WO2015167007A1 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
WO2015167007A1
WO2015167007A1 PCT/JP2015/063063 JP2015063063W WO2015167007A1 WO 2015167007 A1 WO2015167007 A1 WO 2015167007A1 JP 2015063063 W JP2015063063 W JP 2015063063W WO 2015167007 A1 WO2015167007 A1 WO 2015167007A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
tire
groove
circumferential main
sipe
Prior art date
Application number
PCT/JP2015/063063
Other languages
French (fr)
Japanese (ja)
Inventor
英樹 浜中
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to CN201580021587.7A priority Critical patent/CN106457922B/en
Publication of WO2015167007A1 publication Critical patent/WO2015167007A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1236Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern
    • B60C2011/1254Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern with closed sipe, i.e. not extending to a groove

Definitions

  • the present invention relates to a pneumatic tire, and more particularly to a pneumatic tire that can improve uneven wear resistance of the tire.
  • the present invention has been made in view of the above, and an object thereof is to provide a pneumatic tire capable of improving the uneven wear resistance of the tire.
  • a pneumatic tire according to the present invention includes a plurality of circumferential main grooves extending in the tire circumferential direction, and a plurality of land portions defined by the circumferential main grooves.
  • the outer circumferential main groove that is the outermost in the tire width direction is referred to as an outermost circumferential main groove
  • the land portion on the inner side in the tire width direction defined by the outermost circumferential main groove is a center land portion.
  • the center land portions When at least one row of the center land portions includes a plurality of lug grooves extending in the tire width direction, and a plurality of blocks defined by the plurality of lug grooves, the circumference of the blocks
  • the left and right edge portions on the direction main groove side have a step shape having an amplitude in the tire width direction
  • the front and rear edge portions on the lug groove side of the block have a step shape having an amplitude in the tire circumferential direction.
  • Each of the hooks has a plurality of sipes extending in the tire width direction, and 80% of the sipes formed in one of the blocks are opened in the circumferential main groove at one end.
  • the direction length Wb has a relationship of 0.30 ⁇ P / Wb ⁇ 0.60.
  • the concentration P / Wb of the projected length P of the semi-closed sipe and the length Wb in the width direction of the block is optimized, so that stress concentration at the edge portion of the block is moderated appropriately.
  • FIG. 1 is a sectional view in the tire meridian direction showing a pneumatic tire according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing a tread surface of the pneumatic tire depicted in FIG. 1.
  • FIG. 3 is a plan view showing a center land portion of the tread pattern shown in FIG. 4 is a cross-sectional view showing a lug groove in the center land portion shown in FIG.
  • FIG. 5 is a cross-sectional view showing a cutout portion of the block shown in FIG. 3.
  • FIG. 6 is a cross-sectional view showing a sipe of the block shown in FIG.
  • FIG. 7 is an explanatory diagram illustrating an example of a three-dimensional sipe.
  • FIG. 1 is a sectional view in the tire meridian direction showing a pneumatic tire according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing a tread surface of the pneumatic tire depicted in FIG. 1.
  • FIG. 3 is a plan view
  • FIG. 8 is an explanatory diagram illustrating an example of a three-dimensional sipe.
  • FIG. 9 is a chart showing the results of the performance test of the pneumatic tire according to the embodiment of the present invention.
  • FIG. 10 is a chart showing the results of the performance test of the pneumatic tire according to the embodiment of the present invention.
  • FIG. 1 is a sectional view in the tire meridian direction showing a pneumatic tire according to an embodiment of the present invention. This figure shows one side region in the tire radial direction. The figure shows a small truck studless tire as an example of a pneumatic tire. In the figure, the symbol CL is the tire equator plane.
  • the tire width direction means a direction parallel to a tire rotation axis (not shown), and the tire radial direction means a direction perpendicular to the tire rotation axis.
  • the pneumatic tire 1 has an annular structure centered on the tire rotation axis, and includes a pair of bead cores 11, a pair of bead fillers 12, 12, a carcass layer 13, a belt layer 14, and a tread rubber 15. And a pair of sidewall rubbers 16 and 16 and a pair of rim cushion rubbers 17 and 17 (see FIG. 1).
  • the pair of bead cores 11 and 11 is an annular member formed by bundling a plurality of bead wires, and constitutes the core of the left and right bead portions.
  • the pair of bead fillers 12 and 12 are disposed on the outer periphery in the tire radial direction of the pair of bead cores 11 and 11 to reinforce the bead portion.
  • the carcass layer 13 is bridged in a toroidal shape between the left and right bead cores 11 and 11 to form a tire skeleton. Further, both end portions of the carcass layer 13 are wound and locked outward in the tire width direction so as to wrap the bead core 11 and the bead filler 12.
  • the carcass layer 13 is formed by rolling a plurality of carcass cords made of steel or an organic fiber material (for example, aramid, nylon, polyester, rayon, etc.) with a coat rubber, and has an absolute value of 80 [deg].
  • a carcass angle of 95 [deg] or less inclination angle in the fiber direction of the carcass cord with respect to the tire circumferential direction).
  • the belt layer 14 is formed by laminating a pair of cross belts 141 and 142 and a belt cover 143, and is arranged around the outer periphery of the carcass layer 13.
  • the pair of cross belts 141 and 142 is formed by rolling a plurality of belt cords made of steel or organic fiber material with a coating rubber, and has an absolute value of a belt angle of 20 [deg] or more and 40 [deg] or less.
  • the pair of cross belts 141 and 142 have belt angles with different signs from each other (inclination angle of the fiber direction of the belt cord with respect to the tire circumferential direction), and are laminated so that the fiber directions of the belt cords cross each other. (Cross ply structure).
  • the belt cover 143 is formed by rolling a plurality of belt cords made of steel or organic fiber material coated with a coat rubber, and has a belt angle of 45 [deg] or more and 70 [deg] or less in absolute value. Further, the belt cover 143 is disposed so as to be laminated on the outer side in the tire radial direction of the cross belts 141 and 142.
  • the tread rubber 15 is disposed on the outer circumference in the tire radial direction of the carcass layer 13 and the belt layer 14 to constitute a tread portion of the tire.
  • the pair of side wall rubbers 16 and 16 are respectively arranged on the outer side in the tire width direction of the carcass layer 13 to constitute left and right side wall portions.
  • the pair of rim cushion rubbers 17 and 17 are arranged on the outer sides in the tire width direction of the left and right bead cores 11 and 11 and the bead fillers 12 and 12, respectively, and constitute left and right bead portions.
  • the tread rubber 15 (particularly the cap rubber constituting the tread surface) preferably has a rubber hardness of 50 or more and 75 or less, and more preferably 60 or more and 70 or less.
  • Rubber hardness refers to JIS-A hardness according to JIS-K6263, and is measured under the condition of 20 [° C.].
  • FIG. 2 is a plan view showing a tread surface of the pneumatic tire depicted in FIG. 1.
  • the figure shows the traction pattern of the studless tire.
  • the tire circumferential direction refers to the direction around the tire rotation axis.
  • symbol T is a tire grounding end.
  • the pneumatic tire 1 includes a plurality of circumferential main grooves 21 and 22 extending in the tire circumferential direction, and a plurality of land portions defined by the circumferential main grooves 21 and 22. 31 to 33 and a plurality of lug grooves 41 to 44 extending in the tire width direction are provided in the tread portion.
  • Reference numeral 23 denotes a circumferential narrow groove.
  • the circumferential main groove is a circumferential groove having a wear indicator indicating the end of wear, and generally has a groove width of 5.0 [mm] or more and a groove depth of 7.5 [mm] or more.
  • the groove width is measured as the maximum value of the distance between the left and right groove walls at the groove opening in a no-load state in which the tire is mounted on the specified rim and filled with the specified internal pressure.
  • the groove width is based on the intersection of the tread surface and the extension line of the groove wall in a cross-sectional view in which the groove length direction is a normal direction. Measured.
  • the groove width is measured with reference to the center line of the amplitude of the groove wall.
  • the groove depth is measured as the maximum value of the distance from the tread surface to the groove bottom in an unloaded state in which the tire is mounted on the specified rim and filled with the specified internal pressure. Moreover, in the structure which a groove
  • Specified rim means “Applied rim” defined in JATMA, “Design Rim” defined in TRA, or “Measuring Rim” defined in ETRTO.
  • the specified internal pressure means “maximum air pressure” specified by JATMA, the maximum value of “TIRE LOAD LIMITS AT VARIOUS COLD INFLATIONLPRESSURES” specified by TRA, or “INFLATION PRESSURES” specified by ETRTO.
  • the specified load means the “maximum load capacity” defined by JATMA, the maximum value of “TIRE LOAD LIMITS AT VARIOUS COLD INFUREATION PRESSURES” prescribed by TRA, or “LOAD CAPACITY” prescribed by ETRTO.
  • the specified internal pressure is air pressure 180 [kPa]
  • the specified load is 88 [%] of the maximum load capacity.
  • the left and right circumferential main grooves 22 and 22 on the outermost side in the tire width direction are referred to as outermost circumferential main grooves.
  • the land portions 31 and 32 located on the inner side in the tire width direction from the left and right outermost circumferential main grooves 22 and 22 are referred to as center land portions.
  • the land portions 33, 33 located on the outer side in the tire width direction from the left and right outermost circumferential main grooves 22, 22 are referred to as shoulder land portions.
  • the four circumferential main grooves 21 and 22 are arranged symmetrically about the tire equatorial plane CL.
  • the circumferential main grooves 21 and 22 define three rows of center land portions 31, 32 and 32 and a pair of left and right shoulder land portions 33 and 33. Further, left and right shoulder land portions 33 and 33 are disposed on the left and right tire ground contact ends T and T, respectively.
  • the present invention is not limited to this, and the circumferential main grooves 21 and 22 may be arranged asymmetrically about the tire equatorial plane CL (not shown). Further, the circumferential main groove may be disposed on the tire equatorial plane CL (not shown). Three or more circumferential main grooves may be arranged (not shown).
  • FIG. 3 is a plan view showing a center land portion of the tread pattern shown in FIG. The figure shows an enlarged plan view of the block 5 of the center land portion 31.
  • the pneumatic tire 1 includes three rows of center land portions 31 and 32, and these center land portions 31 and 32 have the same structure. Therefore, in this embodiment, as an example, the center center land portion 31 will be described, and description of the other center land portions 32, 32 will be omitted.
  • the center land portion 31 (32) has a plurality of lug grooves 41 (42) extending in the tire width direction and a plurality of blocks that are partitioned by these lug grooves 41. And 5.
  • a plurality of lug grooves 41 penetrate the center land portion 31 in the tire width direction and open to the left and right circumferential main grooves 21 and 21 that define the center land portion 31, respectively.
  • a plurality of lug grooves 41 are arranged at predetermined intervals in the tire circumferential direction. Thereby, the center land portion 31 is divided in the tire circumferential direction by the lug grooves 41 to form a block row composed of a plurality of blocks 5.
  • all the land portions 31 to 33 each have a plurality of lug grooves 41 to 44 extending in the tire width direction, and these lug grooves 41 to 44 are land portions 31 to 33. Has an open structure that penetrates through the tire in the tire width direction. For this reason, all the land portions 31 to 33 form a block row.
  • the present invention is not limited to this, and for example, the lug groove 43 of the shoulder land portion 33 may have a semi-closed structure that terminates in the land portion 33 at one end portion (not shown).
  • the shoulder land portion 33 is a rib continuous in the tire circumferential direction.
  • the left and right edge portions on the circumferential main grooves 21 and 21 side of the block 5 have a step shape having an amplitude in the tire width direction.
  • the traction component of the center land part 31 increases, and the performance on ice and the performance on snow of a tire improve.
  • the left and right edge portions on the circumferential main grooves 21 and 21 side of the block 5 have a step shape having two steps (reference numerals omitted). Further, these steps have a linear shape substantially parallel to the tire circumferential direction on the block tread surface, and are arranged offset from each other in the tire width direction. Further, the step-shaped stepped portion (not shown) is 40 [%] or more and 60 [%] or less with respect to the central portion of the block 5 (the circumferential length Lb of the edge portion on the circumferential main groove 21 side of the block 5). In the area).
  • the steps of the edge portions of the blocks 5 and 5 adjacent in the tire circumferential direction are arranged offset in the tire width direction with the lug groove 41 interposed therebetween.
  • the edge part by the side of the circumferential direction main groove 21 of the center land part 31 has the step shape extended in a tire circumferential direction, changing to a step shape in a tire width direction.
  • the step amount of the step shape of the block 5 (dimension code omitted) is set to about 2 [mm].
  • the front and rear edge portions on the lug groove 41 side of the block 5 have a step shape having an amplitude in the tire circumferential direction. Thereby, the traction component of the center land part 31 increases, and the performance on ice and the performance on snow of a tire improve.
  • the lug groove 41 extends in the tire width direction while being bent, so that the edge portion on the lug groove 41 side of the block 5 has a step shape having two steps (reference numerals omitted). ing. Also, these steps are arranged offset from each other in the groove width direction of the lug groove 41. Further, the step-shaped stepped portion 53 of the block 5 is an area of 40 [%] or more and 60 [%] or less with respect to the central portion of the block 5 (the width direction length Wb of the edge portion of the block 5 on the lug groove 41 side). ).
  • the lug groove 41 extends while inclining at a predetermined angle in the tire width direction, so that the step-shaped step of the block 5 is inclined with respect to the tire width direction as a whole.
  • the inclination angle of the lug groove 41 with respect to the tire width direction is preferably in the range of 1 [deg] or more and 30 [deg] or less.
  • the inclination angle of the lug groove 41 is measured as an angle formed by a straight line passing through the center point of the left and right openings of the lug groove 41 and the tire width direction.
  • the circumferential length Lb of the edge portion on the circumferential main groove 21 side of the block 5 and the width direction length Wb of the edge portion on the lug groove 41 side of the block 5 are 1.15 ⁇ Lb / Wb ⁇ 1. .50 relationship. Thereby, the shape of the block 5 is optimized.
  • the circumferential length Lb of the block 5 is the distance in the tire circumferential direction of the edge portion of the block 5 facing the circumferential main groove 21, and the tire is mounted on the prescribed rim to apply the prescribed internal pressure and to be in an unloaded state. Measured. Moreover, in the structure where the edge part of the block 5 has a chamfer part or a notch part, these are excluded and the circumferential direction length Lb is measured.
  • the width direction length Wb of the block 5 is a distance in the tire width direction of the edge portion of the block 5 facing the lug groove 41, and is measured as an unloaded state while applying a specified internal pressure by mounting the tire on a specified rim.
  • the lug groove 41 is inclined with respect to the tire width direction, so that the tread surface of the block 5 has a parallelogram shape as a whole.
  • a chamfered portion (reference numeral omitted) is applied to the acute corner portion of the block 5.
  • width direction length Wb of the edge portion on the lug groove 41 side of the block 5 and the tire ground contact width TW have a relationship of 0.10 ⁇ Wb / TW ⁇ 0.18. Thereby, the width direction length Wb of the block 5 is optimized.
  • the tire ground contact width TW is the contact surface between the tire and the flat plate when the tire is mounted on the specified rim to apply the specified internal pressure and is placed perpendicular to the flat plate in a stationary state and applied with a load corresponding to the specified load. It is measured as the maximum linear distance in the tire axial direction.
  • the lug groove 41 opens with a see-through structure to the left and right circumferential main grooves 21, 21 that define the center land portion 31.
  • the see-through structure refers to a structure in which the other circumferential main groove 21 can be seen from one circumferential main groove 21 via the lug groove 41. Such a see-through structure improves the drainage performance and snow removal performance of the lug groove 41.
  • the opening width Wl in the tire circumferential direction of the lug groove 41 and the circumferential length Lb of the edge portion on the circumferential main groove 21 side of the block 5 have a relationship of 0.08 ⁇ Wl / Lb ⁇ 0.18. Preferably, it has a relationship of 0.10 ⁇ Wl / Lb ⁇ 0.15. Thereby, the opening width Wl of the lug groove 41 is optimized.
  • the opening width Wl of the lug groove 41 is a distance in the tire circumferential direction of the opening with respect to the circumferential main groove 21 of the lug groove 41, and is measured as a no-load state while attaching the tire to the specified rim and applying the specified internal pressure.
  • the lug groove 41 generally has a groove width of 1.0 [mm] or more.
  • the groove width of the lug groove 41 is measured by excluding the chamfered part and the notch part at the edge part of the block 5.
  • FIG. 4 is a cross-sectional view showing the lug groove in the center land portion shown in FIG. This figure shows a cross-sectional view of the lug groove 41 in the groove depth direction.
  • the lug groove 41 has a bottom upper portion 411.
  • the bottom upper part 411 is formed at the groove bottom of the lug groove 41 and partially raises the groove depth of the lug groove 41. Thereby, the rigidity of the block 5 is ensured and uneven wear of the block 5 is suppressed.
  • the groove depth DL of the lug groove 41 in the bottom upper portion 411 and the groove depth GD of the circumferential main groove 21 preferably have a relationship of 0.50 ⁇ DL / GD ⁇ 0.80. It is more preferable to have a relationship of 55 ⁇ DL / GD ⁇ 0.75. Thereby, the groove depth DL of the lug groove 41 in the bottom upper part 411 is optimized.
  • the bottom upper portion 411 of the lug groove 41 is formed at the center of the lug groove 41 in the groove length direction. Further, the groove depth of the lug groove 41 gradually increases from the bottom upper portion 411 toward the circumferential main groove 21, and becomes maximum at the groove opening portion with respect to the circumferential main groove 21. Thereby, the drainage property of the lug groove 41 and the snow drainage property are improved.
  • FIG. 5 is a cross-sectional view showing a cutout portion of the block shown in FIG. 3. This figure shows a sectional view of the notch 52 in the depth direction.
  • the block 5 of the center land portion 31 has a cutout portion 52 at an edge portion on the circumferential main groove 21 side. Further, the notch 52 is formed in the stepped step portion of the block 5. Thereby, the slip amount of the edge part of the block 5 at the time of tire contact is made uniform, and the uneven wear of the block 5 is suppressed.
  • the block 5 of the center land portion 31 has notches 52 at the edge portions on the left and right circumferential main grooves 21, 21 side. Further, as described above, the left and right edge portions of the block 5 each have a step shape having two steps, and the notch portions 52 are respectively disposed at the step portions of these steps.
  • the circumferential length Lb of the edge portion on the circumferential main groove 21 side of the block 5 and the position Mc of the notch 52 in the edge portion of the block 5 are 0.35 ⁇ Mc / Lb ⁇ 0. .65, preferably 0.40 ⁇ Mc / Lb ⁇ 0.60. Thereby, the position Mc of the notch 52 is optimized.
  • the position Mc of the notch 52 is measured as a distance in the tire circumferential direction between the measurement point of the circumferential length Lb of the block 5 and the center of the notch 52 in a plan view of the block 5.
  • the depth Dc of the notch 52 and the groove depth GD of the circumferential main groove 21 preferably have a relationship of 0.50 ⁇ Dc / GD ⁇ 0.80, It is more preferable to have a relationship of ⁇ Dc / GD ⁇ 0.75. Thereby, the depth Dc of the notch 52 is optimized.
  • the depth Dc of the notch 52 is measured as the maximum depth of the notch 52 with reference to the tread surface of the block 5.
  • the width direction length Wc of the notch 52 and the width direction length Wb of the edge portion on the lug groove 41 side of the block 5 have a relationship of 0.05 ⁇ Wc / Wb ⁇ 0.25. It is preferable to have. Thereby, the function of the notch 52 is ensured and the rigidity of the block 5 is ensured.
  • the width direction length Wc of the notch portion 52 is measured as a length in the tire width direction with reference to the step of the edge portion on the circumferential main groove 21 side of the step shape of the block 5.
  • FIG. 6 is a cross-sectional view showing a sipe of the block shown in FIG. This figure shows a sectional view of the sipe 51 in the depth direction.
  • the block 5 of the center land portion 31 has a plurality of sipes 51 extending in the tire width direction. Further, an 80% sipe 51 formed in one block 5 is a semi-closed sipe (one-side opening sipe), and opens to the circumferential main groove 21 at one end and the other end. End in block 5 at. Thereby, the edge component of the block 5 increases and the traction performance as a studless tire is improved.
  • Sipe refers to a cut having a sipe width of less than 1.0 [mm].
  • one block 5 has a plurality of semi-closed sipes 51 and a plurality of closed sipes (reference numerals omitted) that terminate inside the block 5 at both ends.
  • the ratio of the semi-closed sipe 51 in one block 5 is set to 80 [%] or more with respect to the total number of sipes.
  • the plurality of semi-closed sipes 51 have a zigzag shape extending in the tire width direction, and are arranged at substantially uniform intervals in the tire circumferential direction. Further, the plurality of semi-closed sipes 51 are equally arranged on the left and right edge portions of the block 5. Thereby, the rigidity of the left and right edge portions of the block 5 is made uniform.
  • the block 5 of the center land portion 31 does not have an open sipe that penetrates the block 5.
  • the tread surface of the block 5 has a structure which continues in the tire circumferential direction without being divided by sipes. Thereby, the rigidity of the block 5 is improved.
  • the projection length P of the semi-closed sipe 51 in the tire circumferential direction and the width-direction length Wb of the edge portion on the lug groove 41 side of the block 5 have a relationship of 0.30 ⁇ P / Wb ⁇ 0.60. Respectively.
  • the ratio P / Wb is preferably in the range of 0.35 ⁇ P / Wb ⁇ 0.55.
  • the semi-closed sipe 51 that satisfies the condition P / Wb is set to 80 [%] or more with respect to the total number of sipes in one block 5. Thereby, the projection length P of the sipe 51 is optimized.
  • the sipe projection length P is measured based on the sipe length on the tread surface of the block 5.
  • the sipe depth Ds1 of the semi-closed sipe 51 and the groove depth GD of the circumferential main groove 21 preferably have a relationship of 0.55 ⁇ Ds1 / GD ⁇ 0.85. It is more preferable to have a relationship of 60 ⁇ Ds1 / GD ⁇ 0.80. Thereby, the sipe depth Ds1 is optimized.
  • the sipe depth Ds1 is measured as a distance from the tread surface of the block 5 to the maximum depth position of the sipe 51.
  • the semi-closed sipe 51 has a bottom upper portion 511 at an opening portion with respect to the circumferential main groove 21.
  • the sipe depth Ds2 in the bottom upper portion 511 and the groove depth GD of the circumferential main groove 21 preferably have a relationship of 0.05 ⁇ Ds2 / GD ⁇ 0.25, and 0.10 ⁇ Ds2 It is more preferable to have a relationship of /GD ⁇ 0.20. Thereby, the sipe depth Ds2 in the bottom upper part 511 is optimized.
  • the sipe depth Ds2 at the bottom upper part 511 is measured with reference to the tread surface of the block 5.
  • the arrangement length Ws of the bottom upper portion 511 and the width direction length Wb of the edge portion on the lug groove 41 side of the block 5 have a relationship of 0.05 ⁇ Ws / Wb ⁇ 0.20. It is preferable. Thereby, the arrangement
  • the arrangement length Ws of the bottom upper part 511 is measured as the length in the tire width direction of the bottom upper part 511 in the plan view of the block 5.
  • the sipe may be a two-dimensional sipe or a three-dimensional sipe.
  • all the sipes of the center land portion 31 are three-dimensional sipes.
  • a two-dimensional sipe is a sipe having a sipe wall surface that is linear in a sectional view (a sectional view including a sipe width direction and a sipe depth direction) with the sipe length direction as a normal direction.
  • the two-dimensional sipe may have a straight shape on the tread surface, a zigzag shape, a wave shape, or an arc shape.
  • a three-dimensional sipe is a sipe having a sipe wall surface that is bent in the sipe width direction in a cross-sectional view with the sipe length direction as the normal direction. Compared to the two-dimensional sipe, the three-dimensional sipe has a strong meshing force between the opposing sipe wall surfaces, so that the collapse of the block at the time of tire contact is effectively suppressed.
  • the three-dimensional sipe may have a straight shape on the tread surface, a zigzag shape, a wave shape, or an arc shape. Examples of such a three-dimensional sipe include the following (see FIGS. 7 and 8).
  • FIG. 7 and 8 are explanatory diagrams showing an example of a three-dimensional sipe. These figures show the sipe wall surface of the three-dimensional sipe.
  • the sipe wall surface has a structure in which a triangular pyramid and an inverted triangular pyramid are connected in the sipe length direction.
  • the sipe wall surface has a zigzag shape on the tread surface side and a zigzag shape on the bottom side that are shifted in pitch in the tire width direction, and unevenness that faces each other between the zigzag shapes on the tread surface side and the bottom side.
  • the sipe wall surface is an unevenness when viewed in the tire rotation direction among these unevennesses, between the convex bending point on the tread surface side and the concave bending point on the bottom side, the concave bending point on the tread surface side and the bottom side Between the convex bend points of the tread surface and the convex bend points on the tread surface side, and adjacent convex bend points that are adjacent to each other with ridge lines, and the ridge lines between the ridge lines in order in the tire width direction. It is formed by connecting in a plane.
  • one sipe wall surface has an uneven surface in which convex triangular pyramids and inverted triangular pyramids are arranged alternately in the tire width direction, and the other sipe wall surface alternates between concave triangular pyramids and inverted triangular pyramids.
  • the sipe wall surface has the uneven
  • the sipe wall surface has a structure in which a plurality of prisms having a block shape are connected in the sipe depth direction and the sipe length direction while being inclined with respect to the sipe depth direction.
  • the sipe wall surface has a zigzag shape on the tread surface.
  • the sipe wall surface has a bent portion that is bent in the tire circumferential direction at two or more locations in the tire radial direction inside the block and continues in the tire width direction, and has an amplitude in the tire radial direction at the bent portion. It has a zigzag shape.
  • the sipe wall surface makes the tire circumferential amplitude constant
  • the inclination angle in the tire circumferential direction with respect to the normal direction of the tread surface is made smaller at the sipe bottom side part than the tread surface side part and bent.
  • the amplitude of the tire in the tire radial direction is made larger at the sipe bottom side than at the tread surface side.
  • the pneumatic tire 1 includes a plurality of circumferential main grooves 21 and 22 that extend in the tire circumferential direction, and a plurality of land portions 31 that are partitioned by the circumferential main grooves 21 and 22.
  • At least one row of the center land portions 31 includes a plurality of lug grooves 41 extending in the tire width direction and a plurality of blocks 5 defined by the lug grooves 41 (see FIG. 3).
  • the left and right edge portions on the circumferential main groove 21 side of the block 5 have a step shape having an amplitude in the tire width direction.
  • the front and rear edge portions on the lug groove 41 side of the block 5 have a step shape having an amplitude in the tire circumferential direction.
  • the plurality of blocks 5 each have a plurality of sipes extending in the tire width direction.
  • an 80 [%] sipe 51 formed in one block 5 is a semi-closed sipe that opens into the circumferential main groove 21 at one end and terminates in the block 5 at the other end. is there.
  • the projection length P of the semi-closed sipe 51 in the tire circumferential direction and the width-direction length Wb of the edge portion on the lug groove 41 side of the block 5 have a relationship of 0.30 ⁇ P / Wb ⁇ 0.60. Respectively.
  • the circumferential main groove 21 side of the block 5 and the edge portion of the lug groove 41 have step shapes, so that the edge action of the block 5 is improved and the performance of the tire on ice and snow is improved.
  • the 80% sipe 51 formed in one block 5 is a semi-closed sipe, stress concentration at the edge portion of the block 5 is relaxed while securing the rigidity of the block 5. Thereby, the collapse of the block 5 at the time of tire contact is suppressed, and there is an advantage that the uneven wear resistance performance of the tire (particularly, the center wear resistance performance of the tire mounted on the drive shaft of the vehicle) is improved.
  • the ratio P / Wb between the projection length P of the semi-closed sipe 51 and the width direction length Wb of the block 5 is optimized. That is, by satisfying 0.30 ⁇ P / Wb, the projection length P of the semi-closed sipe 51 is secured, and the stress concentration at the edge portion of the block 5 is moderated appropriately. Further, by satisfying P / Wb ⁇ 0.60, the rigidity of the block 5 is ensured, and the collapse of the block 5 at the time of tire contact is suppressed.
  • the sipe depth Ds1 of the semi-closed sipe 51 and the groove depth GD of the circumferential main groove 21 have a relationship of 0.55 ⁇ Ds1 / GD ⁇ 0.85 (see FIG. 6).
  • the sipe depth Ds1 is optimized. That is, by satisfying 0.55 ⁇ Ds1 / GD, the sipe depth Ds1 is ensured, and the action of the sipe 51 is appropriately obtained. Further, since Ds1 / GD ⁇ 0.85, the rigidity of the block 5 is ensured, and the collapse of the block 5 at the time of tire contact is suppressed.
  • the semi-closed sipe 51 has the bottom upper part 511 in the opening part with respect to the circumferential direction main groove 21 (refer FIG. 6).
  • the sipe depth Ds2 in the bottom upper part 511 and the groove depth GD of the circumferential main groove 21 have a relationship of 0.05 ⁇ Ds2 / GD ⁇ 0.25.
  • the stress concentration at the edge portion on the circumferential main groove 21 side of the block 5 is alleviated, and the collapse of the block 5 at the time of tire contact is suppressed.
  • the sipe depth Ds2 is ensured, and the action of the sipe 51 is appropriately obtained. Further, by satisfying Ds2 / GD ⁇ 0.25, the rigidity of the block 5 is ensured, and the collapse of the block 5 at the time of tire contact is suppressed.
  • the left and right edge portions on the circumferential main groove 21 side of the block 5 have notches 52 in the step-shaped step portions (see FIG. 3). Thereby, the slip amount of the edge part of the block 5 at the time of tire contact is equalized, and there is an advantage that uneven wear of the block 5 is suppressed.
  • the circumferential length Lb of the edge portion on the circumferential main groove 21 side of the block 5 and the position Mc of the notch portion 52 in the edge portion are 0.35 ⁇ Mc / Lb ⁇ .
  • the relationship is 0.65 (see FIG. 3).
  • the notch portion 52 is disposed at the center of the edge portion of the block 5, so that stress concentration at the edge portion of the block 5 is effectively alleviated. Thereby, there exists an advantage by which the partial wear of the block 5 is suppressed effectively.
  • the depth Dc of the notch 52 and the groove depth GD of the circumferential main groove 21 have a relationship of 0.50 ⁇ Dc / GD ⁇ 0.80 (see FIG. 5). ).
  • the depth Dc of the notch part 52 is optimized. That is, by satisfying 0.50 ⁇ Dc / GD, the depth Dc of the notch 52 is ensured, and the action of the notch 52 can be appropriately obtained. Further, since Dc / GD ⁇ 0.80, the rigidity of the block 5 is ensured, and the collapse of the block 5 at the time of tire contact is suppressed.
  • the opening width Wl of the lug groove 41 in the tire circumferential direction and the circumferential length Lb of the edge portion on the circumferential main groove 21 side of the block 5 are 0.08 ⁇ Wl / Lb. ⁇ 0.18 (see FIG. 3).
  • the opening width Wl of the lug groove 41 is optimized. That is, by satisfying 0.08 ⁇ Wl / Lb, the opening width Wl of the lug groove 41 is ensured, and the drainage performance and snow discharge performance of the lug groove 41 are ensured.
  • Wl / Lb ⁇ 0.18 since Wl / Lb ⁇ 0.18, the rigidity of the block 5 in the tire circumferential direction is ensured, and the collapse of the block 5 at the time of tire contact is suppressed.
  • the lug groove 41 has the bottom upper part 411 (refer FIG. 4). Further, the groove depth DL of the lug groove 41 in the bottom upper portion 411 and the groove depth GD of the circumferential main groove 21 have a relationship of 0.50 ⁇ DL / GD ⁇ 0.80. In such a configuration, the lug groove 41 has the bottom upper portion 411, so that the rigidity of the block 5 is ensured and the collapse of the block 5 at the time of tire contact is suppressed. Moreover, there exists an advantage by which ratio DL / GD is optimized.
  • the groove depth DL of the lug groove 41 in the bottom upper portion 411 is ensured, and the drainage performance and snow discharge performance of the lug groove 41 are ensured. Further, since DL / GD ⁇ 0.80, the reinforcing action of the rigidity of the block 5 by the bottom upper portion 411 is appropriately ensured.
  • the step-shaped stepped portion 53 at the edge portion of the block 5 on the lug groove 41 side is 40% or more of the widthwise length Wb of the edge portion of the block 5 on the lug groove 41 side. It is in a position of 60% or less (see FIG. 3).
  • the step-shaped stepped portion 53 is arranged at the center of the edge portion of the block 5, so that stress concentration at the edge portion of the block 5 is effectively alleviated. Thereby, there exists an advantage by which the fall of the block 5 at the time of tire contact is suppressed.
  • the width direction length Wb (see FIG. 3) of the edge portion on the lug groove 41 side of the block 5 and the tire ground contact width TW (see FIG. 2) are 0.10 ⁇ Wb / It has a relationship of TW ⁇ 0.18.
  • the width direction length Wb of the block 5 is optimized. That is, by satisfying 0.10 ⁇ Wb / TW, there is an advantage that the rigidity of the block 5 in the tire width direction is ensured and the collapse of the block 5 at the time of tire contact is suppressed. Further, by satisfying Wb / TW ⁇ 0.18, the groove width of the circumferential main groove 21 can be ensured appropriately, and the drainage and snow drainage of the circumferential main groove 21 can be secured.
  • the circumferential length Lb of the edge portion of the block 5 on the circumferential main groove 21 side and the widthwise length Wb of the edge portion of the block 5 on the lug groove 41 side are 1. 15 ⁇ Lb / Wb ⁇ 1.50 (see FIG. 3).
  • the shape of the block 5 is optimized. That is, by satisfying 1.15 ⁇ Lb / Wb, the circumferential length Lb of the block 5 is ensured, and the collapse of the block 5 at the time of tire contact is suppressed. Further, since Lb / Wb ⁇ 1.50, the rigidity in the width direction of the block 5 is ensured, and uneven wear of the block 5 is suppressed.
  • the semi-closed sipe 51 is a three-dimensional sipe (see FIGS. 7 and 8). Thereby, the meshing force of the sipe 51 is increased, and there is an advantage that the collapse of the block 5 at the time of tire contact is suppressed.
  • the tread rubber 15 has a rubber hardness of 50 or more and 75 or less. Thereby, there exists an advantage by which the rigidity of a tread part is ensured appropriately.
  • the pneumatic tire 1 is applied to a low flat tire having a flat rate of 70 [%] or less, and particularly a small size having a maximum air pressure defined by JATMA within a range of 350 [kPa] to 600 [kPa]. It is preferable to apply truck tires.
  • the ground contact state of the tread portion is likely to change between when the load is loaded and when the load is not loaded. That is, the center area and the shoulder area of the tread portion are uniformly grounded when the load is loaded, but the ground contact area of the shoulder area is reduced when the luggage is not loaded. Then, the land part of a center area
  • 9 and 10 are charts showing the results of the performance test of the pneumatic tire according to the embodiment of the present invention.
  • test tires are mounted on all wheels of a 3-ton truck, which is a test vehicle, and the test vehicle runs on a paved road of 50,000 [km] at an average speed of 60 [km / h]. Uneven wear generated on the block is observed. Based on this observation result, index evaluation is performed with the conventional example 1 as a reference (100). This value is preferably as large as possible, and if it is 110 or more, it can be said that it is particularly superior to the conventional example.
  • the test tires of Examples 1 to 18 have the tread pattern shown in FIG. However, in Examples 1 to 10, the block 5 does not have the notch 52.
  • the shape of the edge portion of the block of the center land portion 31 and the sipe structure are different from the configuration of the first embodiment.
  • the total number of sipes and the sipes density are the same as those in the first embodiment.

Abstract

A pneumatic tire (1) is configured in such a manner that the left and right edges of blocks (5), the edges facing circumferential main grooves (21), have a stepped shape, the amplitude of which in the width direction of the tire varies. The front and rear edges of the blocks (5), the edges facing lug grooves (41), have a stepped shape, the amplitude of which in the circumferential direction of the tire varies. The blocks (5) each have sipes extending in the width direction of the tire. Eighty percent of the sipes (51) formed in each of the blocks (5) are semi-closed type sipes, each of which is open at one end to a circumferential main groove (21) and terminates at the other end within the block (5). Also, the projected length (P) of a semi-closed sipe (51) in the circumferential direction of the tire and the length (Wb), in the width direction, of an edge of a block (5), the edge facing a lug groove (41), have the relationship of 0.30 ≤ P/Wb ≤ 0.60.

Description

空気入りタイヤPneumatic tire
 この発明は、空気入りタイヤに関し、さらに詳しくは、タイヤの耐偏摩耗性を向上できる空気入りタイヤに関する。 The present invention relates to a pneumatic tire, and more particularly to a pneumatic tire that can improve uneven wear resistance of the tire.
 近年の小型トラック用スタッドレスタイヤでは、タイヤの氷上性能および雪上性能を向上させるために、サイプを有する複数のブロック列を備えたトラクションパターンが採用されている。かかる従来の空気入りタイヤとして、特許文献1に記載される技術が知られている。 In recent years, studless tires for small trucks employ a traction pattern including a plurality of block rows having sipes in order to improve the performance on ice and the performance on snow. As such a conventional pneumatic tire, a technique described in Patent Document 1 is known.
特開2009-12671号公報JP 2009-12671 A
 一方で、上記のようなトラクションパターンを有する構成では、ブロックの偏摩耗(特に、センター摩耗)を抑制すべき課題がある。 On the other hand, in the configuration having the traction pattern as described above, there is a problem that uneven wear (particularly center wear) of the block should be suppressed.
 そこで、この発明は、上記に鑑みてなされたものであって、タイヤの耐偏摩耗性を向上できる空気入りタイヤを提供することを目的とする。 Therefore, the present invention has been made in view of the above, and an object thereof is to provide a pneumatic tire capable of improving the uneven wear resistance of the tire.
 上記目的を達成するため、この発明にかかる空気入りタイヤは、タイヤ周方向に延在する複数の周方向主溝と、前記周方向主溝に区画されて成る複数の陸部とを備える空気入りタイヤであって、タイヤ幅方向の最も外側にある前記周方向主溝を最外周方向主溝と呼ぶと共に、前記最外周方向主溝に区画されたタイヤ幅方向内側の前記陸部をセンター陸部と呼ぶときに、少なくとも1列の前記センター陸部が、タイヤ幅方向に延在する複数のラグ溝と、前記複数のラグ溝に区画されて成る複数のブロックとを備え、前記ブロックの前記周方向主溝側にある左右のエッジ部が、タイヤ幅方向に振幅をもつステップ形状を有し、前記ブロックの前記ラグ溝側にある前後のエッジ部が、タイヤ周方向に振幅をもつステップ形状を有し、前記複数のブロックが、タイヤ幅方向に延在する複数本のサイプをそれぞれ有し、1つの前記ブロックに形成された80[%]の前記サイプが、一方の端部にて前記周方向主溝に開口すると共に他方の端部にて前記ブロック内で終端するセミクローズドサイプであり、且つ、前記セミクローズドサイプのタイヤ周方向への投影長さPと、前記ブロックの前記ラグ溝側のエッジ部の幅方向長さWbとが、0.30≦P/Wb≦0.60の関係を有することを特徴とする。 In order to achieve the above object, a pneumatic tire according to the present invention includes a plurality of circumferential main grooves extending in the tire circumferential direction, and a plurality of land portions defined by the circumferential main grooves. The outer circumferential main groove that is the outermost in the tire width direction is referred to as an outermost circumferential main groove, and the land portion on the inner side in the tire width direction defined by the outermost circumferential main groove is a center land portion. When at least one row of the center land portions includes a plurality of lug grooves extending in the tire width direction, and a plurality of blocks defined by the plurality of lug grooves, the circumference of the blocks The left and right edge portions on the direction main groove side have a step shape having an amplitude in the tire width direction, and the front and rear edge portions on the lug groove side of the block have a step shape having an amplitude in the tire circumferential direction. And having the plurality of blocks Each of the hooks has a plurality of sipes extending in the tire width direction, and 80% of the sipes formed in one of the blocks are opened in the circumferential main groove at one end. And a semi-closed sipe that terminates in the block at the other end, and a projection length P of the semi-closed sipe in the tire circumferential direction, and a width of an edge portion of the block on the lug groove side The direction length Wb has a relationship of 0.30 ≦ P / Wb ≦ 0.60.
 この発明にかかる空気入りタイヤでは、セミクローズドサイプの投影長さPとブロックの幅方向長さWbとの比P/Wbが適正化されることにより、ブロックのエッジ部における応力集中が適正に緩和され、また、ブロックの剛性が確保されて、センター陸部の偏摩耗が抑制される利点がある。 In the pneumatic tire according to the present invention, the concentration P / Wb of the projected length P of the semi-closed sipe and the length Wb in the width direction of the block is optimized, so that stress concentration at the edge portion of the block is moderated appropriately. In addition, there is an advantage that the rigidity of the block is secured and uneven wear of the center land portion is suppressed.
図1は、この発明の実施の形態にかかる空気入りタイヤを示すタイヤ子午線方向の断面図である。FIG. 1 is a sectional view in the tire meridian direction showing a pneumatic tire according to an embodiment of the present invention. 図2は、図1に記載した空気入りタイヤのトレッド面を示す平面図である。FIG. 2 is a plan view showing a tread surface of the pneumatic tire depicted in FIG. 1. 図3は、図2に記載したトレッドパターンのセンター陸部を示す平面図である。FIG. 3 is a plan view showing a center land portion of the tread pattern shown in FIG. 図4は、図3に記載したセンター陸部のラグ溝を示す断面図である。4 is a cross-sectional view showing a lug groove in the center land portion shown in FIG. 図5は、図3に記載したブロックの切欠部を示す断面図である。FIG. 5 is a cross-sectional view showing a cutout portion of the block shown in FIG. 3. 図6は、図3に記載したブロックのサイプを示す断面図である。FIG. 6 is a cross-sectional view showing a sipe of the block shown in FIG. 図7は、三次元サイプの一例を示す説明図である。FIG. 7 is an explanatory diagram illustrating an example of a three-dimensional sipe. 図8は、三次元サイプの一例を示す説明図である。FIG. 8 is an explanatory diagram illustrating an example of a three-dimensional sipe. 図9は、この発明の実施の形態にかかる空気入りタイヤの性能試験の結果を示す図表である。FIG. 9 is a chart showing the results of the performance test of the pneumatic tire according to the embodiment of the present invention. 図10は、この発明の実施の形態にかかる空気入りタイヤの性能試験の結果を示す図表である。FIG. 10 is a chart showing the results of the performance test of the pneumatic tire according to the embodiment of the present invention.
 以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、この実施の形態の構成要素には、発明の同一性を維持しつつ置換可能かつ置換自明なものが含まれる。また、この実施の形態に記載された複数の変形例は、当業者自明の範囲内にて任意に組み合わせが可能である。 Hereinafter, the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. Further, the constituent elements of this embodiment include those that can be replaced while maintaining the identity of the invention and that are obvious for replacement. In addition, a plurality of modifications described in this embodiment can be arbitrarily combined within a range obvious to those skilled in the art.
[空気入りタイヤ]
 図1は、この発明の実施の形態にかかる空気入りタイヤを示すタイヤ子午線方向の断面図である。同図は、タイヤ径方向の片側領域を示している。また、同図は、空気入りタイヤの一例として、小型トラック用スタッドレスタイヤを示している。なお、同図において、符号CLは、タイヤ赤道面である。また、タイヤ幅方向とは、タイヤ回転軸(図示省略)に平行な方向をいい、タイヤ径方向とは、タイヤ回転軸に垂直な方向をいう。
[Pneumatic tire]
FIG. 1 is a sectional view in the tire meridian direction showing a pneumatic tire according to an embodiment of the present invention. This figure shows one side region in the tire radial direction. The figure shows a small truck studless tire as an example of a pneumatic tire. In the figure, the symbol CL is the tire equator plane. The tire width direction means a direction parallel to a tire rotation axis (not shown), and the tire radial direction means a direction perpendicular to the tire rotation axis.
 この空気入りタイヤ1は、タイヤ回転軸を中心とする環状構造を有し、一対のビードコア11、11と、一対のビードフィラー12、12と、カーカス層13と、ベルト層14と、トレッドゴム15と、一対のサイドウォールゴム16、16と、一対のリムクッションゴム17、17とを備える(図1参照)。 The pneumatic tire 1 has an annular structure centered on the tire rotation axis, and includes a pair of bead cores 11, a pair of bead fillers 12, 12, a carcass layer 13, a belt layer 14, and a tread rubber 15. And a pair of sidewall rubbers 16 and 16 and a pair of rim cushion rubbers 17 and 17 (see FIG. 1).
 一対のビードコア11、11は、複数のビードワイヤを束ねて成る環状部材であり、左右のビード部のコアを構成する。一対のビードフィラー12、12は、一対のビードコア11、11のタイヤ径方向外周にそれぞれ配置されてビード部を補強する。 The pair of bead cores 11 and 11 is an annular member formed by bundling a plurality of bead wires, and constitutes the core of the left and right bead portions. The pair of bead fillers 12 and 12 are disposed on the outer periphery in the tire radial direction of the pair of bead cores 11 and 11 to reinforce the bead portion.
 カーカス層13は、左右のビードコア11、11間にトロイダル状に架け渡されてタイヤの骨格を構成する。また、カーカス層13の両端部は、ビードコア11およびビードフィラー12を包み込むようにタイヤ幅方向外側に巻き返されて係止される。また、カーカス層13は、スチールあるいは有機繊維材(例えば、アラミド、ナイロン、ポリエステル、レーヨンなど)から成る複数のカーカスコードをコートゴムで被覆して圧延加工して構成され、絶対値で80[deg]以上95[deg]以下のカーカス角度(タイヤ周方向に対するカーカスコードの繊維方向の傾斜角)を有する。 The carcass layer 13 is bridged in a toroidal shape between the left and right bead cores 11 and 11 to form a tire skeleton. Further, both end portions of the carcass layer 13 are wound and locked outward in the tire width direction so as to wrap the bead core 11 and the bead filler 12. The carcass layer 13 is formed by rolling a plurality of carcass cords made of steel or an organic fiber material (for example, aramid, nylon, polyester, rayon, etc.) with a coat rubber, and has an absolute value of 80 [deg]. A carcass angle of 95 [deg] or less (inclination angle in the fiber direction of the carcass cord with respect to the tire circumferential direction).
 ベルト層14は、一対の交差ベルト141、142と、ベルトカバー143とを積層して成り、カーカス層13の外周に掛け廻されて配置される。一対の交差ベルト141、142は、スチールあるいは有機繊維材から成る複数のベルトコードをコートゴムで被覆して圧延加工して構成され、絶対値で20[deg]以上40[deg]以下のベルト角度を有する。また、一対の交差ベルト141、142は、相互に異符号のベルト角度(タイヤ周方向に対するベルトコードの繊維方向の傾斜角)を有し、ベルトコードの繊維方向を相互に交差させて積層される(クロスプライ構造)。ベルトカバー143は、コートゴムで被覆されたスチールあるいは有機繊維材から成る複数のベルトコードを圧延加工して構成され、絶対値で45[deg]以上70[deg]以下のベルト角度を有する。また、ベルトカバー143は、交差ベルト141、142のタイヤ径方向外側に積層されて配置される。 The belt layer 14 is formed by laminating a pair of cross belts 141 and 142 and a belt cover 143, and is arranged around the outer periphery of the carcass layer 13. The pair of cross belts 141 and 142 is formed by rolling a plurality of belt cords made of steel or organic fiber material with a coating rubber, and has an absolute value of a belt angle of 20 [deg] or more and 40 [deg] or less. Have. Further, the pair of cross belts 141 and 142 have belt angles with different signs from each other (inclination angle of the fiber direction of the belt cord with respect to the tire circumferential direction), and are laminated so that the fiber directions of the belt cords cross each other. (Cross ply structure). The belt cover 143 is formed by rolling a plurality of belt cords made of steel or organic fiber material coated with a coat rubber, and has a belt angle of 45 [deg] or more and 70 [deg] or less in absolute value. Further, the belt cover 143 is disposed so as to be laminated on the outer side in the tire radial direction of the cross belts 141 and 142.
 トレッドゴム15は、カーカス層13およびベルト層14のタイヤ径方向外周に配置されてタイヤのトレッド部を構成する。一対のサイドウォールゴム16、16は、カーカス層13のタイヤ幅方向外側にそれぞれ配置されて左右のサイドウォール部を構成する。一対のリムクッションゴム17、17は、左右のビードコア11、11およびビードフィラー12、12のタイヤ幅方向外側にそれぞれ配置されて、左右のビード部を構成する。 The tread rubber 15 is disposed on the outer circumference in the tire radial direction of the carcass layer 13 and the belt layer 14 to constitute a tread portion of the tire. The pair of side wall rubbers 16 and 16 are respectively arranged on the outer side in the tire width direction of the carcass layer 13 to constitute left and right side wall portions. The pair of rim cushion rubbers 17 and 17 are arranged on the outer sides in the tire width direction of the left and right bead cores 11 and 11 and the bead fillers 12 and 12, respectively, and constitute left and right bead portions.
 なお、トレッドゴム15(特に、トレッド面を構成するキャップゴム)は、50以上75以下のゴム硬度を有することが好ましく、60以上70以下のゴム硬度を有することがより好ましい。ゴム硬度とは、JIS-K6263に準拠したJIS-A硬度をいい、20[℃]の条件下にて測定される。 The tread rubber 15 (particularly the cap rubber constituting the tread surface) preferably has a rubber hardness of 50 or more and 75 or less, and more preferably 60 or more and 70 or less. Rubber hardness refers to JIS-A hardness according to JIS-K6263, and is measured under the condition of 20 [° C.].
[トレッドパターン]
 図2は、図1に記載した空気入りタイヤのトレッド面を示す平面図である。同図は、スタッドレスタイヤのトラクションパターンを示している。なお、図2において、タイヤ周方向とは、タイヤ回転軸周りの方向をいう。また、符号Tは、タイヤ接地端である。
[Tread pattern]
FIG. 2 is a plan view showing a tread surface of the pneumatic tire depicted in FIG. 1. The figure shows the traction pattern of the studless tire. In FIG. 2, the tire circumferential direction refers to the direction around the tire rotation axis. Moreover, the code | symbol T is a tire grounding end.
 図2に示すように、この空気入りタイヤ1は、タイヤ周方向に延在する複数の周方向主溝21、22と、これらの周方向主溝21、22に区画されて成る複数の陸部31~33と、タイヤ幅方向に延在する複数のラグ溝41~44とをトレッド部に備える。また、符号23は、周方向細溝である。 As shown in FIG. 2, the pneumatic tire 1 includes a plurality of circumferential main grooves 21 and 22 extending in the tire circumferential direction, and a plurality of land portions defined by the circumferential main grooves 21 and 22. 31 to 33 and a plurality of lug grooves 41 to 44 extending in the tire width direction are provided in the tread portion. Reference numeral 23 denotes a circumferential narrow groove.
 周方向主溝とは、摩耗末期を示すウェアインジケータを有する周方向溝であり、一般に、5.0[mm]以上の溝幅および7.5[mm]以上の溝深さを有する。 The circumferential main groove is a circumferential groove having a wear indicator indicating the end of wear, and generally has a groove width of 5.0 [mm] or more and a groove depth of 7.5 [mm] or more.
 溝幅は、タイヤを規定リムに装着して規定内圧を充填した無負荷状態にて、溝開口部における左右の溝壁の距離の最大値として測定される。陸部が切欠部や面取部をエッジ部に有する構成では、溝長さ方向を法線方向とする断面視にて、トレッド踏面と溝壁の延長線との交点を基準として、溝幅が測定される。また、溝がタイヤ周方向にジグザグ状あるいは波状に延在する構成では、溝壁の振幅の中心線を基準として、溝幅が測定される。 The groove width is measured as the maximum value of the distance between the left and right groove walls at the groove opening in a no-load state in which the tire is mounted on the specified rim and filled with the specified internal pressure. In the configuration where the land part has a notch part or a chamfered part at the edge part, the groove width is based on the intersection of the tread surface and the extension line of the groove wall in a cross-sectional view in which the groove length direction is a normal direction. Measured. In the configuration in which the groove extends in a zigzag shape or a wave shape in the tire circumferential direction, the groove width is measured with reference to the center line of the amplitude of the groove wall.
 溝深さは、タイヤを規定リムに装着して規定内圧を充填した無負荷状態にて、トレッド踏面から溝底までの距離の最大値として測定される。また、溝が部分的な凹凸部やサイプを溝底に有する構成では、これらを除外して溝深さが測定される。 The groove depth is measured as the maximum value of the distance from the tread surface to the groove bottom in an unloaded state in which the tire is mounted on the specified rim and filled with the specified internal pressure. Moreover, in the structure which a groove | channel has a partial uneven | corrugated | grooved part and a sipe in a groove bottom, groove depth is measured except these.
 規定リムとは、JATMAに規定される「適用リム」、TRAに規定される「Design Rim」、あるいはETRTOに規定される「Measuring Rim」をいう。また、規定内圧とは、JATMAに規定される「最高空気圧」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「INFLATION PRESSURES」をいう。また、規定荷重とは、JATMAに規定される「最大負荷能力」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「LOAD CAPACITY」をいう。ただし、JATMAにおいて、乗用車用タイヤの場合には、規定内圧が空気圧180[kPa]であり、規定荷重が最大負荷能力の88[%]である。 Specified rim means “Applied rim” defined in JATMA, “Design Rim” defined in TRA, or “Measuring Rim” defined in ETRTO. The specified internal pressure means “maximum air pressure” specified by JATMA, the maximum value of “TIRE LOAD LIMITS AT VARIOUS COLD INFLATIONLPRESSURES” specified by TRA, or “INFLATION PRESSURES” specified by ETRTO. The specified load means the “maximum load capacity” defined by JATMA, the maximum value of “TIRE LOAD LIMITS AT VARIOUS COLD INFUREATION PRESSURES” prescribed by TRA, or “LOAD CAPACITY” prescribed by ETRTO. However, in JATMA, in the case of tires for passenger cars, the specified internal pressure is air pressure 180 [kPa], and the specified load is 88 [%] of the maximum load capacity.
 ここで、タイヤ幅方向の最も外側にある左右の周方向主溝22、22を最外周方向主溝と呼ぶ。また、左右の最外周方向主溝22、22よりもタイヤ幅方向内側にある陸部31、32をセンター陸部と呼ぶ。また、左右の最外周方向主溝22、22よりもタイヤ幅方向外側にある陸部33、33をショルダー陸部と呼ぶ。 Here, the left and right circumferential main grooves 22 and 22 on the outermost side in the tire width direction are referred to as outermost circumferential main grooves. The land portions 31 and 32 located on the inner side in the tire width direction from the left and right outermost circumferential main grooves 22 and 22 are referred to as center land portions. Further, the land portions 33, 33 located on the outer side in the tire width direction from the left and right outermost circumferential main grooves 22, 22 are referred to as shoulder land portions.
 例えば、図2の構成では、4本の周方向主溝21、22がタイヤ赤道面CLを中心として左右対称に配置されている。また、これらの周方向主溝21、22により、3列のセンター陸部31、32、32と、左右一対のショルダー陸部33、33とが区画されている。また、左右のショルダー陸部33、33が、左右のタイヤ接地端T、T上にそれぞれ配置されている。 For example, in the configuration of FIG. 2, the four circumferential main grooves 21 and 22 are arranged symmetrically about the tire equatorial plane CL. The circumferential main grooves 21 and 22 define three rows of center land portions 31, 32 and 32 and a pair of left and right shoulder land portions 33 and 33. Further, left and right shoulder land portions 33 and 33 are disposed on the left and right tire ground contact ends T and T, respectively.
 しかし、これに限らず、周方向主溝21、22がタイヤ赤道面CLを中心として左右非対称に配置されても良い(図示省略)。また、周方向主溝が、タイヤ赤道面CL上に配置されても良い(図示省略)。また、3本あるいは5本以上の周方向主溝が配置されても良い(図示省略)。 However, the present invention is not limited to this, and the circumferential main grooves 21 and 22 may be arranged asymmetrically about the tire equatorial plane CL (not shown). Further, the circumferential main groove may be disposed on the tire equatorial plane CL (not shown). Three or more circumferential main grooves may be arranged (not shown).
[センター陸部]
 図3は、図2に記載したトレッドパターンのセンター陸部を示す平面図である。同図は、センター陸部31のブロック5の拡大平面図を示している。
[Center land]
FIG. 3 is a plan view showing a center land portion of the tread pattern shown in FIG. The figure shows an enlarged plan view of the block 5 of the center land portion 31.
 なお、図2の構成では、空気入りタイヤ1が3列のセンター陸部31、32を備え、これらのセンター陸部31、32が同一構造を有している。そこで、この実施の形態では、一例として、中央のセンター陸部31について説明し、他のセンター陸部32、32については、その説明を省略する。 In the configuration of FIG. 2, the pneumatic tire 1 includes three rows of center land portions 31 and 32, and these center land portions 31 and 32 have the same structure. Therefore, in this embodiment, as an example, the center center land portion 31 will be described, and description of the other center land portions 32, 32 will be omitted.
 上記のように、図2の構成では、センター陸部31(32)が、タイヤ幅方向に延在する複数のラグ溝41(42)と、これらのラグ溝41に区画されて成る複数のブロック5とを備えている。また、複数のラグ溝41が、センター陸部31をタイヤ幅方向に貫通して、センター陸部31を区画する左右の周方向主溝21、21にそれぞれ開口している。また、複数のラグ溝41が、タイヤ周方向に所定間隔で配列されている。これにより、センター陸部31が、ラグ溝41によりタイヤ周方向に分断されて、複数のブロック5から成るブロック列となっている。 As described above, in the configuration of FIG. 2, the center land portion 31 (32) has a plurality of lug grooves 41 (42) extending in the tire width direction and a plurality of blocks that are partitioned by these lug grooves 41. And 5. A plurality of lug grooves 41 penetrate the center land portion 31 in the tire width direction and open to the left and right circumferential main grooves 21 and 21 that define the center land portion 31, respectively. A plurality of lug grooves 41 are arranged at predetermined intervals in the tire circumferential direction. Thereby, the center land portion 31 is divided in the tire circumferential direction by the lug grooves 41 to form a block row composed of a plurality of blocks 5.
 また、図2の構成では、すべての陸部31~33が、タイヤ幅方向に延在する複数のラグ溝41~44をそれぞれ有し、これらのラグ溝41~44が、陸部31~33をタイヤ幅方向に貫通するオープン構造を有している。このため、すべての陸部31~33がブロック列となっている。 In the configuration of FIG. 2, all the land portions 31 to 33 each have a plurality of lug grooves 41 to 44 extending in the tire width direction, and these lug grooves 41 to 44 are land portions 31 to 33. Has an open structure that penetrates through the tire in the tire width direction. For this reason, all the land portions 31 to 33 form a block row.
 しかし、これに限らず、例えば、ショルダー陸部33のラグ溝43が、一方の端部にて陸部33内で終端するセミクローズド構造を有しても良い(図示省略)。この場合には、ショルダー陸部33が、タイヤ周方向に連続するリブとなる。 However, the present invention is not limited to this, and for example, the lug groove 43 of the shoulder land portion 33 may have a semi-closed structure that terminates in the land portion 33 at one end portion (not shown). In this case, the shoulder land portion 33 is a rib continuous in the tire circumferential direction.
 ここで、図3に示すように、センター陸部31では、ブロック5の周方向主溝21、21側にある左右のエッジ部が、タイヤ幅方向に振幅をもつステップ形状を有する。これにより、センター陸部31のトラクション成分が増加して、タイヤの氷上性能および雪上性能が高まる。 Here, as shown in FIG. 3, in the center land portion 31, the left and right edge portions on the circumferential main grooves 21 and 21 side of the block 5 have a step shape having an amplitude in the tire width direction. Thereby, the traction component of the center land part 31 increases, and the performance on ice and the performance on snow of a tire improve.
 例えば、図3の構成では、ブロック5の周方向主溝21、21側にある左右のエッジ部が、2つのステップ(符号省略)をもつステップ形状を有している。また、これらのステップが、ブロック踏面にてタイヤ周方向に略平行な直線形状を有し、タイヤ幅方向に相互にオフセットして配置されている。また、ステップ形状の段差部(符号省略)が、ブロック5の中央部(ブロック5の周方向主溝21側のエッジ部の周方向長さLbに対して40[%]以上60[%]以下の領域)に配置されている。また、タイヤ周方向に隣り合うブロック5、5のエッジ部のステップが、ラグ溝41を挟んで、タイヤ幅方向にオフセットして配置されている。これにより、センター陸部31の周方向主溝21側のエッジ部が、タイヤ幅方向にステップ状に変化しつつタイヤ周方向に延在するステップ形状を有している。 For example, in the configuration of FIG. 3, the left and right edge portions on the circumferential main grooves 21 and 21 side of the block 5 have a step shape having two steps (reference numerals omitted). Further, these steps have a linear shape substantially parallel to the tire circumferential direction on the block tread surface, and are arranged offset from each other in the tire width direction. Further, the step-shaped stepped portion (not shown) is 40 [%] or more and 60 [%] or less with respect to the central portion of the block 5 (the circumferential length Lb of the edge portion on the circumferential main groove 21 side of the block 5). In the area). Further, the steps of the edge portions of the blocks 5 and 5 adjacent in the tire circumferential direction are arranged offset in the tire width direction with the lug groove 41 interposed therebetween. Thereby, the edge part by the side of the circumferential direction main groove 21 of the center land part 31 has the step shape extended in a tire circumferential direction, changing to a step shape in a tire width direction.
 なお、図3の構成では、ブロック5のステップ形状の段差量(寸法符号省略)が、約2[mm]に設定されている。 In the configuration of FIG. 3, the step amount of the step shape of the block 5 (dimension code omitted) is set to about 2 [mm].
 また、図3に示すように、ブロック5のラグ溝41側にある前後のエッジ部が、タイヤ周方向に振幅をもつステップ形状を有する。これにより、センター陸部31のトラクション成分が増加して、タイヤの氷上性能および雪上性能が高まる。 Further, as shown in FIG. 3, the front and rear edge portions on the lug groove 41 side of the block 5 have a step shape having an amplitude in the tire circumferential direction. Thereby, the traction component of the center land part 31 increases, and the performance on ice and the performance on snow of a tire improve.
 例えば、図3の構成では、ラグ溝41が屈曲しつつタイヤ幅方向に延在することにより、ブロック5のラグ溝41側のエッジ部が2つのステップ(符号省略)をもつステップ形状を有している。また、これらのステップが、ラグ溝41の溝幅方向に相互にオフセットして配置されている。また、ブロック5のステップ形状の段差部53が、ブロック5の中央部(ブロック5のラグ溝41側のエッジ部の幅方向長さWbに対して40[%]以上60[%]以下の領域)に配置されている。 For example, in the configuration of FIG. 3, the lug groove 41 extends in the tire width direction while being bent, so that the edge portion on the lug groove 41 side of the block 5 has a step shape having two steps (reference numerals omitted). ing. Also, these steps are arranged offset from each other in the groove width direction of the lug groove 41. Further, the step-shaped stepped portion 53 of the block 5 is an area of 40 [%] or more and 60 [%] or less with respect to the central portion of the block 5 (the width direction length Wb of the edge portion of the block 5 on the lug groove 41 side). ).
 また、ラグ溝41が、タイヤ幅方向に所定角度で傾斜しつつ延在することにより、ブロック5のステップ形状のステップが、全体としてタイヤ幅方向に対して傾斜している。このとき、ラグ溝41のタイヤ幅方向に対する傾斜角が、1[deg]以上30[deg]以下の範囲内にあることが好ましい。 Further, the lug groove 41 extends while inclining at a predetermined angle in the tire width direction, so that the step-shaped step of the block 5 is inclined with respect to the tire width direction as a whole. At this time, the inclination angle of the lug groove 41 with respect to the tire width direction is preferably in the range of 1 [deg] or more and 30 [deg] or less.
 ラグ溝41の傾斜角は、ラグ溝41の左右の開口部の中心点を通る直線と、タイヤ幅方向とのなす角として測定される。 The inclination angle of the lug groove 41 is measured as an angle formed by a straight line passing through the center point of the left and right openings of the lug groove 41 and the tire width direction.
 また、ブロック5の周方向主溝21側のエッジ部の周方向長さLbと、ブロック5のラグ溝41側のエッジ部の幅方向長さWbとが、1.15≦Lb/Wb≦1.50の関係を有する。これにより、ブロック5の形状が適正化される。 Further, the circumferential length Lb of the edge portion on the circumferential main groove 21 side of the block 5 and the width direction length Wb of the edge portion on the lug groove 41 side of the block 5 are 1.15 ≦ Lb / Wb ≦ 1. .50 relationship. Thereby, the shape of the block 5 is optimized.
 ブロック5の周方向長さLbは、周方向主溝21に面するブロック5のエッジ部のタイヤ周方向の距離であり、タイヤを規定リムに装着して規定内圧を付与すると共に無負荷状態として測定される。また、ブロック5のエッジ部が面取部や切欠部を有する構成では、これらを除外して周方向長さLbが測定される。 The circumferential length Lb of the block 5 is the distance in the tire circumferential direction of the edge portion of the block 5 facing the circumferential main groove 21, and the tire is mounted on the prescribed rim to apply the prescribed internal pressure and to be in an unloaded state. Measured. Moreover, in the structure where the edge part of the block 5 has a chamfer part or a notch part, these are excluded and the circumferential direction length Lb is measured.
 ブロック5の幅方向長さWbは、ラグ溝41に面するブロック5のエッジ部のタイヤ幅方向の距離であり、タイヤを規定リムに装着して規定内圧を付与すると共に無負荷状態として測定される。また、ブロック5のエッジ部が面取部や切欠部を有する構成では、これらを除外して幅方向長さWbが測定される。 The width direction length Wb of the block 5 is a distance in the tire width direction of the edge portion of the block 5 facing the lug groove 41, and is measured as an unloaded state while applying a specified internal pressure by mounting the tire on a specified rim. The Moreover, in the structure which the edge part of the block 5 has a chamfering part or a notch part, these are excluded and the width direction length Wb is measured.
 また、図3の構成では、上記のように、ラグ溝41がタイヤ幅方向に対して傾斜することにより、ブロック5の踏面が全体として平行四辺形状を有している。そして、ブロック5の鋭角な角部に、面取部(符号省略)が施されている。これにより、ブロック5の角部の強度が確保されてブロック5の偏摩耗が抑制され、また、ラグ溝41の溝開口部が拡幅されて排水性が高められている。 In the configuration of FIG. 3, as described above, the lug groove 41 is inclined with respect to the tire width direction, so that the tread surface of the block 5 has a parallelogram shape as a whole. A chamfered portion (reference numeral omitted) is applied to the acute corner portion of the block 5. Thereby, the intensity | strength of the corner | angular part of the block 5 is ensured, the partial wear of the block 5 is suppressed, and the groove opening part of the lug groove 41 is expanded, and the drainage property is improved.
 また、ブロック5のラグ溝41側のエッジ部の幅方向長さWbと、タイヤ接地幅TW(図2参照)とが、0.10≦Wb/TW≦0.18の関係を有する。これにより、ブロック5の幅方向長さWbが適正化される。 Further, the width direction length Wb of the edge portion on the lug groove 41 side of the block 5 and the tire ground contact width TW (see FIG. 2) have a relationship of 0.10 ≦ Wb / TW ≦ 0.18. Thereby, the width direction length Wb of the block 5 is optimized.
 タイヤ接地幅TWは、タイヤを規定リムに装着して規定内圧を付与すると共に静止状態にて平板に対して垂直に置いて規定荷重に対応する負荷を付与したときのタイヤと平板との接触面におけるタイヤ軸方向の最大直線距離として測定される。 The tire ground contact width TW is the contact surface between the tire and the flat plate when the tire is mounted on the specified rim to apply the specified internal pressure and is placed perpendicular to the flat plate in a stationary state and applied with a load corresponding to the specified load. It is measured as the maximum linear distance in the tire axial direction.
 また、ラグ溝41が、センター陸部31を区画する左右の周方向主溝21、21に対してシースルー構造で開口する。シースルー構造とは、一方の周方向主溝21からラグ溝41を介して他方の周方向主溝21を覗き見できる構造をいう。かかるシースルー構造により、ラグ溝41の排水性および排雪性が向上する。 Also, the lug groove 41 opens with a see-through structure to the left and right circumferential main grooves 21, 21 that define the center land portion 31. The see-through structure refers to a structure in which the other circumferential main groove 21 can be seen from one circumferential main groove 21 via the lug groove 41. Such a see-through structure improves the drainage performance and snow removal performance of the lug groove 41.
 また、ラグ溝41のタイヤ周方向の開口幅Wlと、ブロック5の周方向主溝21側のエッジ部の周方向長さLbとが、0.08≦Wl/Lb≦0.18の関係を有することが好ましく、0.10≦Wl/Lb≦0.15の関係を有することがより好ましい。これにより、ラグ溝41の開口幅Wlが適正化される。 Further, the opening width Wl in the tire circumferential direction of the lug groove 41 and the circumferential length Lb of the edge portion on the circumferential main groove 21 side of the block 5 have a relationship of 0.08 ≦ Wl / Lb ≦ 0.18. Preferably, it has a relationship of 0.10 ≦ Wl / Lb ≦ 0.15. Thereby, the opening width Wl of the lug groove 41 is optimized.
 ラグ溝41の開口幅Wlは、ラグ溝41の周方向主溝21に対する開口部のタイヤ周方向の距離であり、タイヤを規定リムに装着して規定内圧を付与すると共に無負荷状態として測定される。また、ブロック5のエッジ部が面取部や切欠部を有する構成では、これらを除外して開口幅Wlが測定される。 The opening width Wl of the lug groove 41 is a distance in the tire circumferential direction of the opening with respect to the circumferential main groove 21 of the lug groove 41, and is measured as a no-load state while attaching the tire to the specified rim and applying the specified internal pressure. The Moreover, in the structure which the edge part of the block 5 has a chamfer part or a notch part, these are excluded and the opening width Wl is measured.
 なお、ラグ溝41は、一般に、1.0[mm]以上の溝幅を有する。ラグ溝41の溝幅は、ブロック5のエッジ部が面取部や切欠部を除外して測定される。 The lug groove 41 generally has a groove width of 1.0 [mm] or more. The groove width of the lug groove 41 is measured by excluding the chamfered part and the notch part at the edge part of the block 5.
 図4は、図3に記載したセンター陸部のラグ溝を示す断面図である。同図は、ラグ溝41の溝深さ方向の断面図を示している。 FIG. 4 is a cross-sectional view showing the lug groove in the center land portion shown in FIG. This figure shows a cross-sectional view of the lug groove 41 in the groove depth direction.
 図4に示すように、センター陸部31では、ラグ溝41が、底上部411を有する。底上部411は、ラグ溝41の溝底に形成されて、ラグ溝41の溝深さを部分的に底上げする。これにより、ブロック5の剛性が確保されて、ブロック5の偏摩耗が抑制される。 As shown in FIG. 4, in the center land portion 31, the lug groove 41 has a bottom upper portion 411. The bottom upper part 411 is formed at the groove bottom of the lug groove 41 and partially raises the groove depth of the lug groove 41. Thereby, the rigidity of the block 5 is ensured and uneven wear of the block 5 is suppressed.
 また、底上部411におけるラグ溝41の溝深さDLと、周方向主溝21の溝深さGDとが、0.50≦DL/GD≦0.80の関係を有することが好ましく、0.55≦DL/GD≦0.75の関係を有することがより好ましい。これにより、底上部411におけるラグ溝41の溝深さDLが適正化される。 In addition, the groove depth DL of the lug groove 41 in the bottom upper portion 411 and the groove depth GD of the circumferential main groove 21 preferably have a relationship of 0.50 ≦ DL / GD ≦ 0.80. It is more preferable to have a relationship of 55 ≦ DL / GD ≦ 0.75. Thereby, the groove depth DL of the lug groove 41 in the bottom upper part 411 is optimized.
 例えば、図4の構成では、ラグ溝41の底上部411が、ラグ溝41の溝長さ方向の中央部に形成されている。また、ラグ溝41の溝深さが、底上部411から周方向主溝21に向かって徐々に増加して、周方向主溝21に対する溝開口部にて最大となっている。これにより、ラグ溝41の排水性および排雪性が向上する。 For example, in the configuration of FIG. 4, the bottom upper portion 411 of the lug groove 41 is formed at the center of the lug groove 41 in the groove length direction. Further, the groove depth of the lug groove 41 gradually increases from the bottom upper portion 411 toward the circumferential main groove 21, and becomes maximum at the groove opening portion with respect to the circumferential main groove 21. Thereby, the drainage property of the lug groove 41 and the snow drainage property are improved.
[切欠部]
 図5は、図3に記載したブロックの切欠部を示す断面図である。同図は、切欠部52の深さ方向の断面図を示している。
[Notch]
FIG. 5 is a cross-sectional view showing a cutout portion of the block shown in FIG. 3. This figure shows a sectional view of the notch 52 in the depth direction.
 図3に示すように、センター陸部31のブロック5は、周方向主溝21側にあるエッジ部に、切欠部52を有する。また、切欠部52が、ブロック5のステップ形状の段差部に形成される。これにより、タイヤ接地時におけるブロック5のエッジ部の滑り量が均一化されて、ブロック5の偏摩耗が抑制される。 As shown in FIG. 3, the block 5 of the center land portion 31 has a cutout portion 52 at an edge portion on the circumferential main groove 21 side. Further, the notch 52 is formed in the stepped step portion of the block 5. Thereby, the slip amount of the edge part of the block 5 at the time of tire contact is made uniform, and the uneven wear of the block 5 is suppressed.
 例えば、図3の構成では、センター陸部31のブロック5が、左右の周方向主溝21、21側のエッジ部に、切欠部52をそれぞれ有している。また、上記のように、ブロック5の左右のエッジ部が2つのステップをもつステップ形状をそれぞれ有し、これらのステップの段差部に、切欠部52がそれぞれ配置されている。 For example, in the configuration of FIG. 3, the block 5 of the center land portion 31 has notches 52 at the edge portions on the left and right circumferential main grooves 21, 21 side. Further, as described above, the left and right edge portions of the block 5 each have a step shape having two steps, and the notch portions 52 are respectively disposed at the step portions of these steps.
 また、図3において、ブロック5の周方向主溝21側のエッジ部の周方向長さLbと、ブロック5のエッジ部における切欠部52の位置Mcとが、0.35≦Mc/Lb≦0.65の関係を有することが好ましく、0.40≦Mc/Lb≦0.60の関係を有することがより好ましい。これにより、切欠部52の位置Mcが適正化される。 In FIG. 3, the circumferential length Lb of the edge portion on the circumferential main groove 21 side of the block 5 and the position Mc of the notch 52 in the edge portion of the block 5 are 0.35 ≦ Mc / Lb ≦ 0. .65, preferably 0.40 ≦ Mc / Lb ≦ 0.60. Thereby, the position Mc of the notch 52 is optimized.
 切欠部52の位置Mcは、ブロック5の平面視にて、ブロック5の周方向長さLbの測定点と、切欠部52の中心とのタイヤ周方向の距離として測定される。 The position Mc of the notch 52 is measured as a distance in the tire circumferential direction between the measurement point of the circumferential length Lb of the block 5 and the center of the notch 52 in a plan view of the block 5.
 また、図5において、切欠部52の深さDcと、周方向主溝21の溝深さGDとが、0.50≦Dc/GD≦0.80の関係を有することが好ましく、0.55≦Dc/GD≦0.75の関係を有することがより好ましい。これにより、切欠部52の深さDcが適正化される。 5, the depth Dc of the notch 52 and the groove depth GD of the circumferential main groove 21 preferably have a relationship of 0.50 ≦ Dc / GD ≦ 0.80, It is more preferable to have a relationship of ≦ Dc / GD ≦ 0.75. Thereby, the depth Dc of the notch 52 is optimized.
 切欠部52の深さDcは、ブロック5の踏面を基準とした切欠部52の最大深さとして測定される。 The depth Dc of the notch 52 is measured as the maximum depth of the notch 52 with reference to the tread surface of the block 5.
 また、図3において、切欠部52の幅方向長さWcと、ブロック5のラグ溝41側のエッジ部の幅方向長さWbとが、0.05≦Wc/Wb≦0.25の関係を有することが好ましい。これにより、切欠部52の機能が確保され、また、ブロック5の剛性が確保される。 In FIG. 3, the width direction length Wc of the notch 52 and the width direction length Wb of the edge portion on the lug groove 41 side of the block 5 have a relationship of 0.05 ≦ Wc / Wb ≦ 0.25. It is preferable to have. Thereby, the function of the notch 52 is ensured and the rigidity of the block 5 is ensured.
 切欠部52の幅方向長さWcは、ブロック5のステップ形状の周方向主溝21側のエッジ部のステップを基準としたタイヤ幅方向の長さとして測定される。 The width direction length Wc of the notch portion 52 is measured as a length in the tire width direction with reference to the step of the edge portion on the circumferential main groove 21 side of the step shape of the block 5.
[サイプ]
 図6は、図3に記載したブロックのサイプを示す断面図である。同図は、サイプ51の深さ方向の断面図を示している。
[Sipe]
FIG. 6 is a cross-sectional view showing a sipe of the block shown in FIG. This figure shows a sectional view of the sipe 51 in the depth direction.
 図3の構成では、センター陸部31のブロック5が、タイヤ幅方向に延在する複数本のサイプ51をそれぞれ有する。また、1つのブロック5に形成された80[%]のサイプ51が、セミクローズドサイプ(片側開口サイプ)であり、一方の端部にて周方向主溝21に開口すると共に、他方の端部にてブロック5内で終端する。これにより、ブロック5のエッジ成分が増加して、スタッドレスタイヤとしてのトラクション性能が高められる。 3, the block 5 of the center land portion 31 has a plurality of sipes 51 extending in the tire width direction. Further, an 80% sipe 51 formed in one block 5 is a semi-closed sipe (one-side opening sipe), and opens to the circumferential main groove 21 at one end and the other end. End in block 5 at. Thereby, the edge component of the block 5 increases and the traction performance as a studless tire is improved.
 サイプとは、1.0[mm]未満のサイプ幅を有する切り込みをいう。 Sipe refers to a cut having a sipe width of less than 1.0 [mm].
 例えば、図3の構成では、1つのブロック5が、複数のセミクローズドサイプ51と、両端部にてブロック5の内部で終端する複数のクローズドサイプ(符号省略)とを有している。また、1つのブロック5におけるセミクローズドサイプ51の比率が、サイプの総本数に対して80[%]以上に設定されている。また、これらの複数のセミクローズドサイプ51が、タイヤ幅方向に延在するジグザグ形状を有し、タイヤ周方向に略均一な間隔で配置されている。また、これらの複数のセミクローズドサイプ51が、ブロック5の左右のエッジ部に均等に配置されている。これにより、ブロック5の左右のエッジ部の剛性が均一化されている。 For example, in the configuration of FIG. 3, one block 5 has a plurality of semi-closed sipes 51 and a plurality of closed sipes (reference numerals omitted) that terminate inside the block 5 at both ends. Further, the ratio of the semi-closed sipe 51 in one block 5 is set to 80 [%] or more with respect to the total number of sipes. The plurality of semi-closed sipes 51 have a zigzag shape extending in the tire width direction, and are arranged at substantially uniform intervals in the tire circumferential direction. Further, the plurality of semi-closed sipes 51 are equally arranged on the left and right edge portions of the block 5. Thereby, the rigidity of the left and right edge portions of the block 5 is made uniform.
 また、図3の構成では、センター陸部31のブロック5が、ブロック5を貫通するオープンサイプを備えていない。このため、ブロック5の踏面が、サイプにより分断されることなく、タイヤ周方向に連続する構造を有している。これにより、ブロック5の剛性が高められている。 In the configuration of FIG. 3, the block 5 of the center land portion 31 does not have an open sipe that penetrates the block 5. For this reason, the tread surface of the block 5 has a structure which continues in the tire circumferential direction without being divided by sipes. Thereby, the rigidity of the block 5 is improved.
 また、セミクローズドサイプ51のタイヤ周方向への投影長さPと、ブロック5のラグ溝41側のエッジ部の幅方向長さWbとが、0.30≦P/Wb≦0.60の関係をそれぞれ有する。また、比P/Wbが、0.35≦P/Wb≦0.55の範囲にあることが好ましい。また、かかる比P/Wbの条件を満たすセミクローズドサイプ51が、1つのブロック5におけるサイプの総本数に対して80[%]以上に設定される。これにより、サイプ51の投影長さPが適正化される。 Further, the projection length P of the semi-closed sipe 51 in the tire circumferential direction and the width-direction length Wb of the edge portion on the lug groove 41 side of the block 5 have a relationship of 0.30 ≦ P / Wb ≦ 0.60. Respectively. The ratio P / Wb is preferably in the range of 0.35 ≦ P / Wb ≦ 0.55. Further, the semi-closed sipe 51 that satisfies the condition P / Wb is set to 80 [%] or more with respect to the total number of sipes in one block 5. Thereby, the projection length P of the sipe 51 is optimized.
 サイプの投影長さPは、ブロック5の踏面におけるサイプ長さを基準として測定される。 The sipe projection length P is measured based on the sipe length on the tread surface of the block 5.
 また、図6において、セミクローズドサイプ51のサイプ深さDs1と、周方向主溝21の溝深さGDとが、0.55≦Ds1/GD≦0.85の関係を有することが好ましく、0.60≦Ds1/GD≦0.80の関係を有することがより好ましい。これにより、サイプ深さDs1が適正化される。 In FIG. 6, the sipe depth Ds1 of the semi-closed sipe 51 and the groove depth GD of the circumferential main groove 21 preferably have a relationship of 0.55 ≦ Ds1 / GD ≦ 0.85. It is more preferable to have a relationship of 60 ≦ Ds1 / GD ≦ 0.80. Thereby, the sipe depth Ds1 is optimized.
 サイプ深さDs1は、ブロック5の踏面からサイプ51の最大深さ位置までの距離として測定される。 The sipe depth Ds1 is measured as a distance from the tread surface of the block 5 to the maximum depth position of the sipe 51.
 また、図6に示すように、セミクローズドサイプ51が、周方向主溝21に対する開口部に底上部511を有する。これにより、ブロック5の周方向主溝21側のエッジ部における応力集中が緩和され、タイヤ接地時におけるブロック5の倒れ込みが抑制されて、ブロック5の偏摩耗が抑制される。 Further, as shown in FIG. 6, the semi-closed sipe 51 has a bottom upper portion 511 at an opening portion with respect to the circumferential main groove 21. Thereby, the stress concentration at the edge portion on the circumferential main groove 21 side of the block 5 is alleviated, the collapse of the block 5 at the time of tire contact is suppressed, and the uneven wear of the block 5 is suppressed.
 このとき、底上部511におけるサイプ深さDs2と、周方向主溝21の溝深さGDとが、0.05≦Ds2/GD≦0.25の関係を有することが好ましく、0.10≦Ds2/GD≦0.20の関係を有することがより好ましい。これにより、底上部511におけるサイプ深さDs2が適正化される。 At this time, the sipe depth Ds2 in the bottom upper portion 511 and the groove depth GD of the circumferential main groove 21 preferably have a relationship of 0.05 ≦ Ds2 / GD ≦ 0.25, and 0.10 ≦ Ds2 It is more preferable to have a relationship of /GD≦0.20. Thereby, the sipe depth Ds2 in the bottom upper part 511 is optimized.
 底上部511におけるサイプ深さDs2は、ブロック5の踏面を基準として測定される。 The sipe depth Ds2 at the bottom upper part 511 is measured with reference to the tread surface of the block 5.
 また、図6において、底上部511の配置長さWsと、ブロック5のラグ溝41側のエッジ部の幅方向長さWbとが、0.05≦Ws/Wb≦0.20の関係を有することが好ましい。これにより、底上部511の配置領域が適正化される。 In FIG. 6, the arrangement length Ws of the bottom upper portion 511 and the width direction length Wb of the edge portion on the lug groove 41 side of the block 5 have a relationship of 0.05 ≦ Ws / Wb ≦ 0.20. It is preferable. Thereby, the arrangement | positioning area | region of the bottom upper part 511 is optimized.
 底上部511の配置長さWsは、ブロック5の平面視における底上部511のタイヤ幅方向の長さとして測定される。 The arrangement length Ws of the bottom upper part 511 is measured as the length in the tire width direction of the bottom upper part 511 in the plan view of the block 5.
 なお、サイプは、二次元サイプであっても良いし、三次元サイプであっても良い。例えば、図3の構成では、センター陸部31のサイプが、いずれも三次元サイプである。 The sipe may be a two-dimensional sipe or a three-dimensional sipe. For example, in the configuration of FIG. 3, all the sipes of the center land portion 31 are three-dimensional sipes.
 二次元サイプとは、サイプ長さ方向を法線方向とする断面視(サイプ幅方向かつサイプ深さ方向を含む断面視)にて直線形状のサイプ壁面を有するサイプである。二次元サイプは、トレッド踏面にて、ストレート形状を有しても良いし、ジグザグ形状、波状形状あるいは円弧形状を有しても良い。 A two-dimensional sipe is a sipe having a sipe wall surface that is linear in a sectional view (a sectional view including a sipe width direction and a sipe depth direction) with the sipe length direction as a normal direction. The two-dimensional sipe may have a straight shape on the tread surface, a zigzag shape, a wave shape, or an arc shape.
 三次元サイプとは、サイプ長さ方向を法線方向とする断面視にて、サイプ幅方向に屈曲した形状のサイプ壁面を有するサイプである。三次元サイプは、二次元サイプと比較して、対向するサイプ壁面の噛合力が強いため、タイヤ接地時におけるブロックの倒れ込みが効果的に抑制される。三次元サイプは、トレッド踏面にて、ストレート形状を有しても良いし、ジグザグ形状、波状形状あるいは円弧形状を有しても良い。かかる三次元サイプには、例えば、以下のものが挙げられる(図7および図8参照)。 A three-dimensional sipe is a sipe having a sipe wall surface that is bent in the sipe width direction in a cross-sectional view with the sipe length direction as the normal direction. Compared to the two-dimensional sipe, the three-dimensional sipe has a strong meshing force between the opposing sipe wall surfaces, so that the collapse of the block at the time of tire contact is effectively suppressed. The three-dimensional sipe may have a straight shape on the tread surface, a zigzag shape, a wave shape, or an arc shape. Examples of such a three-dimensional sipe include the following (see FIGS. 7 and 8).
 図7および図8は、三次元サイプの一例を示す説明図である。これらの図は、三次元サイプのサイプ壁面を示している。 7 and 8 are explanatory diagrams showing an example of a three-dimensional sipe. These figures show the sipe wall surface of the three-dimensional sipe.
 図7の三次元サイプ51では、サイプ壁面が、三角錐と逆三角錐とをサイプ長さ方向に連結した構造を有する。言い換えると、サイプ壁面が、トレッド面側のジグザグ形状と底部側のジグザグ形状とを互いにタイヤ幅方向にピッチをずらせ、該トレッド面側と底部側とのジグザグ形状の相互間で互いに対向し合う凹凸を有する。また、サイプ壁面が、これらの凹凸において、タイヤ回転方向に見たときの凹凸で、トレッド面側の凸屈曲点と底部側の凹屈曲点との間、トレッド面側の凹屈曲点と底部側の凸屈曲点との間、トレッド面側の凸屈曲点と底部側の凸屈曲点とで互いに隣接し合う凸屈曲点同士の間をそれぞれ稜線で結ぶと共に、これら稜線間をタイヤ幅方向に順次平面で連結することにより形成される。また、一方のサイプ壁面が、凸状の三角錐と逆三角錐とを交互にタイヤ幅方向に並べた凹凸面を有し、他方のサイプ壁面が、凹状の三角錐と逆三角錐とを交互にタイヤ幅方向に並べた凹凸面を有する。そして、サイプ壁面が、少なくともサイプの両端最外側に配置した凹凸面をブロックの外側に向けている。なお、このような三次元サイプとして、例えば、特許第3894743号公報に記載される技術が知られている。 7, the sipe wall surface has a structure in which a triangular pyramid and an inverted triangular pyramid are connected in the sipe length direction. In other words, the sipe wall surface has a zigzag shape on the tread surface side and a zigzag shape on the bottom side that are shifted in pitch in the tire width direction, and unevenness that faces each other between the zigzag shapes on the tread surface side and the bottom side. Have Further, the sipe wall surface is an unevenness when viewed in the tire rotation direction among these unevennesses, between the convex bending point on the tread surface side and the concave bending point on the bottom side, the concave bending point on the tread surface side and the bottom side Between the convex bend points of the tread surface and the convex bend points on the tread surface side, and adjacent convex bend points that are adjacent to each other with ridge lines, and the ridge lines between the ridge lines in order in the tire width direction. It is formed by connecting in a plane. In addition, one sipe wall surface has an uneven surface in which convex triangular pyramids and inverted triangular pyramids are arranged alternately in the tire width direction, and the other sipe wall surface alternates between concave triangular pyramids and inverted triangular pyramids. Have uneven surfaces arranged in the tire width direction. And the sipe wall surface has the uneven | corrugated surface arrange | positioned at least at the outermost both ends of the sipe toward the outer side of a block. As such a three-dimensional sipe, for example, a technique described in Japanese Patent No. 3894743 is known.
 また、図8の三次元サイプ51では、サイプ壁面が、ブロック形状を有する複数の角柱をサイプ深さ方向に対して傾斜させつつサイプ深さ方向およびサイプ長さ方向に連結した構造を有する。言い換えると、サイプ壁面が、トレッド面においてジグザグ形状を有する。また、サイプ壁面が、ブロックの内部ではタイヤ径方向の2箇所以上でタイヤ周方向に屈曲してタイヤ幅方向に連なる屈曲部を有し、また、該屈曲部においてタイヤ径方向に振幅を持ったジグザグ形状を有する。また、サイプ壁面が、タイヤ周方向の振幅を一定にする一方で、トレッド面の法線方向に対するタイヤ周方向への傾斜角度をトレッド面側の部位よりもサイプ底側の部位で小さくし、屈曲部のタイヤ径方向の振幅をトレッド面側の部位よりもサイプ底側の部位で大きくする。なお、このような三次元サイプとして、例えば、特許第4316452号公報に記載される技術が知られている。 Further, in the three-dimensional sipe 51 of FIG. 8, the sipe wall surface has a structure in which a plurality of prisms having a block shape are connected in the sipe depth direction and the sipe length direction while being inclined with respect to the sipe depth direction. In other words, the sipe wall surface has a zigzag shape on the tread surface. Further, the sipe wall surface has a bent portion that is bent in the tire circumferential direction at two or more locations in the tire radial direction inside the block and continues in the tire width direction, and has an amplitude in the tire radial direction at the bent portion. It has a zigzag shape. In addition, while the sipe wall surface makes the tire circumferential amplitude constant, the inclination angle in the tire circumferential direction with respect to the normal direction of the tread surface is made smaller at the sipe bottom side part than the tread surface side part and bent. The amplitude of the tire in the tire radial direction is made larger at the sipe bottom side than at the tread surface side. As such a three-dimensional sipe, for example, a technique described in Japanese Patent No. 4316452 is known.
[効果]
 以上説明したように、この空気入りタイヤ1は、タイヤ周方向に延在する複数の周方向主溝21、22と、これらの周方向主溝21、22に区画されて成る複数の陸部31~33とを備える(図2参照)。また、少なくとも1列のセンター陸部31が、タイヤ幅方向に延在する複数のラグ溝41と、これらのラグ溝41に区画されて成る複数のブロック5とを備える(図3参照)。また、ブロック5の周方向主溝21側にある左右のエッジ部が、タイヤ幅方向に振幅をもつステップ形状を有する。また、ブロック5のラグ溝41側にある前後のエッジ部が、タイヤ周方向に振幅をもつステップ形状を有する。また、複数のブロック5が、タイヤ幅方向に延在する複数本のサイプをそれぞれ有する。また、1つのブロック5に形成された80[%]のサイプ51が、一方の端部にて周方向主溝21に開口すると共に他方の端部にてブロック5内で終端するセミクローズドサイプである。また、セミクローズドサイプ51のタイヤ周方向への投影長さPと、ブロック5のラグ溝41側のエッジ部の幅方向長さWbとが、0.30≦P/Wb≦0.60の関係をそれぞれ有する。
[effect]
As described above, the pneumatic tire 1 includes a plurality of circumferential main grooves 21 and 22 that extend in the tire circumferential direction, and a plurality of land portions 31 that are partitioned by the circumferential main grooves 21 and 22. To 33 (see FIG. 2). Further, at least one row of the center land portions 31 includes a plurality of lug grooves 41 extending in the tire width direction and a plurality of blocks 5 defined by the lug grooves 41 (see FIG. 3). Further, the left and right edge portions on the circumferential main groove 21 side of the block 5 have a step shape having an amplitude in the tire width direction. Further, the front and rear edge portions on the lug groove 41 side of the block 5 have a step shape having an amplitude in the tire circumferential direction. The plurality of blocks 5 each have a plurality of sipes extending in the tire width direction. In addition, an 80 [%] sipe 51 formed in one block 5 is a semi-closed sipe that opens into the circumferential main groove 21 at one end and terminates in the block 5 at the other end. is there. Further, the projection length P of the semi-closed sipe 51 in the tire circumferential direction and the width-direction length Wb of the edge portion on the lug groove 41 side of the block 5 have a relationship of 0.30 ≦ P / Wb ≦ 0.60. Respectively.
 かかる構成では、ブロック5の周方向主溝21側およびラグ溝41のエッジ部がステップ形状を有することにより、ブロック5のエッジ作用が向上して、タイヤの氷雪上性能が向上する利点がある。また、1つのブロック5に形成された80[%]のサイプ51がセミクローズドサイプであることにより、ブロック5の剛性を確保しつつ、ブロック5のエッジ部における応力集中が緩和される。これにより、タイヤ接地時におけるブロック5の倒れ込みが抑制されて、タイヤの耐偏摩耗性能(特に、車両の駆動軸に装着されるタイヤの耐センター摩耗性能)が向上する利点がある。 In such a configuration, the circumferential main groove 21 side of the block 5 and the edge portion of the lug groove 41 have step shapes, so that the edge action of the block 5 is improved and the performance of the tire on ice and snow is improved. Further, since the 80% sipe 51 formed in one block 5 is a semi-closed sipe, stress concentration at the edge portion of the block 5 is relaxed while securing the rigidity of the block 5. Thereby, the collapse of the block 5 at the time of tire contact is suppressed, and there is an advantage that the uneven wear resistance performance of the tire (particularly, the center wear resistance performance of the tire mounted on the drive shaft of the vehicle) is improved.
 また、セミクローズドサイプ51の投影長さPとブロック5の幅方向長さWbとの比P/Wbが適正化される利点がある。すなわち、0.30≦P/Wbであることにより、セミクローズドサイプ51の投影長さPが確保されて、ブロック5のエッジ部における応力集中が適正に緩和される。また、P/Wb≦0.60であることにより、ブロック5の剛性が確保されて、タイヤ接地時におけるブロック5の倒れ込みが抑制される。 Further, there is an advantage that the ratio P / Wb between the projection length P of the semi-closed sipe 51 and the width direction length Wb of the block 5 is optimized. That is, by satisfying 0.30 ≦ P / Wb, the projection length P of the semi-closed sipe 51 is secured, and the stress concentration at the edge portion of the block 5 is moderated appropriately. Further, by satisfying P / Wb ≦ 0.60, the rigidity of the block 5 is ensured, and the collapse of the block 5 at the time of tire contact is suppressed.
 また、この空気入りタイヤ1では、セミクローズドサイプ51のサイプ深さDs1と、周方向主溝21の溝深さGDとが、0.55≦Ds1/GD≦0.85の関係を有する(図6参照)。これにより、サイプ深さDs1が適正化される利点がある。すなわち、0.55≦Ds1/GDであることにより、サイプ深さDs1が確保されて、サイプ51の作用が適正に得られる。また、Ds1/GD≦0.85であることにより、ブロック5の剛性が確保されて、タイヤ接地時におけるブロック5の倒れ込みが抑制される。 In the pneumatic tire 1, the sipe depth Ds1 of the semi-closed sipe 51 and the groove depth GD of the circumferential main groove 21 have a relationship of 0.55 ≦ Ds1 / GD ≦ 0.85 (see FIG. 6). Thereby, there exists an advantage by which the sipe depth Ds1 is optimized. That is, by satisfying 0.55 ≦ Ds1 / GD, the sipe depth Ds1 is ensured, and the action of the sipe 51 is appropriately obtained. Further, since Ds1 / GD ≦ 0.85, the rigidity of the block 5 is ensured, and the collapse of the block 5 at the time of tire contact is suppressed.
 また、この空気入りタイヤ1では、セミクローズドサイプ51が、周方向主溝21に対する開口部に底上部511を有する(図6参照)。また、底上部511におけるサイプ深さDs2と、周方向主溝21の溝深さGDとが、0.05≦Ds2/GD≦0.25の関係を有する。かかる構成では、ブロック5の周方向主溝21側のエッジ部における応力集中が緩和されて、タイヤ接地時におけるブロック5の倒れ込みが抑制される。また、底上部511におけるサイプ深さDs2が適正化される利点がある。すなわち、0.05≦Ds2/GDであることにより、サイプ深さDs2が確保されて、サイプ51の作用が適正に得られる。また、Ds2/GD≦0.25であることにより、ブロック5の剛性が確保されて、タイヤ接地時におけるブロック5の倒れ込みが抑制される。 Moreover, in this pneumatic tire 1, the semi-closed sipe 51 has the bottom upper part 511 in the opening part with respect to the circumferential direction main groove 21 (refer FIG. 6). Moreover, the sipe depth Ds2 in the bottom upper part 511 and the groove depth GD of the circumferential main groove 21 have a relationship of 0.05 ≦ Ds2 / GD ≦ 0.25. In such a configuration, the stress concentration at the edge portion on the circumferential main groove 21 side of the block 5 is alleviated, and the collapse of the block 5 at the time of tire contact is suppressed. Moreover, there exists an advantage by which the sipe depth Ds2 in the bottom upper part 511 is optimized. That is, by satisfying 0.05 ≦ Ds2 / GD, the sipe depth Ds2 is ensured, and the action of the sipe 51 is appropriately obtained. Further, by satisfying Ds2 / GD ≦ 0.25, the rigidity of the block 5 is ensured, and the collapse of the block 5 at the time of tire contact is suppressed.
 また、この空気入りタイヤ1では、ブロック5の周方向主溝21側にある左右のエッジ部が、前記ステップ形状の段差部に、切欠部52を有する(図3参照)。これにより、タイヤ接地時におけるブロック5のエッジ部の滑り量が均一化されて、ブロック5の偏摩耗が抑制される利点がある。 In this pneumatic tire 1, the left and right edge portions on the circumferential main groove 21 side of the block 5 have notches 52 in the step-shaped step portions (see FIG. 3). Thereby, the slip amount of the edge part of the block 5 at the time of tire contact is equalized, and there is an advantage that uneven wear of the block 5 is suppressed.
 また、この空気入りタイヤ1では、ブロック5の周方向主溝21側のエッジ部の周方向長さLbと、当該エッジ部における切欠部52の位置Mcとが、0.35≦Mc/Lb≦0.65の関係を有する(図3参照)。かかる構成では、切欠部52がブロック5のエッジ部の中央部に配置されることにより、ブロック5のエッジ部における応力集中が効果的に緩和される。これにより、ブロック5の偏摩耗が効果的に抑制される利点がある。 Moreover, in this pneumatic tire 1, the circumferential length Lb of the edge portion on the circumferential main groove 21 side of the block 5 and the position Mc of the notch portion 52 in the edge portion are 0.35 ≦ Mc / Lb ≦. The relationship is 0.65 (see FIG. 3). In such a configuration, the notch portion 52 is disposed at the center of the edge portion of the block 5, so that stress concentration at the edge portion of the block 5 is effectively alleviated. Thereby, there exists an advantage by which the partial wear of the block 5 is suppressed effectively.
 また、この空気入りタイヤ1では、切欠部52の深さDcと、周方向主溝21の溝深さGDとが、0.50≦Dc/GD≦0.80の関係を有する(図5参照)。これにより、切欠部52の深さDcが適正化される利点がある。すなわち、0.50≦Dc/GDであることにより、切欠部52の深さDcが確保されて、切欠部52の作用が適正に得られる。また、Dc/GD≦0.80であることにより、ブロック5の剛性が確保されて、タイヤ接地時におけるブロック5の倒れ込みが抑制される。 Further, in this pneumatic tire 1, the depth Dc of the notch 52 and the groove depth GD of the circumferential main groove 21 have a relationship of 0.50 ≦ Dc / GD ≦ 0.80 (see FIG. 5). ). Thereby, there exists an advantage by which the depth Dc of the notch part 52 is optimized. That is, by satisfying 0.50 ≦ Dc / GD, the depth Dc of the notch 52 is ensured, and the action of the notch 52 can be appropriately obtained. Further, since Dc / GD ≦ 0.80, the rigidity of the block 5 is ensured, and the collapse of the block 5 at the time of tire contact is suppressed.
 また、この空気入りタイヤ1では、ラグ溝41のタイヤ周方向の開口幅Wlと、ブロック5の周方向主溝21側のエッジ部の周方向長さLbとが、0.08≦Wl/Lb≦0.18の関係を有する(図3参照)。これにより、ラグ溝41の開口幅Wlが適正化される利点がある。すなわち、0.08≦Wl/Lbであることにより、ラグ溝41の開口幅Wlが確保されて、ラグ溝41の排水性および排雪性が確保される。また、Wl/Lb≦0.18であることにより、ブロック5のタイヤ周方向の剛性が確保されて、タイヤ接地時におけるブロック5の倒れ込みが抑制される。 Moreover, in this pneumatic tire 1, the opening width Wl of the lug groove 41 in the tire circumferential direction and the circumferential length Lb of the edge portion on the circumferential main groove 21 side of the block 5 are 0.08 ≦ Wl / Lb. ≦ 0.18 (see FIG. 3). Thereby, there exists an advantage by which the opening width Wl of the lug groove 41 is optimized. That is, by satisfying 0.08 ≦ Wl / Lb, the opening width Wl of the lug groove 41 is ensured, and the drainage performance and snow discharge performance of the lug groove 41 are ensured. In addition, since Wl / Lb ≦ 0.18, the rigidity of the block 5 in the tire circumferential direction is ensured, and the collapse of the block 5 at the time of tire contact is suppressed.
 また、この空気入りタイヤ1では、ラグ溝41が、底上部411を有する(図4参照)。また、底上部411におけるラグ溝41の溝深さDLと、周方向主溝21の溝深さGDとが、0.50≦DL/GD≦0.80の関係を有する。かかる構成では、ラグ溝41が底上部411を有することにより、ブロック5の剛性が確保されて、タイヤ接地時におけるブロック5の倒れ込みが抑制される。また、比DL/GDが適正化される利点がある。すなわち、0.50≦DL/GDであることにより、底上部411におけるラグ溝41の溝深さDLが確保されて、ラグ溝41の排水性および排雪性が確保される。また、DL/GD≦0.80であることにより、底上部411によるブロック5の剛性の補強作用が適正に確保される。 Moreover, in this pneumatic tire 1, the lug groove 41 has the bottom upper part 411 (refer FIG. 4). Further, the groove depth DL of the lug groove 41 in the bottom upper portion 411 and the groove depth GD of the circumferential main groove 21 have a relationship of 0.50 ≦ DL / GD ≦ 0.80. In such a configuration, the lug groove 41 has the bottom upper portion 411, so that the rigidity of the block 5 is ensured and the collapse of the block 5 at the time of tire contact is suppressed. Moreover, there exists an advantage by which ratio DL / GD is optimized. That is, by satisfying 0.50 ≦ DL / GD, the groove depth DL of the lug groove 41 in the bottom upper portion 411 is ensured, and the drainage performance and snow discharge performance of the lug groove 41 are ensured. Further, since DL / GD ≦ 0.80, the reinforcing action of the rigidity of the block 5 by the bottom upper portion 411 is appropriately ensured.
 また、この空気入りタイヤ1では、ブロック5のラグ溝41側のエッジ部におけるステップ形状の段差部53が、ブロック5のラグ溝41側のエッジ部の幅方向長さWbの40[%]以上60[%]以下の位置にある(図3参照)。かかる構成では、ステップ形状の段差部53がブロック5のエッジ部の中央部に配置されることにより、ブロック5のエッジ部における応力集中が効果的に緩和される。これにより、タイヤ接地時におけるブロック5の倒れ込みが抑制される利点がある。 In this pneumatic tire 1, the step-shaped stepped portion 53 at the edge portion of the block 5 on the lug groove 41 side is 40% or more of the widthwise length Wb of the edge portion of the block 5 on the lug groove 41 side. It is in a position of 60% or less (see FIG. 3). In such a configuration, the step-shaped stepped portion 53 is arranged at the center of the edge portion of the block 5, so that stress concentration at the edge portion of the block 5 is effectively alleviated. Thereby, there exists an advantage by which the fall of the block 5 at the time of tire contact is suppressed.
 また、この空気入りタイヤ1では、ブロック5のラグ溝41側のエッジ部の幅方向長さWb(図3参照)と、タイヤ接地幅TW(図2参照)とが、0.10≦Wb/TW≦0.18の関係を有する。これにより、ブロック5の幅方向長さWbが適正化される利点がある。すなわち、0.10≦Wb/TWであることにより、ブロック5のタイヤ幅方向の剛性が確保されて、タイヤ接地時におけるブロック5の倒れ込みが抑制される利点がある。また、Wb/TW≦0.18であることにより、周方向主溝21の溝幅を適性に確保して、周方向主溝21の排水性および排雪性を確保できる。 In the pneumatic tire 1, the width direction length Wb (see FIG. 3) of the edge portion on the lug groove 41 side of the block 5 and the tire ground contact width TW (see FIG. 2) are 0.10 ≦ Wb / It has a relationship of TW ≦ 0.18. Thereby, there exists an advantage by which the width direction length Wb of the block 5 is optimized. That is, by satisfying 0.10 ≦ Wb / TW, there is an advantage that the rigidity of the block 5 in the tire width direction is ensured and the collapse of the block 5 at the time of tire contact is suppressed. Further, by satisfying Wb / TW ≦ 0.18, the groove width of the circumferential main groove 21 can be ensured appropriately, and the drainage and snow drainage of the circumferential main groove 21 can be secured.
 また、この空気入りタイヤ1では、ブロック5の周方向主溝21側のエッジ部の周方向長さLbと、ブロック5のラグ溝41側のエッジ部の幅方向長さWbとが、1.15≦Lb/Wb≦1.50の関係を有する(図3参照)。これにより、ブロック5の形状が適正化される利点がある。すなわち、1.15≦Lb/Wbであることにより、ブロック5の周方向長さLbが確保されて、タイヤ接地時におけるブロック5の倒れ込みが抑制される。また、Lb/Wb≦1.50であることにより、ブロック5の幅方向の剛性が確保されて、ブロック5の偏摩耗が抑制される。 In this pneumatic tire 1, the circumferential length Lb of the edge portion of the block 5 on the circumferential main groove 21 side and the widthwise length Wb of the edge portion of the block 5 on the lug groove 41 side are 1. 15 ≦ Lb / Wb ≦ 1.50 (see FIG. 3). Thereby, there exists an advantage by which the shape of the block 5 is optimized. That is, by satisfying 1.15 ≦ Lb / Wb, the circumferential length Lb of the block 5 is ensured, and the collapse of the block 5 at the time of tire contact is suppressed. Further, since Lb / Wb ≦ 1.50, the rigidity in the width direction of the block 5 is ensured, and uneven wear of the block 5 is suppressed.
 また、この空気入りタイヤ1では、セミクローズドサイプ51が、三次元サイプである(図7および図8参照)。これにより、サイプ51の噛み合い力が増加して、タイヤ接地時におけるブロック5の倒れ込みが抑制される利点がある。 Further, in the pneumatic tire 1, the semi-closed sipe 51 is a three-dimensional sipe (see FIGS. 7 and 8). Thereby, the meshing force of the sipe 51 is increased, and there is an advantage that the collapse of the block 5 at the time of tire contact is suppressed.
 また、この空気入りタイヤ1では、トレッドゴム15が、50以上75以下のゴム硬度を有する。これにより、トレッド部の剛性が適正に確保される利点がある。 In the pneumatic tire 1, the tread rubber 15 has a rubber hardness of 50 or more and 75 or less. Thereby, there exists an advantage by which the rigidity of a tread part is ensured appropriately.
[適用対象]
 また、この空気入りタイヤ1は、70[%]以下の偏平率を有する低偏平タイヤに適用され、特に、JATMA規定の最高空気圧が350[kPa]以上600[kPa]以下の範囲内にある小型トラック用タイヤを適用対象とすることが好ましい。かかる低偏平な小型トラック用タイヤでは、荷物の積載時と無積載時とで、トレッド部の接地状態が変化し易い。すなわち、荷物の積載時には、トレッド部のセンター領域およびショルダー領域が一様に接地するが、無積載時には、ショルダー領域の接地面積が減少する。すると、センター領域の陸部が早期に摩耗して、センター摩耗が生じ易いという課題がある。したがって、かかる低偏平な小型トラック用タイヤを適用対象とすることにより、偏摩耗の抑制作用を顕著に得られる利点がある。
[Applicable to]
The pneumatic tire 1 is applied to a low flat tire having a flat rate of 70 [%] or less, and particularly a small size having a maximum air pressure defined by JATMA within a range of 350 [kPa] to 600 [kPa]. It is preferable to apply truck tires. In such a low-profile tire for a small truck, the ground contact state of the tread portion is likely to change between when the load is loaded and when the load is not loaded. That is, the center area and the shoulder area of the tread portion are uniformly grounded when the load is loaded, but the ground contact area of the shoulder area is reduced when the luggage is not loaded. Then, the land part of a center area | region wears out early and there exists a subject that center wear tends to arise. Therefore, there is an advantage that the effect of suppressing uneven wear can be remarkably obtained by using such a low flat tire for a small truck.
 図9および図10は、この発明の実施の形態にかかる空気入りタイヤの性能試験の結果を示す図表である。 9 and 10 are charts showing the results of the performance test of the pneumatic tire according to the embodiment of the present invention.
 この性能試験では、相互に異なる複数の試験タイヤについて、耐ヒール・アンド・トゥ摩耗性能に関する評価が行われた。この性能試験では、タイヤサイズ205/70R16の小型トラック用タイヤがJATMA規定の適用リムに組み付けられ、この試験タイヤにJATMA規定の最高空気圧および最大負荷が付与される。 In this performance test, an evaluation was made on the heel and toe wear resistance performance of a plurality of different test tires. In this performance test, a small truck tire having a tire size of 205 / 70R16 is assembled to an applicable rim specified by JATMA, and the highest air pressure and maximum load specified by JATMA are applied to the test tire.
 また、試験タイヤが、試験車両である3トン積みトラックの総輪に装着され、試験車両が平均速度60[km/h]にて5万[km]の舗装路を走行し、センター陸部のブロックに発生した偏摩耗が観察される。そして、この観察結果に基づいて、従来例1を基準(100)とした指数評価が行われる。この数値は大きいほど好ましく、110以上であれば、従来例に対して特に優位性があるといえる。 In addition, test tires are mounted on all wheels of a 3-ton truck, which is a test vehicle, and the test vehicle runs on a paved road of 50,000 [km] at an average speed of 60 [km / h]. Uneven wear generated on the block is observed. Based on this observation result, index evaluation is performed with the conventional example 1 as a reference (100). This value is preferably as large as possible, and if it is 110 or more, it can be said that it is particularly superior to the conventional example.
 実施例1~18の試験タイヤは、図2に記載したトレッドパターンを有する。ただし、実施例1~10は、ブロック5が切欠部52を有していない。また、トレッド幅TWがTW=160[mm]であり、周方向主溝21の最大溝深さGDがGD=13.5[mm]である。 The test tires of Examples 1 to 18 have the tread pattern shown in FIG. However, in Examples 1 to 10, the block 5 does not have the notch 52. The tread width TW is TW = 160 [mm], and the maximum groove depth GD of the circumferential main groove 21 is GD = 13.5 [mm].
 従来例1~5の試験タイヤでは、実施例1の構成に対して、センター陸部31のブロックのエッジ部の形状、サイプの構造などが異なる。ただし、サイプの総本数およびサイプ密度は、実施例1と同様である。 In the test tires of the conventional examples 1 to 5, the shape of the edge portion of the block of the center land portion 31 and the sipe structure are different from the configuration of the first embodiment. However, the total number of sipes and the sipes density are the same as those in the first embodiment.
 試験結果に示すように、実施例1~18の試験タイヤでは、タイヤの耐偏摩耗性能が向上することが分かる。 As shown in the test results, it can be seen that in the test tires of Examples 1 to 18, the uneven wear resistance performance of the tire is improved.
 1:空気入りタイヤ、5:ブロック、11:ビードコア、12:ビードフィラー、13:カーカス層、14:ベルト層、141、142:交差ベルト、143:ベルトカバー、15:トレッドゴム、16:サイドウォールゴム、17:リムクッションゴム、21、22:周方向主溝、31、32:センター陸部、33:ショルダー陸部、41~44:ラグ溝、411:底上部、51:サイプ、511:底上部、52:切欠部、53:段差部 1: Pneumatic tire, 5: Block, 11: Bead core, 12: Bead filler, 13: Carcass layer, 14: Belt layer, 141, 142: Cross belt, 143: Belt cover, 15: Tread rubber, 16: Side wall Rubber, 17: Rim cushion rubber, 21, 22: Circumferential main groove, 31, 32: Center land portion, 33: Shoulder land portion, 41-44: Lug groove, 411: Top bottom, 51: Sipe, 511: Bottom Upper part, 52: Notch part, 53: Step part

Claims (14)

  1.  タイヤ周方向に延在する複数の周方向主溝と、前記周方向主溝に区画されて成る複数の陸部とを備える空気入りタイヤであって、
     タイヤ幅方向の最も外側にある前記周方向主溝を最外周方向主溝と呼ぶと共に、前記最外周方向主溝に区画されたタイヤ幅方向内側の前記陸部をセンター陸部と呼ぶときに、
     少なくとも1列の前記センター陸部が、タイヤ幅方向に延在する複数のラグ溝と、前記複数のラグ溝に区画されて成る複数のブロックとを備え、
     前記ブロックの前記周方向主溝側にある左右のエッジ部が、タイヤ幅方向に振幅をもつステップ形状を有し、
     前記ブロックの前記ラグ溝側にある前後のエッジ部が、タイヤ周方向に振幅をもつステップ形状を有し、
     前記複数のブロックが、タイヤ幅方向に延在する複数本のサイプをそれぞれ有し、
     1つの前記ブロックに形成された80[%]の前記サイプが、一方の端部にて前記周方向主溝に開口すると共に他方の端部にて前記ブロック内で終端するセミクローズドサイプであり、且つ、
     前記セミクローズドサイプのタイヤ周方向への投影長さPと、前記ブロックの前記ラグ溝側のエッジ部の幅方向長さWbとが、0.30≦P/Wb≦0.60の関係を有することを特徴とする空気入りタイヤ。
    A pneumatic tire comprising a plurality of circumferential main grooves extending in the tire circumferential direction and a plurality of land portions defined by the circumferential main grooves,
    When the circumferential main groove on the outermost side in the tire width direction is referred to as an outermost circumferential main groove, and the land portion on the inner side in the tire width direction defined by the outermost circumferential main groove is referred to as a center land portion.
    At least one row of the center land portions includes a plurality of lug grooves extending in the tire width direction, and a plurality of blocks defined by the plurality of lug grooves,
    The left and right edge portions on the circumferential main groove side of the block have a step shape having an amplitude in the tire width direction,
    The front and rear edge portions on the lug groove side of the block have a step shape having an amplitude in the tire circumferential direction,
    The plurality of blocks each have a plurality of sipes extending in the tire width direction,
    The sipe of 80 [%] formed in one of the blocks is a semi-closed sipe that opens into the circumferential main groove at one end and terminates in the block at the other end, and,
    The projection length P of the semi-closed sipe in the tire circumferential direction and the width direction length Wb of the edge portion on the lug groove side of the block have a relationship of 0.30 ≦ P / Wb ≦ 0.60. A pneumatic tire characterized by that.
  2.  前記セミクローズドサイプのサイプ深さDs1と、前記周方向主溝の溝深さGDとが、0.55≦Ds1/GD≦0.85の関係を有する請求項1に記載の空気入りタイヤ。 The pneumatic tire according to claim 1, wherein a sipe depth Ds1 of the semi-closed sipe and a groove depth GD of the circumferential main groove have a relationship of 0.55 ≦ Ds1 / GD ≦ 0.85.
  3.  前記セミクローズドサイプが、前記周方向主溝に対する開口部に底上部を有し、且つ、
     前記底上部におけるサイプ深さDs2と、前記周方向主溝の溝深さGDとが、0.05≦Ds2/GD≦0.25の関係を有する請求項1または2に記載の空気入りタイヤ。
    The semi-closed sipe has a bottom top at an opening to the circumferential main groove; and
    The pneumatic tire according to claim 1 or 2, wherein a sipe depth Ds2 at the bottom upper portion and a groove depth GD of the circumferential main groove have a relationship of 0.05≤Ds2 / GD≤0.25.
  4.  前記ブロックの前記周方向主溝側にある左右のエッジ部が、前記ステップ形状の段差部に、切欠部を有する請求項1~3のいずれか一つに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 3, wherein left and right edge portions on the circumferential main groove side of the block have notches in the step-shaped stepped portion.
  5.  前記ブロックの前記周方向主溝側のエッジ部の周方向長さLbと、当該エッジ部における前記切欠部の位置Mcとが、0.35≦Mc/Lb≦0.65の関係を有する請求項4に記載の空気入りタイヤ。 The circumferential length Lb of the edge portion on the circumferential main groove side of the block and the position Mc of the notch portion in the edge portion have a relationship of 0.35 ≦ Mc / Lb ≦ 0.65. 4. The pneumatic tire according to 4.
  6.  前記切欠部の深さDcと、前記周方向主溝の溝深さGDとが、0.50≦Dc/GD≦0.80の関係を有する請求項4または5に記載の空気入りタイヤ。 The pneumatic tire according to claim 4 or 5, wherein a depth Dc of the notch and a groove depth GD of the circumferential main groove have a relationship of 0.50 ≦ Dc / GD ≦ 0.80.
  7.  前記ラグ溝のタイヤ周方向の開口幅Wlと、前記ブロックの前記周方向主溝側のエッジ部の周方向長さLbとが、0.08≦Wl/Lb≦0.18の関係を有する請求項1~6のいずれか一つに記載の空気入りタイヤ。 The opening width Wl in the tire circumferential direction of the lug groove and the circumferential length Lb of the edge portion on the circumferential main groove side of the block have a relationship of 0.08 ≦ Wl / Lb ≦ 0.18. Item 7. The pneumatic tire according to any one of Items 1 to 6.
  8.  前記ラグ溝が、底上部を有し、且つ、
     前記底上部における前記ラグ溝の溝深さDLと、前記周方向主溝の溝深さGDとが、0.50≦DL/GD≦0.80の関係を有する請求項1~7のいずれか一つに記載の空気入りタイヤ。
    The lug groove has a bottom top; and
    The groove depth DL of the lug groove in the bottom upper portion and the groove depth GD of the circumferential main groove have a relationship of 0.50 ≦ DL / GD ≦ 0.80. The pneumatic tire according to one.
  9.  前記ブロックの前記ラグ溝側のエッジ部における前記ステップ形状の段差部が、前記ブロックの前記ラグ溝側のエッジ部の幅方向長さWbの40[%]以上60[%]以下の位置にある請求項1~8のいずれか一つに記載の空気入りタイヤ。 The step-shaped step portion at the edge portion on the lug groove side of the block is in a position of 40 [%] or more and 60 [%] or less of the width direction length Wb of the edge portion on the lug groove side of the block. The pneumatic tire according to any one of claims 1 to 8.
  10.  前記ブロックの前記ラグ溝側のエッジ部の幅方向長さWbと、タイヤ接地幅TWとが、0.10≦Wb/TW≦0.18の関係を有する請求項1~9のいずれか一つに記載の空気入りタイヤ。 The width direction length Wb of the edge portion on the lug groove side of the block and the tire ground contact width TW have a relationship of 0.10 ≦ Wb / TW ≦ 0.18. Pneumatic tire described in 2.
  11.  前記ブロックの前記周方向主溝側のエッジ部の周方向長さLbと、前記ブロックの前記ラグ溝側のエッジ部の幅方向長さWbとが、1.15≦Lb/Wb≦1.50の関係を有する請求項1~10のいずれか一つに記載の空気入りタイヤ。 The circumferential length Lb of the edge portion on the circumferential main groove side of the block and the width direction length Wb of the edge portion on the lug groove side of the block are 1.15 ≦ Lb / Wb ≦ 1.50. The pneumatic tire according to any one of claims 1 to 10, which has the following relationship:
  12.  前記セミクローズドサイプが、三次元サイプである請求項1~11のいずれか一つに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 11, wherein the semi-closed sipe is a three-dimensional sipe.
  13.  トレッドゴムが、50以上75以下のゴム硬度を有する請求項1~12のいずれか一つに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 12, wherein the tread rubber has a rubber hardness of 50 to 75.
  14.  JATMA規定の最高空気圧が350[kPa]以上600[kPa]以下の範囲内にある小型トラック用タイヤを適用対象とする請求項1~13のいずれか一つに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 13, wherein the pneumatic tire is applied to a small truck tire having a maximum air pressure defined by JATMA within a range of 350 [kPa] to 600 [kPa].
PCT/JP2015/063063 2014-05-02 2015-05-01 Pneumatic tire WO2015167007A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580021587.7A CN106457922B (en) 2014-05-02 2015-05-01 Pneumatic tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014095423A JP6032240B2 (en) 2014-05-02 2014-05-02 Pneumatic tire
JP2014-095423 2014-05-02

Publications (1)

Publication Number Publication Date
WO2015167007A1 true WO2015167007A1 (en) 2015-11-05

Family

ID=54358728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063063 WO2015167007A1 (en) 2014-05-02 2015-05-01 Pneumatic tire

Country Status (3)

Country Link
JP (1) JP6032240B2 (en)
CN (1) CN106457922B (en)
WO (1) WO2015167007A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210260930A1 (en) * 2018-08-30 2021-08-26 The Yokohama Rubber Co., Ltd. Pneumatic tire
CN115157935A (en) * 2022-07-20 2022-10-11 中策橡胶集团股份有限公司 Resonance sound absorption noise reduction tire
CN115157934A (en) * 2022-07-20 2022-10-11 中策橡胶集团股份有限公司 Tire capable of disturbing air flow and reducing noise
US11724549B2 (en) 2018-01-18 2023-08-15 The Yokohama Rubber Co., Ltd. Pneumatic tire

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6907777B2 (en) * 2017-07-19 2021-07-21 住友ゴム工業株式会社 tire
JP7119529B2 (en) * 2018-04-19 2022-08-17 横浜ゴム株式会社 pneumatic tire
JP7178254B2 (en) * 2018-12-20 2022-11-25 Toyo Tire株式会社 pneumatic tire
JP7403987B2 (en) * 2019-08-07 2023-12-25 Toyo Tire株式会社 pneumatic tires
JP7399679B2 (en) * 2019-10-29 2023-12-18 株式会社ブリヂストン pneumatic tires

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07329510A (en) * 1994-06-09 1995-12-19 Ohtsu Tire & Rubber Co Ltd :The Pneumatic tire
JP2000255216A (en) * 1999-01-05 2000-09-19 Yokohama Rubber Co Ltd:The Pneumatic radial tire
JP2001277814A (en) * 2000-03-30 2001-10-10 Yokohama Rubber Co Ltd:The Pneumatic tire for winter
JP2004026158A (en) * 2003-10-20 2004-01-29 Bridgestone Corp Studless pneumatic tire for heavy load
JP2006056459A (en) * 2004-08-23 2006-03-02 Sumitomo Rubber Ind Ltd Pneumatic tire
WO2007142073A1 (en) * 2006-05-29 2007-12-13 Bridgestone Corporation Pneumatic tire
JP2009012671A (en) * 2007-07-06 2009-01-22 Bridgestone Corp Pneumatic tire
JP2013116725A (en) * 2011-11-04 2013-06-13 Bridgestone Corp Pneumatic tire

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9150058B2 (en) * 2009-05-25 2015-10-06 Bridgestone Corporation Pneumatic tire
JP5956139B2 (en) * 2011-11-11 2016-07-27 株式会社ブリヂストン Pneumatic tire

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07329510A (en) * 1994-06-09 1995-12-19 Ohtsu Tire & Rubber Co Ltd :The Pneumatic tire
JP2000255216A (en) * 1999-01-05 2000-09-19 Yokohama Rubber Co Ltd:The Pneumatic radial tire
JP2001277814A (en) * 2000-03-30 2001-10-10 Yokohama Rubber Co Ltd:The Pneumatic tire for winter
JP2004026158A (en) * 2003-10-20 2004-01-29 Bridgestone Corp Studless pneumatic tire for heavy load
JP2006056459A (en) * 2004-08-23 2006-03-02 Sumitomo Rubber Ind Ltd Pneumatic tire
WO2007142073A1 (en) * 2006-05-29 2007-12-13 Bridgestone Corporation Pneumatic tire
JP2009012671A (en) * 2007-07-06 2009-01-22 Bridgestone Corp Pneumatic tire
JP2013116725A (en) * 2011-11-04 2013-06-13 Bridgestone Corp Pneumatic tire

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11724549B2 (en) 2018-01-18 2023-08-15 The Yokohama Rubber Co., Ltd. Pneumatic tire
US20210260930A1 (en) * 2018-08-30 2021-08-26 The Yokohama Rubber Co., Ltd. Pneumatic tire
CN115157935A (en) * 2022-07-20 2022-10-11 中策橡胶集团股份有限公司 Resonance sound absorption noise reduction tire
CN115157934A (en) * 2022-07-20 2022-10-11 中策橡胶集团股份有限公司 Tire capable of disturbing air flow and reducing noise

Also Published As

Publication number Publication date
JP2015212119A (en) 2015-11-26
CN106457922B (en) 2019-01-22
JP6032240B2 (en) 2016-11-24
CN106457922A (en) 2017-02-22

Similar Documents

Publication Publication Date Title
JP6032240B2 (en) Pneumatic tire
JP5948995B2 (en) Pneumatic tire
JP6304261B2 (en) Pneumatic tire
JP5835399B2 (en) Pneumatic tire
US10179483B2 (en) Pneumatic tire
JP5920533B2 (en) Pneumatic tire
JP5915505B2 (en) Pneumatic tire
US11267293B2 (en) Pneumatic tire
JP5942795B2 (en) Pneumatic tire
US10518587B2 (en) Pneumatic tire
US11548321B2 (en) Pneumatic tire
US20180009270A1 (en) Pneumatic Tire
US20180312010A1 (en) Pneumatic Tire
US20190084351A1 (en) Pneumatic Tire
JP2013189137A (en) Pneumatic tire
US20170361660A1 (en) Pneumatic Tire
JP5987327B2 (en) Pneumatic tire
JP7031397B2 (en) Run flat tire
JP6237216B2 (en) Pneumatic tire
JP2019026016A (en) Pneumatic tire
JP2019026015A (en) Pneumatic tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15785453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15785453

Country of ref document: EP

Kind code of ref document: A1