WO2015167698A2 - An energy storage apparatus - Google Patents
An energy storage apparatus Download PDFInfo
- Publication number
- WO2015167698A2 WO2015167698A2 PCT/US2015/022226 US2015022226W WO2015167698A2 WO 2015167698 A2 WO2015167698 A2 WO 2015167698A2 US 2015022226 W US2015022226 W US 2015022226W WO 2015167698 A2 WO2015167698 A2 WO 2015167698A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- energy storage
- energy
- storage apparatus
- cell
- pouch
- Prior art date
Links
- 238000004146 energy storage Methods 0.000 title claims abstract description 56
- 239000003792 electrolyte Substances 0.000 claims abstract description 12
- 210000004027 cell Anatomy 0.000 claims description 73
- 210000000352 storage cell Anatomy 0.000 claims description 3
- 238000000034 method Methods 0.000 description 16
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000003990 capacitor Substances 0.000 description 5
- 238000007599 discharging Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000001172 regenerating effect Effects 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002322 conducting polymer Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229920003223 poly(pyromellitimide-1,4-diphenyl ether) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 229910001220 stainless steel Chemical group 0.000 description 1
- 239000010935 stainless steel Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0413—Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/102—Primary casings; Jackets or wrappings characterised by their shape or physical structure
- H01M50/105—Pouches or flexible bags
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/78—Cases; Housings; Encapsulations; Mountings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/204—Racks, modules or packs for multiple batteries or multiple cells
- H01M50/207—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
- H01M50/211—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/60—Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
- H01M50/673—Containers for storing liquids; Delivery conduits therefor
- H01M50/682—Containers for storing liquids; Delivery conduits therefor accommodated in battery or cell casings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M2010/4271—Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/10—Batteries in stationary systems, e.g. emergency power source in plant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- Batteries and supercapacitors are most frequently wound and housed in mechanical cylinders. To achieve higher energy storage levels, these mechanical cylinders are frequently concatenated and connected via large bus bars. These cells are then welded together with the large bus bars and then encased in heavy metal containers. Space in between successive cylinders is unutilized for energy storage, or any useful means. Circular cells by their design leave a large amount of empty space, which is wasted in each module.
- the present teachings disclose an apparatus, method, and article of manufacture for eliminating substantial quantities of metal and wasted space used to house modern energy storage devices. Furthermore, the present teachings show how the previously wasted volume may be utilized to house additional energy storage medium. The present disclosure further teaches methods for exchanging weight contributions from metal for weight contributions from additional energy storage medium, improving overall energy density and lowering manufacturing costs.
- FIGURE la illustrates an exploded view of a pouch cell, according to one embodiment of the present teachings.
- FIGURE lb illustrates a perspective view of a pouch cell, according to one embodiment of the present teachings.
- FIGURE lc illustrates an exploded view of a pouch cell, according to one embodiment of the present teachings.
- FIGURE 2a illustrates an exploded view of an energy storage apparatus, according to one embodiment of the present teachings.
- FIGURE 2b illustrates a perspective view of an energy storage apparatus, according to one embodiment of the present teachings.
- FIGURE 3 illustrates a power management system, according to one embodiment of the present teachings.
- the present teachings disclose a high power and high energy solution that is readily scalable and fits in multiple platforms at a very low cost of manufacturing.
- the present teachings disclose a method, apparatus, system and article of manufacture for an energy storage device, which can yield a 300% improvement to energy density over that which is available in modern energy storage devices.
- the present disclosure illustrates ecologically friendly methods for reducing waste by substantially reducing volumes of metal necessary to house an energy storage apparatus.
- the present teachings also disclose an energy storage apparatus, which has fewer points of failure than currently available solutions. And, because of significant weight reduction for comparable energy densities using the present teachings, weight sensitive applications such as the automotive industry will greatly benefit.
- present teachings also reduce output impedance of an energy storage device, compared with current state of the art solutions.
- one modern supercapacitor is a 48 volt module, at 166 farads, with a resistance of 6 milliohms.
- a newly designed 48 volt module equivalent product will have an increased capacitance of 334 farads and an improved resistance at 2.4 milliohms, to as high as 1992 farads at an improved resistance of 0.4 milliohms, depending on size and configuration, with the overall product weight decreased by approximately 40%. Due to elimination of significant amounts of metal, manufacturing and materials costs are reduced by approximately 45%. Employing techniques disclosed in the present teachings can yield up to 16 times more energy at a given power rating than currently available, with nearly half the weight and half the space required.
- a pouch cell apparatus 100 comprising an upper non conducting flat rectangular pouch layer 106 and a lower non conducting flat rectangular pouch layer 104, an energy cell 102 having a positive tab 108 and a negative tab 110, and an electrolyte (not shown).
- the pouch cell 100 has four edges, wherein each edge extends slightly beyond an edge length of the energy cell 102. Two of the pouch cell edges are adapted to fit the positive tab 108 and the negative tab 110 there through, such that the tabs extend outwardly of the pouch cell edges.
- Methods of manufacturing the pouch cell include a step of impregnation of the pouch cell with electrolyte, either before or during the step of ultrasonically welding the pouch cell edges together, in a manner that seals the electrolyte entirely within the pouch cell.
- the pouch cell edges adapted to fit the positive and negative tabs there through are also sealed such that electrolyte impregnating an internal portion of the pouch cell do not leak therefrom.
- the energy cell 102 has four edges, including a flat rectangular positive electrode layer and a flat rectangular negative electrode layer.
- the positive tab 108 protrudes laterally outward from the flat rectangular positive electrode layer.
- the negative tab 110 protrudes laterally outward from the flat rectangular negative electrode layer.
- a flat rectangular separator is disposed there between the positive electrode layer and the negative electrode layer to physically separate the two electrodes to prevent an electrical shorting between layers.
- the separator may be composed of paper, non woven porous polymeric films, polyacrylonitrile, kapton, woven glass fibers or porous woven ceramic fibers.
- the non conducting pouch cell 100, adapted to house and seal the energy cell 102 is ultrasonically welded about the energy cell to seal.
- both electrode layers may be composed of carbon electrodes or derivatives, metal oxide or conducting polymer electrodes.
- the energy cell 102 may comprise a supercapacitor configured as a double layer capacitor, pseudocapacitor and/or a hybrid capacitor.
- the energy cell 102 may comprise a battery apparatus, such as for example a lithium ion battery.
- FIGURE lb illustrates a perspective view of the embodiment of FIGURE la, after the edges have been ultrasonically welded and sealed.
- Figure lc an exploded view of a pouch cell 100 is illustrated.
- Figure lc is similar to the above referenced Figure la and Figure lb, but further illustrates the energy cell 102 enclosed by an upper housing 107 and a lower housing 105.
- the upper housing 107 and lower housing 105 When assembled, the upper housing 107 and lower housing 105 will be fitted together to provide an enclosure for the energy cell 102.
- the upper housing 107 and the lower housing 105 are made of Acetonitrile resistant materials, such as for example polypropylene.
- the upper housing 107 comprises a plurality of perforations 111 which function as an aperture to allow electrolyte to flow freely in and out of the enclosure such that the electrolyte may come into contact with the energy cell 102.
- the lower housing 105 comprises a plurality of perforations 109 which function as an aperture to allow electrolyte to flow freely in and out of the enclosure such that the electrolyte may come into contact with the energy cell 102.
- the upper housing 107 and the lower housing 105 encases a stacked electrode package and locks the electrodes in place so they cannot move or separate.
- the electrode may produce gaps between the anode and cathode over time, which may lead to performance problems.
- the upper housing 107 and the lower housing 105 functions to enclose the electrodes, ensuring that there is no movement or separation between the layers of anode, separator and cathode. Once the housing enclosure is fitted together around the electrodes, the assembly is placed inside the pouch cell, electrolyte is added and the pouch is vacuum sealed.
- FIGURE 2a illustrates an exploded view of an energy storage apparatus 200 and FIGURE 2b illustrates a perspective view of the energy storage apparatus 200 completely assembled.
- FIGURE 2a illustrates an energy storage apparatus 200 comprising a plurality of pouch cells 210 vertically arranged and aligned as shown, having a positive wire harness 212 and a negative wire harness 214.
- a plurality of positive tabs are aligned vertically from each respective one of the plurality of pouch cells 210 on a first side
- a plurality of negative tabs are aligned vertically from each respective one of the plurality of pouch cells on a second side.
- each of the plurality of positive tabs are ultrasonically welded together and thereby coupled and that each of the plurality of negative tabs are ultrasonically welded together and thereby coupled.
- a positive wire harness 212 is subsequently affixed to the coupled positive tabs and a negative wire harness 214 is affixed to the coupled negative tabs.
- the positive and negative wire harnesses 212 214 are adapted to electrically couple the positive and negative tabs to a positive and negative terminal respectively.
- a rectangular rack mount housing is adapted to enclose the plurality of pouch cells 210, and the wire harnesses 212 214.
- the rectangular rack mount housing comprises a lower housing portion 202, a top housing portion 206, a rear housing portion 204 and a front housing portion 208.
- FIGURE 2b illustrates a perspective view of the fully assembled energy storage apparatus 200.
- the positive and negative terminals are adapted to extend outwardly from the rectangular rack mount housing. The positive and negative terminals are thus adapted to facilitate electrical charging and discharging of the pouch cells.
- Modern energy storage devices typically compress multiple layers of electrode and wind the layers in a cylinder housed with metal.
- multiple cells are concatenated into a box and connected via bus bars.
- Nestling metal cylinders into a box yields unused space in the areas between cylinders.
- the present teachings completely avoid such wasted space by avoiding modern techniques of using cylinders to house energy storage devices, thereby maximizing valuable volumes of space.
- such previously wasted space is now available for additional energy storage elements employing techniques of the present disclosure.
- modern heavy automotive applications require multiple cells concatenated with bus bars, there are more points of potential failure in such devices than exist in the presently disclosed device.
- a plurality of pouch cells may be contained within a single rectangular rack mount housing. It will be appreciated that employing techniques of the present teachings, a scalable energy storage apparatus is further disclosed, which is readily customizable for various energy and power requirements.
- each pouch cell comprises a supercapacitor energy storage cell, having a predetermined voltage
- such pouch cells may be layered to additively create a specified energy requirement. For example, in 12 volt applications, a plurality of pouch cells may be layered to create the required 12 volts, such as each pouch cell having 3 volts capacity. It will be appreciated that 2.7 volt pouch cells may also be used in the present teachings.
- At least one supercapacitor pouch cell layer and at least one battery pouch cell layer are housed within a rectangular rack mount housing having one negative external terminal and one positive external terminal. Charging and discharging power management is accomplished via a balancing circuit internally disposed with respect to the rectangular rack mount housing.
- This novel embodiment is a component level combination of an energy device and a power device. Internally, a first wire harness may be used to connect each respective power device to the balancing circuit for control of charging and discharging.
- a second wire harness may be used to connect each respective energy device to the balancing circuit to control charging and discharging.
- a combined energy and power device is useful for a myriad of applications.
- current state of the art methods of employing a battery to recover energy when braking are limited in that a battery is only able to recharge at a relatively low rate when compared with a supercapacitor. Therefore, it would be advantageous in such applications to have a supercapacitor available for regenerative braking rapid charging, as a super capacitor can intake large amounts of energy very quickly.
- the balancing circuit can be configured to flow as much regenerative braking charge to the battery pouch cells as possible without damaging the battery pouches, and flow the remaining charge to super capacitor pouch cells, such that no energy is wasted in the regenerative braking process.
- the energy storage apparatus is made up of 16 to 64 square or rectangular layers of negative and positive electrode.
- a separator paper separates each electrode layer.
- On each electrode is a tab in which current travels.
- the negative and positive electrode and tabs are interleaved so that the negative tabs are on one side and the positive tabs are on the opposite side.
- the tabs are ultra-sonically welded together.
- the positive tabs are connected together and the negative tabs are ultra-sonically welded together. This creates one negative lead and a positive lead.
- An interlocking comb then encompasses the assembly to hold the structure in place.
- This assembly is then encased in an aluminum bag.
- the unit is impregnated with electrolyte and is than vacuum-sealed.
- the two leads are ultra-sonically welded to the bag and exposed. This creates a 2.7 volt or 3.0 volt pouch cell.
- the size of the layer can be cut into various squares or shapes depending on the energy requirements. For example, four 3 volt pouches may be combined and these tabs are ultra- sonically connected in series to create a 12 volt energy storage apparatus.
- a wire harness is connected to each tab.
- the entire assembly is then encased in an aluminum or stainless steel structure.
- Each 12 volt energy storage apparatus can then be used individually or connected in a rack to increase voltage.
- Each blade can also increase in energy by increasing the number of layers and or the size of the configuration.
- This design on average can increase the energy density of a supercapacitor by
- FIG. 3 illustrates a power management system 300, according to one embodiment of the present teachings.
- the power management system 300 may be adapted for use in automotive applications.
- each energy storage apparatus (Energy BladeTM ) may be 12 volts, 15 volts, 24 volts, or 48 volts depending on the number of pouch cells.
- a first module 302 comprises an internal balance control. For example, if the first module 302 is 12 volts, comprising four 3 volt pouches, the internal balance control functions to balance all internal 3 volt pouches such that none of the pouches exceeds 3 volts.
- this may be a resistor circuit or optionally a more complex microprocessor controller circuit that may switch off charging of any individual pouch before it exceeds 3 volts.
- a battery and/or supercapacitor energy storage apparatus is connected to an external power source, such as for example an alternator or other plug-in source. It will be appreciated that in one variation, a supercapacitor energy storage apparatus as described herein may optionally be configured to be charged from a battery energy storage apparatus.
- each described element in each claim should be construed as broadly as possible, and moreover should be understood to encompass any equivalent to such element insofar as possible without also encompassing the prior art.
- the term "includes” is used in either the detailed description or the claims, such term is intended to be inclusive in a manner similar to the term “comprising”.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Battery Mounting, Suspending (AREA)
- Sealing Battery Cases Or Jackets (AREA)
- Connection Of Batteries Or Terminals (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017506250A JP2017520125A (en) | 2014-04-17 | 2015-03-24 | Energy storage device |
EP15786536.1A EP3132480A2 (en) | 2014-04-17 | 2015-03-24 | An energy storage apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201461981134P | 2014-04-17 | 2014-04-17 | |
US61/981,134 | 2014-04-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2015167698A2 true WO2015167698A2 (en) | 2015-11-05 |
WO2015167698A3 WO2015167698A3 (en) | 2015-12-23 |
Family
ID=54359478
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2015/022226 WO2015167698A2 (en) | 2014-04-17 | 2015-03-24 | An energy storage apparatus |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3132480A2 (en) |
JP (1) | JP2017520125A (en) |
WO (1) | WO2015167698A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11721494B2 (en) | 2017-02-20 | 2023-08-08 | The Research Foundation For The State University Of New York | Multi-cell multi-layer high voltage supercapacitor apparatus including graphene electrodes |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6296967B1 (en) * | 1999-09-24 | 2001-10-02 | Electrofuel Inc. | Lithium battery structure incorporating lithium pouch cells |
CA2754838C (en) * | 2009-03-06 | 2017-11-07 | Mcneil-Ppc, Inc. | Electrical stimulation device with additional sensory modalities |
US8481203B2 (en) * | 2010-02-03 | 2013-07-09 | Bren-Tronies Batteries International, L.L.C. | Integrated energy storage unit |
GB2491816A (en) * | 2011-06-07 | 2012-12-19 | Leclancha S A | Modular battery with exchangeable cell elements |
-
2015
- 2015-03-24 WO PCT/US2015/022226 patent/WO2015167698A2/en active Application Filing
- 2015-03-24 JP JP2017506250A patent/JP2017520125A/en active Pending
- 2015-03-24 EP EP15786536.1A patent/EP3132480A2/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11721494B2 (en) | 2017-02-20 | 2023-08-08 | The Research Foundation For The State University Of New York | Multi-cell multi-layer high voltage supercapacitor apparatus including graphene electrodes |
Also Published As
Publication number | Publication date |
---|---|
JP2017520125A (en) | 2017-07-20 |
WO2015167698A3 (en) | 2015-12-23 |
EP3132480A2 (en) | 2017-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100921345B1 (en) | Hybrid-typed Electrode Assembly of Capacitor-Battery Structure | |
JP3661725B2 (en) | Power supply | |
US6762926B1 (en) | Supercapacitor with high energy density | |
KR101690795B1 (en) | Double-layer multiple-coil supercapacitor | |
CN108511199B (en) | Electrochemical device | |
US20130286544A1 (en) | Assembly intended for storing electrical energy and having a stacked element | |
WO1999031688A1 (en) | Capacitor with dual electric layer | |
JP4800232B2 (en) | Electric double layer capacitor | |
CN110809811B (en) | Balancing circuit for a supercapacitor module | |
US20080241656A1 (en) | Corrugated electrode core terminal interface apparatus and article of manufacture | |
KR20130093697A (en) | Module for high-capacity supercapacitor | |
JP7303177B2 (en) | energy storage system | |
US20110188171A1 (en) | Electric double layer capacitor and method of manufacturing the same | |
EP3616298A1 (en) | Balancing circuit for an electrical energy storage device | |
KR101599711B1 (en) | Electric double layer device | |
EP3132480A2 (en) | An energy storage apparatus | |
KR101035284B1 (en) | Electrode Assembly of Improved Power Property and Secondary Battery Comprising the Same | |
KR101803086B1 (en) | Electrochemical capacitor | |
JP6837868B2 (en) | Electrochemical device | |
KR20170113908A (en) | Lithium ion capacitor | |
KR101211667B1 (en) | Super capacitor type of pouch and manufacturing method | |
KR100529253B1 (en) | Supercapacitor with high energy density | |
JP4370019B2 (en) | Electric field activation method for electric double layer capacitor | |
KR101152649B1 (en) | Electrode Assembly of Improved Power Property and Secondary Battery Comprising the Same | |
KR20100100482A (en) | Supercapacitor and manufacture method of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15786536 Country of ref document: EP Kind code of ref document: A2 |
|
REEP | Request for entry into the european phase |
Ref document number: 2015786536 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015786536 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017506250 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15786536 Country of ref document: EP Kind code of ref document: A2 |