WO2015170573A1 - Lymph node imaging agent - Google Patents

Lymph node imaging agent Download PDF

Info

Publication number
WO2015170573A1
WO2015170573A1 PCT/JP2015/061943 JP2015061943W WO2015170573A1 WO 2015170573 A1 WO2015170573 A1 WO 2015170573A1 JP 2015061943 W JP2015061943 W JP 2015061943W WO 2015170573 A1 WO2015170573 A1 WO 2015170573A1
Authority
WO
WIPO (PCT)
Prior art keywords
branched polymer
anionic
lymph node
group
present
Prior art date
Application number
PCT/JP2015/061943
Other languages
French (fr)
Japanese (ja)
Inventor
千恵 児島
悠一郎 仁木
泰寛 間賀田
美香子 小川
Original Assignee
公立大学法人大阪府立大学
国立大学法人浜松医科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人大阪府立大学, 国立大学法人浜松医科大学 filed Critical 公立大学法人大阪府立大学
Priority to JP2016517855A priority Critical patent/JPWO2015170573A1/en
Publication of WO2015170573A1 publication Critical patent/WO2015170573A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting

Definitions

  • the present invention relates to a lymph node imaging agent.
  • the sentinel lymph node (primary lymph node) is the lymph node that first passes when cancer cells metastasize, and detection of the lymph node is very important in detecting and diagnosing metastatic cancer. Is done.
  • Non-Patent Document 1 discloses a method for detecting a lymph node using radiolabeled liposomes.
  • Such liposomes are anionic liposomes having a molecular size of about 100 nm, and are known to be phagocytosed by macrophages present in the lymph nodes when they are administered subcutaneously, and as a result, accumulate in the lymph nodes.
  • Non-Patent Document 2 discloses that poly L-lysine dendrimers having a benzyl sulfate group on the surface and a molecular diameter of about 2.8 nm accumulate in lymph nodes by subcutaneous administration and tail vein administration. .
  • Non-Patent Document 3 discloses a method for detecting a lymph node by administering 20 to 40 nm quantum dots into the tail vein.
  • Non-Patent Document 4 discloses a lymph node imaging method using a radiolabeled polyamidoamine amine dendrimer, and discloses that G4 to G8 dendrimers are suitable for imaging. As an administration method, a method of directly administering such a dendrimer to the mammary gland is disclosed.
  • Patent Document 1 discloses a complex of a dendrimer prepared using polyamidoimine and polyamidoamine and alginic acid or gamma polyglutamic acid having a molecular diameter of about 24 nm and a zeta potential of about ⁇ 49 mV.
  • a method of imaging a sentinel lymph node by administering Foot pad is disclosed.
  • an object of the present invention is to provide a lymph node imaging agent capable of imaging a lymph node with a small amount and a simple administration method.
  • imaging of lymph nodes can be performed with a small dose by using an anionic branched polymer having a specific molecular diameter. It was.
  • the present invention has been completed based on such knowledge, and includes the inventions of the following broad aspects.
  • Item 1 An anionic branched polymer having at least one labeling substance and having a molecular diameter of 5 to 20 nm, which is used as a lymph node imaging agent.
  • Item 2 The anionic branched polymer according to Item 1, wherein the zeta potential is ⁇ 10 mV or less.
  • Item 3 The anionic branched polymer according to Item 1 or 2, which has at least one kind of anionic group.
  • Item 4 The anionic branched polymer according to Item 3, wherein the anionic group is at least one selected from the group consisting of a carboxyl group, a sulfone group, and a phenol group.
  • Item 5 The anionic branched polymer according to Item 3, wherein the anionic group is a carboxyl group.
  • Item 6 In any one of Items 1 to 5, wherein the labeling substance is at least one selected from the group consisting of a radioisotope, a low molecular organic dye, a fluorescent dye, and a gadolinium coordination chelating agent.
  • the labeling substance is at least one selected from the group consisting of a radioisotope, a low molecular organic dye, a fluorescent dye, and a gadolinium coordination chelating agent.
  • Item 7 The anionic branched polymer according to any one of Items 1 to 6, which is used as a lymph node imaging agent for intradermal administration.
  • Item 8 The anionic branched polymer according to any one of Items 1 to 7, wherein the anionic branched polymer is a graft polymer, a star polymer, a hyperbranched polymer, a dendron, a dendrimer, a dendron polymer, or a dendrigraft polymer. .
  • Item 9 A lymph node imaging agent comprising the anionic branched polymer according to any one of Items 1 to 8.
  • Item 10 A method for imaging a lymph node, comprising a step of administering the anionic branched polymer according to any one of Items 1 to 9.
  • the anionic branched polymer according to the present invention can be suitably used as an imaging agent for lymph nodes.
  • the anionic branched polymer according to the present invention as an imaging agent for lymph nodes, it is possible to image the lymph nodes by a small amount and a simple administration method, for example, intradermal administration.
  • NMR spectra and partial structures of various dendrimers prepared in this example NMR spectra of various dendrimers prepared in this example. NMR spectra of various dendrimers prepared in this example. NMR spectra of various dendrimers prepared in this example.
  • the figure (sentinel lymph node) which shows distribution after administering the various dendrimers produced in the present Example.
  • the figure (liver) which shows distribution after administering various dendrimers produced in a present Example.
  • the figure (spleen) which shows distribution after administering various dendrimers produced in the present Example.
  • the figure which shows distribution after administering the various dendrimers produced in a present Example kidney).
  • part) which shows distribution after administering the various dendrimers produced in the present Example.
  • the figure (blood) which shows distribution after administering the various dendrimers produced in the present Example.
  • the figure (lung) which shows distribution after administering various dendrimers produced in a present Example.
  • the figure (heart) which shows distribution after administering various dendrimers produced in the present Example.
  • the figure (muscle) which shows distribution after administering the various dendrimers produced in the present Example.
  • SPECT / CT images taken after administration of various dendrimers prepared in this example.
  • the anionic branched polymer according to the present invention is used as a lymph node imaging agent.
  • the anionic branched polymer according to the present invention has at least one labeling substance and has a molecular diameter of 5 to 20 nm.
  • the branched polymer according to the present invention is 5 nm or more, it exhibits the effect of being easily accumulated in the lymph node without diffusing from the administration site. Moreover, since it is 20 nm or less, the effect which is hard to be recognized by macrophages etc. is exhibited.
  • the branched polymer according to the present invention is preferably about 5 to 15 nm. Since it is 15 nm or less, it exerts an effect that it is more difficult to be recognized by macrophages.
  • the average molecular diameter is a molecular diameter measured based on the dynamic light scattering method (DLS) method, as shown in the following examples, and the measured value obtained based on the principle of DLS is expressed in a polydisperse system. It is the average particle size of the smallest distribution in the volume-based particle size distribution obtained by analysis by a certain Marquardt method.
  • the measuring instrument used for the dynamic light scattering method is ELSZ-DN2 (Otsuka Electronics) or its equivalent.
  • a branched polymer is a polymer having a branched structure.
  • a branched polymer in which a molecular chain extending from a branch point existing in the main chain or the central point is a single chain, such as a graft polymer and a star polymer.
  • a molecular chain extending from a branch point existing in the main chain or the central point such as a hyperbranched polymer, a dendron, a dendritic polymer (dendrimer), a dendron polymer, etc.
  • a dendrigraft polymer in which a branch polymer is further connected in a graft polymer form to the branch polymer of the graft polymer is also included in the branched polymer according to the present invention.
  • Dendrimers have regular branches in the molecular chain extending from the center, can be synthesized step by step (also called generations), are perfectly aligned in shape and size, are regular and symmetrical It is a branched polymer rich in properties.
  • hyperbranched polymers and dendron polymers are branched polymers that do not have regularity, symmetry, and the like as in dendrimers.
  • the dendron polymer is a branched polymer in which a dendron that is a partial structure of a dendrimer is bonded to a side chain of a main chain polymer.
  • the branched polymer according to the present invention has a plurality of branched chains as described above, it is common in that it can have a plurality of anionic groups. Therefore, any of the branched polymers can exhibit the effects of the present invention.
  • the branched polymer according to the present invention is not particularly limited as long as it is the above-described branched polymer.
  • it is preferably a dendrimer.
  • the branched polymer according to the present invention has an anionic property, and due to the anionic property, when such a polymer is administered to a living body, it exhibits an effect of being accumulated in a lymph node.
  • the fact that the branched polymer according to the present invention is anionic can be determined based on the zeta potential of the branched polymer measured using sodium chloride as a solvent.
  • the specific zeta potential of the branched polymer according to the present invention is not particularly limited.
  • the zeta potential is usually about ⁇ 10 mV or less, preferably about ⁇ 20 mV or less.
  • Such an anionic property of the branched polymer according to the present invention can be imparted depending on the anionic group of the branched polymer, and it is preferable that the branched polymer has an anionic group on the surface group. More preferably, it has an anionic group at the terminal of the branched polymer. Such an anionic group is preferably covalently bonded to the branched polymer.
  • the ratio of the anionic group when the branched polymer according to the present invention has an anionic property on the surface group is usually 100% or less and about 50% or more with respect to the entire surface group of the branched polymer.
  • anionic groups are not particularly limited, and examples thereof include a carboxyl group, a sulfone group, and a phenol group. These branched polymers according to the present invention may contain only one type of anionic group or two or more types. Among the anionic groups described above, a carboxyl group is particularly preferable.
  • the anionic branched polymer according to the present invention has at least one labeling substance.
  • labeling substances are not particularly limited.
  • radioisotopes such as 11 C, 13 N, 15 O, and 18 F compounds (for PET), radioisotopes such as 111 In compounds (for SPECT), indigo Low molecular organic dyes such as carmine or patent blue V; fluorescent dyes such as indocyanine green, fluorescein, rhodamine, Alexa Fluor dye; and contrast agents for nuclear magnetic resonance imaging such as gadolinium chelating agents.
  • the anionic branched polymer according to the present invention can be produced by a known method.
  • an anionic group may be bound to the branched polymer using a known method.
  • Such a bonding mode is not particularly limited, and for example, covalent bonding is preferable.
  • the labeling substance to be bound to the branched polymer can also be imparted using a known method, and the labeling substance can be bound to the branched polymer through another compound such as a chelating agent.
  • a binding mode is not particularly limited, and can be appropriately determined in view of, for example, the physical properties of the branched polymer and the physical properties of the labeling substance.
  • the anionic branched polymer according to the present invention is used as a lymph node imaging agent.
  • the specific method of use can be the same as described in ⁇ Lymph node imaging agent according to the present invention> described later.
  • the lymph node imaging agent according to the present invention includes the above-described anionic branched polymer according to the present invention.
  • the content of the anionic branched polymer is not particularly limited. The specific content is usually about 0.001 to 100 parts by weight with respect to 100 parts by weight of the lymph node imaging agent, for example. That is, the anionic branched polymer according to the present invention itself can be used as the lymph node imaging agent according to the present invention.
  • the dosage form of the lymph node imaging agent according to the present invention is not particularly limited.
  • a desired dosage form can be obtained together with various conventionally known pharmaceutically acceptable carriers.
  • Specific dosage forms include injections such as liquids, implantable injections, and sustained injections; dialysis agents such as peritoneal dialysis agents and hemodialysis agents.
  • These dosage forms can be manufactured based on known documents such as the 16th revised Japanese Pharmacopoeia Manual.
  • the lymph node imaging agent includes a pH adjuster; a preservative; an isotonic agent; an antiseptic; a solvent such as water for injection, sesame oil, soybean oil, corn oil, olive oil; Stabilizers such as inert gases (nitrogen, carbon dioxide, etc.), chelating agents (EDTA, thioglycolic acid, etc.), reducing substances (sodium bisulfite, L-ascorbic acid, etc.); paraoxybenzoic acid esters, chlorobutanol, benzyl alcohol Preservatives such as phenol, benzalkonium chloride; binding solubilizers (sodium iodide, sodium benzoate, sodium nicotinate, etc.), solvent-soluble solubilizers (alcohol, propylene glycol, liquid macrogol, etc.), etc.
  • Stabilizers such as inert gases (nitrogen, carbon dioxide, etc.), chelating agents (EDTA, thioglycolic acid, etc
  • Solubilizing agents such as procaine hydrochloride and benzyl alcohol; glucose, sorbi Such as citric acid, acetic acid, sodium phosphate, and those for injection; carmellose sodium, PVP, aluminum monostearate, these for injection, etc.
  • a suspending agent or the like can be contained.
  • the dosage of the lymph node imaging agent according to the present invention is not particularly limited.
  • Such a dose is usually about 50 to 300 ⁇ L in terms of volume.
  • the administration method of the lymph node imaging agent of the present invention is not particularly limited, and examples thereof include intravenous administration, subcutaneous administration, and intradermal administration. Of these, intradermal administration is preferred.
  • the apparatus capable of performing imaging using the lymph node imaging agent according to the present invention can be appropriately selected according to the type of labeling substance contained in the above-mentioned anionic branched polymer, and is not particularly limited.
  • Examples of such an apparatus usually include a nuclear medicine examination apparatus, an MRI apparatus, a fluorescence detection apparatus, and the like.
  • a specific imaging method can be performed by appropriately changing the conditions in accordance with the manual of the above apparatus.
  • the method for imaging a lymph node according to the present invention includes a step of administering the above-mentioned anionic branched polymer.
  • the anionic branched polymer, the dose, the administration method, the equipment used for imaging, and the like should be as described in the above ⁇ Anionic branched polymer according to the present invention> or ⁇ Lymph node imaging agent according to the present invention>. it can.
  • PAMAM dendrimers used was obtained from ALDRICH, PAMAM dendrimer, ethylenediamine core, generation 2.0 solution (412406;.
  • G2-NH 2 PAMAM dendrimer , ethylenediamine core, generation 4 0.0 solution (41449; hereinafter referred to as G4-NH 2 in this example)
  • PAMAM dendrimer, ethylenediamine c re, generation 8.0 solution 536741; .
  • G8-NH 2 p-SCN-Bn-DTPA was obtained from MACROCYCLICS (B-305).
  • the amount of p-SCN-Bn-DTPA binding was estimated from a calibration curve of p-SCN-Bn-DTPA by measuring a UV spectrum.
  • Production Example 2 Preparation of acetylated / carboxylated PAMAM dendrimer
  • the chelated PAMAM dendrimer having various sizes described above was further subjected to acetylation or carboxylation.
  • reaction rate was identified using a fluorescamine color reaction.
  • reaction was confirmed using 1 H NMR measurement (FIGS. 1 to 4). It was revealed that an acetylation peak was present at 1.95 ppm.
  • G2-Ac G4-Ac
  • G6-Ac G8-Ac
  • reaction rate was identified using a fluorescamine color reaction.
  • reaction was confirmed using 1 H NMR measurement (FIGS. 1 to 4). It was revealed that a carboxyl group peak was present at 2.4 ppm.
  • the zeta potential was measured using PBS as a solvent, and as a result, a result that the zeta potential was on the negative side as a whole was obtained.
  • the zeta potential measured for unchelated G4-NH 2 PAMAM dendrimer with 10 mM NaCl was +2.82 mV, whereas the zeta potential measured with PBS was -15.63 mV.
  • Modification number indicates the number of modifications by p-SCN-Bn-DTPA per molecule of various dendrimers.
  • reaction product was purified using a PD-10 column (solvent: PBS). Then, it refine
  • Rats were euthanized at 1, 6 and 24 hours after administration, respectively, and the administration site and various organs (popliteal lymph nodes, blood, spleen, kidney, liver, heart, lung, and muscle) were taken out, their weight and radio Activity was measured. The results are shown in FIGS.
  • G2 and G4 are excreted from the kidney because they are small molecules.
  • SPECT imaging was performed using FX Pre-clinical platform (Gamma Medica Ideas Inc) (60 sec / projection; 64 projection).
  • the captured images are shown in FIGS.
  • the site surrounded by a circle in the figure is an administration site, the region surrounded by a square is the primary lymph node, and the region surrounded by a triangle is the secondary lymph node.
  • G8-COOH and G6-COOH were able to image not only the sentinel lymph node (primary lymph node) but also the secondary lymph node.
  • the sentinel lymph node could be imaged, but with G2-COOH, it was found that the molecular weight was too small to diffuse.
  • G6-NH 2 stays considerably at the administration site and that G6-Ac diffuses from the administration site.
  • G6-COOH or G8-COOH is suitable for imaging of sentinel lymph nodes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Abstract

The purpose of the present invention is to provide a lymph node imaging agent which enables the imaging of a lymph node even when used in a small amount and which can be administered in a simple manner for the imaging. An anionic branched polymer which can be used as a lymph node imaging agent, has at least one labeling substance bound thereto, and has a molecule diameter of 5 to 20 nm.

Description

リンパ節イメージング剤Lymph node imaging agent
 本発明はリンパ節イメージング剤に関する。 The present invention relates to a lymph node imaging agent.
 センチネルリンパ節(1次リンパ節)は、癌細胞が転移する際に最初に通過するリンパ節であり、リンパ節を検出することは、転移癌の検出、診断等を行う際に非常に重要とされる。 The sentinel lymph node (primary lymph node) is the lymph node that first passes when cancer cells metastasize, and detection of the lymph node is very important in detecting and diagnosing metastatic cancer. Is done.
 非特許文献1には、放射標識されたリポソームを用いてリンパ節を検出する方法が開示されている。斯かるリポソームは100nm程度の分子サイズを有するアニオン性リポソームであり、これが皮下投与されることによってリンパ節に存在するマクロファージによって貪食され、結果としてリンパ節に集積することが知られている。 Non-Patent Document 1 discloses a method for detecting a lymph node using radiolabeled liposomes. Such liposomes are anionic liposomes having a molecular size of about 100 nm, and are known to be phagocytosed by macrophages present in the lymph nodes when they are administered subcutaneously, and as a result, accumulate in the lymph nodes.
 非特許文献2には、ベンジルサルフェート基を表面に有する、分子径が2.8nm程度のポリL-リジンデンドリマーが皮下投与及び尾静脈投与されることによってリンパ節に集積することが開示されている。 Non-Patent Document 2 discloses that poly L-lysine dendrimers having a benzyl sulfate group on the surface and a molecular diameter of about 2.8 nm accumulate in lymph nodes by subcutaneous administration and tail vein administration. .
 非特許文献3には20~40nmの量子ドットを尾静脈投与することによってリンパ節を検出する方法が開示されている。 Non-Patent Document 3 discloses a method for detecting a lymph node by administering 20 to 40 nm quantum dots into the tail vein.
 非特許文献4には放射標識されたポリアミドアミンアミンデンドリマーを用いたリンパ節のイメージング方法が開示されており、G4~G8のデンドリマーがイメージングに好適であることが開示されている。なお、投与方法として直接乳腺に斯かるデンドリマーを投与する方法が開示されている。 Non-Patent Document 4 discloses a lymph node imaging method using a radiolabeled polyamidoamine amine dendrimer, and discloses that G4 to G8 dendrimers are suitable for imaging. As an administration method, a method of directly administering such a dendrimer to the mammary gland is disclosed.
 特許文献1には、ポリアミドイミンおよびポリアミドアミンを用いて作製したデンドリマーとアルギン酸又はガンマポリグルタミン酸との複合体であって、分子径が24nm程度、ゼータ電位が-49mV程度の複合体を、マウスのFoot pad投与してセンチネルリンパ節をイメージングする方法が開示されている。 Patent Document 1 discloses a complex of a dendrimer prepared using polyamidoimine and polyamidoamine and alginic acid or gamma polyglutamic acid having a molecular diameter of about 24 nm and a zeta potential of about −49 mV. A method of imaging a sentinel lymph node by administering Foot pad is disclosed.
国際公開2011/105520号パンフレットInternational publication 2011/105520 pamphlet
 上述のように、これまでにセンチネルリンパ節を造影するための手段として種々の方法が開発されている。センチネルリンパ節を造影するために、造影剤となる物質をリンパ管に直接投与することは、リンパ節が微小で複雑な構造である点から現実的ではなく、間質を介してリンパ節へ造影剤を送達することが好ましいとされる。 As described above, various methods have been developed so far for imaging the sentinel lymph node. In order to image the sentinel lymph node, it is not realistic to administer a contrast agent directly to the lymphatic vessel because the lymph node has a minute and complicated structure, and contrasting to the lymph node via the stroma It is preferred to deliver the agent.
 しかしながら、これまでに知られるリンパ節の造影するために採用されている投与方法は、何れも乳腺への投与、皮下投与等といった投与方法が難しいか又は多量の投与を必要とする方法といった面で欠点を有している。 However, the known administration methods for imaging lymph nodes are difficult in terms of administration methods such as administration to the mammary gland and subcutaneous administration, or methods requiring a large amount of administration. Has drawbacks.
 このような現状に鑑み、本発明は少量で且つ簡便な投与方法でリンパ節を撮像することができるリンパ節イメージング剤を提供することを目的とする。 In view of such a current situation, an object of the present invention is to provide a lymph node imaging agent capable of imaging a lymph node with a small amount and a simple administration method.
 本発明者らはこれらの問題点を解決すべく鋭意研究を重ねた結果、特定の分子径を有するアニオン性分岐ポリマーを用いることによって、少ない投与量でリンパ節の撮像を行うことができることを見出した。 As a result of intensive studies to solve these problems, the present inventors have found that imaging of lymph nodes can be performed with a small dose by using an anionic branched polymer having a specific molecular diameter. It was.
 本発明は斯かる知見に基づいて完成されたものであり、下記に示す広い態様の発明を包含する。 The present invention has been completed based on such knowledge, and includes the inventions of the following broad aspects.
 項1 リンパ節イメージング剤として用いられる、少なくとも1種の標識物質を有し、分子径が5~20nmである、アニオン性分岐ポリマー。 Item 1. An anionic branched polymer having at least one labeling substance and having a molecular diameter of 5 to 20 nm, which is used as a lymph node imaging agent.
 項2 ゼータ電位が-10mV以下である、上記項1に記載のアニオン性分岐ポリマー。 Item 2. The anionic branched polymer according to Item 1, wherein the zeta potential is −10 mV or less.
 項3 少なくとも一種のアニオン性基を有する、上記項1又は項2に記載のアニオン性分岐ポリマー。 Item 3. The anionic branched polymer according to Item 1 or 2, which has at least one kind of anionic group.
 項4 前記アニオン性基が、カルボキシル基、スルホン基、及びフェノール基からなる群より選択される少なくとも1種である、上記項3に記載のアニオン性分岐ポリマー。 Item 4. The anionic branched polymer according to Item 3, wherein the anionic group is at least one selected from the group consisting of a carboxyl group, a sulfone group, and a phenol group.
 項5 前記アニオン性基が、カルボキシル基である、上記項3に記載のアニオン性分岐ポリマー。 Item 5. The anionic branched polymer according to Item 3, wherein the anionic group is a carboxyl group.
 項6 前記標識物質が、放射性同位体、低分子有機色素、蛍光色素、及びガドリニウム配位キレート剤からなる群より選択される少なくとも1種である、上記項1~項5の何れか1項に記載のアニオン性分岐ポリマー。 Item 6 In any one of Items 1 to 5, wherein the labeling substance is at least one selected from the group consisting of a radioisotope, a low molecular organic dye, a fluorescent dye, and a gadolinium coordination chelating agent. The anionic branched polymer described.
 項7 皮内投与用リンパ節イメージング剤として用いられる、上記項1~項6の何れか1項に記載のアニオン性分岐ポリマー。 Item 7. The anionic branched polymer according to any one of Items 1 to 6, which is used as a lymph node imaging agent for intradermal administration.
 項8 アニオン性分岐ポリマーが、グラフトポリマー、スターポリマー、ハイパーブランチポリマー、デンドロン、デンドリマー、デンドロンポリマー、又はデンドリグラフトポリマーである、項1~項7の何れか1項に記載のアニオン性分岐ポリマー。 Item 8. The anionic branched polymer according to any one of Items 1 to 7, wherein the anionic branched polymer is a graft polymer, a star polymer, a hyperbranched polymer, a dendron, a dendrimer, a dendron polymer, or a dendrigraft polymer. .
 項9 上記項1~項8の何れか1項に記載のアニオン性分岐ポリマーを含む、リンパ節イメージング剤。 Item 9: A lymph node imaging agent comprising the anionic branched polymer according to any one of Items 1 to 8.
 項10 上記項1~項9の何れか1項に記載のアニオン性分岐ポリマーを投与する工程を含む、リンパ節の撮像方法。 Item 10. A method for imaging a lymph node, comprising a step of administering the anionic branched polymer according to any one of Items 1 to 9.
 本発明に係るアニオン性分岐ポリマーは、リンパ節のイメージング剤として好適に用いることができる。 The anionic branched polymer according to the present invention can be suitably used as an imaging agent for lymph nodes.
 本発明に係るアニオン性分岐ポリマーをリンパ節のイメージング剤として用いることにより、少量で且つ簡便な投与方法、例えば皮内投与によってリンパ節をイメージングすることが可能である。 By using the anionic branched polymer according to the present invention as an imaging agent for lymph nodes, it is possible to image the lymph nodes by a small amount and a simple administration method, for example, intradermal administration.
本実施例にて作製した各種デンドリマーのNMRスペクトラムと部分構造。NMR spectra and partial structures of various dendrimers prepared in this example. 本実施例にて作製した各種デンドリマーのNMRスペクトラム。NMR spectra of various dendrimers prepared in this example. 本実施例にて作製した各種デンドリマーのNMRスペクトラム。NMR spectra of various dendrimers prepared in this example. 本実施例にて作製した各種デンドリマーのNMRスペクトラム。NMR spectra of various dendrimers prepared in this example. 本実施例にて作製した各種デンドリマーを投与した後の分布を示す図(センチネルリンパ節)。The figure (sentinel lymph node) which shows distribution after administering the various dendrimers produced in the present Example. 本実施例にて作製した各種デンドリマーを投与した後の分布を示す図(肝臓)。The figure (liver) which shows distribution after administering various dendrimers produced in a present Example. 本実施例にて作製した各種デンドリマーを投与した後の分布を示す図(脾臓)。The figure (spleen) which shows distribution after administering various dendrimers produced in the present Example. 本実施例にて作製した各種デンドリマーを投与した後の分布を示す図(腎臓)。The figure which shows distribution after administering the various dendrimers produced in a present Example (kidney). 本実施例にて作製した各種デンドリマーを投与した後の分布を示す図(投与部位)。The figure (administration site | part) which shows distribution after administering the various dendrimers produced in the present Example. 本実施例にて作製した各種デンドリマーを投与した後の分布を示す図(血液)。The figure (blood) which shows distribution after administering the various dendrimers produced in the present Example. 本実施例にて作製した各種デンドリマーを投与した後の分布を示す図(肺臓)。The figure (lung) which shows distribution after administering various dendrimers produced in a present Example. 本実施例にて作製した各種デンドリマーを投与した後の分布を示す図(心臓)。The figure (heart) which shows distribution after administering various dendrimers produced in the present Example. 本実施例にて作製した各種デンドリマーを投与した後の分布を示す図(筋肉)。The figure (muscle) which shows distribution after administering the various dendrimers produced in the present Example. 本実施例にて作製した各種デンドリマーを投与した後に撮影したSPECT/CT像。SPECT / CT images taken after administration of various dendrimers prepared in this example. 本実施例にて作製した各種デンドリマーを投与した後に撮影したSPECT/CT像。SPECT / CT images taken after administration of various dendrimers prepared in this example.
<アニオン性分岐ポリマー>
 本発明に係るアニオン性分岐ポリマーはリンパ節イメージング剤として用いられる。また、本発明に係るアニオン性分岐ポリマーは、少なくとも1種の標識物質を有し、分子径が5~20nmである。
<Anionic branched polymer>
The anionic branched polymer according to the present invention is used as a lymph node imaging agent. The anionic branched polymer according to the present invention has at least one labeling substance and has a molecular diameter of 5 to 20 nm.
 本発明に係る分岐ポリマーは、5nm以上であることから、投与部位から拡散することなく、リンパ節に集積しやすいという効果を発揮する。また、20nm以下であることからマクロファージ等に認識されにくい効果を発揮する。 Since the branched polymer according to the present invention is 5 nm or more, it exhibits the effect of being easily accumulated in the lymph node without diffusing from the administration site. Moreover, since it is 20 nm or less, the effect which is hard to be recognized by macrophages etc. is exhibited.
 本発明に係る分岐ポリマーは5~15nm程度であることが好ましい。15nm以下であることからマクロファージ等に更に認識されにくいといった効果を発揮する。 The branched polymer according to the present invention is preferably about 5 to 15 nm. Since it is 15 nm or less, it exerts an effect that it is more difficult to be recognized by macrophages.
 なお、平均分子径は下記実施例に示すように、動的光散乱法(DLS)法に基づいて測定される分子径であり、DLSの原理に基づいて得た測定値を、多分散系であるMarquardt法で解析して求めた体積基準の粒径分布における一番小さい分布の平均粒径である。動的光散乱法に用いる測定機器は、ELSZ-DN2(大塚電子)又はその同等品である。 The average molecular diameter is a molecular diameter measured based on the dynamic light scattering method (DLS) method, as shown in the following examples, and the measured value obtained based on the principle of DLS is expressed in a polydisperse system. It is the average particle size of the smallest distribution in the volume-based particle size distribution obtained by analysis by a certain Marquardt method. The measuring instrument used for the dynamic light scattering method is ELSZ-DN2 (Otsuka Electronics) or its equivalent.
 分岐ポリマーとは、分岐構造を有するポリマーであり、大きく分けると、グラフトポリマー、スターポリマー等のように主鎖又は中心点に存在する分岐点から伸びた分子鎖が一本鎖である分岐ポリマーと、ハイパーブランチポリマー、デンドロン、樹状ポリマー(デンドリマー)、デンドロンポリマー(Dendronized polymer)等のように、主鎖又は中心点に存在する分岐点から伸びた分子鎖が更に分岐点を有し、分岐の起点から遠くなるにつれて末端数が増加していく分岐ポリマーとがある。 A branched polymer is a polymer having a branched structure. Broadly speaking, a branched polymer in which a molecular chain extending from a branch point existing in the main chain or the central point is a single chain, such as a graft polymer and a star polymer. A molecular chain extending from a branch point existing in the main chain or the central point, such as a hyperbranched polymer, a dendron, a dendritic polymer (dendrimer), a dendron polymer, etc. There are branched polymers in which the number of terminals increases as the distance from the starting point increases.
 また、グラフトポリマーの枝ポリマーに更に枝ポリマーがグラフトポリマー状に連結したデンドリグラフトポリマーも本発明に係る分岐ポリマーに包含される。 In addition, a dendrigraft polymer in which a branch polymer is further connected in a graft polymer form to the branch polymer of the graft polymer is also included in the branched polymer according to the present invention.
 デンドリマーは、その中心から伸びる分子鎖が規則的な分岐を有し、階層(世代ともいう)毎に段階的に合成することができ、形及び大きさが完全に揃っており、規則性及び対称性に富む分岐ポリマーである。一方、ハイパーブランチポリマー及びデンドロンポリマーは、デンドリマーの様な規則性、対称性等を有さない分岐ポリマーである。 Dendrimers have regular branches in the molecular chain extending from the center, can be synthesized step by step (also called generations), are perfectly aligned in shape and size, are regular and symmetrical It is a branched polymer rich in properties. On the other hand, hyperbranched polymers and dendron polymers are branched polymers that do not have regularity, symmetry, and the like as in dendrimers.
 また、デンドロンポリマーとは、主鎖のポリマーの側鎖にデンドリマーの部分構造であるデンドロンが結合する分岐ポリマーである。 The dendron polymer is a branched polymer in which a dendron that is a partial structure of a dendrimer is bonded to a side chain of a main chain polymer.
 本発明に係る分岐ポリマーは、上述のように複数の分岐鎖を有しているため、アニオン性基を複数有することができる点で共通している。そのため、当該分岐ポリマーは何れも本願発明の効果を発揮することができる。 Since the branched polymer according to the present invention has a plurality of branched chains as described above, it is common in that it can have a plurality of anionic groups. Therefore, any of the branched polymers can exhibit the effects of the present invention.
 本発明に係る分岐ポリマーは上記の分岐ポリマーであれば特に限定はされないず、例えばデンドリマーであることが好ましい。
本発明に係る分岐ポリマーはアニオン性を有しており、アニオン性であることに起因して、斯かるポリマーを生体に投与した際に、これがリンパ節に集積される効果を発揮する。
The branched polymer according to the present invention is not particularly limited as long as it is the above-described branched polymer. For example, it is preferably a dendrimer.
The branched polymer according to the present invention has an anionic property, and due to the anionic property, when such a polymer is administered to a living body, it exhibits an effect of being accumulated in a lymph node.
 本発明に係る分岐ポリマーがアニオン性であることは、塩化ナトリウムを溶媒として測定した分岐ポリマーのゼータ電位を基に決定することができる。 The fact that the branched polymer according to the present invention is anionic can be determined based on the zeta potential of the branched polymer measured using sodium chloride as a solvent.
 本発明に係る分岐ポリマーの具体的なゼータ電位は特に限定はされない。ゼータ電位は、通常-10mV程度以下であり、好ましくは-20mV程度以下である。 The specific zeta potential of the branched polymer according to the present invention is not particularly limited. The zeta potential is usually about −10 mV or less, preferably about −20 mV or less.
 このような本発明に係る分岐ポリマーのアニオン性は、分岐ポリマーが有するアニオン性基に依って付与されることができ、分岐ポリマーの表面基にアニオン性基を有することが好ましい。さらに好ましくは、分岐ポリマーの末端にアニオン性基を有することが好ましい。このようなアニオン性基は、分岐ポリマーと共有結合することが好ましい。 Such an anionic property of the branched polymer according to the present invention can be imparted depending on the anionic group of the branched polymer, and it is preferable that the branched polymer has an anionic group on the surface group. More preferably, it has an anionic group at the terminal of the branched polymer. Such an anionic group is preferably covalently bonded to the branched polymer.
 本発明に係る分岐ポリマーがその表面基にアニオン性を有している際のアニオン性基の割合は、分岐ポリマーの表面基全体に対して、通常は100%以下で、且つ50%程度以上、好ましくは60%程度以上、より好ましくは70%程度以上、より好ましくは80%程度以上、より好ましくは85%程度以上、より好ましくは90%程度以上、より好ましくは95%程度以上であり、98%程度以上が最も好ましい。 The ratio of the anionic group when the branched polymer according to the present invention has an anionic property on the surface group is usually 100% or less and about 50% or more with respect to the entire surface group of the branched polymer. Preferably about 60% or more, more preferably about 70% or more, more preferably about 80% or more, more preferably about 85% or more, more preferably about 90% or more, more preferably about 95% or more, 98 % Or more is most preferable.
 具体的なアニオン性基の種類は特に限定はされず、例えばカルボキシル基、スルホン基、及びフェノール基等が挙げられる。これらの本発明に係る分岐ポリマーに含まれるアニオン性基は1種のみであっても、2種以上であってもよい。上述のアニオン性基の中でもカルボキシル基が特に好ましい。 Specific types of anionic groups are not particularly limited, and examples thereof include a carboxyl group, a sulfone group, and a phenol group. These branched polymers according to the present invention may contain only one type of anionic group or two or more types. Among the anionic groups described above, a carboxyl group is particularly preferable.
 本発明に係るアニオン性分岐ポリマーは、少なくとも1種の標識物質を有する。これ等の標識物質は、特に限定はされないず、例えば11C、13N、15O、18F化合物等の放射性同位体(PET用)、111In化合物等の放射性同位体(SPECT用)、インジゴカルミン、またはパテントブルーV等の低分子有機色素;インドシアニングリーン、フルオレセイン、ローダミン、Alexa Fluor色素等の蛍光色素;及びガドリニウムキレート剤等の核磁気共鳴イメージング用の造影剤等が挙げられる。 The anionic branched polymer according to the present invention has at least one labeling substance. These labeling substances are not particularly limited. For example, radioisotopes such as 11 C, 13 N, 15 O, and 18 F compounds (for PET), radioisotopes such as 111 In compounds (for SPECT), indigo Low molecular organic dyes such as carmine or patent blue V; fluorescent dyes such as indocyanine green, fluorescein, rhodamine, Alexa Fluor dye; and contrast agents for nuclear magnetic resonance imaging such as gadolinium chelating agents.
 本発明に係るアニオン性分岐ポリマーは、公知の方法で作製することができる。分岐ポリマーにアニオン性を付与するには、分岐ポリマー中に公知の方法を用いてアニオン性基を結合されることが挙げられる。斯かる結合様式は特に限定はされず、例えば共有結合させることが好ましい。 The anionic branched polymer according to the present invention can be produced by a known method. In order to impart anionicity to the branched polymer, an anionic group may be bound to the branched polymer using a known method. Such a bonding mode is not particularly limited, and for example, covalent bonding is preferable.
 分岐ポリマーに結合させる標識物質も公知の方法を用いて付与させることができ、例えばキレート剤などといった他の化合物を介して分岐ポリマーに標識物質を結合させることもできる。斯かる結合様式も特に限定されることはなく、例えば分岐ポリマーの物性等と標識物質の物性等とに鑑みて適宜決定することができる。 The labeling substance to be bound to the branched polymer can also be imparted using a known method, and the labeling substance can be bound to the branched polymer through another compound such as a chelating agent. Such a binding mode is not particularly limited, and can be appropriately determined in view of, for example, the physical properties of the branched polymer and the physical properties of the labeling substance.
 本発明に係るアニオン性分岐ポリマーは、リンパ節イメージング剤として用いられる。具体的な使用方法は、後述する<本発明に係るリンパ節イメージング剤>の記載と同様にすることができる。 The anionic branched polymer according to the present invention is used as a lymph node imaging agent. The specific method of use can be the same as described in <Lymph node imaging agent according to the present invention> described later.
<本発明に係るリンパ節イメージング剤>
 本発明に係るリンパ節イメージング剤は、上述の本発明に係るアニオン性分岐ポリマーを含む。アニオン性分岐ポリマーの含有量は特に限定されない。具体的な含有量として、例えばリンパ節イメージング剤100重量部に対して、通常0.001~100重量部程度である。すなわち、本発明に係るアニオン性分岐ポリマーそのものを、本発明に係るリンパ節イメージング剤として用いることができる。
<Lymph node imaging agent according to the present invention>
The lymph node imaging agent according to the present invention includes the above-described anionic branched polymer according to the present invention. The content of the anionic branched polymer is not particularly limited. The specific content is usually about 0.001 to 100 parts by weight with respect to 100 parts by weight of the lymph node imaging agent, for example. That is, the anionic branched polymer according to the present invention itself can be used as the lymph node imaging agent according to the present invention.
 本発明に係るリンパ節イメージング剤の剤形は特に限定はされない。このような剤形として、例えば後述のような投与量、投与方法等に鑑みて、従来より公知の薬学上許容され得る各種の担体と共に、所望の剤形とすることができる。 The dosage form of the lymph node imaging agent according to the present invention is not particularly limited. As such a dosage form, for example, in view of the dosage, administration method and the like as described below, a desired dosage form can be obtained together with various conventionally known pharmaceutically acceptable carriers.
 具体的な剤形としては、液剤、埋め込み注射剤、持続性注射剤等の注射剤;腹膜透析用剤、血液透析用剤等の透析用剤等が挙げられる。 Specific dosage forms include injections such as liquids, implantable injections, and sustained injections; dialysis agents such as peritoneal dialysis agents and hemodialysis agents.
 これらの剤形は、第16改正日本薬局方解説書等の公知の文献に基づいて製造することができる。 These dosage forms can be manufactured based on known documents such as the 16th revised Japanese Pharmacopoeia Manual.
 本発明に係るリンパ節イメージング剤には、上述のアニオン性分岐ポリマー以外にpH調整剤;保存剤;等張化剤;防腐剤;注射用水、ゴマ油、大豆油、トウモロコシ油、オリーブ油等の溶剤;不活性ガス(窒素、二酸化炭素等)、キレート剤(EDTA、チオグリコール酸等)、還元物質(亜硫酸水素ナトリウム、L-アスコルビン酸等)等の安定剤;パラオキシ安息香酸エステル、クロロブタノール、ベンジルアルコール、フェノール、塩化ベンザルコニウム等の保存剤;結合性溶解補助剤(ヨウ化ナトリウム、安息香酸ナトリウム、ニコチン酸ナトリウム等)、溶剤性溶解補助剤(アルコール、プロピレングリコール、液状マクロゴール等)等の溶解補助剤;塩酸プロカイン、ベンジルアルコール等の局所麻酔剤;ブドウ糖、ソルビトール、アミノ酸等の無痛化剤;クエン酸、酢酸、リン酸ナトリウム塩、これらの注射用のもの等の緩衝剤;カルメロースナトリウム、PVP、アルミニウムモノステアレート、これらの注射用のもの等の懸濁化剤等を含有させることができる。 In addition to the above-mentioned anionic branched polymer, the lymph node imaging agent according to the present invention includes a pH adjuster; a preservative; an isotonic agent; an antiseptic; a solvent such as water for injection, sesame oil, soybean oil, corn oil, olive oil; Stabilizers such as inert gases (nitrogen, carbon dioxide, etc.), chelating agents (EDTA, thioglycolic acid, etc.), reducing substances (sodium bisulfite, L-ascorbic acid, etc.); paraoxybenzoic acid esters, chlorobutanol, benzyl alcohol Preservatives such as phenol, benzalkonium chloride; binding solubilizers (sodium iodide, sodium benzoate, sodium nicotinate, etc.), solvent-soluble solubilizers (alcohol, propylene glycol, liquid macrogol, etc.), etc. Solubilizing agents; local anesthetics such as procaine hydrochloride and benzyl alcohol; glucose, sorbi Such as citric acid, acetic acid, sodium phosphate, and those for injection; carmellose sodium, PVP, aluminum monostearate, these for injection, etc. A suspending agent or the like can be contained.
 本発明に係るリンパ節イメージング剤の投与量は、特に限定はされることはなく、剤形、投与方法、リンパ節イメージングの部位、目的、投与される個体の性別、年齢、体重、イメージング手法、標識物質の種類等に鑑みて、適宜設定することができる。また、このような投与量は容量に換算して通常50~300μL程度である。 The dosage of the lymph node imaging agent according to the present invention is not particularly limited. The dosage form, administration method, site of lymph node imaging, purpose, sex of individual to be administered, age, weight, imaging technique, It can be set as appropriate in view of the type of labeling substance. Such a dose is usually about 50 to 300 μL in terms of volume.
 本発明のリンパ節イメージング剤の投与方法は、特に限定はされず、例えば、静脈投与、皮下投与、皮内投与等が挙げられる。中でも、皮内投与が好ましい。 The administration method of the lymph node imaging agent of the present invention is not particularly limited, and examples thereof include intravenous administration, subcutaneous administration, and intradermal administration. Of these, intradermal administration is preferred.
 本発明に係るリンパ節イメージング剤を用いて撮像を行うことができる装置は、上述のアニオン性分岐ポリマーに含まれる標識物質の種類に応じて適宜選択することができ、特に限定はされない。このような装置として、通常は核医学検査装置、MRI装置、蛍光検出装置等が挙げられる。具体的な撮像方法は、上記の装置のマニュアルに沿って、適宜条件を変更することによって行うことができる。 The apparatus capable of performing imaging using the lymph node imaging agent according to the present invention can be appropriately selected according to the type of labeling substance contained in the above-mentioned anionic branched polymer, and is not particularly limited. Examples of such an apparatus usually include a nuclear medicine examination apparatus, an MRI apparatus, a fluorescence detection apparatus, and the like. A specific imaging method can be performed by appropriately changing the conditions in accordance with the manual of the above apparatus.
<本発明に係るリンパ節の撮撮像影方法>
 本発明に係るリンパ節の撮像方法は、上述のアニオン性分岐ポリマーを投与する工程を含む。
<Method for Imaging and Imaging Lymph Nodes According to the Present Invention>
The method for imaging a lymph node according to the present invention includes a step of administering the above-mentioned anionic branched polymer.
 アニオン性分岐ポリマー、投与量、投与方法、撮像に用いる機器等については、上述の<本発明に係るアニオン性分岐ポリマー>又は<本発明に係るリンパ節イメージング剤>に記載した通りとすることができる。 The anionic branched polymer, the dose, the administration method, the equipment used for imaging, and the like should be as described in the above <Anionic branched polymer according to the present invention> or <Lymph node imaging agent according to the present invention>. it can.
<実施例>
 以下に本発明をより詳細に説明するための実施例を示す。ただし、本発明が以下に示す実施例に限定されないのは言うまでもない。
<Example>
Examples for explaining the present invention in more detail are shown below. However, it goes without saying that the present invention is not limited to the following examples.
製造例1:キレート化PAMAMデンドリマーの作製
 各種サイズを有するポリアミドアミン(PAMAM)デンドリマーをキレート剤であるp-SCN-Bn-DTPA(2-(4-isothiocyanatobenzyl)-diethylenetriaminepentaacetic acid)で修飾した。
Production Example 1: Preparation of chelated PAMAM dendrimer Polyamidoamine (PAMAM) dendrimers having various sizes were modified with p-SCN-Bn-DTPA (2- (4-isothiocyanobenezyl) -diethylethylenepentaetic acid) as a chelating agent.
 使用したPAMAMデンドリマーはALDRICHから入手した、PAMAM dendrimer,ethylenediamine core,generation 2.0 solution(412406;以後、本実施例にてこれをG2-NHと呼ぶ。)、PAMAM dendrimer,ethylenediamine core,generation 4.0 solution(412449;以後、本実施例にてこれをG4-NHと呼ぶ。)、PAMAM dendrimer,ethylenediamine core,generation 6.0 solution(536717;以後、本実施例にてこれをG6-NHと呼ぶ。)、及びPAMAM dendrimer,ethylenediamine core,generation 8.0 solution(536741;以後、本実施例にてこれをG8-NHと呼ぶ。)であり、p-SCN-Bn-DTPAはMACROCYCLICSから入手した(B-305)。 PAMAM dendrimers used was obtained from ALDRICH, PAMAM dendrimer, ethylenediamine core, generation 2.0 solution (412406;. Hereinafter, call this in this embodiment the G2-NH 2), PAMAM dendrimer , ethylenediamine core, generation 4 0.0 solution (41449; hereinafter referred to as G4-NH 2 in this example), PAMAM dendrimer, ethylene core, generation 6.0 solution (536717; hereinafter referred to as G6-NH in this example) 2 and referred to.), and PAMAM dendrimer, ethylenediamine c re, generation 8.0 solution (536741; . Hereinafter, the it in this example as G8-NH 2) is, p-SCN-Bn-DTPA was obtained from MACROCYCLICS (B-305).
 溶媒を減圧留去し、真空乾燥および凍結乾燥した上記各種PAMAMデンドリマーにp-SCN-Bn-DTPAを加え、125mMのNaHCOバッファー中で37℃、24時間撹拌した。 The solvent was distilled off under reduced pressure, p-SCN-Bn-DTPA was added to the various PAMAM dendrimers dried in vacuo and freeze-dried, and the mixture was stirred in 125 mM NaHCO 3 buffer at 37 ° C. for 24 hours.
 ここでp-SCN-BnーDTPAの添加量は、G2-NHは10当量、G4-NH及びG6-NHは7当量、そしてG8-NHは17当量である。 Wherein the addition amount of p-SCN-Bn over DTPA is, G2-NH 2 10 equivalents, G4-NH 2 and G6-NH 2 7 equivalents and G8-NH 2, is 17 equivalents.
 その後得られた溶液をG2-NHはMwCO1000の透析膜、G4-NH、G6-NH、及びG8-NHはMwCO3000の限外ろ過膜を用いて精製し、その後凍結乾燥した。 Then the resulting solution G2-NH 2 is MwCO1000 dialysis membrane, G4-NH 2, G6- NH 2, and G8-NH 2 was purified using the ultrafiltration membrane MwCO3000, and then lyophilized.
 p-SCN-Bn-DTPAの結合量はUVスペクトルを測定し、p-SCN-Bn-DTPAの検量線から見積もった。 The amount of p-SCN-Bn-DTPA binding was estimated from a calibration curve of p-SCN-Bn-DTPA by measuring a UV spectrum.
製造例2:アセチル化・カルボキシル化PAMAMデンドリマーの作製
 上述の各種サイズを有するキレート化PAMAMデンドリマーをさらにアセチル化又はカルボキシル化に供した。
Production Example 2: Preparation of acetylated / carboxylated PAMAM dendrimer The chelated PAMAM dendrimer having various sizes described above was further subjected to acetylation or carboxylation.
(アセチル化)
 上記p-SCN-Bn-DTPAで修飾されたG2-NH、G4-NH、G6-NH、及びG8-NHを4mlのNaHCOバッファー(125mM)に溶解させた。pH9~10を維持しながら、無水酢酸及び4NのNaOHaqを少量ずつ(無水酢酸を10μl;4NのNaOHを50μlずつ)、交互に加えた(×20回;室温、1時間)。
(Acetylation)
G2-NH 2 , G4-NH 2 , G6-NH 2 and G8-NH 2 modified with p-SCN-Bn-DTPA were dissolved in 4 ml of NaHCO 3 buffer (125 mM). While maintaining pH 9-10, acetic anhydride and 4N NaOHaq were added in portions (10 μl acetic anhydride; 50 μl 4N NaOH) alternately (× 20 times; room temperature, 1 hour).
 その後、上記混合物を一晩撹拌し、精製(G2-NHはMwCO1000の透析膜、G4-NH、G6-NH、及びG8-NHはMwCO3000の限外ろ過膜を用いて精製を行い、その後凍結乾燥した。 The mixture was then stirred overnight and purified (G2-NH 2 was purified using a MwCO1000 dialysis membrane, G4-NH 2 , G6-NH 2 , and G8-NH 2 were purified using a MwCO3000 ultrafiltration membrane. And then lyophilized.
 反応率の同定は、フルオレスカミン呈色反応を用いて行った。併せてH NMR測定を用いて反応の確認を行った(図1~4)。1.95ppmにてアセチル化のピークが存在することが明らかとなった。 The reaction rate was identified using a fluorescamine color reaction. In addition, the reaction was confirmed using 1 H NMR measurement (FIGS. 1 to 4). It was revealed that an acetylation peak was present at 1.95 ppm.
 G2-NH、G4-NH、G6-NH、及びG8-NHをアセチル化した各種サンプルを、以後の実施例においてそれぞれG2-Ac、G4-Ac、G6-Ac、及びG8-Acと呼ぶ。 Various samples in which G2-NH 2 , G4-NH 2 , G6-NH 2 , and G8-NH 2 are acetylated are referred to as G2-Ac, G4-Ac, G6-Ac, and G8-Ac in the following examples, respectively. Call it.
(カルボキシル化)
 上記p-SCN-Bn-DTPAで修飾されたG2-NH、G4-NH、G6-NH、及びG8-NHを4mlのNaHCOバッファー(125mM)に溶解させた。pH9~10を維持しながら、無水コハク酸及び1NのNaOHaqを少量ずつ交互に加えた(室温、1時間)。
(Carboxylation)
G2-NH 2 , G4-NH 2 , G6-NH 2 and G8-NH 2 modified with p-SCN-Bn-DTPA were dissolved in 4 ml of NaHCO 3 buffer (125 mM). While maintaining pH 9-10, succinic anhydride and 1N NaOHaq were added in portions (room temperature, 1 hour).
 その後、上記混合物を一晩撹拌し、精製(G2-NHはMwCO1000の透析膜、G4-NH、G6-NH、及びG8-NHはMwCO3000の限外ろ過膜を用いて精製を行い、その後凍結乾燥した。 The mixture was then stirred overnight and purified (G2-NH 2 was purified using a MwCO1000 dialysis membrane, G4-NH 2 , G6-NH 2 , and G8-NH 2 were purified using a MwCO3000 ultrafiltration membrane. And then lyophilized.
 反応率の同定は、フルオレスカミン呈色反応を用いて行った。併せてH NMR測定を用いて反応の確認を行った(図1~4)。2.4ppmにてカルボキシル基のピークが存在することが明らかとなった。 The reaction rate was identified using a fluorescamine color reaction. In addition, the reaction was confirmed using 1 H NMR measurement (FIGS. 1 to 4). It was revealed that a carboxyl group peak was present at 2.4 ppm.
 G2-NH、G4-NH、G6-NH、及びG8-NHをアセチル化した各種サンプルを、以後の実施例においてそれぞれG2-COOH、G4-COOH、G6-COOH、及びG8-COOHと呼ぶ。 Various samples obtained by acetylating G2-NH 2 , G4-NH 2 , G6-NH 2 , and G8-NH 2 were used as G2-COOH, G4-COOH, G6-COOH, and G8-COOH, respectively, in the following examples. Call it.
 また、上記アセチル化及びカルボキシル化の効率を、フルオレスカミンによって、得られた各種PAMAMデンドリマーに残る未反応のアミノ基の量を差し引くことで算出した。結果を表1に示す。 The efficiency of the acetylation and carboxylation was calculated by subtracting the amount of unreacted amino groups remaining in the various PAMAM dendrimers obtained with fluorescamine. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 作製した各種PAMAMデンドリマーの物性を測定した。各種デンドリマーをそれぞれPBSに10mg/mLの濃度となるように溶解し、粒径は動的光散乱(DLS)法に基づいたELSZ-DN2(大塚電子)を用いて測定し、ゼータ電位はELSZ-DN2(大塚電子)を用いて測定した。測定値を、多分散系であるMarquardt法で解析して求めた体積基準の粒径分布における一番小さい分布を粒径とした。結果を表2に示す。 The physical properties of various PAMAM dendrimers produced were measured. Various dendrimers were dissolved in PBS to a concentration of 10 mg / mL, the particle size was measured using ELSZ-DN2 (Otsuka Electronics) based on the dynamic light scattering (DLS) method, and the zeta potential was ELSZ- It measured using DN2 (Otsuka Electronics). The smallest distribution in the volume-based particle size distribution obtained by analyzing the measured values by the Marquardt method which is a polydisperse system was defined as the particle size. The results are shown in Table 2.
 ゼータ電位は、PBSを溶媒として測定したことによって、全体的にマイナス側に寄った結果が得られた。キレート化していないG4-NH PAMAMデンドリマーを10mMのNaClで測定したゼータ電位は+2.82mVであるのに対して、PBSで測定したゼータ電位は-15.63mVであった。 The zeta potential was measured using PBS as a solvent, and as a result, a result that the zeta potential was on the negative side as a whole was obtained. The zeta potential measured for unchelated G4-NH 2 PAMAM dendrimer with 10 mM NaCl was +2.82 mV, whereas the zeta potential measured with PBS was -15.63 mV.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
※「修飾数」とは各種デンドリマー1分子当たりのp-SCN-Bn-DTPAによる修飾数を示す。 * “Modification number” indicates the number of modifications by p-SCN-Bn-DTPA per molecule of various dendrimers.
製造例3:放射標識化PAMAMデンドリマーの作製
 上記12種類の各種PAMAMデンドリマー(20nmol)を、1.2mLの酢酸アンモニウム(0.15M)に溶解させ、111InCl(22.2MBq~37MBq)を加え、室温で1時間反応させた。
Production Example 3: Preparation of radiolabeled PAMAM dendrimer The above 12 kinds of PAMAM dendrimers (20 nmol) were dissolved in 1.2 mL of ammonium acetate (0.15 M), and 111 InCl 3 (22.2 MBq to 37 MBq) was added. And allowed to react at room temperature for 1 hour.
 その後、反応物をPD-10カラム(溶媒:PBS)を用いて精製した。続いてMwCO3000の限外濾過膜を用いて精製し、溶媒をPBSから生理食塩水に置換した。 Thereafter, the reaction product was purified using a PD-10 column (solvent: PBS). Then, it refine | purified using the ultrafiltration membrane of MwCO3000, and the solvent was substituted by the physiological saline from PBS.
実施例1:生体内分布実験
 製造例3にて作製した12種類の放射標識化PAMAMデンドリマーを、各々0.37MBq(0.15~0.37MBq/DTPAnmol)/100μLに調製し、その全量をSlc:SDラット(オス、5週齢、120-140g)の足背に皮内投与し、投与部位を30秒間マッサージした(n=4)。
Example 1: Biodistribution experiment The 12 types of radiolabeled PAMAM dendrimers prepared in Production Example 3 were each adjusted to 0.37 MBq (0.15 to 0.37 MBq / DTAnmol) / 100 μL, and the total amount was Slc. : SD rat (male, 5 weeks old, 120-140 g) was intradermally administered to the back of the foot, and the administration site was massaged for 30 seconds (n = 4).
 投与から1、6、24時間後にラットをそれぞれ安楽死させ、投与部位及び各種臓器(膝窩リンパ節、血液、脾臓、腎臓、肝臓、心臓、肺臓、及び筋肉)を取り出し、それらの重量とラジオアクティビティーを測定した。結果を図5~13に示す。 Rats were euthanized at 1, 6 and 24 hours after administration, respectively, and the administration site and various organs (popliteal lymph nodes, blood, spleen, kidney, liver, heart, lung, and muscle) were taken out, their weight and radio Activity was measured. The results are shown in FIGS.
 リンパ節への取り込みはG4以上のアニオン性末端(G4-COOH、G6-COOH、及びG8-COOH)が著しく高いことが分かった。 It was found that the uptake into the lymph node was significantly higher in G4 and higher anionic ends (G4-COOH, G6-COOH, and G8-COOH).
 細網内皮系である肝臓および脾臓でもアニオン性末端(-COOH)のものの取り込みが高いことがわかった。中性(-Ac)のものは後述するように、血中の取り込みが高いため肝臓および脾臓でも取り込みも高くなっていると考えられる。 It was found that the uptake of anionic end (-COOH) was also high in the reticuloendothelial system liver and spleen. As described later, neutral (-Ac) is considered to have high uptake in the liver and spleen due to high uptake in blood.
 G2およびG4の一部は、低分子であるために腎臓から排出されていることが分かった。 It was found that some of G2 and G4 are excreted from the kidney because they are small molecules.
 投与部位への滞留性はカチオン性(-NH)、アニオン性(-COOH)、及び中性(-Ac)の順で高く、G8、G6、G4、及びG2の順で高くなることが明らかとなった。 It is clear that the retention at the administration site is higher in the order of cationic (—NH 2 ), anionic (—COOH), and neutral (—Ac), and higher in the order of G8, G6, G4, and G2. It became.
 血液中では、中性のG6及びG8(G6-Ac及びG8-Ac)の取り込みが高いことが分かった。肺、心臓、及び筋肉でも血液と同様の取り込みを示すことが分かった。 It was found that uptake of neutral G6 and G8 (G6-Ac and G8-Ac) was high in blood. Lung, heart, and muscle were found to show uptake similar to blood.
 カチオン性(-NH)のものは大部分が投与部位にとどまり、アニオン性(-COOH)のものはリンパ節、肝臓、および脾臓に取り込まれた。中性のG8-Ac及びG6-Acは各種臓器と相互作用しづらいため、取り込みが高くなったと考えられる。 Most of the cationic (—NH 2 ) remained at the site of administration, and the anionic (—COOH) was taken up by the lymph nodes, liver, and spleen. Since neutral G8-Ac and G6-Ac are difficult to interact with various organs, uptake is considered to be high.
実施例2:SPECTイメージング
 製造例3にて作製したサンプルのうち、G8-COOH、G6-COOH、G6-NH、G6-Ac、G4-COOH、及びG2-COOHの6種をそれぞれ7.4MBq/100μLに調製し、その全量をSlc:SDラット(オス、5週齢、120-140g)の足背に皮内投与して、投与部位を30秒間マッサージした(n=1)。
Example 2: Among the samples prepared in SPECT Imaging Production Example 3, 7.4 MBq each of 6 types of G8-COOH, G6-COOH, G6-NH 2 , G6-Ac, G4-COOH, and G2-COOH were used. / 100 μL, and the entire amount was intradermally administered to the back of the foot of Slc: SD rats (male, 5 weeks old, 120-140 g), and the administration site was massaged for 30 seconds (n = 1).
 投与から24時間後にFX Pre-clinical platform (Gamma Medica Ideas Inc)を用いてSPECTイメージングを行った(60sec/projection;64projection)。撮影像を図14及び15に示す。図中の丸で囲まれた部位が投与部位であり、四角で囲まれた部位が1次リンパ節、そして三角で囲まれた部位が2次リンパ節を示す。 24 hours after administration, SPECT imaging was performed using FX Pre-clinical platform (Gamma Medica Ideas Inc) (60 sec / projection; 64 projection). The captured images are shown in FIGS. The site surrounded by a circle in the figure is an administration site, the region surrounded by a square is the primary lymph node, and the region surrounded by a triangle is the secondary lymph node.
 G8-COOH及びG6-COOHでは、センチネルリンパ節(1次リンパ節)に止まらず、2次リンパ節までイメージングできていることがわかった。G4-COOHでは、センチネルリンパ節はイメージングできているが、G2-COOHでは分子量が小さすぎるため拡散していることがわかった。G6-NHでは投与部位にかなり滞留することが、G6-Acでは投与部位から拡散しているのが分かった。 It was found that G8-COOH and G6-COOH were able to image not only the sentinel lymph node (primary lymph node) but also the secondary lymph node. With G4-COOH, the sentinel lymph node could be imaged, but with G2-COOH, it was found that the molecular weight was too small to diffuse. It was found that G6-NH 2 stays considerably at the administration site and that G6-Ac diffuses from the administration site.
 以上より、センチネルリンパ節のイメージングにはG6-COOH又はG8-COOHが適していると考えられる。  From the above, it is considered that G6-COOH or G8-COOH is suitable for imaging of sentinel lymph nodes.

Claims (10)

  1.  リンパ節イメージング剤として用いられる、少なくとも一種の標識物質を有し、分子径が5~20nmである、アニオン性分岐ポリマー。 An anionic branched polymer having at least one labeling substance and having a molecular diameter of 5 to 20 nm, which is used as a lymph node imaging agent.
  2.  ゼータ電位が-10mV以下である、請求項1に記載のアニオン性分岐ポリマー。 The anionic branched polymer according to claim 1, having a zeta potential of -10 mV or less.
  3.  少なくとも一種のアニオン性基を有する、請求項1又は2に記載のアニオン性分岐ポリマー。 The anionic branched polymer according to claim 1 or 2, which has at least one kind of anionic group.
  4.  前記アニオン性基が、カルボキシル基、スルホン基、及びフェノール基からなる群より選択される少なくとも1種である、請求項3に記載のアニオン性分岐ポリマー。 The anionic branched polymer according to claim 3, wherein the anionic group is at least one selected from the group consisting of a carboxyl group, a sulfone group, and a phenol group.
  5.  前記アニオン性基が、カルボキシル基である、請求項3に記載のアニオン性分岐ポリマー。 The anionic branched polymer according to claim 3, wherein the anionic group is a carboxyl group.
  6.  前記標識物質が、放射性同位体、低分子有機色素、蛍光色素、及びガドリニウム配位キレート剤からなる群より選択される少なくとも1種である、請求項1~5の何れか1項に記載のアニオン性分岐ポリマー。 The anion according to any one of claims 1 to 5, wherein the labeling substance is at least one selected from the group consisting of a radioisotope, a low molecular organic dye, a fluorescent dye, and a gadolinium coordination chelating agent. Branched polymer.
  7.  皮内投与用リンパ節イメージング剤として用いられる、請求項1~6の何れか1項に記載のアニオン性分岐ポリマー。 The anionic branched polymer according to any one of claims 1 to 6, which is used as a lymph node imaging agent for intradermal administration.
  8.  アニオン性分岐ポリマーが、グラフトポリマー、スターポリマー、ハイパーブランチポリマー、デンドロン、デンドリマー、デンドロンポリマー、又はデンドリグラフトポリマーである、請求項1~7の何れか1項に記載のアニオン性分岐ポリマー。 The anionic branched polymer according to any one of claims 1 to 7, wherein the anionic branched polymer is a graft polymer, a star polymer, a hyperbranched polymer, a dendron, a dendrimer, a dendron polymer, or a dendrigraft polymer.
  9.  請求項1~8の何れか1項に記載のアニオン性分岐ポリマーを含む、リンパ節イメージング剤。 A lymph node imaging agent comprising the anionic branched polymer according to any one of claims 1 to 8.
  10.  請求項1~9の何れか1項に記載のアニオン性分岐ポリマーを投与する工程を含む、リンパ節の撮像方法。  A method for imaging a lymph node, comprising a step of administering the anionic branched polymer according to any one of claims 1 to 9.
PCT/JP2015/061943 2014-05-08 2015-04-20 Lymph node imaging agent WO2015170573A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016517855A JPWO2015170573A1 (en) 2014-05-08 2015-04-20 Lymph node imaging agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014096756 2014-05-08
JP2014-096756 2014-05-08

Publications (1)

Publication Number Publication Date
WO2015170573A1 true WO2015170573A1 (en) 2015-11-12

Family

ID=54392426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061943 WO2015170573A1 (en) 2014-05-08 2015-04-20 Lymph node imaging agent

Country Status (2)

Country Link
JP (1) JPWO2015170573A1 (en)
WO (1) WO2015170573A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005507933A (en) * 2001-10-29 2005-03-24 ザ ダウ ケミカル カンパニー Antineoplastic dendritic polymer drug delivery system
WO2011105520A1 (en) * 2010-02-26 2011-09-01 国立大学法人 長崎大学 Composite body for antigen or drug delivery
JP2013518841A (en) * 2010-02-03 2013-05-23 ミフェニオン ゲゼルシャフト ミット ベシュレンクテル ハフツング Polyanionic polyvalent polymers for intracellular targeting of growth and protein synthesis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005507933A (en) * 2001-10-29 2005-03-24 ザ ダウ ケミカル カンパニー Antineoplastic dendritic polymer drug delivery system
JP2013518841A (en) * 2010-02-03 2013-05-23 ミフェニオン ゲゼルシャフト ミット ベシュレンクテル ハフツング Polyanionic polyvalent polymers for intracellular targeting of growth and protein synthesis
WO2011105520A1 (en) * 2010-02-26 2011-09-01 国立大学法人 長崎大学 Composite body for antigen or drug delivery

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
N. MALIK ET AL.: "Dendrimers: Relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo", JOURNAL OF CONTROLLED RELEASE, vol. 65, no. 1-2, 2000, pages 133 - 148, XP004190318, ISSN: 0168-3659 *
VLADIMIR S. TALANOV ET AL.: "Dendrimer-Based Nanoprobe for Dual Modality Magnetic Resonance and Fluorescence Imaging", NANO LETTERS, vol. 6, no. 7, 2006, pages 1459 - 1463, XP007901388, ISSN: 1530-6984 *

Also Published As

Publication number Publication date
JPWO2015170573A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
US20240082408A1 (en) Bilirubin nanoparticle, use thereof, and preparation method therefor
Klippstein et al. Passively targeted curcumin‐loaded pegylated PLGA nanocapsules for colon cancer therapy in vivo
Zhao et al. Chlorotoxin peptide-functionalized polyethylenimine-entrapped gold nanoparticles for glioma SPECT/CT imaging and radionuclide therapy
Kang et al. Renal clearable organic nanocarriers for bioimaging and drug delivery
Shiraishi et al. Preparation and in vivo imaging of PEG-poly (L-lysine)-based polymeric micelle MRI contrast agents
Kojima et al. Dendrimer-based MRI contrast agents: the effects of PEGylation on relaxivity and pharmacokinetics
Zhu et al. Dendrimer-based nanodevices for targeted drug delivery applications
Cho et al. Hyaluronic acid-ceramide-based optical/MR dual imaging nanoprobe for cancer diagnosis
US20180036417A1 (en) Porphyrin modified telodendrimers
Alaarg et al. A systematic comparison of clinically viable nanomedicines targeting HMG-CoA reductase in inflammatory atherosclerosis
JP4758346B2 (en) Polymer micelle MRI contrast agent
Liu et al. An eximious and affordable GSH stimulus-responsive poly (α-lipoic acid) nanocarrier bonding combretastatin A4 for tumor therapy
US20120087859A1 (en) Nanocarrier having enhanced skin permeability, cellular uptake and tumour delivery properties
Caminade et al. Dendritic metal complexes for bioimaging. Recent advances
Zhou et al. Gd3+-1, 4, 7, 10-tetraazacyclododecane-1, 4, 7-triacetic-2-hydroxypropyl-β-cyclodextrin/pluronic polyrotaxane as a long circulating high relaxivity MRI contrast agent
Lee et al. Supramolecular assembly based on host–guest interaction between beta-cyclodextrin and adamantane for specifically targeted cancer imaging
Rai et al. Dendrimers for diagnostic applications
EP3331937B1 (en) Cross-linked star-shaped self-assembled polypeptides and its use as carriers in biomedical applications
Zhao et al. Reactive Oxygen Species–Responsive Celastrol-Loaded: Bilirubin Nanoparticles for the Treatment of Rheumatoid Arthritis
US20190060490A1 (en) Pamam dendrimer based cest imaging agents and uses thereof
Ribeiro et al. Radiolabeled block copolymer micelles for image-guided drug delivery
KR20120016032A (en) Iodine-containing radial-shape macromolecular compounds, preparation method thereof and contrast medium compositions for ct comprising the same
Jackson et al. Synthesis and in vivo magnetic resonance imaging evaluation of biocompatible branched copolymer nanocontrast agents
CN113855813A (en) Preparation method and application of ROS (reactive oxygen species) response marine fucoidin nano-carrier based on Fenton reaction and AIE (immune-induced emission) effect
WO2015170573A1 (en) Lymph node imaging agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15789803

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016517855

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15789803

Country of ref document: EP

Kind code of ref document: A1