形型30,40は、紫外線その他の光を透過させるものである必要はない。 In the above, a case has been described in which a photocurable resin RA is supplied as a molding material between the molds 30 and 40 to obtain a molded product. However, instead of the photocurable resin RA, a thermosetting resin or the like may be used. it can. When the thermosetting resin is used, the molds 30 and 40 do not need to transmit ultraviolet rays or other light.
 図3では、ステージ11,13を利用して一対の成形型30,40の位置決めを行っているが、位置決め用の治具を利用して両成形型30,40の位置決め及び固定を行うこともできる。 In FIG. 3, the pair of molds 30 and 40 are positioned using the stages 11 and 13. However, the molds 30 and 40 may be positioned and fixed using a positioning jig. it can.
 成形型30,40は、一括して多数の光学素子を成形できるものであってよく、多数のレンズ部分を有するレンズアレイとすることもできる。 The molds 30 and 40 may be capable of molding a large number of optical elements at once, and may be a lens array having a large number of lens portions.

Claims (9)

  1.  下側成形型と上側成形型との間に成形材料を挟んで固化させる光学素子用の成形方法であって、
     前記下側成形型は、下光学転写面と、光学素子の外形側面を形成する内側壁と、前記内側壁の外側に隣接する下外壁とを有し、
     前記上側成形型は、上光学転写面と、鉛直の基準軸に略垂直に延び光学素子の周平面を形成する周平壁と、前記周平壁の外側に隣接する上外壁とを有し、
     前記内側壁に対する前記下外壁の角度θ1は、180°よりも大きく、前記周平壁に対する前記上外壁の角度θ2は、180°よりも大きく、
     前記内側壁の前記下外壁側の端部は、前記下側成形型と前記上側成形型とを位置決めした状態で、前記周平壁の前記上外壁側の端部よりも外側にある光学素子の成形方法。
    A molding method for an optical element that solidifies by sandwiching a molding material between a lower mold and an upper mold,
    The lower mold has a lower optical transfer surface, an inner wall that forms the outer side of the optical element, and a lower outer wall adjacent to the outside of the inner wall,
    The upper mold has an upper optical transfer surface, a peripheral flat wall extending substantially perpendicular to a vertical reference axis to form a peripheral plane of the optical element, and an upper outer wall adjacent to the outside of the peripheral flat wall,
    The angle θ1 of the lower outer wall with respect to the inner wall is larger than 180 °, and the angle θ2 of the upper outer wall with respect to the peripheral wall is larger than 180 °,
    The end of the inner wall on the lower outer wall side is a molding of an optical element located outside the end of the peripheral flat wall on the upper outer wall side in a state where the lower molding die and the upper molding die are positioned. Method.
  2.  前記角度θ1が270°以上360°以下であり、前記角度θ2が210°以上270°以下である、請求項1に記載の光学素子の成形方法。 The method for molding an optical element according to claim 1, wherein the angle θ1 is 270 ° to 360 °, and the angle θ2 is 210 ° to 270 °.
  3.  前記内側壁は、上端側に前記基準軸に沿って筒状に延びる部分を有する、請求項1及び2のいずれか一項に記載の光学素子の成形方法。 The method for molding an optical element according to any one of claims 1 and 2, wherein the inner wall has a portion extending in a cylindrical shape along the reference axis on an upper end side.
  4.  前記下光学転写面と前記上側成形型とを位置決めした状態で、前記内側壁の前記下外壁側の端部と、前記周平壁の前記上外壁側の端部とは、略同じ高さに配置される、請求項1~3のいずれか一項に記載の光学素子の成形方法。 In a state where the lower optical transfer surface and the upper mold are positioned, the end on the lower outer wall side of the inner wall and the end on the upper outer wall side of the peripheral wall are disposed at substantially the same height. The method for molding an optical element according to any one of claims 1 to 3, wherein:
  5.  前記成形材料の固化前の粘度が5000mPa・s以下である、請求項1~4のいずれか一項に記載の光学素子の成形方法。 The method for molding an optical element according to any one of claims 1 to 4, wherein a viscosity of the molding material before solidification is 5000 mPa · s or less.
  6.  前記成形材料は、エネルギー硬化性樹脂である、請求項1~5のいずれか一項に記載の光学素子の成形方法。 The method for molding an optical element according to any one of claims 1 to 5, wherein the molding material is an energy curable resin.
  7.  前記成形材料は、光硬化性樹脂である、請求項6に記載の光学素子の成形方法。 The method for molding an optical element according to claim 6, wherein the molding material is a photocurable resin.
  8.  成形材料を受ける下側成形型と、下側成形型に対向して配置される上側成形型とを備え、前記下側成形型及び前記上側成形型間に成形材料を挟んで固めるキャスト成形用の成形型であって、
     前記下側成形型は、下光学転写面と、光学素子の外形側面を形成する内側壁と、前記内側壁の外側に隣接する下外壁とを有し、
     前記上側成形型は、上光学転写面と、鉛直の基準軸に略垂直に延び光学素子の周平面を形成する周平壁と、前記周平壁の外側に隣接する上外壁とを有し、
     前記内側壁に対する前記下外壁の角度θ1は、180°よりも大きく、前記周平壁に対する前記上外壁の角度θ2は、180°よりも大きく、
     前記内側壁の前記下外壁側の端部は、前記周平壁の前記上外壁側の端部よりも外側にある成形型。
    A casting mold comprising: a lower mold for receiving a molding material; and an upper mold disposed to face the lower mold; and sandwiching the molding material between the lower mold and the upper mold A mold,
    The lower mold has a lower optical transfer surface, an inner wall that forms the outer side of the optical element, and a lower outer wall adjacent to the outside of the inner wall,
    The upper mold has an upper optical transfer surface, a peripheral flat wall extending substantially perpendicular to a vertical reference axis to form a peripheral plane of the optical element, and an upper outer wall adjacent to the outside of the peripheral flat wall,
    The angle θ1 of the lower outer wall with respect to the inner wall is larger than 180 °, and the angle θ2 of the upper outer wall with respect to the peripheral wall is larger than 180 °,
    The mold on the lower outer wall side of the inner wall is located outside the end of the peripheral wall on the upper outer wall side.
  9.  請求項8に記載の成形型を用いたキャスト成形によって形成され、前記内側壁に対応する外形基準を有する光学素子。 An optical element formed by cast molding using the mold according to claim 8 and having an outer shape reference corresponding to the inner wall.
PCT/JP2015/063238 2014-05-09 2015-05-07 Optical element molding method, molding mold, and optical element WO2015170721A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016517925A JP6409870B2 (en) 2014-05-09 2015-05-07 Optical element molding method, mold, and optical element
CN201580024058.2A CN106457622B (en) 2014-05-09 2015-05-07 Manufacturing process, shaping dies and the optical element of optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014098179 2014-05-09
JP2014-098179 2014-05-09

Publications (1)

Publication Number Publication Date
WO2015170721A1 true WO2015170721A1 (en) 2015-11-12

Family

ID=54392570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063238 WO2015170721A1 (en) 2014-05-09 2015-05-07 Optical element molding method, molding mold, and optical element

Country Status (3)

Country Link
JP (1) JP6409870B2 (en)
CN (1) CN106457622B (en)
WO (1) WO2015170721A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003311757A (en) * 2002-04-23 2003-11-05 Sony Corp Method for forming compound lens
JP2010241071A (en) * 2009-04-09 2010-10-28 Olympus Corp Composite optical element and method for manufacturing the same
JP2011245637A (en) * 2010-05-24 2011-12-08 Fujifilm Corp Lens mold, lens manufacturing apparatus, lens manufactured by lens manufacturing apparatus, and imaging device equipped with lens

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100553924C (en) * 2006-01-18 2009-10-28 鸿富锦精密工业(深圳)有限公司 Forming die for optical element
CN101038347A (en) * 2006-03-17 2007-09-19 中华映管股份有限公司 Manufacture of lens array, lens array and optical elements array device
CN102348651B (en) * 2009-03-12 2014-04-23 柯尼卡美能达精密光学株式会社 Optical element, method for manufacturing optical element, light emitting unit, and method for assembling light emitting unit
CN106199795B (en) * 2011-02-08 2019-03-05 浜松光子学株式会社 Optical element and its manufacturing method
JP6429434B2 (en) * 2012-05-23 2018-11-28 キヤノン株式会社 Plastic optical member and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003311757A (en) * 2002-04-23 2003-11-05 Sony Corp Method for forming compound lens
JP2010241071A (en) * 2009-04-09 2010-10-28 Olympus Corp Composite optical element and method for manufacturing the same
JP2011245637A (en) * 2010-05-24 2011-12-08 Fujifilm Corp Lens mold, lens manufacturing apparatus, lens manufactured by lens manufacturing apparatus, and imaging device equipped with lens

Also Published As

Publication number Publication date
CN106457622A (en) 2017-02-22
JPWO2015170721A1 (en) 2017-04-20
CN106457622B (en) 2019-03-08
JP6409870B2 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
WO2013154121A1 (en) Lens unit
US8982486B2 (en) Image pickup lens unit manufacturing method and image pickup lens unit
TWI554385B (en) Method and device for producing a microlens
US20140016216A1 (en) Manufacturing method for image pickup lens unit and image pickup lens
JP2008197282A (en) Plastic lens unit, camera module and method for manufacturing them
JP2009204752A (en) Composite lens
US20080112066A1 (en) Camera module capable of fixing lens held in lens barrel after the lens is adjusted in optical axis direction
US20120128936A1 (en) Glass optical element and method for manufacturing the same
WO2012133464A1 (en) Image capturing lens unit and method for manufacturing same
US20150276994A1 (en) Method of making a lens array plate with an aperture mask layer
JP2014202906A (en) Lens unit structure of mold lens and molding die of mold lens
JP2009300626A (en) Optical glass lens set and manufacturing method thereof
JP2007022905A (en) Optical element device manufacturing method, optical element device and forming apparatus
US20100242544A1 (en) Optical lens forming mold
US7859772B2 (en) Composite optical element and method for manufacturing the same
JP2015200787A (en) lens fixing method and lens assembly
KR101828636B1 (en) Method and device for producing a lens wafer
JP6409870B2 (en) Optical element molding method, mold, and optical element
US20140233115A1 (en) Image Pickup Lens Unit And Method For Manufacturing Image Pickup Lens Unit
JP2015118111A (en) Lens frame, lens assembly, and manufacturing method of lens assembly
JP6357904B2 (en) Mold apparatus and optical element
JP2013014466A (en) Glass lens and array unit
JP2008076834A (en) Plastic lens
JP5312968B2 (en) Optical component and method of manufacturing optical component
JP2018194593A (en) Lens unit and camera module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15789166

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016517925

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15789166

Country of ref document: EP

Kind code of ref document: A1