WO2015170439A1 - Vehicle-mounted calibration device - Google Patents

Vehicle-mounted calibration device Download PDF

Info

Publication number
WO2015170439A1
WO2015170439A1 PCT/JP2015/001977 JP2015001977W WO2015170439A1 WO 2015170439 A1 WO2015170439 A1 WO 2015170439A1 JP 2015001977 W JP2015001977 W JP 2015001977W WO 2015170439 A1 WO2015170439 A1 WO 2015170439A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
calibration
vehicle
ecu
card
Prior art date
Application number
PCT/JP2015/001977
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 新
宗昭 松本
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201590000543.1U priority Critical patent/CN206231303U/en
Publication of WO2015170439A1 publication Critical patent/WO2015170439A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/20Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/22Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle
    • B60R1/23Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle with a predetermined field of view
    • B60R1/27Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle with a predetermined field of view providing all-round vision, e.g. using omnidirectional cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Definitions

  • This disclosure relates to an in-vehicle calibration apparatus.
  • a calibration process for calibrating a parameter representing the mounting position of the imaging device is performed.
  • the result of photographing an index existing around the vehicle by an upper camera installed above the vehicle is compared with the result of photographing the index by an imaging device mounted on the vehicle, and the parameter Some are automatically calibrated.
  • the calibrated parameters are stored in the control device of the imaging device mounted on the vehicle.
  • the present disclosure has been made in view of the above, and an object of the present disclosure is to provide an in-vehicle calibration device that does not need to perform calibration processing again even when the control device is replaced when there is no change in the parameters. is there.
  • An in-vehicle calibration apparatus uses a parameter that represents a reference of the mounting position of an imaging device that captures the periphery of the host vehicle as a reference parameter, and a parameter that represents an actual mounting position of the imaging device as an actual parameter.
  • An in-vehicle calibration apparatus including a calibration processing unit that performs a calibration process for calculating a deviation amount with respect to a reference parameter and calculating an actual parameter based on the deviation amount, wherein at least one of the deviation amount and the actual parameter is a calibration parameter
  • a parameter transmission unit that transmits the calibration parameters stored in the parameter storage unit to the external device.
  • the external device can receive and store the calibration parameter transmitted from the in-vehicle calibration device. Therefore, even if the in-vehicle calibration device fails and the in-vehicle calibration device is replaced, the new in-vehicle calibration device can acquire calibration parameters from an external device. Therefore, the new in-vehicle calibration device does not need to perform the calibration process again.
  • FIG. 1 is a diagram illustrating a relationship between the host vehicle and the imaging device in the first embodiment.
  • FIG. 2 is a diagram for explaining attachment parameters of the imaging device in the first embodiment.
  • FIG. 3 is a diagram illustrating a relationship between the in-vehicle calibration device and the external device in the first embodiment.
  • FIG. 4 is a diagram illustrating how the calibration process is performed in the first embodiment.
  • FIG. 5 is a diagram for explaining an example of a specific state of the calibration process in the first embodiment.
  • FIG. 6 is a diagram for explaining the flow of processing performed by the in-vehicle calibration device according to the first embodiment.
  • FIG. 7 is a diagram for explaining a flow of processing performed by the in-vehicle calibration device according to the second embodiment.
  • FIG. 1 shows a state in which an imaging device in which calibration processing is performed by an in-vehicle calibration device according to the present embodiment is mounted on a vehicle.
  • a CCD camera is used as the imaging device.
  • the imaging devices are attached to a plurality of locations of the vehicle.
  • the front camera 21 is provided in the front part of the own vehicle 1 which is the traveling direction side of the own vehicle 1.
  • the light camera 22 is provided in the right part of the own vehicle 1 which is the right side with respect to the advancing direction of the own vehicle 1.
  • a left camera 23 is provided on the left side of the host vehicle 1 that is on the left side with respect to the traveling direction of the host vehicle 1.
  • a rear camera is provided in the rear part of the own vehicle 1 which is the opposite side to the advancing direction of the own vehicle 1, respectively.
  • the front camera 21 photographs the front of the vehicle 1.
  • the light camera 22 photographs the right side of the host vehicle 1.
  • the left camera 23 photographs the left side of the host vehicle 1.
  • the rear camera 24 photographs the back of the host vehicle 1.
  • the front camera 21, the right camera 22, the left camera 23, and the rear camera 24 are collectively referred to as the imaging device 2.
  • Each camera of the imaging device 2 is installed with respect to the own vehicle 1 with an actual parameter which is a parameter of an actual mounting position. As shown in FIG. 2, the actual parameters will be described by taking the relationship between the host vehicle 1 and the rear camera 24 as an example.
  • the camera coordinate system (x, y, z) is set with the reference position of the rear camera 24 as the origin R.
  • the rotation angle around the x axis is the pitch angle
  • the rotation angle around the y axis is the roll angle
  • the yaw angle around the z axis is set with the reference position of the rear camera 24 as the origin R.
  • the reference parameter which is the attachment position reference parameter
  • FIG. 3 is a block diagram showing the relationship between the in-vehicle calibration device and the external device in the present embodiment.
  • the in-vehicle calibration device is the ECU 10, and the external device is the SD card 32.
  • the ECU 10 is supplied with power from the battery 33.
  • the ECU 10 is connected to the imaging device 2 and the display device 30 by a controller area network (hereinafter, CAN (registered trademark)) 40. Further, the ECU 10 is provided with an SD card insertion slot. The ECU 10 and the SD card 32 are connected.
  • CAN controller area network
  • the ECU 10 acquires an image from the imaging device 2.
  • the ECU 10 outputs an image signal to the display device 30.
  • the ECU 10 transmits an image to the SD card 32.
  • the display device 30 has a display such as a liquid crystal display and a control unit. Therefore, the control unit receives an image signal from the ECU 10 and displays an image corresponding to the received image signal on the display.
  • the image displayed by the display device 30 in the present embodiment is a bird's-eye image that is an image of a specific direction of the host vehicle 1 or an image of the surroundings of the host vehicle 1 viewed from an upper viewpoint.
  • the bird's-eye view image is generated by the ECU 10. Specifically, the ECU 10 combines the images acquired from the cameras of the imaging device 2. At this time, the ECU 10 appropriately performs image processing such as eliminating distortion in the synthesized bird's-eye view image.
  • the SD card 32 is detachable from the ECU 10 and can be used to display an image written by the ECU 10 on another device such as a computer. Further, an insertion port provided in the ECU 10 for mounting the SD card 32 is exposed on the instrument panel side of the host vehicle. Therefore, the occupant of the host vehicle 1 can easily remove the SD card 32.
  • the ECU 10 includes a CPU 11, an internal memory 12, and a printed wiring board 13.
  • the internal memory 12 is composed of a nonvolatile memory.
  • the parameter storage unit corresponds to the internal memory 12.
  • the internal memory 12 holds a reference image obtained by photographing a predetermined index with the imaging device 2 attached to the host vehicle 1 with reference parameters.
  • the CPU 11 performs various processes in accordance with a program stored in a memory (not shown) in the ECU 10.
  • the CPU 11 plays a role of a calibration processing unit 111, a parameter transmission unit 112, an image acquisition unit 113, an image transmission unit 114, an identification information acquisition unit 115, and a parameter acquisition unit 116.
  • the calibration processing unit 111 performs a calibration process that is a process of calculating an actual parameter that is an actual mounting position parameter of the imaging apparatus 2. Specifically, the calibration processing unit 111 compares an image obtained by photographing a predetermined index with the reference image stored in the internal memory 12 by the imaging device 2 attached to the host vehicle 1 with actual parameters. . Then, the calibration processing unit 111 compares the coordinates of arbitrary points in each image and calculates a deviation amount. And the calibration process part 111 performs the calibration process which calculates the actual parameter of each camera based on this deviation
  • the parameter transmission unit 112 transmits calibration parameters, which are actual parameters after calibration, to the SD card 32. For this reason, calibration parameters, which are actual parameters, are stored in a plurality of locations in the internal memory 12 and the SD card 32. Therefore, even if the ECU 10 breaks down due to a short circuit or the like and the ECU 10 is replaced, the new ECU 10 can acquire the calibration parameters from the SD card 32. That is, the ECU 10 does not need to perform the calibration process again.
  • the image acquisition unit 113 acquires an image from each camera of the imaging device 2. Then, the image transmission unit 114 transmits the image acquired by the image acquisition unit 113 to the SD card 32. In this way, the image and the calibration parameters are transmitted to the SD card 32 and stored. That is, the calibration parameters are stored in the SD card 32 which is a storage area used for storing images.
  • the identification information acquisition unit 115 acquires identification information that is information for identifying the host vehicle 1 and other vehicles.
  • the identification information is a unique ID of the vehicle, a license plate, a vehicle inspection number, or the like.
  • the identification information acquisition part 115 acquires vehicle information with identification information.
  • the type of vehicle information includes the color of the vehicle, the shape of the vehicle, and the like.
  • the parameter transmission unit 112 associates the calibration parameter with the identification information and transmits it to the SD card 32.
  • the parameter transmission unit 112 also transmits vehicle information. Therefore, it is specified which vehicle the calibration parameter stored in the SD card 32 is.
  • vehicle information is used when producing
  • the parameter acquisition unit 116 acquires calibration parameters and identification information from the internal memory 12 and the SD card 32. And CPU11 can take the consistency of calibration parameters by comparing each calibration parameter.
  • the printed wiring board 13 is made of resin or the like.
  • a CPU 11 and an internal memory 12 are provided on the printed wiring board 13. That is, the parameter transmission unit 112 transmits the calibration parameters to the SD card 32 that is different from the printed wiring board 13. That is, the received calibration parameter is stored in the SD card 32.
  • FIG. 4 shows a state in which each camera is taking an image for the ECU 10 to perform a calibration process.
  • a painted indicator 35 is provided on the ground around the host vehicle 1.
  • the person in charge 37 in charge of the calibration process connects the diagnosis tool 36 to the ECU 10. Then, ECU10 starts the preparation for performing a calibration process. Next, each camera takes a picture of the painted index 35. Then, a total of four images are taken.
  • FIG. 5 shows an image of the index 35 taken by the front camera 21 attached to the host vehicle 1 with actual parameters. An index 35 is displayed in the image.
  • FIG. 5 shows an image in which the front camera 21 captures the index 35 when the front camera 21 is attached to the host vehicle 1 with reference parameters.
  • the actual parameter has a deviation amount compared to the reference parameter.
  • shift amount affects the image which a camera image
  • a deviation amount e is generated between the actual image 35a captured by the front camera 21 attached with actual parameters and the reference image 35b captured by the front camera 21 attached with reference parameters.
  • the calibration processing unit 111 can calculate the actual parameter based on the deviation amount between the images and the reference parameter. Such processing is repeated, and calibration processing is performed on each camera of the imaging apparatus 2.
  • the calibration process requires a specific index or device, and is a very time-consuming operation.
  • the ECU 10 includes a parameter transmission unit 112 that transmits calibration parameters to an SD card 32 that is a device different from the ECU 10. That is, the calibration parameter is stored in addition to the ECU 10. Therefore, the new ECU 10 can acquire the calibration parameters from the SD card 32 even if the ECU 10 is replaced due to a failure or the like. Therefore, the calibration processing unit 111 in the new ECU 10 does not need to perform a calibration process that is very time-consuming.
  • step S110 the CPU 11 detects whether the SD card 32 is connected. If the SD card 32 is connected, the process proceeds to step S111, and if not, the process ends. Thus, when the SD card 32 is not connected, the ECU 10 cannot transmit the calibration parameter to the external device. Therefore, no processing is performed.
  • step S111 the identification information acquisition unit 115 acquires the identification information of the host vehicle 1. Thereafter, the process proceeds to step S112.
  • the identification information is a vehicle identification ID, a license plate, a vehicle inspection number, or the like.
  • the identification information acquisition unit 115 also acquires vehicle information.
  • step S112 the CPU 11 detects whether the SD card 32 already has identification information. If there is already identification information, the process proceeds to step S113; otherwise, the process proceeds to step S114.
  • step S113 the CPU 11 compares the identification information acquired from the host vehicle 1 with the identification information acquired from the SD card 32. If the identification information matches, the process proceeds to step S114, and if not, the process ends. In this way, the CPU 11 detects whether the identification information matches. Therefore, the CPU 11 prevents the calibration parameter for the camera mounted on another vehicle from being changed by mistake.
  • step S114 the parameter acquisition unit 116 tries to acquire the calibration parameter from the internal memory 12. If calibration parameters can be acquired from the internal memory 12, the process proceeds to step S118, and if not, the process proceeds to step S115.
  • step S115 the parameter acquisition unit 116 attempts to acquire calibration parameters from the SD card 32. If calibration parameters can be acquired from the SD card 32, the process proceeds to step S116, and if not, the process proceeds to step S117.
  • step S116 the CPU 11 writes the calibration parameter acquired from the SD card 32 into the internal memory 12. Thereafter, the process ends.
  • the process of step S116 is performed when the calibration parameters are not stored in the internal memory 12 as when the ECU 10 is replaced. In such a case, the ECU 10 can acquire calibration parameters from the SD card 32. Therefore, even if the ECU 10 is replaced, the new ECU 10 does not need to perform the calibration process again.
  • step S117 the CPU 11 notifies an error. Thereafter, the process ends.
  • step S118 the CPU 11 detects whether the calibration parameter acquired from the internal memory 12 matches the calibration parameter acquired from the SD card 32. If they match, the process ends. Otherwise, the process proceeds to step S119. Further, when the calibration parameter is acquired from the internal memory 12 and the parameter acquisition unit 116 cannot acquire the calibration parameter from the SD card 32, the process proceeds to step S119.
  • step S119 the parameter transmission unit 112 transmits the calibration parameter acquired from the internal memory 12 to the SD card 32 in association with the identification information of the host vehicle 1. Thereafter, the process ends.
  • step S119 When the process of step S119 is performed, the calibration parameter stored in the internal memory 12 has changed. That is, the diagnosis tool 36 is connected to the ECU 10 and the calibration processing unit 111 performs the calibration process again. In such a case, the CPU 11 transmits the calibration parameter after recalibration stored in the internal memory 12 to the SD card 32. For this reason, the calibration parameters after recalibration are stored in both the internal memory 12 and the SD card 32. Note that the case where the calibration process is performed again is when the camera once attached to the host vehicle 1 is greatly inclined due to vibration or the like.
  • the ECU 10 uses the parameters representing the mounting position of the imaging device 2 that captures the periphery of the host vehicle 1 as reference parameters, the parameters representing the actual mounting position of the imaging device 2 as actual parameters, and the ECU 10 The shift amount e is calculated. And ECU10 is provided with the calibration process part 111 which performs the calibration process which calculates an actual parameter based on deviation
  • the ECU 10 further includes an internal memory 12 that stores at least one of the deviation e and the actual parameter as a calibration parameter, and a parameter transmission unit 112 that transmits the calibration parameter stored in the internal memory 12 to the SD card 32. ing.
  • the calibration parameters transmitted from the ECU 10 can be stored in the SD card 32. Therefore, even if the ECU 10 breaks down and the ECU 10 is replaced, the new ECU 10 can acquire calibration parameters from the SD card 32. Therefore, the new ECU 10 does not need to perform the calibration process again.
  • ECU10 is provided with the image acquisition part 113 which acquires an image from the imaging device 2, and the image transmission part 114 which transmits the image which the image acquisition part 113 acquired to the SD card 32.
  • the calibration parameters are stored in the SD card 32, which is an image storage area. Therefore, the calibration parameters can be stored in a storage area different from the ECU 10 without securing a storage area for the calibration parameters.
  • the ECU 10 includes an identification information acquisition unit 115 that acquires identification information of the host vehicle 1. Then, the parameter transmitting unit 112 transmits the identification information and the calibration parameter to the SD card 32 in association with each other.
  • the ECU 10 includes a parameter acquisition unit 116 that acquires calibration parameters from the internal memory 12 and the SD card 32.
  • a parameter acquisition unit 116 that acquires calibration parameters from the internal memory 12 and the SD card 32.
  • the parameter transmission unit 112 transmits the calibration parameter acquired from the internal memory 12 to the SD card 32.
  • the calibration parameter acquired from the SD card 32 by the parameter acquisition unit 116 is stored in the internal memory 12.
  • the new ECU 10 can hold the calibration parameters in the internal memory 12 without performing the calibration process again.
  • the CPU 11 determines whether to write the calibration parameter in the internal memory 12 based on a predetermined condition.
  • the CPU 11 in the present embodiment detects whether the person in charge 37 has operated the restoration function of the diagnostic tool 36 connected to the ECU 10. Then, based on whether the person in charge 37 has operated the restoration function, the CPU 11 determines whether or not to write the calibration parameter to the internal memory 12.
  • the CPU 11 determines whether to transmit the calibration parameter to the SD card 32 based on a predetermined condition. In contrast, in the present embodiment, the CPU 11 detects whether the person in charge 37 has operated the storage function of the diagnostic tool 36. Then, based on whether the person in charge 37 has operated the storage function, the CPU 11 determines whether to transmit the calibration parameter to the SD card 32.
  • the process in which the CPU 11 writes the calibration parameters to the internal memory 12 and the process in which the CPU 11 transmits the calibration parameters to the SD card 32 are performed when the ECU 10 is turned on.
  • the CPU 11 when the storage function or the restoration function is operated, the CPU 11 performs a process of writing to the internal memory 12 or a process of transmitting to the SD card 32.
  • the configuration of the in-vehicle calibration apparatus and the calibration processing method in the present embodiment are the same as those in the first embodiment described with reference to FIGS.
  • FIG. 7 is a flowchart for explaining the flow of processing performed by the in-vehicle calibration device according to the second embodiment.
  • a diagnostic tool 36 is connected to the ECU 10.
  • step S210 the CPU 11 detects whether the person in charge 37 has operated the storage function of the diagnostic tool 36. If the save function is operated, the process proceeds to step S211; otherwise, the process proceeds to step S212.
  • step S211 the parameter transmission unit 112 associates the calibration parameter acquired from the internal memory 12 with the identification information of the host vehicle 1 acquired by the identification information acquisition unit 115, and transmits it to the SD card 32. Thereafter, the process ends.
  • the CPU 11 transmits the calibration parameters stored in the internal memory 12 to the SD card 32. That is, the SD card 32 stores calibration parameters.
  • step S212 the CPU 11 detects whether the restoration function of the diagnosis tool 36 has been operated. If the restoration function is operated, the process proceeds to step S213, and if not, the process ends.
  • step S213 the parameter acquisition unit 116 acquires calibration parameters from the SD card 32. Then, the CPU 11 writes the acquired calibration parameter in the internal memory 12. As described above, when the restoration function of the diagnosis tool 36 is operated, the CPU 11 writes the calibration parameters stored in the SD card 32 into the internal memory 12.
  • the calibration parameters are stored in both the internal memory 12 and the SD card 32. Therefore, the same effect as the first embodiment can be obtained.
  • the ECU 10 in the above embodiment does not transmit the calibration parameter of the host vehicle 1 to the SD card 32 when the identification information and calibration parameters of another vehicle are already stored in the SD card 32.
  • the ECU 10 may be configured as follows. Regardless of whether other in-vehicle calibration parameters are stored in the SD card 32, the ECU 10 transmits the identification information of the host vehicle 1 and the calibration parameters in association with each other. If it does in this way, the calibration parameter of a plurality of vehicles will be memorized by SD card 32. Further, since the identification information of each vehicle and the calibration parameter are stored in the SD card 32 in association with each other, the ECU 10 can easily specify the calibration parameter for the host vehicle 1. Moreover, in the said embodiment, although the calibration process part 111 and the parameter transmission part 112 are processed by the same CPU11, you may make it provide with several CPU in ECU10 and perform by separate CPU.
  • the actual parameter is the calibration parameter, but the deviation e may be the calibration parameter.
  • the reference parameter and the shift amount e are stored in the internal memory 12 or the SD card 32.
  • the CPU 11 when the CPU 11 acquires an image from the imaging device 2, the CPU 11 needs to temporarily calculate an actual parameter based on the deviation amount e and the reference parameter.
  • the external device in the above embodiment is the SD card 32
  • a server that allows the ECU 10 to transmit and receive using the wireless communication function may be used as the external device.
  • the front camera 21, the right camera 22, the left camera 23, and the rear camera 24 are provided in the vehicle, but the in-vehicle calibration device may be used for a single camera.
  • the actual parameters are calculated by performing the calibration process for all parameters (x, y, z) and parameters (pitch angle, roll angle, yaw angle).
  • the calibration process may not be performed on all these parameters, but the calibration process may be performed on at least one parameter.
  • calibration processing is performed on the pitch angle so that the pitch angle deviation amount and actual parameters are stored in the internal memory 12 and the SD card 32.
  • the processing performed when the ECU 10 is powered on may be performed when the ECU 10 is powered off or immediately after the calibration processing is performed.
  • the ECU 10 transmits calibration parameters to the SD card 32.
  • the embodiment is not limited to the above embodiment, and the ECU 10 may transmit the calibration parameter to an external device different from the SD card 32.
  • the display device 30 and the SD card 32 are mounted on the host vehicle 1, and the ECU 10 transmits an image to each device.
  • the present invention is not limited to the above embodiment, and the ECU 10 can also be applied to the case where either the display device 30 or the SD card 32 is mounted on the host vehicle 1.
  • the SD card 32 is not mounted on the host vehicle 1 but the display device 30 is mounted.
  • the ECU 10 only needs to have at least a function of generating an image for periphery monitoring.
  • the ECU 10 may transmit the calibration parameter stored in the internal memory 12 to the display device 30 or to another external device.
  • the display device 30 is not mounted on the host vehicle 1 but the SD card 32 is mounted.
  • the ECU 10 only needs to have at least a function for generating an image that is intended for use stored in the SD card 32.
  • the ECU 10 may transmit the calibration parameter stored in the internal memory 12 to the SD card 32 or to another external device.
  • the ECU 10 can be applied even when the display device 30 and the SD card 32 are not mounted on the host vehicle 1. In such a case, the ECU 10 may transmit the calibration parameter to another ECU or a memory mounted on the host vehicle 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Signal Processing (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Studio Devices (AREA)

Abstract

A vehicle-mounted calibration device provided with a calibration processing unit (111), a parameter storage unit (12), and a parameter transmission unit (112) is provided. The calibration processing unit, using a parameter representing a reference for the installed position of an imaging device (2) for capturing an image around a vehicle (1) as a reference parameter, and a parameter representing the actual installed position of the imaging device as an actual parameter, computes an error amount (e) with respect to the reference parameter, and performs a calibration process for computing the actual parameter on the basis of the error amount. The parameter storage unit stores at least one of the error amount and the actual parameter as a calibration parameter. The parameter transmission unit transmits the calibration parameter stored in the parameter storage unit (12) to an external device.

Description

車載キャリブレーション装置In-vehicle calibration device 関連出願の相互参照Cross-reference of related applications
 本出願は、2014年5月9日に出願された日本国特許出願2014-97931号に基づくものであり、この開示をここに参照により援用する。 This application is based on Japanese Patent Application No. 2014-97931 filed on May 9, 2014, the disclosure of which is incorporated herein by reference.
 本開示は、車載キャリブレーション装置に関する。 This disclosure relates to an in-vehicle calibration apparatus.
 従来、車両に撮像装置を搭載した後に、撮像装置の取付位置を表したパラメータを校正する校正処理が行われている。校正処理の例として、車両の上方に設置された上方カメラによって車両の周囲に存在する指標を撮影した結果と、車両に搭載された撮像装置で上記指標を撮影した結果とを比較し、上記パラメータが自動的に校正されるものがある。そして、校正済みの上記パラメータは、車両に搭載された撮像装置の制御装置に記憶される。 Conventionally, after mounting an imaging device on a vehicle, a calibration process for calibrating a parameter representing the mounting position of the imaging device is performed. As an example of the calibration process, the result of photographing an index existing around the vehicle by an upper camera installed above the vehicle is compared with the result of photographing the index by an imaging device mounted on the vehicle, and the parameter Some are automatically calibrated. Then, the calibrated parameters are stored in the control device of the imaging device mounted on the vehicle.
特開2007-261463号公報JP 2007-261463 A
 しかしながら、制御装置が短絡などを理由に故障し、制御装置の交換が行われると校正済みの上記パラメータが失われてしまう。そのため、このような場合、上記パラメータが変化していないにも関わらず、再度校正処理を行う必要があり、非常に手間がかかることを本願発明者が新たに見出した。 However, if the control device breaks down due to a short circuit or the like and the control device is replaced, the calibrated parameters will be lost. Therefore, in this case, the inventor of the present application has newly found that it is necessary to perform the calibration process again in spite of the fact that the parameter has not changed, which is very time-consuming.
 本開示は、上記に鑑みてなされたもので、その目的は、上記パラメータの変化がない場合において、制御装置が交換されても再度校正処理を行う必要がない車載キャリブレーション装置を提供することにある。 The present disclosure has been made in view of the above, and an object of the present disclosure is to provide an in-vehicle calibration device that does not need to perform calibration processing again even when the control device is replaced when there is no change in the parameters. is there.
 本開示の一例に係る車載キャリブレーション装置は、自車両の周辺を撮像する撮像装置の取付位置の基準を表したパラメータを基準パラメータとし、撮像装置の実際の取付位置を表したパラメータを実パラメータとして、基準パラメータに対するずれ量を計算し、ずれ量に基づき実パラメータを計算する校正処理を行う校正処理部を備えた車載キャリブレーション装置であって、ずれ量及び実パラメータのうち少なくとも一方を、校正パラメータとして記憶するパラメータ記憶部と、パラメータ記憶部に記憶された校正パラメータを外部装置に送信するパラメータ送信部と、をさらに備えている。 An in-vehicle calibration apparatus according to an example of the present disclosure uses a parameter that represents a reference of the mounting position of an imaging device that captures the periphery of the host vehicle as a reference parameter, and a parameter that represents an actual mounting position of the imaging device as an actual parameter. , An in-vehicle calibration apparatus including a calibration processing unit that performs a calibration process for calculating a deviation amount with respect to a reference parameter and calculating an actual parameter based on the deviation amount, wherein at least one of the deviation amount and the actual parameter is a calibration parameter And a parameter transmission unit that transmits the calibration parameters stored in the parameter storage unit to the external device.
 このような構成によれば、車載キャリブレーション装置から送信された校正パラメータを、外部装置は受信し記憶することが出来る。そのため、仮に車載キャリブレーション装置が故障をし、車載キャリブレーション装置の交換が行われても、新しい車載キャリブレーション装置は、外部装置から校正パラメータ取得することが出来る。従って、新しい車載キャリブレーション装置は、再度校正処理を行う必要がない。 According to such a configuration, the external device can receive and store the calibration parameter transmitted from the in-vehicle calibration device. Therefore, even if the in-vehicle calibration device fails and the in-vehicle calibration device is replaced, the new in-vehicle calibration device can acquire calibration parameters from an external device. Therefore, the new in-vehicle calibration device does not need to perform the calibration process again.
 本開示についての上記および他の目的、特徴や利点は、添付の図面を参照した下記の詳細な説明から、より明確になる。添付図面において
図1は、第1実施形態における、自車両と撮像装置との関係を示す図である。 図2は、第1実施形態における、撮像装置の取付パラメータを説明するための図である。 図3は、第1実施形態における、車載キャリブレーション装置と外部装置との関係を示す図である。 図4は、第1実施形態において、校正処理が行われる様子を示す図である。 図5は、第1実施形態における、校正処理の具体的様子の一例を説明するための図である。 図6は、第1実施形態における、車載キャリブレーション装置が行う処理の流れを説明する図である。 図7は、第2実施形態における、車載キャリブレーション装置が行う処理の流れを説明するための図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. In the attached drawings
FIG. 1 is a diagram illustrating a relationship between the host vehicle and the imaging device in the first embodiment. FIG. 2 is a diagram for explaining attachment parameters of the imaging device in the first embodiment. FIG. 3 is a diagram illustrating a relationship between the in-vehicle calibration device and the external device in the first embodiment. FIG. 4 is a diagram illustrating how the calibration process is performed in the first embodiment. FIG. 5 is a diagram for explaining an example of a specific state of the calibration process in the first embodiment. FIG. 6 is a diagram for explaining the flow of processing performed by the in-vehicle calibration device according to the first embodiment. FIG. 7 is a diagram for explaining a flow of processing performed by the in-vehicle calibration device according to the second embodiment.
 以下、図面を参照しながら複数の実施形態を説明する。各形態において、先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において、構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を参照し適用することができる。 Hereinafter, a plurality of embodiments will be described with reference to the drawings. In each embodiment, portions corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals and redundant description may be omitted. In each embodiment, when only a part of the configuration is described, the other configurations described above can be applied to other portions of the configuration.
 (第1実施形態)
 図1は、本実施形態における、車載キャリブレーション装置によって校正処理が行われる撮像装置を、車両に搭載した様子を示している。本実施形態において、撮像装置としてCCDカメラが用いられる。
(First embodiment)
FIG. 1 shows a state in which an imaging device in which calibration processing is performed by an in-vehicle calibration device according to the present embodiment is mounted on a vehicle. In the present embodiment, a CCD camera is used as the imaging device.
 本実施形態において、撮像装置は車両の複数個所に取り付けられている。具体的には、自車両1の進行方向側である自車両1の前部にフロントカメラ21が設けられる。そして、自車両1の進行方向に対して右側である、自車両1の右部にライトカメラ22が設けられる。また、自車両1の進行方向に対して左側である自車両1の左部にレフトカメラ23が設けられる。そして、自車両1の進行方向とは反対側である、自車両1の後部にリアカメラがそれぞれ設けられる。 In the present embodiment, the imaging devices are attached to a plurality of locations of the vehicle. Specifically, the front camera 21 is provided in the front part of the own vehicle 1 which is the traveling direction side of the own vehicle 1. And the light camera 22 is provided in the right part of the own vehicle 1 which is the right side with respect to the advancing direction of the own vehicle 1. FIG. Also, a left camera 23 is provided on the left side of the host vehicle 1 that is on the left side with respect to the traveling direction of the host vehicle 1. And a rear camera is provided in the rear part of the own vehicle 1 which is the opposite side to the advancing direction of the own vehicle 1, respectively.
 フロントカメラ21は、自車両1の前方を撮影する。ライトカメラ22は自車両1の右方を撮影する。レフトカメラ23は自車両1の左方を撮影する。リアカメラ24は自車両1の後方を撮影する。本実施形態では、フロントカメラ21、ライトカメラ22、レフトカメラ23、リアカメラ24を総称して、撮像装置2と呼ぶ。 The front camera 21 photographs the front of the vehicle 1. The light camera 22 photographs the right side of the host vehicle 1. The left camera 23 photographs the left side of the host vehicle 1. The rear camera 24 photographs the back of the host vehicle 1. In the present embodiment, the front camera 21, the right camera 22, the left camera 23, and the rear camera 24 are collectively referred to as the imaging device 2.
 撮像装置2の各カメラは、それぞれ自車両1に対して実際の取付位置のパラメータである実パラメータにて設置される。実パラメータについて、図2に示すように、自車両1とリアカメラ24との関係を例に説明する。 Each camera of the imaging device 2 is installed with respect to the own vehicle 1 with an actual parameter which is a parameter of an actual mounting position. As shown in FIG. 2, the actual parameters will be described by taking the relationship between the host vehicle 1 and the rear camera 24 as an example.
 リアカメラ24の取付位置基準を原点Rとして、カメラ座標系(x、y、z)が設定される。そして、そのカメラ座標系(x、y、z)について、x軸回りの回転角をピッチ角、y軸回りの回転角をロール角、z軸回りヨー角とする。この時、リアカメラ24が原点Rに対してずれなく取り付けられた場合、取付位置基準のパラメータである基準パラメータは(x、y、z)=(0、0、0)となる。同様に、基準パラメータは(ピッチ角、ロール角、ヨー角)=(0、0、0)となる。しかし、実際は、カメラを原点Rに対して正確に取り付けることは難しく、原点Rに対してずれ量が生じた状態でカメラは取り付けられる。ずれ量が生じた状態のカメラから画像を取得すると、画像が傾くなどの不備が生じる。そのため、このずれ量を調整するための校正処理が行われる。校正処理が行われ、実パラメータが求められると、画像の不備をなくすことが可能となる。 The camera coordinate system (x, y, z) is set with the reference position of the rear camera 24 as the origin R. For the camera coordinate system (x, y, z), the rotation angle around the x axis is the pitch angle, the rotation angle around the y axis is the roll angle, and the yaw angle around the z axis. At this time, when the rear camera 24 is attached without deviation with respect to the origin R, the reference parameter, which is the attachment position reference parameter, is (x, y, z) = (0, 0, 0). Similarly, the reference parameters are (pitch angle, roll angle, yaw angle) = (0, 0, 0). However, in reality, it is difficult to accurately attach the camera to the origin R, and the camera is attached in a state where a deviation amount occurs with respect to the origin R. When an image is acquired from a camera in which a shift amount has occurred, a defect such as tilting of the image occurs. Therefore, a calibration process for adjusting the amount of deviation is performed. When the calibration process is performed and the actual parameters are obtained, it is possible to eliminate deficiencies in the image.
 図3は、本実施形態における車載キャリブレーション装置と外部装置との関係を示すブロック図である。 FIG. 3 is a block diagram showing the relationship between the in-vehicle calibration device and the external device in the present embodiment.
 本実施形態における、車載キャリブレーション装置はECU10であり、外部装置はSDカード32である。ECU10は、バッテリ33から電源を供給される。そして、ECU10は、Controller Area Network(以下、CAN(登録商標))40によって、撮像装置2、表示装置30と接続されている。また、ECU10には、SDカード用の挿入口が設けられている。そして、ECU10とSDカード32とが接続されている。 In the present embodiment, the in-vehicle calibration device is the ECU 10, and the external device is the SD card 32. The ECU 10 is supplied with power from the battery 33. The ECU 10 is connected to the imaging device 2 and the display device 30 by a controller area network (hereinafter, CAN (registered trademark)) 40. Further, the ECU 10 is provided with an SD card insertion slot. The ECU 10 and the SD card 32 are connected.
 そのため、ECU10は、撮像装置2から画像を取得する。また、ECU10は、表示装置30に画像信号を出力する。また、ECU10は、画像をSDカード32に送信する。 Therefore, the ECU 10 acquires an image from the imaging device 2. In addition, the ECU 10 outputs an image signal to the display device 30. In addition, the ECU 10 transmits an image to the SD card 32.
 表示装置30は、液晶等のディスプレイと制御部を有している。そのため、制御部はECU10から画像信号を受信し、受信した画像信号に応じた画像をディスプレイに表示する。 The display device 30 has a display such as a liquid crystal display and a control unit. Therefore, the control unit receives an image signal from the ECU 10 and displays an image corresponding to the received image signal on the display.
 本実施形態における表示装置30が表示する画像は、自車両1の特定の方向の画像や、自車両1周辺の画像を上方の視点から見た画像である鳥瞰画像である。鳥瞰画像は、ECU10によって生成される。具体的には、ECU10が撮像装置2の各カメラから取得した画像同士を合成する。この時、ECU10は、合成後の鳥瞰画像における歪をなくすなど、適宜画像処理を行う。 The image displayed by the display device 30 in the present embodiment is a bird's-eye image that is an image of a specific direction of the host vehicle 1 or an image of the surroundings of the host vehicle 1 viewed from an upper viewpoint. The bird's-eye view image is generated by the ECU 10. Specifically, the ECU 10 combines the images acquired from the cameras of the imaging device 2. At this time, the ECU 10 appropriately performs image processing such as eliminating distortion in the synthesized bird's-eye view image.
 SDカード32は、ECU10から脱着可能であり、ECU10によって書き込まれた画像をコンピュータなど他の装置で表示するために用いることが出来る。また、SDカード32を装着するためにECU10に設けられた挿入口は、自車両のインパネ側に露出している。そのため、自車両1の乗員は、容易にSDカード32を脱着可能である。 The SD card 32 is detachable from the ECU 10 and can be used to display an image written by the ECU 10 on another device such as a computer. Further, an insertion port provided in the ECU 10 for mounting the SD card 32 is exposed on the instrument panel side of the host vehicle. Therefore, the occupant of the host vehicle 1 can easily remove the SD card 32.
 次に、ECU10について説明する。ECU10は、CPU11、内部メモリ12、プリント配線板13から構成されている。 Next, the ECU 10 will be described. The ECU 10 includes a CPU 11, an internal memory 12, and a printed wiring board 13.
 内部メモリ12は、不揮発性メモリから構成されている。本実施形態において、パラメータ記憶部は内部メモリ12に相当する。また、内部メモリ12は、自車両1に対して基準パラメータにて取り付けられた撮像装置2によって所定の指標を撮影した基準画像を保有している。 The internal memory 12 is composed of a nonvolatile memory. In the present embodiment, the parameter storage unit corresponds to the internal memory 12. Further, the internal memory 12 holds a reference image obtained by photographing a predetermined index with the imaging device 2 attached to the host vehicle 1 with reference parameters.
 CPU11は、ECU10内の図示しないメモリに記憶されたプログラムに従って各種処理を行う。CPU11は、校正処理部111、パラメータ送信部112、画像取得部113、画像送信部114、識別情報取得部115、パラメータ取得部116の役割を担っている。 The CPU 11 performs various processes in accordance with a program stored in a memory (not shown) in the ECU 10. The CPU 11 plays a role of a calibration processing unit 111, a parameter transmission unit 112, an image acquisition unit 113, an image transmission unit 114, an identification information acquisition unit 115, and a parameter acquisition unit 116.
 校正処理部111は、撮像装置2の実際の取付位置パラメータである実パラメータを計算する処理である校正処理を行う。具体的に、校正処理部111は、自車両1に対して実パラメータにて取り付けられた撮像装置2によって、所定の指標を撮影した画像と、内部メモリ12に記憶された基準画像とを比較する。そして、校正処理部111は、各画像における任意の点同士の座標を比較し、ずれ量を計算する。そして、校正処理部111は、このずれ量に基づいて、各カメラの実パラメータを計算する校正処理を行う。校正処理部111が行う校正処理についての詳細は、後述する。また、CPU11は、実パラメータである校正パラメータを、内部メモリ12に書き込む。 The calibration processing unit 111 performs a calibration process that is a process of calculating an actual parameter that is an actual mounting position parameter of the imaging apparatus 2. Specifically, the calibration processing unit 111 compares an image obtained by photographing a predetermined index with the reference image stored in the internal memory 12 by the imaging device 2 attached to the host vehicle 1 with actual parameters. . Then, the calibration processing unit 111 compares the coordinates of arbitrary points in each image and calculates a deviation amount. And the calibration process part 111 performs the calibration process which calculates the actual parameter of each camera based on this deviation | shift amount. Details of the calibration processing performed by the calibration processing unit 111 will be described later. In addition, the CPU 11 writes calibration parameters that are actual parameters in the internal memory 12.
 パラメータ送信部112は、校正後の実パラメータである校正パラメータをSDカード32に送信する。このため、実パラメータである校正パラメータは、内部メモリ12とSDカード32との複数個所に記憶されている。従って、ECU10が短絡などを理由に故障して、ECU10が交換されたとしても、新しいECU10はSDカード32から校正パラメータを取得することが出来る。つまり、ECU10は再度校正処理を行う必要がない。 The parameter transmission unit 112 transmits calibration parameters, which are actual parameters after calibration, to the SD card 32. For this reason, calibration parameters, which are actual parameters, are stored in a plurality of locations in the internal memory 12 and the SD card 32. Therefore, even if the ECU 10 breaks down due to a short circuit or the like and the ECU 10 is replaced, the new ECU 10 can acquire the calibration parameters from the SD card 32. That is, the ECU 10 does not need to perform the calibration process again.
 画像取得部113は、撮像装置2の各カメラから画像を取得する。そして、画像送信部114は、画像取得部113が取得した画像をSDカード32に送信する。このように、画像と校正パラメータとが、SDカード32に送信され、記憶される。つまり、画像を記憶するために用いられる記憶領域であるSDカード32に、校正パラメータが記憶されることになる。 The image acquisition unit 113 acquires an image from each camera of the imaging device 2. Then, the image transmission unit 114 transmits the image acquired by the image acquisition unit 113 to the SD card 32. In this way, the image and the calibration parameters are transmitted to the SD card 32 and stored. That is, the calibration parameters are stored in the SD card 32 which is a storage area used for storing images.
 識別情報取得部115は、自車両1と他車両とを識別するための情報である識別情報を取得する。識別情報は、車両の固有IDやナンバープレート、車検番号などである。また、識別情報取得部115は、識別情報と共に車両情報を取得する。車両情報の種類は、車両の色、車両の形状などである。そして、パラメータ送信部112は、校正パラメータと識別情報とを関連付けてSDカード32に送信する。また、パラメータ送信部112は、車両情報も送信する。そのため、SDカード32に記憶されている校正パラメータが、どの車両の校正パラメータなのかが、特定される。なお、車両情報は、鳥瞰画像に表示される自車両1の疑似画像を生成する際に用いられる。このため、鳥瞰画像に表示される車両は、自車両1の特徴に類似しているため、ユーザにとって違和感がない。 The identification information acquisition unit 115 acquires identification information that is information for identifying the host vehicle 1 and other vehicles. The identification information is a unique ID of the vehicle, a license plate, a vehicle inspection number, or the like. Moreover, the identification information acquisition part 115 acquires vehicle information with identification information. The type of vehicle information includes the color of the vehicle, the shape of the vehicle, and the like. Then, the parameter transmission unit 112 associates the calibration parameter with the identification information and transmits it to the SD card 32. The parameter transmission unit 112 also transmits vehicle information. Therefore, it is specified which vehicle the calibration parameter stored in the SD card 32 is. In addition, vehicle information is used when producing | generating the pseudo | simulation image of the own vehicle 1 displayed on a bird's-eye view image. For this reason, since the vehicle displayed on the bird's-eye view image is similar to the characteristics of the host vehicle 1, there is no sense of discomfort for the user.
 パラメータ取得部116は、内部メモリ12及びSDカード32から、校正パラメータ及び識別情報を取得する。そして、CPU11は、各校正パラメータを比較することで、校正パラメータ同士の整合性をとることが出来る。 The parameter acquisition unit 116 acquires calibration parameters and identification information from the internal memory 12 and the SD card 32. And CPU11 can take the consistency of calibration parameters by comparing each calibration parameter.
 プリント配線板13は、樹脂等から構成される。プリント配線板13に、CPU11及び内部メモリ12が設けられる。つまり、パラメータ送信部112は、校正パラメータをプリント配線板13とは異なる、SDカード32に送信する。すなわち、SDカード32には受信した校正パラメータが記憶される。 The printed wiring board 13 is made of resin or the like. A CPU 11 and an internal memory 12 are provided on the printed wiring board 13. That is, the parameter transmission unit 112 transmits the calibration parameters to the SD card 32 that is different from the printed wiring board 13. That is, the received calibration parameter is stored in the SD card 32.
 次に、図4、図5を用いて、本実施形態における車載キャリブレーション装置が校正処理を行う様子を説明する。図4は、ECU10が校正処理を行うための画像を、各カメラが撮影している様子を示している。自車両1の周辺の地面には、ペイントされた指標35が設けられている。 Next, the manner in which the in-vehicle calibration apparatus according to this embodiment performs a calibration process will be described with reference to FIGS. FIG. 4 shows a state in which each camera is taking an image for the ECU 10 to perform a calibration process. A painted indicator 35 is provided on the ground around the host vehicle 1.
 まず、校正処理を担当する担当者37は、ダイアグツール36をECU10に接続する。すると、ECU10は校正処理を行うための準備を開始する。次に、各カメラは、それぞれペイントされた指標35を撮影する。すると、合計4枚の画像が撮影されることになる。 First, the person in charge 37 in charge of the calibration process connects the diagnosis tool 36 to the ECU 10. Then, ECU10 starts the preparation for performing a calibration process. Next, each camera takes a picture of the painted index 35. Then, a total of four images are taken.
 次に、撮影された画像を用いてカメラの校正処理が行われる様子を、図5を用いて説明する。図5は、自車両1に対して実パラメータにて取り付けられたフロントカメラ21が指標35を撮影した画像を示している。そして、その画像内には指標35が表示されている。また、図5は、自車両1に対して基準パラメータにてフロントカメラ21が取り付けられた場合におけるフロントカメラ21が指標35を撮影した画像を示している。 Next, how the camera is calibrated using the captured image will be described with reference to FIG. FIG. 5 shows an image of the index 35 taken by the front camera 21 attached to the host vehicle 1 with actual parameters. An index 35 is displayed in the image. FIG. 5 shows an image in which the front camera 21 captures the index 35 when the front camera 21 is attached to the host vehicle 1 with reference parameters.
 上記にて説明した通り、実際にカメラが取り付けられる場合、実パラメータは、基準パラメータに比べてずれ量が生じる。そして、このずれ量は、カメラが撮影する画像に影響する。例えば図5のように、実パラメータにて取り付けられたフロントカメラ21が撮影した実画像35aと基準パラメータにて取り付けられたフロントカメラ21が撮影した基準画像35bとは、ずれ量eが生じる。そして、校正処理部111は、この画像間におけるずれ量と基準パラメータに基づいて、実パラメータを計算することが出来る。このような処理を繰り返し、撮像装置2の各カメラに対して校正処理が行われる。 As described above, when the camera is actually attached, the actual parameter has a deviation amount compared to the reference parameter. And this deviation | shift amount affects the image which a camera image | photographs. For example, as shown in FIG. 5, a deviation amount e is generated between the actual image 35a captured by the front camera 21 attached with actual parameters and the reference image 35b captured by the front camera 21 attached with reference parameters. The calibration processing unit 111 can calculate the actual parameter based on the deviation amount between the images and the reference parameter. Such processing is repeated, and calibration processing is performed on each camera of the imaging apparatus 2.
 上記で説明したように、校正処理は特定の指標や装置を必要とするため、非常に手間がかかる作業である。本実施形態における、ECU10は、校正パラメータをECU10とは異なる装置であるSDカード32に送信するパラメータ送信部112を備えている。つまり、校正パラメータはECU10以外にも記憶されている。そのため、ECU10が故障などをしてECU10が交換されても、新しいECU10はSDカード32から校正パラメータを取得することが出来る。そのため、新しいECU10における校正処理部111は非常に手間がかかる校正処理を行う必要がない。 As explained above, the calibration process requires a specific index or device, and is a very time-consuming operation. In this embodiment, the ECU 10 includes a parameter transmission unit 112 that transmits calibration parameters to an SD card 32 that is a device different from the ECU 10. That is, the calibration parameter is stored in addition to the ECU 10. Therefore, the new ECU 10 can acquire the calibration parameters from the SD card 32 even if the ECU 10 is replaced due to a failure or the like. Therefore, the calibration processing unit 111 in the new ECU 10 does not need to perform a calibration process that is very time-consuming.
 次に、図6を用いて、本実施形態における車載キャリブレーション装置が行う処理の流れを説明する。ECU10の電源がONされると、処理を開始する。 Next, the flow of processing performed by the in-vehicle calibration apparatus according to this embodiment will be described with reference to FIG. When the power source of the ECU 10 is turned on, the process is started.
 ステップS110において、CPU11はSDカード32が接続されているかどうかを検知する。SDカード32が接続されている場合、ステップS111に進み、そうでなければ処理を終了する。このように、SDカード32が接続されていないような場合、ECU10は校正パラメータを外部装置に送信することが出来ない。そのため、処理を行わない。 In step S110, the CPU 11 detects whether the SD card 32 is connected. If the SD card 32 is connected, the process proceeds to step S111, and if not, the process ends. Thus, when the SD card 32 is not connected, the ECU 10 cannot transmit the calibration parameter to the external device. Therefore, no processing is performed.
 ステップS111において、識別情報取得部115は自車両1の識別情報を取得する。その後、ステップS112に進む。識別情報は上述した通り、車両の識別IDや、ナンバープレート、車検番号などである。また識別情報取得部115は、車両情報も取得する。 In step S111, the identification information acquisition unit 115 acquires the identification information of the host vehicle 1. Thereafter, the process proceeds to step S112. As described above, the identification information is a vehicle identification ID, a license plate, a vehicle inspection number, or the like. The identification information acquisition unit 115 also acquires vehicle information.
 ステップS112において、CPU11はSDカード32にすでに識別情報があるかどうかを検知する。すでに識別情報がある場合ステップS113に進み、そうでなければステップS114に進む。 In step S112, the CPU 11 detects whether the SD card 32 already has identification information. If there is already identification information, the process proceeds to step S113; otherwise, the process proceeds to step S114.
 ステップS113において、CPU11は自車両1から取得した識別情報と、SDカード32から取得した識別情報とを比較する。識別情報同士が一致した場合、ステップS114に進み、そうでなければ処理を終了する。このように、CPU11は識別情報同士が一致しているかどうかを検知する。そのため、CPU11は、別の車両に搭載されたカメラ用の校正パラメータを誤って変更してしまうことを防ぐ。 In step S113, the CPU 11 compares the identification information acquired from the host vehicle 1 with the identification information acquired from the SD card 32. If the identification information matches, the process proceeds to step S114, and if not, the process ends. In this way, the CPU 11 detects whether the identification information matches. Therefore, the CPU 11 prevents the calibration parameter for the camera mounted on another vehicle from being changed by mistake.
 ステップS114において、パラメータ取得部116は、内部メモリ12から校正パラメータの取得を試みる。内部メモリ12から校正パラメータを取得できた場合、ステップS118に進み、そうでなければ、ステップS115に進む。 In step S114, the parameter acquisition unit 116 tries to acquire the calibration parameter from the internal memory 12. If calibration parameters can be acquired from the internal memory 12, the process proceeds to step S118, and if not, the process proceeds to step S115.
 ステップS115において、パラメータ取得部116は、SDカード32から校正パラメータの取得を試みる。SDカード32から校正パラメータを取得できた場合、ステップS116に進み、そうでなければステップS117に進む。 In step S115, the parameter acquisition unit 116 attempts to acquire calibration parameters from the SD card 32. If calibration parameters can be acquired from the SD card 32, the process proceeds to step S116, and if not, the process proceeds to step S117.
 ステップS116において、CPU11は、SDカード32から取得した校正パラメータを内部メモリ12に書き込む。その後、処理を終了する。ステップS116の処理が行われるのは、ECU10が交換された時のように、内部メモリ12に校正パラメータが記憶されていない場合である。このような場合、ECU10は、SDカード32から校正パラメータを取得することが出来る。そのため、ECU10が交換されたとしても、新しいECU10は再度校正処理を行う必要がない。 In step S116, the CPU 11 writes the calibration parameter acquired from the SD card 32 into the internal memory 12. Thereafter, the process ends. The process of step S116 is performed when the calibration parameters are not stored in the internal memory 12 as when the ECU 10 is replaced. In such a case, the ECU 10 can acquire calibration parameters from the SD card 32. Therefore, even if the ECU 10 is replaced, the new ECU 10 does not need to perform the calibration process again.
 ステップS117において、CPU11はエラーを通知する。その後処理を終了する。 In step S117, the CPU 11 notifies an error. Thereafter, the process ends.
 ステップS118において、CPU11は内部メモリ12から取得した校正パラメータと、SDカード32から取得した校正パラメータとが一致するかどうかを検知する。一致した場合処理を終了し、そうでなければ、ステップS119に進む。また、内部メモリ12から校正パラメータが取得され、かつパラメータ取得部116がSDカード32から校正パラメータを取得できない場合も、ステップS119に進む。 In step S118, the CPU 11 detects whether the calibration parameter acquired from the internal memory 12 matches the calibration parameter acquired from the SD card 32. If they match, the process ends. Otherwise, the process proceeds to step S119. Further, when the calibration parameter is acquired from the internal memory 12 and the parameter acquisition unit 116 cannot acquire the calibration parameter from the SD card 32, the process proceeds to step S119.
 ステップS119において、パラメータ送信部112は、内部メモリ12から取得した校正パラメータを自車両1の識別情報と関連付けてSDカード32に送信する。その後、処理を終了する。 In step S119, the parameter transmission unit 112 transmits the calibration parameter acquired from the internal memory 12 to the SD card 32 in association with the identification information of the host vehicle 1. Thereafter, the process ends.
 ステップS119の処理が行われる場合は、内部メモリ12に記憶されている校正パラメータが変化した場合である。つまり、ECU10にダイアグツール36が接続され、校正処理部111が再度校正処理を行った場合である。このような場合CPU11は、内部メモリ12に記憶された再校正後の校正パラメータをSDカード32に送信する。このため、再校正後の校正パラメータは内部メモリ12とSDカード32との両方に記憶されている。なお、再度校正処理が行われるような場合は、自車両1に一旦取付けられたカメラが、振動等によって大きく傾いてしまったような時である。 When the process of step S119 is performed, the calibration parameter stored in the internal memory 12 has changed. That is, the diagnosis tool 36 is connected to the ECU 10 and the calibration processing unit 111 performs the calibration process again. In such a case, the CPU 11 transmits the calibration parameter after recalibration stored in the internal memory 12 to the SD card 32. For this reason, the calibration parameters after recalibration are stored in both the internal memory 12 and the SD card 32. Note that the case where the calibration process is performed again is when the camera once attached to the host vehicle 1 is greatly inclined due to vibration or the like.
 以下に、第1実施形態に係るECU10の効果を記載する。 Hereinafter, effects of the ECU 10 according to the first embodiment will be described.
 自車両1の周辺を撮像する撮像装置2の取付位置の基準を表したパラメータを基準パラメータとし、撮像装置2の実際の取付位置を表したパラメータを実パラメータとして、ECU10は基準パラメータに対する実パラメータのずれ量eを計算する。そして、ECU10は、ずれ量eに基づき実パラメータを計算する校正処理を行う校正処理部111を備えている。また、ECU10は、ずれ量e及び実パラメータのうち少なくとも一方を校正パラメータとして記憶する内部メモリ12と、内部メモリ12に記憶された校正パラメータをSDカード32に送信するパラメータ送信部112と、を備えている。 The ECU 10 uses the parameters representing the mounting position of the imaging device 2 that captures the periphery of the host vehicle 1 as reference parameters, the parameters representing the actual mounting position of the imaging device 2 as actual parameters, and the ECU 10 The shift amount e is calculated. And ECU10 is provided with the calibration process part 111 which performs the calibration process which calculates an actual parameter based on deviation | shift amount e. The ECU 10 further includes an internal memory 12 that stores at least one of the deviation e and the actual parameter as a calibration parameter, and a parameter transmission unit 112 that transmits the calibration parameter stored in the internal memory 12 to the SD card 32. ing.
 このようにすると、ECU10から送信された校正パラメータを、SDカード32に記憶することが出来る。そのため、仮にECU10が故障をし、ECU10の交換が行われても、新しいECU10は、SDカード32から校正パラメータ取得することが出来る。従って、新しいECU10は、再度校正処理を行う必要がない。 In this way, the calibration parameters transmitted from the ECU 10 can be stored in the SD card 32. Therefore, even if the ECU 10 breaks down and the ECU 10 is replaced, the new ECU 10 can acquire calibration parameters from the SD card 32. Therefore, the new ECU 10 does not need to perform the calibration process again.
 ECU10は、撮像装置2から画像を取得する画像取得部113と、画像取得部113が取得した画像をSDカード32に送信する画像送信部114とを備えている。 ECU10 is provided with the image acquisition part 113 which acquires an image from the imaging device 2, and the image transmission part 114 which transmits the image which the image acquisition part 113 acquired to the SD card 32. FIG.
 このようにすると、画像記憶用の領域であるSDカード32に、校正パラメータは記憶される。従って、校正パラメータ用に記憶領域を確保することなく、校正パラメータをECU10とは異なる記憶領域に記憶することが出来る。 In this way, the calibration parameters are stored in the SD card 32, which is an image storage area. Therefore, the calibration parameters can be stored in a storage area different from the ECU 10 without securing a storage area for the calibration parameters.
 また、ECU10は、自車両1の識別情報を取得する識別情報取得部115を備えている。そして、パラメータ送信部112は、識別情報と校正パラメータとを、関連づけてSDカード32に送信する。 Further, the ECU 10 includes an identification information acquisition unit 115 that acquires identification information of the host vehicle 1. Then, the parameter transmitting unit 112 transmits the identification information and the calibration parameter to the SD card 32 in association with each other.
 このようにすると、仮にSDカード32が別の車両に搭載されたECU10に装着されたとしても、自車両1の校正パラメータが他の車両の校正パラメータによって上書きされることを防ぐことが出来る。 In this way, even if the SD card 32 is mounted on the ECU 10 mounted on another vehicle, it is possible to prevent the calibration parameter of the own vehicle 1 from being overwritten by the calibration parameter of the other vehicle.
 また、ECU10は、内部メモリ12及びSDカード32から校正パラメータを取得するパラメータ取得部116を備えている。そして、パラメータ取得部116がSDカード32から取得した校正パラメータと、パラメータ取得部116が内部メモリ12から取得した校正パラメータとが異なる場合、以下の処理を行う。パラメータ送信部112は内部メモリ12から取得された校正パラメータを、SDカード32に送信する。 Further, the ECU 10 includes a parameter acquisition unit 116 that acquires calibration parameters from the internal memory 12 and the SD card 32. When the calibration parameter acquired by the parameter acquisition unit 116 from the SD card 32 and the calibration parameter acquired by the parameter acquisition unit 116 from the internal memory 12 are different, the following processing is performed. The parameter transmission unit 112 transmits the calibration parameter acquired from the internal memory 12 to the SD card 32.
 このようにすると、再度校正処理が実施され、内部メモリ12に記憶されている校正パラメータが変更された場合でも、変更後の校正パラメータは、内部メモリ12とSDカード32との両方に記憶される。 In this way, even if the calibration process is performed again and the calibration parameters stored in the internal memory 12 are changed, the changed calibration parameters are stored in both the internal memory 12 and the SD card 32. .
 また、内部メモリ12に校正パラメータが記憶されていない場合、パラメータ取得部116によってSDカード32から取得された校正パラメータが、内部メモリ12に記憶される。 If no calibration parameter is stored in the internal memory 12, the calibration parameter acquired from the SD card 32 by the parameter acquisition unit 116 is stored in the internal memory 12.
 このようにすると、ECU10が故障した場合等にECU10が交換された場合でも、新しいECU10は、再度校正処理を行うことなく校正パラメータを内部メモリ12に保有することが出来る。 In this way, even if the ECU 10 is replaced when the ECU 10 fails, the new ECU 10 can hold the calibration parameters in the internal memory 12 without performing the calibration process again.
 (第2実施形態)
 第1実施形態において、CPU11は、所定の条件に基づいて、校正パラメータを内部メモリ12に書き込むかどうかを決定していた。これに対して、本実施形態におけるCPU11は、ECU10に接続されたダイアグツール36の復元機能を、担当者37が操作したかどうかを検知する。そして、担当者37が上記復元機能を操作したかどうかに基づいて、CPU11は、校正パラメータを内部メモリ12に書き込むかどうかを決定する。
(Second Embodiment)
In the first embodiment, the CPU 11 determines whether to write the calibration parameter in the internal memory 12 based on a predetermined condition. On the other hand, the CPU 11 in the present embodiment detects whether the person in charge 37 has operated the restoration function of the diagnostic tool 36 connected to the ECU 10. Then, based on whether the person in charge 37 has operated the restoration function, the CPU 11 determines whether or not to write the calibration parameter to the internal memory 12.
 また、第1実施形態において、CPU11は、所定の条件に基づいて、校正パラメータをSDカード32に送信するかどうかを決定していた。これに対して、本実施形態においてCPU11は、上記ダイアグツール36の保存機能を担当者37が操作したかどうかを検知する。そして、担当者37が上記保存機能を操作したかどうかに基づいて、CPU11は、校正パラメータをSDカード32に送信するかどうかを決定する。 In the first embodiment, the CPU 11 determines whether to transmit the calibration parameter to the SD card 32 based on a predetermined condition. In contrast, in the present embodiment, the CPU 11 detects whether the person in charge 37 has operated the storage function of the diagnostic tool 36. Then, based on whether the person in charge 37 has operated the storage function, the CPU 11 determines whether to transmit the calibration parameter to the SD card 32.
 また、第1実施形態では、CPU11が校正パラメータを内部メモリ12に書き込む処理や、CPU11が校正パラメータをSDカード32に送信する処理は、ECU10の電源がONされた時に行われていた。これに対して、本実施形態では、上記保存機能または上記復元機能が操作された時、CPU11は内部メモリ12に書き込む処理や、SDカード32に送信する処理を行う。本実施形態における車載キャリブレーション装置の構成や、校正処理の方法は図1~図5で説明した第1実施形態と同様であるので、説明を省略する。 In the first embodiment, the process in which the CPU 11 writes the calibration parameters to the internal memory 12 and the process in which the CPU 11 transmits the calibration parameters to the SD card 32 are performed when the ECU 10 is turned on. On the other hand, in the present embodiment, when the storage function or the restoration function is operated, the CPU 11 performs a process of writing to the internal memory 12 or a process of transmitting to the SD card 32. The configuration of the in-vehicle calibration apparatus and the calibration processing method in the present embodiment are the same as those in the first embodiment described with reference to FIGS.
 図7は、第2実施形態における、車載キャリブレーション装置が行う処理の流れを説明するフローチャートである。現在、ECU10にはダイアグツール36が接続されている。 FIG. 7 is a flowchart for explaining the flow of processing performed by the in-vehicle calibration device according to the second embodiment. Currently, a diagnostic tool 36 is connected to the ECU 10.
 ステップS210において、CPU11は、担当者37がダイアグツール36の保存機能を操作したかどうかを検知する。保存機能が操作された場合、ステップS211に進み、そうでなければステップS212に進む。 In step S210, the CPU 11 detects whether the person in charge 37 has operated the storage function of the diagnostic tool 36. If the save function is operated, the process proceeds to step S211; otherwise, the process proceeds to step S212.
 ステップS211において、パラメータ送信部112は、内部メモリ12から取得した校正パラメータと識別情報取得部115が取得した自車両1の識別情報とを関連付けて、SDカード32に送信する。その後、処理を終了する。このように、ダイアグツール36の保存機能が操作された場合、CPU11は、内部メモリ12に記憶されている校正パラメータをSDカード32に送信する。すなわち、SDカード32には、校正パラメータが記憶される。 In step S211, the parameter transmission unit 112 associates the calibration parameter acquired from the internal memory 12 with the identification information of the host vehicle 1 acquired by the identification information acquisition unit 115, and transmits it to the SD card 32. Thereafter, the process ends. As described above, when the saving function of the diagnostic tool 36 is operated, the CPU 11 transmits the calibration parameters stored in the internal memory 12 to the SD card 32. That is, the SD card 32 stores calibration parameters.
 ステップS212において、CPU11はダイアグツール36の復元機能が操作されたかどうかを検知する。復元機能が操作された場合ステップS213に進み、そうでなければ処理を終了する。 In step S212, the CPU 11 detects whether the restoration function of the diagnosis tool 36 has been operated. If the restoration function is operated, the process proceeds to step S213, and if not, the process ends.
 ステップS213において、パラメータ取得部116は、SDカード32から校正パラメータを取得する。そして、CPU11は、取得された校正パラメータを内部メモリ12に書き込む。このように、ダイアグツール36の復元機能が操作された場合、CPU11はSDカード32に記憶されている校正パラメータを内部メモリ12に書き込む。 In step S213, the parameter acquisition unit 116 acquires calibration parameters from the SD card 32. Then, the CPU 11 writes the acquired calibration parameter in the internal memory 12. As described above, when the restoration function of the diagnosis tool 36 is operated, the CPU 11 writes the calibration parameters stored in the SD card 32 into the internal memory 12.
 以上により、本実施形態によっても、校正パラメータは内部メモリ12とSDカード32との両方に記憶される。よって、上記第1実施形態と同様の効果を得ることが出来る。 As described above, according to the present embodiment, the calibration parameters are stored in both the internal memory 12 and the SD card 32. Therefore, the same effect as the first embodiment can be obtained.
 (他の実施形態)
 以上、実施形態について例示したが、実施形態は上述した各実施形態に何ら制限されることなく、以下に例示するように種々変形した実施形態も包含する。また、各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。
(Other embodiments)
As mentioned above, although illustrated about embodiment, embodiment is not restrict | limited to each embodiment mentioned above at all, Embodiment also variously deformed so that it may illustrate below is included. In addition, not only combinations of parts that clearly show that combinations are possible in each embodiment, but also combinations of embodiments even if they are not clearly indicated unless there is a problem with the combination. It is also possible.
 上記実施形態におけるECU10は、SDカード32に、すでに別の車両の識別情報と校正パラメータが記憶されている場合、自車両1の校正パラメータをSDカード32に送信しない。他の実施形態では、例えば、SDカード32の空き容量サイズが大きい場合を想定すると、ECU10は次のような構成としてもよい。ECU10は、SDカード32に他の車載の校正パラメータが記憶されているかどうかに拘わらず、自車両1の識別情報と校正パラメータとを関連づけて送信する。このようにすると、SDカード32には、複数の車両の校正パラメータが記憶されることになる。また、SDカード32には、各車両の識別情報と校正パラメータとが関連づけて記憶されているので、ECU10は容易に自車両1用の校正パラメータを特定することが出来る。また、上記実施形態において、校正処理部111やパラメータ送信部112は同一のCPU11にて処理を行っているが、ECU10に複数のCPUを設けて、別々のCPUで行うようにしてもよい。 The ECU 10 in the above embodiment does not transmit the calibration parameter of the host vehicle 1 to the SD card 32 when the identification information and calibration parameters of another vehicle are already stored in the SD card 32. In another embodiment, for example, assuming that the free capacity size of the SD card 32 is large, the ECU 10 may be configured as follows. Regardless of whether other in-vehicle calibration parameters are stored in the SD card 32, the ECU 10 transmits the identification information of the host vehicle 1 and the calibration parameters in association with each other. If it does in this way, the calibration parameter of a plurality of vehicles will be memorized by SD card 32. Further, since the identification information of each vehicle and the calibration parameter are stored in the SD card 32 in association with each other, the ECU 10 can easily specify the calibration parameter for the host vehicle 1. Moreover, in the said embodiment, although the calibration process part 111 and the parameter transmission part 112 are processed by the same CPU11, you may make it provide with several CPU in ECU10 and perform by separate CPU.
 なお、上記実施形態では、実パラメータを校正パラメータとしたが、ずれ量eを校正パラメータとしてもよい。このような場合、内部メモリ12やSDカード32には、基準パラメータとずれ量eとが記憶されることになる。このような構成とした場合、CPU11が撮像装置2から画像を取得する際には、CPU11はずれ量eと基準パラメータとに基づき実パラメータを一旦計算する必要がある。 In the above embodiment, the actual parameter is the calibration parameter, but the deviation e may be the calibration parameter. In such a case, the reference parameter and the shift amount e are stored in the internal memory 12 or the SD card 32. In the case of such a configuration, when the CPU 11 acquires an image from the imaging device 2, the CPU 11 needs to temporarily calculate an actual parameter based on the deviation amount e and the reference parameter.
 また、上記実施形態における外部装置はSDカード32としたが、無線通信機能を利用してECU10が送受信可能となるようなサーバを外部装置として用いてもよい。 Further, although the external device in the above embodiment is the SD card 32, a server that allows the ECU 10 to transmit and receive using the wireless communication function may be used as the external device.
 上記実施形態では、フロントカメラ21、ライトカメラ22、レフトカメラ23、リアカメラ24と4つのカメラが車両に設けられているが、単一のカメラに上記車載キャリブレーション装置を用いてもよい。 In the above embodiment, the front camera 21, the right camera 22, the left camera 23, and the rear camera 24 are provided in the vehicle, but the in-vehicle calibration device may be used for a single camera.
 また、上記実施形態では、パラメータ(x、y、z)及びパラメータ(ピッチ角、ロール角、ヨー角)の全てのパラメータに対して、校正処理を行い実パラメータを計算している。これに対して、これら全てのパラメータに対して校正処理を行うのではなく、少なくとも1つのパラメータに対して校正処理を行うようにしてもよい。例えば、ピッチ角に対して校正処理を行うようして、ピッチ角のずれ量や実パラメータが内部メモリ12とSDカード32とに記憶されるようにする。 In the above-described embodiment, the actual parameters are calculated by performing the calibration process for all parameters (x, y, z) and parameters (pitch angle, roll angle, yaw angle). On the other hand, the calibration process may not be performed on all these parameters, but the calibration process may be performed on at least one parameter. For example, calibration processing is performed on the pitch angle so that the pitch angle deviation amount and actual parameters are stored in the internal memory 12 and the SD card 32.
 なお、上記実施形態にて、ECU10の電源ON時に行っている処理を、ECU10の電源OFFの時や、校正処理が行われた直後に行うようにしてもよい。 In the above embodiment, the processing performed when the ECU 10 is powered on may be performed when the ECU 10 is powered off or immediately after the calibration processing is performed.
 なお、上記実施形態において、ECU10は、校正パラメータをSDカード32に送信している。しかしながら、上記実施形態に限るものではなく、ECU10は、校正パラメータをSDカード32とは別の外部装置に送信するようにしてもよい。 In the above embodiment, the ECU 10 transmits calibration parameters to the SD card 32. However, the embodiment is not limited to the above embodiment, and the ECU 10 may transmit the calibration parameter to an external device different from the SD card 32.
 また、上記実施形態において、自車両1には、表示装置30とSDカード32とが搭載されており、ECU10は、各装置に画像を送信している。しかしながら、上記実施形態に限るものではなく、自車両1に表示装置30とSDカード32とのうち、どちらか一方が搭載されている場合にも、ECU10は適用することが出来る。 In the above embodiment, the display device 30 and the SD card 32 are mounted on the host vehicle 1, and the ECU 10 transmits an image to each device. However, the present invention is not limited to the above embodiment, and the ECU 10 can also be applied to the case where either the display device 30 or the SD card 32 is mounted on the host vehicle 1.
 具体的に、自車両1にSDカード32が搭載されておらず、表示装置30が搭載されている場合を想定する。このような場合、ECU10は周辺監視用の画像を生成する機能を少なくとも備えていればよい。なお、この場合、ECU10は、内部メモリ12に記憶された校正パラメータを、表示装置30に送信してもよいし、別の外部装置に送信してもよい。 Specifically, it is assumed that the SD card 32 is not mounted on the host vehicle 1 but the display device 30 is mounted. In such a case, the ECU 10 only needs to have at least a function of generating an image for periphery monitoring. In this case, the ECU 10 may transmit the calibration parameter stored in the internal memory 12 to the display device 30 or to another external device.
 また、自車両1に表示装置30が搭載されておらず、SDカード32が搭載されている場合を想定する。このような場合、ECU10はSDカード32に記憶される用途を想定した画像を生成する機能を少なくとも備えていれば良い。なお、このような場合、ECU10は、内部メモリ12に記憶された校正パラメータを、SDカード32に送信してもよいし、別の外部装置に送信してもよい。 Further, it is assumed that the display device 30 is not mounted on the host vehicle 1 but the SD card 32 is mounted. In such a case, the ECU 10 only needs to have at least a function for generating an image that is intended for use stored in the SD card 32. In such a case, the ECU 10 may transmit the calibration parameter stored in the internal memory 12 to the SD card 32 or to another external device.
 更に言うと、表示装置30やSDカード32が自車両1に搭載されていない場合でも、ECU10は適用することが出来る。このような場合、ECU10は、校正パラメータを自車両1に搭載されている他のECUやメモリなどに送信するようにしてもよい。 Furthermore, the ECU 10 can be applied even when the display device 30 and the SD card 32 are not mounted on the host vehicle 1. In such a case, the ECU 10 may transmit the calibration parameter to another ECU or a memory mounted on the host vehicle 1.

Claims (5)

  1.  自車両(1)の周辺を撮像する撮像装置(2)の取付位置の基準を表したパラメータを基準パラメータとし、前記撮像装置の実際の取付位置を表したパラメータを実パラメータとして、
     前記基準パラメータに対するずれ量(e)を計算し、前記ずれ量に基づき前記実パラメータを計算する校正処理を行う校正処理部(111)を備えた車載キャリブレーション装置(10)であって、
     前記ずれ量及び前記実パラメータのうち少なくとも一方を、校正パラメータとして記憶するパラメータ記憶部(12)と、前記パラメータ記憶部に記憶された前記校正パラメータを外部装置(32)に送信するパラメータ送信部(112)と、をさらに備える車載キャリブレーション装置。
    A parameter representing the reference of the mounting position of the imaging device (2) that images the periphery of the host vehicle (1) is a reference parameter, and a parameter representing the actual mounting position of the imaging device is an actual parameter,
    An in-vehicle calibration device (10) including a calibration processing unit (111) that calculates a deviation amount (e) with respect to the reference parameter and performs a calibration process for calculating the actual parameter based on the deviation amount,
    A parameter storage unit (12) that stores at least one of the deviation amount and the actual parameter as a calibration parameter, and a parameter transmission unit (12) that transmits the calibration parameter stored in the parameter storage unit to an external device (32). 112).
  2.  前記撮像装置から画像を取得する画像取得部(113)と、
     前記画像取得部が取得した画像を前記外部装置に送信する画像送信部(114)とをさらに備える、請求項1に記載の車載キャリブレーション装置。
    An image acquisition unit (113) for acquiring an image from the imaging device;
    The in-vehicle calibration device according to claim 1, further comprising an image transmission unit (114) that transmits an image acquired by the image acquisition unit to the external device.
  3.  前記自車両の識別情報を取得する識別情報取得部(115)をさらに備え、
     前記パラメータ送信部は、前記識別情報と前記校正パラメータとを、関連づけて前記外部装置に送信するように構成された、請求項1または2に記載の車載キャリブレーション装置。
    An identification information acquisition unit (115) for acquiring identification information of the host vehicle;
    The on-vehicle calibration device according to claim 1, wherein the parameter transmission unit is configured to transmit the identification information and the calibration parameter in association with each other to the external device.
  4.  前記パラメータ記憶部及び前記外部装置から前記校正パラメータを取得するパラメータ取得部(116)をさらに備え、
     前記パラメータ取得部が前記外部装置から取得した前記校正パラメータと、前記パラメータ取得部が前記パラメータ記憶部から取得した前記校正パラメータとが異なる場合、前記パラメータ送信部は前記パラメータ記憶部から取得された前記校正パラメータを、前記外部装置に送信するように構成された、請求項1ないし3のいずれか1項に記載の車載キャリブレーション装置。
    A parameter acquisition unit (116) for acquiring the calibration parameters from the parameter storage unit and the external device;
    When the calibration parameter acquired by the parameter acquisition unit from the external device is different from the calibration parameter acquired by the parameter acquisition unit from the parameter storage unit, the parameter transmission unit is acquired from the parameter storage unit. The in-vehicle calibration device according to any one of claims 1 to 3, wherein the calibration parameter is configured to transmit a calibration parameter to the external device.
  5.  前記パラメータ記憶部に前記校正パラメータが記憶されていない場合、前記パラメータ取得部によって前記外部装置から取得された前記校正パラメータが、前記パラメータ記憶部に記憶されるように構成された、請求項4に記載の車載キャリブレーション装置。 5. The calibration parameter acquired from the external device by the parameter acquisition unit when the calibration parameter is not stored in the parameter storage unit is configured to be stored in the parameter storage unit. The on-vehicle calibration device described.
PCT/JP2015/001977 2014-05-09 2015-04-08 Vehicle-mounted calibration device WO2015170439A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201590000543.1U CN206231303U (en) 2014-05-09 2015-04-08 Vehicle-mounted calibrating installation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-097931 2014-05-09
JP2014097931A JP6398300B2 (en) 2014-05-09 2014-05-09 In-vehicle calibration device

Publications (1)

Publication Number Publication Date
WO2015170439A1 true WO2015170439A1 (en) 2015-11-12

Family

ID=54392302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001977 WO2015170439A1 (en) 2014-05-09 2015-04-08 Vehicle-mounted calibration device

Country Status (3)

Country Link
JP (1) JP6398300B2 (en)
CN (1) CN206231303U (en)
WO (1) WO2015170439A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9800237B2 (en) 2014-03-27 2017-10-24 Denso Corporation Drive device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210033712A1 (en) * 2018-02-09 2021-02-04 Sony Corporation Calibration apparatus, calibration method, and program
JP7215231B2 (en) 2019-03-04 2023-01-31 トヨタ自動車株式会社 Information processing device, detection method and program
WO2024100877A1 (en) * 2022-11-11 2024-05-16 日立Astemo株式会社 Electronic device for vehicles

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001317088A (en) * 2000-05-10 2001-11-16 Hitachi Constr Mach Co Ltd Electronic controller for construction machine
JP2003023487A (en) * 2001-07-09 2003-01-24 Matsushita Electric Ind Co Ltd Telephone set
JP2007261463A (en) * 2006-03-29 2007-10-11 Clarion Co Ltd Calibration system of vehicle-mounted camera
JP2008139100A (en) * 2006-11-30 2008-06-19 Hitachi Ltd Position measuring system
JP2012253609A (en) * 2011-06-03 2012-12-20 Fujitsu Ten Ltd Drive information recording device and vehicle periphery image reproduction system
JP2013109403A (en) * 2011-11-17 2013-06-06 Brother Ind Ltd Quality determination program, quality data collection determination program, and information processing device
JP2014082622A (en) * 2012-10-16 2014-05-08 Denso Corp On-vehicle camera attachment error detection device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200819A (en) * 2002-12-17 2004-07-15 Clarion Co Ltd Method of calibrating mounted camera and calibrator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001317088A (en) * 2000-05-10 2001-11-16 Hitachi Constr Mach Co Ltd Electronic controller for construction machine
JP2003023487A (en) * 2001-07-09 2003-01-24 Matsushita Electric Ind Co Ltd Telephone set
JP2007261463A (en) * 2006-03-29 2007-10-11 Clarion Co Ltd Calibration system of vehicle-mounted camera
JP2008139100A (en) * 2006-11-30 2008-06-19 Hitachi Ltd Position measuring system
JP2012253609A (en) * 2011-06-03 2012-12-20 Fujitsu Ten Ltd Drive information recording device and vehicle periphery image reproduction system
JP2013109403A (en) * 2011-11-17 2013-06-06 Brother Ind Ltd Quality determination program, quality data collection determination program, and information processing device
JP2014082622A (en) * 2012-10-16 2014-05-08 Denso Corp On-vehicle camera attachment error detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9800237B2 (en) 2014-03-27 2017-10-24 Denso Corporation Drive device

Also Published As

Publication number Publication date
JP6398300B2 (en) 2018-10-03
JP2015214236A (en) 2015-12-03
CN206231303U (en) 2017-06-09

Similar Documents

Publication Publication Date Title
JP4751939B2 (en) Car camera calibration system
JP4690476B2 (en) Car camera calibration system
JP4803450B2 (en) On-vehicle camera calibration device and vehicle production method using the device
JP5081313B2 (en) Car camera calibration system
JP4861034B2 (en) Car camera calibration system
WO2010113673A1 (en) Calibration device, method, and program for onboard camera
WO2015170439A1 (en) Vehicle-mounted calibration device
JP2008131177A (en) Correcting device for on-board camera, correcting method, and production method for vehicle using same correcting method
JP4408921B2 (en) Electronics
WO2022134364A1 (en) Vehicle control method, apparatus and system, device, and storage medium
JP2011151666A (en) Device, system and method for acquiring parameter, and program
JP2011087308A (en) Device, method, and program for calibration of in-vehicle camera
US20200134872A1 (en) Automatic calibration method and apparatus for onboard camera
CN109982038A (en) Show the method, apparatus and computer equipment of sound source position
JP2017188738A (en) Mounting angle detection device for on-vehicle camera, mounting angle calibration device, mounting angle detection method, mounting angle calibration method, and computer program
CN109345591B (en) Vehicle posture detection method and device
US10404565B2 (en) Simulation latency indication
WO2019176037A1 (en) Danger warning system and danger warning method
JP2015031978A (en) Information providing device and method
JP4539427B2 (en) Image processing device
JP2008177742A (en) Camera parameter acquisition device
JP2007221199A (en) On-vehicle camera display device and image processing unit
JP2021069070A (en) Vehicle control device
JP2018113622A (en) Image processing apparatus, image processing system, and image processing method
CN115880142A (en) Image generation method and device of trailer, storage medium and terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15789877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15789877

Country of ref document: EP

Kind code of ref document: A1