WO2015167270A1 - 롤링 부트 - Google Patents
롤링 부트 Download PDFInfo
- Publication number
- WO2015167270A1 WO2015167270A1 PCT/KR2015/004364 KR2015004364W WO2015167270A1 WO 2015167270 A1 WO2015167270 A1 WO 2015167270A1 KR 2015004364 W KR2015004364 W KR 2015004364W WO 2015167270 A1 WO2015167270 A1 WO 2015167270A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- folding
- axis
- support
- fastening
- rolling boot
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D3/00—Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
- F16D3/84—Shrouds, e.g. casings, covers; Sealing means specially adapted therefor
- F16D3/843—Shrouds, e.g. casings, covers; Sealing means specially adapted therefor enclosed covers
- F16D3/845—Shrouds, e.g. casings, covers; Sealing means specially adapted therefor enclosed covers allowing relative movement of joint parts due to the flexing of the cover
Definitions
- the present invention relates to a rolling boot, and more particularly, to a rolling boot covering a connection part of two rotary shafts which are connected to each other in a cutting manner.
- a joint is used to transmit rotational power (torque) to a rotation shaft having different rotation shaft angles.
- a hook joint or a flexible joint is used in the case of a propulsion shaft having a small power transmission angle.
- a drive shafts constant velocity joints are used.
- the constant velocity joint is mainly used for the axle shaft of an independent suspension type front wheel drive vehicle, since even when the driving angle of the driving shaft and the driven shaft is large, the power can be smoothly transmitted at constant speed.
- the engine side inboard side is It consists of a tripod type joint, and a tire side (outboard side) is comprised of a ball type joint about a shaft.
- Such constant velocity joints perform the angular motion to absorb the displacement change and the steering angle change of the suspension.
- the smooth joint motion and rotational motion of the constant velocity joint made of metal material prevents the inflow of foreign materials and the cooling of the rising temperature during driving. Wrap the kerf with a rolling boot and fill it with grease. In addition, the grease filled inside the rolling boot is fastened to the fixing band to prevent the departure from the outside.
- FIG. 1 is a perspective view illustrating a constant velocity joint to which a conventional rolling boot is applied
- FIG. 2 is a cross-sectional view taken along line II of FIG. 1.
- a general constant velocity joint has a tripod-type joint at the engine side (inboard side) about the shaft 1, and a wheel side (outboard side) around the shaft 1. Consists of a ball-type joint.
- the constant velocity joint which is installed at the engine side (inboard side) with respect to the shaft 1, transmits the rotational power of the engine (not shown) and has a track groove formed therein, the housing 2
- the rotating boot (3) and the rolling boot (3) connected to one end of the shaft (1) and the rolling boot (3) to the housing (2) and the shaft (1) are rotated by receiving the rotational power of And a fixing band 4 for fixing each.
- the rolling boot 3 is formed in an annular shape having an inner space S, the first fastening portion 31 fastened to the shaft 1, and the second fastening portion 34 fastened to the housing 2. And a folding part 32 that extends from the first fastening part 31 to the second fastening part 34.
- Fixing grooves 312 and 342 to which the fixing band 4 is fastened are formed on the outer circumferential surface of the first fastening part 31 and the outer circumferential surface of the second fastening part 34, respectively.
- One end portion 3222 of the folding portion 32 is connected to the first coupling portion 31, and the other end 3326 is connected to the second coupling portion 34.
- the folding part 32 has a portion between one end 3222 and the other end 3262 of the folding part 32 concavely bent toward the inner space S side.
- a rotational force output from an engine (not shown) is transmitted to the housing 2 via a transmission (not shown), and the housing 2 is rotated by the rotational force, and a spider (not shown)
- the shaft 1, which is connected to the c) is rotated by the rotation of the housing 2, thereby rotating the wheel (not shown).
- the rolling boot 3 covers the connecting portion of the housing 2 and the shaft 1 to prevent the connecting portion from being damaged by foreign matter.
- the rolling boot 3 includes grease in the inner space S thereof, thereby smoothing the cutting and rotating movement of the connecting portion, and suppressing the increase in the temperature of the connecting portion during driving.
- the rolling boot 3 absorbs the sliding and cutting of the constant velocity joint by folding or folding the folding part 32 when the housing 2 and the shaft 1 are articulated.
- the folding part 32 is provided as one, the amount of cutting is limited, and when the cutting amount exceeds the limited amount of folding, the unfolded portion (tension) of the folding part 32 and the folding part 32 There was a problem that a significant load was applied to the folded portion (compression portion), causing the rolling boot 3 to break and the grease to leak.
- the folding part 32 may be provided in plurality, but in this case, the size (length) of the rolling boot 3 is increased to interfere with the surrounding objects of the rolling boot 3 and the rolling The weight and manufacturing cost of the boot 3 are deteriorated, and the amount of grease filled in the rolling boot 3 is increased. Increasing the amount of grease causes deterioration of material costs and vehicle weight.
- an object of this invention is to provide the rolling boot which can prevent the buckling of a folding part.
- Another object of the present invention is to provide a rolling boot which can be made small in size while increasing the amount of cutting and preventing breakage due to the cutting.
- the present invention in order to achieve the object as described above, is formed in an annular shape having an inner space, the first rolling shaft and a rolling boot coupled to the second rotation shaft is connected to the first rotation shaft, the first, in the first A first fastening part fastened to the rotating shaft; A second fastening part fastened to the second rotation shaft; A folding part that is bent and extended from the first fastening part toward the second fastening part; And a support part connecting the foldable part and the second fastening part, wherein the support part has a thickness between an outer circumferential surface and an inner circumferential surface of the support part than a thickness between an outer circumferential surface and an inner circumferential surface of the folding part and a thickness between an outer circumferential surface and an inner circumferential surface of the second fastening part. It provides a thickly formed rolling boot.
- the support portion may be formed such that the inner circumferential surface of the support portion is convex toward the inner space.
- the support portion may be formed in an annular shape having a constant thickness between the outer circumferential surface and the inner circumferential surface of the support portion.
- an axis that intersects the center of the first fastening part and the center of the second fastening part is a joint center axis
- the support part has an outer circumferential surface of the support part being the joint center axis. It is formed to be inclined with respect to, and may be formed to be inclined so that the distance between the outer peripheral surface of the support portion and the joint central axis is shortened from the second fastening portion side portion of the outer peripheral surface of the support portion toward the folding portion side portion.
- the support portion may have an acute angle formed between an outer circumferential surface of the support portion and the joint central axis in an angle range of 30 degrees to 60 degrees.
- At least one groove may be formed on an outer circumferential surface of the support, and the groove may extend along the circumferential direction of the support.
- the groove may be formed in plural, and the plurality of grooves may be arranged in the axial direction of the support part.
- the folding part may include a first folding part having one end connected to the first fastening part; And a second folding part of which one end is connected to the other end of the first folding part and the other end is connected to the support part.
- an axis crossing the center of the first fastening part and the center of the second fastening part is referred to as an X axis
- an axis perpendicular to the X axis is referred to as the Y axis.
- the first folding portion may be bent such that one end of the first folding portion and the other end thereof overlap in the Y-axis direction
- the second folding portion may be bent such that one end and the other end of the second folding portion overlap in the X-axis direction. have.
- the first folding part may be bent concave toward the inner space, and the second folding part may be bent convexly to the outside of the inner space.
- the radius of curvature of the first folding portion is uniformly formed, and the radius of curvature of the first folding portion is 50% of the distance in the Y-axis direction from one end of the first folding portion to the other end of the first folding portion minus 2 mm. It can be formed smaller.
- the second folding portion may have a concave portion concave toward the inner space and a convex portion convex outward of the inner space, and the curvature radius of the concave portion and the curvature radius of the convex portion may be smaller than the curvature radius of the second folding portion.
- the X-axis direction distance from one end of the first folding portion to the valley portion of the first folding portion is 90% of the X-axis distance from one end of the first folding portion to the floor portion of the convex portion of the second folding portion. It may be formed in the range of 110%.
- the Y-axis distance from one end of the second folding part to the floor of the convex part of the second folding part may be smaller than 4 mm.
- One end of the second folding part is inclined closer to the X axis toward the other end side of the first folding part, and is connected to the other end of the first folding part, and an acute angle formed by one end of the second folding part and the X axis is It may be formed in an angle range of 15 degrees to 25 degrees.
- the rolling boot according to the present invention includes a support part provided between the folding part and the fastening part and formed thicker than the thickness of the folding part and the fastening part, thereby improving the bearing force supporting the folding part and preventing buckling of the folding part.
- the folding portion can be unfolded or folded into a previously intended shape to sufficiently absorb the sliding and cutting of the constant velocity joint, prevent the rolling boot from being broken, and prevent grease from leaking.
- the rolling boot according to the present invention may be provided with two folding parts, and the two folding parts may be bent in different directions, thereby increasing the amount of cutting and preventing the damage due to the cutting.
- the groove is formed on the outer circumferential surface of the support, it is possible to further improve the effect of increasing the amount of cutting, the prevention of damage due to the folding and increase in size without further adding the folding portion. Accordingly, it is possible to prevent grease leakage due to breakage of the rolling boot, interference with surrounding objects due to an increase in the size of the rolling boot, and deterioration in weight and manufacturing cost due to an increase in the size of the rolling boot and an increase in the amount of grease.
- FIG. 1 is a perspective view showing a conventional rolling boot
- FIG. 2 is a cross-sectional view taken along line II of FIG. 1;
- FIG. 3 is a perspective view showing a rolling boot according to an embodiment of the present invention.
- FIG. 4 is a cross-sectional view taken along the line II-II of FIG. 3;
- FIG. 5 is a perspective view of the rolling boot of FIG. 3 viewed from another angle;
- 6A and 6B are diagrams showing simulation results according to dimensions in the rolling boot of FIG. 3.
- FIG. 3 is a perspective view illustrating a rolling boot according to an embodiment of the present invention
- FIG. 4 is a cross-sectional view taken along line II-II of FIG. 3
- FIG. 5 is a perspective view of the rolling boot of FIG. 3 viewed from another angle
- 6A and 6B are diagrams showing simulation results according to dimensions in the rolling boot of FIG. 3.
- the rolling boot 3 is formed in an annular shape having an inner space S, and is formed on the first rotating shaft 1 and the first rotating shaft 1. It may be coupled to the second rotating shaft (2) that is connected to the cutting.
- the first rotation shaft (1) is any one of a shaft that transmits the rotational power of the engine (not shown) and the shaft is rotated by receiving the rotational power of the housing and the track groove is formed therein
- the second The rotating shaft 2 may be the other of the housing and the shaft.
- the rolling boot 3 has a first fastening portion 31 fastened to the first rotation shaft 1, a second fastening portion 34 fastened to the second rotation shaft 2, and the first fastening portion ( 31 may be provided with a folding part 32 that is bent and extended from the side of the second fastening part 34 and a support part 33 connecting the folding part 32 and the second fastening part 34. .
- the first fastening part 31 may be formed in an annular shape (hollow cylindrical shape).
- an outer circumferential surface of the first fastening portion 31 may be formed with an intaglio first fixing groove 312, 312 on the outer circumferential surface of the first fastening portion 31.
- the first fixing groove 312 part 312 extends along the circumferential direction of the first fastening part 31, and for fastening the first fastening part 31 to the first rotation shaft 1.
- the first fixing band 42 may be inserted.
- the second fastening part 34 may be formed in an annular shape (hollow cylindrical shape) coaxial with the first fastening part 31.
- the coaxial means a central axis of the first fastening portion 31 (hereinafter, referred to as a first center) passing through the center 314 of the first fastening portion 31 and perpendicular to the radial direction of the first fastening portion 31.
- Axis and a central axis of the second fastening part 34 that is perpendicular to the radial direction of the second fastening part 34 after passing through the center 344 of the second fastening part 34 hereinafter, referred to as a second central axis. This is the same axis.
- the second fastening portion 34 may be formed in the outer circumferential surface of the second fastening portion 34 intaglio second fixing grooves 342, 342.
- the second fixing groove 342 portion 342 is formed to extend along the circumferential direction of the second fastening portion 34 and for fastening the second fastening portion 34 and the second rotation shaft 2.
- the second fixing band 44 may be inserted.
- the first fastening portion 31 is formed such that the diameter of the first fastening portion 31 corresponds to the diameter of the first rotating shaft 1, the second fastening portion 34 is the second fastening
- the diameter of the part 34 is formed to correspond to the diameter of the second rotary shaft 2, the diameter of the first rotary shaft 1 is usually formed smaller than the diameter of the second rotary shaft 2, the first The diameter of the fastening part 31 may be smaller than the diameter of the second fastening part 34.
- the end of the first fastening portion 31 may be referred to as the small end of the rolling boot 3
- the end of the second fastening portion 34 may be referred to as the large end of the rolling boot 3.
- the folding part 32 is formed in a curved annular shape and has one end portion 3222 formed in a curved annular shape and one end portion 3322 connected to the first fastening part 31. May be configured to include a second folding part 324 connected to the other end 3326 of the first folding part 322 and the other end 3246 connected to the support part 33.
- the first fastening part 31 based on when the first rotational shaft 1 and the second rotational shaft 2 are not articulated (when the first central axis and the second central axis are not articulated).
- the first folding part 322 is a joint axis that intersects the center 314 of the second fastening part 34 and the center 344 of the second fastening part 34 is called an X axis, and an axis perpendicular to the X axis is a Y axis.
- One end portion 3222 and the other end portion 3326 of the first folding portion 322 may be bent to overlap in the Y-axis direction.
- first folding part 322 may have a bent portion 3224 between one end 3222 and the other end 3326 of the first folding part 322 to be concavely bent toward the inner space S.
- first folding part 322 extends from the first fastening part 31 to the second fastening part 34 and the center of curvature of the first folding part 322 is the first folding part 322. Curved so as to be formed on the outside of the inner space (S) relative to the first fastening portion 31 side (more precisely, can be extended to the centrifugal side of the first fastening portion 31).
- the bent part 3224 of the first folding part 322 is based on an imaginary line (not shown) connecting one end 3322 and the other end 3262 of the first folding part 322. It may be located on the inner space (S) side.
- the second folding part 324 may be bent such that one end portion 3322 and the other end 3246 of the second folding part 324 overlap in the X-axis direction.
- the second folding portion 324 is a bent portion 3244 between one end portion 3322 and the other end 3246 of the second folding portion 324 is bent convexly outward of the inner space (S).
- the second folding part 324 is the second fastening part 34 side (more precisely, the centrifugal side of the second fastening part 34) from the other end 3326 of the first folding part 322.
- the center of curvature of the second folding part 324 is formed to be formed in the inner space S side with respect to the second folding part 324, and extends toward the second fastening part 34.
- the bent portion 3244 of the second folding portion 324 is based on an imaginary line (not shown) connecting one end portion 3322 and the other end portion 3246 of the second folding portion 324. It may be located outside the internal space (S).
- the second folding part 324 may be formed to have fine wrinkles. That is, the second folding part 324 may be formed with concave parts 3244a and 3244b concave toward the inner space S and convex parts 3244c that are convex to the outside of the inner space S.
- a center of curvature of the second folding part 324 is located at a portion adjacent to one end portion 3322 of the second folding part 324 among the bent parts 3244 of the second folding part 324.
- a first concave portion 3244a that is curved to be formed outside the inner space S is formed, and the second folding portion 324 of the bent portion 3244 of the second folding portion 324 is formed.
- a second concave portion 3244b is formed at a portion adjacent to the other end 3246 so that a center of curvature is formed on the outside of the inner space S based on the second folding portion 324.
- a first convex portion 3244c is formed between the concave portion 3244a and the second concave portion 3244b so that a center of curvature is formed at the inner space S side with respect to the second folding portion 324.
- the concave portions 3244a and 3244b and the convex portions 3244c each have a radius of curvature of the second folding portion 324 so that the overall size of the rolling boot 3 is prevented from increasing. It can be formed smaller.
- the number of the concave portions 3244a and 3244b and the convex portions 3244c may be appropriately adjusted, but it is preferable that the number of the convex portions 3244c does not exceed 7 in consideration of the limited design space. Can be.
- the support part 33 has a thickness between the outer circumferential surfaces 332 and 332 and the inner circumferential surface 334 of the support part 33 so as to increase a supporting force for supporting the folding part 32.
- the thickness between the outer circumferential surface and the inner circumferential surface and the thickness between the outer circumferential surface and the inner circumferential surface of the second fastening portion 34 may be thicker.
- an inner circumferential surface 334 of 33 may be convexly formed toward the inner space S.
- the support part 33 has a constant thickness between the outer circumferential surfaces 332 and 332 and the inner circumferential surface 334 of the support part 33 so that the supporting force is further improved and the volume of the internal space S is further reduced. It may be formed in an annular shape.
- the inner peripheral surface 334 of the support portion 33 is in the X axis It may be substantially parallel and bent to be substantially parallel to the Y axis (convex toward the inner space S), and the outer circumferential surface 332 of the support 33 may be inclined to the X axis. That is, the outer circumferential surface 332 of the support part 33 may be formed in a conical shape.
- the outer peripheral surface 332 of the support portion 33 in order to minimize the reduction of the supporting force, the second fastening portion 34 side portion of the support portion 33 is thicker than the folding portion 32 side portion Can be inclined in a direction. That is, the support part 33 is inclined so that the distance from the second fastening part 34 side of the outer peripheral surface 332 of the support part 33 to the folding part 32 side part becomes shorter with the X axis. Can be formed.
- a concave groove 336 may be formed in the outer circumferential surface 332 of the support portion 33 so as to reduce the load on the tension portion and the compression portion of the portion 32.
- the groove 336 may extend along the circumferential direction of the support 33.
- the groove 336 may be formed in plural, and the plurality of grooves 336 may be arranged in the axial direction (X-axis direction) of the support part 33. When the plurality of grooves 336 are formed, it may be desirable to have a maximum of five grooves in consideration of a limited design space.
- the folding part 32 and the support part 33 may be formed in a predetermined dimension so as to prevent the deformation of the rolling boot 3 from being broken so that excessive deformation occurs at the time of folding.
- the first folding portion 322 (more precisely, the bent portion 3224 of the first folding portion 322) has a constant radius of curvature D1, and the first folding portion 322
- the radius of curvature D1 of is determined in advance in the Y-axis direction D2 from one end 3322 of the first folding part 322 to the other end 3226 of the first folding part 322. It can be formed smaller than 50% of the dimensions minus 2 mm.
- the most concave portion of the bent portion 3224 of the first folding portion 322 is called the valley portion 3224a of the first folding portion 322, and the bending portion 3244 of the second folding portion 324 is used.
- the most convex part of the convex part 3244c is referred to as the floor part 3244d of the second folding part 324, the first part of the first folding part 322 from the one end 3322
- the distance in the X-axis direction E1 to the valley portion 3224a of the first folding portion 322 is a floor portion of the second folding portion 324 from one end 3322 of the first folding portion 322. 3244d) up to a predetermined ratio range (eg, 90% to 110%) of the X-axis distance E2.
- the Y-axis direction distance A from the one end portion 2322 of the second folding portion 324 to the floor portion 3244d of the second folding portion 324 is a predetermined dimension (for example, , 4 mm).
- One end portion 3322 of the second folding portion 324 is inclined to be closer to the X axis toward the other end portion 3326 of the first folding portion 322 of the first folding portion 322. It is connected to the other end 3262, the acute angle (B) formed between one end portion 3322 of the second folding portion 324 and the X-axis is a predetermined angle range (for example, 15 degrees to 25 degrees) It can be formed as.
- the support part 33 may have an acute angle C formed between the outer circumferential surface 332 of the support part 33 and the X axis in a predetermined angle range (for example, 30 degrees to 60 degrees). .
- a rotational force output from an engine (not shown) is transmitted to the second rotation shaft 2 via a transmission (not shown), and the second rotation shaft ( 2) is rotated by the rotational force, the first rotational shaft (1) connected to the spider (not shown) is rotated by the rotation of the second rotational shaft 2, it is possible to rotate the wheel (not shown) have.
- the rolling boot 3 may prevent the connection part from being damaged by foreign matter by covering the connection part between the first rotation axis 1 and the second rotation axis 2.
- the rolling boot 3 includes grease in the inner space S thereof, thereby smoothing the cutting and rotating movement of the connecting portion, and suppressing an increase in the temperature of the connecting portion during driving. .
- the rolling boot 3 absorbs the sliding and folding of the constant velocity joint by expanding or folding the folding part 32 when the first rotating shaft 1 and the second rotating shaft 2 are articulated with each other. can do.
- the rolling boot 3 according to the present embodiment, two folding parts 32 are provided, and the two folding parts 322 and 324 are bent in different directions, thereby increasing the amount of cutting and according to the cutting angle.
- the size can be reduced while preventing damage.
- the rolling boot 3 according to the present embodiment is provided with the first folding part 322 and the second folding part 324 (with two folding parts), so that the sliding of the constant velocity joint and A fragment may be dispersed and absorbed in the first folding part 322 and the second folding part 324. Accordingly, the amount of cutting can be increased, and breakage due to the cutting can be prevented.
- the first folding portion 322 is bent so that one end portion 3222 and the other end portion 3326 of the first folding portion 322 overlap each other in the Y-axis direction, and the second folding portion 324 is formed. Since the one end portion 3322 and the other end 3246 of the second folding portion 324 are bent to overlap the X-axis direction, the amount of cutting is significantly increased even by the two folding portions 32 alone, and the damage caused by the folding is increased. While being prevented, the increase in the overall size of the rolling boot 3 can be suppressed. That is, the rolling boot 3 according to the present embodiment has an increased amount of cutting than when two folding portions are bent in the same direction (for example, the X-axis direction), and damage due to the cutting can be prevented.
- the rolling boot 3 according to the present embodiment as compared with the case where three or more folding parts are provided, not only can the equivalent amount of cutting amount be increased and the breakage prevention effect due to the cutting be obtained, but also the overall size of the rolling boot is reduced. The effect can be obtained.
- fine wrinkles are formed in the second folding portion 324, and the grooves may be easily stretched or compressed when being folded.
- the rolling boot 3 is provided between the folding part 32 and the second fastening part 34, and has a thickness of the folding part 32 and the second fastening part 34.
- the support portion 33 formed thicker than the thickness of the support portion can be improved to support the folding portion 32 to prevent the buckling of the folding portion (32).
- the folding part 32 can be unfolded or folded in a previously intended shape to sufficiently absorb the sliding and cutting of the constant velocity joint, to prevent the rolling boot 3 from being broken, and to prevent the grease from leaking. Can be.
- the support part 33 is formed such that the inner peripheral surface 334 of the support part 33 is convex toward the inner space S, and the outer peripheral surfaces 332 and 332 and the inner peripheral surface 334 of the support part 33 are By forming an annular shape having a constant thickness, the volume of the internal space S may be reduced. As a result, the amount of grease filled in the inner space S is reduced, thereby reducing the material cost and weight.
- the support part 33 is formed such that the outer peripheral surface 332 of the support part 33 is inclined, and the groove 336 is provided on the outer peripheral surface 332 of the support part 33, thereby minimizing the reduction of the bearing force. Material cost and weight increase of the rolling boot 3 can be minimized.
- the rolling boot 3 according to the present embodiment, as the folding portion 32 and the support 33 is formed in the predetermined dimensions, as shown in Figure 6A and 6B the rolling boot The balance in (3) can be broken down to prevent excessive deformation during folding.
- 6A and 6B are simulation result charts showing loads and deformations of the tension part and the compression part of the folding part 32 at the time of folding, and FIG. 6A is a simulation result at the predetermined dimension, and FIG. 6B Simulation results when dimensions are outside of the predetermined dimensions.
- the tension portion and the compression portion of the foldable portion 32 are deformed to a predetermined shape, but in the case of dimensions outside the predetermined dimension, the tension portion and the compression of the folding portion 32 are It can be seen that the addition is not deformed into the intended shape and the balance is broken so that excessive deformation occurs.
- the degree of freedom in design is improved so that the diameter difference between the first fastening portion 31 and the second fastening portion 34 (diameter difference between the small end and the large end) is large. Can be. Accordingly, the adapter (not shown) can be deleted from the joint assembly of the constant velocity joint, thereby reducing the manufacturing cost.
- the present invention relates to a rolling boot, and more particularly, to a rolling boot covering a connection part of two rotary shafts which are connected to each other in a cutting manner.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Sealing Devices (AREA)
- Diaphragms And Bellows (AREA)
Abstract
본 발명은 롤링 부트에 관한 것으로서, 내부공간을 갖는 환형으로 형성되고, 제1 회전축 및 그 제1 회전축에 절각 가능하게 연결되는 제2 회전축에 결합되는 롤링 부트에 있어서, 상기 제1 회전축에 체결되는 제1 체결부; 상기 제2 회전축에 체결되는 제2 체결부; 상기 제1 체결부로부터 상기 제2 체결부 측으로 절곡 연장되는 폴딩부; 및 상기 폴딩부와 상기 제2 체결부를 연결하는 지지부;를 포함하고, 상기 지지부는 그 지지부의 외주면과 내주면 사이 두께가 상기 폴딩부의 외주면과 내주면 사이 두께 및 상기 제2 체결부의 외주면과 내주면 사이 두께보다 두껍게 형성된다. 이에 의해, 폴딩부를 지지하는 지지력을 향상시켜 폴딩부의 좌굴을 방지하고, 절각량을 증가시키고 절각에 따른 파손을 방지하면서 크기를 작게 할 수 있다.
Description
본 발명은, 롤링 부트에 관한 것으로서, 더욱 상세하게는, 절각 가능하게 서로 연결되는 두 회전축의 연결부위를 복개하는 롤링 부트에 관한 것이다.
일반적으로, 조인트는 회전축의 각도가 서로 다른 회전축에 회전동력(토크)을 전달하기 위한 것으로서, 동력전달 각도가 작은 추진축의 경우에는 후크 조인트, 플렉시블 조인트 등이 사용되고, 동력전달 각도가 큰 전륜 구동차의 구동축의 경우에는 등속조인트가 사용된다.
상기 등속조인트는 구동축과 피동축의 교차각이 큰 경우에도 등속으로 원활하게 동력을 전달할 수 있기 때문에 독립 현가 방식의 전륜 구동차의 액슬축에 주로 사용되며, 샤프트를 중심으로 엔진측(인보드측)은 트리포드 타입 조인트로 이루어지고, 샤프트를 중심으로 타이어측(아웃보드측)은 볼 타입 조인트로 이루어진다.
이와 같은 등속조인트는 서스펜션의 변위 변화와 조향각 변화를 흡수하기 위해서 절각운동을 하게 되는데, 금속재질로 이루어진 등속조인트의 원활한 절각운동과 회전운동 그리고 외부물질의 유입 방지 및 주행 중 상승하는 온도의 냉각 기능을 위해 롤링 부트로 절각 부위를 감싸고 그 안에 그리스를 채워 넣는다. 또한, 롤링 부트 내부에 채워진 그리스는 외부로의 이탈을 방지하기 위해 고정밴드로 체결시키게 된다.
도 1은 종래의 롤링 부트가 적용된 등속조인트를 보인 사시도이고, 도 2는 도 1의 Ⅰ-Ⅰ선 단면도이다.
이들 도면에 도시되어 있는 바와 같이, 일반적인 등속조인트는, 샤프트(1)를 중심으로 엔진측(인보드측)은 트리포드 타입 조인트로 이루어지고, 샤프트(1)를 중심으로 바퀴측(아웃보드측)은 볼 타입 조인트로 이루어진다.
상기 샤프트(1)를 중심으로 엔진측(인보드측)에 설치되어 있는 등속조인트는, 엔진(미도시)의 회전동력을 전달하며 내부에 트랙홈이 형성되어 있는 하우징(2), 상기 하우징(2)의 회전동력을 전달받아서 회전되는 상기 샤프트(1), 상기 샤프트(1)의 일단에 연결되는 롤링 부트(3) 및 상기 롤링 부트(3)를 상기 하우징(2) 및 상기 샤프트(1)에 각각 고정시키는 고정밴드(4)를 구비하여 구성된다.
상기 롤링 부트(3)는 내부공간(S)을 갖는 환형으로 형성되고, 상기 샤프트(1)에 체결되는 제1 체결부(31), 상기 하우징(2)에 체결되는 제2 체결부(34), 상기 제1 체결부(31)로부터 상기 제2 체결부(34)로 절곡 연장되는 폴딩부(32)를 구비하여 구성된다.
상기 제1 체결부(31)의 외주면과 상기 제2 체결부(34)의 외주면에는 상기 고정밴드(4)가 체결되는 고정홈부(312, 342)가 각각 형성된다.
상기 폴딩부(32)는 일단부(3222)가 상기 제1 체결부(31)와 연결되고, 타단부(3226)가 상기 제2 체결부(34)에 연결된다.
그리고, 상기 폴딩부(32)는 그 폴딩부(32)의 일단부(3222)와 타단부(3226) 사이 부위가 상기 내부공간(S) 측으로 오목하게 절곡된다.
이러한 구성을 갖는 등속조인트는, 엔진(미도시)으로부터 출력된 회전력이 트랜스미션(미도시)을 거쳐 상기 하우징(2)에 전달되고, 상기 하우징(2)이 상기 회전력에 의해 회전되고, 스파이더(미도시)에 연결되어 있는 상기 샤프트(1)가 상기 하우징(2)의 회전에 의해 회전됨으로써, 바퀴(미도시)를 회전시키게 된다.
여기서, 상기 롤링 부트(3)는 상기 하우징(2)과 상기 샤프트(1)의 연결부위를 복개함으로써 그 연결부위가 이물질에 의해 손상되는 것을 방지한다. 그리고, 상기 롤링 부트(3)는 그 내부공간(S)에 그리스를 구비함으로써, 상기 연결부위의 절각운동과 회전운동을 원활하게 하고, 주행 중 상기 연결부위의 온도가 상승되는 것을 억제한다. 또한, 상기 롤링 부트(3)는, 상기 하우징(2)과 상기 샤프트(1)가 절각될 때, 상기 폴딩부(32)가 펴지거나 접힘으로써 등속조인트의 슬라이딩과 절각을 흡수한다.
그러나, 이러한 종래의 롤링 부트(3)에 있어서는, 절각될 때 상기 폴딩부(32)가 좌굴(座屈, Buckling)되고 사전에 의도된 형상으로 펴지거나 접히지 않아 등속조인트의 슬라이딩과 절각을 흡수하지 못할 뿐만 아니라 상기 롤링 부트(3)가 파손되고 상기 그리스가 누출되는 문제점이 있었다.
또한, 상기 폴딩부(32)가 하나로 구비됨에 따라, 절각량이 한정되고, 그 한정된 절각량을 넘어서서 절각될 경우 상기 폴딩부(32)의 펴지는 부위(인장부)와 상기 폴딩부(32)의 접히는 부위(압축부)에 상당한 하중이 작용되어 상기 롤링 부트(3)가 파손되고 상기 그리스가 누출되는 문제점이 있었다. 물론, 이를 고려하여 상기 폴딩부(32)를 복수로 구비할 수도 있으나, 이 경우 상기 롤링 부트(3)의 크기(길이)가 증가되어 상기 롤링 부트(3)의 주변 물체와 간섭되고, 상기 롤링 부트(3)의 중량 및 제조원가가 악화되며, 상기 롤링 부트(3)의 내부에 충진되는 그리스의 양이 증가되는 문제점이 있다. 그리스의 양 증가는 재료비 및 차량 중량의 악화를 야기한다.
따라서, 본 발명은, 폴딩부의 좌굴을 방지할 수 있는 롤링 부트를 제공하는 것을 그 목적으로 한다.
또한, 본 발명은, 절각량을 증가시키고 절각에 따른 파손을 방지하면서 크기를 작게 할 수 있는 롤링 부트을 제공하는 것을 다른 목적으로 한다.
본 발명은, 상기한 바와 같은 목적 달성을 위해, 내부공간을 갖는 환형으로 형성되고, 제1 회전축 및 그 제1 회전축에 절각 가능하게 연결되는 제2 회전축에 결합되는 롤링 부트에 있어서, 상기 제1 회전축에 체결되는 제1 체결부; 상기 제2 회전축에 체결되는 제2 체결부; 상기 제1 체결부로부터 상기 제2 체결부 측으로 절곡 연장되는 폴딩부; 및 상기 폴딩부와 상기 제2 체결부를 연결하는 지지부;를 포함하고, 상기 지지부는 그 지지부의 외주면과 내주면 사이 두께가 상기 폴딩부의 외주면과 내주면 사이 두께 및 상기 제2 체결부의 외주면과 내주면 사이 두께보다 두껍게 형성되는 롤링 부트를 제공한다.
상기 지지부는 그 지지부의 내주면이 상기 내부공간 측으로 볼록하게 형성될 수 있다.
상기 지지부는 그 지지부의 외주면과 내주면 사이 두께가 일정한 환형으로 형성될 수 있다.
상기 제1 회전축과 상기 제2 회전축이 절각되지 않을 때 상기 제1 체결부의 중심과 상기 제2 체결부의 중심을 가로지르는 축을 조인트 중심축이라 하면, 상기 지지부는, 그 지지부의 외주면이 상기 조인트 중심축에 대해 경사져 형성되고, 그 지지부의 외주면 중 상기 제2 체결부 측 부위로부터 상기 폴딩부 측 부위로 갈수록 상기 지지부의 외주면과 상기 조인트 중심축 사이 거리가 짧아지도록 경사져 형성될 수 있다.
상기 지지부는 그 지지부의 외주면과 상기 조인트 중심축이 이루는 예각이 30도 내지 60도의 각도범위로 형성될 수 있다.
상기 지지부는 그 지지부의 외주면에 적어도 하나의 홈이 형성되고, 상기 홈은 상기 지지부의 원주방향을 따라 연장 형성될 수 있다.
상기 홈은 복수로 형성되고, 복수의 상기 홈은 상기 지지부의 축방향으로 배열될 수 있다.
상기 폴딩부는, 일단부가 상기 제1 체결부와 연결되는 제1 폴딩부; 및 일단부가 상기 제1 폴딩부의 타단부와 연결되고, 타단부가 상기 지지부에 연결되는 제2 폴딩부;를 구비하여 구성될 수 있다.
상기 제1 회전축과 상기 제2 회전축이 절각되지 않을 때 상기 제1 체결부의 중심과 상기 제2 체결부의 중심을 가로지르는 축을 X축이라 하고, 상기 X축에 수직한 축을 Y축이라 하면, 상기 제1 폴딩부는 그 제1 폴딩부의 일단부와 타단부가 상기 Y축 방향으로 중첩되게 절곡되고, 상기 제2 폴딩부는 그 제2 폴딩부의 일단부와 타단부가 상기 X축 방향으로 중첩되게 절곡될 수 있다.
상기 제1 폴딩부는 상기 내부공간 측으로 오목하게 절곡되고, 상기 제2 폴딩부는 상기 내부공간의 외측으로 볼록하게 절곡될 수 있다.
상기 제1 폴딩부는 곡률반경이 일정하게 형성되고, 상기 제1 폴딩부의 곡률반경은 상기 제1 폴딩부의 일단부로부터 상기 제1 폴딩부의 타단부까지의 상기 Y축 방향 거리에서 2mm를 뺀 것의 50%보다 작게 형성될 수 있다.
상기 제2 폴딩부에는 상기 내부공간 측으로 오목한 오목부와 상기 내부공간의 외측으로 볼록한 볼록부가 형성되고, 상기 오목부의 곡률반경과 상기 볼록부의 곡률반경은 상기 제2 폴딩부의 곡률반경보다 작게 형성될 수 있다.
상기 제1 폴딩부의 일단부로부터 상기 제1 폴딩부의 골 부위까지의 상기 X축 방향 거리는 상기 제1 폴딩부의 일단부로부터 상기 제2 폴딩부의 볼록부의 마루 부위까지의 상기 X축 방향 거리의 90% 내지 110%의 범위로 형성될 수 있다.
상기 제2 폴딩부의 일단부로부터 상기 제2 폴딩부의 볼록부의 마루 부위까지의 상기 Y축 방향 거리는 4mm보다 작게 형성될 수 있다.
상기 제2 폴딩부의 일단부는, 상기 제1 폴딩부의 타단부 측으로 갈수록 상기 X축에 가까워지도록 경사져 상기 제1 폴딩부의 타단부에 연결되고, 상기 제2 폴딩부의 일단부와 상기 X축이 이루는 예각이 15도 내지 25도의 각도범위로 형성될 수 있다.
본 발명에 의한 롤링 부트는, 폴딩부와 체결부 사이에 구비되고 폴딩부의 두께 및 체결부의 두께보다 두껍게 형성되는 지지부를 구비함으로써, 폴딩부를 지지하는 지지력을 향상시켜 폴딩부의 좌굴을 방지할 수 있다. 이에 의하여, 폴딩부가 사전에 의도된 형상으로 펴지거나 접혀 등속조인트의 슬라이딩과 절각을 충분히 흡수할 수 있고, 롤링 부트가 파손되는 것을 방지하며, 그리스가 누출되는 것을 방지할 수 있다.
또한, 본 발명에 의한 롤링 부트는, 폴딩부가 두 개로 구비되고, 두 개의 폴딩부가 서로 다른 방향으로 절곡됨으로써, 절각량을 증가시키고 절각에 따른 파손을 방지하면서 크기를 작게 할 수 있다. 또한, 상기 지지부의 외주면에 홈이 형성됨으로써, 폴딩부를 더 추가하지 않고도 절각량 증가, 절각에 따른 파손 방지 및 크기 증가 방지 효과를 더욱 향상시킬 수 있다. 이에 의하여, 롤링 부트의 파손에 따른 그리스 누출, 롤링 부트의 크기 증가에 따른 주변 물체와의 간섭 및 롤링 부트의 크기 증가와 그리스 양 증가에 따른 중량 및 제조원가 악화를 방지할 수 있다.
도 1은 종래의 롤링 부트를 보인 사시도,
도 2는 도 1의 Ⅰ-Ⅰ선 단면도,
도 3은 본 발명의 일 실시예에 따른 롤링 부트를 보인 사시도,
도 4는 도 3의 Ⅱ-Ⅱ선 단면도,
도 5는 도 3의 롤링 부트를 다른 각도에서 바라본 사시도,
도 6A 및 도 6B는 도 3의 롤링 부트에서 치수에 따른 시뮬레이션 결과를 보인 도표이다.
이하, 본 발명에 의한 롤링 부트를 첨부된 도면을 참조하여 상세히 설명한다.
도 3은 본 발명의 일 실시예에 따른 롤링 부트를 보인 사시도이고, 도 4는 도 3의 Ⅱ-Ⅱ선 단면도이고, 도 5는 도 5는 도 3의 롤링 부트를 다른 각도에서 바라본 사시도이고, 도 6A 및 도 6B는 도 3의 롤링 부트에서 치수에 따른 시뮬레이션 결과를 보인 도표이다.
이들 도면에 도시된 바와 같이, 본 발명의 일 실시예에 따른 롤링 부트(3)는, 내부공간(S)을 갖는 환형으로 형성되고, 제1 회전축(1) 및 그 제1 회전축(1)에 절각 가능하게 연결되는 제2 회전축(2)에 결합될 수 있다. 여기서, 상기 제1 회전축(1)은 엔진(미도시)의 회전동력을 전달하며 내부에 트랙홈이 형성되어 있는 하우징과 상기 하우징의 회전동력을 전달받아서 회전되는 샤프트 중 어느 하나이고, 상기 제2 회전축(2)은 상기 하우징과 상기 샤프트 중 다른 하나일 수 있다.
상기 롤링 부트(3)는, 상기 제1 회전축(1)에 체결되는 제1 체결부(31), 상기 제2 회전축(2)에 체결되는 제2 체결부(34), 상기 제1 체결부(31)로부터 상기 제2 체결부(34) 측으로 절곡 연장되는 폴딩부(32) 및 상기 폴딩부(32)와 상기 제2 체결부(34)를 연결하는 지지부(33)를 구비하여 구성될 수 있다.
상기 제1 체결부(31)는 환형(속이 빈 원통형)으로 형성될 수 있다. 그리고, 상기 제1 체결부(31)의 외주면에는 그 제1 체결부(31)의 외주면에 음각진 제1 고정홈(312)부(312)가 형성될 수 있다. 상기 제1 고정홈(312)부(312)는 상기 제1 체결부(31)의 원주방향으로 따라 연장 형성되고, 상기 제1 체결부(31)와 상기 제1 회전축(1)을 체결하기 위한 제1 고정밴드(42)가 삽입될 수 있다.
상기 제2 체결부(34)는 상기 제1 체결부(31)와 동축을 이루는 환형(속이 빈 원통형)으로 형성될 수 있다. 여기서, 동축이란, 상기 제1 체결부(31)의 중심(314)을 지나고 상기 제1 체결부(31)의 반경방향에 수직한 제1 체결부(31)의 중심축(이하, 제1 중심축) 및 상기 제2 체결부(34)의 중심(344)을 지나고 상기 제2 체결부(34)의 반경방향에 수직한 제2 체결부(34)의 중심축(이하, 제2 중심축)이 동일 축을 이룬다는 것이다.
한편, 상기 제2 체결부(34)의 외주면에는 그 제2 체결부(34)의 외주면에 음각진 제2 고정홈(342)부(342)가 형성될 수 있다. 상기 제2 고정홈(342)부(342)는 상기 제2 체결부(34)의 원주방향으로 따라 연장 형성되고, 상기 제2 체결부(34)와 상기 제2 회전축(2)을 체결하기 위한 제2 고정밴드(44)가 삽입될 수 있다.
여기서, 상기 제1 체결부(31)는 그 제1 체결부(31)의 직경이 상기 제1 회전축(1)의 직경에 대응되게 형성되고, 상기 제2 체결부(34)는 그 제2 체결부(34)의 직경이 상기 제2 회전축(2)의 직경에 대응되게 형성되는데, 통상 상기 제1 회전축(1)의 직경이 상기 제2 회전축(2)의 직경보다 작게 형성되므로, 상기 제1 체결부(31)의 직경이 상기 제2 체결부(34)의 직경보다 작게 형성될 수 있다. 이에 따라, 상기 제1 체결부(31)의 단부를 상기 롤링 부트(3)의 소단부, 상기 제2 체결부(34)의 단부를 상기 롤링 부트(3)의 대단부라 할 수 있다.
상기 폴딩부(32)는, 굴곡진 환형으로 형성되고 일단부(3222)가 상기 제1 체결부(31)와 연결되는 제1 폴딩부(322) 및 굴곡진 환형으로 형성되고 일단부(3242)가 상기 제1 폴딩부(322)의 타단부(3226)와 연결되며 타단부(3246)가 상기 지지부(33)에 연결되는 제2 폴딩부(324)를 구비하여 구성될 수 있다.
상기 제1 회전축(1)과 상기 제2 회전축(2)이 절각되지 않을 때(상기 제1 중심축과 상기 제2 중심축이 절각되지 않을 때)를 기준으로, 상기 제1 체결부(31)의 중심(314)과 상기 제2 체결부(34)의 중심(344)을 가로지르는 조인트 중심축을 X축이라 하고, 상기 X축에 수직한 축을 Y축이라 하면, 상기 제1 폴딩부(322)는 그 제1 폴딩부(322)의 일단부(3222)와 타단부(3226)가 상기 Y축 방향으로 중첩되게 절곡될 수 있다. 그리고, 상기 제1 폴딩부(322)는 그 제1 폴딩부(322)의 일단부(3222)와 타단부(3226) 사이 절곡부(3224)가 상기 내부공간(S) 측으로 오목하게 절곡될 수 있다. 즉, 상기 제1 폴딩부(322)는 상기 제1 체결부(31)로부터 상기 제2 체결부(34) 측으로 연장되다가 상기 제1 폴딩부(322)의 곡률중심이 상기 제1 폴딩부(322)를 기준으로 상기 내부공간(S)의 외측에 형성되게 만곡되고, 상기 제1 체결부(31) 측(더욱 정확히는, 상기 제1 체결부(31)의 원심(遠心)측)으로 연장될 수 있다. 이에 따라, 상기 제1 폴딩부(322)의 절곡부(3224)는 상기 제1 폴딩부(322)의 일단부(3222)와 타단부(3226)를 잇는 가상선(미도시)을 기준으로 상기 내부공간(S) 측에 위치될 수 있다.
상기 제2 폴딩부(324)는 그 제2 폴딩부(324)의 일단부(3242)와 타단부(3246)가 상기 X축 방향으로 중첩되게 절곡될 수 있다. 그리고, 상기 제2 폴딩부(324)는 그 제2 폴딩부(324)의 일단부(3242)와 타단부(3246) 사이 절곡부(3244)가 상기 내부공간(S)의 외측으로 볼록하게 절곡될 수 있다. 즉, 상기 제2 폴딩부(324)는 상기 제1 폴딩부(322)의 타단부(3226)로부터 상기 제2 체결부(34) 측(더욱 정확히는, 상기 제2 체결부(34)의 원심측)으로 연장되다가 상기 제2 폴딩부(324)의 곡률중심이 상기 제2 폴딩부(324)를 기준으로 상기 내부공간(S) 측에 형성되게 만곡되고, 상기 제2 체결부(34) 측으로 연장될 수 있다. 이에 따라, 상기 제2 폴딩부(324)의 절곡부(3244)는 상기 제2 폴딩부(324)의 일단부(3242)와 타단부(3246)를 잇는 가상선(미도시)을 기준으로 상기 내부공간(S)의 외측에 위치될 수 있다.
그리고, 상기 제2 폴딩부(324)는 잔주름을 갖도록 형성될 수 있다. 즉, 상기 제2 폴딩부(324)에는 상기 내부공간(S) 측으로 오목한 오목부(3244a, 3244b) 및 상기 내부공간(S)의 외측으로 볼록한 볼록부(3244c)가 형성될 수 있다. 본 실시예의 경우, 상기 제2 폴딩부(324)의 절곡부(3244) 중 상기 제2 폴딩부(324)의 일단부(3242)에 인접한 부위에 곡률중심이 상기 제2 폴딩부(324)를 기준으로 상기 내부공간(S)의 외측에 형성되게 만곡되는 제1 오목부(3244a)가 형성되고, 상기 제2 폴딩부(324)의 절곡부(3244) 중 상기 제2 폴딩부(324)의 타단부(3246)에 인접한 부위에 곡률중심이 상기 제2 폴딩부(324)를 기준으로 상기 내부공간(S)의 외측에 형성되게 만곡되는 제2 오목부(3244b)가 형성되며, 상기 제1 오목부(3244a)와 상기 제2 오목부(3244b) 사이에 곡률중심이 상기 제2 폴딩부(324)를 기준으로 상기 내부공간(S) 측에 형성되게 만곡되는 제1 볼록부(3244c)가 형성될 수 있다. 여기서, 상기 오목부(3244a, 3244b)와 상기 볼록부(3244c)는, 상기 롤링 부트(3)의 전체적이 크기 증가를 방지하도록, 각각의 곡률반경이 상기 제2 폴딩부(324)의 곡률반경보다 작게 형성될 수 있다. 그리고, 상기 오목부(3244a, 3244b)와 상기 볼록부(3244c)의 수는 적절히 조절될 수 있으나, 한정된 설계공간을 고려해 상기 볼록부(3244c)의 개수가 최대 7개를 넘지 않도록 하는 것이 바람직할 수 있다.
상기 지지부(33)는, 상기 폴딩부(32)를 지지하는 지지력을 증가시키도록, 그 지지부(33)의 외주면(332)(332)과 내주면(334) 사이 두께가 상기 폴딩부(32)의 외주면과 내주면 사이 두께 및 상기 제2 체결부(34)의 외주면과 내주면 사이 두께보다 두껍게 형성될 수 있다.
그리고, 상기 지지부(33)는 그 지지부(33)의 두께를 두껍게 형성할 때, 상기 롤링 부트(3)의 크기 증가를 억제하고, 상기 내부공간(S)의 체적을 감소시키도록, 그 지지부(33)의 내주면(334)이 상기 내부공간(S) 측으로 볼록하게 형성될 수 있다.
그리고, 상기 지지부(33)는, 상기 지지력이 더욱 향상되고 상기 내부공간(S)의 체적이 더욱 감소되도록, 그 지지부(33)의 외주면(332)(332)과 내주면(334) 사이 두께가 일정한 환형으로 형성될 수 있다.
그리고, 상기 지지부(33)는, 그 지지부(33)의 두께 증가에 의해 상기 롤링 부트(3)의 중량이 증가되는 것을 최소화하기 위해, 그 지지부(33)의 내주면(334)은 상기 X축에 대략 평행하다가 절곡되어 상기 Y축에 대략 평행하게(내부공간(S) 측으로 볼록하게) 형성되고, 그 지지부(33)의 외주면(332)은 상기 X축에 경사지게 형성될 수 있다. 즉, 상기 지지부(33)의 외주면(332)은 원추형으로 형성될 수 있다. 이때, 상기 지지부(33)의 외주면(332), 상기 지지력의 감소를 최소화하기 위해, 상기 지지부(33) 중 상기 제2 체결부(34) 측 부위가 상기 폴딩부(32) 측 부위보다 두껍게 되는 방향으로 경사질 수 있다. 즉, 상기 지지부(33)는 그 지지부(33)의 외주면(332) 중 상기 제2 체결부(34) 측 부위로부터 상기 폴딩부(32) 측 부위로 갈수록 상기 X축과의 거리가 짧아지도록 경사져 형성될 수 있다.
그리고, 상기 지지부(33)는, 그 지지부(33)의 중량 증가를 억제하고 상기 제1 회전축(1)과 상기 제2 회전축(2)이 절곡될 때 상기 폴딩부(32)를 보조(상기 폴딩부(32)의 인장부와 압축부에 걸리는 하중을 경감)할 수 있도록, 그 지지부(33)의 외주면(332)에 음각진 홈(336)이 형성될 수 있다. 상기 홈(336)은 상기 지지부(33)의 원주방향을 따라 연장 형성될 수 있다. 그리고, 상기 홈(336)은 복수로 형성되고, 복수의 상기 홈(336)은 상기 지지부(33)의 축방향(X축 방향)으로 배열될 수 있다. 상기 홈(336)은 복수로 형성될 경우 한정된 설계공간을 고려해 최대 5개로 형성되는 것이 바람직할 수 있다.
여기서, 상기 폴딩부(32) 및 상기 지지부(33)는, 상기 롤링 부트(3)의 균형이 무너져 절각 시 과도한 변형이 발생되는 것을 방지하도록, 사전에 결정된 치수로 형성될 수 있다.
더욱 구체적으로, 상기 제1 폴딩부(322)(더욱 정확히는, 제1 폴딩부(322)의 절곡부(3224))는 곡률반경(D1)이 일정하게 형성되고, 상기 제1 폴딩부(322)의 곡률반경(D1)은 상기 제1 폴딩부(322)의 일단부(3222)로부터 상기 제1 폴딩부(322)의 타단부(3226)까지의 상기 Y축 방향 거리(D2)에서 사전에 결정된 치수(예를 들어, 2mm)를 뺀 것의 50%보다 작게 형성될 수 있다.
그리고, 상기 제1 폴딩부(322)의 절곡부(3224) 중 가장 오목한 부위를 제1 폴딩부(322)의 골 부위(3224a)라 하고, 상기 제2 폴딩부(324)의 절곡부(3244)(더욱 정확히는, 볼록부(3244c))의 가장 볼록한 부위를 제2 폴딩부(324)의 마루 부위(3244d)라 할 때, 상기 제1 폴딩부(322)의 일단부(3222)로부터 상기 제1 폴딩부(322)의 골 부위(3224a)까지의 상기 X축 방향 거리(E1)는 상기 제1 폴딩부(322)의 일단부(3222)로부터 상기 제2 폴딩부(324)의 마루 부위(3244d)까지의 상기 X축 방향 거리(E2)의 사전에 결정된 비율 범위(예를 들어, 90% 내지 110%)로 형성될 수 있다.
그리고, 상기 제2 폴딩부(324)의 일단부(3242)로부터 상기 제2 폴딩부(324)의 마루 부위(3244d)까지의 상기 Y축 방향 거리(A)는 사전에 결정된 치수(예를 들어, 4mm)보다 작게 형성될 수 있다.
그리고, 상기 제2 폴딩부(324)의 일단부(3242)는, 상기 제1 폴딩부(322)의 타단부(3226) 측으로 갈수록 상기 X축에 가까워지도록 경사져 상기 제1 폴딩부(322)의 타단부(3226)에 연결되고, 상기 제2 폴딩부(324)의 일단부(3242)와 상기 X축이 이루는 예각(B)이 사전에 결정된 각도범위(예를 들어, 15도 내지 25도)로 형성될 수 있다.
그리고, 상기 지지부(33)는 그 지지부(33)의 외주면(332)과 상기 X축이 이루는 예각(C)이 사전에 결정된 각도범위(예를 들어, 30도 내지 60도)로 형성될 수 있다.
이하, 본 실시예에 따른 롤링 부트(3)의 작용효과에 대해 설명한다.
본 실시예에 따른 롤링 부트(3)를 포함하는 등속조인트는, 엔진(미도시)으로부터 출력된 회전력이 트랜스미션(미도시)을 거쳐 상기 제2 회전축(2)에 전달되고, 상기 제2 회전축(2)이 상기 회전력에 의해 회전되고, 스파이더(미도시)에 연결되어 있는 상기 제1 회전축(1)이 상기 제2 회전축(2)의 회전에 의해 회전됨으로써, 바퀴(미도시)를 회전시킬 수 있다.
이때, 상기 롤링 부트(3)는 상기 제1 회전축(1)과 상기 제2 회전축(2)의 연결부위를 복개함으로써 그 연결부위가 이물질에 의해 손상되는 것을 방지할 수 있다.
그리고, 상기 롤링 부트(3)는 그 내부공간(S)에 그리스를 구비함으로써, 상기 연결부위의 절각운동과 회전운동을 원활하게 하고, 주행 중 상기 연결부위의 온도가 상승되는 것을 억제할 수 있다.
또한, 상기 롤링 부트(3)는, 상기 제1 회전축(1)과 상기 제2 회전축(2)이 서로 절각될 때, 상기 폴딩부(32)가 펴지거나 접힘으로써 등속조인트의 슬라이딩과 절각을 흡수할 수 있다.
여기서, 본 실시예에 따른 롤링 부트(3)는, 폴딩부(32)가 두 개로 구비되되, 두 개의 폴딩부(322, 324)가 서로 다른 방향으로 절곡됨으로써, 절각량을 증가시키고 절각에 따른 파손을 방지하면서 크기를 작게 할 수 있다. 더욱 구체적으로, 본 실시예에 따른 롤링 부트(3)는, 상기 제1 폴딩부(322)와 상기 제2 폴딩부(324)가 구비(두 개의 폴딩부가 구비)됨으로써, 상기 등속조인트의 슬라이딩과 절각이 상기 제1 폴딩부(322)와 상기 제2 폴딩부(324)에 분산되어 흡수될 수 있다. 이에 따라, 절각량이 증가될 수 있고, 절각에 따른 파손이 방지될 수 있다. 그리고, 상기 제1 폴딩부(322)는 그 제1 폴딩부(322)의 일단부(3222)와 타단부(3226)가 상기 Y축 방향으로 중첩되게 절곡되고, 상기 제2 폴딩부(324)는 그 제2 폴딩부(324)의 일단부(3242)와 타단부(3246)가 상기 X축 방향을 중첩되게 절곡됨으로써, 두 개의 폴딩부(32)만으로도 절각량이 상당히 증가되고 절각에 따른 파손이 방지되면서 상기 롤링 부트(3)의 전체적인 크기 증가가 억제될 수 있다. 즉, 본 실시예에 따른 롤링 부트(3)는, 두 개의 폴딩부가 서로 동일한 방향(예를 들어, X축 방향)으로 절곡되는 경우보다 절각량이 증가되고, 절각에 따른 파손이 방지될 수 있다. 또, 본 실시예에 따른 롤링 부트(3)는, 세 개 이상의 폴딩부가 구비되는 경우 대비, 동등 수준의 절각량 증가와 절각에 따른 파손 방지 효과를 얻을 수 있을 뿐만 아니라, 롤링 부트의 전체적인 크기 감소 효과를 얻을 수 있다.
그리고, 상기 제2 폴딩부(324)에 잔주름(오목부(3244a, 3244b)와 볼록부(3244c))이 형성되고, 절각 시 상기 지지부(33)가 용이하게 인장 또는 압축될 수 있도록 하는 상기 홈(336)이 형성됨으로써, 폴딩부(32)를 더 추가하지 않고도 절각량 증가, 절각에 따른 파손 방지 및 크기 증가 방지 효과를 더욱 향상시킬 수 있다.
이에 의하여, 롤링 부트(3)의 파손에 따른 그리스 누출, 롤링 부트(3)의 크기 증가에 따른 주변 물체와의 간섭 및 롤링 부트(3)의 크기 증가와 그리스 양 증가에 따른 중량 및 제조원가 악화를 방지할 수 있다.
한편, 본 실시예에 따른 롤링 부트(3)는, 상기 폴딩부(32)와 상기 제2 체결부(34) 사이에 구비되고 상기 폴딩부(32)의 두께 및 상기 제2 체결부(34)의 두께보다 두껍게 형성되는 상기 지지부(33)를 구비함으로써, 상기 폴딩부(32)를 지지하는 지지력을 향상시켜 상기 폴딩부(32)의 좌굴을 방지할 수 있다. 이에 의하여, 폴딩부(32)가 사전에 의도된 형상으로 펴지거나 접혀 등속조인트의 슬라이딩과 절각을 충분히 흡수할 수 있고, 롤링 부트(3)가 파손되는 것을 방지하며, 그리스가 누출되는 것을 방지할 수 있다.
그리고, 상기 지지부(33)는 그 지지부(33)의 내주면(334)이 상기 내부공간(S) 측으로 볼록하게 형성되고, 그 지지부(33)의 외주면(332)(332)과 내주면(334)이 일정한 두께를 갖는 환형으로 형성됨으로써, 상기 내부공간(S)의 체적이 감소될 수 있다. 이에 의하여, 상기 내부공간(S)에 충진되는 그리스의 양이 감소되어, 재료비 및 중량이 감소될 수 있다.
그리고, 상기 지지부(33)는, 그 지지부(33)의 외주면(332)이 경사지게 형성되고, 그 지지부(33)의 외주면(332)에 상기 홈(336)이 구비됨으로써, 지지력 감소를 최소화하면서 상기 롤링 부트(3)의 재료비 및 중량 증가를 최소화할 수 있다.
한편, 본 실시예에 따른 롤링 부트(3)는, 상기 폴딩부(32)와 상기 지지부(33)가 상기 사전에 결정된 치수로 형성됨에 따라, 도 6A 및 도 6B에 도시된 바와 같이 상기 롤링 부트(3)의 균형이 무너져 절각 시 과도한 변형이 발생되는 것을 방지할 수 있다. 도 6A 및 도 6B는 절각 시 폴딩부(32)의 인장부와 압축부에 걸리는 하중과 변형된 모습을 보여주는 시뮬레이션 결과 도표로서, 도 6A는 상기 사전에 결정된 치수일 때 시뮬레이션 결과이고, 도 6B는 상기 사전에 결정된 치수를 벗어난 치수일 때 시뮬레이션 결과이다. 이에 따르면, 상기 사전에 결정된 치수일 경우 폴딩부(32)의 인장부와 압축부가 사전에 의도된 형상으로 변형되나, 상기 사전에 결정된 치수를 벗어난 치수일 경우 폴딩부(32)의 인장부와 압축부가 사전에 의도된 형상으로 변형되지 않고 균형이 무너져 과도한 변형이 발생되는 것을 확인할 수 있다.
한편, 본 실시예에 따른 롤링 부트(3)는 설계 자유도가 향상되어 상기 제1 체결부(31)와 상기 제2 체결부(34)의 직경 차이(소단부와 대단부의 직경 차이)가 크게 형성될 수 있다. 이에 따라, 등속 조인트의 조인트 어셈블리로부터 어뎁터(미도시)를 삭제할 수 있어, 제조원가가 절감될 수 있다.
본 발명은, 롤링 부트에 관한 것으로서, 더욱 상세하게는, 절각 가능하게 서로 연결되는 두 회전축의 연결부위를 복개하는 롤링 부트에 관한 것이다.
Claims (15)
- 내부공간을 갖는 환형으로 형성되고, 제1 회전축 및 그 제1 회전축에 절각 가능하게 연결되는 제2 회전축에 결합되는 롤링 부트에 있어서,상기 제1 회전축에 체결되는 제1 체결부;상기 제2 회전축에 체결되는 제2 체결부;상기 제1 체결부로부터 상기 제2 체결부 측으로 절곡 연장되는 폴딩부; 및상기 폴딩부와 상기 제2 체결부를 연결하는 지지부;를 포함하고,상기 지지부는 그 지지부의 외주면과 내주면 사이 두께가 상기 폴딩부의 외주면과 내주면 사이 두께 및 상기 제2 체결부의 외주면과 내주면 사이 두께보다 두껍게 형성되는 롤링 부트.
- 제1항에 있어서,상기 지지부는 그 지지부의 내주면이 상기 내부공간 측으로 볼록하게 형성되는 롤링 부트.
- 제2항에 있어서,상기 지지부는 그 지지부의 외주면과 내주면 사이 두께가 일정한 환형으로 형성되는 롤링 부트.
- 제2항에 있어서,상기 제1 회전축과 상기 제2 회전축이 절각되지 않을 때 상기 제1 체결부의 중심과 상기 제2 체결부의 중심을 가로지르는 축을 조인트 중심축이라 하면,상기 지지부는,그 지지부의 외주면이 상기 조인트 중심축에 대해 경사져 형성되고,그 지지부의 외주면 중 상기 제2 체결부 측 부위로부터 상기 폴딩부 측 부위로 갈수록 상기 지지부의 외주면과 상기 조인트 중심축 사이 거리가 짧아지도록 경사져 형성되는 롤링 부트.
- 제4항에 있어서,상기 지지부는 그 지지부의 외주면과 상기 조인트 중심축이 이루는 예각이 30도 내지 60도의 각도범위로 형성되는 롤링 부트.
- 제1항에 있어서,상기 지지부는 그 지지부의 외주면에 적어도 하나의 홈이 형성되고,상기 홈은 상기 지지부의 원주방향을 따라 연장 형성되는 롤링 부트.
- 제6항에 있어서,상기 홈은 복수로 형성되고,복수의 상기 홈은 상기 지지부의 축방향으로 배열되는 것을 특징으로 하는 롤링 부트.
- 제1항에 있어서,상기 폴딩부는,일단부가 상기 제1 체결부와 연결되는 제1 폴딩부; 및일단부가 상기 제1 폴딩부의 타단부와 연결되고, 타단부가 상기 지지부에 연결되는 제2 폴딩부;를 포함하는 롤링 부트.
- 제8항에 있어서,상기 제1 회전축과 상기 제2 회전축이 절각되지 않을 때 상기 제1 체결부의 중심과 상기 제2 체결부의 중심을 가로지르는 축을 X축이라 하고, 상기 X축에 수직한 축을 Y축이라 하면,상기 제1 폴딩부는 그 제1 폴딩부의 일단부와 타단부가 상기 Y축 방향으로 중첩되게 절곡되고,상기 제2 폴딩부는 그 제2 폴딩부의 일단부와 타단부가 상기 X축 방향으로 중첩되게 절곡되는 롤링 부트.
- 제9항에 있어서,상기 제1 폴딩부는 상기 내부공간 측으로 오목하게 절곡되고,상기 제2 폴딩부는 상기 내부공간의 외측으로 볼록하게 절곡되는 롤링 부트.
- 제10항에 있어서,상기 제1 폴딩부는 곡률반경이 일정하게 형성되고,상기 제1 폴딩부의 곡률반경은 상기 제1 폴딩부의 일단부로부터 상기 제1 폴딩부의 타단부까지의 상기 Y축 방향 거리에서 2mm를 뺀 것의 50%보다 작게 형성되는 롤링 부트.
- 제10항에 있어서,상기 제2 폴딩부에는 상기 내부공간 측으로 오목한 오목부와 상기 내부공간의 외측으로 볼록한 볼록부가 형성되고,상기 오목부의 곡률반경과 상기 볼록부의 곡률반경은 상기 제2 폴딩부의 곡률반경보다 작게 형성되는 롤링 부트.
- 제12항에 있어서,상기 제1 폴딩부의 일단부로부터 상기 제1 폴딩부의 골 부위까지의 상기 X축 방향 거리는 상기 제1 폴딩부의 일단부로부터 상기 제2 폴딩부의 볼록부의 마루 부위까지의 상기 X축 방향 거리의 90% 내지 110%의 범위로 형성되는 롤링 부트.
- 제12항에 있어서,상기 제2 폴딩부의 일단부로부터 상기 제2 폴딩부의 볼록부의 마루 부위까지의 상기 Y축 방향 거리는 4mm보다 작게 형성되는 롤링 부트.
- 제10항에 있어서,상기 제2 폴딩부의 일단부는,상기 제1 폴딩부의 타단부 측으로 갈수록 상기 X축에 가까워지도록 경사져 상기 제1 폴딩부의 타단부에 연결되고,상기 제2 폴딩부의 일단부와 상기 X축이 이루는 예각이 15도 내지 25도의 각도범위로 형성되는 롤링 부트.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2014-0052631 | 2014-04-30 | ||
KR20140052631 | 2014-04-30 | ||
KR1020150053686A KR20150125575A (ko) | 2014-04-30 | 2015-04-16 | 롤링 부트 |
KR10-2015-0053686 | 2015-04-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015167270A1 true WO2015167270A1 (ko) | 2015-11-05 |
Family
ID=54358909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/004364 WO2015167270A1 (ko) | 2014-04-30 | 2015-04-30 | 롤링 부트 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015167270A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4895550A (en) * | 1987-05-11 | 1990-01-23 | Wynn's-Precision, Inc. | Blow-molded convoluted boot |
JP2002098238A (ja) * | 2000-09-22 | 2002-04-05 | Toyoda Gosei Co Ltd | 等速ジョイントブーツ |
WO2004076881A1 (ja) * | 2003-02-25 | 2004-09-10 | Nok Corporation | 等速ジョイント用ブーツ |
JP2008215463A (ja) * | 2007-03-02 | 2008-09-18 | Fukoku Co Ltd | 等速ジョイント用ブーツ |
EP2177779A1 (en) * | 2007-08-17 | 2010-04-21 | NTN Corporation | Silicone boot for constant velocity universal joint and constant velocity universal joint |
-
2015
- 2015-04-30 WO PCT/KR2015/004364 patent/WO2015167270A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4895550A (en) * | 1987-05-11 | 1990-01-23 | Wynn's-Precision, Inc. | Blow-molded convoluted boot |
JP2002098238A (ja) * | 2000-09-22 | 2002-04-05 | Toyoda Gosei Co Ltd | 等速ジョイントブーツ |
WO2004076881A1 (ja) * | 2003-02-25 | 2004-09-10 | Nok Corporation | 等速ジョイント用ブーツ |
JP2008215463A (ja) * | 2007-03-02 | 2008-09-18 | Fukoku Co Ltd | 等速ジョイント用ブーツ |
EP2177779A1 (en) * | 2007-08-17 | 2010-04-21 | NTN Corporation | Silicone boot for constant velocity universal joint and constant velocity universal joint |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018021655A1 (ko) | 휠 베어링의 씰링장치 및 그 제조방법 | |
KR101541807B1 (ko) | 등속 조인트 | |
WO2021010733A1 (ko) | 허브 일체형 등속조인트 장치 | |
JP5840463B2 (ja) | 固定式等速自在継手 | |
WO2015167270A1 (ko) | 롤링 부트 | |
WO2015020248A1 (ko) | 자동차의 슬라이드식 볼타입 등속조인트 | |
US20220364609A1 (en) | Power transmission mechanism and vehicle | |
KR20150125575A (ko) | 롤링 부트 | |
WO2016159467A1 (ko) | 볼 타입 크로스 그루브 조인트 | |
KR101368135B1 (ko) | 차량의 볼타입 조인트 | |
WO2022211566A1 (ko) | 차량의 등속조인트의 그리스 씰링 구조 및 이를 포함하는 등속조인트 | |
KR101378683B1 (ko) | 등속조인트용 클램핑 밴드 | |
WO2021177590A1 (ko) | 등속 조인트용 롤링 부트 | |
EP2609343A1 (en) | Fixed type constant velocity joint | |
WO2014098343A1 (ko) | 차량의 고정형 볼타입 조인트 | |
JP6173675B2 (ja) | 固定式等速自在継手 | |
KR20150010172A (ko) | 트라이포드 타입 등속조인트 | |
WO2016068465A1 (ko) | 등속 조인트 연결용 샤프트 및 그 샤프트를 갖는 차량용 등속 조인트 조립체 | |
KR20110121820A (ko) | 트라이포드 등속조인트의 스파이더 조립체 | |
KR20130063424A (ko) | 토크 계측용 트라이포드 타입 등속 조인트 | |
KR20100057332A (ko) | 등속조인트용 스파이더 및 샤프트 어셈블리 장치 | |
WO2024147717A1 (ko) | 차량용 휠베어링 | |
KR20140025178A (ko) | 차량용 볼타입 등속조인트의 아우터 레이스 | |
KR101115840B1 (ko) | 차량용 아웃보드측 등속조인트 | |
KR20140074074A (ko) | 차량의 볼타입 등속조인트용 인너레이스 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15786032 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15786032 Country of ref document: EP Kind code of ref document: A1 |