WO2015166974A1 - 端末装置、基地局装置および方法 - Google Patents

端末装置、基地局装置および方法 Download PDF

Info

Publication number
WO2015166974A1
WO2015166974A1 PCT/JP2015/062932 JP2015062932W WO2015166974A1 WO 2015166974 A1 WO2015166974 A1 WO 2015166974A1 JP 2015062932 W JP2015062932 W JP 2015062932W WO 2015166974 A1 WO2015166974 A1 WO 2015166974A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
terminal device
measurement
base station
subframe
Prior art date
Application number
PCT/JP2015/062932
Other languages
English (en)
French (fr)
Inventor
渉 大内
智造 野上
寿之 示沢
直紀 草島
林 貴志
アルバロ ルイズデルガド
公彦 今村
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to EP15786293.9A priority Critical patent/EP3139672A4/en
Priority to CN201580008211.2A priority patent/CN106031257B/zh
Priority to JP2016516399A priority patent/JP6511689B2/ja
Priority to US15/119,450 priority patent/US9974028B2/en
Publication of WO2015166974A1 publication Critical patent/WO2015166974A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/386TPC being performed in particular situations centralized, e.g. when the radio network controller or equivalent takes part in the power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • H04W76/16Involving different core network technologies, e.g. a packet-switched [PS] bearer in combination with a circuit-switched [CS] bearer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present invention relates to a terminal device, a base station device, and a method.
  • This application claims priority based on Japanese Patent Application No. 2014-093522 filed in Japan on April 30, 2014, the contents of which are incorporated herein by reference.
  • LTE Long Term Evolution
  • EUTRA Evolved Universal Terrestrial Radio Access
  • 3GPP Third Generation Partnership Project
  • a base station device base station
  • eNodeB evolvedvolveNodeB
  • UE User Equipment
  • LTE is a cellular communication system in which a plurality of areas covered by a base station apparatus are arranged in a cell shape.
  • a single base station apparatus may manage a plurality of cells.
  • LTE supports frequency division duplex (Frequency Division Duplex: FDD) and time division duplex (Time Division Duplex: TDD).
  • LTE adopting the FDD method is also referred to as FD-LTE or LTE FDD.
  • TDD is a technology that enables full-duplex communication in at least two frequency bands by frequency division multiplexing an uplink signal and a downlink signal.
  • LTE employing the TDD scheme is also referred to as TD-LTE or LTE TDD.
  • TDD is a technology that enables full-duplex communication in a single frequency band by time-division multiplexing uplink signals and downlink signals. Details of FD-LTE and TD-LTE are disclosed in Non-Patent Document 1.
  • the base station apparatus can transmit a reference signal (RS; also referred to as Reference Signal) that is a known signal between the base station apparatus and the terminal apparatus to the terminal apparatus.
  • RS reference signal
  • This reference signal can transmit multiple reference signals for various purposes such as signal and channel demodulation and channel state reporting.
  • the cell-specific reference signal is transmitted in all downlink subframes as a cell-specific reference signal.
  • the terminal-specific reference signal is transmitted as a reference signal specific to the terminal apparatus in a resource to which a data signal for the terminal apparatus is mapped. Details of the reference signal are disclosed in Non-Patent Document 1.
  • a small cell is a generic term for a cell having a small transmission power of a base station apparatus constituting the cell and having a smaller coverage than a conventional cell (macro cell). For example, by applying small cells in a high frequency band, it is possible to arrange small cells with high density, and there is an effect of improving the frequency utilization efficiency per area.
  • a technique for switching a base station apparatus to a stopped state is being studied for various purposes such as low power consumption and inter-cell interference reduction. Details are disclosed in Non-Patent Document 2.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a terminal device, a base station device, and a method capable of improving transmission efficiency in a communication system in which a base station device communicates with a terminal device. There is to do.
  • the terminal device of the present embodiment is a terminal device that communicates with the base station device, and is configured with dual connectivity and serving cell (first serving cell) belonging to the first cell group (first CG).
  • first serving cell the first serving cell belonging to the first cell group (first CG)
  • second serving cell the second serving cell belonging to the second cell group (second CG)
  • the maximum output power in the overlapping portion is set to the first output
  • a transmission unit that determines a maximum output power for the serving cell and a maximum output power for the second serving cell;
  • the base station apparatus of this embodiment is a base station apparatus that communicates with a terminal apparatus, and includes a first cell group (first CG) and a second cell group (second CG).
  • a transmission unit is provided for transmitting a first higher layer parameter and a second higher layer parameter used to set the maximum output power corresponding to each.
  • the method of the present embodiment is a method in a terminal apparatus that communicates with a base station apparatus, in which dual connectivity is set and a serving cell (first CG) belonging to a first cell group (first CG)
  • first CG serving cell
  • second serving cell serving cell belonging to the second cell group
  • the maximum output power in the overlapping portion is Determining based on a maximum output power for the first serving cell and a maximum output power for the second serving cell.
  • the method of the present embodiment is a method in a base station device that communicates with a terminal device, and includes a first cell group (first CG) and a second cell group (second CG). Transmitting a first higher layer parameter and a second higher layer parameter used to set a maximum output power corresponding to each.
  • the communication efficiency between the terminal device and the base station device can be improved.
  • transmission efficiency can be improved in a wireless communication system in which a base station device and a terminal device communicate.
  • the terminal device 1 that supports CA it is aggregated by one primary cell and one or more secondary cells.
  • a radio bearer data radio bearer (DRB: Date Radio Bearer) and / or signaling radio bearer (SRB: Signalling Radio Bearer)
  • DRB Date Radio Bearer
  • SRB Signaling Radio Bearer
  • MCG and SCG or PCell and pSCell need not be synchronized.
  • the terminal apparatus 1 transmits the UCI corresponding to the cell in the MCG only to the MeNB (PCell), and transmits the UCI corresponding to the cell in the SCG only to the SeNB (pSCell).
  • UCI is SR, HARQ-ACK, and / or CSI.
  • a transmission method using PUCCH and / or PUSCH is applied to each cell group.
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • TAGs Timing Advance Group
  • PBCH Physical Broadcast Channel
  • MIB Master Information Block
  • PUCCH may be transmitted by a primary secondary cell.
  • PRACH may be transmitted by a primary secondary cell irrespective of whether several TAG is set.
  • PBCH and MIB may be transmitted by a primary secondary cell.
  • RLF Radio Link Failure
  • the secondary cell does not recognize that RLF has been detected even if the conditions for detecting RLF are met.
  • the RLF is detected if the condition is satisfied.
  • the upper layer of the primary secondary cell notifies the upper layer of the primary cell that the RLF has been detected.
  • SPS Semi-Persistent Scheduling
  • DRX Discontinuous Transmission
  • the total number of SPS settings and DRX settings may be determined by the total number of primary cells and primary secondary cells.
  • the secondary cell may perform the same DRX as the primary cell or primary secondary cell of the same cell group.
  • information / parameters related to MAC settings are basically shared with the primary cell / primary secondary cell of the same cell group. Some parameters (for example, sTAG-Id) may be set for each secondary cell.
  • timers and counters may be applied only to the primary cell and / or the primary secondary cell.
  • a timer or counter that is applied only to the secondary cell may be set.
  • a FDD (Frequency Division Duplex) or TDD (Time Division Duplex) scheme frame configuration type (Frame Structure Type) is applied.
  • the frame configuration type may be referred to as a frame structure type or a duplex mode.
  • the TDD scheme may be applied to all of a plurality of cells.
  • cells to which the TDD scheme is applied and cells to which the FDD scheme is applied may be aggregated.
  • the present invention can be applied to cells to which TDD is applied.
  • a half-duplex FDD scheme or a full-duplex FDD scheme may be applied.
  • a half-duplex TDD scheme or a full-duplex TDD scheme may be applied.
  • the terminal apparatus 1 transmits information indicating a combination of bands for which carrier aggregation is supported by the terminal apparatus 1 to the base station apparatus 3.
  • the terminal device 1 transmits to the base station device 3 information indicating whether or not simultaneous transmission and reception in the plurality of serving cells in a plurality of different bands are supported for each combination of bands.
  • X / Y includes the meaning of “X or Y”. In the present embodiment, “X / Y” includes the meanings of “X and Y”. In the present embodiment, “X / Y” includes the meaning of “X and / or Y”.
  • FIG. 1 is a conceptual diagram of the wireless communication system of the present embodiment.
  • the radio communication system includes terminal apparatuses 1A to 1C and a base station apparatus 3.
  • the terminal devices 1A to 1C are referred to as the terminal device 1.
  • an uplink physical channel is used in uplink wireless communication from the terminal device 1 to the base station device 3.
  • the uplink physical channel can be used to transmit information output from an upper layer.
  • Uplink physical channels include PUCCH (Physical-Uplink-Control Channel), PUSCH (Physical-Uplink Shared Channel), PRACH (Physical-Random Access Channel), and the like.
  • the PUSCH is a physical channel used to transmit uplink data (Uplink-Shared Channel: UL-SCH).
  • the PUSCH may also be used to transmit HARQ-ACK and / or channel state information along with uplink data. Also, the PUSCH may be used to transmit only channel state information or only HARQ-ACK and channel state information.
  • PRACH is a physical channel used to transmit a random access preamble.
  • the main purpose of the PRACH is that the terminal device 1 synchronizes with the base station device 3 in the time domain.
  • PRACH is also used to indicate initial connection establishment (initial connection establishment) procedure, handover procedure, connection reestablishment (connection re-establishment) procedure, synchronization for uplink transmission (timing adjustment), and PUSCH resource requirements. Used.
  • trigger type SRS There are two trigger type SRS (trigger type 0 SRS, trigger type 1 SRS).
  • the trigger type 0 SRS is transmitted when parameters related to the trigger type 0 SRS are set by higher layer signaling.
  • the trigger type 1 SRS is transmitted when parameters related to the trigger type 1 SRS are set by higher layer signaling and transmission is requested by an SRS request included in the DCI format 0 / 1A / 2B / 2C / 2D / 4.
  • the SRS request is included in both FDD and TDD for the DCI format 0 / 1A / 4, and is included only in TDD for the DCI format 2B / 2C / 2D.
  • a downlink physical channel is used in downlink radio communication from the base station apparatus 3 to the terminal apparatus 1.
  • the downlink physical channel is used for transmitting information output from an upper layer.
  • the downlink physical channels are PBCH (Physical Broadcast Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid automatic repeat request Indicator Channel), PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Channel ⁇ Control) PDSCH (Physical Downlink Shared Channel), PMCH (Physical Multicast Channel) and the like are included.
  • the PBCH is used to broadcast a master information block (Master Information Block: MIB, Broadcast Channel: BCH) commonly used in the terminal device 1.
  • MIB can be updated at 40 ms intervals.
  • SFN system frame number
  • MIB is system information. For example, the MIB includes information indicating SFN.
  • PCFICH is used for transmitting information indicating a region (OFDM symbol) used for transmission of PDCCH.
  • the PHICH is used to transmit an HARQ indicator (HARQ feedback, response information) indicating ACK (ACKnowledgement) or NACK (Negative ACKnowledgement) for uplink data (Uplink Shared Channel: UL-SCH) received by the base station apparatus 3. It is done. For example, when the terminal device 1 receives a HARQ indicator indicating ACK, the corresponding uplink data is not retransmitted. For example, when the terminal apparatus 1 receives a HARQ indicator indicating NACK, the corresponding uplink data is retransmitted.
  • a single PHICH transmits a HARQ indicator for a single uplink data.
  • the base station apparatus 3 transmits each of the HARQ indicators for a plurality of uplink data included in the same PUSCH using a plurality of PHICHs.
  • the PDCCH and EPDCCH are used to transmit downlink control information (Downlink Control Information: DCI).
  • DCI Downlink Control Information
  • the downlink control information is also referred to as a DCI format.
  • the downlink control information includes a downlink grant (downlink grant) and an uplink grant (uplink grant).
  • the downlink grant is also referred to as downlink assignment (downlink allocation) or downlink assignment (downlink allocation).
  • the PDCCH is transmitted by a set of one or more continuous CCEs (Control Channel Element).
  • the CCE is composed of nine REGs (Resource Element Group).
  • the REG is composed of four resource elements.
  • i is a CCE number.
  • the EPDCCH is transmitted by a set of one or more continuous ECCE (Enhanced Control Channel Element).
  • the ECCE is composed of a plurality of EREGs (Enhanced Resource Resource Element Group).
  • the downlink grant is used for scheduling a single PDSCH within a single cell.
  • the downlink grant is used for scheduling the PDSCH in the same subframe as the subframe in which the downlink grant is transmitted.
  • the uplink grant is used for scheduling a single PUSCH within a single cell.
  • the uplink grant is used for scheduling a single PUSCH in a subframe that is four or more after the subframe in which the uplink grant is transmitted.
  • a CRC (Cyclic Redundancy Check) parity bit is added to the DCI format.
  • the CRC parity bit is scrambled by RNTI (Radio Network Temporary Identifier).
  • RNTI Radio Network Temporary Identifier
  • the RNTI is an identifier that can be defined or set according to the purpose of the DCI.
  • the RNTI is set as an identifier preliminarily defined in the specification, an identifier set as information specific to a cell, an identifier set as information specific to the terminal device 1, or information specific to a group belonging to the terminal device 1. Identifier.
  • the CRC parity bit is scrambled by C-RNTI (Cell-Radio Network Temporary Identifier) or SPS C-RNTI (Semi-Persistent Scheduling Cell-Radio Network Temporary Identifier).
  • C-RNTI and SPS C-RNTI are identifiers for identifying the terminal device 1 in the cell.
  • C-RNTI is used to control PDSCH or PUSCH in a single subframe.
  • the SPS C-RNTI is used to periodically allocate PDSCH or PUSCH resources.
  • PDSCH is used to transmit downlink data (Downlink Shared Channel: DL-SCH).
  • DL-SCH Downlink Shared Channel
  • the PDSCH is also used for transmitting higher layer control information.
  • PMCH is used to transmit multicast data (Multicast Channel: MCH).
  • the downlink physical signal includes a synchronization signal (Synchronization signal: SS), a downlink reference signal (Downlink Reference Signal: DL RS), and the like.
  • SS Synchronization signal
  • DL RS Downlink Reference Signal
  • the synchronization signal is used for the terminal device 1 to synchronize the downlink frequency domain and time domain.
  • the synchronization signal is arranged in a predetermined subframe in the radio frame. For example, in the TDD scheme, the synchronization signal is arranged in subframes 0, 1, 5, and 6 in a radio frame. In the FDD scheme, the synchronization signal is arranged in subframes 0 and 5 in the radio frame.
  • the synchronization signal includes a primary synchronization signal (PSS: Primary Synchronization Signal) and a secondary synchronization signal (SSS: Secondary Synchronization Signal).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the PSS is used for coarse frame / symbol timing synchronization (time domain synchronization) and cell group identification.
  • SSS is used for more accurate frame timing synchronization and cell identification. That is, frame timing synchronization and cell identification can be performed by using PSS and SSS.
  • the downlink reference signal is used for the terminal device 1 to correct the propagation path of the downlink physical channel.
  • the downlink reference signal is used for the terminal device 1 to calculate downlink channel state information.
  • the downlink reference signal is used for the terminal device 1 to measure the geographical position of the own device.
  • the downlink reference signal includes CRS (Cell-specific Reference Signal), URS (UE-specific Reference Signal) related to PDSCH, DMRS (Demodulation Reference Signal) related to EPDCCH, NZP CSI-RS (Non-Zero Power Chanel State Information -Reference Signal), MBSFN RS (Multimedia Broadcast and Multicast Service over Single Frequency Network Reference signal), PRS (Positioning Reference Signal), NCT CRS (New Carrier Type Cell-specific Reference Signal), DS (Discovery Signal), etc. including.
  • downlink resources include ZP CSI-RS (Zero Power Channel State Information Information-Reference Signal), CSI-IM (Channel State Information-Interference Measurement), and the like.
  • URS related to PDSCH is transmitted in a subframe and a band used for transmission of PDSCH related to URS.
  • URS is used to demodulate the PDSCH with which the URS is associated.
  • the PDSCH is transmitted by an antenna port used for transmission of CRS or URS based on the transmission mode and the DCI format.
  • the DCI format 1A is used for scheduling of PDSCH transmitted through an antenna port used for CRS transmission.
  • the DCI format 2D is used for scheduling of the PDSCH transmitted through the antenna port used for URS transmission.
  • DMRS related to EPDCCH is transmitted in subframes and bands used for transmission of EPDCCH related to DMRS.
  • DMRS is used to demodulate the EPDCCH with which DMRS is associated.
  • the EPDCCH is transmitted through an antenna port used for DMRS transmission.
  • NZP CSI-RS is transmitted in the set subframe.
  • the resource for transmitting the NZP CSI-RS is set by the base station apparatus 3.
  • the NZP CSI-RS is used by the terminal device 1 to calculate downlink channel state information.
  • the terminal device 1 performs signal measurement (channel measurement) using NZP CSI-RS.
  • ZP CSI-RS resources are set by the base station device 3.
  • the base station apparatus 3 transmits ZP CSI-RS with zero output. That is, the base station apparatus 3 does not transmit ZP CSI-RS.
  • the base station apparatus 3 does not transmit PDSCH and EPDCCH in the resource set by ZP CSI-RS.
  • the CSI-IM resource is set by the base station apparatus 3.
  • the CSI-IM resource is set to overlap (overlap) with a part of the ZP CSI-RS resource. That is, the CSI-IM resource has the same characteristics as the ZP CSI-RS, and the base station apparatus 3 transmits the resource set as CSI-IM with zero output. That is, the base station apparatus 3 does not transmit CSI-IM.
  • the base station apparatus 3 does not transmit PDSCH and EPDCCH in resources set by CSI-IM.
  • the terminal device 1 can measure interference with the resource set as the CSI-IM.
  • the channel state information includes CQI (Channel Quality Indicator), PMI (Precoding Matrix Indicator), RI (Rank Indicator), and PTI (Precoding Type Indicator), and is measured using CSI-RS or CRS. .
  • the number of OFDM symbols or SC-FDMA symbols constituting one slot is 7 for normal CP and 6 for extended CP.
  • Each element in the resource grid is referred to as a resource element.
  • Resource elements are identified using subcarrier numbers and OFDM symbol or SC-FDMA symbol numbers.
  • the resource block is used for mapping to a resource element of a certain physical channel (PDSCH or PUSCH).
  • resource blocks virtual resource blocks and physical resource blocks are defined.
  • a physical channel is first mapped to a virtual resource block. Thereafter, the virtual resource block is mapped to the physical resource block.
  • One physical resource block is defined by 7 consecutive OFDM symbols or SC-FDMA symbols in the time domain and 12 consecutive subcarriers in the frequency domain. Therefore, one physical resource block is composed of (7 ⁇ 12) resource elements.
  • One physical resource block corresponds to one slot in the time domain and corresponds to 180 kHz in the frequency domain.
  • Physical resource blocks are numbered from 0 in the frequency domain. Further, two resource blocks in one subframe corresponding to the same physical resource block number are defined as physical resource block pairs (PRB pair, RB pair).
  • FIG. 4 is a diagram illustrating an example of the arrangement of physical channels and physical signals in the downlink subframe according to the present embodiment.
  • the base station apparatus 3 can transmit a downlink physical channel (PBCH, PCFICH, PHICH, PDCCH, EPDCCH, PDSCH) and / or a downlink physical signal (synchronization signal, downlink reference signal) in the downlink subframe.
  • PBCH is transmitted only in subframe 0 in the radio frame.
  • the downlink reference signal is arranged in resource elements distributed in the frequency domain and the time domain. For simplicity of explanation, the downlink reference signal is not shown in FIG.
  • a plurality of PDCCHs may be frequency, time and / or spatially multiplexed.
  • a plurality of EPDCCHs may be frequency, time and / or spatially multiplexed.
  • a plurality of PDSCHs may be frequency, time and / or spatially multiplexed.
  • PDCCH, PDSCH and / or EPDCCH may be frequency, time and / or spatially multiplexed.
  • FIG. 5 is a diagram illustrating an example of the arrangement of physical channels and physical signals in the uplink subframe according to the present embodiment.
  • the terminal device 1 may transmit an uplink physical channel (PUCCH, PUSCH, PRACH) and an uplink physical signal (UL-DMRS, SRS) in the uplink subframe.
  • PUCCH region a plurality of PUCCHs are frequency, time, space and / or code multiplexed.
  • PUSCH region a plurality of PUSCHs may be frequency, time, space and / or code multiplexed.
  • PUCCH and PUSCH may be frequency, time, space and / or code multiplexed.
  • the PRACH may be arranged over a single subframe or two subframes. A plurality of PRACHs may be code-multiplexed.
  • SRS is transmitted using the last SC-FDMA symbol in the uplink subframe. That is, the SRS is arranged in the last SC-FDMA symbol in the uplink subframe.
  • the terminal device 1 can restrict simultaneous transmission of SRS and PUCCH / PUSCH / PRACH in a single SC-FDMA symbol of a single cell.
  • the terminal apparatus 1 transmits PUSCH and / or PUCCH using an SC-FDMA symbol excluding the last SC-FDMA symbol in the uplink subframe,
  • the SRS can be transmitted using the last SC-FDMA symbol in the uplink subframe. That is, the terminal device 1 can transmit SRS, PUSCH, and PUCCH in a single uplink subframe of a single cell.
  • DMRS is time-multiplexed with PUCCH or PUSCH. For simplicity of explanation, DMRS is not shown in FIG.
  • the radio resource control unit 1011 included in the upper layer processing unit 101 manages various setting information of the own device. Also, the radio resource control unit 1011 generates information arranged in each uplink channel and outputs the information to the transmission unit 107.
  • the scheduling information interpretation unit 1015 included in the upper layer processing unit 101 interprets the DCI format (scheduling information) received via the reception unit 105, and based on the interpretation result of the DCI format, the reception unit 105 and the transmission unit Control information is generated in order to perform the control of 107 and output to the control unit 103.
  • the CSI report control unit 1017 specifies a CSI reference resource.
  • the CSI report control unit 1017 instructs the channel measurement unit 1059 to derive the CQI related to the CSI reference resource.
  • the CSI report control unit 1017 instructs the transmission unit 107 to transmit CQI.
  • the CSI report control unit 1017 sets a setting used when the channel measurement unit 1059 calculates CQI.
  • the control unit 103 generates a control signal for controlling the receiving unit 105 and the transmitting unit 107 based on the control information from the higher layer processing unit 101. Control unit 103 outputs the generated control signal to receiving unit 105 and transmitting unit 107 to control receiving unit 105 and transmitting unit 107.
  • the radio reception unit 1057 converts the downlink signal received by the transmission / reception antenna 109 into an intermediate frequency (down-conversion: down convert), removes unnecessary frequency components, and amplifies the signal level so that the signal level is appropriately maintained.
  • the level is controlled, quadrature demodulation is performed based on the in-phase component and the quadrature component of the received signal, and the analog signal that has been demodulated is converted into a digital signal.
  • the radio reception unit 1057 removes a portion corresponding to a guard interval (Guard Interval: GI) from the converted digital signal, performs a fast Fourier transform (FFT Fourier Transform: ⁇ ⁇ ⁇ ⁇ FFT) on the signal from which the guard interval has been removed, and outputs a frequency. Extract the region signal.
  • GI Guard Interval
  • the demultiplexer 1055 separates the PHICH, PDCCH, EPDCCH, PDSCH, and / or downlink reference signal from the extracted signal. Further, demultiplexing section 1055 compensates the propagation path of PHICH, PDCCH, EPDCCH, and / or PDSCH from the estimated value of the propagation path input from channel measurement section 1059. Also, the demultiplexing unit 1055 outputs the demultiplexed downlink reference signal to the channel measurement unit 1059.
  • the demodulating unit 1053 multiplies the PHICH by a corresponding code and synthesizes the signal, demodulates the synthesized signal using a BPSK (Binary Phase Shift Shift Keying) modulation method, and outputs the demodulated signal to the decoding unit 1051.
  • Decoding section 1051 decodes the PHICH addressed to the own apparatus, and outputs the decoded HARQ indicator to higher layer processing section 101.
  • Demodulation section 1053 performs QPSK modulation demodulation on PDCCH and / or EPDCCH, and outputs the result to decoding section 1051.
  • Decoding section 1051 attempts to decode PDCCH and / or EPDCCH, and outputs the decoded downlink control information and the RNTI corresponding to the downlink control information to higher layer processing section 101 when the decoding is successful.
  • the channel measurement unit 1059 measures the downlink path loss and channel state from the downlink reference signal input from the demultiplexing unit 1055, and outputs the measured path loss and channel state to the upper layer processing unit 101. Also, channel measurement section 1059 calculates an estimated value of the downlink propagation path from the downlink reference signal, and outputs it to demultiplexing section 1055. The channel measurement unit 1059 performs channel measurement and / or interference measurement in order to calculate CQI. The channel measurement unit 1059 performs measurement notified from the downlink reference signal input from the demultiplexing unit 1055 to the upper layer. Channel measurement section 1059 calculates RSRP and RSRQ and outputs the result to upper layer processing section 101.
  • the transmission unit 107 generates an uplink reference signal according to the control signal input from the control unit 103, encodes and modulates the uplink data (transport block) input from the higher layer processing unit 101, PUCCH, The PUSCH and the generated uplink reference signal are multiplexed and transmitted to the base station apparatus 3 via the transmission / reception antenna 109.
  • the uplink reference signal generation unit 1079 is a physical layer cell identifier for identifying the base station device 3 (referred to as physical cell identity: PCI, Cell ID), a bandwidth for arranging the uplink reference signal, and an uplink grant.
  • a sequence determined by a predetermined rule (formula) is generated on the basis of the cyclic shift and the parameter value for generating the DMRS sequence notified in (1).
  • the multiplexing unit 1075 rearranges the PUSCH modulation symbols in parallel according to the control signal input from the control unit 103, and then performs a discrete Fourier transform (Discrete-Fourier-Transform: DFT). Also, multiplexing section 1075 multiplexes the PUCCH and PUSCH signals and the generated uplink reference signal for each transmission antenna port. That is, multiplexing section 1075 arranges the PUCCH and PUSCH signals and the generated uplink reference signal in the resource element for each transmission antenna port.
  • DFT discrete Fourier transform
  • Radio transmission section 1077 performs inverse fast Fourier transform (inverse Fast Transform: IFFT) on the multiplexed signal, performs SC-FDMA modulation, and adds a guard interval to the SC-FDMA-modulated SC-FDMA symbol
  • IFFT inverse Fast Transform
  • a baseband digital signal converting the baseband digital signal to an analog signal, generating an in-phase component and a quadrature component of an intermediate frequency from the analog signal, removing an extra frequency component for the intermediate frequency band,
  • the intermediate frequency signal is converted to a high frequency signal (up-conversion: up convert), an extra frequency component is removed, the power is amplified, and output to the transmission / reception antenna 109 for transmission.
  • the upper layer processing unit 301 includes a medium access control (MAC: Medium Access Control) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, a radio resource control (Radio). Resource (Control: RRC) layer processing. Further, upper layer processing section 301 generates control information for controlling receiving section 305 and transmitting section 307 and outputs the control information to control section 303. The upper layer processing unit 301 has a function of acquiring the reported measurement result.
  • MAC Medium Access Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • Radio Radio Resource
  • the subframe setting unit 3013 included in the higher layer processing unit 301 includes subframe setting, subframe pattern setting, uplink-downlink setting, uplink reference UL-DL setting, downlink reference UL-DL setting, and / or Management of the transmission direction UL-DL setting is performed for each terminal device 1.
  • the subframe setting unit 3013 performs subframe setting, subframe pattern setting, uplink-downlink setting, uplink reference UL-DL setting, downlink reference UL-DL setting, and / or for each terminal apparatus 1. Alternatively, the transmission direction UL-DL setting is set.
  • the subframe setting unit 3013 transmits information related to subframe setting to the terminal device 1.
  • the subframe setting unit 3013 is also referred to as a base station subframe setting unit.
  • the base station apparatus 3 performs subframe setting, subframe pattern setting, uplink-downlink setting, uplink reference UL-DL setting, downlink reference UL-DL setting, and / or transmission direction UL for the terminal apparatus 1.
  • -DL settings may be determined.
  • the base station apparatus 3 performs subframe setting, subframe pattern setting, uplink-downlink setting, uplink reference UL-DL setting, downlink reference UL-DL setting, and / or transmission to the terminal apparatus 1.
  • the direction UL-DL setting may be instructed from an upper node.
  • the subframe setting unit 3013 performs subframe setting, subframe pattern setting, uplink-downlink setting, uplink reference UL-DL setting, downlink based on the uplink traffic volume and the downlink traffic volume.
  • a reference UL-DL configuration and / or a transmission direction UL-DL configuration may be determined.
  • the subframe setting unit 3013 can manage at least two subframe sets.
  • the subframe setting unit 3013 may set at least two subframe sets for each of the terminal devices 1.
  • the subframe setting unit 3013 may set at least two subframe sets for each of the serving cells.
  • the subframe setting unit 3013 may set at least two subframe sets for each of the CSI processes.
  • the subframe setting unit 3013 can transmit information indicating at least two subframe sets to the terminal device 1 via the transmission unit 307.
  • the scheduling unit 3015 generates information used for scheduling of physical channels (PDSCH and PUSCH) based on the scheduling result.
  • the scheduling unit 3015 is based on UL-DL configuration, subframe pattern configuration, uplink-downlink configuration, uplink reference UL-DL configuration, downlink reference UL-DL configuration, and / or transmission direction UL-DL configuration.
  • the timing (subframe) for performing the transmission process and the reception process is determined.
  • the CSI report control unit 3017 provided in the higher layer processing unit 301 controls the CSI report of the terminal device 1.
  • the CSI report control unit 3017 transmits information indicating various settings assumed by the terminal device 1 to derive the CQI in the CSI reference resource to the terminal device 1 via the transmission unit 307.
  • the receiving unit 305 separates, demodulates and decodes the received signal received from the terminal device 1 via the transmission / reception antenna 309 according to the control signal input from the control unit 303, and outputs the decoded information to the higher layer processing unit 301.
  • the radio reception unit 3057 converts an uplink signal received via the transmission / reception antenna 309 into an intermediate frequency (down-conversion: down convert), removes unnecessary frequency components, and appropriately maintains the signal level. In this way, the amplification level is controlled, and based on the in-phase and quadrature components of the received signal, quadrature demodulation is performed, and the quadrature demodulated analog signal is converted into a digital signal.
  • the wireless receiver 3057 removes a portion corresponding to a guard interval (Guard Interval: GI) from the converted digital signal.
  • the radio reception unit 3057 performs fast Fourier transform (FFT) on the signal from which the guard interval is removed, extracts a frequency domain signal, and outputs the signal to the demultiplexing unit 3055.
  • FFT fast Fourier transform
  • the demultiplexing unit 1055 demultiplexes the signal input from the radio receiving unit 3057 into signals such as PUCCH, PUSCH, and uplink reference signal. This separation is performed based on radio resource allocation information included in the uplink grant that is determined in advance by the base station apparatus 3 using the radio resource control unit 3011 and notified to each terminal apparatus 1.
  • demultiplexing section 3055 compensates for the propagation paths of PUCCH and PUSCH from the propagation path estimation value input from channel measurement section 3059. Further, the demultiplexing unit 3055 outputs the separated uplink reference signal to the channel measurement unit 3059.
  • the demodulator 3053 performs inverse discrete Fourier transform (Inverse Discrete Fourier Transform: IDFT) on the PUSCH, acquires modulation symbols, and performs BPSK (Binary Shift Keying), QPSK, 16QAM,
  • IDFT inverse discrete Fourier transform
  • BPSK Binary Shift Keying
  • QPSK Quadrature Phase Keying
  • 16QAM 16QAM
  • the received signal is demodulated using a predetermined modulation scheme such as 64QAM, or the modulation method notified by the own device to each terminal device 1 in advance using an uplink grant.
  • the demodulator 3053 uses the MIMO SM based on the number of spatially multiplexed sequences notified in advance to each terminal device 1 using an uplink grant and information indicating precoding performed on the sequences.
  • a plurality of uplink data modulation symbols transmitted on the PUSCH are separated.
  • the decoding unit 3051 encodes the demodulated PUCCH and PUSCH encoding bits in a predetermined encoding scheme, or a coding rate at which the device itself notifies the terminal device 1 in advance with an uplink grant. And the decoded uplink data and the uplink control information are output to the upper layer processing unit 101.
  • decoding section 3051 performs decoding using the encoded bits held in the HARQ buffer input from higher layer processing section 301 and the demodulated encoded bits.
  • Channel measurement section 309 measures an estimated channel value, channel quality, and the like from the uplink reference signal input from demultiplexing section 3055 and outputs the result to demultiplexing section 3055 and higher layer processing section 301.
  • the downlink reference signal generation unit 3079 generates a known sequence as a downlink reference signal, which is obtained by a predetermined rule based on a physical layer cell identifier (PCI) for identifying the base station apparatus 3 and the like. To do.
  • the multiplexing unit 3075 multiplexes the modulated modulation symbol of each channel and the generated downlink reference signal. That is, multiplexing section 3075 arranges the modulated modulation symbol of each channel and the generated downlink reference signal in the resource element.
  • the wireless transmission unit 3077 performs inverse fast Fourier transform (Inverse Fast Fourier Transform: IFFT) on the multiplexed modulation symbols and the like, performs modulation in the OFDM scheme, adds a guard interval to the OFDM symbol that has been OFDM-modulated, and baseband
  • IFFT inverse Fast Fourier Transform
  • the baseband digital signal is converted to an analog signal, the in-phase and quadrature components of the intermediate frequency are generated from the analog signal, the extra frequency components for the intermediate frequency band are removed, and the intermediate-frequency signal is generated. Is converted to a high-frequency signal (up-conversion: up convert), an extra frequency component is removed, power is amplified, and output to the transmission / reception antenna 309 for transmission.
  • PDCCH or EPDCCH is used for notifying (designating) downlink control information (DCI) to the terminal device.
  • DCI downlink control information
  • information on PDSCH resource allocation information on MCS (Modulation and coding Coding scheme), information on scrambling identity (also called scrambling identifier), reference signal sequence identity (base sequence identity, Information on a base sequence identifier and a base sequence index).
  • MCS Modulation and coding Coding scheme
  • scrambling identity also called scrambling identifier
  • reference signal sequence identity base sequence identity
  • Information on a base sequence identifier and a base sequence index Information on a base sequence identifier and a base sequence index.
  • Small cell is a generic term for a cell having a small coverage, which is configured by the base station apparatus 3 having a lower transmission power than a macro cell. Since small cells can be set to have a small coverage, they can be operated densely.
  • the small cell base station apparatus 3 is arranged at a different location from the macro cell base station apparatus.
  • the closely arranged small cells are synchronized and can be configured as a small cell cluster.
  • the small cells in the small cell cluster are connected by backhaul (optical fiber, X2 interface, S1 interface).
  • the small cell may be operated at the same frequency as the macro cell. Small cells may be operated outside the coverage of macro cells.
  • the small cell base station apparatus 3 may be arranged at the same location as the macro cell base station apparatus.
  • the base station device 3 can set the macro cell as Pcell and the small cell as Scell or pSCell for the terminal apparatus 1.
  • the terminal device 1 only needs to recognize as PCell, SCell, or pSCell, and does not need to be recognized as a macro cell or a small cell.
  • the secondary cell is configured by configuring a serving cell set together with the primary cell.
  • the number of downlink component carriers set in the terminal device 1 must be greater than or equal to the number of uplink component carriers set in the terminal device 1, and only the uplink component carrier is set as a secondary cell. It is not possible.
  • the terminal device 1 always uses a primary cell and a primary secondary cell for transmission of PUCCH. In other words, the terminal device 1 does not expect to transmit the PUCCH in a secondary cell other than the primary cell and the primary secondary cell.
  • the reconfiguration / addition / deletion of the secondary cell is performed by RRC.
  • RRC Radio Resource Control
  • the activation / deactivation mechanism of the secondary cell is supported. Primary cells are not activated / deactivated.
  • the terminal device 1 does not need to receive the associated PDCCH or PDSCH, cannot transmit on the associated uplink, and does not need to perform CQI measurement.
  • the terminal device 1 receives the PDSCH and the PDCCH, and therefore expects to be able to perform CQI measurement.
  • Activation / deactivation mechanism is based on the combination of MAC CE and deactivation timer.
  • MAC CE notifies secondary cell activation and deactivation information in bitmap format. Bits that are set to 1 indicate activation of the associated secondary cell, and bits that are set to 0 indicate deactivation of the associated secondary cell.
  • the MAC CE has a fixed size and is composed of seven Ci fields and one R field, and is defined as follows.
  • Ci is a secondary cell set to secondary cell index (SCellIndex) i
  • the Ci field indicates the activation / deactivation state of the secondary cell with secondary cell index i.
  • the terminal device 1 ignores the Ci field.
  • the Ci field is set to “1”, it indicates that the secondary cell with the secondary cell index i is activated.
  • the Ci field is set to “0”, it indicates that the secondary cell with the secondary cell index i has been deactivated.
  • R is a reserved bit and is set to “0”.
  • the field related to the deactivation timer for the secondary cell (parameter sCellDeactivationTimer-r10) is set only in the terminal device 1 in which one or more secondary cells are set.
  • the terminal device 1 When receiving the MAC CE instructing the activation of the secondary cell, the terminal device 1 sets the secondary cell whose activation is set by the MAC CE as the activation.
  • the terminal device 1 can perform the following operations on the secondary cell for which activation is set by the MAC CE.
  • the operation includes SRS transmission in the secondary cell, CQI (Channel Quality Indicator) / PMI (Precoding Matrix Indicator) / RI (Rank Indicator) / PTI (Precoding Type Indicator) for the secondary cell, uplink in the secondary cell Data (UL-SCH) transmission, RACH transmission in the secondary cell, PDCCH monitoring in the secondary cell, and PDCCH monitoring for the secondary cell.
  • the terminal device 1 When the MAC CE instructing the deactivation of the secondary cell is received, or when the deactivation timer associated with the secondary cell expires, the terminal device 1 relates to the secondary cell for which the deactivation is set by the MAC CE. Stop the deactivation timer.
  • the terminal device 1 When the secondary cell is deactivated, the terminal device 1 does not perform the following operation on the deactivated secondary cell.
  • the operation includes SRS transmission in the secondary cell, CQI / PMI / RI / PTI reporting to the secondary cell, uplink data (UL-SCH) transmission in the secondary cell, RACH transmission in the secondary cell, and PDCCH transmission in the secondary cell. It is a PDCCH monitor for a monitor and a secondary cell.
  • a synchronization signal such as PSS / SSS, CRS, PBCH, SIB, etc.
  • a reference signal and broadcast information are transmitted. Therefore, those signals generate inter-cell interference.
  • the power of the base station apparatus 3 is wasted by constantly transmitting these signals.
  • the state in which the base station apparatus 3 is stopped is a state in which at least one of PSS / SSS, CRS, PBCH, PDCCH, and PDSCH is not transmitted.
  • PSS / SSS is not transmitted for one half frame or more (5 subframes or more).
  • the state where the base station device 3 is stopped is a state where only the DS is transmitted. Note that the base station apparatus 3 may perform reception processing at the receiving unit of the base station apparatus even in a stopped state.
  • the ON state of the base station device 3 is a state in which the terminal device 1 can perform the same processing as a conventional terminal device.
  • a specific example of the base station device 3 in the ON state is as follows.
  • the terminal device 1 expects to receive PSS, SSS, and PBCH.
  • the terminal device 1 monitors PDCCH and / or EPDCCH in a predetermined subframe.
  • the terminal device 1 performs CSI reporting based on the set CSI reporting mode.
  • the terminal apparatus 1 expects a reference signal (for example, CRS or CSI-RS) for CSI reporting and a CSI reference resource to exist.
  • a reference signal for example, CRS or CSI-RS
  • the OFF state of the base station device 3 is a state in which the terminal device 1 performs processing different from that of the conventional terminal device.
  • a specific example of the base station device 3 in the OFF state is as follows.
  • the terminal device 1 does not expect to receive PSS, SSS, and PBCH.
  • the terminal device 1 does not monitor PDCCH and / or EPDCCH in all subframes.
  • the terminal device 1 does not report CSI regardless of the set CSI report mode.
  • the terminal device 1 does not expect the presence of a reference signal (for example, CRS or CSI-RS) and a CSI reference resource for CSI reporting.
  • a reference signal for example, CRS or CSI-RS
  • the base station device 3 (serving cell) to which the terminal device 1 is connected has its activation state stopped based on the connection state of the terminal device 1, the data state of the terminal device 1, and the measurement information of the terminal device 1. It is determined whether or not to transit to.
  • the base station apparatus 3 that has determined to shift to the stop state transmits information to shift to the stop state to the base station apparatus 3 of the surrounding cells, and prepares for cell stop. Note that the determination as to whether or not to change the activation state to the stop state and the transmission of information that changes to the stop state may not be performed in the serving cell.
  • MME Mobility Management Entity
  • S -It may be determined and transmitted by a GW (Serving Gateway).
  • the terminal device 1 when the terminal device 1 is connected to the base station device 3, the terminal device 1 is instructed to hand over to the surrounding cell, or the deactivation is transmitted. Do.
  • the serving cell to which no terminal device 1 is connected due to cell stop preparation transitions from a start state to a stop state.
  • the base station device 3 transitions from a stopped state to a started state.
  • the time from the stop to the transition to the start state and the time from the start to the transition to the stop state are referred to as a transition time (Transition Time).
  • Transition Time Transition Time
  • the base station device 3 (serving cell) to which the terminal device 1 is connected and the stopped base station device 3 (adjacent cell) share the DS settings via the backhaul. Further, the serving cell notifies the terminal device 1 of the setting of the DS. Neighboring cells transmit DS. The terminal device 1 detects the DS transmitted from the neighboring cell based on the DS setting notified from the serving cell. Also, the terminal device 1 performs physical layer measurement using the DS transmitted from the adjacent cell. The terminal device 1 reports the measurement to the serving cell.
  • the serving cell determines whether or not to transition the base station apparatus 3 in the stopped state to the activated state based on the measurement report from the terminal device 1, and determines to transition to the activated state Information indicating start-up is notified to the base station apparatus 3 in a stopped state via the backhaul.
  • the determination as to whether or not to change the stop state to the start state and the transmission of information instructing the start may not be performed by the serving cell, for example, MME (Mobility Management Entity), S-GW (Serving ⁇ Gateway) may be determined and transmitted.
  • MME Mobility Management Entity
  • S-GW Serving ⁇ Gateway
  • the base station apparatus 3 (serving cell) to which the terminal apparatus is connected and the base station apparatus 3 (adjacent cell) in a stopped state share the SRS setting of the terminal apparatus 1 via the backhaul. Further, the serving cell notifies the terminal device 1 of the setting of the SRS.
  • the terminal device 1 transmits the SRS based on the setting of the SRS or the instruction of the SRS request.
  • the neighboring cell detects the SRS transmitted from the terminal device 1. Further, the adjacent cell performs physical layer measurement using the SRS transmitted from the terminal device 1. Based on the measurement result by SRS, the adjacent cell determines whether or not to shift the base station device 3 to the activated state, and transitions from the stopped state to the activated state.
  • the determination as to whether or not to change the stop state to the start state does not have to be performed in the neighboring cell.
  • the determination is performed by the serving cell, MME (Mobility Management Entity), S-GW (Serving Gateway) May be sent.
  • the neighboring cell performs measurement of the physical layer using the SRS, and then transmits the measurement result to the serving cell, the MME, and the S-GW, and receives information instructing activation.
  • the serving cell may notify the terminal device 1 of information indicating the activation / deactivation state of surrounding cells.
  • the terminal device 1 switches the behavior of the terminal device 1 by recognizing the start state or the stop state of the cell.
  • the behavior of the terminal device 1 is, for example, an interference measurement method.
  • L1 signaling Layer 1 signalling
  • the information indicating the activation / deactivation state of the target cell is notified by PDCCH or EPDCCH.
  • One bit corresponding to the target cell is assigned, 0 (false, disable) indicates stop, and 1 (true, enable) indicates activation.
  • Bits corresponding to the target cell may be configured as an aggregated bitmap, and a plurality of cells may be notified of activation / deactivation states at the same time. The association between the bit and the target cell is notified by dedicated RRC signaling.
  • Information indicating the start / stop state is notified in downlink control information (DCI: Downlink Control Information) format 1C.
  • DCI Downlink Control Information
  • Information indicating the start / stop state may be notified in the DCI format 3 / 3A. Note that the information indicating the start / stop state may be notified in the same payload size (number of bits) format as the DCI format 1C.
  • the DCI format includes a DCI format related to uplink scheduling and a DCI format related to downlink scheduling.
  • a DCI format related to uplink scheduling is called an uplink grant
  • a DCI format related to downlink scheduling is called a downlink grant (downlink assignment).
  • One DCI format may be transmitted to a plurality of terminal devices 1. For example, when transmitting only the transmission power control command (TPC command: “Transmission” Power “Control” command), the command may be transmitted to a plurality of terminal devices 1 at a time.
  • TPC command Transmission” Power “Control” command
  • Such scheduling (or triggering) is called group scheduling (group triggering).
  • the terminal device 1 is individually assigned an index and detects bits based on the index.
  • DCI format 0 is used for PUSCH scheduling in one uplink cell.
  • DCI format 1 is used for scheduling one PDSCH codeword in one cell.
  • DCI format 1A is used for compact scheduling of one PDSCH codeword in one cell and random access processing started by PDCCH order.
  • DCI corresponding to the PDCCH order may be transmitted by PDCCH or EPDCCH.
  • the DCI format 0 and the DCI format 1A can be transmitted using the same bit information field. Based on the value indicated in a certain bit field, the terminal device 1 has a DCI format mapped to the received bit information field. It is determined whether it is DCI format 0 or DCI format 1A.
  • the DCI format 1C is scrambled using an RNTI (eg, eIMTA-RNTI) related to dynamic TDD (first type (mode) TDD), so that information indicating the TDD UL-DL setting is set. Also good.
  • RNTI eg, eIMTA-RNTI
  • first type TDD dynamic TDD
  • second type TDD second type TDD
  • Dynamic TDD refers to TDD that switches TDD UL-DL settings using L1 signaling according to uplink / downlink communication status. Dynamic TDD is also used to extend interference management and adaptive traffic control.
  • the dynamic TDD may be referred to as eIMTA (enhanced Interference Management and Traffic Management) or TDD-ModeA.
  • DCI format 2 / 2A / 2B / 2C / 2D is used not only for scheduling one PDSCH codeword but also for scheduling two (or multiple) PDSCH codewords.
  • DCI format 3 / 3A indicates the value of a transmission power control command for adjusting the transmission power of PUSCH or PUCCH for a plurality of terminal devices 1.
  • the terminal device 1 can detect the value of the transmission power control command corresponding to the PUSCH or the PUCCH by detecting the bit information corresponding to the index (TPC-Index) assigned to the own station.
  • TPC-Index the index assigned to the own station.
  • DCI format 4 is used for PUSCH scheduling in one uplink cell with multi-antenna port transmission mode.
  • CRC parity bits include C-RNTI (Cell-Radio Network Temporary Identifier), SPS C-RNTI (Semi-Persistent Scheduling Cell-Radio Network Temporary Identifier), SI-RNTI (System Information Radio Network Temporary Identifier), P-RNTI ( Paging-Radio Network Temporary Identifier), RA-RNTI (Random Access Network Radio Temporary Identifier), TPC-PUCCH-RNTI (Transmit Power Control-Physical Uplink Control Channel-Radio Network Temporary Identifier), TPC-PUSCH-RNTI (Transmit It is scrambled by Control-Physical Uplink Shared Channel-Radio Network Temporary Identifier, temporary C-RNTI, M-RNTI (MBMS (Multimedia Broadcast Services) -Radio Network Temporary Identifier), or TDD-Mode A-RNTI.
  • C-RNTI Cell-Radio Network Temporary Identifier
  • SPS C-RNTI Semi-Persistent Scheduling Cell-
  • SPS C-RNTI is used to periodically allocate PDSCH or PUSCH resources.
  • a control channel having a CRC scrambled by SI-RNTI is used to control SIB (System Information Block).
  • the control channel with CRC scrambled with P-RNTI is used to control paging.
  • a control channel having a CRC scrambled with a temporary C-RNTI is used for a terminal device not identified by the C-RNTI.
  • CSS Common Search Space
  • the base station apparatus 3 can reduce resources for transmitting a control channel by mapping a common control channel to a CSS in a plurality of terminal apparatuses.
  • the control region in which the PDCCH for the terminal device 1 is arranged is not notified, and the terminal device 1 decodes all DCI formats corresponding to all PDCCH candidates and transmission modes for all aggregation levels defined in each search space. Try. In other words, the terminal device 1 tries to decode in all aggregation levels, PDCCH candidates, and DCI formats that may be transmitted to the terminal device 1. Then, the terminal device 1 recognizes the PDCCH that has been successfully decoded as control information addressed to the terminal device 1. This is called blind decoding.
  • the number of decoding does not increase. For example, since the DCI format 0 and the DCI format 1A have the same bit size, two types of DCI formats can be decoded by one decoding.
  • the terminal device 1 in which the uplink transmission mode 1 is set attempts to decode six PDCCH candidates and two types of bit size DCI formats in the aggregation 4 and two PDCCH candidates in the aggregation 8 in the CSS. Attempts to decode DCI formats of two bit sizes.
  • the terminal apparatus 1 tries to decode six PDCCH candidates and two types of DCI formats in aggregation 1 in aggregation 1, and tries to decode six PDCCH candidates and two types of bit sizes in DCI format in aggregation 2.
  • two PDCCH candidates and two types of bit size DCI formats are tried to be decoded.
  • two PDCCH candidates and two types of bit size of DCI formats are tried to be decoded. That is, the terminal device 1 tries to decode PDCCH 44 times in one subframe.
  • the terminal device 1 in which the uplink transmission mode 2 is set attempts to decode six PDCCH candidates and two types of DCI formats of bit sizes in the aggregation 4 in the CSS, and in the aggregation 8 to the two PDCCH candidates. Attempts to decode DCI formats of two bit sizes.
  • the terminal device 1 attempts to decode six PDCCH candidates and three types of DCI formats in aggregation 1 in aggregation 1, and attempts to decode six PDCCH candidates and three types of bit sizes in DCI format in aggregation 2.
  • two PDCCH candidates and three types of DCI formats of bit sizes are tried to be decoded.
  • two PDCCH candidates and three types of DCI formats of bit sizes are tried to be decoded. That is, the terminal device 1 tries PDCCH decoding 60 times in one subframe.
  • the terminal device 1 can decode PDCCHs having different coding rates without prior information, and can efficiently transmit control information between the base station device 3 and the terminal device 1.
  • a shared search space is a search space common to cells. Information indicating the start / stop state is notified by the terminal group shared search space.
  • the terminal group shared search space is a starting point of CCE in which PDCCH candidates are arranged using RNTI (UE-group C-RNTI, TP-specific-RNTI, SCE-RNTI) commonly allocated in the terminal group. Is a search space to be determined.
  • the plurality of terminal devices 1 in which the terminal group RNTI is set detect the DCI format using the PDCCH arranged in the same search space.
  • the notification of the information indicating the start / stop state is performed at a predetermined timing or a set timing.
  • the notification timing is in units of one radio frame.
  • the notification of information indicating the start / stop state indicates information of the next radio frame that has received the L1 signaling.
  • L1 signaling is received in the first subframe (subframe 0) in the radio frame, information on the received radio frame may be indicated.
  • the activation / deactivation state of the target cell may be implicitly indicated by a change (change) in the DS configuration.
  • Information indicating the activation / deactivation state of the target cell may be implicitly indicated by the configuration of the DS being different between the activation state and the deactivation state.
  • the DS configuration transmitted from the target cell may be transmitted differently between the activated state and the deactivated state.
  • the terminal device 1 may receive from the base station device 3 information relating to the DS configuration transmitted in the activated state and information relating to the DS configuration transmitted in the deactivated state.
  • the state where the target cell is activated / deactivated may be indicated by a change (change) in a parameter (or parameter value) of a certain DS configuration.
  • a certain parameter included in the DS setting may be different between the activated state and the deactivated state (or may be individually set).
  • the DS transmitted in the activated state and the DS transmitted in the deactivated state may have different resource element arrangements.
  • the DS transmitted in the activated state and the DS transmitted in the deactivated state may have different antenna ports.
  • the DS transmitted in the activated state and the DS transmitted in the deactivated state may have different scramble sequences.
  • the DS transmitted in the activated state and the DS transmitted in the deactivated state may have different scrambled sequence initial values or methods (formulas) for generating initial values.
  • the transmission power may be different between the DS transmitted in the activated state and the DS transmitted in the deactivated state.
  • the DS transmitted in the activated state and the DS transmitted in the deactivated state may have different transmission subframe intervals.
  • the DS transmitted in the activated state and the DS transmitted in the deactivated state may have different transmission bandwidths or resource block numbers. That is, the information regarding the DS setting transmitted in the activated state and the information regarding the DS setting transmitted in the deactivated state may be individually set.
  • Such information may be transmitted from the base station apparatus 3 to the terminal apparatus 1 using higher layer signaling. That is, the information indicating the activation / deactivation state of the target cell may be parameter setting information regarding the DS configuration. In other words, a certain parameter is set for each of the activated state and the deactivated state.
  • the terminal device 1 may monitor two types of configurations: a DS configuration indicating a startup state and a DS configuration indicating a stop state.
  • the terminal device 1 may monitor two types using a DS configuration monitoring pattern indicating a start state and a DS configuration monitoring pattern indicating a stop state. In this case, the terminal device 1 is notified of information related to the monitoring pattern of the two DS configurations. That is, when information regarding the monitoring pattern of one DS configuration is not notified, the DS of two configurations may be monitored based on one monitoring pattern.
  • the terminal device 1 In the measurement DS subframe of the stopped state, when the activated DS is measured, the terminal device 1 recognizes the stopped small cell as the activated state.
  • the terminal device 1 may implicitly acquire the information on the activation / deactivation state of the target cell based on the monitoring pattern in which the DS is detected.
  • a DS configuration monitoring pattern indicating a start state and a DS configuration monitoring pattern indicating a stop state may be defined in advance.
  • the DS configuration monitoring pattern indicating the start state and the DS configuration monitoring pattern indicating the stop state may be notified from the base station apparatus 3 by dedicated RRC signaling (upper layer signaling).
  • the activation / deactivation state of the target cell may be implicitly indicated by the difference between the activation state and the deactivation state CRS configuration (CRS setting) of the target cell.
  • CRS configuration CRS setting
  • the configuration of the CRS transmitted from the target cell differs between the activated state and the deactivated state.
  • CRS setting information of a different configuration is notified to the terminal device 1.
  • the activation / deactivation state of the target cell may be indicated by a change of a certain parameter (or parameter value) related to the CRS configuration.
  • the CRS transmitted in the activated state and the CRS transmitted in the deactivated state may have different resource element arrangements.
  • the CRS transmitted in the activated state and the CRS transmitted in the deactivated state may have different antenna ports.
  • the CRS transmitted in the activated state and the CRS transmitted in the deactivated state may have different scramble sequences.
  • the initial value of the scramble sequence may be different between the CRS transmitted in the activated state and the CRS transmitted in the deactivated state.
  • the CRS transmitted in the activated state and the CRS transmitted in the deactivated state may have different transmission power.
  • the CRS transmitted in the activated state and the CRS transmitted in the deactivated state may have different transmission subframe intervals.
  • the transmission bandwidth or the number of resource blocks may be different between the CRS transmitted in the activated state and the CRS transmitted in the deactivated state. That is, the information indicating the activation / deactivation state of the target cell may be parameter setting information regarding the CRS configuration. At that time, a certain parameter is individually set for each of the activated state and the deactivated state.
  • an example is given for CRS, but PSS, SSS, CSI-RS, PRS, and the like may be similarly indicated.
  • the terminal device 1 can recognize the start / stop state of the target cell by the above notification method.
  • any of the notification methods described above is applied.
  • the cell detection means that the terminal device 1 detects a synchronization signal (such as PSS or SSS) or / and a reference signal (such as CRS or CSI-RS) transmitted from the base station apparatus 3 constituting the cell.
  • a synchronization signal such as PSS or SSS
  • a reference signal such as CRS or CSI-RS
  • the synchronization signal or / and reference signal used for cell detection includes cell ID information.
  • the terminal device 1 detects the cell based on the cell ID of the cell and the detection standard of the synchronization signal or / and the reference signal.
  • the terminal device 1 determines detection based on the received power intensity or / and received power quality of the synchronization signal or / and reference signal from the cell.
  • the terminal device 1 compares the received power strength or / and received power quality of the synchronization signal or / and the reference signal with a threshold value, and determines that the cell has been detected when the received strength or / and received quality is high.
  • the received power intensity is, for example, RSRP.
  • the reception quality is, for example, an interference amount, RSRQ, SINR, or the like.
  • the cell detection may be determined by a measurement event described later.
  • the terminal device 1 determines detection based on the success or failure of decoding of the synchronization signal or / and reference signal information from the cell. For example, the cell (base station apparatus 3 constituting the cell) transmits a synchronization signal or / and a reference signal with a parity code such as CRC. The terminal device 1 performs decoding using the parity code included in the synchronization signal or / and the reference signal, and determines that the cell has been detected when it is determined that the decoding is correctly performed by parity detection.
  • the cell base station apparatus 3 constituting the cell
  • the terminal device 1 performs decoding using the parity code included in the synchronization signal or / and the reference signal, and determines that the cell has been detected when it is determined that the decoding is correctly performed by parity detection.
  • the terminal device 1 reports the detected cell information to the connected base station device 3.
  • the detected cell information includes a cell ID and measurement information.
  • FIG. 10 is a diagram illustrating an example of the configuration of the CRS.
  • the CRS signal is generated using a pseudo-random number sequence.
  • the pseudo random number sequence is, for example, a Gold sequence.
  • the pseudo-random number sequence is calculated based on a physical cell identifier (PCI).
  • the pseudo-random number sequence is calculated based on the type of CP.
  • the pseudo-random number sequence is calculated based on the slot number and the OFDM symbol number in the slot.
  • R0 to R3 in FIG. 10 are used as resource elements of the CRS in the case of the normal CP.
  • R0 corresponds to the CRS arrangement of antenna port 0
  • R1 corresponds to the CRS arrangement of antenna port 1
  • R2 corresponds to the CRS arrangement of antenna port 2
  • R3 corresponds to the CRS arrangement of antenna port 3.
  • Resource elements of CRS transmitted by one antenna port are arranged with a period of 6 subcarriers on the frequency axis.
  • Resource elements of CRS transmitted at antenna port 0 and CRS transmitted at antenna port 1 are arranged 3 subcarriers apart. The CRS is shifted cell-specifically on the frequency based on the cell ID.
  • Resource elements of CRS transmitted at antenna port 0 and CRS transmitted at antenna port 1 are arranged in OFDM symbols 0 and 4 in the case of normal CP, and are arranged in OFDM symbols 0 and 3 in the case of extended CP. .
  • Resource elements of CRS transmitted through antenna port 2 and CRS transmitted through antenna port 3 are arranged in OFDM symbol 1.
  • CRS is a bandwidth set in the downlink, and is transmitted over a wide band.
  • the DS may have the same configuration as the CRS.
  • the DS is composed of multiple signals.
  • the DS is configured by PSS, SSS, and CRS.
  • the PSS and SSS included in the DS may be used for time synchronization, frequency synchronization, cell identification and transmission point identification.
  • the CRS included in the DS may be used for RSRP measurement, RSRQ measurement, and CSI measurement.
  • DS is configured by PSS, SSS, and CSI-RS.
  • the PSS and SSS included in the DS may be used for time synchronization, frequency synchronization, cell identification and transmission point identification.
  • the CSI-RS included in the DS may be used for transmission point identification, RSRP measurement, RSRQ measurement, and CSI measurement.
  • a DS composed of a plurality of signals may be referred to as a detection burst.
  • a reference signal used for RSRP measurement and / or RSRQ measurement may be referred to as DS.
  • the base station apparatus 3 may switch and transmit the first DS configured by PSS, SSS, and CRS and the second DS configured by PSS, SSS, and CSI-RS. In that case, the base station apparatus 3 sets the first DS or the second DS in the terminal apparatus 1.
  • the DS is transmitted in downlink subframe.
  • the DS is transmitted on the downlink component carrier.
  • the DS is transmitted when the base station apparatus 3 is in a stopped state (off state, “dormant” mode, “deactivation”).
  • the DS may be transmitted even when the base station apparatus 3 is in the activated state (on state, active mode, activation).
  • DS can be set independently for each base station device (cell, transmission point). For example, a plurality of small cells transmit differently configured DSs using different resources.
  • the base station device 3 sets a list related to the DS and a DS measurement (detection, monitoring, transmission) timing with respect to the terminal device 1.
  • the list related to the DS is a list of information related to the base station device that transmits the DS that the terminal device 1 may receive.
  • the list related to the DS is a list of transmission point IDs of transmission points that transmit the DS.
  • the plurality of transmission points transmit a unique DS to each transmission point based on the DS measurement timing set for the terminal device 1.
  • the terminal device 1 measures the DS based on the DS-related list set in the base station device 3 and the DS measurement timing.
  • the terminal device 1 measures the DS determined based on the list related to the DS in a subframe or resource determined based on the DS measurement timing. Further, the terminal device 1 reports the measurement result by the DS measurement to the base station device 3.
  • Each transmission point transmits DS in one subframe. That is, each transmission point transmits a PSS related to one DS, an SSS, and a CRS and / or CSI-RS in one subframe.
  • the terminal device 1 expects a DS corresponding to one transmission point to be transmitted in one subframe.
  • One DS may be transmitted in a plurality of subframes.
  • DS transmission or DS measurement timing is set periodically on the time axis. Also, DS transmission or DS measurement timing may be set in successive subframes. In other words, the DS may be transmitted in bursts.
  • DS transmission or DS measurement timing is set in M subframe periods and in consecutive N subframes.
  • a subframe L in which a DS is arranged within a period may be set.
  • the values of M, N and / or L are set in the upper layer. Note that the number N of subframes transmitted continuously within a cycle may be defined in advance.
  • the subframe period M is set to be long, the number of times DS is transmitted from the base station apparatus 3 in the stopped state is reduced, and inter-cell interference can be reduced.
  • different settings may be applied to the values of M, N, and / or L depending on the stop state and the start state. Also, parameters corresponding to the values of M, N and / or L may be notified by higher layer signaling.
  • the parameter corresponding to L may be managed in a table.
  • the parameter corresponding to L may be associated with the period.
  • the parameter value corresponding to L may not indicate the offset of the subframe as it is.
  • the terminal device 1 may monitor the PDCCH in addition to the DS measurement. For example, in the parameter corresponding to N, the terminal device 1 may monitor the PDCCH. At that time, the terminal device 1 may be required to support a function of monitoring the PDCCH for a small cell in a stopped state.
  • DS is transmitted via antenna ports p, ..., p + n-1.
  • n indicates the total number of antenna ports that transmit DS.
  • Values other than 0 to 22 and 107 to 110 may be applied to the values of p,. That is, the DS may be transmitted using an antenna port different from the antenna port used for other reference signals.
  • a plurality of structures and / or configurations may be applied to the DS.
  • the plurality of configurations may be configurations or settings of a plurality of signals.
  • the plurality of configurations may be signals having a plurality of configurations.
  • the DS may be composed of a plurality of signals.
  • the same configuration (or setting) as the PSS may be applied to the DS.
  • the same configuration (or setting) as the SSS may be applied to the DS.
  • the same configuration (or setting) as the CRS may be applied to the DS.
  • a configuration (or setting) similar to that of CSI-RS may be applied to DS.
  • a signal of a specific configuration may be transmitted to indicate the start / stop state of the small cell.
  • the terminal device 1 may recognize that the small cell is in the activated state and perform processing. That is, the terminal device 1 may recognize that the small cell is in the activated state by detecting the fourth signal (the signal having the fourth configuration).
  • the configuration of the DS transmitted from the small cell may be different depending on whether the small cell is activated or stopped.
  • the signal of the third configuration may be transmitted from the first configuration if it is in the stopped state
  • the signal of the fourth configuration may be transmitted from the first configuration if it is in the activated state.
  • the signal of the fourth configuration may be transmitted instead of the signal of the third configuration.
  • a plurality of signals having the same configuration as SSS are set, a plurality of signals are transmitted in the small cell stop state, but only one signal may be transmitted in the small cell start state. . That is, the configuration of the DS may be switched according to the state of the small cell.
  • DS may be set separately from PSS, SSS, CRS, and CSI-RS. That is, DS resource setting, subframe setting, antenna port index, number of antenna ports, ID for sequence generation, etc. may be set independently (individually) from PSS, SSS, CRS, and CSI-RS. Good.
  • the DS may be transmitted including a part of information for specifying the cell ID.
  • the DS resource elements transmitted at antenna port p and the DS resource elements transmitted at antenna port p + 1 are arranged 3 subcarriers apart.
  • the DS is shifted cell-specifically on the frequency based on the cell ID.
  • the DS resource elements transmitted on antenna port p and DS transmitted on antenna port p + 1 are arranged in OFDM symbols 0 and 4 in the case of normal CP, and are arranged in OFDM symbols 0 and 3 in the case of extended CP. .
  • Resource elements of DS transmitted at antenna port p + 2 and DS transmitted at antenna port p + 3 are arranged in OFDM symbol 1.
  • DS is a bandwidth set in the downlink and is transmitted in a wide band. Note that the DS transmission bandwidth may be set using higher layer signaling. The DS transmission bandwidth may be considered to be the same as the measurement bandwidth.
  • FIG. 10 shows another example of the configuration of the DS.
  • a DS (D1, D2 in FIG. 10) sequence (signal sequence, reference signal sequence) is generated using a pseudo-random sequence.
  • the pseudo random number sequence is, for example, a Gold sequence.
  • the pseudo-random number sequence is calculated based on information from an upper layer.
  • the pseudo-random number sequence is calculated based on the cell ID when information from an upper layer is not set.
  • the pseudo-random number sequence is calculated based on the type of CP.
  • the pseudo-random number sequence is calculated based on the slot number and the OFDM symbol number in the slot.
  • the resource element in which the DS is arranged is determined by a resource setting number (DS resource configuration index), and may be calculated using the table of FIG.
  • k ′ represents a subcarrier number
  • l ′ represents an OFDM symbol number
  • n s represents a slot number
  • n s mod2 represents a slot number in the subframe.
  • DS is arranged in resource elements of slot number 0, subcarrier number 9, OFDM symbol numbers 5 and 6.
  • the DS is transmitted in a wide band with a bandwidth set for the downlink.
  • the DS is not limited to the above example, but the DS may be configured by combining a plurality of the above examples.
  • DS is a combination of a signal composed of Zadoff-Chu sequence, a signal composed based on M sequence, a signal composed based on Gold sequence, and a signal transmitted with zero output (Zero (power). It may be configured.
  • a resource element may be specified by DS setting information for a signal configured based on the Gold sequence and a signal transmitted with zero output.
  • the signal configured based on the Gold sequence is configured with a wider band than the signal configured with the Zadoff-Chu sequence, and the signal configured with the Zadoff-Chu sequence is transmitted using 6 resource blocks.
  • a signal configured based on the sequence may be transmitted in the entire band of the subframe.
  • Information for each cell that transmits a DS includes information on the center frequency of the band, bandwidth information, subframe information, information specifying a resource element, information for specifying a cell (cell ID, PCI, VCID), etc. Is included.
  • the DS setting may include the setting of the first configuration signal to the setting of the nth configuration signal.
  • the signal resource settings for each component may be set individually.
  • the subframe setting and transmission power of the signals of each configuration may be common (or a common value).
  • the cell ID, antenna port index, and number of antenna ports may be set only for a signal having a certain configuration.
  • a plurality of resource settings, subframe settings, and the like may be set for a signal having a certain configuration.
  • the DS setting may include information (parameter) indicating the frequency at which the DS is transmitted.
  • the DS setting may include information indicating an offset (offset value) of a subframe in which the DS may be transmitted.
  • the DS setting may include an identifier for generating a DS sequence.
  • the DS setting may include information necessary for transmitting the DS and / or information necessary for receiving the DS and / or information necessary for measuring the DS.
  • the base station apparatus 3 serving as a reference for the transmission timing is determined and the transmission timing of the listening RS is designated by the backhaul.
  • the base station apparatus 3 that performs synchronization of transmission timing and the reception timing of the listening RS are designated by the backhaul.
  • the base station apparatus 3, MME, or S-GW may determine the base station apparatus 3 serving as a reference for the transmission timing, the base station apparatus 3 that synchronizes the transmission timing, and the transmission / reception timing of the listening RS.
  • the base station apparatus 3 serving as a reference for transmission timing transmits the listening RS in the downlink component carrier or the downlink subframe based on the transmission timing notified by the backhaul.
  • RSRP is defined as a value obtained by linearly averaging the powers of resource elements to which CRS included in the considered measurement frequency bandwidth is transmitted.
  • a resource element to which CRS of antenna port 0 is mapped is used. If the terminal device can detect the CRS of antenna port 1, the resource element to which the CRS of antenna port 0 is mapped (the radio resource mapped to the resource element assigned to antenna port 0) for RSRP determination.
  • a resource element to which the CRS of antenna port 1 is mapped (a radio resource mapped to the resource element assigned to antenna port 1) can also be used.
  • the RSRP calculated using the resource element to which the CRS of the antenna port 0 is mapped is referred to as a CRS base RSRP or a first RSRP.
  • the terminal device 1 measures the RSRP of the intra-frequency cell and / or the inter-frequency cell in the RRC idle (RRC_IDLE) state.
  • the intra-frequency cell in the RRC idle state is a cell in the same frequency band as the cell from which the terminal apparatus broadcasts system information.
  • the inter-frequency cell in the RRC idle state is a cell in a frequency band different from the cell in which the terminal device 1 receives the system information by broadcasting.
  • the terminal device 1 measures RSRP of an intra-frequency cell and / or an inter-frequency cell in an RRC connection (RRC_CONNECTED) state.
  • the intra-frequency cell in the RRC connection state is a cell in the same frequency band as the cell from which the terminal device 1 has received system information by RRC signaling or broadcast.
  • the inter-frequency cell in the RRC connection state is a cell in a frequency band different from the cell in which the terminal device 1 receives the system information by RRC signaling or broadcast.
  • RSRP is defined as a value obtained by linearly averaging the powers of the resource elements to which DS included in the considered measurement frequency bandwidth is transmitted. In determining RSRP, a resource element to which DS is mapped is used. The resource element and antenna port to which the DS is transmitted are notified in the upper layer.
  • the terminal device 1 measures the RSRP of the intra-frequency cell and / or the inter-frequency cell in the RRC connection (RRC_CONNECTED) state.
  • RSSI is defined by the total received power observed using the receiving antenna.
  • RSSI E-UTRA carrier RSSI
  • the RSSI is composed of a value obtained by linearly averaging the total received power obtained by observing only OFDM symbols that are assumed to include the reference signal for antenna port 0.
  • the RSSI is configured with a value obtained by linearly averaging the total received power obtained by observing only the OFDM symbol including the CRS of the antenna port 0.
  • RSSI is observed with a bandwidth of N resource blocks.
  • the total received power of RSSI includes power from serving cells and non-serving cells on the same channel, interference power from adjacent channels, thermal noise power, and the like.
  • RSSI E-UTRA carrier RSSI
  • the total received power of RSSI includes power from serving cells and non-serving cells on the same channel, interference power from adjacent channels, thermal noise power, and the like.
  • RSSI E-UTRA carrier RSSI
  • RSSI is composed of a total value of a value obtained by linearly averaging the total received power obtained by observing only OFDM symbols not including DS (CRS and / or CSI-RS) and the value of RSRP.
  • RSSI is composed of a total value of a value obtained by linearly averaging the total received power obtained by observing only OFDM symbols that do not include DS (CRS and / or CSI-RS) and the value of RSRP.
  • RSSI is observed with a bandwidth of N resource blocks.
  • the total received power of RSSI includes power from serving cells and non-serving cells on the same channel, interference power from adjacent channels, thermal noise power, and the like.
  • RSRQ is defined by the ratio of RSRP and RSSI, and is used for the same purpose as the signal-to-interference noise ratio (SINR) of the measurement target cell, which is an indicator of communication quality.
  • SINR signal-to-interference noise ratio
  • RSRQ is defined as the ratio calculated by the formula N ⁇ RSRP / RSSI.
  • N is the number of resource blocks corresponding to the measurement bandwidth of RSSI, and the numerator and denominator of RSRQ are configured by the same set of resource blocks.
  • RSRP is the first RSRP.
  • the RSRQ calculated using the RSRQ calculated using the first RSRP is referred to as a CRS-based RSRQ or a first RSRQ.
  • RSSI E-UTRA carrier RSSI
  • the RSSI is composed of a value obtained by linearly averaging the total received power obtained by observing only the OFDM symbol including the reference signal for antenna port 0.
  • the RSSI is configured by a value obtained by linearly averaging the total received power obtained by observing only the OFDM symbol including the CRS of the antenna port 0 (the radio resource mapped to the antenna port 0).
  • RSSI is observed with a bandwidth of N resource blocks.
  • the total received power of RSSI includes power from serving cells and non-serving cells on the same channel, interference power from adjacent channels, thermal noise power, and the like.
  • the terminal device 1 measures the RSRQ of the intra-frequency cell and / or the inter-frequency cell in the RRC idle state.
  • the terminal device 1 measures RSRQ of an intra-frequency cell and / or an inter-frequency cell in an RRC connection state.
  • first measurement results The results (first RSRP and first RSRQ) obtained based on the first measurement procedure are referred to as first measurement results.
  • the base station device 3 transmits a measurement configuration (Measurement configuration) message to the terminal device 1 using an RRC connection reconfiguration (RRC Connection Reconfiguration) message of RRC signaling (radio resource control signal).
  • the terminal device 1 sets the system information included in the measurement configuration (Measurement configuration) message, and serves the serving cell (serving cell) and neighboring cells (listed cell and / or detection cell) according to the notified system information. (including detected cells), measurement, event evaluation, and measurement reports.
  • the list cell is a cell (cell notified from the base station apparatus 3 to the terminal apparatus 1 as an adjacent cell list) listed in the measurement object (Measurement object), and the detected cell depends on the measurement object (Measurement object).
  • a cell that is detected by the terminal device 1 at the instructed frequency but is not listed in the measurement object (Measurement object) (a cell detected by the terminal device 1 itself that is not notified as an adjacent cell list).
  • Measurement setting (Measurement configuration) message includes measurement identifier (measId), measurement object (Measurement objects), reporting setting (Reporting configurations) setting addition and / or modification and / or deletion, physical quantity setting (quantityConfig), measurement gap Settings (measGapConfig), serving cell quality threshold (s-Measure), and the like are included.
  • “MeasObjectToRemoveList” is a command for deleting the measurement object (Measurement objects) corresponding to the specified measurement object identifier (measObjectId) and the specified measurement object identifier (measObjectId). At this time, all measurement identifiers (measId) associated with the specified measurement target identifier (measObjectId) are deleted. This command can specify a plurality of measurement object identifiers (measObjectId) at the same time.
  • Measurement objects include a measurement object EUTRA (measObjectEUTRA) associated with a measurement object identifier (measObjectId).
  • the base station apparatus 3 performs a setting different from the first measurement in order to cause the terminal apparatus 1 to perform the second measurement.
  • the signal to be measured (or the signal configuration and the signal setting) may be different between the first measurement and the second measurement.
  • the cell ID set in the signal to be measured may be different between the first measurement and the second measurement.
  • the antenna port of the signal to be measured may be different between the first measurement and the second measurement.
  • the measurement cycle (or measurement subframe pattern) of the signal to be measured may be different between the first measurement and the second measurement. That is, the first measurement and the second measurement may be set individually.
  • the measurement target EUTRA includes EUTRA carrier frequency information (eutra-CarrierInfo), measurement bandwidth (measurementBandwidth), DS setting information, offset frequency (offsetFreq), neighbor cell list (neighbour cell list) information, black list ( information about black) list).
  • the report setting identifier is an identifier used to identify a reporting configuration related to measurement (Reporting configuration).
  • the reporting configuration relating to measurement includes the regulations for EUTRA and the regulations for RATs other than EUTRA (UTRA, GERAN, CDMA2000).
  • Reporting configuration EUTRA (reportConfigEUTRA), which is a reporting configuration for EUTRA, defines the triggering criteria (triggering criteria) of events used for reporting of measurements in EUTRA.
  • Hysteresis is a parameter used in event trigger conditions.
  • the trigger time indicates a period in which the event trigger condition should be satisfied.
  • the report amount indicates the amount reported in the measurement report (measurementmeasurereport).
  • the amount specified by the trigger amount (triggerQuantity), or RSRP and RSRQ are specified.
  • the maximum number of report cells indicates the maximum number of cells to be included in the measurement report.
  • the reporting interval (reportInterval) is used for periodic reporting (periodical reporting) or event trigger periodic reporting (eventtriggered periodic reporting), and is periodically reported for each interval indicated by the reporting interval (reportInterval).
  • the number of reports (reportAmount) defines the number of times that periodic reporting is performed as necessary.
  • a plurality of event trigger conditions for performing measurement reports are defined, and there are a subscription condition and a withdrawal condition, respectively. That is, the terminal device 1 that satisfies the subscription condition for the event specified by the base station device 3 transmits a measurement report (measurement report) to the base station device 3. On the other hand, the terminal device 1 that has transmitted the measurement report (measurement report) while satisfying the event subscription condition stops transmitting the measurement report (measurement report) when the event leaving condition is satisfied.
  • the type of measurement result used to evaluate the event trigger condition is determined depending on the detection of the reference signal. For example, when CRS is detected and DS is not detected, the event trigger condition is evaluated using the first measurement result, and when CRS is not detected and DS is detected, the second measurement result is obtained. Event trigger conditions may be evaluated. Also, when both CRS and DS are detected, the event trigger condition may be evaluated using the measurement result with the higher received power. When both CRS and DS are detected, the event trigger condition may be evaluated using a measurement result obtained by averaging both received powers. Further, when both CRS and DS are not detected, the event trigger condition may not be evaluated.
  • the terminal device 1 may report the measurement result including the RSRP and RSRQ results for the target cell.
  • the RSRP and RSRQ reported at one time may be either one of the first measurement result or the second measurement result.
  • the first measurement result may be a measurement result obtained from the first measurement.
  • the second measurement result may be a measurement result obtained from the second measurement.
  • the first measurement result is a measurement result obtained based on the setting information related to the first measurement
  • the second measurement result is a measurement result obtained based on the setting information related to the second measurement. It is.
  • the type of measurement result to be reported is determined depending on the detection of the reference signal. For example, when CRS is detected and DS is not detected, the first measurement result is reported, and when CRS is not detected and DS is detected, the second measurement result is reported. If both CRS and DS are detected, the measurement result with the higher received power is reported. If both CRS and DS are not detected, they are not reported or the lowest value is reported.
  • the terminal apparatus 1 determines which type of measurement in the measurement result in order to make the base station apparatus 3 recognize whether the reported measurement result is the result calculated by the first measurement or the result calculated by the second measurement.
  • a parameter may be added that specifies whether is set.
  • the measurement object and report setting for the first measurement and the measurement object and report setting for the second measurement are set, and the field of the measurement result is shared between the first measurement and the second measurement. Depending on the event, the first measurement result or the second measurement result is transmitted.
  • the terminal device 1 can report the first measurement result and the second measurement result to the base station device 3.
  • the terminal device 1 is a terminal device 1 that communicates with the base station device 3, and performs a first measurement based on a first RS (CRS) and based on a second RS (DS).
  • a receiving unit 105 that performs a second measurement, and an upper layer processing unit 101 that reports the first measurement result and the second measurement result to the base station device 3, and in the first state, The first measurement result is reported to the base station apparatus 3, and in the second state, the first measurement result or the second measurement result is reported to the base station apparatus 3.
  • the report settings for DS may be set separately from the report settings for CRS and CSI-RS.
  • the value is determined depending on the path loss.
  • PHR Power Headroom
  • referenceSignalPower is given by the upper layer.
  • ReferenceSignalPower is information based on the transmission power of CRS.
  • higher layer filtered RSRP is the first RSRP of the reference serving cell filtered in the upper layer.
  • the serving cell c belongs to a TAG (pTAG) including the primary cell
  • the primary cell is used as the reference serving cell for referenceSignalPower and higher layer filtered for the uplink primary cell.
  • the serving cell set by the upper layer parameter pathlossReferenceLinking is used as the reference serving cell of referenceSignalPower and higherhighlayer filtered RSRP.
  • the serving cell c belongs to a TAG (eg, sTAG) that does not include a primary cell, the serving cell c is used as a reference serving cell of referenceSignalPower and higherhighlayer filtered RSRP.
  • referenceSignalPower is given by the upper layer.
  • ReferenceSignalPower is information based on the transmission power of CRS.
  • higher layer filtered RSRP is the first RSRP of the reference serving cell filtered in the upper layer.
  • discoverySignalPower is a parameter related to the DS transmission power, and is given by the upper layer.
  • higher layer filtered RSRP2 is the second RSRP of the reference serving cell filtered in the upper layer.
  • the case of being set by the upper layer may be, for example, the case of being based on the setting of the DS notified using upper layer signaling.
  • the case where it is set by the upper layer may be a case where it is based on the measurement setting notified using upper layer signaling, for example.
  • the case of being set by the upper layer may be, for example, a case based on the setting of uplink power control notified using higher layer signaling. That is, the case where it is set by the higher layer may include a case where a parameter or information is notified using higher layer signaling and is set in the terminal device 1.
  • the serving cell c belongs to a TAG including the primary cell, the primary cell is used as the reference serving cell for the discoverySignalPower and the higher layer filtered to the RSRP2 for the uplink primary cell.
  • the serving cell set by the upper layer parameter pathlossReferenceLinking is used as the reference serving cell of discoverySignalPower and higher ⁇ layer filtered RSRP2. If the serving cell c belongs to a TAG that does not include a primary cell, the serving cell c is used as a reference serving cell for discoverySignalPower and higher layer filtered RSRP2.
  • the terminal device 1 may not perform the following process.
  • the processing includes SRS transmission in the secondary cell, CQI (Channel Quality Indicator) / PMI (Precoding Matrix Indicator) / RI (Rank Indicator) / PTI (Precoding Type Indicator) for the secondary cell, uplink in the secondary cell Data (UL-SCH) transmission, RACH transmission in the secondary cell, PDCCH monitoring in the secondary cell, and PDCCH monitoring for the secondary cell.
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RI Rank Indicator
  • PTI Precoding Type Indicator
  • the terminal device 1 may perform the following process even if the secondary cell is in a stopped state.
  • the processing includes SRS transmission in the secondary cell, CQI / PMI / RI / PTI report to the secondary cell, (uplink data (UL-SCH) transmission in the secondary cell), RACH transmission in the secondary cell, PDCCH monitoring in the secondary cell and PDCCH monitoring for the secondary cell.
  • the terminal device 1 makes a request for SRS transmission to the secondary cell from the primary cell (PDCCH / EPDCCH (DCI format) transmitted in the primary cell) by cross carrier scheduling. If there is (SRS request is transmitted), SRS may be transmitted in the secondary cell. That is, in this case, the base station apparatus 3 expects to receive SRS.
  • PDCCH / EPDCCH DCI format
  • the secondary cell in the stopped state is a small cell
  • CSI request is Terminal device 1 may transmit CQI / PMI / RI / PTI for the secondary cell using the PUSCH of the primary cell. That is, in this case, the base station apparatus 3 expects to receive CQI / PMI / RI / PTI for the secondary cell on the PUSCH of the primary cell.
  • a random access response grant (RAR grant) is transmitted from the primary cell (PDCCH / EPDCCH (DCI format) transmitted in the primary cell) by cross carrier scheduling. If so, the terminal device 1 may perform RACH transmission in the secondary cell. That is, in this case, the base station apparatus 3 expects to receive the RACH in the secondary cell.
  • RAR grant random access response grant
  • the RA-RNTI is scrambled from the primary cell (PDCCH / EPDCCH (DCI format) transmitted in the primary cell) to the secondary cell by cross carrier scheduling. If the DCI format with CRC can be detected, the terminal device 1 may perform RACH transmission in the secondary cell. That is, in this case, the base station apparatus 3 expects to receive the RACH in the secondary cell.
  • PDCCH / EPDCCH DCI format
  • the terminal device 1 may monitor the PDCCH in the secondary cell. . That is, in this case, the base station apparatus 3 may transmit the PDCCH in the stopped small cell.
  • the terminal device 1 may monitor the PDCCH for the secondary cell. At that time, the terminal device 1 is set only when the EPDCCH set (or EPDCCH setting) is not set for the terminal device 1 or when the terminal device 1 does not support the function of receiving DCI using the EPDCCH. May monitor the PDCCH for the secondary cell. That is, in this case, the base station apparatus 3 may transmit the PDCCH in the stopped small cell.
  • the base station apparatus 3 may transmit the PDCCH in the stopped small cell.
  • the terminal device 1 When the secondary cell in the stopped state is a small cell, even if information related to uplink scheduling is transmitted to the secondary cell, the terminal device 1 does not perform uplink transmission based on information related to uplink scheduling. Also good. That is, in this case, the base station apparatus 3 does not expect uplink transmission to be performed in a small cell in a stopped state.
  • the terminal device 1 is secondary if it has a request for SRS transmission to the secondary cell (SRS request is transmitted) by self-scheduling.
  • SRS may be transmitted in the cell. That is, in this case, the base station apparatus 3 expects to receive SRS.
  • the terminal apparatus 1 performs CQI / PMI for the secondary cell. / RI / PTI may be transmitted using the PUSCH of the secondary cell.
  • the terminal device 1 performs RACH transmission in the secondary cell. May be.
  • the terminal device 1 If the secondary cell in the stopped state is the primary secondary cell, if the DCI format with the CRC in which the RA-RNTI is scrambled can be detected for the secondary cell by self-scheduling, the terminal device 1 Then, RACH transmission may be performed.
  • the terminal device 1 may monitor the PDCCH in the secondary cell. That is, if the terminal device 1 has not received the setting of the EPDCCH set for the primary secondary cell, the terminal device 1 monitors the PDCCH in the secondary cell. Moreover, the base station apparatus 3 may transmit PDCCH with respect to the terminal device 1 by a secondary cell, if the setting of an EPDCCH set is not set with respect to the primary secondary cell.
  • the terminal The apparatus 1 may monitor the PDCCH for the secondary cell. At that time, the terminal device 1 is only connected to the secondary cell when the EPDCCH set is not set for the terminal device 1 or when the terminal device 1 does not support the function of receiving DCI using the EPDCCH. PDCCH may be monitored.
  • the terminal device 1 may perform uplink transmission based on information related to uplink scheduling in the secondary cell. For example, when DCI format 0 is detected for the secondary cell, the terminal device 1 may perform PUSCH transmission in the secondary cell.
  • the terminal device 1 uses the secondary cell from the primary cell (PDCCH / EPDCCH (DCI format) transmitted in the primary cell) by cross carrier scheduling. If there is a request for SRS transmission for (SRS request is transmitted), the SRS may be transmitted in the secondary cell. At that time, the terminal device 1 may support a function of performing cross-carrier scheduling between the primary cell and the primary secondary cell.
  • PDCCH / EPDCCH DCI format
  • Terminal apparatus 1 may transmit CQI / PMI / RI / PTI for the secondary cell using the PUSCH of the primary cell. At that time, the terminal device 1 may support a function of performing cross-carrier scheduling between the primary cell and the primary secondary cell.
  • a random access response grant (RAR grant) is generated from the primary cell (PDCCH / EPDCCH (DCI format) transmitted in the primary cell) by cross carrier scheduling. If it is transmitted, the terminal device 1 may perform RACH transmission in the secondary cell. At that time, the terminal device 1 may support a function of performing cross-carrier scheduling between the primary cell and the primary secondary cell. In this case, the base station apparatus 3 may transmit the random access response grant (RAR grant) by the PDCCH order to the secondary cell in the stopped state by cross carrier scheduling.
  • RAR grant random access response grant
  • RA-RNTI is scrambled from the primary cell (PDCCH / EPDCCH (DCI format) transmitted in the primary cell) to the secondary cell by cross carrier scheduling. If the DCI format with CRC is detected, the terminal device 1 may perform RACH transmission in the secondary cell. At that time, the terminal device 1 may support a function of performing cross-carrier scheduling between the primary cell and the primary secondary cell.
  • PDCCH / EPDCCH DCI format
  • the terminal device 1 may monitor the PDCCH in the secondary cell.
  • the downlink grant or the uplink grant is performed from the primary cell (PDCCH / EPDCCH (DCI format) transmitted in the primary cell) to the secondary cell by cross carrier scheduling.
  • the terminal device 1 may monitor the PDCCH for the secondary cell. At that time, the terminal device 1 is only connected to the secondary cell when the EPDCCH set is not set for the terminal device 1 or when the terminal device 1 does not support the function of receiving DCI using the EPDCCH. PDCCH may be monitored.
  • the terminal device 1 may monitor the PDCCH in the secondary cell in the stopped state.
  • the terminal device 1 monitors the PDCCH in the secondary cell in the stopped state. May be.
  • the terminal device 1 may monitor the PDCCH in the stopped secondary cell. Further, the base station apparatus 3 transmits the PDCCH in the stopped secondary cell to the terminal apparatus 1 depending on whether or not the EPDCCH setting and / or the EPDCCH set setting for the stopped secondary cell is set. It may be determined whether or not.
  • the terminal device 1 If the secondary cell in the stopped state is a primary secondary cell, if information on uplink scheduling is transmitted from the primary cell to the secondary cell by cross carrier scheduling, the terminal device 1 relates to uplink scheduling. Uplink transmission based on information may be performed. At that time, the terminal device 1 may support a function of performing cross-carrier scheduling between the primary cell and the primary secondary cell.
  • the terminal device 1 is set to receive PDSCH data transmission according to transmission modes 1 to 9 by higher layer signaling, and the terminal device 1 is set to monitor EPDCCH.
  • the terminal device 1 assumes that the antenna ports 0 to 3 and 107 to 110 of the serving cell are quasi-sharedly arranged with respect to Doppler shift, Doppler spread, average delay, and delay spread.
  • the terminal device 1 For a certain serving cell, the terminal device 1 is set to receive PDSCH data transmission according to the transmission mode 10 by higher layer signaling, and for each EPDCCH-PRB set, the terminal device 1 If the terminal device 1 is set by the higher layer to further decode the PDSCH corresponding to the pseudo shared arrangement (QCL: Quasi Co-Location) type A, The apparatus 1 assumes that antenna ports 0 to 3 and antenna ports 107 to 110 of the serving cell are quasi-sharedly arranged with respect to Doppler shift, Doppler spread, average delay, and delay spread.
  • QCL Quasi Co-Location
  • the terminal device 1 is set by the upper layer to decode the PDSCH according to the pseudo-shared arrangement type B, the terminal device 1 is higher in terms of Doppler shift, Doppler spread, average delay, and delay spread. Assume that the antenna ports 15 to 22 and the antenna ports 107 to 110 corresponding to the layer parameter (qcl-CSI-RS-ConfigNZPId) are arranged in a pseudo-shared manner.
  • QCL type A may assume that the terminal device 1 has a pseudo shared arrangement of the antenna ports 0 to 3 and the antenna ports 107 to 110 of the serving cell with regard to Doppler shift, Doppler spread, average delay, and delay spread.
  • the terminal device 1 has antenna ports 15 to 22 and antenna ports 107 to 110 corresponding to upper layer parameters (qcl-CSI-RS-ConfigNZPId) regarding Doppler shift, Doppler spread, average delay, and delay spread. You may assume that it is a pseudo-shared arrangement.
  • the terminal device 1 assumes that the antenna ports 0 to 3 and the antenna ports 107 to 110 of the serving cell are quasi-sharedly arranged when the type A is set based on the higher layer parameter QCL operation.
  • type B it is assumed that the antenna ports 15 to 22 and the antenna ports 107 to 110 corresponding to the upper layer parameter (qcl-CSI-RS-ConfigNZPId) are arranged in a pseudo-shared manner.
  • the terminal device 1 set to monitor the EPDCCH assumes that the CRS and the EPDCCH are arranged in a pseudo-shared manner when the type A is set based on the higher layer parameter QCL operation.
  • Type B it is assumed that CSI-RS and EPDCCH are arranged in a pseudo-shared manner.
  • the terminal device 1 is set to receive PDSCH data transmission according to the transmission mode 10 by higher layer signaling, and for each EPDCCH-PRB set, the terminal device 1 Parameters set by higher layer parameters (re-MappingQCL-ConfigId, PDSCH-RE-MappingQCL-ConfigId) to determine EPDCCH resource element mapping and EPDCCH antenna port pseudo-shared arrangement Set (PDSCH-RE-MappingQCL-Config) is used.
  • a certain serving cell when the terminal apparatus 1 is set to receive DS by higher layer signaling, and the terminal apparatus 1 is set to monitor EPDCCH, the DS and EPDCCH resource elements
  • An upper layer parameter (qcl-DS-ConfigId) for determining mapping and EPDCCH antenna port pseudo-shared arrangement may be set.
  • the terminal device 1 when the terminal device 1 is set to receive DS by higher layer signaling and the terminal device 1 is set to monitor the EPDCCH, the terminal device 1 Assume that one or more antenna ports corresponding to the upper layer parameter (qcl-DS-ConfigId) and antenna ports 107 to 110 are arranged in a pseudo-shared manner.
  • the upper layer parameter qcl-DS-ConfigId
  • Various parameters for determining the EPDCCH resource element mapping and the EPDCCH antenna port pseudo-shared arrangement for DS It may be set. That is, the number of DS antenna ports (ds-PortsCount) may be included in the setting of the pseudo-shared arrangement of EPDCCH and DS. Further, the setting of the pseudo-shared arrangement of EPDCCH and DS may include a DS frequency shift (ds-FreqShift).
  • zero power DS-ID may be included in the setting of the pseudo-shared arrangement of EPDCCH and DS.
  • ID of the non-zero power DS qcl-DS-ConfigNZPId
  • qcl-DS-ConfigNZPId the ID of the non-zero power DS
  • the target signal may be changed depending on the start / stop state of the serving cell (secondary cell).
  • the terminal apparatus 1 is quasi-shared with DS and EPDCCH when the serving cell is stopped, and is quasi-shared with CRS and EPDCCH when the serving cell is activated. Good.
  • the terminal device 1 is quasi-shared with CSI-RS and EPDCCH when the serving cell is stopped, and is quasi-shared with CRS and EPDCCH when the serving cell is activated. May be.
  • the terminal device 1 is pseudo-shared with CSI-RS and EPDCCH when the serving cell is stopped, and is pseudo-shared with CSI-RS, CRS and EPDCCH when the serving cell is activated. You may assume that That is, the terminal device 1 determines the pseudo shared arrangement (resource element mapping and antenna port) of the EPDCCH based on the set setting information.
  • the base station apparatus 3 may transmit information regarding a plurality of QCL settings when changing the pseudo-shared arrangement of the EPDCCH in the activated state and the deactivated state.
  • discontinuous reception (DRX: “Discontinuous” Reception) will be described.
  • the terminal device 1 activates PDCCH monitoring of the terminal device 1 for the C-RNTI, TPC-PUCCH-RNTI, TPC-PUSCH-RNTI, and SPS-RNTI of the terminal device 1 (whether or not to perform PDCCH monitoring). May be set by RRC with DRX function to control. If DRX is not set, the terminal device 1 continues to monitor the PDCCH continuously. In order to perform DRX, a plurality of timers (onDurationTimer, drx-InactivityTimer, drx-RetransmissionTimer, etc.) are set in the terminal device 1.
  • a subframe for monitoring the PDCCH is set during DRX.
  • Parameters related to short DRX may be set as options.
  • a HARQ RTT timer is defined for each DL HARQ process (excluding broadcast processes). Note that a period during which the PDCCH can be monitored during DRX is referred to as an active time.
  • the active time may be a time when at least one of the timers (onDurationTimer, drx-InactivityTimer, drx-RetransmissionTimer, mac-ContentionResolutionTimer) is active.
  • the active time may be a time during which a scheduling request is transmitted on the PUCCH and is pending.
  • the active time may be an uplink grant for pending HARQ transmission, and may be a time when data is in the corresponding HARQ buffer.
  • the active time may be a time during which the PDCCH instructing new transmission related to the C-RNTI of the terminal device 1 is not received after successful reception of a random access response for a preamble that is not selected by the terminal device 1.
  • the active time may be the number of subframes set as DRX active time (drx-Activetime).
  • the terminal apparatus 1 will, for each subframe, if the HARQ RTT timer expires in this subframe or if the corresponding HARQ process data has not been successfully decoded, the corresponding HARQ Start a DRX retransmission timer (drx-RetransmissionTimer) for the process.
  • drx-RetransmissionTimer DRX retransmission timer
  • the terminal device 1 may receive a DRX command MAC control element (MAC CE) for each subframe, and a duration timer (onDurationTimer) and a DRX inactivity timer (drx ⁇ InactivityTimer).
  • MAC CE DRX command MAC control element
  • onDurationTimer a duration timer
  • drx ⁇ InactivityTimer a DRX inactivity timer
  • the duration timer (onDurationTimer) is used to define continuous PDCCH subframes at the beginning of the DRX cycle.
  • the DRX inactivity timer (drx-InactivityTimer) is for specifying the number of consecutive PDCCH subframes after the subframe in which the PDCCH instructing the initial uplink / downlink user data transmission to a certain terminal apparatus 1 is transmitted. Used.
  • the DRX retransmission timer (drx-RetransmissionTimer) is used to specify the maximum number of consecutive PDCCH subframes until a downlink transmission is received.
  • the HARQ RTT timer is used to specify the minimum number (minimum amount) of subframes before downlink HARQ transmission is expected by the terminal device 1.
  • the MAC contention resolution timer (mac-ContentionResolutionTimer) specifies the number of consecutive subframes in which the terminal device 1 monitors the PDCCH after the message 3 (PUSCH corresponding to the random access response grant) is transmitted. Used for.
  • DRX short cycle timer (drxShortCycleTimer) is used to define the number of consecutive subframes in which the terminal device 1 follows the short DRX cycle.
  • DRX start offset (drxStartOffset) is used to define the subframe in which the DRX cycle starts.
  • the active time is a time related to the DRX operation, and defines a period (time) during which the terminal device 1 monitors the PDCCH in the PDCCH monitoring subframe.
  • the PDCCH monitoring subframe is basically the same as the PDCCH subframe. However, when the terminal device 1 is capable of eIMTA in a certain serving cell, the PDCCH monitoring subframe is in accordance with the TDD UL-DL setting indicated by the L1 signaling related to eIMTA (for example, the DCI format in which eIMTA-RNTI is scrambled). Thus, it is a subframe including the determined downlink subframe and DwPTS.
  • the terminal device 1 When DRX is set, the terminal device 1 expires the DRX inactivity timer for each subframe or receives a DRX command MAC CE in this subframe, and further sets a short DRX cycle. If so, start (restart) the DRX short cycle timer (drxShortCycleTimer) and use the short DRX cycle. Otherwise, the long DRX cycle is used.
  • the terminal device 1 uses the long DRX cycle when the DRX short cycle timer expires for each subframe.
  • the terminal apparatus 1 When DRX is set, the terminal apparatus 1 has a predetermined formula for each subframe based on a system frame number, a subframe number, a short DRX cycle (and / or a long DRX cycle), and a DRX start offset (drxStartOffset). If the condition is satisfied, the duration timer is started.
  • the terminal device 1 When DRX is set, the terminal device 1 is in active time for each subframe, and for the PDCCH subframe, the subframe is for uplink transmission for half-duplex FDD terminal device operation. If it is not necessary or if the subframe is not part of the configured measurement gap, the PDCCH is monitored. Furthermore, if the PDCCH indicates downlink transmission, or if downlink assignment is set for this subframe, the HARQ RTT timer for the corresponding HARQ process is started and Stop the DRX retransmission timer for the HARQ process to perform. If the PDCCH indicates a new transmission (downlink or uplink), the DRX inactivity timer is started (or restarted).
  • the terminal device 1 When DRX is set, the terminal device 1 evaluates all DRX active time conditions in the latest subframe n for each subframe (including subframe n-5). ) Trigger type 0 SRS is not transmitted if it is not in the active time considering the scheduling request transmitted up to subframe n-5 and the received grant / assignment / DRX command MAC CE.
  • the terminal device 1 sets the duration timer in the latest subframe n, assuming that CQI masking (cqi-Mask) is set up by the upper layer for each subframe. Assume that all DRX active time conditions are being evaluated (including subframe n-5) and that it is not within the active time considering the grant / assignment / DRX command MAC CE received by subframe n-5 , CQI / PMI / RI / PTI is not reported on PUCCH. Otherwise, in the latest subframe n, the terminal apparatus 1 has evaluated all DRX active time conditions and has received the grant / assignment received by subframe n-5 (including subframe n-5). If it is not during the active time considering / DRX command MAC CE, CQI / PMI / RI / PTI (that is, CSI) is not reported in PUCCH.
  • CQI masking cqi-Mask
  • the terminal apparatus 1 may receive / transmit HARQ feedback and transmit the trigger type 1 SRS if there is a possibility that the terminal apparatus 1 may occur regardless of whether or not the terminal apparatus 1 is monitoring the PDCCH.
  • the same active time may be applied to all activated serving cells (activated serving cell (s)).
  • N corresponds to a value set in the HARQ RTT timer or the HARQ RTT timer.
  • the terminal device 1 When DRX is set in the primary cell and the DS setting for the secondary cell is set, the terminal device 1 is set based on the measurement subframe set based on the DS setting and the DRX setting.
  • DS measurement and PDCCH monitoring may be performed in the stopped secondary cell in the overlapping subframe.
  • the active time of DRX applies to all active serving cells, i.e. all serving cells in the activated state, but not to inactive serving cells, i.e. serving cells in the deactivated state.
  • the DS setting When the DS setting is set, the DRX active time may be applied even if the serving cell (or secondary cell) is inactive (off-state, deactivation, dormant-mode). At this time, the DS setting may not include the subframe setting. That is, the base station apparatus 3 may transmit the DS based on the DRX active time.
  • the terminal device 1 may measure the DS in a subframe that becomes an active time by DRX. .
  • the terminal apparatus 1 When the DRX inactivity timer or the duration timer expires, the terminal apparatus 1 does not measure the DS even if the subframe after the expiration can be measured based on the DS measurement subframe. Also good. That is, when the DRX inactivity timer or the duration timer expires, the terminal device 1 does not expect the DS to be transmitted in the subsequent DS measurement subframe.
  • the terminal device 1 In the terminal device 1 in which DRX is set, when the DS setting for the secondary cell in a stopped state (as a small cell) is notified (provided or given) using higher layer signaling, the terminal device 1
  • the DS RRM (RSRP / RSRQ / RSSI) measurement may be performed in the DS transmission subframe of the secondary cell that overlaps with the DRX active time.
  • DRX configuration may be individually set in MCG and SCG, primary cell and primary secondary cell, or MeNB and SeNB.
  • DRX in the SCG may indicate a start / stop state of the primary secondary cell.
  • DS and PDCCH may be transmitted in the DRX subframe.
  • the DRX setting is used, but various parameters set in the DRX setting may be set as a DTX (Discontinuous Transmission) setting.
  • DTX Continuous Transmission
  • radio link monitoring the downlink radio link quality of the primary cell is monitored by the terminal device 1 in order to indicate whether the upper layer is in-sync or out-of-sync.
  • the physical layer of the terminal device 1 has a threshold (Q in , Q out ) defined based on a test related to radio link monitoring for each radio frame (number of subframes constituting the radio frame). On the other hand, it evaluates the radio link quality, evaluated over the past (previous) time period.
  • the physical layer of the terminal device 1 has a threshold value (Q in , Q out) defined based on a test related to radio link monitoring for each DRX cycle (the number of subframes constituting the DRX cycle). ) For the radio link quality evaluated over the past (previous) time period.
  • the radio link quality is not monitored in subframes other than the subframe indicated by higher layer signaling. That is, when the subframe in which radio link monitoring is performed is restricted by higher layer signaling, terminal apparatus 1 performs radio link monitoring only in the restricted subframe.
  • the physical layer of the terminal device 1 indicates that it is out of synchronization with the upper layer. Further, when the radio link quality is better than the threshold value Q in , it indicates that the physical layer of the terminal device 1 is in synchronization with the upper layer in the radio frame in which the radio link quality is evaluated.
  • the physical layer of the terminal device 1 that supports dual connectivity may perform radio link monitoring for each of the primary cell and the primary secondary cell. Further, a threshold value related to radio link quality may be defined for each of the primary cell and the primary secondary cell.
  • the physical layer of the terminal device 1 that supports dual connectivity may individually evaluate the radio link quality (out of synchronization, within synchronization) for the primary cell and the primary secondary cell.
  • the physical layer of the terminal device 1 supporting dual connectivity activates a protection timer when the synchronization loss continues for a predetermined number of times when evaluating the radio link quality.
  • this protection timer expires, the physical layer of the terminal device 1 notifies the upper layer that a loss of synchronization has occurred in the cell (in other words, a physical layer problem has been detected).
  • the upper layer of the terminal device 1 recognizes that a radio link failure (RLF: “Radio” Link “Failure”) has been detected. At that time, the upper layer of the terminal device 1 may notify the base station device 3 that the RLF has been detected in the primary cell.
  • RLF radio link failure
  • the upper layer of the terminal device 1 may not recognize the RLF when the cell in which the physical layer problem is detected is a primary secondary cell. Moreover, when the cell in which the physical layer problem is detected is a primary secondary cell, the upper layer of the terminal device 1 may perform the same process as that of the primary cell.
  • semi-persistent scheduling When semi-persistent scheduling is set to be effective by the RRC layer (upper layer signaling, upper layer), the following information is provided to the terminal device 1.
  • the information includes the semi-persistent scheduling C-RNTI, if semi-persistent scheduling is enabled for the uplink, the uplink semi-persistent scheduling interval (semiPersistSchedIntervalUL) and the number of empty transmissions before the implicit release.
  • the terminal device 1 After the semi-persistent downlink assignment is set, the terminal device 1 considers that the Nth assignment occurs in the system frame number and the subframe that satisfy a certain condition and is continuous.
  • the certain condition is determined based on the system frame number (SFN start_time ) and the subframe (subframe start_time ) when the downlink assignment set in the terminal device 1 is initialized (or reinitialized). May be.
  • the terminal apparatus 1 After the semi-persistent uplink grant is set, the terminal apparatus 1 sets a subframe offset (Subframe_Offset) based on a certain table if the two interval settings are set to be valid in the upper layer. Otherwise, the subframe offset is set to zero.
  • Subframe_Offset a subframe offset
  • a certain condition means that a certain condition is a system frame number (SFN start_time ) and a subframe (when the uplink grant set in the terminal device 1 is initialized (or reinitialized). subframe start_time ).
  • MAC PDU Protocol Data Unit
  • MAC SDU Service Data Unit
  • the SPS may be performed not only in the primary cell but also in the primary secondary cell. That is, the SPS setting may be set not only for the primary cell but also for the primary secondary cell.
  • the SPS when only one SPS setting is set, the SPS may be applied only to the primary cell.
  • the same setting may be applied in the primary cell and the primary secondary cell.
  • the downlink SPS setting and / or the uplink SPS setting may be individually set for each of the primary cell and the primary secondary cell. That is, the downlink SPS setting and / or the uplink SPS setting may be common to the primary cell and the primary secondary cell, or may be set individually. Whether or not to perform SPS in the downlink and / or uplink separately in the primary cell and the primary secondary cell may be determined based on the function information transmitted from the terminal device 1.
  • the PDCCH transmitted in the primary / secondary cell may be scrambled using parameters common to a plurality of terminal apparatuses and / or parameters defined in advance.
  • a common parameter is not set by a plurality of terminal apparatuses, it is scrambled using a physical cell identifier.
  • the PDCCH transmitted in the primary / secondary cell may be cyclically shifted in units of REGs based on parameters common to a plurality of terminal devices and / or parameters defined in advance.
  • cyclic shift is performed based on the value of the physical cell identifier.
  • a search space different from USS and USS is arranged in the primary secondary cell.
  • a search space different from USS is a search space for monitoring a common area in a plurality of terminal devices.
  • the CSS arranged in the primary cell is also called a first CSS, and the search space different from the USS arranged in the primary secondary cell is also called a second CSS.
  • the second CSS is a search space set by using parameters common to a plurality of terminal devices and / or parameters defined in advance. Parameters common to a plurality of terminal devices are notified from an upper layer. As an example of parameters common to a plurality of terminal devices, parameters unique to the base station device 3 (cell, transmission point) are used. For example, a virtual cell identifier, TPID, or the like is used as a parameter specific to the transmission point. As an example of a parameter that is common to a plurality of terminal devices, a parameter that can be set individually for each terminal device, but a parameter that is set to a common value for a plurality of terminals. For example, RNTI or the like is used as a parameter for which a common value is set in a plurality of terminal devices.
  • the PDCCH may be arranged in the second CSS.
  • a CCE at which a search space is started is determined using a parameter common to a plurality of terminals and / or a parameter defined in advance.
  • a common RNTI eg, UE-group-RNTI, CSS-RNTI
  • the CCE at which the second CSS search space is started may be designated in common by the higher layer parameters.
  • Y k used in equation (1) in FIG. 14 is always a fixed value, and an upper layer parameter (for example, a parameter for designating a CCE index) is set. Yk may always be set to 0.
  • the aggregation level of the second CSS arranged in the PDCCH supports 4 and 8. Also, at aggregation level 4, four PDCCH candidates are defined, and at aggregation level 8, two PDCCH candidates are defined. Note that aggregation levels 1, 2, 16, and 32 may be supported. In this case, the blind decoding number is not increased in the second CSS by limiting the number of PDCCH candidates. For example, when 2, 4, and 8 are supported in the second CSS aggregation level, two PDCCH candidates are defined in each aggregation level.
  • the EPDCCH may be arranged in the second CSS.
  • the ECCE at which the search space is started is determined using a parameter common to a plurality of terminals and / or a parameter defined in advance.
  • an RNTI for example, UE-group-RNTI, CSS-RNTI
  • the ECCE at which the second CSS search space is started may be designated in common by the upper layer parameters.
  • Y p, k used in equation (2) in FIG. 14 is always a fixed value
  • an upper layer parameter for example, a parameter for specifying an ECCE index
  • an EPDCCH set arranged in the second CSS may be set.
  • EPDCCH set 0 may be arranged in the USS
  • EPDCCH set 1 may be arranged in the second CSS.
  • the inside of one EPDCCH set may be arrange
  • EPDCCH set 0 may be arranged in the USS and the second CSS.
  • the aggregation level of the second CSS in which the EPDCCH is arranged supports 4 and 8.
  • four EPDCCH candidates are defined in aggregation level 4
  • two EPDCCH candidates are defined in aggregation level 8.
  • aggregation levels 1, 2, 16, and 32 may be supported.
  • the blind decoding number is not increased in the second CSS by limiting the number of PDCCH candidates. For example, when 2, 4, and 8 are supported in the second CSS aggregation level, two PDCCH candidates are defined in each aggregation level.
  • the terminal device 1 monitors the PDCCH arranged in the second CSS using RNTI (SCE-RNTI) related to small cell on / off.
  • SCE-RNTI RNTI
  • DCI format 3B is used for transmission of TPC commands for PUCCH and PUSCH by 1-bit power adjustment.
  • the terminal device 1 can detect the value of the transmission power control command corresponding to the PUSCH or the PUCCH by detecting the bit information corresponding to the index (TPC-Index) assigned to the own station.
  • TPC-Index the index assigned to the own station.
  • the DCI format 3B is padded according to the payload size of the DCI format 1C.
  • stop state In the DCI format, only the stop state may be indicated. For example, “1” in one bit indicates stop, and “0” indicates the same state as the previous state. In this case, it is preferably used in combination with another method for instructing the activation state such as activation notification by MAC CE.
  • the DCI format including information indicating the start / stop state it is preferable not to specify the start / stop state across a plurality of cell groups.
  • the information indicating the start / stop state corresponding to the secondary cell belonging to the master cell group and the information indicating the start / stop state corresponding to the secondary cell belonging to the secondary cell group are one DCI format. Not included.
  • the information indicating the activation / deactivation state included in one DCI format corresponds only to the serving cell belonging to one cell group.
  • the DCI format including information indicating the start / stop state of the cells belonging to the master cell group is arranged in the first CSS of the primary cell. From the viewpoint of the processing burden of blind decoding, it is preferable that the DCI format including the information indicating the activation / deactivation state has the same number of bits as other DCI formats arranged in the first CSS. Specifically, in the DCI format including the information indicating the start / stop state, the bits are padded so that the payload size is the same as that of the DCI format 0 / 1A / 3 / 3A or the DCI format 1C. Located in CSS.
  • the terminal device 1 may be changed so as to be recognized as a stop state before being instructed by the next DCI format that indicates the start / stop state of the cell.
  • a timer small cell deactivation timer
  • the terminal device 1 is set to the stop state before receiving an instruction from the base station device 3. recognize.
  • the start / stop state instruction for each cell (adjacent cell, transmission point) having a different transmission point from that of the serving cell may be performed in the DCI format.
  • the serving cell and the cell having a different transmission point are preferably connected by a low-delay backhaul such as an optical fiber.
  • the on / off cell PDCCH setting may include an RNTI (eg, SCE-RNTI) indicating that the DCI format is a DCI format that indicates the activation / deactivation state of the small cell (serving cell).
  • the on / off cell PDCCH setting may include a list of small cell indexes indicating activation / deactivation states in the DCI format. The list may notify a specific small cell of the activation / deactivation state. For example, when a certain DCI format is composed of 15 bits, the terminal apparatus 1 does not check the activation / deactivation state for all bits, but activates only the bits corresponding to the index indicated by the list. You may check the status of / stop. All other bits may be recognized as being in a stopped state.
  • RNTI eg, SCE-RNTI
  • bits other than the bits necessary for the information indicating the start / stop state may be deleted. That is, the first DCI format size may be increased or decreased as necessary.
  • URS When PDCCH / EPDCCH and DS are transmitted in the same subframe, URS (or DMRS) may be transmitted in the same subframe in order to demodulate and decode PDCCH / EPDCCH.
  • terminal apparatus 1 may perform demodulation and decoding of PDCCH / EPDCCH using DS (one of a plurality of signals constituting DS). Good.
  • the terminal device 1 determines that the measurement result does not satisfy the threshold value a predetermined number of times in the DS measurement subframe for the certain cell. May be used to request resetting of the DS.
  • the ON / OFF cell may be the same as the small cell.
  • the ON / OFF cell being in the OFF state may be a state in which the terminal device 1 does not expect downlink transmission from the base station device 3. That is, at least one of PSS / SSS, CRS, CSI-RS, PBCH, PDCCH, EPDCCH, and PDSCH may not be transmitted.
  • PSS / SSS is not transmitted for one half frame or more (5 subframes or more).
  • the base station device 3 being in the OFF state is a state in which only the DS is being transmitted.
  • the ON / OFF cell is in the OFF state may be a state in which the terminal device 1 performs a process different from that of the conventional terminal device. It may be in a state where processing similar to that of the apparatus is possible.
  • the terminal device 1 may perform uplink transmission such as PUCCH and PUSCH in the ON / OFF cell. That is, the ON / OFF cell may perform reception processing even in the OFF state.
  • the terminal device 1 does not have to release (release or delete) information related to the ON / OFF cell.
  • the terminal device 1 holds information related to the ON / OFF cell, and stores information related to the ON / OFF cell when the ON / OFF cell is in the ON state. It may be used again.
  • the ON / OFF cell may be in the OFF state and the ON / OFF cell may be deactivated, and the deactivation of the ON / OFF cell is the same as the conventional deactivation (non-ON / OFF cell). Deactivation).
  • the ON / OFF cell is in the OFF state and the conventional deactivation may be executed simultaneously.
  • the terminal device 1 implicitly determines (assumes) the OFF state of the ON / OFF cell, and determines (assumes) the ON / OFF cell as the OFF state.
  • the terminal device 1 implicitly recognizes it as being in an OFF state (implicit deactivation), or shifts to an operation when communicating with an ON / OFF cell in an OFF state in an ON / OFF cell determined (assumed) as an OFF state. It is effective.
  • the operation when communicating with an ON / OFF cell in an OFF state may be an operation assuming that at least one of PSS / SSS, CRS, CSI-RS, PBCH, PDCCH, EPDCCH, and PDSCH is not transmitted.
  • the operation when communicating with an ON / OFF cell in an OFF state may be a state in which the terminal device 1 performs processing different from that of a conventional terminal device.
  • the operation in the case of communicating with the ON / OFF cell in the OFF state may be an operation in which the terminal device 1 performs only uplink transmission such as PUCCH and PUSCH.
  • the terminal device 1 may receive information related to indicating whether the cell set in the terminal device 1 is an ON / OFF cell from the base station device 3. That is, the base station device 3 may transmit information related to indicating whether the cell set in the terminal device 1 is an ON / OFF cell to the terminal device 1.
  • the terminal device 1 reports CQI (Channel Quality Indicator) / PMI (Precoding Matrix Indicator) / RI (Rank Indicator) / PTI (Precoding Type Indicator) for ON / OFF cells in which the ON state is set.
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RI Rank Indicator
  • PTI Precoding Type Indicator
  • the OFF state timer of the ON / OFF cell is notified until the OFF state timer related to the ON / OFF cell expires or by the base station device 3 Until it is done, information related to the calculation of CQI (Channel Quality Indicator) / PMI (Precoding Matrix Indicator) / RI (Rank Indicator) / PTI (Precoding Type Indicator) is measured in the ON / OFF cell in the OFF state.
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RI Rank Indicator
  • PTI Precoding Type Indicator
  • the terminal device 1 measures information related to the calculation of CQI (Channel QualityIndicator) / PMI (Precoding Matrix Indicator) / RI (Rank Indicator) / PTI (Precoding Type Indicator).
  • CQI Channel QualityIndicator
  • PMI Precoding Matrix Indicator
  • RI Rank Indicator
  • PTI Precoding Type Indicator
  • the ON / OFF cell may be recognized as an OFF state (ON / OFF of the OFF state in the ON / OFF cell) The operation may be shifted to communication with a cell).
  • the predetermined number of subframes and / or the predetermined number of times that the terminal device 1 determines the OFF state in the ON / OFF cell may be defined in advance or may be notified from the base station device 3.
  • the DS may not be transmitted in the ON / OFF cell that is in the OFF state.
  • the ON / OFF cell when the DS is not detected in the ON / OFF cell in which the ON state is set, or when the received power of the resource assuming that the DS is transmitted does not exceed the threshold, It is determined (assumed) that the DS is not transmitted, that is, the base station device 3 is in the OFF state, and the ON / OFF cell is recognized as the OFF state (the ON / OFF cell in the OFF state in the ON / OFF cell) Move to the operation when communicating with.)
  • the ON / OFF The cell may be recognized as being in an OFF state (the operation may be shifted to communication with an ON / OFF cell in the OFF state in the ON / OFF cell).
  • the case where the RS is not detected is a case where the average power of the RE to which the RS is mapped does not exceed the threshold value.
  • the RE for calculating the power may be averaged over a plurality of subframes.
  • the REs that calculate power may be averaged only in specific subframes.
  • the RE for calculating the power is averaged over some resource blocks of the system bandwidth and may not be averaged over some resource blocks.
  • the terminal device 1 does not include in the average of the power calculated for the RE in which no RS exists in a subframe in which some or all of the terminal devices 1 do not exist.
  • the predetermined number of subframes and / or the predetermined number of times that the terminal device 1 determines the OFF state in the ON / OFF cell may be defined in advance or may be notified from the base station device 3.
  • DS when DS is not detected, you may determine based on RSRP and / or RSRQ.
  • a DS pattern indicating an ON state and a DS pattern indicating an OFF state may be defined independently, and when a DS pattern indicating an OFF state is detected, the ON / OFF cell may be recognized as an OFF state (the ON state The operation may be shifted to communication with the ON / OFF cell in the OFF state in the / OFF cell). That is, the base station apparatus 3 may transmit DS using different DS patterns in the ON state and the OFF state.
  • CRS may not be transmitted in the ON / OFF cell that is in the OFF state.
  • the ON / OFF cell when the CRS is not detected in the ON / OFF cell in which the ON state is set, or when the reception power of the resource assuming that the CRS is transmitted does not exceed the threshold, CRS is not transmitted, that is, it is determined (assumed) that the base station apparatus 3 is in the OFF state, and the ON / OFF cell is recognized as the OFF state (the ON / OFF cell in the OFF state in the ON / OFF cell) Move to the operation when communicating with.)
  • the ON / OFF The cell may be recognized as being in an OFF state (the operation may be shifted to communication with an ON / OFF cell in the OFF state in the ON / OFF cell).
  • the predetermined number of subframes and / or the predetermined number of times that the terminal device 1 determines the OFF state in the ON / OFF cell may be defined in advance or may be notified from the base station device 3.
  • the predetermined threshold value may be defined in advance or may be notified from the base station device 3.
  • the CRS pattern indicating the ON state and the CRS pattern indicating the OFF state may be independently defined, and when the CRS pattern indicating the OFF state is detected, the ON / OFF cell may be recognized as the OFF state (the ON state The operation may be shifted to communication with the ON / OFF cell in the OFF state in the / OFF cell). That is, the base station apparatus 3 may transmit CRS using different CRS patterns in the ON state and the OFF state.
  • the terminal device 1 monitors the PDCCH / EPDCCH in the ON / OFF cell in which the ON state is set.
  • the terminal apparatus 1 determines (assumes) that the base station apparatus 3 is in the OFF state when PDCCH / EPDCCH is not continuously detected for a predetermined number of subframes or more in the ON / OFF cell in which the ON state is set,
  • the ON / OFF cell is recognized as being in an OFF state (the operation is shifted to the ON / OFF cell when communicating with the ON / OFF cell in the OFF state).
  • the base station device 3 determines (assumed) that the cell is in the OFF state, and the ON / OFF cell is recognized as being in the OFF state (the operation shifts to the ON / OFF cell when communicating with the ON / OFF cell in the OFF state). That is, the base station device 3 does not arrange the PDCCH / EPDCCH in the search space based on the CIF value related to the ON / OFF cell in which the OFF state is set.
  • the predetermined number of subframes for determining the OFF state in the ON / OFF cell by the terminal device 1 may be defined in advance or may be notified from the base station device 3.
  • cyclic redundancy check CRC: “Cyclic Redundancy Check”
  • the predetermined threshold value may be defined in advance or may be notified from the base station device 3.
  • the terminal device 1 has a downlink grant (downlink grant) for the ON / OFF cell in which the ON state is set or an uplink grant for the ON / OFF cell in which the ON state is set. If PDCCH / EPDCCH indicating (uplink grant) is not continuously detected for a predetermined number of subframes or more, it is determined (assumed) that the base station device 3 is in the OFF state, and the ON / OFF cell is recognized as being in the OFF state ( The operation proceeds to the case of communicating with the ON / OFF cell in the OFF state in the ON / OFF cell).
  • the predetermined number of subframes for determining the OFF state in the ON / OFF cell by the terminal device 1 may be defined in advance or may be notified from the base station device 3.
  • the terminal device 1 is a downlink grant for the ON / OFF cell in which the ON state is set or the ON / OFF cell in which the ON state is set. If the PDCCH / EPDCCH indicating the uplink grant (uplink grant) is not continuously detected for a predetermined number of subframes or more, it is determined (assumed) that the base station apparatus 3 is in the OFF state, and the ON / OFF cell is in the OFF state. (Transition to the operation in the case of communicating with the ON / OFF cell in the OFF state in the ON / OFF cell).
  • the terminal device 1 is a search space based on the CIF value related to the ON / OFF cell in which the ON state is set, and the downlink grant (downlink grant) or the ON state for the ON / OFF cell in which the ON state is set.
  • the base station apparatus 3 is in an OFF state when PDCCH / EPDCCH indicating an uplink grant for an ON / OFF cell for which is set is not detected continuously for a predetermined number of subframes or more,
  • the ON / OFF cell is recognized as being in an OFF state (the operation is shifted to the ON / OFF cell when communicating with the ON / OFF cell in the OFF state).
  • the base station apparatus 3 is a search space based on the CIF value related to the ON / OFF cell in which the OFF state is set, and the downlink grant (downlink grant) or ON for the ON / OFF cell in which the ON state is set.
  • a PDCCH / EPDCCH indicating an uplink grant for an ON / OFF cell in which the state is set is not arranged.
  • the predetermined number of subframes for determining the OFF state in the ON / OFF cell by the terminal device 1 may be defined in advance or may be notified from the base station device 3.
  • the terminal device 1 determines (assumes) that the base station device 3 is in the OFF state when discontinuous reception (DRX: “Discontinuous” Reception) is set for the ON / OFF cell in which the ON state is set.
  • DRX discontinuous reception
  • the / OFF cell is recognized as being in the OFF state (the operation shifts to the ON / OFF cell when communicating with the ON / OFF cell in the OFF state).
  • the terminal device 1 determines (assumes) that the base station device 3 is in the ON state, and preferably does not recognize the ON / OFF cell as the OFF state (the ON It is preferable not to shift to the operation when communicating with the ON / OFF cell in the OFF state in the / OFF cell).
  • discontinuous reception (DRX: “Discontinuous” Reception) for ON / OFF cells may be set independently for each ON / OFF cell.
  • a timer related to the duration of intermittent reception (DRX: “Discontinuous” Reception) for an ON / OFF cell may be set in units of subframes.
  • the PHICH is not transmitted in the ON / OFF cell that is in the OFF state (HARQ indicator indicating ACK (ACKnowledgement) or NACK (Negative ACKnowledgement) for uplink data (Uplink Shared Channel: UL-SCH) transmitted by the terminal device 1. (HARQ feedback, response information) may not be transmitted).
  • the terminal device 1 does not detect PHICH in the ON / OFF cell in which the ON state is set (ACK (ACKnowledgement) or NACK (Negative ACKnowledgement) for uplink data (Uplink Shared Channel: UL-SCH) transmitted by the terminal device 1) Is determined (assumed) that the base station apparatus 3 is in the OFF state, and the ON / OFF cell is recognized as the OFF state (the ON / OFF cell). The operation shifts to the case of communication with the ON / OFF cell in the OFF state in FIG.
  • the ON / OFF The cell may be recognized as being in an OFF state (the operation may be shifted to communication with an ON / OFF cell in the OFF state in the ON / OFF cell).
  • the predetermined number of subframes and / or the predetermined number of times that the terminal device 1 determines the OFF state in the ON / OFF cell may be defined in advance or may be notified from the base station device 3.
  • PHICH when PHICH is not detected, you may determine by comparing the average received power of a sub-frame, or the received power of the resource assumed that PHICH is transmitted with a predetermined threshold value.
  • the predetermined threshold value may be defined in advance or may be notified from the base station device 3.
  • the above example of the implicit OFF state of the ON / OFF cell is not limited to being executed separately, and two or more may be executed at the same time. It may be executed at the same time as the activation.
  • the OFF state of the ON / OFF cell determined (assumed) that is in the OFF state is the wireless that is determined (assumed) as being in the OFF state. It may be applied from a frame and / or subframe, or may be applied after a predetermined number of radio frames / or a predetermined number of subframes from a radio frame and / or subframe determined (assumed) to be in an OFF state. Good.
  • the number of subframes may be defined in advance or may be notified from the base station apparatus 3.
  • the ON state of the base station device 3 is a state in which the terminal device 1 can perform the same processing as a conventional terminal device.
  • a specific example of the base station device 3 in the ON state is as follows.
  • the terminal device 1 expects to receive PSS, SSS, and PBCH.
  • the terminal device 1 monitors PDCCH and / or EPDCCH in a predetermined subframe.
  • the terminal device 1 performs CSI reporting based on the set CSI reporting mode.
  • the terminal apparatus 1 expects a reference signal (for example, CRS or CSI-RS) for CSI reporting and a CSI reference resource to exist.
  • a reference signal for example, CRS or CSI-RS
  • the terminal device 1 may use again the information related to the ON / OFF cell that was held in the OFF state.
  • the ON / OFF cell is turned on and the ON / OFF cell is activated, and the activation of the ON / OFF cell is the same as the conventional activation (non-ON / OFF cell). Activation).
  • the ON / OFF cell is in the ON state and the conventional activation may be executed simultaneously.
  • the base station device 3 performs L1 signaling (DCI format) or L2 signaling (MAC CE ) To notify the terminal device 1 of the ON / OFF cell ON state, the overhead of the control information increases.
  • L1 signaling DCI format
  • L2 signaling MAC CE
  • the terminal apparatus 1 implicitly determines (assumes) the ON state of the ON / OFF cell, and the ON / OFF cell that is determined (assumed) as the ON state. It is effective that the terminal device 1 implicitly turns on (implicit activation) or shifts to an operation when communicating with an ON / OFF cell in the ON state.
  • the operation when communicating with the ON / OFF cell in the ON state is an operation in which the terminal device 1 uses again the information related to the ON / OFF cell that the ON / OFF cell has held in the OFF state. May be.
  • the operation in the case of communicating with the ON / OFF cell in the ON state may be an operation in which the terminal device 1 can perform the same processing as the conventional terminal device.
  • the terminal device 1 may receive information related to indicating whether the cell set in the terminal device 1 is an ON / OFF cell from the base station device 3. That is, the base station device 3 may transmit information related to indicating whether the cell set in the terminal device 1 is an ON / OFF cell to the terminal device 1.
  • the DS may not be transmitted in the ON / OFF cell that is in the OFF state, that is, the DS may be transmitted only when the ON / OFF cell is in the ON state.
  • the terminal device 1 is the ON / OFF cell.
  • DS is transmitted, that is, it is determined (assumed) that the base station device 3 is in the ON state, and the ON / OFF cell is recognized as the ON state (ON / OFF of the ON state in the ON / OFF cell) Move to operation when communicating with a cell).
  • DS when DS is detected, it may be determined based on RSRP and / or RSRQ.
  • the determination may be made by comparing the average received power of a subframe or the received power of a resource assuming that the DS is transmitted with a predetermined threshold.
  • the predetermined threshold value may be defined in advance or may be notified from the base station device 3.
  • a DS pattern indicating an ON state and a DS pattern indicating an OFF state may be defined independently, and when a DS pattern indicating an ON state is detected, the ON / OFF cell may be recognized as an ON state (the ON state The operation may be shifted to the case of communicating with the ON / OFF cell in the ON state in the / OFF cell). That is, the base station apparatus 3 may transmit DS using different DS patterns in the ON state and the OFF state.
  • the DS may not be transmitted, that is, the DS may be transmitted only when the ON / OFF cell is in the OFF state.
  • the ON / OFF cell when the DS is not detected in the ON / OFF cell in which the OFF state is set, or when the received power of the resource assuming that the DS is transmitted does not exceed the threshold, It is determined (assumed) that the DS is not transmitted, that is, the base station apparatus 3 is in the ON state, and the ON / OFF cell is recognized as the ON state (ON / OFF cell in the ON state in the ON / OFF cell) Move to the operation when communicating with.)
  • DS when DS is not detected, you may determine based on RSRP and / or RSRQ.
  • DS when DS is not detected, you may determine by comparing the average received power of a sub-frame, or the received power of the resource assumed that DS is transmitted with a predetermined threshold value.
  • the predetermined threshold value may be defined in advance or may be notified from the base station device 3.
  • the CRS may not be transmitted, that is, the CRS may be transmitted only when the ON / OFF cell is in the ON state.
  • the terminal device 1 is the ON / OFF cell. Is determined (assumed) that the base station apparatus 3 is in the ON state, and the ON / OFF cell is recognized as the ON state (ON / OFF of the ON state in the ON / OFF cell) Move to operation when communicating with a cell).
  • CRS when CRS is detected, it may be determined based on RSRP and / or RSRQ.
  • the predetermined threshold value may be defined in advance or may be notified from the base station device 3.
  • the CRS pattern indicating the ON state and the CRS pattern indicating the OFF state may be independently defined, and when the CRS pattern indicating the ON state is detected, the ON / OFF cell may be recognized as the ON state (the ON state The operation may be shifted to the case of communicating with the ON / OFF cell in the ON state in the / OFF cell). That is, the base station apparatus 3 may transmit CRS using different CRS patterns in the ON state and the OFF state.
  • the terminal device 1 is a downlink grant for the ON / OFF cell in which the OFF state is set or the ON / OFF cell in which the OFF state is set.
  • the PDCCH / EPDCCH indicating the uplink grant (uplink grant) is detected, it is determined (assumed) that the base station device 3 is in the ON state, and the ON / OFF cell is recognized as the ON state (the ON / OFF The operation proceeds to the operation when communicating with the ON / OFF cell in the ON state in the OFF cell).
  • the downlink grant (downlink grant) for the ON / OFF cell in which the OFF state is set or the uplink for the ON / OFF cell in which the OFF state is set It is preferable that the PDCCH / EPDCCH indicating the grant (uplink grant) is not arranged in the search space based on the carrier indicator field (CIF, Carrier Indicator Field) related to the ON / OFF cell in which the OFF state is set (the ON state is It is preferably arranged in a search space based on a carrier indicator field (CIF, Carrier Indicator Field) associated with the set cell).
  • the carrier indicator field CIF, Carrier Indicator Field
  • the downlink grant (downlink grant) for the ON / OFF cell in which the OFF state is set or the uplink for the ON / OFF cell in which the OFF state is set is set.
  • the PDCCH / EPDCCH indicating a grant is preferably CRC masked with an RNTI related to an ON / OFF cell in which an OFF state is set.
  • the downlink grant (downlink grant) for the ON / OFF cell in which the OFF state is set or the uplink for the ON / OFF cell in which the OFF state is set is preferably a payload size including bit information related to a carrier indicator field (CIF) related to an ON / OFF cell in which an OFF state is set.
  • CIF carrier indicator field
  • the terminal device 1 determines (assumes) that the base station device 3 is in the ON state when a timer related to discontinuous reception (DRX: “Discontinuous” Reception) for the ON / OFF cell in which the OFF state is set expires,
  • DRX discontinuous
  • the ON / OFF cell is recognized as being in the ON state (the operation is shifted to the ON / OFF cell when communicating with the ON / OFF cell in the ON state).
  • discontinuous reception (DRX: “Discontinuous” Reception) for ON / OFF cells may be set independently for each ON / OFF cell.
  • a timer related to the duration of intermittent reception (DRX: “Discontinuous” Reception) for an ON / OFF cell may be set in units of subframes.
  • the terminal device 1 determines (assumes) that the base station device 3 is in the ON state, and turns on the ON / OFF cell. It recognizes as a state (it moves to the operation
  • the short DRX for the ON / OFF cell may be set independently for each ON / OFF cell.
  • timer related to the duration of the short DRX for the ON / OFF cell may be set in units of subframes.
  • the example of the implicit ON state of the ON / OFF cell is not limited to being executed separately, and two or more may be executed at the same time. It may be executed at the same time as the activation.
  • the ON state of the ON / OFF cell determined (assumed) that is in the ON state is the wireless that is determined (assumed) as being in the ON state. It may be applied from a frame and / or subframe, or may be applied after a predetermined number of radio frames / or a predetermined number of subframes from a radio frame and / or subframe determined (assumed to be in an ON state) Good.
  • the predetermined number of radio frames until the ON state of the ON / OFF cell determined to be in the ON state (assumed) (transition to the operation when communicating with the ON / OFF cell in the ON state) is applied.
  • the number of subframes may be defined in advance or may be notified from the base station apparatus 3.
  • the implicit ON state and / or the implicit OFF state of the ON / OFF cell may be executed when the terminal device 1 has a predetermined function (capability, UEabilityCapability).
  • the implicit ON state and / or the implicit OFF state of the ON / OFF cell may be executed when the terminal device 1 is in a predetermined mode.
  • the Implicit / Explicit activation mode is defined
  • the implicit ON state and / or the implicit OFF state of the ON / OFF cell may be executed when the terminal device 1 is the Implicit mode.
  • the switching of the Implicit / Explicit activation mode is preferably notified using the R field reserved in the MAC CE, and when the R field is set to “0”, the explicit activation mode is indicated, and the R field is When set to “1”, it is preferable to indicate the Implicit activation mode.
  • the terminal device 1 When receiving the ON state instruction of the ON / OFF cell, the terminal device 1 starts or restarts the OFF state timer related to the ON / OFF cell.
  • the terminal device 1 When the PDCCH in the ON / OFF cell does not indicate a downlink grant (uplink grant) or an uplink grant (uplink grant), or the PDCCH in the serving cell that schedules the ON / OFF cell is a downlink grant for the ON / OFF cell (Downlink grant) or the uplink grant for the ON / OFF cell (uplink grant) is not indicated, or if there is no PDCCH instruction for the ON / OFF cell, the terminal device 1 is turned OFF related to the ON / OFF cell.
  • Count up the state timer (advance by 1 and add 1). When the OFF state timer is in units of radio frames, the count is incremented when there is no PDCCH instruction in all predetermined radio frames. When the OFF state timer is a unit of a plurality of subframes, it is counted up when there is no PDCCH instruction in all of the plurality of subframes.
  • the OFF state timer may be counted up only in a specific subframe. In other words, the OFF state timer is not counted up except for a specific subframe. For example, in the uplink subframe, the OFF state timer is not counted up even if the above condition is satisfied. For example, in the MBSFN subframe, the OFF state timer is not counted up even if the above condition is satisfied. For example, in the subframe indicated by the higher layer, the OFF state timer is not counted up even if the above condition is satisfied.
  • the terminal device 1 When the OFF state timer associated with the ON / OFF cell expires, the terminal device 1 recognizes the ON / OFF cell as the OFF state.
  • the terminal device 1 When the PDCCH in the ON / OFF cell indicates a downlink grant (downlink grant) or an uplink grant (uplink grant), or the PDCCH in the serving cell that schedules the ON / OFF cell is a downlink grant ( In the case of indicating a downlink grant or an uplink grant for an ON / OFF cell, the terminal device 1 starts or restarts an OFF state timer related to the ON / OFF cell.
  • the terminal device 1 When receiving an OFF state instruction of an ON / OFF cell, or when an OFF state timer associated with the ON / OFF cell expires, the terminal device 1 displays an OFF state timer related to the ON / OFF cell. Stop.
  • the OFF state timer of the ON / OFF cell may be the same as the deactivation timer (timer related to the cell maintenance time). That is, the ON / OFF cell OFF state timer may be a timer related to the ON / OFF cell maintenance time.
  • the ON / OFF cell When suppressing inter-cell interference using an ON / OFF cell, the ON / OFF cell is dynamically switched between the ON state and the OFF state according to the position of the terminal device 1 and the traffic volume. And the adaptability to the position and traffic volume of the terminal device 1 becomes higher as the switching between the ON state and the OFF state of the ON / OFF cell becomes faster.
  • the ON / OFF cell and / or the non-ON / OFF cell may be set as the primary cell, may be set as the secondary cell, or has a special function (for example, the function of the primary cell) in the secondary cell. ) May be set to a secondary cell (primary secondary cell, special cell).
  • the ON state may be always set for the ON / OFF cell and / or the non-ON / OFF cell.
  • the ON / OFF cell and the non-ON / OFF cell are maintained independently in the terminal device 1. That is, it is preferable that the initial value of the OFF state timer related to the ON / OFF cell and the initial value of the deactivation timer related to the non-ON / OFF cell are set independently.
  • the initial value of the OFF state timer related to the ON / OFF cell is set from the upper layer (RRC layer) using the parameter sCellDeactivationTimer-r12, and the initial value of the deactivation timer related to the non-ON / OFF cell is set to the upper layer (RRC). Layer) to parameter sCellDeactivationTimer-r10.
  • the initial value of the OFF state timer related to the ON / OFF cell and the initial value of the deactivation timer related to the non-ON / OFF cell may be set using two or more of the same parameters.
  • the initial value of the OFF state timer related to the ON / OFF cell and the initial value of the deactivation timer related to the non-ON / OFF cell may be set using two or more parameters sCellDeactivationTimer-r10.
  • the parameter sCellDeactivationTimer-r10 related to the initial value of the deactivation timer related to the non-ON / OFF cell is replaced with the initial value of the OFF state timer related to the ON / OFF cell, and the OFF state timer related to the ON / OFF cell
  • An initial value may be set. For example, when rf2, which is a value related to the number of radio frames, is set in the parameter sCellDeactivationTimer-r10, the initial value of the OFF state timer related to the ON / OFF cell may be set as rf1.
  • the parameter sCellDeactivationTimer-r10 related to the initial value of the deactivation timer related to the non-ON / OFF cell may be set as the initial value of the OFF state timer related to the ON / OFF cell.
  • rf2, rf4, rf8, rf16, rf32, rf64, and rf128, which are values related to the number of radio frames, is preferably set in the parameter sCellDeactivationTimer-r12 and the parameter sCellDeactivationTimer-r10.
  • rf2 corresponds to 2 radio frames
  • rf4 corresponds to 4 radio frames
  • rf8 corresponds to 8 radio frames
  • rf16 corresponds to 16 radio frames
  • rf32 corresponds to 32 radio frames.
  • rf64 corresponds to 64 radio frames
  • rf128 corresponds to 128 radio frames.
  • the value related to the number of radio frames set in the parameter sCellDeactivationTimer-r12 and the parameter sCellDeactivationTimer-r10 may be selected from different values.
  • at least one of rf2, rf4, rf8, rf16, rf32, rf64, and rf128, which are values related to the number of radio frames, is set in the parameter sCellDeactivationTimer-r10, and the parameter sCellDeactivationTimer-r12 is set in the radio frame
  • rf1, rf2, rf4, rf8, rf16, rf32, and rf64 which is a value related to the number of.
  • rf1 corresponds to 1 radio frame
  • rf2 corresponds to 2 radio frames
  • rf4 corresponds to 4 radio frames
  • rf8 corresponds to 8 radio frames
  • rf16 corresponds to 16 radio frames.
  • rf32 corresponds to 32 radio frames
  • rf64 corresponds to 64 radio frames
  • rf128 corresponds to 128 radio frames.
  • the value set in the parameter sCellDeactivationTimer-r12 and / or the parameter sCellDeactivationTimer-r10 may be selected from values related to the number of subframes.
  • the initial value of the OFF state timer may be applied from a radio frame and / or subframe that has received the setting, or a predetermined number of radio frames / or a predetermined number from the radio frame and / or subframe that has received the setting. It may be applied after the number of subframes.
  • the initial value of the second OFF state timer is set for the terminal device 1 for which the initial value of the first OFF state timer is set. It may be applied from the received radio frame and / or subframe, or the setting of the initial value of the second OFF state timer is set to a predetermined number of radio frames / or a predetermined subframe from the received radio frame and / or subframe. It may be applied several times later, or the initial value of the second OFF state timer may be ignored.
  • the predetermined number of radio frames / or the predetermined number of subframes to which the initial value of the OFF state timer is applied may be defined in advance or may be notified from the base station apparatus 3.
  • the initial value of the OFF state timer related to the ON / OFF cell may be set using the upper layer (RRC layer).
  • L1 signaling for example, DCI format
  • the initial value of the OFF state timer related to the ON / OFF cell is set using L1 signaling (eg, DCI format)
  • the initial value of the deactivation timer related to the non-ON / OFF cell is set to the upper layer (RRC layer). ) May be used.
  • the initial value of the OFF state timer related to the ON / OFF cell is set to a common value for the set ON / OFF cells.
  • individual values may be set for each of a plurality of set ON / OFF cells, or a plurality of set ON / OFF cells may be grouped to be a common value for the group. May be set.
  • the CSI is configured by CQI (Channel quality indicator), PMI (Precoding matrix indicator), PTI (Precoding type indicator) and / or RI (Rank indicator). RI indicates the number of transmission layers (number of ranks).
  • PMI is information indicating a precoding matrix defined in advance.
  • the PMI indicates one precoding matrix by one piece of information or two pieces of information.
  • the PMI in the case of using two pieces of information is also referred to as a first PMI and a second PMI.
  • CQI is information indicating a combination of a modulation scheme and a coding rate defined in advance.
  • the recommended CSI is reported to the base station apparatus 3.
  • the terminal device 2 reports a CQI that satisfies a predetermined reception quality for each transport block (codeword).
  • Subframes (reporting instances) capable of periodic CSI reporting are determined by the reporting period and subframe offset based on information (CQIPMI index, RI index) set in an upper layer.
  • information set in the upper layer can be set for each subframe set set for measuring CSI.
  • the information may be regarded as common between the subframe sets.
  • one P-CSI report for each serving cell is set by higher layer signaling.
  • one or more P-CSI reports for each serving cell are set by higher layer signaling.
  • the CQI report in a subframe of a serving cell indicates the channel quality in a specific part (part) of the serving cell bandwidth indicated as the bandwidth part. It is a report.
  • the CSI report type supports the PUCCH CSI report mode.
  • the CSI report type may be referred to as PUCCH reporting type (PUCCH reporting type).
  • Type 1 reporting supports CQI feedback for terminal selection subbands.
  • Type 1a reporting supports subband CQI and a second PMI feed bank.
  • Type 2, type 2b, and type 2c reports support wideband CQI and PMI feedback.
  • Type 2a reports support wideband PMI feedbanks.
  • Type 3 reports support RI feedback.
  • Type 4 reports support wideband CQI.
  • Type 5 support RI and wideband PMI feedback.
  • Type 6 reports support RI and PTI feedback.
  • the terminal device 1 is set with information related to CSI measurement and CSI reporting from the base station device 3.
  • CSI measurements are made based on reference signals and / or reference resources (eg, CRS, CSI-RS, CSI-IM resources, and / or DS).
  • the reference signal used for CSI measurement is determined based on transmission mode settings and the like.
  • CSI measurement is performed based on channel measurement and interference measurement. For example, channel measurement measures the power of a desired cell. Interference measurement measures power other than the desired cell and noise power.
  • the terminal device 1 performs channel measurement and interference measurement based on CRS. As another example, the terminal device 1 performs channel measurement based on CSI-RS, and performs interference measurement based on CRS. As another example, the terminal device 1 performs channel measurement based on CSI-RS, and performs interference measurement based on CSI-IM resources. As another example, the terminal device 1 performs channel measurement and interference measurement based on DS.
  • the terminal device 1 can perform CSI measurement in consideration of the ON state and the OFF state of the base station device 3. For example, the terminal device 1 can consider the ON state and the OFF state of the base station device 3 with respect to the reference signal and / or reference resource for performing CSI measurement.
  • the reference signal in CSI measurement includes a reference resource.
  • a reference signal for interference measurement can be read as a resource referred to for interference measurement. That is, the signal for interference measurement does not have to be mapped. Therefore, whether the resource for interference measurement is valid or invalid can be determined according to the ON state and the OFF state of the base station apparatus 3.
  • the terminal device 1 transmits a reference signal for channel measurement only when the base station device 3 is ON, and transmits a reference signal for interference measurement only when the base station device 3 is ON. Assume that That is, the terminal device 1 transmits the reference signal for channel measurement in the subframe in the ON state of the base station device 3, and does not transmit the reference signal for channel measurement in the subframe in the OFF state of the base station device 3.
  • the terminal device 1 transmits a reference signal for interference measurement in a subframe in the ON state of the base station device 3, and does not transmit a reference signal for interference measurement in a subframe in the OFF state of the base station device 3.
  • a reference signal for interference measurement in a subframe in the ON state of the base station device 3 and does not transmit a reference signal for interference measurement in a subframe in the OFF state of the base station device 3.
  • the terminal device 1 performs channel measurement based on the reference signal transmitted in a predetermined subframe among the subframes in which the base station device 3 is in the ON state, and among the subframes in which the base station device 3 is in the ON state. Interference measurement is performed based on a reference signal transmitted in a predetermined subframe. Thereby, the base station apparatus 3 can stop the reference signal for CSI measurement in the terminal device 1 in the OFF state.
  • the terminal device 1 transmits a reference signal for channel measurement only when the base station device 3 is in an ON state, and the reference signal for interference measurement is an ON state of the base station device 3 and Assume that it is transmitted in the OFF state. That is, the terminal device 1 transmits the reference signal for channel measurement in the subframe in the ON state of the base station device 3, and does not transmit the reference signal for channel measurement in the subframe in the OFF state of the base station device 3.
  • the terminal apparatus 1 assumes that the reference signal for interference measurement is transmitted in the ON frame and the OFF state subframe of the base station apparatus 3.
  • the terminal device 1 performs channel measurement based on the reference signal transmitted in a predetermined subframe among the subframes in which the base station device 3 is in the ON state, and the base station device 3 is in the ON state and the OFF state. Interference measurement is performed based on a reference signal transmitted in a predetermined subframe of the frame. Thereby, the base station apparatus 3 can stop the reference signal for channel measurement in the terminal device 1 in the OFF state. Further, since the terminal device 1 can perform interference measurement regardless of whether the base station device 3 is in the ON state or the OFF state, when the terminal device 1 performs processing such as averaging in the time direction in interference measurement, the accuracy of the processing Can be improved.
  • the terminal device 1 transmits a reference signal for channel measurement when the base station device 3 is in an ON state and an OFF state, and a reference signal for interference measurement is the ON signal of the base station device 3. Assume that it is sent only in the state. That is, terminal apparatus 1 assumes that a reference signal for channel measurement is transmitted in subframes of base station apparatus 3 in the ON state and the OFF state. The terminal device 1 transmits a reference signal for interference measurement in a subframe in the ON state of the base station device 3, and does not transmit a reference signal for interference measurement in a subframe in the OFF state of the base station device 3. Suppose.
  • the terminal device 1 performs channel measurement based on the reference signal transmitted in a predetermined subframe among the subframes in which the base station device 3 is in the ON state and the OFF state, and the substation in which the base station device 3 is in the ON state. Interference measurement is performed based on a reference signal transmitted in a predetermined subframe of the frame. Thereby, the base station apparatus 3 can stop the reference signal for the interference measurement in the terminal device 1 in the OFF state. Further, since the terminal device 1 can perform channel measurement regardless of whether the base station device 3 is in the ON state or the OFF state, when the terminal device 1 performs processing such as averaging in the time direction in channel measurement, the accuracy of the processing Can be improved.
  • the terminal device 1 transmits a reference signal for channel measurement when the base station device 3 is in an ON state and an OFF state, and a reference signal for interference measurement is the ON signal of the base station device 3.
  • a reference signal for interference measurement is the ON signal of the base station device 3.
  • terminal apparatus 1 assumes that a reference signal for channel measurement is transmitted in subframes of base station apparatus 3 in the ON state and the OFF state.
  • the terminal apparatus 1 assumes that the reference signal for interference measurement is transmitted in the ON frame and the OFF state subframe of the base station apparatus 3.
  • the terminal device 1 performs channel measurement based on the reference signal transmitted in a predetermined subframe among the subframes in which the base station device 3 is in the ON state and the OFF state, and the base station device 3 is in the ON state and the OFF state. Interference measurement is performed based on a reference signal transmitted in a predetermined subframe among subframes in a state. Thereby, the base station apparatus 3 can perform CSI measurement in the terminal apparatus 1 even when transmission of signals and channels other than the reference is stopped in the OFF state. Further, since the terminal device 1 can perform CSI measurement regardless of whether the base station device 3 is in the ON state or the OFF state, when the terminal device 1 performs processing such as averaging in the time direction in interference measurement, the accuracy of the processing Can be improved.
  • the terminal device 1 performs channel measurement for calculating the CQI value.
  • the CQI value is reported in a given subframe and corresponds to a CSI process.
  • the channel measurement is based only on non-zero power CSI-RS in the configuration of CSI-RS resources associated with the CSI process. If, in the CSI process, the RRC parameter related to the ON state and the OFF state is set by the upper layer for the terminal device 1 set to the predetermined transmission mode, the CSI-RS within the ON state subframe is set. Resources are used to make that channel measurement.
  • the terminal device 1 performs channel measurement for calculating the CQI value.
  • the CQI value is reported in a given subframe and corresponds to a CSI process.
  • the channel measurement is based only on non-zero power CSI-RS in the configuration of CSI-RS resources associated with the CSI process. If, in the CSI process, RRC parameters related to the ON state and the OFF state are set by the upper layer for the terminal device 1 set to the predetermined transmission mode, the sub-frame within the ON state and the OFF state CSI-RS resources are used to make that channel measurement.
  • the terminal device 1 performs interference measurement for calculating the CQI value.
  • the CQI value is reported in a given subframe and corresponds to a CSI process.
  • the interference measurement is based only on the zero power CSI-RS in the configuration of the CSI-IM resource associated with the CSI process. If, in the CSI process, a CSI subframe set is set by an upper layer for the terminal device 1 set in the predetermined transmission mode, a CSI-IM within a subset of subframes belonging to the CSI reference resource Resources are used to make that interference measurement.
  • the CSI-RS within the ON state subframe is set. Resources are used to make that interference measurement.
  • the terminal device 1 performs interference measurement for calculating the CQI value.
  • the CQI value is reported in a given subframe and corresponds to a CSI process.
  • the interference measurement is based only on the zero power CSI-RS in the configuration of the CSI-IM resource associated with the CSI process. If, in the CSI process, a CSI subframe set is set by an upper layer for the terminal device 1 set in the predetermined transmission mode, a CSI-IM within a subset of subframes belonging to the CSI reference resource Resources are used to make that interference measurement.
  • the sub-frame within the ON state and the OFF state CSI-RS resources are used to make the interference measurements.
  • RRC parameters related to the ON state and the OFF state are set in the upper layer.
  • the setting of the RRC parameter regarding the ON state and the OFF state is also referred to as setting for cell state information.
  • the setting for cell state information is used for cell state information that is explicitly or implicitly notified in the physical layer.
  • the configuration for cell state information includes information necessary for receiving cell state information that is explicitly or implicitly notified in the physical layer.
  • the settings for cell state information can be set individually for each CSI process.
  • the setting for cell state information can be individually set for each CSI subframe set.
  • the CSI process is set as information unique to the terminal device 1 in the upper layer.
  • the terminal device 1 is set with one or more CSI processes, and performs CSI measurement and CSI reporting based on the settings of the CSI processes. For example, when a plurality of CSI processes are set, the terminal device 1 independently reports a plurality of CSIs based on those CSI processes.
  • Each CSI process is configured for cell state information, CSI process identifier, CSI-RS configuration information, CSI-IM configuration information, subframe pattern configured for CSI report, and periodic CSI report. And / or configuration information regarding aperiodic CSI reporting. Note that the settings for cell state information may be common to multiple CSI processes.
  • the CSI reference resource is a resource used for the terminal device 1 to perform CSI measurement. For example, the terminal device 1 measures the CSI when the PDSCH is transmitted using the group of downlink physical resource blocks indicated by the CSI reference resource.
  • the CSI subframe set is configured in an upper layer, each CSI reference resource belongs to one of the CSI subframe sets and does not belong to both of the CSI subframe sets.
  • a CSI reference resource is defined by a group of downlink physical resource blocks corresponding to a band related to a required CQI value.
  • the CSI reference resource is defined by RI and PMI on which the required CQI is conditional.
  • the CSI reference resource is defined by the RI and PMI assumed or generated when obtaining the CQI.
  • the CSI reference resource is defined by one predetermined downlink subframe.
  • the CSI reference resource is defined by a subframe that is a predetermined number of subframes before the subframe that reports CSI.
  • the predetermined number of subframes defining the CSI reference resource is determined based on the transmission mode, the frame configuration type, the number of CSI processes to be configured, and / or the CSI reporting mode. For example, when one CSI process and a periodic CSI report mode are set for the terminal device 1, the predetermined number of subframes defining the CSI reference resource is 4 out of valid downlink subframes. This is the minimum value.
  • a downlink subframe in a certain serving cell is considered to be effective when some or all of the following conditions apply.
  • an effective downlink subframe is an ON state subframe in the terminal device 1 in which RRC parameters related to the ON state and the OFF state are set.
  • a valid downlink subframe is set as a downlink subframe in the terminal device 1.
  • a valid downlink subframe is not an MBSFN (Multimedia Broadcast multicast service Single Frequency Network) subframe in a predetermined transmission mode.
  • a valid downlink subframe is not included in the range of the measurement interval (measurement) gap) set in the terminal device 1.
  • the effective downlink subframe is an element of the CSI subframe set linked to the periodic CSI report when the CSI subframe set is set in the terminal device 1 in the periodic CSI report. Or part.
  • a valid downlink subframe is a CSI subframe set linked to a downlink subframe with a corresponding CSI request in the uplink DCI format in an aperiodic CSI report for the CSI process. It is an element or part. Under the conditions, a predetermined transmission mode, a plurality of CSI processes, and a CSI subframe set for the CSI process are set in the terminal device 1.
  • the terminal apparatus 1 assumes that a subframe in an OFF state is not a valid downlink subframe.
  • the terminal device 1 assumes that all subframes including the previous ON state subframe are not valid downlink subframes. Also good. That is, when the base station apparatus 3 (serving cell) is in the OFF state, the terminal apparatus 1 determines that the effective downlink subframe is a predetermined subframe after the subframe in which the ON state is notified or the ON state is notified thereafter. Are assumed to be subframes of
  • the terminal device 1 may use a condition for being a valid downlink subframe. That is, the terminal device 1 may determine whether or not it is a valid downlink subframe regardless of the subframe in the ON state or the OFF state.
  • the terminal device 1 may use conditions for the subframes in the ON state and some subframes in the OFF state to be valid downlink subframes.
  • Some subframes in the OFF state are predetermined subframes defined in advance, predetermined subframes set specifically for the base station apparatus 3, or subframes set specific to the terminal apparatus 1.
  • some subframes in the OFF state are subframes between a predetermined subframe and a predetermined number of subframes before the predetermined subframe.
  • the predetermined subframe is a subframe that is in the ON state or a subframe that has notified the ON state.
  • the predetermined subframe is a subframe that has received the DCI format including the CSI request.
  • the predetermined subframe is a subframe for CSI reporting.
  • the base station apparatus 3 performs settings related to cell state information for the terminal apparatus 1 through RRC signaling.
  • the base station device 3 notifies the cell state by a predetermined method based on the setting related to the cell state information set in the terminal device 1.
  • the terminal apparatus 1 is set with respect to cell state information from the base station apparatus 3 through RRC signaling.
  • the terminal device 1 recognizes the cell state by a predetermined method based on the setting related to the cell state information set from the base station device 3.
  • the cell state is explicitly notified based on cell state information notified using DCI transmitted by PDCCH or EPDCCH.
  • the terminal device 1 recognizes that it is in the ON state when the cell state information indicates 1 and is in the OFF state when the cell state information indicates 0.
  • the cell state is notified implicitly based on the presence or absence of a reference signal. The presence or absence of the reference signal is determined by comparing the reception power or reception level of the reference signal with a predetermined threshold value.
  • cell status is reported implicitly based on DRX configuration or procedure.
  • the terminal device 1 recognizes that it is in the ON state during the non-DRX period and is in the OFF state during the DRX period.
  • the cell state is notified implicitly based on cell activation (Activation) or deactivation (Deactivation) notified in the MAC layer.
  • the terminal device 1 recognizes that it is in the ON state during the cell activation period and is in the OFF state during the cell activation period.
  • the setting related to the cell state information is information used for the terminal device 1 to recognize the cell state.
  • the setting related to cell state information includes subframe information, information related to search space, information related to RNTI, and the like as information used to receive or monitor PDCCH or EPDCCH for which cell state information is notified.
  • the setting related to the cell state information includes information related to the reference signal, a virtual cell identifier, a predetermined threshold, subframe information, and the like as information used to recognize the presence or absence of the reference signal.
  • the terminal apparatus 1 recognizes the cell state notification based on a cyclic redundancy check (CCR) added to the PDCCH or EPDCCH including the DCI that notifies the cell state information. For example, when the value obtained by the cyclic redundancy check is not correct, the terminal device 1 determines that the notification of the cell state has not been recognized (detected).
  • CCR cyclic redundancy check
  • the notification of the cell state notification in the terminal device 1 is performed based on whether the reception power or reception level of the reference signal is within a predetermined threshold range. For example, a first threshold value and a second threshold value greater than the first threshold value are defined or set, and the reception power or reception level of the reference signal is changed from the first threshold value to the second threshold value. If it is within the range up to the threshold value, the terminal device 1 determines that the notification of the cell state could not be recognized (detected). Further, when the reception power or reception level of the reference signal is lower than the first threshold value, it is determined that the terminal device 1 is in the OFF state. When the reception power or reception level of the reference signal is higher than the second threshold value, it is determined that the terminal device 1 is in the ON state.
  • a predetermined threshold range For example, a first threshold value and a second threshold value greater than the first threshold value are defined or set, and the reception power or reception level of the reference signal is changed from the first threshold value to the second threshold value. If it is within the range up to
  • the terminal device 1 when the terminal device 1 cannot recognize (detect) the cell state notification in a certain subframe, the terminal device 1 is assumed to be in the OFF state until the next subframe in which the next cell state notification is performed. . That is, the terminal device 1 performs the same process as when the OFF state is notified until the next subframe where the notification of the next cell state is performed.
  • the terminal device 1 when the terminal device 1 cannot recognize (detect) the cell state notification in a certain subframe, the terminal device 1 is assumed to be in the ON state until the subframe in which the next cell state notification is performed. . That is, the terminal device 1 performs the same processing as when the ON state is notified until the subframe where the next cell state notification is performed.
  • the terminal device 1 when the terminal device 1 cannot recognize (detect) the cell state notification in a certain subframe, the terminal device 1 is in the ON state or the OFF state until the next subframe in which the next cell state notification is performed. Assume different states. That is, the terminal device 1 performs a process different from the case where the ON state or the OFF state is notified until the next subframe where the notification of the next cell state is performed.
  • the terminal apparatus 1 assumes that the downlink subframe is in the ON state and the uplink subframe is in the OFF state. That is, the terminal device 1 receives or monitors a part or all of the downlink signals and / or channels, and does not transmit part or all of the uplink signals and / or channels. For example, the terminal device 1 performs reception of a reference signal, PDCCH monitoring, and / or EPDCCH monitoring, and does not perform periodic CSI reporting and / or SRS transmission.
  • the terminal device 1 assumes that the downlink subframe is in the OFF state and the uplink subframe is in the ON state. That is, the terminal device 1 does not receive or monitor a part or all of the downlink signals and / or channels, and transmits part or all of the uplink signals and / or channels. For example, the terminal device 1 does not receive the reference signal, monitor the PDCCH, and / or monitor the EPDCCH, and performs periodic CSI report and / or SRS transmission.
  • the terminal device 1 monitors a predetermined PDCCH and / or EPDCCH that is different from the ON state.
  • the predetermined PDCCH and / or EPDCCH is monitored in a predetermined search space different from the ON state.
  • a CRC scrambled with a predetermined RNTI different from the ON state is added to the predetermined PDCCH and / or EPDCCH.
  • the terminal device 1 when the terminal device 1 cannot recognize (detect) the cell state notification in a certain subframe, the terminal device 1 is in a predetermined state until the next subframe in which the next cell state notification is performed.
  • the present invention is not limited to this.
  • the terminal device 1 when the terminal device 1 cannot recognize (detect) the cell state notification in a certain subframe, the terminal device 1 remains in a predetermined state until the subframe to which the cell state indicated by the next cell state notification is applied. You may assume that there is. Thereby, the subframe in which the cell state is notified and the subframe to which the cell state indicated by the notification is applied can be defined or set independently.
  • uplink power control includes power control in uplink transmission.
  • Uplink transmission includes transmission of an uplink signal / uplink physical channel such as PUSCH, PUCCH, PRACH, and SRS.
  • the terminal device 1 may perform uplink power control individually with an MCG including a primary cell and an SCG including a primary secondary cell.
  • the uplink power control includes transmission power control for uplink transmission.
  • the uplink power control includes transmission power control of the terminal device 1.
  • Each of the MeNB (first base station apparatus connected to the terminal apparatus 1) and SeNB (second base station apparatus connected to the terminal apparatus 1) is connected to the terminal apparatus 1 by higher layer signaling or system.
  • SIB System Information Block
  • the maximum allowed output power of the terminal device 1 Maximum allowed UE output power, P-Max, P EMAX , P EMAX, c
  • the maximum permitted output power may be referred to as upper layer maximum output power.
  • P EMAX may be set for each serving cell (referred to as P EMAX, c ).
  • the terminal device 1 When the terminal device 1 receives P-Max from the MeNB (or PCell) and SeNB (pSCell), the terminal device 1 sets the maximum output power (configured maximum UE output power, P) for each of the MeNB and SeNB.
  • CMAX , P CMAX, c ) (set maximum transmission power).
  • the maximum output power for MeNB is a P MeNB
  • the maximum output power for SeNB may be referred to as P SeNB.
  • P MeNB and P SeNB may be set not to exceed P CMAX or P CMAX, c , respectively. This maximum output power may be referred to as the physical layer maximum output power.
  • the MeNB may include an MCG and / or a PCell.
  • the SeNB may include SCG and / or pSCell.
  • the terminal device 1 is based on a limiting factor, when the limiting factor (scaling factor) of transmission power (output power) is received from MeNB (or PCell, MCG) and / or SeNB (pSCell, SCG).
  • P CMAX (P MeNB_MAX ) for MeNB and P CMAX (P SeNB_MAX ) for SeNB may be set, respectively.
  • P CMAX may be set for each serving cell (referred to as P CMAX, c ).
  • the terminal device 1 individually sets P MeNB and P SeNB. Is set. That is, when a limiting factor (scaling factor) of transmission power (output power) corresponding to each base station apparatus (serving cell, cell group) is set, the maximum value of transmission power for each base station may be set. .
  • the maximum output power (maximum output power of physical layer, maximum value of output power) for SeNB is based on P-Max P CMAX or P CMAX, c and may be set based on transmission power required by MeNB.
  • the terminal device 1 determines whether to share output power for transmission to the MeNB and transmission to the SeNB that occur at the same timing, depending on whether or not the maximum value of transmission power to the SeNB is set. May be.
  • the maximum output power and maximum output power (P MeNB_MAX) for SeNB (P SeNB_MAX) is set individually for MeNB, the maximum output power is set to the terminal device 1 (P UE_MAX), it may be set individually .
  • the sum of P MeNB_MAX and P SeNB_MAX may be set so as not to exceed P UE_MAX .
  • P UE_MAX may be PCMAX .
  • Each maximum output power may be set for each serving cell or cell group. Each maximum output power may be set for each subframe.
  • P MeNB is transmission power set for uplink transmission to the MeNB
  • P SeNB is transmission power set for uplink transmission to the SeNB. These transmission powers are set so as not to exceed the maximum output power.
  • the sum of P MeNB_MAX and P SeNB_MAX at a certain timing may be set so as not to exceed P UE_MAX .
  • parameters such as P-Max are common or common values in MeNB and SeNB
  • the maximum output power such as a limiting factor is set.
  • the sum of P MeNB_MAX and P SeNB_MAX may be set so as not to exceed P UE_MAX .
  • setting the maximum output power for the MeNB and the maximum output power for the SeNB individually in advance is referred to as a hard split.
  • terminal device 1 and / or the base station apparatus 3 for setting the value or P MeNB_MAX and P SeNB_MAX of P MeNB_MAX and P SeNB_MAX referred to as a first hard split that sets the value of parameters necessary, if the total P MeNB_MAX and P SeNB_MAX exceeds P UE_MAX, as the sum of P MeNB_MAX and P SeNB_MAX falls below P UE_MAX, Adjusting the transmission power of the terminal device 1 using parameters such as a limiting factor is referred to as a second hard split.
  • the transmission power set for uplink transmission to MeNB and the SeNB may be shared.
  • the sum of P MeNB and P SeNB at a certain timing is controlled so as not to exceed P UE_MAX .
  • using restriction factor may be controlled so as not to exceed the P UE_MAX.
  • P SeNB_MAX may be a P UE_MAX -P MeNB. That is, P SeNB_MAX is set in consideration of P MeNB . In that case, P MeNB may be P UE_MAX .
  • sharing the transmission power for the MeNB and the transmission power for the SeNB is referred to as power sharing.
  • the timing may be defined in a subframe. The timing may be defined by a symbol. In addition, the timing may be defined by time or period. Also, the timing may be defined instantaneously.
  • P SeNB_MAX is not set at a certain timing, and if P MeNB_MAX is set by the parameter (or parameter value) set by higher layer signaling and the terminal device 1, that is, only P MeNB_MAX is higher layer parameter.
  • the transmission power set for uplink transmission to the MeNB and the transmission power set for uplink transmission to the SeNB may be shared.
  • the maximum value of the transmission power set by the terminal device 1 is P MeNB_MAX . In that case, P MeNB_MAX may be P UE_MAX .
  • the maximum value of the transmission power set by the terminal device 1 may be P MeNB_MAX . That is, when the uplink transmission with respect to MeNB and the uplink transmission with respect to SeNB overlap, the terminal device 1 sets so that the transmission power of the uplink transmission with respect to SeNB may not exceed P MeNB_MAX . Note that the total transmission power set for one or more cells belonging to the MCG at a certain timing is set so as not to exceed P MeNB_MAX .
  • a transmission power P MeNB necessary for uplink transmission for MeNB is determined, and then transmission power for uplink transmission for SeNB The maximum value of is determined. That is, if P MeNB exceeds P MeNB_MAX, the terminal apparatus 1 can not perform uplink transmission to SeNB.
  • P SeNB_MAX When P SeNB_MAX is not set at a certain timing, and P UE_MAX and P MeNB_MAX are set using higher layer parameters (where P MeNB_MAX ⁇ P UE_MAX ), it is set for uplink transmission to MeNB. Transmission power and transmission power set for uplink transmission to the SeNB may be shared. At a certain timing, in the case of only uplink transmission to the MeNB , the maximum value of the transmission power set by the terminal device 1 may be P UE_MAX . Further, at a certain timing, in the case of only uplink transmission to the MeNB , the maximum value of the transmission power set by the terminal device 1 may be P MeNB_MAX .
  • the maximum value of the transmission power set by the terminal device 1 may be the smaller of P UE_MAX and P MeNB_MAX .
  • the maximum value of the transmission power set in the terminal device 1 is P UE_MAX .
  • the maximum value of the transmission power in the uplink transmission to the SeNB is P UE_MAX ⁇ P MeNB_MAX .
  • the terminal apparatus 1 performs uplink transmission to the SeNB at that timing. I can't. Uplink transmission to the SeNB can be performed when P UE_MAX -P MeNB_MAX > 0. That is, in the case of P UE_MAX ⁇ P MeNB_MAX > 0, in uplink transmission to the SeNB, the terminal device 1 sets transmission power. Note that the total transmission power set for one or more cells belonging to the MCG at a certain timing is set so as not to exceed PUE_MAX . Note that the total transmission power set for one or more cells belonging to the MCG at a certain timing is set so as not to exceed P MeNB_MAX .
  • the threshold (maximum output power for each serving cell group) is the maximum output power of the terminal device 1 (the maximum value of the total output power for all serving cell groups). Set to some PCMAX . Alternatively, it is set to a value set by an upper layer message such as an RRC message (the maximum output power value of MCG set by the upper layer).
  • the threshold (maximum output power for each serving cell group) is set to a value obtained by subtracting actual transmission power used for uplink transmission in MCG from PCMAX. To do.
  • the actual transmission power used for uplink transmission in MCG is preferably the transmission power value in the subframe with the larger transmission power value among the two subframes overlapping with the subframe in SCG. .
  • the terminal device 1 performs scaling of transmission power for PUSCH and the like in each of the serving cells in the serving cell group. More specifically, when the total transmission power value in the serving cell group exceeds the threshold, the total value of the values obtained by multiplying the PUSCH power in each serving cell by the scaling factor is equal to or less than the value obtained by subtracting the PUCCH power from the threshold. Scaling (lower power adjustment) using a scaling factor (limit factor) that satisfies the condition. On the other hand, if the threshold value is not exceeded, scaling is not necessary.
  • the terminal device 1 is configured only for P UE_MAX, only P MeNB_MAX , or P SeNB_MAX , or whether P MeNB_MAX and P SeNB_MAX are set (or the base station device 3 is configured in the terminal device 1).
  • the uplink power control for uplink transmission to the MeNB and uplink transmission to the SeNB at a certain timing is set to hard split (maximum set in place of PCMAX in each serving cell group).
  • Output power value is used) or power sharing (in each serving cell group, instead of PCMAX , the maximum output power value calculated in consideration of the transmission power value in other serving cell groups is used) Decide It may be.
  • the terminal device 1 When only P UE_MAX is set, or when P SeNB_MAX is not set, or when P MeNB_MAX and P SeNB_MAX are not set, the terminal device 1 performs uplink transmission to the MeNB and uplink transmission to the SeNB at a certain timing. In contrast, uplink power control is performed by power sharing.
  • the terminal device 1 When P SeNB_MAX is set, or when P MeNB_MAX and P SeNB_MAX are set, the terminal device 1 performs uplink in hard split for uplink transmission to the MeNB and uplink transmission to the SeNB at a certain timing. Perform link power control.
  • P MeNB_MAX not being set includes that P MeNB_MAX is set using higher layer parameters (for example, P-Max or power class). Further, the fact that P MeNB_MAX is not set includes that P MeNB_MAX is not set as an upper layer parameter.
  • P SeNB_MAX is not set
  • P SeNB_MAX is set using higher layer parameters (for example, P-Max and power class).
  • P SeNB_MAX is not set as an upper layer parameter.
  • the transmission power P SeNB (i) for uplink transmission in subframe i is set to the transmission power P MeNB (i ⁇ ) for uplink transmission in either subframe i-1 or subframe i for MeNB or MCG.
  • P SeNB (i) is set to the transmission power P MeNB (i ⁇ ) for uplink transmission in either subframe i-1 or subframe i for MeNB or MCG.
  • the terminal device 1 considers P MeNB (i), P SeNB (i) may be set.
  • the first transmission power is set in consideration of the second transmission power, without reducing the second transmission power (in other words, securing the second transmission power in advance). ), The first transmission power being set.
  • the terminal device 1 may set P SeNB (i) in consideration of the larger one of P MeNB (i) and P MeNB (i + 1). Taking into account the at least P MeNB (i), may set the P SeNB (i).
  • the terminal device 1 considers P MeNB (i + 1), and P SeNB (i ) May be set.
  • the power P MeNB (i) is a transmission power P SeNB (i-1), P SeNB (i) set for uplink transmission in either subframe i-1 or subframe i for SeNB or SCG. It may be set in consideration. For example, if subframe i-1 for SeNB or SCG includes transmission of PSCH with PRACH format 4 and / or PUCCH and / or UCI arranged in UpPTS, uplink transmission in subframe i of MeNB or MCG is performed. SRS, if the transmission of the PUSCH without UCI, the terminal apparatus 1, first, from the consideration of the P SeNB (i-1) and / or P SeNB (i), by setting the P MeNB (i) Also good.
  • transmission power P of uplink transmission in subframe i of MeNB or MCG MeNB (i) is set in consideration of transmission power P SeNB (i), P SeNB (i + 1) set for uplink transmission in either subframe i or subframe i + 1 for SeNB or SCG Also good.
  • subframe i or subframe i + 1 for SeNB or SCG includes transmission of PSCH with PRACH format 4 and / or PUCCH and / or UCI located in UpPTS, uplink in subframe i of MeNB or MCG If transmission is PUSCH transmission without SRS and UCI, the terminal device 1 first considers P SeNB (i) and / or P SeNB (i + 1), and then sets P MeNB (i). Also good.
  • the transmission power set for uplink transmission in subframes (subframes i-1, i, i + 1) of other serving cells is set to May be.
  • the frame structure type In all cells belonging to the first cell group (first CG) or the first cell group, the frame structure type (FDD, TDD) is set using system information (for example, SIB1) or higher layer signaling. In contrast, at least one cell belonging to the second cell group (second CG) or the second cell group uses L1 signaling (DCI format, PDCCH / EPDCCH) and system information (or higher layer signaling).
  • SIB1 system information
  • L1 signaling DCI format, PDCCH / EPDCCH
  • system information or higher layer signaling.
  • subframe i the uplink subframe for the first CG and the uplink subframe for the second CG are both uplinks indicated by the frame structure type and TDD UL-DL settings set using the system information. If it is a link subframe, subframe i belongs to the first subframe set. Also, in subframe n, the uplink subframe for the first CG and the uplink subframe for the second CG are the uplink indicated by the frame structure type and TDD UL-DL settings set using system information. In the case of an uplink subframe indicated by a TDD UL-DL configuration set using a link subframe and L1 signaling, subframe n belongs to the second subframe set.
  • the uplink subframe belonging to the first subframe set is an uplink subframe set in the system information in both the first CG and the second CG. Further, the uplink subframe belonging to the first subframe set is an uplink subframe set by system information (or higher layer signaling) in the first CG, and L1 in the second CG. It is an uplink subframe set by signaling.
  • the terminal device 1 When the uplink transmission for the first CG and the uplink transmission for the second CG occur in the first subframe set, the terminal device 1 performs uplink power control by hard split and performs uplink transmission for the first CG.
  • the transmission power of the terminal device 1 in the link transmission and the transmission power of the terminal device 1 in the uplink transmission for the second CG are set.
  • the terminal device 1 When the uplink transmission for the first CG and the uplink transmission for the second CG occur in the second subframe set, the terminal device 1 performs uplink power control by power sharing, and performs the uplink power control for the first CG.
  • the transmission power of the terminal device 1 in uplink transmission and the transmission power of the terminal device 1 in uplink transmission for the second CG are set.
  • the transmission power of the terminal apparatus 1 in uplink transmission for the second CG may be set with priority, and then the transmission power of the terminal apparatus 1 in uplink transmission for the second CG may be set.
  • the various methods, procedures, settings, and / or processes described in the present embodiment may be independent between the Pcell and the pScell in dual connectivity.
  • the terminal device 1 in the above embodiment may support a function of performing uplink CoMP (ul-CoMP).
  • the terminal device 1 in the above embodiment may support a function (supportedBandCombination, supportedBandListEUTRA) for performing a band combination (CA, non-CA).
  • a function supportedBandCombination, supportedBandListEUTRA
  • the terminal device 1 in the above embodiment may support a function of performing cross carrier scheduling (crossCarrierScheduling).
  • the terminal device 1 in the above embodiment may support a plurality of timing advance functions (multipleTimingAdvance).
  • the terminal device 1 in the above embodiment may support the function of the CSI process.
  • the terminal device 1 in the above embodiment may support a function of performing communication using cells (plural cells) having different TDD UL-DL settings.
  • the terminal device 1 in the above embodiment may support a function of performing eIMTA.
  • the terminal device 1 in the above embodiment may support a function of performing communication using a small cell.
  • the terminal device 1 in the above embodiment may support a function (dual-connectivity) for performing communication simultaneously with a plurality of base station devices.
  • the terminal device 1 in the above embodiment may support a function of performing communication using cells (a plurality of cells) of different frame structure types.
  • the terminal device 1 in the above embodiment may support the function of simultaneously transmitting and receiving.
  • the terminal device 1 in the above embodiment may support a function of receiving the EPDCCH.
  • the terminal device 1 in the above embodiment may transmit information (UE-EUTRA-capability or FeatureGroupIndicator) indicating the supported function to the base station device 3.
  • information UE-EUTRA-capability or FeatureGroupIndicator
  • the PDCCH subframe may be defined not only as a subframe accompanied by PDCCH, but also as a subframe accompanied by EPDCCH (Enhanced PDCCH) or R-PDCCH (Relay-PDCCH).
  • EPDCCH Enhanced PDCCH
  • R-PDCCH Relay-PDCCH
  • transmission efficiency can be improved in the wireless communication system in which the base station device 3 and the terminal device 1 communicate.
  • a program that operates in the base station device 3 and the terminal device 1 related to the present invention is a program that controls a CPU (Central Processing Unit) or the like (a computer is functioned) so as to realize the functions of the above-described embodiments related to the present invention.
  • Program Information handled by these devices is temporarily stored in RAM (Random Access Memory) during processing, and then stored in various ROMs such as Flash ROM (Read Only Memory) and HDD (Hard Disk Drive). Reading, correction, and writing are performed by the CPU as necessary.
  • the terminal device 1 and a part of the base station device 3 in the above-described embodiment may be realized by a computer.
  • the program for realizing the control function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by the computer system and executed.
  • the “computer system” here is a computer system built in the terminal device 1 or the base station device 3 and includes hardware such as an OS and peripheral devices.
  • the “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system.
  • the “computer-readable recording medium” is a medium that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line,
  • a volatile memory inside a computer system serving as a server or a client may be included and a program that holds a program for a certain period of time.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • the base station device 3 in the above-described embodiment can be realized as an aggregate (device group) composed of a plurality of devices.
  • Each of the devices constituting the device group may include a part or all of each function or each functional block of the base station device 3 according to the above-described embodiment.
  • the device group only needs to have one function or each function block of the base station device 3.
  • the terminal device 1 according to the above-described embodiment can also communicate with the base station device 3 as an aggregate.
  • the base station apparatus 3 in the above-described embodiment may be EUTRAN (Evolved Universal Terrestrial Radio Access Network).
  • the base station device 3 in the above-described embodiment may have a part or all of the functions of the upper node for the eNodeB.
  • a part or all of the terminal device 1 and the base station device 3 in the above-described embodiment may be realized as an LSI that is typically an integrated circuit, or may be realized as a chip set.
  • Each functional block of the terminal device 1 and the base station device 3 may be individually chipped, or a part or all of them may be integrated into a chip.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • an integrated circuit based on the technology can also be used.
  • the terminal device is described as an example of the terminal device or the communication device.
  • the present invention can also be applied to terminal devices or communication devices such as electronic devices such as AV devices, kitchen devices, cleaning / washing devices, air conditioning devices, office devices, vending machines, and other daily life devices.
  • the present invention may have the following features.
  • a terminal apparatus is a terminal apparatus that communicates with a base station apparatus, wherein dual connectivity is set, and a serving cell (first serving cell) that belongs to a first cell group (first CG) When the uplink transmission for the uplink and the uplink transmission for the serving cell (second serving cell) belonging to the second cell group (second CG) overlap, the maximum output power in the overlapping portion is set to the first output
  • a transmission unit that determines a maximum output power for the serving cell and a maximum output power for the second serving cell;
  • the terminal apparatus is the terminal apparatus described above, wherein the transmission unit performs uplink transmission in the subframe i 1 of the first serving cell, and performs subframe i 2 ⁇ of the second serving cell. If overlapping with uplink transmission in one and i 2, based on the maximum output power at each of the sub-frame, determining a maximum output power for the first serving cell in the sub-frame i1.
  • the terminal device of the present invention is the above-described terminal device, which monitors a CSS (Cell-specific search space) for each of the first CG and the second CG, and detects PDCCH ( A receiving unit for receiving Physical (Downlink (Control) Channel) is provided.
  • a CSS Cell-specific search space
  • PDCCH Physical (Downlink (Control) Channel
  • a terminal apparatus is the terminal apparatus described above, and includes a cell that transmits a PUCCH (Physical Uplink Control Channel) in each of the first CG and the second CG.
  • PUCCH Physical Uplink Control Channel
  • the terminal device according to the present invention is the terminal device described above, wherein a parameter related to MAC (Medium Access Control) setting is set for each of the first CG and the second CG.
  • MAC Medium Access Control
  • the terminal device of the present invention is the above-described terminal device, and in the case where a parameter related to DRX (Discontinuous Reception) is set for each of the first CG and the second CG, the CG individual A DRX operation is performed.
  • DRX discontinuous Reception
  • the base station apparatus of the present invention is a base station apparatus that communicates with a terminal apparatus, and corresponds to each of a first cell group (first CG) and a second cell group (second CG).
  • a transmission unit that transmits a first higher layer parameter and a second higher layer parameter used to set the maximum output power to be transmitted.
  • the base station apparatus of the present invention is the above-described base station apparatus, wherein the transmission unit performs CSS (Cell-specific search space) for each of the first CG and the second CG. Is used to transmit the PDCCH.
  • CSS Cell-specific search space
  • the base station apparatus of the present invention is the above-described base station apparatus, and sets a cell that transmits PUCCH (Physical Uplink Control Channel) for each of the first CG and the second CG.
  • PUCCH Physical Uplink Control Channel
  • An upper layer processing unit is provided.
  • a base station apparatus is the above-described base station apparatus, wherein the transmission unit relates to setting of MAC (Medium Access Control) corresponding to each of the first CG and the second CG. Send parameters.
  • MAC Medium Access Control
  • a method of the present invention is a method in a terminal device that communicates with a base station device, wherein dual connectivity is set and a serving cell (first serving cell) belonging to a first cell group (first CG) ) And uplink transmission to the serving cell (second serving cell) belonging to the second cell group (second CG) overlap, the maximum output power in the overlapping portion is set to the first output power. Determining based on a maximum output power for a second serving cell and a maximum output power for the second serving cell.
  • the method of the present invention is a method in a base station apparatus that communicates with a terminal apparatus, and corresponds to each of a first cell group (first CG) and a second cell group (second CG). Transmitting a first upper layer parameter and a second upper layer parameter used to set a maximum output power to be transmitted.
  • Terminal apparatus 3 Base station apparatus 101 Upper layer processing section 103 Control section 105 Reception section 107 Transmission section 301 Upper layer processing section 303 Control section 305 Reception section 307 Transmission section 1011 Radio resource control section 1013 Subframe Setting unit 1015 Scheduling information interpretation unit 1017 CSI report control unit 3011 Radio resource control unit 3013 Subframe setting unit 3015 Scheduling unit 3017 CSI report control unit 1301 Measurement unit 13011 First layer filtering unit 13012 Third layer filtering unit 13013 Evaluation of report criteria Part

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 基地局装置と通信する端末装置であって、デュアルコネクティビティが設定され、且つ、第1のセルグループ(第1のCG)に属するサービングセル(第1のサービングセル)に対する上りリンク送信と、第2のセルグループ(第2のCG)に属するサービングセル(第2のサービングセル)に対する上りリンク送信と、が重複する場合、重複した部分における最大出力電力を、前記第1のサービングセルに対する最大出力電力と前記第2のサービングセルに対する最大出力電力に基づいて決定する送信部を備える。

Description

端末装置、基地局装置および方法
 本発明は、端末装置、基地局装置および方法に関する。
 本願は、2014年4月30日に、日本に出願された特願2014-093522号に基づき優先権を主張し、その内容をここに援用する。
 セルラー移動通信の無線アクセス方式および無線ネットワーク(以下、「Long Term Evolution (LTE)」、または、「Evolved Universal Terrestrial Radio Access : EUTRA」と称する。)が、第三世代パートナーシッププロジェクト(3rd Generation Partnership Project: 3GPP)において検討されている。LTEでは、基地局装置(基地局)をeNodeB(evolved NodeB)、端末装置(移動局、移動局装置、端末)をUE(User Equipment)とも称する。LTEは、基地局装置がカバーするエリアをセル状に複数配置するセルラー通信システムである。単一の基地局装置は複数のセルを管理してもよい。
 LTEは、周波数分割複信(Frequency Division Duplex: FDD)および時分割複信(Time Division Duplex: TDD)に対応している。FDD方式を採用したLTEをFD-LTEまたはLTE FDDとも称する。TDDは、上りリンク信号と下りリンク信号を周波数分割多重することによって、少なくとも2つの周波数帯域において全二重通信を可能にする技術である。TDD方式を採用したLTEをTD-LTEまたはLTE TDDとも称する。TDDは、上りリンク信号と下りリンク信号を時分割多重することによって、単一の周波数帯域において全二重通信を可能にする技術である。FD-LTEおよびTD-LTEの詳細は、非特許文献1に開示されている。
 また、基地局装置は、端末装置に対して、基地局装置と端末装置との間において既知の信号である参照信号(RS;Reference Signalとも呼称される)を送信できる。この参照信号は、信号やチャネルの復調やチャネル状態のレポートなどの様々な目的のために、複数の参照信号を送信できる。例えば、セル固有参照信号は、セルに固有の参照信号として、全ての下りリンクサブフレームにおいて送信される。また、例えば、端末固有参照信号は、端末装置に固有の参照信号として、その端末装置に対するデータ信号がマッピングされるリソースにおいて送信される。参照信号の詳細は、非特許文献1に開示されている。
 3GPPにおいて、小セル(Small Cell)の導入が検討される。小セルとは、セルを構成する基地局装置の送信電力が小さく、従来のセル(マクロセル)に比べてカバレッジの小さなセルの総称である。例えば、小セルを高周波数帯で適用することで、高密度に小セルを配置することが可能となり、面積あたりの周波数利用効率を向上させる効果がある。小セルの導入検討では、低消費電力化やセル間干渉低減などの様々な目的のために、基地局装置を停止の状態に切り替える技術が検討されている。詳細は、非特許文献2に開示されている。
3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 11), 3GPP TS 36.211 V11.5.0 (2014-01). 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Small cell enhancements for E-UTRA and E-UTRAN - Physical layer aspects (Release 12), 3GPP TR 36.872 V12.1.0 (2013-12).
 しかしながら、複数のセルグループが設定された場合、適切な電力制御を行なわないと伝送効率を大幅に劣化することがある。
 本発明は、上記問題を鑑みてなされたものであり、その目的は、基地局装置と端末装置が通信する通信システムにおいて、伝送効率を向上させることができる端末装置、基地局装置および方法を提供することにある。
 (1)上記の目的を達成するために、本発明は、以下のような手段を講じた。すなわち、本実施形態の端末装置は、基地局装置と通信する端末装置であって、デュアルコネクティビティが設定され、且つ、第1のセルグループ(第1のCG)に属するサービングセル(第1のサービングセル)に対する上りリンク送信と、第2のセルグループ(第2のCG)に属するサービングセル(第2のサービングセル)に対する上りリンク送信と、が重複する場合、重複した部分における最大出力電力を、前記第1のサービングセルに対する最大出力電力と前記第2のサービングセルに対する最大出力電力に基づいて決定する送信部を備える。
 (2)また、本実施形態の基地局装置は、端末装置と通信する基地局装置であって、第1のセルグループ(第1のCG)と第2のセルグループ(第2のCG)のそれぞれに対応する最大出力電力をセットするために用いられる第1の上位層パラメータと第2の上位層パラメータを送信する送信部を備える。
 (3)また、本実施形態の方法は、基地局装置と通信する端末装置における方法であって、デュアルコネクティビティが設定され、且つ、第1のセルグループ(第1のCG)に属するサービングセル(第1のサービングセル)に対する上りリンク送信と、第2のセルグループ(第2のCG)に属するサービングセル(第2のサービングセル)に対する上りリンク送信と、が重複する場合、重複した部分における最大出力電力を、前記第1のサービングセルに対する最大出力電力と前記第2のサービングセルに対する最大出力電力に基づいて決定するステップを有する。
 (4)また、本実施形態の方法は、端末装置と通信する基地局装置における方法であって、第1のセルグループ(第1のCG)と第2のセルグループ(第2のCG)のそれぞれに対応する最大出力電力をセットするために用いられる第1の上位層パラメータと第2の上位層パラメータを送信するステップを有する。
 このように、端末装置と基地局装置間の通信効率を向上させることができる。
 この発明によれば、基地局装置と端末装置が通信する無線通信システムにおいて、伝送効率を向上させることができる。
本実施形態の無線通信システムの概念図である。 本実施形態の無線フレームの概略構成を示す図である。 本実施形態のスロットの構成を示す図である。 本実施形態の下りリンクサブフレームにおける物理チャネルおよび物理信号の配置の一例を示す図である。 本実施形態の上りリンクサブフレームにおける物理チャネルおよび物理信号の配置の一例を示す図である。 本実施形態のスペシャルサブフレームにおける物理チャネルおよび物理信号の配置の一例を示す図である。 本実施形態の端末装置1の構成を示す概略ブロック図である。 本実施形態の基地局装置3の構成を示す概略ブロック図である。 DSの構成の一例を示す図である。 CRSの構成および/またはDSの構成の一例を示す図である。 DSの構成の別の一例を示す図である。 DSの設定に対するリソースエレメントの指定の一例を示す図である。 測定のモデルを示す図である。 PDCCHおよびEPDCCHのサーチスペースの数式を示す図である。
 以下、本発明の実施形態について説明する。
 本実施形態において、端末装置1は、複数のセルが設定されてもよい。ここで、端末装置1が、複数のセルを介して通信する技術をセルアグリゲーション、キャリアアグリゲーション、またはデュアルコネクティビティと称する。端末装置1に対して設定される複数のセルのそれぞれにおいて、本発明が適用されてもよい。また、設定された複数のセルの一部において、本発明が適用されてもよい。端末装置1に設定されるセルを、サービングセルとも称する。
 キャリアアグリゲーション(CA)において、設定された複数のサービングセルは、1つのプライマリーセル(PCell: Primary Cell)と1つまたは複数のセカンダリーセル(SCell: Secondary Cell)とを含む。
 プライマリーセルは、初期コネクション構築(initial connection establishment)プロシージャが行なわれたサービングセル、コネクション再構築(connection re-establishment)プロシージャを開始したサービングセル、または、ハンドオーバプロシージャにおいてプライマリーセルと指示されたセルである。プライマリーセルは、プライマリー周波数でオペレーションする。コネクションが(再)構築された時点、または、その後に、セカンダリーセルが設定されてもよい。セカンダリーセルは、セカンダリー周波数でオペレーションする。なお、コネクションは、RRCコネクションと称されてもよい。
 CAをサポートしている端末装置1に対して、1つのプライマリーセルと1つ以上のセカンダリーセルで集約される。
 デュアルコネクティビティ(Dual Connectivity)とは、少なくとも二つの異なるネットワークポイント(マスター基地局装置(MeNB: Master eNB)とセカンダリー基地局装置(SeNB: Secondary eNB))から提供される無線リソースを所定の端末装置1が消費するオペレーションである。言い換えると、デュアルコネクティビティは、端末装置1が、少なくとも2つのネットワークポイントでRRC接続を行なうことである。デュアルコネクティビティにおいて、端末装置1は、RRC接続(RRC_CONNECTED)状態で、且つ、非理想的バックホール(non-ideal backhaul)によって接続されてもよい。
 デュアルコネクティビティにおいて、少なくともS1-MME(Mobility Management Entity)に接続され、コアネットワークのモビリティアンカーの役割を果たす基地局装置3がマスター基地局装置と称される場合もある。また、端末装置1に対して追加の無線リソースを提供するマスター基地局装置ではない基地局装置3をセカンダリー基地局装置と称される。マスター基地局装置に関連されるサービングセルのグループをマスターセルグループ(MCG: Master Cell Group)、セカンダリー基地局装置に関連されるサービングセルのグループをセカンダリーセルグループ(SCG: Secondary Cell Group)と称される場合もある。なお、セルグループは、サービングセルグループであってもよい。
 デュアルコネクティビティにおいて、プライマリーセルは、MCGに属する。また、SCGにおいて、プライマリーセルに相当するセカンダリーセルをプライマリーセカンダリーセル(pSCell: Primary Secondary Cell)と称する。なお、pSCellをスペシャルセルやスペシャルセカンダリーセル(Special SCell: Special Secondary Cell)と称する場合もある。スペシャルSCell(スペシャルSCellを構成する基地局装置)には、PCell(PCellを構成する基地局装置)と同等の機能(能力、性能)がサポートされてもよい。また、pSCellには、PCellの一部の機能だけがサポートされてもよい。例えば、pSCellには、PDCCHを送信する機能がサポートされてもよい。また、pSCellには、CSSまたはUSSとは異なるサーチスペースを用いて、PDCCH送信を行なう機能がサポートされてもよい。例えば、USSとは異なるサーチスペースは、仕様で規定された値に基づいて決まるサーチスペース、C-RNTIとは異なるRNTIに基づいて決まるサーチスペースなどである。また、pSCellは、常に、起動の状態であってもよい。また、pSCellは、PUCCHを受信できるセルである。
 デュアルコネクティビティにおいて、無線ベアラ(データ無線ベアラ(DRB: Date Radio Bearer)および/またはシグナリング無線ベアラ(SRB: Signalling Radio Bearer))は、MeNBとSeNBで個別に割り当てられてもよい。
 デュアルコネクティビティにおいて、MCGとSCGまたはPCellとpSCellでは、それぞれ個別にデュプレックスモードが設定されてもよい。
 デュアルコネクティビティにおいて、MCGとSCGまたはPCellとpSCellで、同期されなくてもよい。
 デュアルコネクティビティにおいて、MCGとSCG(またはPCellとpSCell)それぞれにおいて、複数のタイミング調整のためのパラメータ(TAG: Timing Advance Group)が設定されてもよい。つまり、MCGとSCG間において、同期されなくてもよい。
 デュアルコネクティビティにおいて、端末装置1は、MCG内のセルに対応するUCIは、MeNB(PCell)のみに送信し、SCG内のセルに対応するUCIは、SeNB(pSCell)のみに送信する。例えば、UCIはSR、HARQ-ACK、および/またはCSIである。また、それぞれのUCIの送信において、PUCCHおよび/またはPUSCHを用いた送信方法はそれぞれのセルグループで適用される。
 プライマリーセルでは、すべての信号が送受信可能であるが、セカンダリーセルでは、送受信できない信号がある。例えば、PUCCH(Physical Uplink Control Channel)は、プライマリーセルでのみ送信される。また、PRACH(Physical Random Access Channel)は、セル間で、複数のTAG(Timing Advance Group)が設定されない限り、プライマリーセルでのみ送信される。また、PBCH(Physical Broadcast Channel)は、プライマリーセルでのみ送信される。また、MIB(Master Information Block)は、プライマリーセルでのみ送信される。
 プライマリーセカンダリーセルでは、プライマリーセルで送受信可能な信号が送受信される。例えば、PUCCHは、プライマリーセカンダリーセルで送信されてもよい。また、PRACHは、複数のTAGが設定されているかにかかわらず、プライマリーセカンダリーセルで送信されてもよい。また、PBCHやMIBがプライマリーセカンダリーセルで送信されてもよい。
 プライマリーセルでは、RLF(Radio Link Failure)が検出される。セカンダリーセルでは、RLFが検出される条件が整ってもRLFが検出されたと認識しない。プライマリーセカンダリーセルでは、条件を満たせば、RLFが検出される。プライマリーセカンダリーセルにおいて、RLFが検出された場合、プライマリーセカンダリーセルの上位層は、プライマリーセルの上位層へRLFが検出されたことを通知する。
 プライマリーセルおよび/またはプライマリーセカンダリーセルでは、SPS(Semi-Persistent Scheduling)やDRX(Discontinuous Transmission)を行なってもよい。SPS設定とDRX設定の総数は、プライマリーセルとプライマリーセカンダリーセルの総数で決定されてもよい。セカンダリーセルでは、同じセルグループのプライマリーセルまたはプライマリーセカンダリーセルと同じDRXを行なってもよい。
 セカンダリーセルにおいて、MACの設定に関する情報/パラメータは、基本的に、同じセルグループのプライマリーセル/プライマリーセカンダリーセルと共有している。一部のパラメータ(例えば、sTAG-Id)は、セカンダリーセル毎に設定されてもよい。
 一部のタイマーやカウンタが、プライマリーセルおよび/またはプライマリーセカンダリーセルに対してのみ適用されてもよい。セカンダリーセルに対してのみ、適用されるタイマーやカウンタが設定されてもよい。
 本実施形態の無線通信システムは、FDD(Frequency Division Duplex)またはTDD(Time Division Duplex)方式のフレーム構成タイプ(Frame Structure Type)が適用される。なお、フレーム構成タイプは、フレーム構造タイプやデュプレックスモードと称される場合もある。セルアグリゲーションの場合には、複数のセルの全てに対してTDD方式が適用されてもよい。また、セルアグリゲーションの場合には、TDD方式が適用されるセルとFDD方式が適用されるセルが集約されてもよい。TDDが適用されるセルとFDDが適用されるセルとが集約される場合に、TDDが適用されるセルに対して本発明を適用することができる。
 FDDが適用されるセルにおいて、半二重(half-duplex)FDD方式または全二重(full-duplex)FDD方式が適用されてもよい。
 TDDが適用される複数のセルがアグリゲートされる場合には、半二重(half-duplex)TDD方式または全二重(full-duplex)TDD方式が適用されてもよい。
 端末装置1は、端末装置1によってキャリアアグリゲーションがサポートされているバンドの組合せを示す情報を、基地局装置3に送信する。端末装置1は、バンドの組合せのそれぞれに対して、異なる複数のバンドにおける前記複数のサービングセルにおける同時送信および受信をサポートしているかどうかを指示する情報を、基地局装置3に送信する。
 本実施形態において、“X/Y”は、“XまたはY”の意味を含む。本実施形態において、“X/Y”は、“XおよびY”の意味を含む。本実施形態において、“X/Y”は、“Xおよび/またはY”の意味を含む。
 図1は、本実施形態の無線通信システムの概念図である。図1において、無線通信システムは、端末装置1A~1C、および基地局装置3を具備する。以下、端末装置1A~1Cを端末装置1という。
 本実施形態の物理チャネルおよび物理信号について説明する。
 図1において、端末装置1から基地局装置3への上りリンクの無線通信では、上りリンク物理チャネルが用いられる。上りリンク物理チャネルは、上位層から出力された情報を送信するために使用できる。上りリンク物理チャネルは、PUCCH(Physical Uplink Control Channel)、PUSCH(Physical Uplink Shared Channel)、PRACH(Physical Random Access Channel)などを含む。
 PUCCHは、上りリンク制御情報(Uplink Control Information: UCI)を送信するために用いられる物理チャネルである。上りリンク制御情報は、下りリンクのチャネル状態情報(Channel State Information: CSI)、PUSCHリソースの要求を示すスケジューリング要求(Scheduling Request: SR)、下りリンクデータ(Transport block: TB, Downlink-Shared Channel: DL-SCH)に対するACK(acknowledgement)/NACK(negative-acknowledgement)を含む。ACK/NACKを、HARQ-ACK、HARQフィードバック、または、応答情報とも称する。
 PUSCHは、上りリンクデータ(Uplink-Shared Channel: UL-SCH)を送信するために用いられる物理チャネルである。また、PUSCHは、上りリンクデータと共にHARQ-ACKおよび/またはチャネル状態情報を送信するために用いられてもよい。また、PUSCHはチャネル状態情報のみ、または、HARQ-ACKおよびチャネル状態情報のみを送信するために用いられてもよい。
 PRACHは、ランダムアクセスプリアンブルを送信するために用いられる物理チャネルである。PRACHは、端末装置1が基地局装置3と時間領域の同期をとることを主な目的とする。その他に、PRACHは、初期コネクション構築(initial connection establishment)プロシージャ、ハンドオーバプロシージャ、コネクション再構築(connection re-establishment)プロシージャ、上りリンク送信に対する同期(タイミング調整)、およびPUSCHリソースの要求を示すためにも用いられる。
 図1において、上りリンクの無線通信では、上りリンク物理信号が用いられる。上りリンク物理信号は、上りリンク参照信号(Uplink Reference Signal: UL RS)などを含む。上りリンク参照信号は、DMRS(Demodulation Reference Signal)、SRS(Sounding Reference Signal)などが用いられる。DMRSは、PUSCHまたはPUCCHの送信に関連する。DMRSは、PUSCHまたはPUCCHと時間多重される。基地局装置3は、PUSCHまたはPUCCHの伝搬路補正を行なうためにDMRSを使用する。以下、PUSCHとDMRSを共に送信することを、単にPUSCHを送信すると称する。以下、PUCCHとDMRSを共に送信することを、単にPUCCHを送信すると称する。なお、上りリンクのDMRSは、UL-DMRSとも呼称される。SRSは、PUSCHまたはPUCCHの送信に関連しない。基地局装置3は、上りリンクのチャネル状態を測定するためにSRSを使用する。
 SRSは、2つのトリガータイプのSRS(トリガータイプ0SRS、トリガータイプ1SRS)がある。トリガータイプ0SRSは、上位層シグナリングによって、トリガータイプ0SRSに関するパラメータが設定される場合に送信される。トリガータイプ1SRSは、上位層シグナリングによって、トリガータイプ1SRSに関するパラメータが設定され、DCIフォーマット0/1A/2B/2C/2D/4に含まれるSRSリクエストによって送信が要求された場合に送信される。なお、SRSリクエストは、DCIフォーマット0/1A/4についてはFDDとTDDの両方に含まれ、DCIフォーマット2B/2C/2DについてはTDDにのみ含まれる。同じサービングセルの同じサブフレームでトリガータイプ0SRSの送信とトリガータイプ1SRSの送信が生じる場合、トリガータイプ1SRSの送信が優先される。
 図1において、基地局装置3から端末装置1への下りリンクの無線通信では、下りリンク物理チャネルが用いられる。下りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。下りリンク物理チャネルは、PBCH(Physical Broadcast Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid automatic repeat request Indicator Channel)、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PDSCH(Physical Downlink Shared Channel)、PMCH(Physical Multicast Channel)などを含む。
 PBCHは、端末装置1で共通に用いられるマスターインフォメーションブロック(Master Information Block: MIB, Broadcast Channel: BCH)を報知するために用いられる。MIBは、40ms間隔で更新できる。PBCHは10ms周期で繰り返し送信される。具体的には、SFN mod 4 = 0を満たす無線フレームにおけるサブフレーム0においてMIBの初期送信が行なわれ、他の全ての無線フレームにおけるサブフレーム0においてMIBの再送信(repetition)が行なわれる。SFN(system frame number)は無線フレームの番号(システムフレーム番号)である。MIBはシステム情報である。例えば、MIBは、SFNを示す情報を含む。
 PCFICHは、PDCCHの送信に用いられる領域(OFDMシンボル)を指示する情報を送信するために用いられる。
 PHICHは、基地局装置3が受信した上りリンクデータ(Uplink Shared Channel: UL-SCH)に対するACK(ACKnowledgement)またはNACK(Negative ACKnowledgement)を示すHARQインディケータ(HARQフィードバック、応答情報)を送信するために用いられる。例えば、端末装置1がACKを示すHARQインディケータを受信した場合は、対応する上りリンクデータを再送しない。例えば、端末装置1がNACKを示すHARQインディケータを受信した場合は、対応する上りリンクデータを再送する。単一のPHICHは、単一の上りリンクデータに対するHARQインディケータを送信する。基地局装置3は、同一のPUSCHに含まれる複数の上りリンクデータに対するHARQインディケータのそれぞれを複数のPHICHを用いて送信する。
 PDCCHおよびEPDCCHは、下りリンク制御情報(Downlink Control Information: DCI)を送信するために用いられる。下りリンク制御情報を、DCIフォーマットとも称する。下りリンク制御情報は、下りリンクグラント(downlink grant)および上りリンクグラント(uplink grant)を含む。下りリンクグラントは、下りリンクアサインメント(downlink assignment)または下りリンク割り当て(downlink allocation)とも称する。
 PDCCHは、連続する1つまたは複数のCCE(Control Channel Element)の集合によって送信される。CCEは、9つのREG(Resource Element Group)で構成される。REGは、4つのリソースエレメントで構成される。n個の連続するCCEで構成されるPDCCHは、imodn=0を満たすCCEから始まる。ここで、iはCCE番号である。
 EPDCCHは、連続する1つまたは複数のECCE(Enhanced Control Channel Element)の集合によって送信される。ECCEは、複数のEREG(Enhanced Resource Element Group)で構成される。
 下りリンクグラントは、単一のセル内の単一のPDSCHのスケジューリングに用いられる。下りリンクグラントは、該下りリンクグラントが送信されたサブフレームと同じサブフレーム内のPDSCHのスケジューリングに用いられる。上りリンクグラントは、単一のセル内の単一のPUSCHのスケジューリングに用いられる。上りリンクグラントは、該上りリンクグラントが送信されたサブフレームより4つ以上後のサブフレーム内の単一のPUSCHのスケジューリングに用いられる。
 DCIフォーマットには、CRC(Cyclic Redundancy Check)パリティビットが付加される。CRCパリティビットは、RNTI(Radio Network Temporary Identifier)でスクランブルされる。RNTIは、DCIの目的などに応じて、規定または設定できる識別子である。RNTIは、仕様で予め規定される識別子、セルに固有の情報として設定される識別子、端末装置1に固有の情報として設定される識別子、または、端末装置1に属するグループに固有の情報として設定される識別子である。例えば、CRCパリティビットは、C-RNTI(Cell-Radio Network Temporary Identifier)、または、SPS C-RNTI(Semi Persistent Scheduling Cell-Radio Network Temporary Identifier)でスクランブルされる。C-RNTIおよびSPS C-RNTIは、セル内における端末装置1を識別するための識別子である。C-RNTIは、単一のサブフレームにおけるPDSCHまたはPUSCHを制御するために用いられる。SPS C-RNTIは、PDSCHまたはPUSCHのリソースを周期的に割り当てるために用いられる。
 PDSCHは、下りリンクデータ(Downlink Shared Channel: DL-SCH)を送信するために用いられる。また、PDSCHは、上位層の制御情報を送信するためにも用いられる。
 PMCHは、マルチキャストデータ(Multicast Channel: MCH)を送信するために用いられる。
 図1において、下りリンクの無線通信では、以下の下りリンク物理信号が用いられる。下りリンク物理信号は、同期信号(Synchronization signal: SS)、下りリンク参照信号(Downlink Reference Signal: DL RS)などを含む。
 同期信号は、端末装置1が下りリンクの周波数領域および時間領域の同期をとるために用いられる。同期信号は無線フレーム内の所定のサブフレームに配置される。例えば、TDD方式において、同期信号は無線フレーム内のサブフレーム0、1、5、6に配置される。FDD方式において、同期信号は無線フレーム内のサブフレーム0と5に配置される。
 同期信号には、プライマリー同期信号(PSS: Primary Synchronization Signal)とセカンダリー同期信号(SSS: Secondary Synchronization Signal)がある。PSSは、粗いフレーム/シンボルタイミング同期(時間領域の同期)やセルグループの同定に用いられる。SSSは、より正確なフレームタイミング同期やセルの同定に用いられる。つまり、PSSとSSSを用いることによって、フレームタイミング同期とセル識別を行なうことができる。
 下りリンク参照信号は、端末装置1が下りリンク物理チャネルの伝搬路補正を行なうために用いられる。下りリンク参照信号は、端末装置1が下りリンクのチャネル状態情報を算出するために用いられる。下りリンク参照信号は、端末装置1が自装置の地理的な位置を測定するために用いられる。
 下りリンク参照信号は、CRS(Cell-specific Reference Signal)、PDSCHに関連するURS(UE-specific Reference Signal)、EPDCCHに関連するDMRS(Demodulation Reference Signal)、NZP CSI-RS(Non-Zero Power Chanel State Information - Reference Signal)、MBSFN RS(Multimedia Broadcast and Multicast Service over Single Frequency Network Reference signal)、PRS(Positioning Reference Signal)、NCT CRS(New Carrier Type Cell-specific Reference Signal)、そして、DS(Discovery Signal)などを含む。また、下りリンクのリソースは、ZP CSI-RS(Zero Power Chanel State Information - Reference Signal)、CSI-IM(Channel State Information - Interference Measurement)などを含む。
 CRSは、サブフレームの全帯域で送信される。CRSは、PBCH/PDCCH/PHICH/PCFICH/PDSCHの復調を行なうために用いられる。CRSは、端末装置1が下りリンクのチャネル状態情報を算出するために用いられてもよい。PBCH/PDCCH/PHICH/PCFICHは、CRSの送信に用いられるアンテナポートで送信される。
 PDSCHに関連するURSは、URSが関連するPDSCHの送信に用いられるサブフレームおよび帯域で送信される。URSは、URSが関連するPDSCHの復調を行なうために用いられる。
 PDSCHは、送信モードおよびDCIフォーマットに基づいて、CRSまたはURSの送信に用いられるアンテナポートで送信される。DCIフォーマット1Aは、CRSの送信に用いられるアンテナポートで送信されるPDSCHのスケジューリングに用いられる。DCIフォーマット2Dは、URSの送信に用いられるアンテナポートで送信されるPDSCHのスケジューリングに用いられる。
 EPDCCHに関連するDMRSは、DMRSが関連するEPDCCHの送信に用いられるサブフレームおよび帯域で送信される。DMRSは、DMRSが関連するEPDCCHの復調を行なうために用いられる。EPDCCHは、DMRSの送信に用いられるアンテナポートで送信される。
 NZP CSI-RSは、設定されたサブフレームで送信される。NZP CSI-RSが送信されるリソースは、基地局装置3によって設定される。NZP CSI-RSは、端末装置1が下りリンクのチャネル状態情報を算出するために用いられる。端末装置1は、NZP CSI-RSを用いて信号測定(チャネル測定)を行なう。
 ZP CSI-RSのリソースは、基地局装置3によって設定される。基地局装置3は、ZP CSI-RSをゼロ出力で送信する。つまり、基地局装置3は、ZP CSI-RSを送信しない。基地局装置3は、ZP CSI-RSの設定したリソースにおいて、PDSCHおよびEPDCCHを送信しない。
 CSI-IMのリソースは、基地局装置3によって設定される。CSI-IMのリソースは、ZP CSI-RSのリソースの一部と重複(オーバーラップ)して設定される。すなわち、CSI-IMのリソースは、ZP CSI-RSと同等の特徴を有し、基地局装置3は、CSI-IMとして設定されたリソースではゼロ出力で送信する。つまり、基地局装置3は、CSI-IMを送信しない。基地局装置3は、CSI-IMの設定したリソースにおいて、PDSCHおよびEPDCCHを送信しない。あるセルにおいてNZP CSI-RSが対応するリソースにおいて、端末装置1は、CSI-IMとして設定されたリソースで干渉を測定することができる。
 チャネル状態情報(CSI)には、CQI(Channel Quality Indicator)、PMI(Precoding Matrix Indicator)、RI(Rank Indicator)、PTI(Precoding Type Indicator)があり、CSI-RSまたはCRSを用いて、測定される。
 MBSFN RSは、PMCHの送信に用いられるサブフレームの全帯域で送信される。MBSFN RSは、PMCHの復調を行なうために用いられる。PMCHは、MBSFN RSの送信用いられるアンテナポートで送信される。
 PRSは、端末装置1が、自装置の地理的な位置を測定するために用いられる。
 NCT CRSは、所定のサブフレームにマッピングできる。例えば、NCT CRSは、サブフレーム0および5にマッピングされる。また、NCT CRSは、CRSの一部と同様の構成を用いることができる。例えば、リソースブロックのそれぞれにおいて、NCT CRSがマッピングされるリソースエレメントの位置は、アンテナポート0のCRSがマッピングされるリソースエレメントの位置と同じにすることができる。また、NCT CRSに用いられる系列(値)は、PBCH、PDCCH、EPDCCHまたはPDSCH(RRCシグナリング)を通じて設定された情報に基づいて決定できる。NCT CRSに用いられる系列(値)は、セルID(例えば、物理レイヤセル識別子)、スロット番号などのパラメータに基づいて決定できる。NCT CRSに用いられる系列(値)は、アンテナポート0のCRSに用いられる系列(値)とは異なる方法(式)によって決定できる。なお、NCT CRSは、TRS(Tracking Reference Signal)と称されてもよい。
 下りリンク物理チャネルおよび下りリンク物理信号を総称して、下りリンク信号と称する。上りリンク物理チャネルおよび上りリンク物理信号を総称して、上りリンク信号と称する。下りリンク物理チャネルおよび上りリンク物理チャネルを総称して、物理チャネルと称する。下りリンク物理信号および上りリンク物理信号を総称して、物理信号と称する。
 BCH、MCH、UL-SCHおよびDL-SCHは、トランスポートチャネルである。媒体アクセス制御(Medium Access Control: MAC)層で用いられるチャネルをトランスポートチャネルと称する。MAC層で用いられるトランスポートチャネルの単位を、トランスポートブロック(transport block: TB)またはMAC PDU(Protocol Data Unit)とも称する。MAC層においてトランスポートブロック毎にHARQ(Hybrid Automatic Repeat reQuest)の制御が行なわれる。トランスポートブロックは、MAC層が物理層に渡す(deliver)データの単位である。物理層において、トランスポートブロックはコードワードにマップされ、コードワード毎に符号化処理が行なわれる。
 基地局装置3から端末装置1に対する制御情報のシグナリング(通知、報知)の方法として、PDCCHを通じたシグナリングであるPDCCHシグナリング、RRC層(レイヤー)を通じたシグナリングであるRRCシグナリング、および、MAC層(レイヤー)を通じたシグナリングであるMACシグナリングなどが用いられる。また、RRCシグナリングは、端末装置1に固有の制御情報を通知する専用のRRCシグナリング(Dedicated RRC signaling)、または、基地局装置3に固有の制御情報を通知する共通のRRCシグナリング(Common RRC signaling)である。なお、以下の説明において、単にRRCシグナリングと記載した場合は、RRCシグナリングは専用のRRCシグナリングおよび/または共通のRRCシグナリングである。RRCシグナリングやMAC CEなど、物理層から見て上位の層が用いるシグナリングを上位層シグナリングと称する場合もある。
 以下、本実施形態の無線フレーム(radio frame)の構成について説明する。
 図2は、本実施形態の無線フレームの概略構成を示す図である。無線フレームのそれぞれは、10ms長である。また、無線フレームのそれぞれは2つのハーフフレームから構成される。ハーフフレームのそれぞれは、5ms長である。ハーフフレームのそれぞれは、5のサブフレームから構成される。サブフレームのそれぞれは、1ms長であり、2つの連続するスロットによって定義される。スロットのそれぞれは、0.5ms長である。無線フレーム内のi番目のサブフレームは、(2×i)番目のスロットと(2×i+1)番目のスロットとから構成される。つまり、無線フレームのそれぞれにおいて、10個のサブフレームが規定される。
 サブフレームは、下りリンクサブフレーム(第1のサブフレーム)、上りリンクサブフレーム(第2のサブフレーム)、スペシャルサブフレーム(第3のサブフレーム)などを含む。
 下りリンクサブフレームは下りリンク送信のためにリザーブされるサブフレームである。上りリンクサブフレームは上りリンク送信のためにリザーブされるサブフレームである。スペシャルサブフレームは3つのフィールドから構成される。該3つのフィールドは、DwPTS(Downlink Pilot Time Slot)、GP(Guard Period)、およびUpPTS(Uplink Pilot Time Slot)である。DwPTS、GP、およびUpPTSの合計の長さは1msである。DwPTSは下りリンク送信のためにリザーブされるフィールドである。UpPTSは上りリンク送信のためにリザーブされるフィールドである。GPは下りリンク送信および上りリンク送信が行なわれないフィールドである。なお、スペシャルサブフレームは、DwPTSおよびGPのみによって構成されてもよいし、GPおよびUpPTSのみによって構成されてもよい。スペシャルサブフレームは、TDDにおいて下りリンクサブフレームと上りリンクサブフレームとの間に配置され、下りリンクサブフレームから上りリンクサブフレームに切り替えるために用いられる。
 単一の無線フレームは、下りリンクサブフレーム、上りリンクサブフレーム、および/またはスペシャルサブフレームから構成される。つまり、無線フレームは、下りリンクサブフレームだけで構成されてもよい。また、無線フレームは、上りリンクサブフレームだけで構成されてもよい。
 本実施形態の無線通信システムは、5msと10msの下りリンク‐上りリンク・スイッチポイント周期(downlink-to-uplink switch-point periodicity)をサポートする。下りリンク‐上りリンク・スイッチポイント周期が5msの場合には、無線フレーム内の両方のハーフフレームにスペシャルサブフレームが含まれる。下りリンク‐上りリンク・スイッチポイント周期が10msの場合には、無線フレーム内の最初のハーフフレームのみにスペシャルサブフレームが含まれる。
 以下、本実施形態のスロットの構成について説明する。
 図3は、本実施形態のスロットの構成を示す図である。本実施形態では、OFDMシンボルに対してノーマルCP(normal Cyclic Prefix)が適用される。なお、OFDMシンボルに対して拡張CP(extended Cyclic Prefix)が適用されてもよい。スロットのそれぞれにおいて送信される物理信号または物理チャネルは、リソースグリッドによって表現される。下りリンクにおいて、リソースグリッドは、周波数方向に対する複数のサブキャリアと、時間方向に対する複数のOFDMシンボルによって定義される。上りリンクにおいて、リソースグリッドは、周波数方向に対する複数のサブキャリアと、時間方向に対する複数のSC-FDMAシンボルによって定義される。サブキャリアまたはリソースブロックの数は、セルの帯域幅に依存する。1つのスロットを構成するOFDMシンボルまたはSC-FDMAシンボルの数は、ノーマルCPの場合は7であり、拡張CPの場合は6である。リソースグリッド内のエレメントのそれぞれをリソースエレメントと称する。リソースエレメントは、サブキャリアの番号とOFDMシンボルまたはSC-FDMAシンボルの番号とを用いて識別される。
 リソースブロックは、ある物理チャネル(PDSCHまたはPUSCHなど)のリソースエレメントにマッピングするために用いられる。リソースブロックは、仮想リソースブロックと物理リソースブロックが定義される。ある物理チャネルは、まず仮想リソースブロックにマップされる。その後、仮想リソースブロックは、物理リソースブロックにマップされる。1つの物理リソースブロックは、時間領域において7個の連続するOFDMシンボルまたはSC-FDMAシンボルと周波数領域において12個の連続するサブキャリアとから定義される。ゆえに、1つの物理リソースブロックは(7×12)個のリソースエレメントから構成される。また、1つの物理リソースブロックは、時間領域において1つのスロットに対応し、周波数領域において180kHzに対応する。物理リソースブロックは周波数領域において0から番号が付けられる。また、同一の物理リソースブロック番号が対応する、1つのサブフレーム内の2つのリソースブロックは、物理リソースブロックペア(PRBペア、RBペア)として定義される。
 以下、サブフレームのそれぞれにおいて送信される物理チャネルおよび物理信号について説明する。
 図4は、本実施形態の下りリンクサブフレームにおける物理チャネルおよび物理信号の配置の一例を示す図である。基地局装置3は、下りリンクサブフレームにおいて、下りリンク物理チャネル(PBCH、PCFICH、PHICH、PDCCH、EPDCCH、PDSCH)、および/または下りリンク物理信号(同期信号、下りリンク参照信号)を送信できる。なお、PBCHは無線フレーム内のサブフレーム0のみで送信される。なお、下りリンク参照信号は周波数領域および時間領域において分散するリソースエレメントに配置される。説明の簡略化のため、図4において下りリンク参照信号は図示しない。
 PDCCH領域において、複数のPDCCHが周波数、時間、および/または、空間多重されてもよい。EPDCCH領域において、複数のEPDCCHが周波数、時間、および/または、空間多重されてもよい。PDSCH領域において、複数のPDSCHが周波数、時間、および/または、空間多重されてもよい。PDCCH、PDSCHおよび/またはEPDCCHは周波数、時間、および/または、空間多重されてもよい。
 図5は、本実施形態の上りリンクサブフレームにおける物理チャネルおよび物理信号の配置の一例を示す図である。端末装置1は、上りリンクサブフレームにおいて、上りリンク物理チャネル(PUCCH、PUSCH、PRACH)、および上りリンク物理信号(UL-DMRS、SRS)を送信してもよい。PUCCH領域において、複数のPUCCHが周波数、時間、空間および/またはコード多重される。PUSCH領域において、複数のPUSCHが周波数、時間、空間および/またはコード多重されてもよい。PUCCHおよびPUSCHは周波数、時間、空間および/またはコード多重されてもよい。PRACHは単一のサブフレームまたは2つのサブフレームにわたって配置されてもよい。また、複数のPRACHが符号多重されてもよい。
 SRSは上りリンクサブフレーム内の最後のSC-FDMAシンボルを用いて送信される。つまり、SRSは上りリンクサブフレーム内の最後のSC-FDMAシンボルに配置される。端末装置1は、単一のセルの単一のSC-FDMAシンボルにおいて、SRSと、PUCCH/PUSCH/PRACHとの同時送信を制限できる。端末装置1は、単一のセルの単一の上りリンクサブフレームにおいて、該上りリンクサブフレーム内の最後のSC-FDMAシンボルを除くSC-FDMAシンボルを用いてPUSCHおよび/またはPUCCHを送信し、該上りリンクサブフレーム内の最後のSC-FDMAシンボルを用いてSRSを送信することができる。つまり、単一のセルの単一の上りリンクサブフレームにおいて、端末装置1は、SRSと、PUSCHおよびPUCCHと、を送信することができる。なお、DMRSはPUCCHまたはPUSCHと時間多重される。説明の簡略化のため、図5においてDMRSは図示しない。
 図6は、本実施形態のスペシャルサブフレームにおける物理チャネルおよび物理信号の配置の一例を示す図である。図6において、DwPTSはスペシャルサブフレーム内の1番目から10番目のSC-FDMAシンボルから構成され、GPはスペシャルサブフレーム内の11番目と12番目のSC-FDMAシンボルから構成され、UpPTSはスペシャルサブフレーム内の13番目と14番目のSC-FDMAシンボルから構成される。
 基地局装置3は、スペシャルサブフレームのDwPTSにおいて、PCFICH、PHICH、PDCCH、EPDCCH、PDSCH、同期信号、および、下りリンク参照信号を送信してもよい。基地局装置3は、スペシャルサブフレームのDwPTSにおいて、PBCHの送信を制限できる。端末装置1は、スペシャルサブフレームのUpPTSにおいて、PRACH、およびSRSを送信してもよい。つまり、端末装置1は、スペシャルサブフレームのUpPTSにおいて、PUCCH、PUSCH、およびDMRSの送信を制限できる。
 図7は、本実施形態の端末装置1の構成を示す概略ブロック図である。図示するように、端末装置1は、上位層処理部101、制御部103、受信部105、送信部107、および送受信アンテナ109を含んで構成される。また、上位層処理部101は、無線リソース制御部1011、サブフレーム設定部1013、スケジューリング情報解釈部1015、および、チャネル状態情報(CSI)報告制御部1017を含んで構成される。また、受信部105は、復号化部1051、復調部1053、多重分離部1055、無線受信部1057、およびチャネル測定部1059を含んで構成される。また、送信部107は、符号化部1071、変調部1073、多重部1075、無線送信部1077、および上りリンク参照信号生成部1079を含んで構成される。
 上位層処理部101は、ユーザの操作等により生成された上りリンクデータ(トランスポートブロック)を、送信部107に出力する。また、上位層処理部101は、媒体アクセス制御(MAC: Medium Access Control)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行なう。上位層処理部101は、キャリアアグリゲーションを行う場合、セルのアクティベーション/デアクティベーションを行うために物理層の制御を行う機能及び上りリンクの送信タイミングを管理するために物理層の制御を行う機能を備えている。上位層処理部101は、受信部105で計算する測定の指示、および、受信部105で計算された測定結果を報告するか否かを判断する機能を備えている。
 上位層処理部101が備える無線リソース制御部1011は、自装置の各種設定情報の管理をする。また、無線リソース制御部1011は、上りリンクの各チャネルに配置される情報を生成し、送信部107に出力する。
 上位層処理部101が備えるサブフレーム設定部1013は、基地局装置3により設定される情報に基づいて、基地局装置3および/または基地局装置3とは異なる基地局装置(例えば、基地局装置3A)におけるサブフレーム設定を管理する。例えば、サブフレーム設定は、サブフレームに対する上りリンクまたは下りリンクの設定である。サブフレーム設定は、サブフレームパターン設定(Subframe pattern configuration)、上りリンク-下りリンク設定(Uplink-downlink configuration)、上りリンク参照UL-DL設定(Uplink reference configuration)、下りリンク参照UL-DL設定(Downlink reference configuration)、および/または、送信方向UL-DL設定(transmission direction configuration)を含む。サブフレーム設定部1013は、サブフレーム設定、サブフレームパターン設定、上りリンク-下りリンク設定、上りリンク参照UL-DL設定、下りリンク参照UL-DL設定、および/または、送信方向UL-DL設定をセットする。また、サブフレーム設定部1013は、少なくとも2つのサブフレームセットをセットできる。なお、サブフレームパターン設定は、EPDCCHサブフレーム設定を含む。なお、サブフレーム設定部1013は、端末サブフレーム設定部とも呼称される。
 上位層処理部101が備えるスケジューリング情報解釈部1015は、受信部105を介して受信したDCIフォーマット(スケジューリング情報)の解釈をし、前記DCIフォーマットを解釈した結果に基づいて、受信部105および送信部107の制御を行なうために制御情報を生成し、制御部103に出力する。
 スケジューリング情報解釈部1015は、サブフレーム設定、サブフレームパターン設定、上りリンク-下りリンク設定、上りリンク参照UL-DL設定、下りリンク参照UL-DL設定、および/または、送信方向UL-DL設定に基づいて、送信処理および受信処理を行うタイミングを決定する。
 CSI報告制御部1017は、CSI参照リソースを特定する。CSI報告制御部1017は、チャネル測定部1059に、CSI参照リソースに関連するCQIを導き出すよう指示する。CSI報告制御部1017は、送信部107に、CQIを送信するよう指示をする。CSI報告制御部1017は、チャネル測定部1059がCQIを算出する際に用いる設定をセットする。
 制御部103は、上位層処理部101からの制御情報に基づいて、受信部105および送信部107の制御を行なう制御信号を生成する。制御部103は、生成した制御信号を受信部105および送信部107に出力して、受信部105および送信部107の制御を行なう。
 受信部105は、制御部103から入力された制御信号に基づいて、送受信アンテナ109が基地局装置3から受信した受信信号を、分離、復調、復号する。受信部105は、復号した情報を上位層処理部101に出力する。
 無線受信部1057は、送受信アンテナ109が受信した下りリンクの信号を、中間周波数に変換し(ダウンコンバート: down convert)、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信した信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。無線受信部1057は、変換したディジタル信号からガードインターバル(Guard Interval: GI)に相当する部分を除去し、ガードインターバルを除去した信号に対して高速フーリエ変換(Fast Fourier Transform: FFT)を行ない、周波数領域の信号を抽出する。
 多重分離部1055は、抽出した信号から、PHICH、PDCCH、EPDCCH、PDSCH、および/または下りリンク参照信号を、それぞれ分離する。また、多重分離部1055は、チャネル測定部1059から入力された伝搬路の推定値から、PHICH、PDCCH、EPDCCH、および/またはPDSCHの伝搬路の補償を行なう。また、多重分離部1055は、分離した下りリンク参照信号をチャネル測定部1059に出力する。
 復調部1053は、PHICHに対して対応する符号を乗算して合成し、合成した信号に対してBPSK(Binary Phase Shift Keying)変調方式の復調を行ない、復号化部1051へ出力する。復号化部1051は、自装置宛てのPHICHを復号し、復号したHARQインディケータを上位層処理部101に出力する。復調部1053は、PDCCHおよび/またはEPDCCHに対して、QPSK変調方式の復調を行ない、復号化部1051へ出力する。復号化部1051は、PDCCHおよび/またはEPDCCHの復号を試み、復号に成功した場合、復号した下りリンク制御情報と下りリンク制御情報が対応するRNTIとを上位層処理部101に出力する。
 復調部1053は、PDSCHに対して、QPSK(Quadrature Phase Shift Keying)、16QAM(Quadrature Amplitude Modulation)、64QAM等の下りリンクグラントで通知された変調方式の復調を行ない、復号化部1051へ出力する。復号化部1051は、下りリンク制御情報で通知された符号化率に関する情報に基づいて復号を行ない、復号した下りリンクデータ(トランスポートブロック)を上位層処理部101へ出力する。
 チャネル測定部1059は、多重分離部1055から入力された下りリンク参照信号から下りリンクのパスロスやチャネルの状態を測定し、測定したパスロスやチャネルの状態を上位層処理部101へ出力する。また、チャネル測定部1059は、下りリンク参照信号から下りリンクの伝搬路の推定値を算出し、多重分離部1055へ出力する。チャネル測定部1059は、CQIの算出のために、チャネル測定、および/または、干渉測定を行なう。チャネル測定部1059は、多重分離部1055から入力された下りリンク参照信号から上位層へ通知する測定を行う。チャネル測定部1059は、RSRPおよびRSRQの計算を行い、上位層処理部101へ出力する。
 送信部107は、制御部103から入力された制御信号に従って、上りリンク参照信号を生成し、上位層処理部101から入力された上りリンクデータ(トランスポートブロック)を符号化および変調し、PUCCH、PUSCH、および生成した上りリンク参照信号を多重し、送受信アンテナ109を介して基地局装置3に送信する。
 符号化部1071は、上位層処理部101から入力された上りリンク制御情報を畳み込み符号化、ブロック符号化等の符号化を行なう。また、符号化部1071は、PUSCHのスケジューリングに用いられる情報に基づいてターボ符号化を行なう。
 変調部1073は、符号化部1071から入力された符号化ビットをBPSK、QPSK、16QAM、64QAM等の下りリンク制御情報で通知された変調方式または、チャネル毎に予め定められた変調方式で変調する。変調部1073は、PUSCHのスケジューリングに用いられる情報に基づき、空間多重されるデータの系列の数を決定し、MIMO SM(Multiple Input Multiple Output Spatial Multiplexing)を用いることにより同一のPUSCHで送信される複数の上りリンクデータを、複数の系列にマッピングし、この系列に対してプレコーディング(precoding)を行なう。
 上りリンク参照信号生成部1079は、基地局装置3を識別するための物理層セル識別子(physical cell identity: PCI、Cell IDなどと称する。)、上りリンク参照信号を配置する帯域幅、上りリンクグラントで通知されたサイクリックシフト、DMRSシーケンスの生成に対するパラメータの値などを基に、予め定められた規則(式)で求まる系列を生成する。多重部1075は、制御部103から入力された制御信号に従って、PUSCHの変調シンボルを並列に並び替えてから離散フーリエ変換(Discrete Fourier Transform: DFT)する。また、多重部1075は、PUCCHとPUSCHの信号と生成した上りリンク参照信号を送信アンテナポート毎に多重する。つまり、多重部1075は、PUCCHとPUSCHの信号と生成した上りリンク参照信号を送信アンテナポート毎にリソースエレメントに配置する。
 無線送信部1077は、多重された信号を逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)して、SC-FDMA方式の変調を行い、SC-FDMA変調されたSC-FDMAシンボルにガードインターバルを付加し、ベースバンドのディジタル信号を生成し、ベースバンドのディジタル信号をアナログ信号に変換し、アナログ信号から中間周波数の同相成分および直交成分を生成し、中間周波数帯域に対する余分な周波数成分を除去し、中間周波数の信号を高周波数の信号に変換(アップコンバート: up convert)し、余分な周波数成分を除去し、電力増幅し、送受信アンテナ109に出力して送信する。
 図8は、本実施形態の基地局装置3の構成を示す概略ブロック図である。図示するように、基地局装置3は、上位層処理部301、制御部303、受信部305、送信部307、および、送受信アンテナ309、を含んで構成される。また、上位層処理部301は、無線リソース制御部3011、サブフレーム設定部3013、スケジューリング部3015、および、CSI報告制御部3017を含んで構成される。また、受信部305は、復号化部3051、復調部3053、多重分離部3055、無線受信部3057とチャネル測定部3059を含んで構成される。また、送信部307は、符号化部3071、変調部3073、多重部3075、無線送信部3077、および、下りリンク参照信号生成部3079を含んで構成される。
 上位層処理部301は、媒体アクセス制御(MAC: Medium Access Control)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行なう。また、上位層処理部301は、受信部305、および送信部307の制御を行なうために制御情報を生成し、制御部303に出力する。また、上位層処理部301は、報告された測定結果を取得する機能を備えている。
 上位層処理部301が備える無線リソース制御部3011は、下りリンクのPDSCHに配置される下りリンクデータ(トランスポートブロック)、システム情報、RRCメッセージ、MAC CE(Control Element)などを生成し、又は上位ノードから取得し、送信部307に出力する。また、無線リソース制御部3011は、端末装置1各々の各種設定情報の管理をする。
 上位層処理部301が備えるサブフレーム設定部3013は、サブフレーム設定、サブフレームパターン設定、上りリンク-下りリンク設定、上りリンク参照UL-DL設定、下りリンク参照UL-DL設定、および/または、送信方向UL-DL設定の管理を、端末装置1のそれぞれに対して行なう。サブフレーム設定部3013は、端末装置1のそれぞれに対して、サブフレーム設定、サブフレームパターン設定、上りリンク-下りリンク設定、上りリンク参照UL-DL設定、下りリンク参照UL-DL設定、および/または、送信方向UL-DL設定をセットする。サブフレーム設定部3013は、サブフレーム設定に関する情報を端末装置1に送信する。なお、サブフレーム設定部3013は、基地局サブフレーム設定部とも呼称される。
 基地局装置3は、端末装置1に対する、サブフレーム設定、サブフレームパターン設定、上りリンク-下りリンク設定、上りリンク参照UL-DL設定、下りリンク参照UL-DL設定、および/または、送信方向UL-DL設定を決定してもよい。また、基地局装置3は、端末装置1に対する、サブフレーム設定、サブフレームパターン設定、上りリンク-下りリンク設定、上りリンク参照UL-DL設定、下りリンク参照UL-DL設定、および/または、送信方向UL-DL設定を上位ノードから指示されてもよい。
 例えば、サブフレーム設定部3013は、上りリンクのトラフィック量および下りリンクのトラフィック量に基づいて、サブフレーム設定、サブフレームパターン設定、上りリンク-下りリンク設定、上りリンク参照UL-DL設定、下りリンク参照UL-DL設定、および/または、送信方向UL-DL設定を決定してもよい。
 サブフレーム設定部3013は、少なくとも2つのサブフレームセットの管理を行なうことができる。サブフレーム設定部3013は、端末装置1のそれぞれに対して、少なくとも2つのサブフレームセットをセットしてもよい。サブフレーム設定部3013は、サービングセルのそれぞれに対して、少なくとも2つのサブフレームセットをセットしてもよい。サブフレーム設定部3013は、CSIプロセスのそれぞれに対して、少なくとも2つのサブフレームセットをセットしてもよい。サブフレーム設定部3013は、少なくとも2つのサブフレームセットを示す情報を、送信部307を介して、端末装置1に送信できる。
 上位層処理部301が備えるスケジューリング部3015は、受信したチャネル状態情報およびチャネル測定部3059から入力された伝搬路の推定値やチャネルの品質などから、物理チャネル(PDSCHおよびPUSCH)を割り当てる周波数およびサブフレーム、物理チャネル(PDSCHおよびPUSCH)の符号化率および変調方式および送信電力などを決定する。スケジューリング部3015は、フレキシブルサブフレームにおいて下りリンク物理チャネルおよび/または下りリンク物理信号をスケジュールするか、上りリンク物理チャネルおよび/または上りリンク物理信号をスケジュールするかを決定する。スケジューリング部3015は、スケジューリング結果に基づき、受信部305、および送信部307の制御を行なうために制御情報(例えば、DCIフォーマット)を生成し、制御部303に出力する。
 スケジューリング部3015は、スケジューリング結果に基づき、物理チャネル(PDSCHおよびPUSCH)のスケジューリングに用いられる情報を生成する。スケジューリング部3015は、UL-DL設定、サブフレームパターン設定、上りリンク-下りリンク設定、上りリンク参照UL-DL設定、下りリンク参照UL-DL設定、および/または、送信方向UL-DL設定に基づいて、送信処理および受信処理を行うタイミング(サブフレーム)を決定する。
 上位層処理部301が備えるCSI報告制御部3017は、端末装置1のCSI報告を制御する。CSI報告制御部3017は、端末装置1がCSI参照リソースにおいてCQIを導き出すために想定する、各種設定を示す情報を、送信部307を介して、端末装置1に送信する。
 制御部303は、上位層処理部301からの制御情報に基づいて、受信部305、および送信部307の制御を行なう制御信号を生成する。制御部303は、生成した制御信号を受信部305、および送信部307に出力して受信部305、および送信部307の制御を行なう。
 受信部305は、制御部303から入力された制御信号に従って、送受信アンテナ309を介して端末装置1から受信した受信信号を分離、復調、復号し、復号した情報を上位層処理部301に出力する。無線受信部3057は、送受信アンテナ309を介して受信された上りリンクの信号を、中間周波数に変換し(ダウンコンバート: down convert)、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信された信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。
 無線受信部3057は、変換したディジタル信号からガードインターバル(Guard Interval: GI)に相当する部分を除去する。無線受信部3057は、ガードインターバルを除去した信号に対して高速フーリエ変換(Fast Fourier Transform: FFT)を行い、周波数領域の信号を抽出し多重分離部3055に出力する。
 多重分離部1055は、無線受信部3057から入力された信号をPUCCH、PUSCH、上りリンク参照信号などの信号に分離する。なお、この分離は、予め基地局装置3が無線リソース制御部3011で決定し、各端末装置1に通知した上りリンクグラントに含まれる無線リソースの割り当て情報に基づいて行なわれる。また、多重分離部3055は、チャネル測定部3059から入力された伝搬路の推定値から、PUCCHとPUSCHの伝搬路の補償を行なう。また、多重分離部3055は、分離した上りリンク参照信号をチャネル測定部3059に出力する。
 復調部3053は、PUSCHを逆離散フーリエ変換(Inverse Discrete Fourier Transform: IDFT)し、変調シンボルを取得し、PUCCHとPUSCHの変調シンボルそれぞれに対して、BPSK(Binary Phase Shift Keying)、QPSK、16QAM、64QAM等の予め定められた、または自装置が端末装置1各々に上りリンクグラントで予め通知した変調方式を用いて受信信号の復調を行なう。復調部3053は、端末装置1各々に上りリンクグラントで予め通知した空間多重される系列の数と、この系列に対して行なうプリコーディングを指示する情報に基づいて、MIMO SMを用いることにより同一のPUSCHで送信された複数の上りリンクデータの変調シンボルを分離する。
 復号化部3051は、復調されたPUCCHとPUSCHの符号化ビットを、予め定められた符号化方式の、予め定められた、又は自装置が端末装置1に上りリンクグラントで予め通知した符号化率で復号を行ない、復号した上りリンクデータと、上りリンク制御情報を上位層処理部101へ出力する。PUSCHが再送信の場合は、復号化部3051は、上位層処理部301から入力されるHARQバッファに保持している符号化ビットと、復調された符号化ビットを用いて復号を行なう。チャネル測定部309は、多重分離部3055から入力された上りリンク参照信号から伝搬路の推定値、チャネルの品質などを測定し、多重分離部3055および上位層処理部301に出力する。
 送信部307は、制御部303から入力された制御信号に従って、下りリンク参照信号を生成し、上位層処理部301から入力されたHARQインディケータ、下りリンク制御情報、下りリンクデータを符号化、および変調し、PHICH、PDCCH、EPDCCH、PDSCH、および下りリンク参照信号を多重して、送受信アンテナ309を介して端末装置1に信号を送信する。
 符号化部3071は、上位層処理部301から入力されたHARQインディケータ、下りリンク制御情報、および下りリンクデータを、ブロック符号化、畳み込み符号化、ターボ符号化等の予め定められた符号化方式を用いて符号化を行なう、または無線リソース制御部3011が決定した符号化方式を用いて符号化を行なう。変調部3073は、符号化部3071から入力された符号化ビットをBPSK、QPSK、16QAM、64QAM等の予め定められた、または無線リソース制御部3011が決定した変調方式で変調する。
 下りリンク参照信号生成部3079は、基地局装置3を識別するための物理レイヤセル識別子(PCI)などを基に予め定められた規則で求まる、端末装置1が既知の系列を下りリンク参照信号として生成する。多重部3075は、変調された各チャネルの変調シンボルと生成された下りリンク参照信号を多重する。つまり、多重部3075は、変調された各チャネルの変調シンボルと生成された下りリンク参照信号をリソースエレメントに配置する。
 無線送信部3077は、多重された変調シンボルなどを逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)して、OFDM方式の変調を行い、OFDM変調されたOFDMシンボルにガードインターバルを付加し、ベースバンドのディジタル信号を生成し、ベースバンドのディジタル信号をアナログ信号に変換し、アナログ信号から中間周波数の同相成分および直交成分を生成し、中間周波数帯域に対する余分な周波数成分を除去し、中間周波数の信号を高周波数の信号に変換(アップコンバート: up convert)し、余分な周波数成分を除去し、電力増幅し、送受信アンテナ309に出力して送信する。
 ここで、PDCCHまたはEPDCCHは、下りリンク制御情報(DCI)を端末装置へ通知(指定)するために使用される。例えば、下りリンク制御情報には、PDSCHのリソース割り当てに関する情報、MCS(Modulation and Coding scheme)に関する情報、スクランブリングアイデンティティ(スクランブリング識別子とも呼称される)に関する情報、参照信号系列アイデンティティ(ベースシーケンスアイデンティティ、ベースシーケンス識別子、ベースシーケンスインデックスとも呼称される)に関する情報などが含まれる。
 以下では、小セルについて説明する。
 小セルとは、マクロセルに比べて低送信電力の基地局装置3によって構成される、カバレッジが小さなセルの総称である。小セルは、カバレッジが小さく設定することが可能となるため、密に配置して運用することができる。小セルの基地局装置3は、マクロセルの基地局装置と異なる場所に配置される。密に配置される小セル同士は同期され、小セルクラスター(Small cell Cluster)として構成することができる。小セルクラスター内の小セル間は、バックホール(光ファイバー、X2インターフェース、S1インターフェース)で接続され、小セルクラスター内の小セルでは、eICIC(enhanced Inter-Cell Interference Coordination)、FeICIC(Further enhanced Inter-Cell Interference Coordination)、CoMP(Coordinated Multi-Point transmission/reception)などの干渉抑制技術を適用することができる。小セルはマクロセルと異周波数帯で運用されてもよいし、同周波数帯で運用されてもよい。特に、伝搬路減衰(パスロス)の観点から、小セルをマクロセルに比べて高周波数帯で運用することで、より小カバレッジで構成することが容易である。
 異周波数帯で運用される小セルは、マクロセルとキャリアアグリゲーション技術またはデュアルコネクティビティ技術を用いて運用される。
 また、小セルは、マクロセルと同一周波数で運用されてもよい。小セルは、マクロセルのカバレッジ外で運用されてもよい。また、小セルの基地局装置3は、マクロセルの基地局装置と同一の場所に配置されてもよい。
 また、あるセルがマクロセルか小セルかは、基地局装置3で認識するものであり、端末装置1が認識する必要はない。例えば、基地局装置3は端末装置1に対して、マクロセルをPcellとして設定し、小セルをScellまたはpSCellとして設定することができる。いずれの場合においても、端末装置1はPCell、SCellまたはpSCellとして認識するだけでよく、マクロセルまたは小セルとして認識する必要はない。
 以下では、キャリアアグリゲーション技術およびデュアルコネクティビティ技術の詳細について説明する。
 端末装置1の能力(性能、機能)に依存して、セカンダリーセルはプライマリーセルと一緒にサービングセルのセットを構成して設定される。端末装置1に設定される下りリンクのコンポーネントキャリアの数は端末装置1に設定される上りリンクコンポーネントキャリアの数よりも多いか同じでなければならず、上りリンクコンポーネントキャリアのみをセカンダリーセルとして設定することはできない。
 端末装置1は、PUCCHの送信に常にプライマリーセルおよびプライマリーセカンダリーセルを用いる。言い換えると、端末装置1は、プライマリーセルおよびプライマリーセカンダリーセル以外のセカンダリーセルで、PUCCHを送信することを期待しない。
 セカンダリーセルの再設定/追加/削除はRRCによって行われる。新しいセカンダリーセルを追加するとき、専用RRCシグナリングによって新しいセカンダリーセルが必要とされる全てのシステム情報を送信する。すなわち、RRCコネクテッドモードにおいては、報知によってシステム情報をセカンダリーセルから直接得る必要はない。
 キャリアアグリゲーションが設定されたとき、セカンダリーセルのアクティベーション/デアクティベーションの仕組みがサポートされる。プライマリーセルはアクティベーション/デアクティベーションは適用されない。セカンダリーセルがデアクティベーションされたとき、端末装置1は関連するPDCCHまたはPDSCHを受信する必要がなく、関連する上りリンクで送信できず、そしてCQI測定を行なう必要がない。反対に、セカンダリーセルがアクティベーションされたとき、端末装置1はPDSCHとPDCCHを受信するため、CQI測定を行なうことができると期待する。
 アクティベーション/デアクティベーションの仕組みはMAC CEとデアクティベーションタイマーの組み合わせに基づく。MAC CEはセカンダリーセルのアクティベーションとデアクティベーションの情報をビットマップで通知する。1がセットされたビットは、関連するセカンダリーセルのアクティベーションを示し、0がセットされたビットは、関連するセカンダリーセルのデアクティベーションを示す。
 なお、端末装置1に設定されたセカンダリーセルは、初期状態としてデアクティベーションが設定されている。つまり、端末装置1に対して、セカンダリーセルに対する種々のパラメータが設定されたとしても、すぐにそのセカンダリーセルを用いて通信が行なえるとは限らない。
 次に、MAC CEの一例について説明する。
 アクティベーション/デアクティベーションMAC CEの構成の一例を説明する。MAC CEは、固定サイズであって、7つのCiフィールドと1つのRフィールドで構成されていて、次のように定義される。Ciは、セカンダリーセルインデックス(SCellIndex)iに設定されたセカンダリーセルがある場合、Ciフィールドはセカンダリーセルインデックスiを伴うセカンダリーセルのアクティベーション/デアクティベーションの状態を示す。セカンダリーセルインデックスiが設定されたセカンダリーセルがない場合、端末装置1はCiフィールドを無視する。Ciフィールドが“1”にセットされている場合、セカンダリーセルインデックスiを伴うセカンダリーセルがアクティベートされることを示す。Ciフィールドが“0”にセットされている場合、セカンダリーセルインデックスiを伴うセカンダリーセルがデアクティベートされていることを示す。また、Rは、リザーブされたビットであり、“0”にセットされている。
 次に、セカンダリーセルに対するデアクティベーションタイマー(Deactivation Timer)の一例について説明する。
 デアクティベーションタイマーがセカンダリーセルに対して設定される場合、セカンダリーセルの維持時間に関連するタイマーである。端末装置1は、セカンダリーセル毎にデアクティベーションタイマーを保持し、デアクティベーションタイマーが満了すると、満了したデアクティベーションタイマーに関連するセカンダリーセルをデアクティベーションする。
 セカンダリーセルに対するデアクティベーションタイマーの初期値は、上位層(RRC層)からパラメータsCellDeactivationTimer-r10を用いて設定される。セカンダリーセルに対するデアクティベーションタイマーの初期値は、例えば、無線フレームの数に関連する値であるrf2、rf4、rf8、rf16、rf32、rf64、rf128の内から1つが設定される。ここで、rf2は、2無線フレームに対応し、rf4は、4無線フレームに対応し、rf8は、8無線フレームに対応し、rf16は、16無線フレームに対応し、rf32は、32無線フレームに対応し、rf64は、64無線フレームに対応し、rf128は、128無線フレームに対応する。
 なお、セカンダリーセルに対するデアクティベーションタイマーに関連するフィールド(パラメータsCellDeactivationTimer-r10)は、1つ以上のセカンダリーセルが設定された端末装置1のみに設定される。
 なお、デアクティベーションタイマーに関連するフィールドが存在しない場合、端末装置1は、デアクティベーションタイマーに関連するフィールドの既存の値を削除し、値として無限大(infinity)が設定されていると仮定する。
 なお、端末装置1に対して、セカンダリーセルに対するデアクティベーションタイマーに関連するフィールドが1つだけ設定される場合には、各セカンダリーセルに同じデアクティベーションタイマーの初期値が適応される(デアクティベーションタイマーに関連する機能は各セカンダリーセルで独立に実行される)。
 アクティベーション/デアクティベーションの仕組みの一例について説明する。
 セカンダリーセルのアクティベーションを指示するMAC CEを受信した場合、端末装置1は、MAC CEによってアクティベーションが設定されたセカンダリーセルをアクティベーションとして設定する。ここで、端末装置1は、MAC CEによってアクティベーションが設定されたセカンダリーセルに対して、以下のオペレーションを行なうことができる。そのオペレーションは、セカンダリーセルでのSRSの送信、セカンダリーセルに対するCQI(Channel Quality Indicator)/PMI(Precoding Matrix Indicator)/RI(Rank Indicator)/PTI(Precoding Type Indicator)の報告、セカンダリーセルでの上りリンクデータ(UL-SCH)の送信、セカンダリーセルでのRACHの送信、セカンダリーセルでのPDCCHのモニタ、セカンダリーセルに対するPDCCHのモニタである。
 セカンダリーセルのアクティベーションを指示するMAC CEを受信した場合、端末装置1は、MAC CEによってアクティベーションが設定されたセカンダリーセルに関連するデアクティベーションタイマーをスタートまたはリスタートする。なお、スタートとは、値を保持してタイマーのカウントが開始することである。なお、リスタートとは、値を初期値に設定してタイマーのカウントが開始することである。
 セカンダリーセルのアクティベーションを指示するMAC CEを受信した場合、端末装置1は、送信電力余力(パワーヘッドルーム(PHR: Power head room))の送信をトリガする。
 セカンダリーセルのデアクティベーションを指示するMAC CEを受信した場合、もしくは、セカンダリーセルに関連付けられているデアクティベーションタイマーが満了した場合、端末装置1は、MAC CEによってデアクティベーションが設定されたセカンダリーセルをデアクティベーションとして設定する。
 セカンダリーセルのデアクティベーションを指示するMAC CEを受信した場合、もしくは、セカンダリーセルに関連付けられているデアクティベーションタイマーが満了した場合、端末装置1は、MAC CEによってデアクティベーションが設定されたセカンダリーセルに関連するデアクティベーションタイマーをストップする。
 セカンダリーセルのデアクティベーションを指示するMAC CEを受信した場合、もしくは、セカンダリーセルに関連付けられているデアクティベーションタイマーが満了した場合、端末装置1は、MAC CEによってデアクティベーションが設定されたセカンダリーセルに関連する全てのHARQバッファをフラッシュする。
 アクティベーションされたセカンダリーセルにおけるPDCCHが、下りリンクグラント(downlink grant)または上りリンクグラント(uplink grant)を示す場合、もしくは、アクティベーションされたセカンダリーセルをスケジューリングするサービングセルにおけるPDCCHが、アクティベーションされたセカンダリーセルに対する下りリンクグラント(downlink grant)またはアクティベーションされたセカンダリーセルに対する上りリンクグラント(uplink grant)を示す場合、端末装置1は、アクティベーションされたセカンダリーセルに関連するデアクティベーションタイマーをリスタートする。
 セカンダリーセルがデアクティベートされた場合、端末装置1は、デアクティベートされたセカンダリーセルに対して、以下のオペレーションを行なわない。そのオペレーションは、セカンダリーセルでSRSの送信、セカンダリーセルに対するCQI/PMI/RI/PTIの報告、セカンダリーセルで上りリンクデータ(UL-SCH)の送信、セカンダリーセルでRACHの送信、セカンダリーセルでPDCCHのモニタ、セカンダリーセルに対するPDCCHのモニタである。
 ランダムアクセスプロシージャ(Random Access procedure)を実行中のセカンダリーセルに対してデアクティベーションが設定された場合、端末装置1は、実行中のランダムアクセスプロシージャを中止する。
 基地局装置3は、端末装置1とデータを送受信しない場合であっても、アイドル状態の端末装置1が基地局装置3に接続させるために、PSS/SSS、CRS、PBCH、SIBなどの同期信号、参照信号、報知情報を送信する。そのため、それらの信号はセル間干渉を発生させる。また、それらの信号が常時送信されることによって、基地局装置3の電力が浪費されることになる。
 そこで、基地局装置3は、ON状態(動作中の状態、起動の状態)とOFF状態(停止の状態)に遷移する。基地局装置3が端末装置1とデータを送受信しない場合、基地局装置3はOFF状態に遷移することができる。基地局装置3が端末装置1とデータを送受信する場合、基地局装置3はON状態に遷移することができる。
 例えば、基地局装置3が停止の状態とは、PSS/SSS、CRS、PBCH、PDCCH、PDSCHのうち、少なくとも1つが送信されない状態である。例えば、1ハーフフレーム以上(5サブフレーム以上)PSS/SSSが送信されない状態である。例えば、基地局装置3が停止の状態とは、DSのみが送信されている状態である。なお、基地局装置3は、停止の状態でも基地局装置の受信部で受信処理を行ってもよい。
 セル/基地局装置3が起動の状態とは、少なくともPSS/SSS、CRSのうち、少なくとも1つが送信される状態である。例えば、1ハーフフレーム中にPSS/SSSが送信される状態である。
 また、基地局装置3のON状態およびOFF状態は、端末装置1が所定のチャネルまたは所定の信号に対する処理(想定、動作)で関連付けられてもよい。ここで処理は、モニタリング、受信処理または送信処理などである。すなわち、端末装置1は基地局装置3がON状態またはOFF状態であることを認識しなくてもよく、端末装置1は所定のチャネルまたは所定の信号に対する処理を切り替えればよい。本実施形態における説明において、基地局装置3における起動の状態と停止の状態との遷移は、端末装置1における所定のチャネルまたは所定の信号に対する処理の切り替えを含む。基地局装置3における起動の状態は、端末装置1における所定のチャネルまたは所定の信号に対する第1の処理に相当する。基地局装置3における停止の状態は、端末装置1における所定のチャネルまたは所定の信号に対する第2の処理に相当する。
 例えば、基地局装置3のON状態は、端末装置1が従来の端末装置と同様の処理が可能な状態である。基地局装置3のON状態における具体的な例は以下の通りである。端末装置1はPSS、SSSおよびPBCHを受信することを期待する。端末装置1は所定のサブフレームにおいてPDCCHおよび/またはEPDCCHのモニタリングをする。端末装置1は設定されたCSI報告モードに基づいてCSI報告を行なう。端末装置1はCSI報告のための参照信号(例えば、CRSまたはCSI-RS)およびCSI参照リソースが存在することを期待する。
 例えば、基地局装置3のOFF状態は、端末装置1が従来の端末装置とは異なる処理を行う状態である。基地局装置3のOFF状態における具体的な例は以下の通りである。端末装置1はPSS、SSSおよびPBCHを受信することを期待しない。端末装置1は全てのサブフレームにおいてPDCCHおよび/またはEPDCCHのモニタリングをしない。端末装置1は設定されたCSI報告モードに関わらずCSI報告をしない。端末装置1はCSI報告のための参照信号(例えば、CRSまたはCSI-RS)およびCSI参照リソースが存在することを期待しない。
 基地局装置3における起動の状態と停止の状態との遷移は、例えば、端末装置1の接続状態、前記基地局装置3に接続された端末装置1のデータリクエスト状況、端末装置1からのCSI測定および/またはRRM測定の情報、などに基づいて決定される。
 基地局装置3は、基地局装置3における起動の状態と停止の状態との遷移に関する情報(セル状態情報)を、端末装置1に対して、明示的または黙示的に設定または通知することができる。例えば、基地局装置3は、セル状態情報を、RRC、MAC、PDCCHおよび/またはEPDCCHを用いて、端末装置1に対して明示的に通知する。基地局装置3は、セル状態情報を、所定のチャネルまたは信号の有無に応じて、端末装置1に対して黙示的に通知する。
 起動の状態の基地局装置3が停止の状態へ遷移する手続き(セル状態情報の通知)の一例について説明する。
 端末装置1が接続している基地局装置3(サービングセル)は、端末装置1の接続状態、端末装置1のデータの状況、端末装置1の測定の情報に基づいて、起動の状態を停止の状態に遷移させるか否かを決定する。停止の状態に遷移させると判断した基地局装置3は、周囲セルの基地局装置3に停止の状態に遷移する情報を送信し、セルの停止準備を行う。なお、起動の状態を停止の状態に遷移させるか否かの決定、および、停止の状態に遷移する情報の送信は、サービングセルで行われなくてもよく、例えば、MME(Mobility Management Entity)、S-GW(Serving Gateway)で決定および送信されてもよい。セルの停止準備では、前記基地局装置3に端末装置1が接続されている場合に、端末装置1に対して周囲セルにハンドオーバーさせる指示を送信、もしくは、デアクティベーションさせる指示を送信、などを行う。セルの停止準備によって接続された端末装置1がいない前記サービングセルは、起動の状態から停止の状態へ遷移する。
 端末装置1が停止の状態の基地局装置3と通信を行う場合に、前記基地局装置3は、停止の状態から起動の状態に遷移する。なお、停止から起動の状態に遷移するまでの時間および起動から停止の状態に遷移するまでの時間を遷移時間(Transition Time)と称する。遷移時間を短くすることによって、基地局装置3の消費電力や種々の干渉を低減することができる。
 停止の状態の基地局装置3が起動の状態へ遷移するか否かは、例えば、端末装置1からの上りリンク参照信号、端末装置1からのセルの検出情報、端末装置1からの物理層の測定の情報、などに基づいて決定される。
 物理層の測定の情報に基づく停止の状態の基地局装置3が起動の状態へ遷移する手続きの一例について説明する。
 端末装置1が接続している基地局装置3(サービングセル)と停止の状態の基地局装置3(隣接セル)は、バックホールを介してDSの設定を共有する。また、サービングセルは、前記端末装置1に前記DSの設定を通知する。隣接セルは、DSを送信する。端末装置1は、隣接セルから送信されたDSを、サービングセルから通知されたDSの設定に基づいて検出する。また、端末装置1は、隣接セルから送信されたDSを用いて物理層の測定を行なう。端末装置1は、サービングセルに測定の報告を行う。サービングセルは、端末装置1からの測定の報告に基づいて、停止の状態の基地局装置3を起動の状態に遷移させるか否かの決定を行ない、起動の状態に遷移させることが決定した場合はバックホールを介して起動を指示する情報を停止の状態の基地局装置3に通知する。なお、停止の状態を起動の状態に遷移させるか否かの決定、および、起動を指示する情報の送信は、サービングセルで行われなくてもよく、例えば、MME(Mobility Management Entity)、S-GW(Serving Gateway)で決定および送信されてもよい。起動を指示する情報を受けた隣接セルは、停止の状態から起動の状態へ遷移する。
 物理層の測定の情報に基づく停止の状態の基地局装置3が起動の状態へ遷移する手続きの一例が説明される。
 端末装置が接続している基地局装置3(サービングセル)と停止の状態の基地局装置3(隣接セル)は、バックホールを介して端末装置1のSRSの設定を共有する。また、サービングセルは、前記端末装置1に前記SRSの設定を通知する。端末装置1は、前記SRSの設定またはSRS要求の指示に基づいてSRSを送信する。隣接セルは、端末装置1から送信されたSRSを検出する。また、隣接セルは、端末装置1から送信されたSRSを用いて物理層の測定を行う。隣接セルは、SRSによる測定結果に基づいて、基地局装置3を起動の状態に遷移させるか否かの決定を行い、停止の状態から起動の状態へ遷移する。なお、停止の状態を起動の状態に遷移させるか否かの決定は、隣接セルで行われなくてもよく、例えば、サービングセル、MME(Mobility Management Entity)、S-GW(Serving Gateway)で決定および送信されてもよい。この場合、隣接セルは、SRSを用いて物理層の測定を行った後、サービングセル、MME、S-GWに測定結果を送信し、起動を指示する情報を受信する。
 サービングセルは、端末装置1に対して周囲セルの起動/停止の状態を示す情報を通知してもよい。端末装置1は、セルの起動の状態または停止の状態を認知することで、端末装置1の振る舞いを切り替える。前記端末装置1の振る舞いは、例えば、干渉の測定方法などである。
 セル状態情報(セルの起動/停止の状態を示す情報)の通知方法の一例について説明する。
 対象セルが起動/停止の状態を示す情報は、L1シグナリング(Layer 1 signalling)によって通知される。言い換えると、対象セルが起動/停止の状態を示す情報は、PDCCHもしくはEPDCCHによって通知される。対象セルに対応する1ビットが割り当てられ、0(false、disable)は停止を示し、1(true、enable)は起動を示す。対象セルに対応するビットは、集合するビットマップとして構成し、同時に複数のセルに対して起動/停止の状態を通知されてもよい。ビットと対象セルの紐付けは、専用RRCシグナリングによって通知される。
 起動/停止の状態を示す情報は、下りリンク制御情報(DCI: Downlink Control Information)フォーマット1Cで通知される。なお、起動/停止の状態を示す情報は、DCIフォーマット3/3Aで通知されてもよい。なお、起動/停止の状態を示す情報は、DCIフォーマット1Cと同じペイロードサイズ(ビット数)のフォーマットで通知されてもよい。
 次に、DCIフォーマットについて説明する。
 DCIフォーマットは、上りリンクスケジューリングに関連するDCIフォーマットと下りリンクスケジューリングに関連するDCIフォーマットがある。上りリンクスケジューリングに関連するDCIフォーマットを上りリンクグラント、下りリンクスケジューリングに関連するDCIフォーマットを下りリンクグラント(下りリンクアサインメント)と称する。また、1つのDCIフォーマットを、複数の端末装置1に対して、送信してもよい。例えば、送信電力制御コマンド(TPC command: Transmission Power Control command)のみを送信する場合には、複数の端末装置1に対してまとめて送信してもよい。そのようなスケジューリング(またはトリガリング)をグループスケジューリング(グループトリガリング)と称する。端末装置1は、個別にインデックスが割り当てられ、そのインデックスに基づくビットを検出する。
 DCIフォーマット0は、1つの上りリンクセルにおけるPUSCHのスケジューリングに対して用いられる。
 DCIフォーマット1は、1つのセルにおける1つのPDSCHコードワードのスケジューリングに対して用いられる。
 DCIフォーマット1Aは、1つのセルにおける1つのPDSCHコードワードのコンパクトスケジューリングおよびPDCCHオーダーによって開始されるランダムアクセス処理に対して用いられる。なお、PDCCHオーダーに相当するDCIは、PDCCHもしくはEPDCCHによって伝送されてもよい。DCIフォーマット0とDCIフォーマット1Aは、同じビット情報フィールドを用いて送信することができ、あるビットフィールドに示される値に基づいて、端末装置1は、受信したビット情報フィールドにマッピングされたDCIフォーマットがDCIフォーマット0であるかDCIフォーマット1Aであるかを判別する。
 DCIフォーマット1Bは、プレコーディング情報を伴う1つのセルにおける1つのPDSCHコードワードのコンパクトスケジューリングに対して用いられる。
 DCIフォーマット1Cは、マルチキャスト制御チャネル(MCCH: Multicast Control Channel)の変化(変更)を通知するため、および、1つのPDSCHコードワードのコンパクトスケジューリングを行なうために用いられる。また、DCIフォーマット1Cは、RA-RNTI(Random Access - Radio Network Temporary Identifier)を用いてスクランブルされることによって、ランダムアクセス応答を通知するために用いられてもよい。ここで、コンパクトスケジューリングとは、例えば、狭帯域幅のPDSCHをスケジューリングすることである。DCIフォーマットサイズは、スケジューリングを行なうPDSCHに用いられる帯域幅に依存して決定される。帯域幅が狭いと、必要なDCIフォーマットサイズも小さくすることができる。また、DCIフォーマット1Cは、ダイナミックTDD(第1のタイプ(モード)のTDD)に関するRNTI(例えば、eIMTA-RNTI)を用いてスクランブルされることによって、TDD UL-DL設定を示す情報がセットされてもよい。ダイナミックTDDを第1のタイプ(モード)のTDDとすると、従来のTDDは、第2のタイプ(モード)のTDDと称する。
 ダイナミックTDDは、上りリンク/下りリンクの通信状況に応じて、TDD UL-DL設定を、L1シグナリングを用いて、切り替えるTDDのことである。また、ダイナミックTDDは、干渉管理およびトラフィックの適応制御を拡張するために用いられる。ダイナミックTDDをeIMTA(enhanced Interference Management and Traffic Adaptation)やTDD-ModeAと称する場合もある。
 DCIフォーマット1Dは、プレコーディングおよび電力オフセットに関する情報を伴う1つのセルにおける1つのPDSCHコードワードのコンパクトスケジューリングに対して用いられる。
 DCIフォーマット2/2A/2B/2C/2Dは、1つのPDSCHコードワードだけでなく、2つの(または複数の)PDSCHコードワードのスケジューリングに対して用いられる。
 DCIフォーマット3/3Aは、複数の端末装置1に対して、PUSCHまたはPUCCHの送信電力を調整するための送信電力制御コマンドの値を示す。端末装置1は、自局に割り当てられたインデックス(TPC-Index)に対応するビット情報を検出することによって、PUSCHまたはPUCCHに対応する送信電力制御コマンドの値を検出することができる。また、DCIフォーマット3/3Aは、スクランブルされるRNTIの種類に応じて、PUSCHに対する送信電力制御コマンドを示すかPUCCHに対する送信電力制御コマンドを示すかが判別される。
 DCIフォーマット4は、マルチアンテナポート送信モードを伴う1つの上りリンクセルにおけるPUSCHのスケジューリングに対して用いられる。
 巡回冗長検査(CRC: Cyclic Redundancy Check)は、DCI送信のエラー検出のために用いられる。CRCは、各RNTIでスクランブルされる。
 CRCパリティビットは、C-RNTI(Cell-Radio Network Temporary Identifier)、SPS C-RNTI(Semi Persistent Scheduling Cell-Radio Network Temporary Identifier)、SI-RNTI(System Information-Radio Network Temporary Identifier)、P-RNTI(Paging-Radio Network Temporary Identifier)、RA-RNTI(Random Access-Radio Network Temporary Identifier)、TPC-PUCCH-RNTI(Transmit Power Control-Physical Uplink Control Channel-Radio Network Temporary Identifier)、TPC-PUSCH-RNTI(Transmit Power Control-Physical Uplink Shared Channel-Radio Network Temporary Identifier)、一時的C-RNTI、M-RNTI(MBMS(Multimedia Broadcast Multicast Services)-Radio Network Temporary Identifier)、または、TDD-ModeA-RNTIでスクランブルされる。
 C-RNTIおよびSPS C-RNTIは、セル内において端末装置1を識別するための識別子である。C-RNTIは、単一のサブフレームにおけるPDSCHまたはPUSCHを制御するために用いられる。
 SPS C-RNTIは、PDSCHまたはPUSCHのリソースを周期的に割り当てるために用いられる。SI-RNTIでスクランブルされたCRCを有する制御チャネルは、SIB(System Information Block)を制御するために用いられる。
 P-RNTIでスクランブルされたCRCを有する制御チャネルは、ページングを制御するために用いられる。
 RA-RNTIでスクランブルされたCRCを有する制御チャネルは、RACHに対するレスポンスを制御するために用いられる。
 TPC-PUCCH-RNTIでスクランブルされたCRCを有する制御チャネルは、PUCCHの電力制御を行うために用いられる。TPC-PUSCH-RNTIでスクランブルされたCRCを有する制御チャネルは、PUSCHの電力制御を行なうために用いられる。
 一時的C-RNTIでスクランブルされたCRCを有する制御チャネルは、C-RNTIにより識別されていない端末装置のために用いられる。
 M-RNTIでスクランブルされたCRCを有する制御チャネルは、MBMSを制御するために用いられる。
 TDD-ModeA-RNTIでスクランブルされたCRCを有する制御チャネルは、動的TDDにおいて各TDDサービングセルのTDD UL/DL設定の情報を端末装置1に通知するために用いられる。
 なお、上記のRNTIに限らず、新たなRNTIを用いてDCIフォーマットをスクランブルされてもよい。
 以下では、PDCCHまたはEPDCCHの詳細について説明する。
 各サービングセルの制御領域は、CCEのセットで構成される。CCEは0からNCCE,k-1で番号付けされる。ここで、NCCE,kは、サブフレームkの制御領域内のCCEの総数である。
 端末装置1は、制御情報に対して上位層シグナリングによって設定された1つまたは複数のアクティベートされたサービングセルのPDCCH候補のセットをモニタする。ここで、モニタリングとは、全てのモニタされるDCIフォーマットに対応するセット内の各PDCCHのデコードを試みることである。
 モニタするPDCCH候補のセットは、サーチスペースと呼称される。サーチスペースには、共有サーチスペース(CSS)と端末固有サーチスペース(USS)が定義される。
 CSS(Common Search Space)は、基地局装置3(セル、送信点)に固有のパラメータおよび/または予め規定されたパラメータを用いて設定されるサーチスペースである。例えば、CSSは、複数の端末装置で共通に用いることができるサーチスペースである。そのため、基地局装置3は、複数の端末装置で共通の制御チャネルをCSSにマッピングすることにより、制御チャネルを送信するためのリソースが低減できる。
 USS(UE-specific Search Space)は、少なくとも端末装置1に固有のパラメータを用いて設定されるサーチスペースである。そのため、USSは、端末装置1に固有の制御チャネルを個別に送信することができるため、基地局装置3は端末装置1に対して効率的に制御できる。
 なお、CSSは、端末装置1に固有のパラメータをさらに用いて設定されてもよい。その場合、端末装置1に固有のパラメータは、複数の端末装置の間で同じ値になるように設定されることが好ましい。CSSが端末装置1に固有のパラメータをさらに用いて設定された場合でも、そのCSSは、同じパラメータに設定された複数の端末装置の間で共通になる。例えば、複数の端末装置の間で同じパラメータに設定される単位は、セル、送信点、UEグループなどである。同じパラメータに設定された複数の端末装置は、そのCSSにマッピングされる共通の制御チャネルを受信することができるため、制御チャネルを送信するためのリソースが低減できる。なお、そのようなサーチスペースは、CSSではなく、USSと呼称されてもよい。すなわち、複数の端末装置に共通のサーチスペースであるUSSが設定されてもよい。1つの端末装置に固有のUSSは第1のUSSとも呼称され、複数の端末装置に共通のUSSは第2のUSSとも呼称される。
 アグリゲーションレベル毎のサーチスペースS(L) はPDCCH候補のセットによって定義される。1つのPDCCHに用いられるCCEの数は、アグリゲーションレベルとも呼称される。1つのPDCCHに用いられるCCEの数は、1、2、4または8である。PDCCHがモニタされる各サービングセルにおいて、サーチスペースS(L) のPDCCH候補に対応するCCEは図14の式(1)で与えられる。ここで、Yは、サブフレームkにおける値を示す。CSSにおいて、m’=mである。PDCCHのUSSにおいて、PDCCHがモニタされるサービングセルにおいて、モニタする端末装置1にCIFが設定された場合、m’=m+M(L)・nCIであり、それ以外は、m’=mである。ここで、mは0からM(L)-1の値であり、M(L)は所定のサーチスペースでモニタするPDCCH候補の数である。
 CSSにおいて、Yは予め規定された値、または、基地局装置3に固有のパラメータに基づいて決定される値であり、例えばアグリゲーションレベルL=4およびL=8に対して0が設定される。アグリゲーションレベルLの端末固有サーチスペースS(L) において、Yは端末装置1に固有の値であり、例えばY=(A・Yk-1)modDで与えられる。ここで、Yの初期値Y-1は、RNTI(例えばC-RNTI)の値が用いられる。
 アグリゲーションレベルはサーチスペース毎に定義される。例えば、CSSにおいて、アグリゲーションレベル4および8が定義される。例えば、USSにおいて、アグリゲーションレベル1、2、4および8が定義される。
 PDCCH候補の数は、各サーチスペースの各アグリゲーションレベルで定義される。例えば、CSSにおいて、アグリゲーションレベル4ではPDCCH候補の数は4であり、アグリゲーションレベル8ではPDCCH候補の数は2である。例えば、USSにおいて、アグリゲーション1ではPDCCH候補の数は6であり、アグリゲーションレベル2ではPDCCH候補の数は6であり、アグリゲーションレベル4ではPDCCH候補の数は2であり、アグリゲーションレベル8ではPDCCH候補の数は2である。
 EPDCCHは、1つ以上のECCE(Enhanced control channel element)の集合を用いて送信される。それぞれのECCEは、複数のEREG(Enhanced resource element group)で構成される。EREGは、EPDCCHのリソースエレメントに対するマッピングを定義するために用いられる。各RBペアにおいて、0から15に番号付けされる、16個のEREGが定義される。すなわち、各RBペアにおいて、EREG0~EREG15が定義される。各RBペアにおいて、EREG0~EREG15は、所定の信号および/またはチャネルがマッピングされるリソースエレメント以外のリソースエレメントに対して、周波数方向を優先して、周期的に定義される。例えば、アンテナポート107~110で送信されるEPDCCHに関連付けられる復調用参照信号がマッピングされるリソースエレメントは、EREGを定義しない。
 1つのEPDCCHに用いられるECCEの数は、EPDCCHフォーマットに依存し、他のパラメータに基づいて決定される。1つのEPDCCHに用いられるECCEの数は、アグリゲーションレベルとも呼称される。例えば、1つのEPDCCHに用いられるECCEの数は、1つのRBペアにおけるEPDCCH送信に用いることができるリソースエレメントの数、EPDCCHの送信方法などに基づいて、決定される。例えば、1つのEPDCCHに用いられるECCEの数は、1、2、4、8、16または32である。また、1つのECCEに用いられるEREGの数は、サブフレームの種類およびサイクリックプレフィックスの種類に基づいて決定され、4または8である。EPDCCHの送信方法として、分散送信(Distributed transmission)および局所送信(Localized transmission)がサポートされる。
 EPDCCHは、分散送信または局所送信を用いることができる。分散送信および局所送信は、EREGおよびRBペアに対するECCEのマッピングが異なる。例えば、分散送信において、1つのECCEは、複数のRBペアのEREGを用いて構成される。局所送信において、1つのECCEは、1つのRBペアのEREGを用いて構成される。
 基地局装置3は、端末装置1に対して、EPDCCHに関する設定を行う。端末装置1は、基地局装置3からの設定に基づいて、複数のEPDCCHをモニタリングする。端末装置1がEPDCCHをモニタリングするRBペアのセットが、設定されることができる。そのRBペアのセットは、EPDCCHセットまたはEPDCCH-PRBセットとも呼称される。1つの端末装置1に対して、1つ以上のEPDCCHセットが設定できる。各EPDCCHセットは、1つ以上のRBペアで構成される。また、EPDCCHに関する設定は、EPDCCHセット毎に個別に行うことができる。
 基地局装置3は、端末装置1に対して、所定数のEPDCCHセットを設定できる。例えば、2つまでのEPDCCHセットが、EPDCCHセット0および/またはEPDCCHセット1として、設定できる。EPDCCHセットのそれぞれは、所定数のRBペアで構成できる。各EPDCCHセットは、複数のECCEの1つのセットを構成する。1つのEPDCCHセットに構成されるECCEの数は、そのEPDCCHセットとして設定されるRBペアの数、および、1つのECCEに用いられるEREGの数に基づいて、決定される。1つのEPDCCHセットに構成されるECCEの数がNである場合、各EPDCCHセットは、0~N-1で番号付けされたECCEを構成する。例えば、1つのECCEに用いられるEREGの数が4である場合、4つのRBペアで構成されるEPDCCHセットは16個のECCEを構成する。
 端末装置1がモニタリングするEPDCCHの候補は、EPDCCHセットに構成されるECCEに基づいて、定義される。EPDCCHの候補のセットは、サーチスペース(探索領域)として定義される。端末装置1に固有のサーチスペースである端末固有サーチスペース、および、基地局装置3(セル、送信点、UEグループ)に固有のサーチスペースである共通サーチスペースが、定義される。EPDCCHのモニタリングは、モニタリングされるDCIフォーマットに従って、端末装置1がサーチスペース内のEPDCCHの候補のそれぞれに対して復号を試みることを含む。
 アグリゲーションレベルL∈{1、2、4、8、16、32}におけるEPDCCHの端末固有サーチスペースES(L) は、EPDCCH候補のセットによって定義される。
 EPDCCHセットにおいて、サーチスペースES(L) のEPDCCH候補mに対応するECCEは図14の式(2)で与えられる。
 ここで、Yp,kは、EPDCCHセットpおよびサブフレームkにおける値を示す。Yp,kは、サーチスペースによって独立に設定することができる。共通サーチスペースの場合、Yp,kは基地局装置3(セル)に固有の値である。例えば、共通サーチスペースの場合、Yp,kは、予め規定された値、または、基地局装置3に固有のパラメータに基づいて決定される値である。端末固有サーチスペースの場合、Yp,kは、端末装置1に固有の値であり、Yp,k=(A・Yp,k-1)modDで与えられる。例えば、Yp,kは、所定の値、サブフレームkおよび端末装置1のRNTI(例えば、C-RNTI)に基づいて、決定される。なお、複数の共通サーチスペースおよび/または複数の端末固有サーチスペースが、1つのEPDCCHセットに設定されてもよい。
 ここで、bは、EPDCCHがモニタされるサービングセルに対するCIFが端末装置1に設定された場合、b=nCIであり、それ以外は、b=0である。
 端末装置1がモニタするDCIフォーマットは、サービングセル毎に設定された送信モードに依存する。言い換えると、端末装置1がモニタするDCIフォーマットは、送信モードによって異なる。例えば、下りリンク送信モード1が設定された端末装置1は、DCIフォーマット1AとDCIフォーマット1をモニタする。例えば、下りリンク送信モード4が設定された端末装置1は、DCIフォーマット1AとDCIフォーマット2をモニタする。例えば、下りリンク送信モード10が設定された端末装置1は、DCIフォーマット1AとDCIフォーマット2Dをモニタする。例えば、上りリンク送信モード1が設定された端末装置1は、DCIフォーマット0をモニタする。例えば、上りリンク送信モード2が設定された端末装置1は、DCIフォーマット0とDCIフォーマット4をモニタする。
 端末装置1に対するPDCCHが配置される制御領域は通知されず、端末装置1は、各サーチスペースで定義される全てのアグリゲーションレベルに対する全てのPDCCH候補および送信モードに対応する全てのDCIフォーマットのデコードを試みる。言い換えると、端末装置1は、端末装置1宛に送信される可能性がある全てのアグリゲーションレベル、PDCCH候補、および、DCIフォーマットにおいてデコードを試みる。そして、端末装置1は、デコードが成功したPDCCHを端末装置1宛の制御情報として認識する。これはブラインドデコーディングと称される。
 なお、DCIフォーマットが異なっても同じビットサイズであれば、デコード回数は増加しない。例えば、DCIフォーマット0とDCIフォーマット1Aは同じビットサイズであるため、1回のデコード回数で2種類のDCIフォーマットをデコードできる。
 例えば、上りリンク送信モード1が設定された端末装置1は、CSSにおいて、アグリゲーション4において6つのPDCCH候補と2種類のビットサイズのDCIフォーマットのデコードを試み、また、アグリゲーション8において2つのPDCCH候補と2種類のビットサイズのDCIフォーマットのデコードを試みる。端末装置1は、USSにおいて、アグリゲーション1において6つのPDCCH候補と2種類のビットサイズのDCIフォーマットのデコードを試み、アグリゲーション2において6つのPDCCH候補と2種類のビットサイズのDCIフォーマットのデコードを試み、アグリゲーション4において2つのPDCCH候補と2種類のビットサイズのDCIフォーマットのデコードを試み、また、アグリゲーション8において2つのPDCCH候補と2種類のビットサイズのDCIフォーマットのデコードを試みる。すなわち、端末装置1は、1つのサブフレームにおいてPDCCHのデコードを44回試みる。
 例えば、上りリンク送信モード2が設定された端末装置1は、CSSにおいて、アグリゲーション4において6つのPDCCH候補と2種類のビットサイズのDCIフォーマットのデコードを試み、また、アグリゲーション8において2つのPDCCH候補と2種類のビットサイズのDCIフォーマットのデコードを試みる。端末装置1は、USSにおいて、アグリゲーション1において6つのPDCCH候補と3種類のビットサイズのDCIフォーマットのデコードを試み、アグリゲーション2において6つのPDCCH候補と3種類のビットサイズのDCIフォーマットのデコードを試み、アグリゲーション4において2つのPDCCH候補と3種類のビットサイズのDCIフォーマットのデコードを試み、また、アグリゲーション8において2つのPDCCH候補と3種類のビットサイズのDCIフォーマットのデコードを試みる。すなわち、端末装置1は、1つのサブフレームにおいてPDCCHのデコードを60回試みる。
 ブラインドデコーディングにより、端末装置1は、符号化率の異なるPDCCHを事前情報無しで復号することが可能となり、基地局装置3と端末装置1間で効率よく制御情報を送信することができる。
 起動/停止の状態を示す情報は、共有サーチスペースによって通知される。共有サーチスペースとは、セルで共通のサーチスペースである。また、起動/停止の状態を示す情報は、端末グループ共有サーチスペースによって通知される。ここで、端末グループ共有サーチスペースとは、端末グループで共通に割り当てられるRNTI(UE-group C-RNTI、TP-specific-RNTI、SCE-RNTI)を用いてPDCCH候補が配置されるCCEの開始点が決定されるサーチスペースである。端末グループRNTIが設定された複数の端末装置1は、同じサーチスペースに配置されたPDCCHを用いて、DCIフォーマットを検出する。
 起動/停止の状態を示す情報の通知は、予め規定されたタイミングまたは設定されたタイミングで行なわれる。例えば、その通知のタイミングは1無線フレーム単位である。
 起動/停止の状態を示す情報の通知は、L1シグナリングを受信した次の無線フレームの情報を示す。なお、無線フレーム内で最初のサブフレーム(サブフレーム0)でL1シグナリングを受信した場合は、受信した無線フレームの情報を示してもよい。
 セルの起動/停止の状態を示す情報の通知方法の一例について説明する。
 対象セルの起動/停止の状態は、DSの構成が変化(変更)することによって、暗示的に示されてもよい。対象セルが起動/停止の状態を示す情報は、DSの構成が起動の状態と停止の状態とで異なる構成になることによって暗示的に示されてもよい。起動の状態と停止の状態で、対象セルから送信されるDSの構成が異なって送信されてもよい。端末装置1は、起動の状態で送信されるDSの構成に関する情報と、停止の状態で送信されるDSの構成に関する情報をそれぞれ基地局装置3から受信してもよい。
 対象セルが起動/停止の状態は、DSのある構成のパラメータ(またはパラメータの値)が変化(変更)することによって示されてもよい。言い換えると、DSの設定に含まれるあるパラメータが起動の状態と停止の状態で異なってもよい(または個別に設定されてもよい)。例えば、起動の状態で送信されるDSと停止の状態で送信されるDSは、リソースエレメントの配置が異なってもよい。また、起動の状態で送信されるDSと停止の状態で送信されるDSは、アンテナポートが異なってもよい。また、起動の状態で送信されるDSと停止の状態で送信されるDSは、スクランブル系列が異なってもよい。また、起動の状態で送信されるDSと停止の状態で送信されるDSは、スクランブル系列の初期値または初期値を生成するための方法(式)が異なってもよい。また、起動の状態で送信されるDSと停止の状態で送信されるDSは、送信電力が異なってもよい。また、起動の状態で送信されるDSと停止の状態で送信されるDSは、送信されるサブフレーム間隔が異なってもよい。また、起動の状態で送信されるDSと停止の状態で送信されるDSは、送信帯域幅またはリソースブロック数が異なってもよい。すなわち、起動の状態で送信されるDSの設定に関する情報と、停止の状態で送信されるDSの設定に関する情報が、個別にセットされてもよい。それらの情報は、上位層シグナリングを用いて、基地局装置3から端末装置1へ送信されてもよい。つまり、対象セルの起動/停止の状態を示す情報は、DSの構成に関するパラメータの設定情報であってもよい。言い換えると、あるパラメータが、起動の状態と停止の状態のそれぞれに対して設定される。
 また、端末装置1は、起動の状態を示すDSの構成と停止の状態を示すDSの構成の2通りをモニタしてもよい。端末装置1は、起動の状態を示すDSの構成のモニタリングのパターンと停止の状態を示すDSの構成のモニタリングのパターンを用いて、2通りをモニタしてもよい。この場合、端末装置1に対して、2つのDSの構成のモニタリングのパターンに関する情報が通知される。つまり、1つのDSの構成のモニタリングのパターンに関する情報が通知されなかった場合、2つの構成のDSを1つのモニタリングパターンに基づいてモニタすることになってもよい。
 停止の状態のDSの測定サブフレーム中において、起動の状態のDSを測定した場合、端末装置1は、停止の状態の小セルを起動の状態であると認識する。
 また、端末装置1は、DSを検出したモニタリングパターンによって対象セルの起動/停止の状態の情報を暗示的に取得してもよい。起動の状態を示すDSの構成のモニタリングのパターンと停止の状態を示すDSの構成のモニタリングのパターンは、予め定義されても良い。起動の状態を示すDSの構成のモニタリングのパターンと停止の状態を示すDSの構成のモニタリングのパターンは、基地局装置3から専用RRCシグナリング(上位層シグナリング)によって通知されても良い。
 セルの起動/停止の状態を示す情報の通知方法の別の一例について説明する。
 対象セルが起動/停止の状態は、対象セルの起動の状態と停止の状態のCRSの構成(CRSの設定)が異なることによって暗示的に示されてもよい。この場合、起動の状態と停止の状態で、対象セルから送信されるCRSの構成が異なって送信される。その際、異なる構成のCRSの設定情報が端末装置1に通知される。
 対象セルが起動/停止の状態は、CRSの構成に係るあるパラメータ(またはパラメータの値)が変化することによって示されてもよい。例えば、起動の状態で送信されるCRSと停止の状態で送信されるCRSは、リソースエレメントの配置が異なってもよい。また、起動の状態で送信されるCRSと停止の状態で送信されるCRSは、アンテナポートが異なってもよい。また、起動の状態で送信されるCRSと停止の状態で送信されるCRSは、スクランブル系列が異なってもよい。また、起動の状態で送信されるCRSと停止の状態で送信されるCRSは、スクランブル系列の初期値が異なってもよい。また、起動の状態で送信されるCRSと停止の状態で送信されるCRSは、送信電力が異なってもよい。また、起動の状態で送信されるCRSと停止の状態で送信されるCRSは、送信されるサブフレーム間隔が異なってもよい。また、起動の状態で送信されるCRSと停止の状態で送信されるCRSは、送信帯域幅またはリソースブロック数が異なってもよい。つまり、対象セルの起動/停止の状態を示す情報は、CRSの構成に関するパラメータの設定情報であってもよい。その際、あるパラメータが、起動の状態と停止の状態のそれぞれに対して個別に設定される。ここでは、CRSについて例を挙げたが、PSSやSSS、CSI-RS、PRSなどでも同様に示されてもよい。
 端末装置1は、起動の状態を示すCRSの構成と停止の状態を示すCRSの構成の2通りをモニタする。端末装置1は、起動の状態を示すCRSの構成のモニタリングのパターンと停止の状態を示すCRSの構成のモニタリングのパターンを用いて、2通りをモニタする。端末装置1は、CRSを検出したモニタリングパターンによって対象セルの起動/停止の状態の情報を暗示的に取得する。停止の状態を示すCRSの構成のモニタリングのパターンは、予め定義されても良い。停止の状態を示すCRSの構成のモニタリングのパターンは、基地局装置3から専用RRCシグナリングによって通知されても良い。
 セルの起動/停止の状態を示す情報の通知方法の別の一例について説明する。
 セルの起動/停止の状態を示す情報は、専用RRCシグナリングによって通知されてもよい。セルの起動/停止の状態を示す情報は、中心周波数(キャリア周波数)とセルIDに紐付いてリスト化されて通知されてもよい。
 端末装置1は、上記の通知方法によって対象セルの起動/停止の状態を認知することが可能となる。以下、端末装置1が対象セルの起動/停止の状態によって振る舞いが切り替わる際、上記の通知方法のいずれかが適用される。
 以下では、セル(基地局装置3)の検出について説明する。
 セルの検出とは、当該セルを構成する基地局装置3から送信された同期信号(PSSやSSSなど)または/および参照信号(CRSやCSI-RSなど)を端末装置1で検出することである。セルの検出に用いられる同期信号または/および参照信号には、セルIDの情報が含まれる。端末装置1は、当該セルのセルIDと同期信号または/および参照信号の検出基準によって、当該セルを検出する。
 セルの検出とは、基地局装置3の検出が含まれてもよい。プライマリーセルの検出には、マスター基地局装置の検出が含まれてもよい。また、プライマリーセカンダリーセルの検出には、セカンダリー基地局装置の検出が含まれてもよい。
 同期信号または/および参照信号の検出基準の一例について説明する。
 端末装置1は、セルからの同期信号または/および参照信号の受信電力強度または/および受信電力品質に基づいて検出を決定する。端末装置1は、同期信号または/および参照信号の受信電力強度または/および受信電力品質と閾値を比較し、受信強度または/および受信品質が高い場合は前記セルを検出したと判断する。受信電力強度は、例えば、RSRPなどである。受信品質は、例えば、干渉量、RSRQ、SINRなどである。また、セルの検出は、後述する測定のイベントによって判断してもよい。
 同期信号または/および参照信号の検出基準の一例について説明する。
 端末装置1は、セルからの同期信号または/および参照信号の情報の復号成否に基づいて検出を決定する。例えば、セル(セルを構成する基地局装置3)は、同期信号または/および参照信号にCRCなどのパリティ符号を載せて送信する。端末装置1は、同期信号または/および参照信号に含まれた前記パリティ符号を用いて復号を行い、パリティ検出によって正しく復号できたと判断した場合、前記セルを検出したと判断する。
 端末装置1においてセルを検出した後、端末装置1は、接続/活性化するセルの選択、および、切断/非活性化するセルの選択を行う。
 または、端末装置1においてセルを検出した後、端末装置1は、検出したセルの情報を接続している基地局装置3に報告する。検出したセルの情報は、セルID、測定の情報を含む。
 以下では、CRSの詳細について説明するCRSは、アンテナポート0~3で送信される。CRSは、非MBSFNサブフレーム(non-MBSFN subframe)である全ての下りリンクサブフレームに配置される。言い換えると、CRSは、MBSFNサブフレームを除く全ての下りリンクサブフレームに配置される。CRSは、物理セル識別子(PCI)に基づいてリソースエレメントおよび信号系列が決定される。
 図10は、CRSの構成の一例を示す図である。CRSの信号は、擬似乱数系列を用いて生成される。前記擬似乱数系列は、例えばGold系列である。前記擬似乱数系列は、物理セル識別子(PCI)に基づいて計算される。前記擬似乱数系列は、CPのタイプに基づいて計算される。前記擬似乱数系列は、スロット番号とスロット内のOFDMシンボル番号に基づいて計算される。ノーマルCPの場合のCRSのリソースエレメントは、図10のR0~R3を用いられる。R0はアンテナポート0のCRSの配置に対応し、R1はアンテナポート1のCRSの配置に対応し、R2はアンテナポート2のCRSの配置に対応し、R3はアンテナポート3のCRSの配置に対応する。1つのアンテナポートで送信されるCRSのリソースエレメントは、周波数軸上で6サブキャリアの周期で配置される。アンテナポート0で送信されるCRSとアンテナポート1で送信されるCRSのリソースエレメントは、3サブキャリア離れて配置される。CRSは、セルIDに基づいて周波数上をセル固有にシフトされる。アンテナポート0で送信されるCRSとアンテナポート1で送信されるCRSのリソースエレメントは、ノーマルCPの場合はOFDMシンボル0、4に配置され、拡張CPの場合はOFDMシンボル0、3に配置される。アンテナポート2で送信されるCRSとアンテナポート3で送信されるCRSのリソースエレメントは、OFDMシンボル1に配置される。CRSは下りリンクで設定された帯域幅で、広帯域に送信される。なお、DSは、CRSと同様の構成であってもよい。
 以下では、DS(Discovery Signal)の詳細について説明する。DSは、下りリンクの時間領域の同期(time synchronization)、下りリンクの周波数の同期(frequency synchronization)、セル/送信ポイントの特定(cell/transmission point identification)、RSRPの測定(RSRP measurement)、RSRQの測定(RSRQ measurement)、端末装置1の地理的な位置の測定(UE Positioning)、CSIの測定(CSI measurement)など様々な用途を目的として、基地局装置3から送信される。DSは、基地局装置3のON状態およびOFF状態をサポートするために用いられる参照信号とすることができる。DSは、端末装置1がON状態および/またはOFF状態の基地局装置3を検出するために用いられる参照信号とすることができる。
 DSは、複数の信号により構成される。一例として、DSは、PSS、SSSおよびCRSにより構成される。DSに含まれるPSSおよびSSSは、時間同期、周波数同期、セルの特定および送信ポイントの特定のために用いられるかもしれない。DSに含まれるCRSは、RSRPの測定、RSRQの測定およびCSIの測定のために用いられるかもしれない。別の一例として、DSは、PSS、SSSおよびCSI-RSにより構成される。DSに含まれるPSSおよびSSSは、時間同期、周波数同期、セルの特定および送信ポイントの特定のために用いられるかもしれない。DSに含まれるCSI-RSは、送信ポイントの特定、RSRPの測定、RSRQの測定およびCSIの測定のために用いられるかもしれない。なお、複数の信号により構成されるDSは検出バースト(Discovery burst)と呼称されてもよい。なお、RSRPの測定および/またはRSRQの測定を行なうために用いられる参照信号がDSと呼称されてもよい。
 基地局装置3は、PSS、SSSおよびCRSにより構成される第1のDSと、PSS、SSSおよびCSI-RSにより構成される第2のDSとを、切り替えて送信してもよい。その場合、基地局装置3は、端末装置1に第1のDSまたは第2のDSを設定する。
 DSは、下りリンクサブフレームで送信される。DSは、下りリンクコンポーネントキャリアで送信される。
 DSは、基地局装置3が停止の状態(off state, dormant mode, deactivation)で送信される。また、DSは、基地局装置3が起動の状態(on state, active mode, activation)であっても送信されてもよい。
 DSは、それぞれの基地局装置(セル、送信ポイント)で独立に設定できる。例えば、複数のスモールセルは、互いに異なる設定のDSを、互いに異なるリソースを用いて送信される。
 基地局装置3は、端末装置1に対して、DSに関するリストと、DSの測定(検出、モニタリング、送信)タイミングを設定する。DSに関するリストは、端末装置1が受信する可能性のあるDSを送信する基地局装置に関連する情報のリストである。例えば、DSに関するリストは、DSを送信する送信ポイントの送信ポイントIDのリストである。複数の送信ポイントは、端末装置1に対して設定されたDSの測定タイミングに基づいて、それぞれの送信ポイントに固有のDSを送信する。端末装置1は、基地局装置3に設定されたDSに関するリストと、DSの測定タイミングに基づいて、DSの測定を行なう。例えば、端末装置1は、DSの測定タイミングに基づいて決まるサブフレームまたはリソースで、DSに関するリストに基づいて決まるDSを測定する。また、端末装置1は、DSの測定による測定結果を基地局装置3に報告する。
 それぞれの送信ポイントは、DSを1つのサブフレームで送信する。すなわち、それぞれの送信ポイントは、1つのDSに関連するPSSと、SSSと、CRSおよび/またはCSI-RSとを、1つのサブフレームで送信する。端末装置1は、1つの送信ポイントに対応するDSが1つのサブフレームで送信されることを期待する。なお、1つのDSは、複数のサブフレームで送信されてもよい。
 DSの送信、または、DSの測定タイミングは、時間軸上で周期的に設定される。また、DSの送信またはDSの測定タイミングは、連続のサブフレームで設定されてもよい。言い換えると、DSは、バースト送信されてもよい。例えば、DSの送信またはDSの測定タイミングは、Mサブフレーム周期で、連続するNサブフレームで設定される。周期内でDSが配置されるサブフレームLが設定されてもよい。M、Nおよび/またはLの値は、上位層で設定される。なお、周期内で連続に送信されるサブフレーム数Nは予め規定されてもよい。サブフレーム周期Mを長期で設定すると、停止の状態の基地局装置3からDSが送信される回数が減少し、セル間干渉を低減させることができる。なお、M、Nおよび/またはLの値は、停止の状態と起動の状態とで異なる設定が適用されてもよい。また、M、Nおよび/またはLの値に対応するパラメータは、上位層シグナリングによって、通知されてもよい。
 なお、Mに対応するパラメータは、周期だけでなく、サブフレームオフセット(または開始サブフレーム)が示されてもよい。つまり、Mに対応するパラメータは、周期および/またはサブフレームオフセットと対応付けられたインデックスであってもよい。
 なお、Nに対応するパラメータは、テーブル管理されてもよい。Nに対応するパラメータの値がそのままサブフレーム数を表さなくてもよい。また、Nに対応するパラメータは、サブフレーム数だけでなく、開始サブフレームが含まれて示されてもよい。
 なお、Lに対応するパラメータは、テーブル管理されてもよい。Lに対応するパラメータは、周期と対応付けられてもよい。Lに対応するパラメータの値が、そのままサブフレームのオフセットを示さなくてもよい。
 DSが送信される可能性のあるサブフレームまたはDSの測定サブフレームにおいて、端末装置1は、DSの測定に加えて、PDCCHのモニタを行なってもよい。例えば、上記Nに対応するパラメータにおいて、端末装置1は、PDCCHをモニタしてもよい。その際、端末装置1には、停止の状態の小セルに対して、PDCCHをモニタする機能をサポートしていることが条件であってもよい。
 DSは、送信ポイントIDの情報を含んで送信されてもよい。ここで、送信ポイントIDの情報とは、DSを送信する送信ポイント(セル)を識別するための情報である。例えば、送信ポイントIDは、物理セル識別子(physical cell ID, physCellID, physical layer cell ID)、CGI(Cell Global Identity)、新しいセル識別子(小セルID(small cell ID)、発見ID(Discovery ID)、拡張セルID(extended cell IDなど))である。また、送信ポイントIDは、DSに含まれるPSSおよびSSSで認識される物理セル識別子とは異なるIDであってもよい。送信ポイントIDは、DSに含まれるPSSおよびSSSで認識される物理セル識別子に関連付けられるIDであってもよい。例えば、ある送信ポイントIDは、DSに含まれるPSSおよびSSSで認識される物理セル識別子のいずれか1つに関連付けられてもよい。なお、上記のセルに関するIDをDSによって複数送信されてもよい。例えば、物理セル識別子では足りない数のセルを配置する環境では、DSで物理セル識別子と新しいセル識別子を組み合わせて送信することで、実質的に物理セル識別子を拡張させることができる。
 DSはアンテナポートp、・・・、p+n-1で送信される。ここで、nはDSを送信するアンテナポートの総数が示される。p、・・・、p+n-1の値は、0~22、107~110以外の値が適用されてもよい。すなわち、DSは、他の参照信号に用いられるアンテナポートとは異なるアンテナポートを用いて送信されてもよい。
 次に、DSの構成(または設定)の一例について説明する。
 DSは、複数の構成(structure)および/または設定(configuration)が適用されてもよい。ここで、複数の構成とは、複数の信号の構成や設定であってもよい。また、複数の構成とは、複数の構成を有する信号であってもよい。言い換えると、DSは、複数の信号から構成されてもよい。例えば、DSは、PSSと同様の構成(または設定)が適用されてもよい。また、DSは、SSSと同様の構成(または設定)が適用されてもよい。また、DSは、CRSと同様の構成(または設定)が適用されてもよい。また、DSは、CSI-RSと同様の構成(または設定)が適用されてもよい。つまり、DSは、第1の信号から第nの信号(nは自然数)の構成(または設定)に基づいてもよい。言い換えると、DSは、第1の構成の信号から第nの構成の信号に基づいてもよい。なお、信号の構成には、無線リソース配置(リソース設定)やサブフレーム設定が含まれてもよい。
 DSは、目的に応じて、それぞれの構成の信号(無線リソース)が、使い分けられてもよい。例えば、時間領域や周波数領域の同期と、セル識別、RSRP/RSRQ/RSSI測定(RRM測定)に用いられる信号は、異なる構成の信号を用いて、行なわれてもよい。つまり、端末装置1は、第1の信号を用いて、時間領域や周波数領域の同期を行ない、第2の信号を用いて、セル識別を行ない、第3の信号を用いて、RSRP/RSRQ測定を行なってもよい。また、第1の信号および第2の信号を用いて、時間領域や周波数領域の同期およびセル識別を行ない、第3の信号を用いて、RSRP/RSRQ/RSSI測定(RRM測定)を行なってもよい。
 また、DSが複数の構成に基づく信号から生成される場合、特定の構成の信号が送信されることによって、小セルの起動/停止の状態が示されてもよい。例えば、第4の信号(第4の構成の信号)が送信される場合、小セルは、起動の状態にあると端末装置1は、認識し、処理を行なってもよい。つまり、端末装置1は、第4の信号(第4の構成の信号)を検出することによって、小セルを起動の状態にあると認識してもよい。
 さらに、第5の信号(第5の構成の信号)を用いて、CSI測定を行なってもよい。端末装置1は、CSI測定を行なった場合、CSI測定を行なったサブフレームから所定のサブフレーム後の最初の上りリンクサブフレームで、CSI報告を行なってもよい。なお、CSI測定は、第5の信号ではなく、他の信号を用いて、行なってもよい。停止の状態で、CSI測定を行なう場合には、基地局装置3から端末装置1に対して、停止の状態でCSI測定/CSI報告を行なうための設定情報が上位層シグナリングを用いて通知される。
 また、小セルの起動の状態と停止の状態で、小セル(小セルを構成する基地局装置3)から送信されるDSの構成が異なってもよい。例えば、停止の状態であれば、第1の構成から第3の構成の信号を送信し、起動の状態であれば、第1の構成から第4の構成の信号を送信してもよい。また、起動の状態では、第3の構成の信号ではなく、第4の構成の信号が送信されてもよい。また、SSSと同様の構成の信号が複数設定される場合、小セルの停止の状態では、複数の信号が送信されるが、小セルの起動の状態では、1つしか送信されなくてもよい。つまり、DSは、小セルの状態に応じて、その構成が切り替わってもよい。
 また、DSは、拡張した物理層セル識別子(PCI: Physical layer Cell Identity)を送信するために、複数の信号から構成されてもよい。また、複数の信号を用いて、物理層セル識別子および送信ポイント識別子(TP ID: Transmission Point Identity)を送信してもよい。ここで、複数の信号とは、複数のSSSまたはSSSと同様の構成の信号であってもよい。ここで、複数の信号とは、PSSとSSSと同様の構成の信号であってもよい。また、複数の信号とは、PSSと複数のSSSと同様の構成の信号であってもよい。なお、TPIDは、仮想セル識別子(VCID: Virtual Cell Identity)であってもよい。TPIDは、送信ポイント、すなわち、基地局装置3を識別するためのIDであってもよい。なお、VCIDは、信号系列に用いられる識別子であってもよい。言い換えると、DSは、第1の構成の信号によって、セルIDグループが識別され、第1の構成の信号と第2の構成の信号によって、セルIDが識別され、第1の構成の信号、第2の構成の信号、第3の構成の信号によって、TPIDが識別されてもよい。また、第4の構成の信号によって、TPIDが拡張されてもよい。
 なお、DSは、PSS、SSS、CRS、CSI-RSとは、個別に設定されてもよい。すなわち、DSのリソース設定やサブフレーム設定、アンテナポートインデックス、アンテナポート数、系列生成のためのIDなどは、PSS、SSS、CRS、CSI-RSとは、独立に(個別に)設定されてもよい。
 図9は、DSの構成の一例を示す図である。ここで、DSに用いられる系列(信号系列、参照信号系列)は、周波数軸上のZadoff-Chu系列によって生成されてもよい。また、DSは、周波数軸上で連続に配置されてもよい。DSは、6リソースブロックを用い、そのうちの62サブキャリアを用いて送信されてもよい。DSは、前記6リソースブロックのうちの10サブキャリアをゼロ電力(Zero power)で送信されてもよい。言い換えると、DSは、前記6リソースブロックのうちの10サブキャリアを予約し、信号を送信しなくてもよい。DSは、FDD(フレーム構成タイプ1)の場合にスロット番号0とスロット番号10の最後のOFDMシンボルに配置され、TDD(フレーム構成タイプ2)の場合にサブフレーム1とサブフレーム6の3番目のOFDMシンボルにマップされる。DSは、セルIDを特定する情報の一部を含んで送信されてもよい。
 なお、DSは、PSSと異なるリソースブロック(異なる周波数ポジション)に配置されてもよい。なお、DSは、PSSと異なるリソースブロック数を用いて送信されてもよい。なお、DSは、PSSと異なるサブキャリア数を用いて送信されてもよい。なお、DSは、PSSと異なるOFDMシンボルに配置されてもよい。なお、DSはセルID(PCIやVCID)と異なる情報を含んで送信されてもよい。
 DSの構成の別の一例について説明する。
 さらに、図9には、DSの構成の別の一例が示されている。DSに用いられる系列(信号系列、参照信号系列)は、2つの長さ31のバイナリ系列を連結してインタリーブされてもよい。DSの系列は、M系列に基づいて生成されてもよい。DSは、サブフレーム0に配置される信号とサブフレーム5に配置される信号と異なる。DSは、FDDの場合にスロット番号0とスロット番号10の6番目のOFDMシンボルに配置され、TDDの場合にスロット番号1とスロット番号11の7番目のOFDMシンボルに配置される。言い換えると、FDDの場合にスロット番号0とスロット番号10の最後から2番目のOFDMシンボルに配置され、TDDの場合にスロット番号1とスロット番号11の最後のOFDMシンボルに配置される。その際、DSは、セルIDを特定する情報の一部を含んで送信されてもよい。
 なお、DSは、SSSと異なるリソースブロック(異なる周波数ポジション)に配置されてもよい。なお、DSは、SSSと異なるリソースブロック数を用いて送信されてもよい。なお、DSは、SSSと異なるサブキャリア数を用いて送信されてもよい。なお、DSは、SSSと異なるOFDMシンボルに配置されてもよい。なお、DSはセルIDと異なる情報を含んで送信されてもよい。
 なお、前記DSが送信されるサブフレーム数は限定されない。例えば、前記DSはサブフレーム0、1、5、6に送信されてもよい。すなわち、SSSの構成に基づく複数のDSが送信されてもよい。この場合、多くの情報を前記DSに含めて送信することができる。また、この場合、直交系列数が増加するため、セル間干渉を抑圧する効果がある。
 さらに、図10には、DSの構成の別の一例が示されている。DSの信号は、擬似乱数系列(Pseudo-random sequence)を用いて生成される。前記擬似乱数系列は、例えばGold系列である。前記擬似乱数系列は、セルID(PCI、VCID、スクランブル識別子(scramble ID)、スクランブリング識別子(scrambling Identity)、スクランブリング初期化識別子(scrambling initialization ID))に基づいて計算される。前記擬似乱数系列は、CPのタイプに基づいて計算される。前記擬似乱数系列は、スロット番号とスロット内のOFDMシンボル番号に基づいて計算される。1つのアンテナポートで送信されるDSのリソースエレメントは、周波数軸上で6サブキャリアの周期で配置される。アンテナポートpで送信されるDSとアンテナポートp+1で送信されるDSのリソースエレメントは、3サブキャリア離れて配置される。DSは、セルIDに基づいて周波数上をセル固有にシフトされる。アンテナポートpで送信されるDSとアンテナポートp+1で送信されるDSのリソースエレメントは、ノーマルCPの場合はOFDMシンボル0、4に配置され、拡張CPの場合はOFDMシンボル0、3に配置される。アンテナポートp+2で送信されるDSとアンテナポートp+3で送信されるDSのリソースエレメントは、OFDMシンボル1に配置される。DSは下りリンクで設定された帯域幅で、広帯域に送信される。なお、DSの送信帯域幅は、上位層シグナリングを用いて設定されてもよい。DSの送信帯域幅は、測定帯域幅と同じであるとみなされてもよい。
 なお、DSは、CRSと異なる擬似乱数系列を用いて送信されてもよい。なお、DSは、CRSと異なる系列の計算方法を用いてもよい。なお、DSは、CRSと異なるサブキャリア周期で周波数上に配置されてもよい。なお、DSが送信されるアンテナポートpとDSが送信されるアンテナポートp+1のリソースエレメントの配置関係は、アンテナポート0とアンテナポート1の配置関係と異なってもよい。DSは、CRSと異なる情報に基づいて周波数上に配置をシフトさせてもよい。なお、DSは、CRSと異なるOFDMシンボルに配置されてもよい。なお、DSは、CRSと異なる帯域幅で配置されてもよく、上位層で設定された帯域幅で配置され、狭帯域に送信してもよい。
 さらに、図10には、DSの構成の別の一例が示されている。DS(図10のD1,D2)の系列(信号系列、参照信号系列)は、擬似乱数系列を用いて生成される。前記擬似乱数系列は、例えば,Gold系列である。前記擬似乱数系列は、上位層からの情報に基づいて計算される。前記擬似乱数系列は、上位層からの情報が設定されない場合にセルIDに基づいて計算される。前記擬似乱数系列は、CPのタイプに基づいて計算される。前記擬似乱数系列は、スロット番号とスロット内のOFDMシンボル番号に基づいて計算される。DSが配置されるリソースエレメントは、リソース設定番号(DS resource configuration index)によって定められ、図12の表を用いて算出されてもよい。ここで、k’はサブキャリア番号、l’はOFDMシンボル番号、nはスロット番号を示し、nmod2はサブフレーム内のスロット番号を示す。例えば、設定番号0の場合、DSは、スロット番号0、サブキャリア番号9、OFDMシンボル番号5および6のリソースエレメントに配置される。DSは下りリンクに対して設定された帯域幅で、広帯域に送信される。
 なお、DSの系列は、CSI-RSと異なる擬似乱数系列を用いてもよい。なお、DSの系列は、CSI-RSと異なる系列の計算方法に基づいて生成されてもよい。なお、DSは、図12の表に限らず、CSI-RSと異なるリソースエレメントに配置できる。なお、DSは、CSI-RSと異なる帯域幅で配置されてもよく、上位層で設定された帯域幅で配置され、狭帯域に送信してもよい。
 さらに、図10には、DSの構成の別の一例が示されている。DSが配置されるリソースエレメントは、リソース設定番号(DS resource configuration index)によって定められ、図12の表を用いて算出される。ここで、k’はサブキャリア番号、l’はOFDMシンボル番号、nはスロット番号を示し、nmod2はサブフレーム内のスロット番号を示す。例えば、設定番号0の場合、DSは、スロット番号0、サブキャリア番号9、OFDMシンボル番号5および6のリソースエレメントに配置される。DSは下りリンクに対して設定された帯域幅で、広帯域に送信される。DSは、設定されたリソースエレメントにおいてゼロ出力で送信してもよい。言い換えると、基地局装置3は、設定されたリソースエレメントにおいて、DSを送信しなくてもよい。端末装置1の観点から、基地局装置3からDSが送信されないリソースエレメントは、隣接セル(または隣接の基地局装置)からの干渉測定に用いることができる。また、DSは、図11のR6と同様の構成であってもよい。
 図11には、DSの構成の一例が示される。DSの系列は、擬似乱数系列を用いて生成される。前記擬似乱数系列は、例えばGold系列である。前記擬似乱数系列は、セルIDに基づいて計算される。前記擬似乱数系列は、CPのタイプに基づいて計算される。前記擬似乱数系列は、スロット番号とスロット内のOFDMシンボル番号に基づいて計算される。1つのアンテナポートで送信されるDSは、周波数軸上で6サブキャリアの周期で配置される。DSは、セルIDに基づいて周波数上をセル固有にシフトされる。DSは、ノーマルCPの場合は、スロット0番目のOFDMシンボル3、5、6に、スロット1番目のOFDシンボル1、2、3、5、6に配置され、拡張CPの場合は、スロット0番目のOFDMシンボル4、5に、スロット1番目のOFDMシンボル1、2、4、5に配置される。DSのリソースエレメントは、l番目のOFDMシンボルとl+L番目のOFDMシンボルで周波数上にL分シフトして配置される。DSは下りリンクで設定された帯域幅で、広帯域に送信される。
 なお、DSの系列は、PRSと異なる擬似乱数系列を用いてもよい。なお、DSの系列は、PRSと異なる系列の計算方法を用いてもよい。なお、DSは、PRSと異なるサブキャリア周期で周波数上に配置されてもよい。なお、DSは、PRSと異なるOFDMシンボルに配置されてもよい。なお、DSは、PRSと異なる帯域幅で配置されてもよく、上位層で設定された帯域幅で配置され、狭帯域に送信してもよい。つまり、DSの送信帯域幅または測定帯域幅は、上位層で設定されてもよい。
 DSは、CSI-IMリソースを含んで構成されてもよい。CSI-IMリソースは、端末装置1が干渉を測定するために用いられるリソースである。例えば、端末装置1は、CSI-IMリソースを、CSI測定において干渉を測定するためのリソースまたはRSRQ測定において干渉を測定するためにリソースとして用いる。CSI-IMリソースは、CSI-RSの設定方法と同じ方法を用いて設定される。CSI-IMリソースは、ゼロパワーCSI-RSとして設定されたリソースであるかもしれない。
 以上、DSの構成について説明したが、上記の一例のみに限らず、DSは、上記の例を複数組み合わせて構成されてもよい。
 好ましい組み合わせの具体的な一例を挙げる。DSは、Zadoff-Chu系列で構成された信号とM系列に基づいて構成された信号とGold系列に基づいて構成された信号とを組み合わせて構成されてもよい。また、Gold系列に基づいて構成された信号は、Zadoff-Chu系列で構成された信号と比べて広帯域で構成され、Zadoff-Chu系列に基づいて構成された信号は、6リソースブロックを用いて送信され、Gold系列に基づいて構成された信号はサブフレームの全帯域で送信されてもよい。つまり、DSが送信される帯域幅は、上位層によって設定(configurable)されてもよい。つまり、DSは、異なる系列で異なる構成を有する信号で構成されることが望ましい。
 また、DSは、Zadoff-Chu系列で構成された信号とM系列に基づいて構成された信号とGold系列に基づいて構成された信号とゼロ出力(Zero power)で送信される信号とを組み合わせて構成されてもよい。また、Gold系列に基づいて構成された信号およびゼロ出力で送信される信号は、DSの設定情報によってリソースエレメントが指定されてもよい。また、Gold系列に基づいて構成された信号は、Zadoff-Chu系列で構成された信号と比べて広帯域で構成され、Zadoff-Chu系列で構成された信号は6リソースブロックを用いて送信され、Gold系列に基づいて構成された信号はサブフレームの全帯域で送信されてもよい。
 端末装置1は、DSの設定を専用RRCシグナリングによって通知される。前記DSの設定は、RSを送信するセル間で共通の情報と、DSを送信するセル個別の情報が含まれる。なお、DSの設定は、後述する測定対象の設定情報に含めて通知されてもよい。
 DSを送信するセル間で共通の情報には、帯域の中心周波数の情報、帯域幅の情報、サブフレームの情報などが含まれる。
 DSを送信するセル個別の情報には、帯域の中心周波数の情報、帯域幅の情報、サブフレームの情報、リソースエレメントを指定する情報、セルを特定する情報(セルID、PCI、VCID)、などが含まれる。
 端末装置1は、DSの設定により、DSが含まれるサブフレームを認知することができるため、DSが含まれないサブフレームでは、DSの検出処理を行わなくてもよい。これにより、端末装置1の消費電力を低減することができる。
 DSの設定には、第1の構成の信号の設定から第nの構成の信号の設定が含まれてもよい。例えば、各構成の信号のリソース設定は、個別にセットされてもよい。また、各構成の信号のサブフレーム設定や送信電力は、共通(または共通の値)であってもよい。また、ある構成の信号に対してのみ、セルIDやアンテナポートインデックス、アンテナポート数がセットされてもよい。また、DSの設定には、ある構成の信号に対して、リソース設定やサブフレーム設定などが複数セットされてもよい。
 DSの設定には、DSが送信される周波数を示す情報(パラメータ)が含まれてもよい。
 また、DSの設定には、DSが送信される可能性のあるサブフレームのオフセット(オフセットの値)を示す情報が含まれてもよい。
 また、DSの設定には、DSが送信される可能性のあるサブフレーム周期を示す情報が含まれてもよい。
 また、DSの設定には、DSの系列を生成するための識別子が含まれてもよい。
 また、DSの設定には、DSが送信されるアンテナポートを示す情報が含まれてもよい。
 また、DSの設定には、DSのバースト送信期間を示す情報が含まれてもよい。
 また、DSの設定には、DSをサブフレーム周期中に一度に測定するサブフレーム期間を示す情報が含まれてもよい。
 つまり、DSの設定には、DSの送信に必要な情報、および/または、DSの受信に必要な情報、および/または、DSの測定に必要な情報が含まれてもよい。
 上記のDSの設定に含まれる情報は、各構成の信号毎にセットされてもよい。つまり、異なる構成の信号毎に、上記の情報が設定されてもよい。
 DSの設定は、上位層シグナリングを用いて通知されてもよい。また、DSの設定は、システム情報を用いて通知されてもよい。また、DSの設定の一部の情報は、L1シグナリング(DCIフォーマット)やL2シグナリング(MAC CE)を用いて通知されてもよい。
 DSは、同一周波数における無線インターフェースによる基地局装置間同期(ネットワークリスニング:network listening)のための参照信号(リスニングRS:listening RS)に用いられてもよい。
 以下、DSを用いた無線インターフェースによる基地局装置間同期について説明する。
 基地局装置間で送信タイミングが同期されることで、TDDシステムの適用、eICIC、CoMPなどのセル間干渉抑圧技術の適用、送信ポイントが異なる基地局間のキャリアアグリゲーションの適用が可能となる。しかしながら、スモールセルがバックホールの遅延が大きい環境、かつ、建物内に配置される場合、バックホールや衛星測位システム(GNSS:Global Navigation Satellite System)による時刻同期を行うことが困難である。そのため、下りリンクの送信タイミングの同期を行うために、無線インターフェースを用いる。
 無線インターフェースによる基地局装置間同期の手順について説明する。初めに、バックホールにより、送信タイミングの基準となる基地局装置3の決定、および、リスニングRSの送信タイミングの指定が行われる。また同時に、バックホールにより、送信タイミングの同期を行う基地局装置3の決定、および、リスニングRSの受信タイミングの指定が行われる。送信タイミングの基準となる基地局装置3、送信タイミングの同期を行なう基地局装置3、およびリスニングRSの送信/受信タイミングの決定は、基地局装置、MME、またはS-GWが行ってもよい。送信タイミングの基準となる基地局装置3は、バックホールによって通知された送信タイミングに基づいて下りリンクコンポーネントキャリアまたは下りリンクサブフレームでリスニングRSの送信を行う。送信タイミングの同期を行う基地局装置3は、通知された受信タイミングでリスニングRSの受信を行い、送信タイミングの同期を行う。なお、リスニングRSは、送信タイミングの基準となる基地局装置3が停止の状態であっても送信してもよい。なお、リスニングRSは、送信タイミングの同期を行う基地局装置3が起動/停止の状態であっても受信してもよい。
 TDDにおいて、送信タイミングの同期を行う基地局装置3は、リスニングRSを受信する間は下りリンク信号の送信を停止し、無線信号の受信処理を行う。言い換えると、送信タイミングの同期を行う基地局装置3は、リスニングRSを受信する間は上りリンクサブフレームで設定される。ここで、送信タイミングの同期を行う基地局装置3に接続される端末装置1は、送信タイミングの同期を行う基地局装置3がリスニングRSを受信する間は停止の状態だと認識する。すなわち、端末装置1は、送信タイミングの同期を行う基地局装置3からPSS/SSS、PBCH、CRS、PCFICH、PHICHおよびPDCCHが送信されないと認識する。端末装置1は、基地局装置3よりリスニングRSを受信するタイミングが通知される。言い換えると、端末装置1は、基地局装置3より停止の状態が通知される。端末装置1は、リスニングRSを受信するタイミングにおいて、基地局装置3に対する測定を行わない。なお、送信タイミングの同期を行う基地局装置3に接続される端末装置1は、送信タイミングの同期を行う基地局装置3がリスニングRSを受信する間は上りリンクサブフレームと認識してもよい。
 FDDにおいて、送信タイミングの同期を行う基地局装置3は、リスニングRSを受信する間は下りリンク信号の送信を停止し、下りリンクコンポーネントキャリアで受信処理を行う。ここで、送信タイミングの同期を行う基地局装置3に接続される端末装置1は、送信タイミングの同期を行う基地局装置3がリスニングRSを受信する間は停止の状態だと認識する。すなわち、端末装置1は、送信タイミングの同期を行う基地局装置3からPSS/SSS、PBCH、CRS、PCFICH、PHICHおよびPDCCHが送信されないと認識する。端末装置1は、基地局装置3よりリスニングRSを受信するタイミングが通知される。言い換えると、端末装置1は、基地局装置3より停止の状態が通知される。端末装置1は、リスニングRSを受信するタイミングにおいて、基地局装置3に対する測定を行なわない。
 なお、端末装置1は、送信タイミングの基準となる基地局装置3から送信されたリスニングRSを用いて、セルの検出を行なってもよい。
 次に、物理層の測定の詳細について説明する。端末装置1は、上位層に報告する物理層の測定を行なう。物理層の測定には、RSRP(Reference Signal Received Power)、RSSI(Received Signal Strength Indicator)、RSRQ(Reference Signal Received Quality)などがある。
 次に、RSRPの詳細について説明する。RSRPは参照信号の受信電力として定義される。RSRQは、参照信号の受信品質として定義される。
 RSRPの一例について説明する。
 RSRPは、考慮される測定周波数帯域幅の中に含まれるCRSが送信されるリソースエレメントの電力を線形平均した値として定義される。RSRPの決定において、アンテナポート0のCRSがマッピングされるリソースエレメントが用いられる。端末装置がアンテナポート1のCRSを検出可能であれば、RSRPの決定のためにアンテナポート0のCRSがマッピングされるリソースエレメント(アンテナポート0に割り当てられたリソースエレメントにマッピングされた無線リソース)に加えてアンテナポート1のCRSがマッピングされるリソースエレメント(アンテナポート1に割り当てられたリソースエレメントにマッピングされた無線リソース)も用いることができる。以下、アンテナポート0のCRSがマッピングされるリソースエレメントを用いて計算されたRSRPをCRSベースRSRPまたは第1のRSRPと称する。
 端末装置1は、RRCアイドル(RRC_IDLE)状態でイントラ周波数のセルおよび/またはインター周波数のセルのRSRPを測定する。ここで、RRCアイドル状態のイントラ周波数のセルとは、端末装置がブロードキャストによってシステム情報が受信されたセルと同じ周波数帯域のセルである。ここで、RRCアイドル状態のインター周波数のセルとは、端末装置1がブロードキャストによってシステム情報が受信されたセルと異なる周波数帯域のセルである。端末装置1は、RRC接続(RRC_CONNECTED)状態でイントラ周波数のセルおよび/またはインター周波数のセルのRSRPを測定する。ここで、RRC接続状態のイントラ周波数のセルとは、端末装置1がRRCシグナリングまたはブロードキャストによってシステム情報が受信されたセルと同じ周波数帯域のセルである。ここで、RRC接続状態のインター周波数のセルとは、端末装置1がRRCシグナリングまたはブロードキャストによってシステム情報が受信されたセルと異なる周波数帯域のセルである。
 RSRPの一例について説明する。
 RSRPは、考慮される測定周波数帯域幅の中に含まれるDSが送信されるリソースエレメントの電力を線形平均した値として定義される。RSRPの決定において、DSがマッピングされるリソースエレメントが用いられる。DSが送信されるリソースエレメントおよびアンテナポートは、上位層で通知される。
 端末装置1は、RRC接続(RRC_CONNECTED)状態でイントラ周波数のセルおよび/またはインター周波数のセルのRSRPを測定する。
 RSSIの詳細について説明する。RSSIは、受信アンテナを用いて観測される総受信電力で定義される。
 RSSIの一例について説明する。
 RSSI(E-UTRA carrier RSSI)は、アンテナポート0に対する参照信号を含んでいると想定したOFDMシンボルのみを観測した総受信電力を線形平均した値で構成する。言い換えると、RSSIは、アンテナポート0のCRSを含んでいるOFDMシンボルのみを観測した総受信電力を線形平均した値で構成する。RSSIは、リソースブロック数Nの帯域幅で観測される。RSSIの総受信電力は、同一チャネルのサービングセルや非サービングセルからの電力、隣接チャネルからの干渉電力、熱雑音電力、などを含む。
 RSSIの一例について説明する。
 RSSI(E-UTRA carrier RSSI)は、全てのOFDMシンボルを観測した総受信電力を線形平均した値で構成する。RSSIの総受信電力は、同一チャネルのサービングセルや非サービングセルからの電力、隣接チャネルからの干渉電力、熱雑音電力、などを含む。
 RSSIの一例について説明する。
 RSSI(E-UTRA carrier RSSI)は、DSを含んでいないOFDMシンボルを観測した総受信電力を線形平均した値で構成される。RSSIは、リソースブロック数Nの帯域幅で観測される。RSSIの総受信電力は、同一チャネルのサービングセルや非サービングセルからの電力、隣接チャネルからの干渉電力、熱雑音電力、などを含む。DSが送信されるリソースエレメントおよび/またはアンテナポートは、上位層で通知される。
 RSSIの一例について説明する。
 RSSI(E-UTRA carrier RSSI)は、DS(CRSおよび/またはCSI-RS)を含まないOFDMシンボルのみを観測した総受信電力を線形平均した値で構成する。言い換えると、RSSIは、DS(CRSおよび/またはCSI-RS)を含まないOFDMシンボルのみを観測した総受信電力を線形平均した値で構成する。RSSIは、リソースブロック数Nの帯域幅で観測される。RSSIの総受信電力は、同一チャネルのサービングセルや非サービングセルからの電力、隣接チャネルからの干渉電力、熱雑音電力、などを含む。
 RSSIの一例について説明する。
 RSSI(E-UTRA carrier RSSI)は、DS(CRSおよび/またはCSI-RS)を含まないOFDMシンボルのみを観測した総受信電力を線形平均した値と、RSRPの値との合計値で構成する。言い換えると、RSSIは、DS(CRSおよび/またはCSI-RS)を含まないOFDMシンボルのみを観測した総受信電力を線形平均した値と、RSRPの値との合計値で構成する。RSSIは、リソースブロック数Nの帯域幅で観測される。RSSIの総受信電力は、同一チャネルのサービングセルや非サービングセルからの電力、隣接チャネルからの干渉電力、熱雑音電力、などを含む。
 以下では、RSRQの詳細について説明する。RSRQは、RSRPとRSSIの比で定義され、通信品質の指標である測定対象セルの信号対干渉雑音比(SINR)と同等の目的で用いられる。RSRQにおける、RSRPとRSSIの組み合わせは以下の限りではないが、本実施形態において、RSRQにおける、RSRPとRSSIの好ましい組み合わせについて記載する。
 RSRQの一例について説明する。
 RSRQは、N×RSRP/RSSIの式で計算される比として定義される。ここで、Nは、RSSIの測定帯域幅に相当するリソースブロック数であり、RSRQの分子と分母は、同じリソースブロックのセットで構成される。ここで、RSRPは、第1のRSRPである。以下、第1のRSRPを用いて計算されたRSRQを用いて計算されたRSRQをCRSベースRSRQまたは第1のRSRQと呼称する。
 RSSI(E-UTRA carrier RSSI)は、アンテナポート0に対する参照信号を含んでいるOFDMシンボルのみを観測した総受信電力を線形平均した値で構成される。言い換えると、RSSIは、アンテナポート0のCRS(アンテナポート0にマップされた無線リソース)を含んでいるOFDMシンボルのみを観測した総受信電力を線形平均した値で構成する。RSSIは、リソースブロック数Nの帯域幅で観測される。RSSIの総受信電力は、同一チャネルのサービングセルや非サービングセルからの電力、隣接チャネルからの干渉電力、熱雑音電力、などを含む。RSRQの測定を行うための所定のサブフレームが上位層のシグナリングから指定された場合、RSSIは前記指定されたサブフレームにおける全てのOFDMシンボルから測定される。
 端末装置1は、RRCアイドル状態でイントラ周波数のセルおよび/またはインター周波数のセルのRSRQを測定する。端末装置1は、RRC接続状態でイントラ周波数のセルおよび/またはインター周波数のセルのRSRQを測定する。
 RSRQの一例について説明する。
 RSRQは、N×RSRP/RSSIの式で計算される比として定義される。ここでNはRSSIの測定帯域幅のリソースブロック数であり、RSRQの分子と分母は同じリソースブロックのセットで構成されなければならない。ここで、RSRPは、第2のRSRPである。以下、第2のRSRPを用いて計算されたRSRQを用いて計算されたRSRQを第2のRSRQと呼称する。
 RSSI(E-UTRA carrier RSSI)は、アンテナポート0に対する参照信号を含んでいると想定したOFDMシンボルのみを観測した総受信電力を線形平均した値で構成する。言い換えると、RSSIは、アンテナポート0のCRSを含んでいるOFDMシンボルのみを観測した総受信電力を線形平均した値で構成する。RSSIは、リソースブロック数Nの帯域幅で観測される。RSSIの総受信電力は、同一チャネルのサービングセルや非サービングセルからの電力、隣接チャネルからの干渉電力、熱雑音電力、などを含む。RSRQの測定を行うための所定のサブフレームが上位層のシグナリングから指定された場合、RSSIは前記指定されたサブフレームにおける全てのOFDMシンボルから測定される。
 RSRQの一例について説明する。
 RSRQは、N×RSRP/RSSIの式で計算される比として定義される。ここで、Nは、RSSIの測定帯域幅に相当するリソースブロック数であり、RSRQの分子と分母は、同じリソースブロックのセットで構成される。ここで、RSRPは、DS(CRSおよび/またはCSI-RS)に基づいて測定される。
 RSSI(E-UTRA carrier RSSI)は、DS(CRSおよび/またはCSI-RS)を含まないOFDMシンボルのみを観測した総受信電力を線形平均した値と、RSRPの値との合計値で構成する。言い換えると、RSSIは、DS(CRSおよび/またはCSI-RS)を含まないOFDMシンボルのみを観測した総受信電力を線形平均した値と、RSRPの値との合計値で構成する。RSSIは、リソースブロック数Nの帯域幅で観測される。RSSIの総受信電力は、同一チャネルのサービングセルや非サービングセルからの電力、隣接チャネルからの干渉電力、熱雑音電力、などを含む。
 また、RSRQに用いられるRSSIは、RSRPと、測定帯域幅内のDSを含まないOFDMシンボルで得られた総受信電力の線形平均値に基づいて得られてもよい。
 また、RSRQに用いられるRSSIは、測定帯域幅のすべてのOFDMシンボルで得られた総受信電力の線形平均値から得られてもよい。
 また、RSRQに用いられるRSSIは、測定帯域幅内のDSを含まないOFDMシンボルで得られた総受信電力の線形平均値から得られてもよい。
 また、RSRQに用いられるRSSIは、DSを構成するCRSに対するRSSI測定から得られてもよい。
 測定帯域幅は、DSがCSI-RSと同様の構成である場合には、5MHz以上で設定されてもよい。
 測定帯域幅は、DSがCSI-RSと同様の構成である場合には、6RBsおよび/または15RBsで設定されてもよい。
 DSの測定帯域幅は、上位層シグナリングを用いて、設定されてもよい。
 端末装置1は、RRC接続状態でイントラ周波数のセルおよび/またはインター周波数のセルのRSRQを測定する。
 第1の測定の手続き(first measurement procedure)について説明する。第1の測定とは、第1のRSRPや第1のRSRQの測定である。なお、第1の測定とは、第1の信号(第1の構成の信号)の測定(RRM測定、RSRP測定、RSRQ測定、RSSI測定)であってもよい。
 端末装置1は、物理セル識別子(PCI)から、アンテナポート0で送信されるCRSが配置されるリソースエレメントを認知する。そして、アンテナポート0で送信されるCRSが配置されるリソースエレメントから第1のRSRPを測定する。なお、測定に用いられるサブフレーム数は限定されず、複数のサブフレームにまたがって測定し、平均値を報告してもよい。次に、アンテナポート0が含まれるOFDMシンボルを認知し、RSSIの測定を行う。そして、第1のRSRPとRSSIから、第1のRSRQの計算を行う。なお、第1のRSRPとRSSIの測定サブフレームは異なってもよい。
 なお、第1の測定の手続きに基づいて得られた結果(第1のRSRP、第1のRSRQ)を第1の測定結果と呼称する。
 第2の測定の手続き(second measurement procedure)について説明する。第2の測定とは、第2のRSRPや第2のRSRQの測定である。
 端末装置1は、DSの設定情報から、DSが配置されるリソースエレメントを認知する。そして、DSが配置されるリソースエレメントから第2のRSRPを測定する。なお、測定に用いられるサブフレーム数は限定されず、複数のサブフレームを測定し、それらの平均値を報告してもよい。次に、RSSIの測定を行う。そして、第2のRSRPとRSSIから、第2のRSRQの計算を行う。
 なお、第2の測定の手続きに基づいて得られた結果(第2のRSRP、第2のRSRQ、第2のRSSI、第2のRRM)を第2の測定結果と呼称する。なお、第2の測定とは、第2の信号(第2の構成の信号)の測定(RRM測定、RSRP測定、RSRQ測定、RSSI測定)であってもよい。
 次に、端末装置1で測定された測定値を上位層へ報告する仕組みを説明する。
 測定のモデルについて説明する。図13は、測定のモデルの一例を示す図である。
 測定部1301は、第1層フィルタリング部13011、第3層フィルタリング部13012、およびリポート基準の評価部13013を含んで構成されてもよい。なお、測定部1301は、受信部105および上位層処理部101の一部の機能を含んで構成されてもよい。具体的には、第1層フィルタリング部13011は受信部105に含まれており、第3層フィルタリング部13012、およびリポート基準の評価13013は上位層処理部101に含まれて構成されてもよい。
 物理層から入力された測定値(サンプル)は、第1層フィルタリング(Layer 1 filtering)部13011によってフィルターが掛けられる。第1層フィルタリング部13011は、例えば、複数の入力値の平均、重み付け平均、チャネル特性に追従した平均などが適用され、その他のフィルター方法を適用してもよい。第1層から報告された測定値は第1層フィルタリング部13011のあとに第3層に入力される。第3層フィルタリング(Layer 3 filtering)部13012に入力された測定値はフィルターが掛けられる。第3層フィルタリングの設定はRRCシグナリングから提供される。第3層フィルタリング部13012でフィルタリングされて報告される間隔は、入力された測定間隔と同じである。リポート基準の評価部13013では、実際に測定値の報告が必要かどうかを検査する。評価は1つ以上の測定のフローに基づいている。例えば、異なる測定値間の比較などである。端末装置1は、少なくとも新しい測定結果が報告された度にリポート基準の評価を行う。リポート基準の設定はRRCシグナリングによって提供される。リポート基準の評価で測定値の報告が必要だと判断された後、端末装置1は、測定報告情報(測定報告メッセージ)を無線インターフェースによって送る。
 次に、測定(measurement)について説明する。基地局装置3は、端末装置1に対して、RRCシグナリング(無線リソース制御信号)のRRC接続再設定(RRC Connection Reconfiguration)メッセージを使って、測定設定(Measurement configuration)メッセージを送信する。端末装置1は、測定設定(Measurement configuration)メッセージに含まれるシステム情報を設定するとともに、通知されたシステム情報に従って、サービングセル(serving cell)および隣接セル(リストセル(listed cell)および/または検出セル(detected cell)を含む)に対する測定、イベント評価、測定報告を行う。リストセルは、測定対象(Measurement object)にリストされているセル(基地局装置3から端末装置1へ隣接セルリストとして通知されているセル)であり、検出セルは、測定対象(Measurement object)によって指示された周波数において端末装置1が検出したが、測定対象(Measurement object)にはリストされていないセル(隣接セルリストとして通知されていない端末装置1自身が検出したセル)である。
 測定(measurement)には、3つのタイプ(周波数内測定(intra-frequency measurements)、周波数間測定(inter-frequency measurements)、無線アクセス技術間測定(inter-RAT measurements))がある。周波数内測定(intra-frequency measurements)は、サービングセルの下りリンク周波数(下りリンク周波数)での測定である。周波数間測定(inter-frequency measurements)は、サービングセルの下りリンク周波数とは異なる周波数での測定である。無線アクセス技術間測定(inter-RAT measurements)は、サービングセルの無線技術(例えばEUTRA)とは異なる無線技術(例えばUTRA、GERAN,CDMA2000など)での測定である。
 測定設定(Measurement configuration)メッセージには、測定識別子(measId)、測定対象(Measurement objects)、報告設定(Reporting configurations)の設定の追加および/または修正および/または削除、物理量設定(quantityConfig)、測定ギャップ設定(measGapConfig)、サービングセル品質閾値(s-Measure)などが含まれる。
 物理量設定(quantityConfig)は、測定対象(Measurement objects)がEUTRAの場合、第3層フィルタリング係数(L3 filtering coefficient)を指定する。第3層フィルタリング係数(L3 filtering coefficient)は、最新の測定結果と、過去のフィルタリング測定結果との比(割合)を規定する。フィルタリング結果は、端末装置1でイベント評価に利用される。
 測定ギャップ設定(measGapConfig)は、測定ギャップパターン(measurement gap pattern)の設定や、測定ギャップ(measurement gap)の活性化(activation)/非活性化(deactivation)を制御するために利用される。測定ギャップ設定(measGapConfig)では、測定ギャップを活性化させる場合の情報として、ギャップパターン(gap pattern)、開始システムフレーム番号(startSFN)、開始サブフレーム番号(startSubframeNumber)が通知される。ギャップパターン(gap pattern)は、測定ギャップ(measurement gap)として、どのパターンを使うかを規定する。開始システムフレーム番号(startSFN)は、測定ギャップ(measurement gap)を開始するシステムフレーム番号(SFN: System Frame Number)を規定する。開始サブフレーム番号(startSubframeNumber)は、測定ギャップ(measurement gap)を開始するサブフレーム番号を規定する。
 測定ギャップとは、上りリンク/下りリンク送信がスケジュールされていない場合に、端末装置1が測定を行なうために利用する可能性のある期間(時間、サブフレーム)のことである。
 DSの測定をサポートしている(またはDS設定がセットされた)端末装置1に対して、測定ギャップが設定された場合、測定ギャップ設定に基づいて規定されたサブフレームにおいて(つまり、測定ギャップ上で)、DSの測定を行なってもよい。
 DSの測定をサポートしている(またはDS設定がセットされた)端末装置1に対して、測定ギャップが設定された場合、DS設定に含まれているサブフレーム設定に基づくDS送信サブフレームが測定ギャップ設定に基づいて規定されたサブフレームと重複していれば、測定ギャップ上でDSを測定してもよい。DS送信サブフレームが測定ギャップ上にあれば、端末装置1は、測定ギャップ上でDSを測定してもよい。
 DSの測定をサポートしている(またはDS設定がセットされた)端末装置1に対して、測定ギャップが設定された場合、DCIフォーマットまたはMAC CEで、停止の状態が示されたセルに対してのみ、測定ギャップ上でDSを測定してもよい。つまり、起動の状態が示されたセルに対して、端末装置1は、測定ギャップ上でDSの測定を行なわなくてもよい。基地局装置3は、起動の状態のセルでDSを送信しなくてもよい。
 測定ギャップは、DS毎または起動/停止の状態が示されるセル毎に設定されてもよい。
 サービングセル品質閾値(s-Measure)は、サービングセル(serving cell)の品質に関する閾値を表し、端末装置1が測定(measurement)を行う必要があるか否かを制御するために利用される。サービングセル品質閾値(s-Measure)は、RSRPに対する値として設定される。
 ここで、測定識別子(measId)は、測定対象(Measurement objects)と、報告設定(Reporting configurations)とをリンクさせるために利用され、具体的には、測定対象識別子(measObjectId)と報告設定識別子(reportConfigId)とをリンクさせる。測定識別子(measId)には、一つの測定対象識別子(measObjectId)と一つの報告設定識別子(reportConfigId)が対応付けられる。測定設定(Measurement configuration)メッセージは、測定識別子(measId)、測定対象(Measurement objects)、報告設定(Reporting configurations)の関係に対して追加・修正・削除することが可能である。
 measObjectToRemoveListは、指定された測定対象識別子(measObjectId)および指定された測定対象識別子(measObjectId)に対応する測定対象(Measurement objects)を削除するコマンドである。この際、指定された測定対象識別子(measObjectId)に対応付けられたすべての測定識別子(measId)は、削除される。このコマンドは、同時に複数の測定対象識別子(measObjectId)の指定が可能である。
 measObjectToAddModifyListは、指定された測定対象識別子(measObjectId)を指定された測定対象(Measurement objects)に修正、または、指定された測定対象識別子(measObjectId)と指定された測定対象(Measurement objects)を追加するコマンドである。このコマンドは、同時に複数の測定対象識別子(measObjectId)の指定が可能である。
 reportConfigToRemoveListは、指定された報告設定識別子(reportConfigId)および指定された報告設定識別子(reportConfigId)に対応する報告設定(Reporting configurations)を削除するコマンドである。この際、指定された報告設定識別子(reportConfigId)に対応付けられたすべての測定識別子(measId)は、削除される。このコマンドは、同時に複数の報告設定識別子(reportConfigId)の指定が可能である。
 measIdToRemoveListは、指定された測定識別子(measId)を削除するコマンドである。この際、指定された測定識別子(measId)に対応付けられた測定対象識別子(measObjectId)と報告設定識別子(reportConfigId)は、削除されずに維持される。このコマンドは、同時に複数の測定識別子(measId)の指定が可能である。
 measIdToAddModifyListは、指定された測定識別子(measId)を指定された測定対象識別子(measObjectId)と指定された報告設定識別子(reportConfigId)に対応付けるように修正、または、指定された測定対象識別子(measObjectId)と指定された報告設定識別子(reportConfigId)を指定された測定識別子(measId)に対応付けし、指定された測定識別子(measId)を追加するコマンドである。このコマンドは、同時に複数の測定識別子(measId)の指定が可能である。
 測定対象(Measurement objects)は、無線アクセス技術(RAT:Radio Access Technology)および周波数ごとに規定されている。また、報告設定(Reporting configurations)は、EUTRAに対する規定と、EUTRA以外のRATに対する規定がある。
 測定対象(Measurement objects)には、測定対象識別子(measObjectId)と対応付けられた測定対象EUTRA(measObjectEUTRA)などが含まれる。
 測定対象識別子(measObjectId)は、測定対象(Measurement objects)の設定を識別するために使用する識別子である。測定対象(Measurement objects)の設定は、前述のように、無線アクセス技術(RAT)および周波数ごとに規定されている。測定対象(Measurement objects)は、EUTRA、UTRA、GERAN、CDMA2000に対して別途仕様化されている。EUTRAに対する測定対象(Measurement objects)である測定対象EUTRA(measObjectEUTRA)は、EUTRAの隣接セルに対して適用される情報を規定する。また、測定対象EUTRA(measObjectEUTRA)のなかで異なる周波数のものは異なる測定対象(Measurement objects)として扱われ、別途、測定対象識別子(measObjectId)が割り当てられる。
 測定対象の情報の一例について説明する。
 測定対象EUTRA(measObjectEUTRA)には、EUTRA搬送波周波数情報(eutra-CarrierInfo)、測定帯域幅(measurementBandwidth)、アンテナポート1存在情報(presenceAntennaPort1)、オフセット周波数(offsetFreq)、隣接セルリスト(neighbour cell list)に関する情報、ブラックリスト(black list)に関する情報が含まれる。
 次に、測定対象EUTRA(measObjectEUTRA)に含まれる情報について説明する。EUTRA搬送波周波数情報(eutra-CarrierInfo)は、測定対象とする搬送波周波数を指定する。測定帯域幅(measurementBandwidth)は、測定対象とする搬送波周波数で動作する全ての隣接セル共通な測定帯域幅を示す。アンテナポート1存在情報(presenceAntennaPort1)は、測定対象とするセルにおいてアンテナポート1を使用しているか否かを示す。オフセット周波数(offsetFreq)は、測定対象とする周波数において適用される測定オフセット値を示す。
 測定対象の情報の一例について説明する。
 基地局装置3は、端末装置1に対して、第2の測定を行なわせるためには、第1の測定とは異なる設定を行なう。例えば、第1の測定と第2の測定とで、測定対象となる信号(または信号の構成、信号の設定)が異なってもよい。また、第1の測定と第2の測定とで、測定対象となる信号にセットされているセルIDが異なってもよい。また、第1の測定と第2の測定とで、測定対象となる信号のアンテナポートが異なってもよい。また、第1の測定と第2の測定とで、測定対象となる信号の測定周期(または測定サブフレームパターン)が異なってもよい。つまり、第1の測定と第2の測定は、個別に設定されてもよい。
 測定対象EUTRA(measObjectEUTRA)には、EUTRA搬送波周波数情報(eutra-CarrierInfo)、測定帯域幅(measurementBandwidth)、DS設定情報、オフセット周波数(offsetFreq)、隣接セルリスト(neighbour cell list)に関する情報、ブラックリスト(black list)に関する情報が含まれる。
 次に、測定対象EUTRA(measObjectEUTRA)に含まれる情報ついて説明する。EUTRA搬送波周波数情報(eutra-CarrierInfo)は、測定対象とする搬送波周波数を指定する。測定帯域幅(measurementBandwidth)は、測定対象とする搬送波周波数で動作する全ての隣接セル共通な測定帯域幅を示す。DS設定情報は、端末装置1にDS設定を検出するために必要な周波数帯で共通な設定情報を通知するために用いられ、例えば、測定対象とするセルにおいて送信されるサブフレーム番号やサブフレーム周期などを示す。オフセット周波数(offsetFreq)は、測定対象とする周波数において適用される測定オフセット値を示す。
 隣接セルリストおよびブラックリストに関する情報の一例について説明する。
 隣接セルリスト(neighbour cell list)に関する情報は、イベント評価や、測定報告の対象となる隣接セルに関する情報を含む。隣接セルリスト(neighbour cell list)に関する情報としては、物理セル識別子(physical cell ID)や、セル固有オフセット(cellIndividualOffset、隣接セルに対して適用する測定オフセット値を示す)などが含まれている。この情報は、EUTRAの場合、端末装置1が、既に、報知情報(報知されるシステム情報)から既に取得している隣接セルリスト(neighbour cell list)に対して、追加・修正または削除を行うための情報として利用される。
 また、ブラックリスト(black list)に関する情報は、イベント評価や、測定報告の対象とならない隣接セルに関する情報を含む。ブラックリスト(black list)に関する情報としては、物理セル識別子(physical cell ID)などが含まれる。この情報は、EUTRAの場合、端末装置1が、既に、報知情報から取得しているブラックセルリスト(black listed cell list)に対して、追加・修正または削除を行うための情報として利用される。
 隣接セルリストおよびブラックリストに関する情報の一例について説明する。
 第2の測定を行う場合において、物理セル識別子(PCI)では足りないケースで用いられることが想定される。そのため、物理セル識別子を拡張した新しい隣接セルリストおよび新しいブラックリストが必要となる。
 新しい隣接セルリスト(隣接小セルリスト(neighbour small cell list))に関する情報は、イベント評価や、測定報告の対象となる隣接セルに関する情報を含んでもよい。新しい隣接セルリストに関する情報としては、セルIDや、セル固有オフセット(cellIndividualOffset、隣接セルに対して適用する測定オフセット値を示す)、セル固有のDS設定情報などが含まれてもよい。ここで、セル固有のDS設定情報とは、セル固有に設定されるDSの情報であり、例えば、用いられるDSのリソースエレメントを示す情報などである。この情報は、EUTRAの場合、端末装置1が、既に、報知情報(報知されるシステム情報)から既に取得している新しい隣接セルリストに対して、追加・修正または削除を行うための情報として利用される。
 また、新しいブラックリストに関する情報は、イベント評価や、測定報告の対象とならない隣接セルに関する情報を含んでもよい。また、新しいブラックリストに関する情報としては、セルIDなどが含まれてもよい。この情報は、EUTRAの場合、端末装置1が、既に、報知情報から取得している新しいブラックセルリスト(ブラック小セルリスト(black listed small cell list))に対して、追加・修正または削除を行うための情報として利用される。
 ここで、セルIDは、例えば、物理セル識別子(physical cell ID、physical layer cell ID)、CGI(Cell Global Identity/Identifier)、ECGI(E-UTRAN Cell Global Identifier/Identity)、発見ID(Discovery ID)、仮想セル識別子(virtual cell ID)、送信ポイントIDなどであり、DSで送信されるセル(送信ポイント)IDの情報に基づいて構成される。また、セルIDではなく、系列生成器(スクランブリング系列生成器、擬似乱数系列生成器)に関連するパラメータであってもよい。
 なお、DSの設定に、セルID(または擬似乱数系列生成器に関連するパラメータ(例えば、スクランブリングID))が含まれる場合、隣接セルリストは、DSのリストを示してもよい。つまり、端末装置1は、隣接セルリストにセットされているセルIDのDSの測定を行なってもよい。
 なお、DSの設定に、セルIDが含まれる場合、ブラックリストは、DSのブラックリストを示してもよい。つまり、端末装置1は、ブラックリストにセットされているセルIDのDSの測定を行なわなくてもよい。
 次に、報告設定の詳細について説明する。
 報告設定(Reporting configurations)には、報告設定識別子(reportConfigId)と対応付けられた報告設定EUTRA(reportConfigEUTRA)などが含まれる。
 報告設定識別子(reportConfigId)は、測定に関する報告設定(Reporting configurations)を識別するために使用する識別子である。測定に関する報告設定(Reporting configurations)は、前述のように、EUTRAに対する規定と、EUTRA以外のRAT(UTRA、GERAN、CDMA2000)に対する規定がある。EUTRAに対する報告設定(Reporting configurations)である報告設定EUTRA(reportConfigEUTRA)は、EUTRAにおける測定の報告に利用するイベントのトリガ条件(triggering criteria)を規定する。
 また、報告設定EUTRA(reportConfigEUTRA)には、イベント識別子(eventId)、トリガ量(triggerQuantity)、ヒステリシス(hysteresis)、トリガ時間(timeToTrigger)、報告量(reportQuantity)、最大報告セル数(maxReportCells)、報告間隔(reportInterval)、報告回数(reportAmount)が含まれる。
 イベント識別子(eventId)は、イベントトリガ報告(event triggered reporting)に関する条件(criteria)を選択するために利用される。ここで、イベントトリガ報告(event triggered reporting)とは、イベントトリガ条件を満たした場合に、測定を報告する方法である。この他に、イベントトリガ条件を満たした場合に、一定間隔で、ある回数だけ測定を報告するというイベントトリガ定期報告(event triggered periodic reporting)もある。
 イベント識別子(eventId)によって指定されたイベントトリガ条件を満たした場合、端末装置1は、基地局装置3に対して、測定報告(measurement report)を行なう。トリガ量(triggerQuantity)は、イベントトリガ条件を評価するために利用する量である。すなわち、RSRP、または、RSRQが指定される。すなわち、端末装置1は、このトリガ量(triggerQuantity)によって指定された量を利用して、下りリンク参照信号の測定を行い、イベント識別子(eventId)で指定されたイベントトリガ条件を満たしているか否かを判定する。
 ヒステリシス(hysteresis)は、イベントトリガ条件で利用されるパラメータである。トリガ時間(timeToTrigger)は、イベントトリガ条件を満たすべき期間を示す。報告量(reportQuantity)は、測定報告(measurement report)において報告する量を示す。ここでは、トリガ量(triggerQuantity)で指定した量、または、RSRPおよびRSRQが指定される。
 最大報告セル数(maxReportCells)は、測定報告(measurement report)に含めるセルの最大数を示す。報告間隔(reportInterval)は、定期報告(periodical reporting)またはイベントトリガ定期報告(eventtriggered periodic reporting)に対して利用され、報告間隔(reportInterval)で示される間隔ごとに定期報告する。報告回数(reportAmount)は、必要に応じて、定期報告(periodical reporting)を行う回数を規定する。
 なお、後述のイベントトリガ条件で利用する閾値パラメータやオフセットパラメータは、報告設定において、イベント識別子(eventId)と一緒に、端末装置1へ通知される。
 なお、基地局装置3は、サービングセル品質閾値(s-Measure)を通知する場合と通知しない場合がある。基地局装置3がサービングセル品質閾値(s-Measure)を通知する場合、端末装置1は、サービングセル(serving cell)のRSRPがサービングセル品質閾値(s-Measure)よりも低いときに、隣接セルの測定と、イベント評価(イベントトリガ条件を満たすか否か、報告条件(Reporting criteria)の評価とも言う)を行う。一方、基地局装置3がサービングセル品質閾値(s-Measure)を通知しない場合、端末装置1は、サービングセル(serving cell)のRSRPによらず、隣接セルの測定と、イベント評価を行う。
 次に、イベントおよびイベントトリガ条件の詳細について説明する。
 イベントトリガ条件を満たした端末装置1は、基地局装置3に対して、測定報告(Measurement report)を送信する。測定報告(Measurement report)には、測定結果(Measurement result)が含まれる。
 測定報告(measurement report)をするためのイベントトリガ条件には、複数定義されており、それぞれ加入条件と離脱条件がある。すなわち、基地局装置3から指定されたイベントに対する加入条件を満たした端末装置1は、基地局装置3に対して測定報告(measurement report)を送信する。一方、イベント加入条件を満たして測定報告(measurement report)を送信していた端末装置1は、イベント離脱条件を満たした場合、測定報告(measurement report)の送信を停止する。
 以下で説明されるイベントおよびイベントトリガ条件の一例は、第1の測定結果または第2の測定結果のどちらかが用いられる。
 以下では、イベントトリガ条件を評価するために利用する測定結果の種類の指定方法の一例について説明する。
 報告設定によって、イベントトリガ条件を評価するために利用する測定結果の種類が指定される。パラメータによって第1の測定結果または第2の測定結果のどちらかを用いてイベントトリガ条件を評価する。
 具体的な一例としては、第1の測定結果か第2の測定結果かは、トリガ物理量(triggerQuantity)によって指定される。トリガ物理量では、{第1のRSRP、第1のRSRQ、第2のRSRP、第2のRSRQ}と4つの選択欄によって規定されてもよい。端末装置1は、このトリガ物理量(triggerQuantity)によって指定された物理量を利用して、下りリンク参照信号の測定を行ない、イベント識別子(eventId)で指定されたイベントトリガ条件を満たしているか否かを判定する。
 具体的な一例としては、第1の測定結果か第2の測定結果かは、トリガ物理量の他にイベントトリガ条件を評価するために利用する測定結果の種類を指定する新しいパラメータ(triggerMeasType)が規定されてもよい。前記新しいパラメータは、第1の測定結果を用いてイベントトリガ条件を評価することを示す情報、または、第2の測定結果を用いてイベントトリガ条件を評価することを示す情報がセットされる。例えば、前記新しいパラメータに第2の測定結果を用いてイベントトリガ条件を評価することを示す情報がセットされた場合、端末装置1は、第2の測定を行ない、第2の測定結果を用いてイベントトリガ条件を評価する。なお、前記パラメータは、報告する測定結果の種類を指定するパラメータ(reportMeasType)と共有してもよい。
 なお、サービングセルの測定結果と周辺セルの測定結果との比較などの、1つの条件式に2つ以上の測定結果を用いるイベントトリガ条件においては、それぞれにイベントトリガ条件を評価するために利用する測定結果の種類を指定してもよい。例えば、サービングセルの測定結果用の新しいパラメータ(triggerMeasTypeServ)と周辺セルの測定結果用の新しいパラメータ(triggerMeasTypeNeigh)が規定されてもよい。
 以下では、イベントトリガ条件を評価するために利用する測定結果の種類の指定方法の一例について説明する。
 報告設定によって、イベントトリガ条件を評価するために利用する測定結果の種類は、測定を指定する条件に依存して決定される。
 具体的な一例としては、イベントトリガ条件を評価するために利用する測定結果の種類は、対象セルの起動/停止の状態に依存して決定される。例えば、対象セルが起動の状態であれば、第1の測定結果を用いてイベントトリガ条件が評価され、対象セルが停止の状態であれば、第2の測定結果を用いてイベントトリガ条件が評価される。
 具体的な一例としては、イベントトリガ条件を評価するために利用する測定結果の種類は、参照信号の検出に依存して決定される。例えば、CRSが検出されて、DSが検出されなかった場合、第1の測定結果を用いてイベントトリガ条件が評価され、CRSが検出されず、DSが検出された場合、第2の測定結果を用いてイベントトリガ条件が評価されてもよい。また、CRSとDSの両方が検出された場合、受信電力の高い方の測定結果を用いてイベントトリガ条件が評価されてもよい。また、CRSとDSの両方が検出された場合、両方の受信電力を平均化した測定結果を用いてイベントトリガ条件が評価されてもよい。また、CRSとDSの両方が検出されなかった場合、イベントトリガ条件は評価されなくてもよい。
 次に、測定結果の詳細について説明する。
 この測定結果(Measurement result)は、測定識別子(measId)、サービングセル測定結果(measResultServing)、EUTRA測定結果リスト(measResultListEUTRA)で構成される。ここで、EUTRA測定結果リスト(measResultListEUTRA)には、物理セル識別子(physicalCellIdentity)、EUTRAセル測定結果(measResultEUTRA)が含まれる。ここで、測定識別子(measId)とは、前述のように、測定対象識別子(measObjectId)と報告設定識別子(reportConfigId)とのリンクに利用されていた識別子である。また、物理セル識別子(physicalCellIdentity)は、セルを識別するために利用する。EUTRAセル測定結果(measResultEUTRA)は、EUTRAセルに対する測定結果である。隣接セルの測定結果は関連するイベントの発生時にのみ含まれる。
 測定結果の一例について説明する。
 端末装置1は、測定結果に、対象セルに対するRSRPおよびRSRQの結果を含んで報告してもよい。1回で報告されるRSRPおよびRSRQは、第1の測定結果または第2の測定結果のどちらか1つであってもよい。なお、第1の測定結果は、第1の測定から得られる測定結果であってもよい。また、第2の測定結果は、第2の測定から得られる測定結果であってもよい。言い換えると、第1の測定結果は、第1の測定に関する設定情報に基づいて得られた測定結果であり、第2の測定結果は、第2の測定に関する設定情報に基づいて得られた測定結果である。
 具体的な一例を挙げると、第1の測定結果か第2の測定結果かを決定するパラメータに基づいて、測定結果が報告される。第1の測定結果か第2の測定結果かを決定する基準は、例えば、新しいパラメータ(reportMeasType)である。前記新しいパラメータは、第1の測定結果を報告することを示す情報、または、第2の測定結果を報告することを示す情報がセットされてもよい。例えば、前記新しいパラメータに第2の測定結果を報告することを示す情報がセットされた場合、端末装置1は、前記新しいパラメータを認識し、第2の測定を行ない、第2の測定結果を測定報告メッセージに載せて送信を行ない、第1の測定結果は送信しない。また、前記新しいパラメータは、第1の測定結果および第2の測定結果を報告することを示す情報がセットされてもよい。
 なお、前記新しいパラメータは、イベントトリガ条件を評価するために利用する測定結果の種類を指定するパラメータ(triggerMeasType)と共有してもよい。なお、前記パラメータは、測定方法を指定する上位層パラメータと共有してもよい。
 なお、報告物理量を示すパラメータ(reportQuantity)は、RSRPに対するパラメータ(reportQuantityRSRP)とRSRQに対するパラメータ(reportQuantityRSRQ)として、測定する種類ごとに設定してもよい。例えばreportQuantityRSRPは第1のRSRPと設定され、reportQuantityRSRQは第2のRSRQと設定された場合、端末装置1は、第1のRSRPと第2のRSRQを送信し、第2のRSRPと第1のRSRQは送信しない。
 具体的な一例を挙げると、測定を指定する条件に依存して報告されてもよい。
 例えば、報告される測定結果の種類は、対象セルの起動/停止の状態に依存して決定されてもよい。
 例えば、報告される測定結果の種類は、参照信号の検出に依存して決定される。例えば、CRSが検出されてDSが検出されなかった場合、第1の測定結果が報告され、CRSが検出されずDSが検出された場合、第2の測定結果が報告される。CRSとDSの両方が検出された場合、受信電力の高い方の測定結果が報告される。CRSとDSの両方が検出されなかった場合、報告されない、または、最低値が報告される。
 なお、端末装置1は報告された測定結果が第1の測定によって計算された結果か第2の測定によって計算された結果かを基地局装置3に認知させるために、測定結果にどの測定の種類がセットされたかを明示するパラメータが追加されてもよい。
 上記では、イベント、イベントトリガ条件、および測定結果の報告の一例について説明した。これらの組み合わせによって、端末装置1は、基地局装置3に対して第1の測定結果および/または第2の測定結果を報告する。本実施形態は、イベント、イベントトリガ条件、および測定結果の報告の組み合わせは限定されないが、好ましい組み合わせの一例を以下で説明する。
 イベント、イベントトリガ条件、および測定結果の報告の組み合わせの一例について説明される。
 第1の測定を行う場合には、物理セル識別子が設定される隣接セルリストやブラックリストを含んだ測定対象(measObject)が設定され、また、第1の測定によってトリガされるイベントおよびイベントトリガ条件が設定される報告設定(reportConfig)が設定され、それらがIDによって紐付けられることで第1の測定結果(measResults)を含んだ測定報告メッセージが送信される。更に、第2の測定を行う場合には、拡張されたセルIDが設定される新しい隣接セルリストや新しいブラックリストを含んだ測定対象(measObject)が設定され、また、第2の測定によってトリガされるイベントおよびイベントトリガ条件が設定される報告設定(reportConfig)が設定され、それらがIDによって紐付けられることで第2の測定結果(measResults)を含んだ測定報告メッセージが送信される。
 すなわち、端末装置1に、第1の測定用の測定対象、報告設定、測定結果と、第2の測定用の測定対象、報告設定、測定結果が設定される。すなわち、第1の測定結果に対する報告設定と第2の測定結果に対する報告設定がそれぞれ独立に設定される。
 イベント、イベントトリガ条件、および測定結果の報告の組み合わせの一例について説明する。
 第1の測定を行う場合には、物理セル識別子が設定される隣接セルリストやブラックリストを含んだ測定対象(measObject)が設定され、また、第1の測定によってトリガされるイベントおよびイベントトリガ条件が設定される報告設定(reportConfig)が設定され、それらが測定結果(measResults)とIDによって紐付けられる。第2の測定を行う場合には、拡張されたセルIDが設定される新しい隣接セルリストや新しいブラックリストを含んだ測定対象(measObject)が設定され、また、第2の測定によってトリガされるイベントおよびイベントトリガ条件が設定される報告設定(reportConfig)が設定され、それらが前記測定結果(measResults)とIDによって紐付けられる。第1の測定によってトリガされるイベントが発生した場合、測定結果に第1の測定結果が代入され、測定報告メッセージによって送信される。第2の測定によってトリガされるイベントが発生した場合、測定結果に第2の測定結果が代入され、測定報告メッセージによって送信される。
 すなわち、第1の測定用の測定対象、報告設定と、第2の測定用の測定対象、報告設定が設定され、測定結果は第1の測定と第2の測定でフィールドが共有される。イベントによって第1の測定結果または第2の測定結果が送信される。
 これにより、端末装置1は、第1の測定結果と第2の測定結果を基地局装置3に報告することができる。
 本実施形態の端末装置1は、基地局装置3と通信する端末装置1であって、第1のRS(CRS)に基づいて第1の測定を行ない、第2のRS(DS)に基づいて第2の測定を行う受信部105と、前記第1の測定結果と前記第2の測定結果を前記基地局装置3に報告する上位層処理部101と、を備え、第1の状態では、前記第1の測定結果を前記基地局装置3に報告し、第2の状態では、前記第1の測定結果または前記第2の測定結果を前記基地局装置3に報告する。
 一例として、前記第2の状態では、前記第1の測定結果を報告するイベントと前記第2の測定結果を報告するイベントと、が前記基地局装置3によって設定される。また、一例として、前記第2の状態では、前記第2の測定を報告するイベントのみが前記基地局装置3によって設定される。前記第2の測定結果を報告するイベントトリガ条件は、第2の測定結果を用いて規定される。
 一例として、前記第1の状態は、前記第2のRSの設定情報が通知されていない状態であり、前記第2の状態は、前記第2のRSの設定情報が前記基地局装置3から通知された状態である。また、一例として、前記第1の状態は、前記第2の測定情報が設定されていない状態であり、前記第2の状態は、前記第2の測定情報が前記基地局装置3から設定された状態である。また、一例として、前記第2の状態は、前記第1のRSが送信されない状態である。
 DSに対する報告設定は、CRSやCSI-RSに対する報告設定とは、個別にセットされてもよい。
 送信電力やPHR(Power Headroom)では、パスロスに依存して値が決定される。以下では、パスロス(伝搬路減衰値)を推定する方法の一例について説明する。
 サービングセルcの下りリンクパスロス推定値は、PLc = referenceSignalPower - higher layer filtered RSRPの式で端末装置1によって計算される。ここで、referenceSignalPowerは上位層で与えられる。referenceSignalPowerは、CRSの送信電力に基づいた情報である。ここで、higher layer filtered RSRPは上位層でフィルタリングされた参照サービングセルの第1のRSRPである。
 もしサービングセルcがプライマリーセルを含んだTAG(pTAG)に所属している場合、上りリンクプライマリーセルに対して、referenceSignalPowerとhigher layer filtered RSRPの参照サービングセルにはプライマリーセルが用いられる。上りリンクセカンダリーセルに対して、referenceSignalPowerとhigher layer filtered RSRPの参照サービングセルには上位層のパラメータpathlossReferenceLinkingによって設定されたサービングセルが用いられる。もしサービングセルcがプライマリーセルを含まないTAG(例えば、sTAG)に所属している場合、referenceSignalPowerとhigher layer filtered RSRPの参照サービングセルにはサービングセルcが用いられる。
 パスロスを推定する方法の一例について説明する。
 サービングセルcの下りリンクパスロス推定値は、上位層によって設定された場合PLc = discoverySignalPower - higher layer filtered RSRP2の式で、そうでなければPLc = referenceSignalPower - higher layer filtered RSRPの式を用いて端末装置1によって計算される。ここで、referenceSignalPowerは上位層で与えられる。referenceSignalPowerは、CRSの送信電力に基づいた情報である。ここで、higher layer filtered RSRPは、上位層でフィルタリングされた参照サービングセルの第1のRSRPである。ここで、discoverySignalPowerは、DSの送信電力に関連するパラメータであり、上位層で与えられる。また、higher layer filtered RSRP2は、上位層でフィルタリングされた参照サービングセルの第2のRSRPである。
 ここで、上位層によって設定された場合とは、例えば、上位層シグナリングを用いて通知されたDSの設定に基づく場合であってもよい。上位層によって設定された場合とは、例えば、上位層シグナリングを用いて通知された測定の設定に基づく場合であってもよい。上位層によって設定された場合とは、例えば、上位層シグナリングを用いて通知された上りリンク電力制御の設定に基づく場合であってもよい。つまり、上位層によって設定された場合とは、上位層シグナリングを用いて、パラメータまたは情報が通知され、端末装置1に設定された場合が含まれてもよい。
 もしサービングセルcがプライマリーセルを含んだTAGに所属している場合、上りリンクプライマリーセルに対して、discoverySignalPowerとhigher layer filtered RSRP2の参照サービングセルにはプライマリーセルが用いられる。上りリンクセカンダリーセルに対して、discoverySignalPowerとhigher layer filtered RSRP2の参照サービングセルには上位層のパラメータpathlossReferenceLinkingによって設定されたサービングセルが用いられる。もしサービングセルcがプライマリーセルを含まないTAGに所属している場合、discoverySignalPowerとhigher layer filtered RSRP2の参照サービングセルにはサービングセルcが用いられる。
 セカンダリーセルが停止の状態である場合、端末装置1は、以下の処理を行なわなくてもよい。その処理は、セカンダリーセルでのSRSの送信、セカンダリーセルに対するCQI(Channel Quality Indicator)/PMI(Precoding Matrix Indicator)/RI(Rank Indicator)/PTI(Precoding Type Indicator)の報告、セカンダリーセルでの上りリンクデータ(UL-SCH)の送信、セカンダリーセルでのRACHの送信、セカンダリーセルでのPDCCHのモニタ、セカンダリーセルに対するPDCCHのモニタである。
 セカンダリーセルが小セルである場合には、セカンダリーセルが停止の状態であっても、端末装置1は、以下の処理を行なってもよい。その処理は、セカンダリーセルでのSRSの送信、セカンダリーセルに対するCQI/PMI/RI/PTIの報告、(セカンダリーセルでの上りリンクデータ(UL-SCH)の送信)、セカンダリーセルでのRACHの送信、セカンダリーセルでのPDCCHのモニタ、セカンダリーセルに対するPDCCHのモニタである。
 停止の状態のセカンダリーセルが小セルである場合、端末装置1は、クロスキャリアスケジューリングによって、プライマリーセル(プライマリーセルで送信されるPDCCH/EPDCCH(DCIフォーマット))から、セカンダリーセルに対するSRS送信の要求がある(SRSリクエストが送信される)とすれば、セカンダリーセルでSRSを送信してもよい。つまり、この場合、基地局装置3は、SRSを受信することを期待する。
 停止の状態のセカンダリーセルが小セルである場合、クロスキャリアスケジューリングによって、プライマリーセル(プライマリーセルで送信されるPDCCH/EPDCCH(DCIフォーマット))から、セカンダリーセルに対するCSI報告の要求がある(CSIリクエストが送信される)とすれば、端末装置1は、セカンダリーセルに対するCQI/PMI/RI/PTIをプライマリーセルのPUSCHを用いて送信してもよい。つまり、この場合、基地局装置3は、プライマリーセルのPUSCHでセカンダリーセルに対するCQI/PMI/RI/PTIを受信することを期待する。
 停止の状態のセカンダリーセルが小セルである場合、クロスキャリアスケジューリングによって、プライマリーセル(プライマリーセルで送信されるPDCCH/EPDCCH(DCIフォーマット))から、PDCCHオーダーによるランダムアクセスレスポンスグラント(RARグラント)が送信されるとすれば、端末装置1は、セカンダリーセルで、RACH送信を行なってもよい。つまり、この場合、基地局装置3は、セカンダリーセルでRACHを受信することを期待する。
 停止の状態のセカンダリーセルが小セルである場合、クロスキャリアスケジューリングによって、プライマリーセル(プライマリーセルで送信されるPDCCH/EPDCCH(DCIフォーマット))から、セカンダリーセルに対して、RA-RNTIがスクランブルされたCRCを伴うDCIフォーマットを検出できるとすれば、端末装置1は、セカンダリーセルで、RACH送信を行なってもよい。つまり、この場合、基地局装置3は、セカンダリーセルでRACHを受信することを期待する。
 停止の状態のセカンダリーセルが小セルである場合、セカンダリーセルに対して、EPDCCHセットの設定(またはEPDCCH設定)がセットされていなければ、端末装置1は、セカンダリーセルでPDCCHをモニタしてもよい。つまり、この場合、基地局装置3は、停止の状態の小セルにおいて、PDCCHを送信してもよい。
 停止の状態のセカンダリーセルが小セルである場合、クロスキャリアスケジューリングによって、プライマリーセル(プライマリーセルで送信されるPDCCH/EPDCCH(DCIフォーマット))からセカンダリーセルに対して、下りリンクグラントや上りリンクグラント、CSIリクエストやSRSリクエスト、ランダムアクセスレスポンスグラントなどが送信される場合、端末装置1は、セカンダリーセルに対するPDCCHをモニタしてもよい。その際、EPDCCHセット(またはEPDCCH設定)の設定が端末装置1に対してされていない、または、端末装置1にEPDCCHを用いてDCIを受信する機能がサポートされていない場合にのみ、端末装置1は、セカンダリーセルに対するPDCCHのモニタを行なってもよい。つまり、この場合、基地局装置3は、停止の状態の小セルにおいて、PDCCHを送信してもよい。
 停止の状態のセカンダリーセルが小セルである場合、セカンダリーセルに対して、上りリンクスケジューリングに関する情報が送信されても、端末装置1は、上りリンクスケジューリングに関する情報に基づく、上りリンク送信を行なわなくてもよい。つまり、この場合、基地局装置3は、停止の状態の小セルにおいて、上りリンク送信が行なわれることを期待しない。
 停止の状態のセカンダリーセルがプライマリーセカンダリーセル(スペシャルセカンダリーセル)である場合、端末装置1は、セルフスケジューリングで、セカンダリーセルに対するSRS送信の要求がある(SRSリクエストが送信される)とすれば、セカンダリーセルでSRSを送信してもよい。つまり、この場合、基地局装置3は、SRSを受信することを期待する。
 停止の状態のセカンダリーセルがプライマリーセカンダリーセルである場合、セルフスケジューリングで、セカンダリーセルに対するCSI報告の要求がある(CSIリクエストが送信される)とすれば、端末装置1は、セカンダリーセルに対するCQI/PMI/RI/PTIをセカンダリーセルのPUSCHを用いて送信してもよい。
 停止の状態のセカンダリーセルがプライマリーセカンダリーセルである場合、セルフスケジューリングで、PDCCHオーダーによるランダムアクセスレスポンスグラント(RARグラント)が送信されるとすれば、端末装置1は、セカンダリーセルで、RACH送信を行なってもよい。
 停止の状態のセカンダリーセルがプライマリーセカンダリーセルである場合、セルフスケジューリングで、セカンダリーセルに対して、RA-RNTIがスクランブルされたCRCを伴うDCIフォーマットを検出できるとすれば、端末装置1は、セカンダリーセルで、RACH送信を行なってもよい。
 停止の状態のセカンダリーセルがプライマリーセカンダリーセルである場合、セカンダリーセルに対して、EPDCCHセットの設定がされていなければ、端末装置1は、セカンダリーセルでPDCCHをモニタしてもよい。つまり、端末装置1は、プライマリーセカンダリーセルに対して、EPDCCHセットの設定を受信していなければ、セカンダリーセルでPDCCHをモニタする。また、基地局装置3は、プライマリーセカンダリーセルに対して、EPDCCHセットの設定をセットしていなければ、端末装置1に対するPDCCHを、セカンダリーセルで送信してもよい。
 停止の状態のセカンダリーセルがプライマリーセカンダリーセルである場合、セルフスケジューリングで、セカンダリーセルに対して、下りリンクグラントや上りリンクグラント、CSIリクエストやSRSリクエスト、ランダムアクセスレスポンスグラントなどが送信される場合、端末装置1は、セカンダリーセルに対するPDCCHをモニタしてもよい。その際、EPDCCHセットの設定が端末装置1に対してされていない、または、端末装置1にEPDCCHを用いてDCIを受信する機能がサポートされていない場合にのみ、端末装置1は、セカンダリーセルに対するPDCCHのモニタを行なってもよい。
 停止の状態のセカンダリーセルがプライマリーセカンダリーセルである場合、セルフスケジューリングで、セカンダリーセルに対して、上りリンクスケジューリングに関する情報(PUSCHグラント、CSIリクエスト、SRSリクエスト)が送信されるとすれば、端末装置1は、セカンダリーセルで上りリンクスケジューリングに関する情報に基づく上りリンク送信を行なってもよい。例えば、セカンダリーセルに対して、DCIフォーマット0を検出した場合、端末装置1は、セカンダリーセルでPUSCH送信を行なってもよい。
 停止の状態のセカンダリーセルがプライマリーセカンダリーセル(スペシャルセカンダリーセル)である場合、端末装置1は、クロスキャリアスケジューリングによって、プライマリーセル(プライマリーセルで送信されるPDCCH/EPDCCH(DCIフォーマット))から、セカンダリーセルに対するSRS送信の要求がある(SRSリクエストが送信される)とすれば、セカンダリーセルでSRSを送信してもよい。その際、端末装置1は、プライマリーセルとプライマリーセカンダリーセルとのクロスキャリアスケジューリングを行なう機能をサポートしていてもよい。
 停止の状態のセカンダリーセルがプライマリーセカンダリーセルである場合、クロスキャリアスケジューリングによって、プライマリーセル(プライマリーセルで送信されるPDCCH/EPDCCH(DCIフォーマット))から、セカンダリーセルに対するCSI報告の要求がある(CSIリクエストが送信される)とすれば、端末装置1は、セカンダリーセルに対するCQI/PMI/RI/PTIをプライマリーセルのPUSCHを用いて送信してもよい。その際、端末装置1は、プライマリーセルとプライマリーセカンダリーセルとのクロスキャリアスケジューリングを行なう機能をサポートしていてもよい。
 停止の状態のセカンダリーセルがプライマリーセカンダリーセルである場合、クロスキャリアスケジューリングによって、プライマリーセル(プライマリーセルで送信されるPDCCH/EPDCCH(DCIフォーマット))から、PDCCHオーダーによるランダムアクセスレスポンスグラント(RARグラント)が送信されるとすれば、端末装置1は、セカンダリーセルで、RACH送信を行なってもよい。その際、端末装置1は、プライマリーセルとプライマリーセカンダリーセルとのクロスキャリアスケジューリングを行なう機能をサポートしていてもよい。この場合、基地局装置3は、クロスキャリアスケジューリングによって、停止の状態のセカンダリーセルに対して、PDCCHオーダーによるランダムアクセスレスポンスグラント(RARグラント)を送信してもよい。
 停止の状態のセカンダリーセルがプライマリーセカンダリーセルである場合、クロスキャリアスケジューリングによって、プライマリーセル(プライマリーセルで送信されるPDCCH/EPDCCH(DCIフォーマット))から、セカンダリーセルに対して、RA-RNTIがスクランブルされたCRCを伴うDCIフォーマットを検出できるとすれば、端末装置1は、セカンダリーセルで、RACH送信を行なってもよい。その際、端末装置1は、プライマリーセルとプライマリーセカンダリーセルとのクロスキャリアスケジューリングを行なう機能をサポートしていてもよい。
 停止の状態のセカンダリーセルがプライマリーセカンダリーセルである場合、セカンダリーセルに対して、EPDCCHセットの設定がされていなければ、端末装置1は、セカンダリーセルでPDCCHをモニタしてもよい。
 停止の状態のセカンダリーセルがプライマリーセカンダリーセルである場合、クロスキャリアスケジューリングによって、プライマリーセル(プライマリーセルで送信されるPDCCH/EPDCCH(DCIフォーマット))からセカンダリーセルに対して、下りリンクグラントや上りリンクグラント、CSIリクエストやSRSリクエスト、ランダムアクセスレスポンスグラントなどが送信される場合、端末装置1は、セカンダリーセルに対するPDCCHをモニタしてもよい。その際、EPDCCHセットの設定が端末装置1に対してされていない、または、端末装置1にEPDCCHを用いてDCIを受信する機能がサポートされていない場合にのみ、端末装置1は、セカンダリーセルに対するPDCCHのモニタを行なってもよい。
 停止の状態のセカンダリーセルに対して、クロスキャリアスケジューリングが無効である場合、端末装置1は、停止の状態のセカンダリーセルでPDCCHをモニタしてもよい。
 停止の状態のセカンダリーセルに対して、クロスキャリアスケジューリングが無効であり、且つ、EPDCCHに関する種々の設定が受信されていない場合には、端末装置1は、停止の状態のセカンダリーセルでPDCCHをモニタしてもよい。
 停止の状態のセカンダリーセルに対して、EPDCCH設定および/またはEPDCCHセットの設定がなければ、端末装置1は、停止の状態のセカンダリーセルで、PDCCHをモニタしてもよい。また、基地局装置3は、端末装置1に、停止の状態のセカンダリーセルに対するEPDCCH設定および/またはEPDCCHセットの設定をセットしたか否かに応じて、停止の状態のセカンダリーセルでPDCCHを送信するか否かを決定してもよい。
 停止の状態のセカンダリーセルがプライマリーセカンダリーセルである場合、クロスキャリアスケジューリングによって、プライマリーセルからセカンダリーセルに対して、上りリンクスケジューリングに関する情報が送信されるとすれば、端末装置1は、上りリンクスケジューリングに関する情報に基づく、上りリンク送信を行なってもよい。その際、端末装置1は、プライマリーセルとプライマリーセカンダリーセルとのクロスキャリアスケジューリングを行なう機能をサポートしていてもよい。
 あるサービングセルに対して、端末装置1が、上位層シグナリングによって、送信モード1~9に応じたPDSCHデータ送信を受信することを設定され、且つ、端末装置1が、EPDCCHをモニタすることを設定されたとすれば、端末装置1は、ドップラーシフト、ドップラースプレッド、平均遅延、遅延スプレッドに関して、サービングセルのアンテナポート0~3、107~110が擬似共有配置されていると仮定する。
 あるサービングセルに対して、端末装置1が、上位層シグナリングによって、送信モード10に応じたPDSCHデータ送信を受信することを設定され、且つ、各EPDCCH-PRBセットに対して、端末装置1が、EPDCCHをモニタすることを設定された場合、さらに、端末装置1は、擬似共有配置(QCL: Quasi Co-Location)タイプAに応じたPDSCHを復号することを上位層によって設定されるとすれば、端末装置1は、ドップラーシフト、ドップラースプレッド、平均遅延、遅延スプレッドに関して、サービングセルのアンテナポート0~3とアンテナポート107~110が擬似共有配置されていると仮定する。一方、端末装置1は、擬似共有配置タイプBに応じたPDSCHを復号することを上位層によって設定されるとすれば、端末装置1は、ドップラーシフト、ドップラースプレッド、平均遅延、遅延スプレッドに関して、上位層パラメータ(qcl-CSI-RS-ConfigNZPId)に対応するアンテナポート15~22とアンテナポート107~110が擬似共有配置されていると仮定する。
 QCLタイプAは、端末装置1が、ドップラーシフト、ドップラースプレッド、平均遅延、遅延スプレッドに関して、サービングセルのアンテナポート0~3とアンテナポート107~110が擬似共有配置されていると仮定するかもしれない。
 QCLタイプBは、端末装置1が、ドップラーシフト、ドップラースプレッド、平均遅延、遅延スプレッドに関して、上位層パラメータ(qcl-CSI-RS-ConfigNZPId)に対応するアンテナポート15~22とアンテナポート107~110が擬似共有配置されていると仮定するかもしれない。
 つまり、端末装置1は、上位層パラメータQCLオペレーションに基づいて、タイプAがセットされている場合には、サービングセルのアンテナポート0~3とアンテナポート107~110が擬似共有配置されていると仮定し、タイプBがセットされている場合には、上位層パラメータ(qcl-CSI-RS-ConfigNZPId)に対応するアンテナポート15~22とアンテナポート107~110が擬似共有配置されていると仮定する。言い換えると、EPDCCHをモニタすることが設定された端末装置1は、上位層パラメータQCLオペレーションに基づいて、タイプAがセットされている場合には、CRSとEPDCCHが擬似共有配置されていると仮定し、タイプBがセットされている場合には、CSI-RSとEPDCCHが擬似共有配置されていると仮定する。
 あるサービングセルに対して、端末装置1が、上位層シグナリングによって、送信モード10に応じたPDSCHデータ送信を受信することを設定され、且つ、各EPDCCH-PRBセットに対して、端末装置1が、EPDCCHをモニタすることを設定された場合、EPDCCHリソースエレメントマッピングとEPDCCHアンテナポート擬似共有配置を決定するために、上位層パラメータ(re-MappingQCL-ConfigId, PDSCH-RE-MappingQCL-ConfigId)によって指示されたパラメータセット(PDSCH-RE-MappingQCL-Config)を用いる。EPDCCHリソースエレメントマッピングとEPDCCHアンテナポート擬似共有配置を決定するための、種々のパラメータ(crs-PortsCount, crs-FreqShift, mbsfn-SubframeConfigList, csi-RS-ConfigZPId, pdsch-Start, qcl-CSI-RS-ConfigNZPId)は、そのパラメータセットに含まれる。
 あるサービングセル(セカンダリーセル)において、端末装置1が、上位層シグナリングによって、DSを受信することが設定され、且つ、端末装置1が、EPDCCHをモニタすることを設定された場合、DSとEPDCCHリソースエレメントマッピングとEPDCCHアンテナポート擬似共有配置を決定するための、上位層パラメータ(qcl-DS-ConfigId)が設定されてもよい。
 あるサービングセル(セカンダリーセル)において、端末装置1が、上位層シグナリングによって、DSを受信することが設定され、且つ、端末装置1が、EPDCCHをモニタすることを設定された場合、端末装置1は、上位層パラメータ(qcl-DS-ConfigId)に対応する1つ以上のアンテナポートとアンテナポート107~110が擬似共有配置されていると仮定する。
 DSに対する、EPDCCHリソースエレメントマッピングとEPDCCHアンテナポート擬似共有配置を決定するための、種々のパラメータ(ds-PortsCount, ds-FreqShift, ds-ConfigZPId, qcl-DS-ConfigNZPId, qcl-DS-ConfigIdなど)がセットされてもよい。つまり、EPDCCHとDSの擬似共有配置の設定に、DSのアンテナポート数(ds-PortsCount)が含まれてもよい。また、EPDCCHとDSの擬似共有配置の設定に、DSの周波数シフト(ds-FreqShift)が含まれてもよい。また、EPDCCHとDSの擬似共有配置の設定に、ゼロパワーDS-ID(ds-ConfigZPId)が含まれてもよい。また、EPDCCHとDSの擬似共有配置の設定に、擬似共有配置されるノンゼロパワーDSのID(qcl-DS-ConfigNZPId)が含まれてもよい。
 EPDCCHとの擬似共有配置は、サービングセル(セカンダリーセル)の起動/停止の状態によって、対象となる信号が変わってもよい。例えば、端末装置1は、サービングセルの停止の状態では、DSとEPDCCHで擬似共有配置されていると仮定し、サービングセルの起動の状態では、CRSとEPDCCHで擬似共有配置されていると仮定してもよい。また、端末装置1は、サービングセルの停止の状態では、CSI-RSとEPDCCHで擬似共有配置されていると仮定し、サービングセルの起動の状態では、CRSとEPDCCHで擬似共有配置されていると仮定してもよい。また、端末装置1は、サービングセルの停止の状態では、CSI-RSとEPDCCHで擬似共有配置されていると仮定し、サービングセルの起動の状態では、CSI-RSとCRSとEPDCCHで擬似共有配置されていると仮定してもよい。つまり、端末装置1は、セットされた設定情報に基づいて、EPDCCHの擬似共有配置(リソースエレメントマッピングとアンテナポート)を決定する。基地局装置3は、起動の状態と停止の状態で、EPDCCHの擬似共有配置を変更する場合、複数のQCL設定に関する情報を送信してもよい。
 次に、間欠受信(DRX: Discontinuous Reception)について説明する。
 端末装置1は、DRXを、端末装置1のC-RNTI、TPC-PUCCH-RNTI、TPC-PUSCH-RNTI、SPS-RNTIに対する端末装置1のPDCCHモニタリングの活性化(PDCCHモニタリングを行なうか否か)を制御するために、DRX機能を伴うRRCによって設定されるかもしれない。端末装置1は、DRXが設定されていなければ、PDCCHを連続でモニタし続ける。DRXを行なうために、複数のタイマー(onDurationTimer, drx-InactivityTimer, drx-RetransmissionTimerなど)が端末装置1に設定される。また、周期(longDRX-Cycle, shortDRX-Cycle)と開始オフセット(drxStartOffset)が設定されることによって、DRX中に、PDCCHをモニタリングするサブフレームが設定される。ショートDRXに関するパラメータ(drxShortCycleTimer, shortDRX-Cycle)は、オプションとして設定されてもよい。(ブロードキャストプロセスを除く)DL HARQプロセス毎にHARQ RTTタイマーが定義される。なお、DRX中に、PDCCHをモニタリングできる期間をアクティブタイム(Active Time)と称する。
 アクティブタイムとは、複数のタイマー(onDurationTimer, drx-InactivityTimer, drx-RetransmissionTimer, mac-ContentionResolutionTimer)のうち、少なくとも1つのタイマーが起動している時間であってもよい。また、アクティブタイムとは、スケジューリングリクエストがPUCCHで送信され、ペンディングされている時間であってもよい。また、アクティブタイムとは、ペンディングしているHARQ送信に対する上りリンクグラントがあり、対応するHARQバッファにデータがある時間であってもよい。また、アクティブタイムとは、端末装置1によって選択されないプリアンブルに対するランダムアクセスレスポンスの受信成功後に、端末装置1のC-RNTIに係る新しい送信を指示するPDCCHが受信されない時間であってもよい。また、アクティブタイムとは、DRXアクティブタイム(drx-Activetime)として設定されたサブフレーム数であってもよい。
 DRXが設定されると、端末装置1は、各サブフレームに対して、このサブフレームでHARQ RTTタイマーが満了するか、対応するHARQプロセスのデータの復号に成功しなかったとすれば、対応するHARQプロセスに対するDRX再送タイマー(drx-RetransmissionTimer)をスタートする。
 DRXが設定されると、端末装置1は、各サブフレームに対して、DRXコマンドMAC制御エレメント(MAC CE)が受信されるとすれば、継続時間タイマー(onDurationTimer)およびDRX不活性タイマー(drx-InactivityTimer)を停止する。
 継続時間タイマー(onDurationTimer)は、DRXサイクルの初めに、連続したPDCCHサブフレームを規定するために用いられる。
 DRX不活性タイマー(drx-InactivityTimer)は、ある端末装置1に対する初期上りリンク/下りリンクユーザデータ送信を指示するPDCCHが送信されたサブフレームの後に、連続したPDCCHサブフレームの数を規定するために用いられる。
 DRX再送タイマー(drx-RetransmissionTimer)は、下りリンク送信が受信されるまでの連続したPDCCHサブフレームの最大数を規定するために用いられる。
 HARQ RTTタイマーは、下りリンクHARQ送信が端末装置1によって期待される前のサブフレームの最小数(最小量)を規定するために用いられる。
 MACコンテンションレゾリューションタイマー(mac-ContentionResolutionTimer)は、メッセージ3(ランダムアクセスレスポンスグラントに対応するPUSCH)が送信された後の端末装置1がPDCCHをモニタする連続したサブフレームの数を規定するために用いられる。
 DRXショートサイクルタイマー(drxShortCycleTimer)は、端末装置1がショートDRXサイクルをフォローする連続したサブフレームの数を規定するために用いられる。
 DRX開始オフセット(drxStartOffset)は、DRXサイクルがスタートするサブフレームを規定するために用いられる。
 アクティブタイムは、DRXオペレーションに関連する時間であり、端末装置1がPDCCHモニタリングサブフレームにおいてPDCCHをモニタする期間(時間)を定義している。
 PDCCHモニタリングサブフレームは、基本的に、PDCCHサブフレームと同じである。ただし、端末装置1が、あるサービングセルにおいてeIMTAが可能な場合、PDCCHモニタリングサブフレームは、eIMTAに関するL1シグナリング(例えば、eIMTA-RNTIがスクランブルされたDCIフォーマット)によって指示されたTDD UL-DL設定に応じて、決定された下りリンクサブフレームおよびDwPTSを含むサブフレームのことである。
 DRXが設定されると、端末装置1は、各サブフレームに対して、DRX不活性タイマーが満了する、または、このサブフレームでDRXコマンドMAC CEが受信され、さらに、ショートDRXサイクルが設定されているとすれば、DRXショートサイクルタイマー(drxShortCycleTimer)をスタート(再スタート)し、ショートDRXサイクルを利用する。それ以外では、ロングDRXサイクルを利用する。
 DRXが設定されると、端末装置1は、各サブフレームに対して、DRXショートサイクルタイマーが満了すれば、ロングDRXサイクルを利用する。
 DRXが設定されると、端末装置1は、各サブフレームに対して、システムフレーム番号、サブフレーム番号、ショートDRXサイクル(および/またはロングDRXサイクル)、DRX開始オフセット(drxStartOffset)に基づく式が所定の条件を満たす場合、継続時間タイマーをスタートする。
 DRXが設定されると、端末装置1は、各サブフレームに対して、アクティブタイム中であって、PDCCHサブフレームに対して、そのサブフレームがハーフデュプレックスFDD端末装置オペレーションに対する上りリンク送信に対して必要ではない、または、そのサブフレームが設定された測定ギャップの一部でないとすれば、PDCCHをモニタする。さらに、PDCCHが下りリンク送信を指示しているとすれば、もしくは、下りリンクアサインメントがこのサブフレームに対して設定されているとすれば、対応するHARQプロセスに対するHARQ RTTタイマーをスタートし、対応するHARQプロセスに対するDRX再送タイマーを停止する。また、PDCCHが新しい送信(下りリンクまたは上りリンク)を指示している場合、DRX不活性タイマーをスタート(または再スタート)する。
 DRXが設定されると、端末装置1は、各サブフレームに対して、最新のサブフレームnにおいて、端末装置1が、すべてのDRXアクティブタイム条件を評価している(サブフレームn-5を含む)サブフレームn-5までに送信されたスケジューリングリクエストおよび受信したグラント/アサインメント/DRXコマンドMAC CEを考慮しているアクティブタイム中でないとすれば、トリガータイプ0SRSは送信されない。
 DRXが設定されると、端末装置1は、各サブフレームに対して、CQIマスキング(cqi-Mask)が上位層によってセットアップされているとすれば、最新のサブフレームnにおいて、継続期間タイマーが、すべてのDRXアクティブタイム条件を評価している(サブフレームn-5を含む)サブフレームn-5までに受信したグラント/アサインメント/DRXコマンドMAC CEを考慮しているアクティブタイム中でないとすれば、PUCCHでCQI/PMI/RI/PTIは報告されない。それ以外には、最新のサブフレームnにおいて、端末装置1が、すべてのDRXアクティブタイム条件を評価している(サブフレームn-5を含む)サブフレームn-5までに受信したグラント/アサインメント/DRXコマンドMAC CEを考慮しているアクティブタイム中でないとすれば、PUCCHでCQI/PMI/RI/PTI(つまり、CSI)は報告されない。
 端末装置1は、PDCCHをモニタしているか否かによらず、端末装置1は、生じる可能性があるとすれば、HARQフィードバックを受信/送信し、トリガータイプ1SRSを送信してもよい。
 同じアクティブタイムは、すべての活性サービングセル(activated serving cell(s))に対して適用されてもよい。
 下りリンク空間多重の場合、HARQ RTTタイマーが起動中および同じトランスポートブロックの前の送信が最新のサブフレームから少なくともNサブフレーム前のサブフレームで受信される間に、トランスポートブロックが受信されたとすれば、端末装置1は、それを処理し、HARQ RTTタイマーを再スタートしてもよい。ここで、Nは、HARQ RTTタイマーまたはHARQ RTTタイマーにセットされた値に相当する。
 プライマリーセルにおいて、DRXが設定され、且つ、セカンダリーセルに対するDSの設定がセットされている場合、端末装置1は、DSの設定に基づいてセットされる測定サブフレームとDRXの設定に基づいてセットされるPDCCHサブフレームが重複する場合、重複するサブフレームにおいて、停止の状態のセカンダリーセルにおいて、DSの測定およびPDCCHのモニタリングを行なってもよい。DRXのアクティブタイムは、活性サービングセル、つまり、起動の状態のすべてのサービングセルに対して適用されるが、不活性サービングセル、つまり、停止の状態のサービングセルには適用されなかった。DS設定がセットされる場合、そのサービングセル(またはセカンダリーセル)においては、不活性(off state, deactivation, dormant mode)であってもDRXのアクティブタイムが適用されてもよい。その際、DS設定には、サブフレーム設定が含まれなくてもよい。つまり、基地局装置3は、DRXアクティブタイムに基づいて、DSを送信してもよい。
 全ての活性サービングセルにおいて、DRXが設定された場合、DSの設定がセットされた停止状態のスモールセルにおいては、端末装置1は、DRXによってアクティブタイムとなるサブフレームで、DSを測定してもよい。
 DRX不活性タイマーまたは継続時間タイマーが満了した場合には、端末装置1は、満了後のサブフレームに対して、DS測定サブフレームに基づいて測定可能であっても、DSの測定は行なわなくてもよい。つまり、端末装置1は、DRX不活性タイマーまたは継続時間タイマーが満了した場合には、以降のDS測定サブフレームで、DSが送信されることを期待しない。
 DRXが設定された端末装置1において、(スモールセルとして)停止の状態のセカンダリーセルに対するDS設定が上位層シグナリングを用いて通知された(提供された、与えられた)場合、端末装置1は、DRXのアクティブタイムと重複するセカンダリーセルのDS送信サブフレームにおいて、DSのRRM(RSRP/RSRQ/RSSI)測定を行なってもよい。
 DRXの設定(drx-Config)は、MCGとSCGまたはプライマリーセルとプライマリーセカンダリーセルまたはMeNBとSeNBで個別にセットされてもよい。SCGにおけるDRXは、プライマリーセカンダリーセルの起動/停止の状態が示されてもよい。SCGに対して、DRXが設定された場合、DRXサブフレームで、DSとPDCCHが送信されてもよい。
 ここでは、DRXの設定としているが、DRXの設定にセットされる種々のパラメータは、DTX(Discontinuous Transmission)の設定としてセットされてもよい。
 次に、無線リンクモニタリングについて説明する。無線リンクモニタリングとは、上位層に同期内(in-sync)か同期外れ(out-of-sync)かを示すために、端末装置1によって、プライマリーセルの下りリンク無線リンク品質がモニタされる。
 ノンDRXオペレーションにおいて、端末装置1の物理層は、無線フレーム(無線フレームを構成するサブフレーム数)毎に、無線リンクモニタリングに関連するテストに基づいて定義された閾値(Qin, Qout)に対して、過去の(前までの)時間周期(previous time period)にわたって評価された、無線リンク品質を評価する。
 DRXオペレーションにおいて、端末装置1の物理層は、少なくとも1つのDRX周期(DRX周期を構成するサブフレーム数)毎に、無線リンクモニタリングに関連するテストに基づいて定義された閾値(Qin, Qout)に対して、過去の(前までの)時間周期(previous time period)にわたって評価された、無線リンク品質を評価する。
 上位層シグナリングが、無線リンクモニタリングを制限するために、あるサブフレームを指示するとすれば、無線リンク品質は、上位層シグナリングによって指示されたサブフレーム以外のサブフレームではモニタされない。つまり、端末装置1は、上位層シグナリングによって、無線リンクモニタリングを行なうサブフレームが制限された場合、制限されたサブフレームにおいてのみ、無線リンクモニタリングを行なう。
 端末装置1の物理層は、無線リンク品質が評価される無線フレームにおいて、無線リンク品質が閾値Qoutよりも悪い場合、上位層に同期外れであることを示す。また、無線リンク品質が閾値Qinよりも良い場合、端末装置1の物理層は無線リンク品質が評価される無線フレームにおいて、上位層に同期内であることを示す。
 デュアルコネクティビティをサポートしている端末装置1の物理層は、プライマリーセルとプライマリーセカンダリーセルそれぞれに対して、無線リンクモニタリングを行なってもよい。また、プライマリーセルとプライマリーセカンダリーセルそれぞれに対して、無線リンク品質に係る閾値が定義されてもよい。
 デュアルコネクティビティをサポートしている端末装置1の物理層は、無線リンク品質(同期外れ、同期内)をプライマリーセルとプライマリーセカンダリーセルとで、個別に評価してもよい。
 デュアルコネクティビティをサポートしている端末装置1の物理層は、無線リンク品質を評価する時に、同期外れが所定の回数続いた場合、保護タイマーを起動させる。この保護タイマーが満了した場合、端末装置1の物理層は、上位層に、そのセルで同期外れが発生している(言い換えると、物理層問題が検出された)ことを通知する。端末装置1の上位層は、物理層問題が検出されたセルがプライマリーセルの場合には、無線リンク障害(RLF: Radio Link Failure)が検出されたと、認識する。その際、端末装置1の上位層は、基地局装置3に、プライマリーセルでRLFが検出されたことを通知してもよい。なお、端末装置1の上位層は、物理層問題が検出されたセルがプライマリーセカンダリーセルの場合には、RLFと認識しなくてもよい。また、端末装置1の上位層は、物理層問題が検出されたセルがプライマリーセカンダリーセルの場合、プライマリーセルと同様の処理を行なってもよい。
 次に、セミパーシステントスケジューリング(SPS)について説明する。RRC層(上位層シグナリング、上位層)によって、セミパーシステントスケジューリングが有効であると設定された場合、端末装置1に、以下の情報が提供される。その情報は、セミパーシステントスケジューリングC-RNTI、セミパーシステントスケジューリングが上りリンクに対して、有効である場合、上りリンクセミパーシステントスケジューリングインターバル(semiPersistSchedIntervalUL)とインプリシットにリリースする前の空送信の数(implicitReleaseAfter)、TDDに対してのみ、2つのインターバル設定(twoIntervalsConfig)が上りリンクに対して有効か否か、セミパーシステントスケジューリングが下りリンクに対して有効である場合、下りリンクセミパーシステントスケジューリングインターバル(semiPersistSchedIntervalDL)とセミパーシステントスケジューリングに対して設定されたHARQプロセスの数(numberOfConfSPS-Processes)である。
 上りリンクもしくは下りリンクに対するセミパーシステントスケジューリングがRRC層(上位層シグナリング、上位層)によって無効と設定された場合、対応する設定されたグラントもしくは設定されたアサインメントは無視される。
 セミパーシステントスケジューリングは、プライマリーセルにだけサポートされる。
 セミパーシステントスケジューリングは、RNサブフレーム設定を伴うコンビネーションのE-UTRANのRN通信に対してサポートされない。
 セミパーシステント下りリンクアサインメントが設定された後で、端末装置1は、ある条件を満たすシステムフレーム番号とサブフレームにおいて、第Nのアサインメントが生じると、連続しているとみなす。ここで、ある条件とは、端末装置1に設定された下りリンクアサインメントが初期化(または再初期化)された時のシステムフレーム番号(SFNstart_time)とサブフレーム(subframestart_time)に基づいて決定されてもよい。
 セミパーシステント上りリンクグラントが設定された後で、端末装置1は、2つのインターバル設定が、上位層で、有効であると設定されていれば、あるテーブルに基づくサブフレームオフセット(Subframe_Offset)をセットし、それ以外の場合、サブフレームオフセットを0にセットする。
 セミパーシステント上りリンクグラントが設定された後で、端末装置1は、ある条件を満たすシステムフレーム番号とサブフレームにおいて、第Nのグラントが生じると、連続しているとみなす。ここで、ある条件とは、ここで、ある条件とは、端末装置1に設定された上りリンクグラントが初期化(または再初期化)された時のシステムフレーム番号(SFNstart_time)とサブフレーム(subframestart_time)に基づいて決定されてもよい。
 端末装置1は、ゼロMAC SDU(Service Data Unit)を含む連続するMAC PDU(Protocol Data Unit)のインプリシットにリリースする前の空送信の数が、エンティティを多重、構成することによって与えられた直後に、設定された上りリンクグラントをクリアする。
 端末装置1にデュアルコネクティビティを行なう機能がサポートされている場合、SPSはプライマリーセルだけでなく、プライマリーセカンダリーセルで行なわれてもよい。つまり、SPS設定は、プライマリーセルだけでなく、プライマリーセカンダリーセルに対してもセットされてもよい。
 デュアルコネクティビティを行なう機能をサポートしている端末装置1において、1つのSPS設定しかセットされていない場合には、プライマリーセルに対してだけSPSが適用されてもよい。
 デュアルコネクティビティを行なう機能をサポートしている端末装置1において、1つのSPS設定しかセットされていない場合には、プライマリーセルとプライマリーセカンダリーセルにおいて、同じ設定が適用されてもよい。
 デュアルコネクティビティを行なう機能をサポートしている端末装置1において、プライマリーセルとプライマリーセカンダリーセルそれぞれに対して、下りリンクSPS設定および/または上りリンクSPS設定は、個別にセットされてもよい。つまり、プライマリーセルとプライマリーセカンダリーセルに対して、下りリンクSPS設定および/または上りリンクSPS設定が共通であってもよいし、それぞれ個別に設定されてもよい。SPSを下りリンクおよび/または上りリンクで、プライマリーセルとプライマリーセカンダリーセルで個別に行なうか否かは、端末装置1から送信される機能情報に基づいて決定されてもよい。
 以下では、プライマリーセカンダリーセルで送信されるPDCCHおよびEPDCCHについて説明する。
 プライマリーセカンダリーセルで送信されるPDCCHは、複数の端末装置で共通のパラメータおよび/または予め規定されたパラメータを用いて、スクランブルされてもよい。なお、複数の端末装置で共通のパラメータが設定されない場合は、物理セル識別子を用いてスクランブルされる。
 プライマリーセカンダリーセルで送信されるPDCCHは、複数の端末装置で共通のパラメータおよび/または予め規定されたパラメータに基づいてREG単位でサイクリックシフトされてもよい。なお、複数の端末装置で共通のパラメータが設定されない場合は、物理セル識別子の値に基づいてサイクリックシフトされる。
 プライマリーセカンダリーセルには、USSと、USSとは異なるサーチスペースが配置される。USSとは異なるサーチスペースは、複数の端末装置で共通の領域をモニタするサーチスペースである。プライマリーセルに配置されるCSSは第1のCSSとも呼称され、プライマリーセカンダリーセルに配置されるUSSとは異なるサーチスペースは第2のCSSとも呼称される。
 第2のCSSは、複数の端末装置で共通のパラメータおよび/または予め規定されたパラメータを用いて設定されるサーチスペースである。複数の端末装置で共通のパラメータは、上位層から通知される。複数の端末装置で共通のパラメータの一例として、基地局装置3(セル、送信ポイント)に固有のパラメータが用いられる。例えば、送信ポイント固有のパラメータとして、仮想セル識別子、TPIDなどが用いられる。複数の端末装置で共通のパラメータの一例として、端末装置個別に設定可能なパラメータであるが複数の端末で共通の値が設定されるパラメータである。例えば、複数の端末装置で共通の値が設定されるパラメータとして、RNTIなどが用いられる。
 第2のCSSに、PDCCHは配置されてもよい。この場合、第2のCSSは、複数の端末で共通のパラメータおよび/または予め規定されたパラメータを用いて、サーチスペースが開始されるCCEが決定される。具体的には、図14の式(1)で用いられるYの初期値に、複数の端末で共通のRNTI(例えば、UE-group-RNTI、CSS-RNTI)が設定される。また、第2のCSSのサーチスペースが開始されるCCEは、上位層パラメータによって端末共通に指定されてもよい。具体的には、図14の式(1)で用いられるYは、常に固定の値で、かつ、上位層パラメータ(例えば、CCEインデックスを指定するパラメータ)がセットされる。また、Yは常に0がセットされてもよい。
 PDCCHに配置される第2のCSSのアグリゲーションレベルは、4と8をサポートする。また、アグリゲーションレベル4では4つのPDCCH候補、アグリゲーションレベル8では2つのPDCCH候補が定義される。なお、アグリゲーションレベル1、2、16、32をサポートしてもよい。この場合、PDCCH候補数を制限することで第2のCSSでブラインドデコーディング数を増加させない。例えば、第2のCSSのアグリゲーションレベルで2、4、8がサポートされる場合、各アグリゲーションレベルで2つのPDCCH候補が定義される。
 第2のCSSに、EPDCCHは配置されてもよい。この場合、第2のCSSは、複数の端末で共通のパラメータおよび/または予め規定されたパラメータを用いて、サーチスペースが開始されるECCEが決定される。具体的には、図14の式(2)で用いられるYp,kの初期値に、複数の端末で共通のRNTI(例えば、UE-group-RNTI、CSS-RNTI)が設定される。また、第2のCSSのサーチスペースが開始されるECCEは、上位層パラメータによって端末共通に指定されてもよい。具体的には、図14の式(2)で用いられるYp,kは、常に固定の値で、かつ、上位層パラメータ(例えば、ECCEインデックスを指定するパラメータ)がセットされる。また、Yp,kは常に0がセットされてもよい。
 第2のCSSにEPDCCHが配置される場合、第2のCSSに配置されるEPDCCHセットが設定されてもよい。例えば、EPDCCHセット0がUSSに配置され、EPDCCHセット1が第2のCSSに配置されてもよい。また、1つのEPDCCHセット内がUSSと第2のCSSに配置されてもよい。例えば、EPDCCHセット0がUSSと第2のCSSに配置されてもよい。
 EPDCCHが配置される第2のCSSのアグリゲーションレベルは、4と8をサポートする。また、アグリゲーションレベル4では4つのEPDCCH候補、アグリゲーションレベル8では2つのEPDCCH候補が定義される。なお、アグリゲーションレベル1、2、16、32をサポートしてもよい。この場合、PDCCH候補数を制限することで第2のCSSでブラインドデコーディング数を増加させない。例えば、第2のCSSのアグリゲーションレベルで2、4、8がサポートされる場合、各アグリゲーションレベルで2つのPDCCH候補が定義される。
 第2のCSSでのPDCCHモニタリングに用いられるRNTIの種類の一例について説明する。
 第2のCSSには、少なくともランダムアクセス応答の通知を行うPDCCH、特定の端末装置1に対しTPCコマンドを指示するPDCCH、あるいはTDD UL/DL設定の通知を行うPDCCHを配置することができる。また、MeNBとSeNB間のバックホールの遅延が大きい場合、RRC再設定時であってもSeNBから送信を行う必要がある。すなわち、端末装置1は、RA-RNTI、TPC-PUCCH-RNTI、TPC-PUSCH-RNTI、TDD-ModeA-RNTI、C-RNTI、SPS C-RNTI、Temporary C-RNTIを用いて、第2のCSSに配置されるPDCCHをモニタする。
 一方で、第2のCSSには、システム情報あるいはページングに関する情報が割り当てられたPDCCHを配置する必要がない。また、プライマリーセカンダリーセルはRRC接続モードで用いられるため、RRC再設定時に必要な下位の送信方式による送信のための下りリンク/上りリンクグラントが割り当てられたPDCCHを配置する必要がない。すなわち、端末装置1は、SI-RNTI、P-RNTIを用いて、第2のCSSに配置されるPDCCHをモニタしなくてもよい。
 第2のCSSでのPDCCHモニタリングに用いられるRNTIの種類の一例について説明する。
 第2のCSSには、少なくともランダムアクセス応答の通知を行なうPDCCH、特定の端末装置1に対しTPCコマンドを指示するPDCCH、あるいはTDD UL/DL設定の通知を行うPDCCHを配置することができる。すなわち、端末装置1は、少なくともRA-RNTI、TPC-PUCCH-RNTI、TPC-PUSCH-RNTI、TDD-ModeA-RNTIを用いて、第2のCSSに配置されるPDCCHをモニタする。
 一方で、第2のCSSには、システム情報あるいはページングに関する情報が割り当てられたPDCCHを配置する必要がない。また、プライマリーセカンダリーセルはRRC接続モードで用いられるため、RRC再設定時に必要な下位の送信方式による送信のための下りリンク/上りリンクグラントが割り当てられたPDCCHを配置する必要がない。すなわち、端末装置1は、SI-RNTI、P-RNTI、C-RNTI、SPS C-RNTI、Temporary C-RNTIを用いて、第2のCSSに配置されるPDCCHをモニタしなくてもよい。
 なお、第2のCSSに、セルの起動/停止の状態を指示する情報が含まれるPDCCHを配置してもよい。すなわち、端末装置1は、スモールセルオン/オフに関連するRNTI(SCE-RNTI)を用いて、第2のCSSに配置されるPDCCHをモニタする。
 第2のCSSにより、端末装置1は、プライマリーセカンダリーセルにおいて、ブラインドデコーディング数が増加する。具体的には、セカンダリーセルではUSSのみが配置されるに対し、プライマリーセカンダリーセルではUSSと第2のCSSの両方が配置される。第2のCSSのブラインドデコーディング数が第1のCSSのブラインドデコーディング数と同等とすれば、12回のブラインドデコーディング数の増加となり、端末装置1の負担が増大する。
 第2のCSSにおけるブラインドデコーディング数の削減の一例を説明する。
 C-RNTI、SPS C-RNTI、Temporary C-RNTIを用いて、第2のCSSに配置されるPDCCHをモニタしない場合、第2のCSSにDCIフォーマット0/1Aを配置させないことで、第2のCSSにおけるブラインドデコーディング数を削減させることができる。
 このとき、DCIフォーマット3/3AはDCIフォーマット1Cのペイロードサイズに合わせてパディングされる。もしくは、TPCコマンドを送信する新しいDCIフォーマット(DCIフォーマット3B)が設定される。
 DCIフォーマット3Bは、1ビットの電力調整によるPUCCHおよびPUSCHに対するTPCコマンドの送信のために用いられる。端末装置1は、自局に割り当てられたインデックス(TPC-Index)に対応するビット情報を検出することによって、PUSCHまたはPUCCHに対応する送信電力制御コマンドの値を検出することができる。また、DCIフォーマット3Bは、スクランブルされるRNTIの種類に応じて、PUSCHに対する送信電力制御コマンドを示すかPUCCHに対する送信電力制御コマンドを示すかが判別される。DCIフォーマット3Bは、DCIフォーマット1Cのペイロードサイズに合わせてパディングされる。
 これにより、第2のCSSには、DCIフォーマット1Cと同じペイロードサイズの制御情報のみが配置されるため、ブラインドデコーディング数を削減することができる。具体的には、第2のCSSにおいて、アグリゲーション4において6つのPDCCH候補と1種類のビットサイズのDCIフォーマットのデコードを試み、また、アグリゲーション8において2つのPDCCH候補と1種類のビットサイズのDCIフォーマットのデコードを試みる。すなわち、端末装置1は、第2のCSSにおいて6回のデコードを試みる。これにより、CSSにおけるブラインドデコーディング数を半減させることができる。
 第2のCSSにおけるブラインドデコーディング数の削減の一例を説明する。
 第2のCSSにおいて、DCIフォーマット1CはDCIフォーマット0と同じペイロードサイズになるまでパディングビットを挿入する。これにより、第2のCSSには、DCIフォーマット0と同じペイロードサイズの制御情報のみが配置されるため、ブラインドデコーディング数を削減することができる。具体的には、第2のCSSにおいて、アグリゲーション4において6つのPDCCH候補と1種類のビットサイズのDCIフォーマットのデコードを試み、また、アグリゲーション8において2つのPDCCH候補と1種類のビットサイズのDCIフォーマットのデコードを試みる。すなわち、端末装置1は、第2のCSSにおいて6回のデコードを試みる。これにより、CSSにおけるブラインドデコーディング数を半減させることができる。
 ブラインドデコーディング数の増加の観点から、全ての端末装置1が第2のCSSのモニタリングをサポートする必要はない。そこで、基地局装置3に、端末装置1が第2のCSSをモニタすることが可能か否かの能力を示す情報(ケイパビリティ)が通知されてもよい。
 処理能力の高い端末装置1は、基地局装置3に、第2のCSSのモニタリングが可能であることを示す情報を通知する。一方で、処理能力の低い端末装置1は、基地局装置3に、第2のCSSのモニタリングが不可能であることを示す情報を通知する。基地局装置3は、各端末装置1からの第2のCSSをモニタすることが可能か否かの能力を示す情報を取得し、第2のCSSのモニタリングが可能である端末装置1のみに第2のCSSの設定を行なう。ここで、基地局装置3は、第2のCSSのモニタリングが可能である端末装置1をUEグループとして設定してもよい。
 第2のCSSのモニタリングが可能である端末装置1に対しては、基地局装置3は第2のCSSにPDCCHを配置して、ランダムアクセス応答の通知やTDD UL/DL設定の通知などを行なう。
 第2のCSSのモニタリングが不可能である端末装置1に対しては、基地局装置3はUSSにPDCCHを配置して、ランダムアクセス応答の通知やTDD UL/DL設定の通知などを行う。この際、ブラインドデコーディング数の観点から、ランダムアクセス応答の通知はDCIフォーマット1Aが用いられ、またTDD UL/DL設定の通知で用いられるDCIフォーマット1CはDCIフォーマット0と同じペイロードサイズまでパディングされる。
 これにより、第2のCSSのモニタリングが不可能である処理能力の低い端末装置1に対しても、ランダムアクセス応答の通知やTDD UL/DL設定の通知などを行なうことが可能となる。
 なお、第2のCSSをモニタすることが可能か否かの能力を示す情報は、デュアルコネクティビティモードで運用が可能か否かを示す情報に関連付けて通知されてもよい。すなわち、デュアルコネクティビティモードで運用が可能であれば、第2のCSSをモニタすることが可能であってもよい。
 スモールセルのセカンダリーセルに対する起動/停止の状態を指示する情報が、DCIフォーマット(DCIフォーマットを伴うPDCCH/EPDCCH)を用いて、送信される場合の端末装置1および基地局装置3の処理について説明する。
 あるDCIフォーマットに、複数のセル(スモールセル、セカンダリーセル、サービングセル)のそれぞれに対する起動/停止の状態を指示する1ビットがセットされてもよい。例えば、起動/停止の状態を指示する情報が含まれるDCIフォーマットが15ビットで構成される場合、15セル分の起動/停止の状態を指示する情報が含まれることを意味してもよい。つまり、1ビットで起動/停止の状態が示されてもよい。また、その1ビットで起動の状態が示される時、同時にその1ビットに対応するセルに対するCSIリクエストとして認識されてもよい。その1ビットで起動の状態が示される時、その1ビットに対応するCSIを、受信してから所定のサブフレーム後の最初の上りリンクサブフレームで送信する。また、DCIフォーマットを構成するビットの位置と、セルインデックス(例えば、サービングセルインデックス、スモールセルインデックス、オン/オフセルインデックスなど)が予め対応付けられてもよい。
 なお、DCIフォーマットでは起動の状態のみを指示してもよい。例えば、1ビットにおける‘1’は起動を示し、‘0’は前の状態と同状態であること示す。この場合、デアクティベーションタイマーなどの停止の状態を指示する他の方法と併用されることが好ましい。
 なお、DCIフォーマットでは停止の状態のみを指示してもよい。例えば、1ビットにおける‘1’は停止を示し、‘0’は前の状態と同状態であることを示す。この場合、MAC CEによるアクティベーションの通知などの起動の状態を指示する他の方法と併用されることが好ましい。
 あるDCIフォーマットに、複数のセル(スモールセル、セカンダリーセル、サービングセル)のそれぞれに対する起動/停止の状態を指示するnビットがセットされてもよい。例えば、起動/停止の状態を指示する情報が含まれるDCIフォーマットが15ビットで構成される場合、15÷nセル分の起動/停止の状態を指示する情報が含まれることを意味してもよい。つまり、nビットで起動/停止の状態が示されてもよい。例えばnビットで通知される情報は、nサブフレームのセルの起動/停止の状態の情報である。nビットにおける各ビットがサブフレームに対応する。具体的には、8ビットで通知される情報は、8サブフレームの起動/停止の状態を指示する情報である。例えば、nビットで通知される情報は、起動/停止の状態のサブフレームパターンを示す情報である。起動/停止の状態のサブフレームパターンは、予め定められてもよい。起動/停止の状態のサブフレームパターンは、上位層で通知されてもよい。具体的には、2ビットで通知される情報は、4通りのサブフレームパターンを示す。起動/停止の状態を指示するビットの長さは、サブフレームパターンの種類の最大数に応じて決定される。サブフレームパターンの種類の最大数は、上位層で設定されてもよい。
 起動/停止の状態を指示する情報が含まれるPDCCH/EPDCCHは、起動/停止の状態を示すためのRNTI(例えば、SCE-RNTI)によってスクランブルされる。あるPDCCH/EPDCCHをSCE-RNTIによってデコードが成功した場合、端末装置1は、そのPDCCH/EPDCCHに起動/停止の状態を示す情報が含まれていると認識する。これにより、起動/停止の状態を示す情報が他の制御情報と同じDCIフォーマットに含まれても、起動/停止の状態を示すための情報であることを端末装置1に認識させることができる。
 なお、スモールセルのセカンダリーセルに対する起動/停止の状態を指示する情報が、他のRNTIでスクランブルされた他の制御情報を含んだDCIに同梱されてもよい。例えば、ダイナミックTDDにおけるUL/DL設定7の状態を用いて、セルの停止の状態が示されてもよい。言い換えると、UL/DL設定1~6はセルの起動の状態を示されてもよい。また、例えば、ダイナミックTDDにおけるUL/DL設定を示す情報以外の余ったビットを用いてセルの起動/停止の状態を指示してもよい。また、例えば、TPCコマンドを通知する情報以外の余ったビットを用いてセルの起動/停止の状態を指示してもよい。
 なお、セカンダリーセルに対する起動の状態を指示する情報は、下りリンクグラント/上りリンクグラントを指示するDCIフォーマットの中にフィールドが設定されて通知されてもよい。例えば、DCIフォーマット4やDCIフォーマット2Dに、サービングセルを指示する3ビットのフィールドが設定される。端末装置1は、下りリンクグラント/上りリンクグラントのDCIフォーマットで指示されたサービングセルが起動の状態であると認識する。
 なお、セカンダリーセルに対する停止の状態を指示する情報は、下りリンクグラント/上りリンクグラントを指示するDCIフォーマットの中にフィールドが設定されて通知されてもよい。例えば、DCIフォーマット4やDCIフォーマット2Dに、サービングセルを指示する3ビットのフィールドが設定される。端末装置1は、下りリンクグラント/上りリンクグラントのDCIフォーマットで指示されたサービングセルが停止の状態であると認識する。
 起動/停止の状態を指示する情報が含まれるDCIフォーマットでは、複数のセルグループをまたいで起動/停止の状態を指示しないことが好ましい。例えば、マスターセルグループに所属するセカンダリーセルに対応する起動/停止の状態を指示する情報と、セカンダリーセルグループに所属するセカンダリーセルに対応する起動/停止の状態を指示する情報は、1つのDCIフォーマットの中に含まれない。言い換えると、1つのDCIフォーマットの中に含まれる起動/停止の状態を指示する情報は、1つのセルグループに所属するサービングセルのみに対応する。
 マスターセルグループに所属するセルの起動/停止の状態を指示する情報が含まれるDCIフォーマットは、プライマリーセルの第1のCSSに配置される。ブラインドデコーディングの処理負担の観点から、起動/停止の状態を指示する情報が含まれるDCIフォーマットは、第1のCSSに配置される他のDCIフォーマットと同じビット数であることが好ましい。具体的には、起動/停止の状態を指示する情報が含まれるDCIフォーマットは、DCIフォーマット0/1A/3/3AまたはDCIフォーマット1Cと同じペイロードサイズになるようにビットがパディングされて第1のCSSに配置される。端末装置1はプライマリーセルのCSSをモニタし、プライマリーセルが所属するセルグループの複数のセカンダリーセル(スモールセル)の起動/停止の状態をDCIフォーマットによって取得する。これにより、1つのPDCCHで複数の端末装置に通知することが容易となり、オーバーヘッドの削減となる。
 セカンダリーセルグループに所属するセルの起動/停止の状態を指示する情報が含まれるDCIフォーマットは、プライマリーセカンダリーセルのSSに配置される。セカンダリーセルグループに所属するセルの起動/停止の状態を指示する情報が含まれるDCIフォーマットは、プライマリーセカンダリーセルの複数の端末装置がモニタできるSSに配置されることが好ましい。例えば、セカンダリーセルグループに所属するセルの起動/停止の状態を指示する情報が含まれるDCIフォーマットは、第2のCSSに配置される。ブラインドデコーディングの処理負担の観点から、起動/停止の状態を指示する情報が含まれるDCIフォーマットは、第2のCSSに配置される他のDCIフォーマットと同じビット数であることが好ましい。具体的には、起動/停止の状態を指示する情報が含まれるDCIフォーマットは、DCIフォーマット0/1A/3/3AまたはDCIフォーマット1Cと同じペイロードサイズになるようにビットがパディングされてCSSに配置される。端末装置1はプライマリーセカンダリーセルの第2のCSSをモニタし、プライマリーセカンダリーセルが所属するセルグループの複数のセカンダリーセル(スモールセル)の起動/停止の状態をDCIフォーマットによって取得する。これにより、1つのPDCCH/EPDCCHで複数の端末装置に通知することが容易となり、オーバーヘッドの削減となる。
 なお、セルの起動/停止の状態を指示する情報が含まれるDCIフォーマットは、そのセルのUSSに配置されてもよい。この場合、起動/停止の状態を指示する1ビットの情報で通知してもよい。
 端末装置1は、セルの起動/停止の状態を指示する次のDCIフォーマットで指示されるまで、前に送信されたDCIフォーマットで指示された起動/停止の状態を認識し続けてもよい。この場合、セルの起動/停止の状態を指示するDCIフォーマットは、周期的に送信されることが好ましい。起動/停止の状態を指示するDCIフォーマットが送信される周期およびタイミング(サブフレーム)は、端末装置1に通知される。起動/停止の状態を指示するDCIフォーマットが送信される周期は、例えば1無線フレーム(10サブフレーム)や1ハーフフレーム(5サブフレーム)である。起動/停止の状態を指示するDCIフォーマットが送信されるタイミングは、例えばサブフレーム0やサブフレーム5である。周期的に送信されることにより、端末装置1は起動/停止の状態を認知する期間を明示的に認識することができる。
 端末装置1は、セルの起動/停止の状態を指示する次のDCIフォーマットで指示される前に、停止の状態として認識するように変更してもよい。この場合、例えば、停止の状態に遷移するためのタイマー(スモールセルデアクティベーションタイマー)がセットされ、タイマーが超えた場合に端末装置1は基地局装置3からの指示を受ける前に停止の状態として認識する。
 また、サービングセルと送信点が異なるセル(隣接セル、送信ポイント)のそれぞれに対する起動/停止の状態の指示をDCIフォーマットで行なってもよい。この場合、サービングセルと送信ポイントが異なるセルとは光ファイバーなどの低遅延なバックホールで接続されていることが好ましい。
 オン/オフセルPDCCH設定(on/off cell PDCCH configuration)は、スモールセル(またはスモールセルに相当するセカンダリーセル/サービングセル)の起動/停止の状態を示すためのRNTIおよびインデックスを規定するために用いられる。スモールセルのオン/オフの機能は、この設定とともにセットアップされたり、リリースされたりしてもよい。
 オン/オフセルPDCCH設定には、DCIフォーマットが、スモールセル(サービングセル)の起動/停止の状態を指示するDCIフォーマットであることを示すRNTI(例えば、SCE-RNTI)が含まれてもよい。また、オン/オフセルPDCCH設定には、DCIフォーマットで起動/停止の状態が示されるスモールセルのインデックスのリストが含まれてもよい。そのリストによって、特定のスモールセルに対して、起動/停止の状態が通知されてもよい。例えば、あるDCIフォーマットが15ビットで構成される場合、端末装置1は、すべてのビットに対して、起動/停止の状態をチェックするのではなく、リストによって示されたインデックスに対応するビットのみ起動/停止の状態をチェックしてもよい。それ以外のビットについては、すべて停止の状態であると認識してもよい。
 端末装置1は、あるサブフレームi(i=0,1,2,…)において、あるセルに対して起動の状態を示す情報を含むDCIフォーマットを検出した場合、サブフレームi+k(kは所定の値)でそのセルが起動の状態にあると認識する。停止の状態についても同様の処理を行なってもよい。なお、起動の状態と停止の状態で、kの値は異なってもよい。
 第1のDCIフォーマットで、起動/停止の状態を指示する情報が含まれる場合、第1のDCIフォーマットサイズは、他のDCIフォーマットのサイズと同じであってもよい。DCIフォーマットのサイズを合わせることによって、ブラインドデコーディング数を増加させることなく、新しい指示情報を設定することができる。第1のDCIフォーマットと第2のDCIフォーマットで、送信する制御情報の数(種類)や必要なビット数などが、異なる場合、制御情報として用いないビットをパディングしてもよい。
 また、第1のDCIフォーマットで、起動/停止の状態を指示する情報が含まれる場合、起動/停止の状態を指示する情報に必要なビット以外のビットについては、削除されてもよい。つまり、第1のDCIフォーマットサイズは、必要に応じて、増減してもよい。
 起動/停止の状態を指示する情報によって、起動の状態が指示された場合、端末装置1は、起動の状態が指示されたセルに対するCSI測定を行ない、所定のサブフレーム後の最初の上りリンクサブフレームで、CSI報告を行なってもよい。
 PDCCH/EPDCCHとDSが同じサブフレームで送信される場合、PDCCH/EPDCCHを復調・復号するために、URS(またはDMRS)が同じサブフレームで送信されてもよい。
 PDCCH/EPDCCHとDSが同じサブフレームで送信される場合、端末装置1は、DS(DSを構成する複数の信号のうちの1つ)を用いて、PDCCH/EPDCCHの復調・復号を行なってもよい。
 端末装置1は、上位層シグナリングによって、あるセルに対するDSの設定がセットされた場合、あるセルに対するDSの測定サブフレームにおいて、所定の回数、測定結果が閾値を満たさなかったとすれば、プライマリーセルを用いて、DSの再設定を要求してもよい。
 次に、ON/OFFセルの暗示的OFF状態(implicit deactivation)について説明する。
 なお、ON/OFFセルは小セル(Small Cell)と同じであってもよい。
 基地局装置3をON状態(動作中の状態、起動の状態)からOFF状態(停止の状態)に遷移させることでセル間干渉を抑圧させている場合(説明のため、基地局装置3がON/OFFセルを用いている場合と称する)、端末装置1に設定されたON/OFFセルに関連するOFF状態タイマーが満了するよりも前に、ON/OFFセルがOFF状態になることが想定される。
 なお、ON/OFFセルがOFF状態とは、端末装置1が基地局装置3から下りリンクの送信を期待しない状態であってもよい。すなわち、PSS/SSS、CRS、CSI-RS、PBCH、PDCCH、EPDCCH、PDSCHのうち、少なくとも1つが送信されない状態であってもよい。例えば、1ハーフフレーム以上(5サブフレーム以上)PSS/SSSが送信されない状態である。例えば、基地局装置3がOFF状態とは、DSのみが送信されている状態である。
 なお、ON/OFFセルがOFF状態とは、端末装置1が従来の端末装置とは異なる処理を行う状態であってもよく、ON/OFFセルがON状態とは、端末装置1が従来の端末装置と同様の処理が可能な状態であってもよい。
 なお、ON/OFFセルのOFF状態において端末装置1は、該ON/OFFセルにおいてPUCCH、PUSCH、などの上りリンクの送信を行ってもよい。すなわち、該ON/OFFセルは、OFF状態でも受信処理を行ってもよい。
 なお、ON/OFFセルのOFF状態において端末装置1は、該ON/OFFセルに関連する情報を解放(リリース、削除)しなくてもよい。例えば、ON/OFFセルのOFF状態において端末装置1は、該ON/OFFセルに関連する情報を保持し、ON/OFFセルがON状態となったときに該ON/OFFセルに関連する情報を再び使用してもよい。
 なお、ON/OFFセルがOFF状態になることと、ON/OFFセルがデアクティベーションされることは同じであってもよく、ON/OFFセルのデアクティベーションは従来のデアクティベーション(非ON/OFFセルのデアクティベーション)と同じであってもよい。
 なお、ON/OFFセルがOFF状態と従来のデアクティベーションは同時に実行されてもよい。
 ON/OFFセルがON状態からOFF状態へ遷移する(基地局装置3が起動の状態から停止の状態に遷移する)度に、基地局装置3がL1シグナリング(DCIフォーマット)やL2シグナリング(MAC CE)によってON/OFFセルのOFF状態を端末装置1に通知すると、制御情報のオーバーヘッドが増加する。
 しかし、ON/OFFセルがON状態からOFF状態へ遷移する度にON/OFFセルのON状態/OFF状態を端末装置1に通知しなければ、端末装置1はOFF状態となったセルのOFF状態タイマーが満了するまで、OFF状態となっているON/OFFセルにおいてPDCCHのモニタなどのオペレーションを行うため余分にバッテリーを消費する。
 そこで、基地局装置3がON/OFFセルを用いている場合、端末装置1が暗示的にON/OFFセルのOFF状態を判定(仮定)し、OFF状態と判定(仮定)したON/OFFセルを端末装置1が暗示的にOFF状態と認識すること(implicit deactivation)、もしくは、OFF状態と判定(仮定)したON/OFFセルにおいてOFF状態のON/OFFセルと通信する場合の動作に移行することが有効である。例えば、OFF状態のON/OFFセルと通信する場合の動作は、PSS/SSS、CRS、CSI-RS、PBCH、PDCCH、EPDCCH、PDSCHのうち、少なくとも1つが送信されないと仮定した動作であってもよい。例えば、OFF状態のON/OFFセルと通信する場合の動作は、端末装置1が従来の端末装置とは異なる処理を行う状態であってもよい。例えば、OFF状態のON/OFFセルと通信する場合の動作は、端末装置1がPUCCH、PUSCH、などの上りリンクの送信のみを行う動作であってもよい。
 なお、端末装置1は、端末装置1に設定されるセルがON/OFFセルか否かを示すことに関連する情報を基地局装置3から受信してもよい。すなわち、基地局装置3は端末装置1に対して、端末装置1に設定するセルがON/OFFセルか否かを示すことに関連する情報を送信してもよい。
 ON/OFFセルの暗示的OFF状態の一例について説明する。
 端末装置1は、ON状態が設定されたON/OFFセルに対するCQI(Channel Quality Indicator)/PMI(Precoding Matrix Indicator)/RI(Rank Indicator)/PTI(Precoding Type Indicator)の報告を行う。つまり、ON/OFFセルがON状態からOFF状態へ遷移した場合、該ON/OFFセルに関連するOFF状態タイマーが満了するまで、もしくは、基地局装置3によって該ON/OFFセルのOFF状態が通知されるまで、OFF状態のON/OFFセルにおいてCQI(Channel Quality Indicator)/PMI(Precoding Matrix Indicator)/RI(Rank Indicator)/PTI(Precoding Type Indicator)の算出に関連する情報を測定する。
 OFF状態となったON/OFFセルにおいては、端末装置1がCQI(Channel Quality Indicator)/PMI(Precoding Matrix Indicator)/RI(Rank Indicator)/PTI(Precoding Type Indicator)の算出に関連する情報を測定するために用いる参照信号(CRS、CSI-RS、DSなど)が送信されない場合がある。つまり、端末装置1がOFF状態となったON/OFFセルに対するCQI(Channel Quality Indicator)/PMI(Precoding Matrix Indicator)/RI(Rank Indicator)/PTI(Precoding Type Indicator)を算出すると、特定のCQI(Channel Quality Indicator)/PMI(Precoding Matrix Indicator)/RI(Rank Indicator)/PTI(Precoding Type Indicator)が算出される可能性が高くなる。そこで、端末装置1はON状態が設定されたON/OFFセルにおいて、特定のCQI(Channel Quality Indicator)/PMI(Precoding Matrix Indicator)/RI(Rank Indicator)/PTI(Precoding Type Indicator)を所定の回数以上算出すると、ON/OFFセルにおいて参照信号が送信されていない、つまり、基地局装置3がOFF状態であると判定(仮定)し、該ON/OFFセルをOFF状態と認識する(OFF状態のON/OFFセルと通信する場合の動作に移行する)。
 例えば、所定の回数“out of range(許容範囲外)”を算出した場合、もしくは、所定のサブフレーム数連続するサブフレームにおいて所定の回数“out of range(許容範囲外)”を算出した場合、もしくは、所定の回数連続で“out of range(許容範囲外)”を算出した場合に、該ON/OFFセルをOFF状態と認識してもよい(該ON/OFFセルにおいてOFF状態のON/OFFセルと通信する場合の動作に移行してもよい)。
 なお、端末装置1がON/OFFセルにおけるOFF状態を判定する所定のサブフレーム数および/または所定の回数は、予め定義されていてもよいし、基地局装置3から通知されてもよい。
 ON/OFFセルの暗示的OFF状態の一例について説明する。
 OFF状態となったON/OFFセルにおいては、DSが送信されない場合がある。端末装置1は、ON状態が設定されたON/OFFセルにおいて、DSが検出されない場合、もしくは、DSが送信されていると仮定するリソースの受信電力が閾値を超えない場合、ON/OFFセルにおいてDSが送信されていない、つまり、基地局装置3がOFF状態であると判定(仮定)し、該ON/OFFセルをOFF状態と認識する(該ON/OFFセルにおいてOFF状態のON/OFFセルと通信する場合の動作に移行する)。
 例えば、所定の回数DSが検出されない場合、もしくは、所定のサブフレーム数連続するサブフレームにおいて所定の回数DSが検出されない場合、もしくは、所定の回数連続でDSが検出されない場合に、該ON/OFFセルをOFF状態と認識してもよい(該ON/OFFセルにおいてOFF状態のON/OFFセルと通信する場合の動作に移行してもよい)。
 RSが検出されない場合とは、RSがマップされるREの平均電力が閾値を超えない場合である。なお、電力を計算するREは、複数のサブフレームにまたがって平均されてもよい。電力を計算するREは、特定のサブフレームでのみ平均されてもよい。なお、電力を計算するREは、システム帯域幅の一部のリソースブロックで平均され、一部のリソースブロックで平均されなくてもよい。
 なお、RSが一部または全て存在しないサブフレームは、端末装置1に通知される。端末装置1は、一部または全て存在しないサブフレームにおいて、RSが存在しないREに対して計算する電力の平均に含めない。
 なお、端末装置1がON/OFFセルにおけるOFF状態を判定する所定のサブフレーム数および/または所定の回数は、予め定義されていてもよいし、基地局装置3から通知されてもよい。
 なお、DSが検出されない場合は、RSRPおよび/またはRSRQに基づいて判定されてもよい。
 なお、DSが検出されない場合は、サブフレームの平均受信電力またはDSが送信されていると仮定するリソースの受信電力を所定の閾値と比較することで判定されてもよい。なお、所定の閾値は、予め定義されていてもよいし、基地局装置3から通知されてもよい。
 また、ON状態を示すDSパターンとOFF状態を示すDSパターンを独立に定義し、OFF状態を示すDSパターンが検出された場合、該ON/OFFセルをOFF状態と認識してもよい(該ON/OFFセルにおいてOFF状態のON/OFFセルと通信する場合の動作に移行してもよい)。すなわち、基地局装置3はON状態とOFF状態で異なるDSパターンを用いてDSを送信してもよい。
 ON/OFFセルの暗示的OFF状態の一例について説明する。
 OFF状態となったON/OFFセルにおいては、CRSが送信されない場合がある。端末装置1は、ON状態が設定されたON/OFFセルにおいて、CRSが検出されない場合、もしくは、CRSが送信されていると仮定するリソースの受信電力が閾値を超えない場合、ON/OFFセルにおいてCRSが送信されていない、つまり、基地局装置3がOFF状態であると判定(仮定)し、該ON/OFFセルをOFF状態と認識する(該ON/OFFセルにおいてOFF状態のON/OFFセルと通信する場合の動作に移行する)。
 例えば、所定の回数CRSが検出されない場合、もしくは、所定のサブフレーム数連続するサブフレームにおいて所定の回数CRSが検出されない場合、もしくは、所定の回数連続でCRSが検出されない場合に、該ON/OFFセルをOFF状態と認識してもよい(該ON/OFFセルにおいてOFF状態のON/OFFセルと通信する場合の動作に移行してもよい)。
 なお、端末装置1がON/OFFセルにおけるOFF状態を判定する所定のサブフレーム数および/または所定の回数は、予め定義されていてもよいし、基地局装置3から通知されてもよい。
 なお、CRSが検出されない場合は、RSRPおよび/またはRSRQに基づいて判定されてもよい。
 なお、CRSが検出されない場合は、サブフレームの平均受信電力またはCRSが送信されていると仮定するリソースの受信電力を所定の閾値と比較することで判定されてもよい。なお、所定の閾値は、予め定義されていてもよいし、基地局装置3から通知されてもよい。
 また、ON状態を示すCRSパターンとOFF状態を示すCRSパターンを独立に定義し、OFF状態を示すCRSパターンが検出された場合、該ON/OFFセルをOFF状態と認識してもよい(該ON/OFFセルにおいてOFF状態のON/OFFセルと通信する場合の動作に移行してもよい)。すなわち、基地局装置3はON状態とOFF状態で異なるCRSパターンを用いてCRSを送信してもよい。
 ON/OFFセルの暗示的OFF状態の一例について説明する。
 端末装置1は、ON状態が設定されたON/OFFセルでPDCCH/EPDCCHをモニタする。端末装置1は、ON状態が設定されたON/OFFセルで、PDCCH/EPDCCHが所定のサブフレーム数以上連続で検出されない場合、基地局装置3がOFF状態であると判定(仮定)し、該ON/OFFセルをOFF状態と認識する(該ON/OFFセルにおいてOFF状態のON/OFFセルと通信する場合の動作に移行する)。すなわち、端末装置1は、ON状態が設定されたON/OFFセルに関連するCIFの値に基づくサーチスペースで、PDCCH/EPDCCHが所定のサブフレーム数以上連続で検出されない場合、基地局装置3がOFF状態であると判定(仮定)し、該ON/OFFセルをOFF状態と認識する(該ON/OFFセルにおいてOFF状態のON/OFFセルと通信する場合の動作に移行する)。すなわち、基地局装置3は、OFF状態が設定されたON/OFFセルに関連するCIFの値に基づくサーチスペースにPDCCH/EPDCCHを配置しない。
 なお、端末装置1がON/OFFセルにおけるOFF状態を判定する所定のサブフレーム数は、予め定義されていてもよいし、基地局装置3から通知されてもよい。
 なお、PDCCH/EPDCCHが検出されない場合は、巡回冗長検査(CRC: Cyclic Redundancy Check)でエラー検出されないこと、もしくは、サブフレームの平均受信電力を所定の閾値と比較することで判定されてもよい。なお、所定の閾値は、予め定義されていてもよいし、基地局装置3から通知されてもよい。
 ON/OFFセルの暗示的OFF状態の一例について説明する。
 端末装置1は、ON状態が設定されたON/OFFセルにおいて、ON状態が設定されたON/OFFセルに対する下りリンクグラント(downlink grant)またはON状態が設定されたON/OFFセルに対する上りリンクグラント(uplink grant)を示すPDCCH/EPDCCHが所定のサブフレーム数以上連続で検出されない場合、基地局装置3がOFF状態であると判定(仮定)し、該ON/OFFセルをOFF状態と認識する(該ON/OFFセルにおいてOFF状態のON/OFFセルと通信する場合の動作に移行する)。
 なお、端末装置1がON/OFFセルにおけるOFF状態を判定する所定のサブフレーム数は、予め定義されていてもよいし、基地局装置3から通知されてもよい。
 ON/OFFセルの暗示的OFF状態の一例について説明する。
 端末装置1は、ON状態が設定されたON/OFFセルをスケジューリングするサービングセルにおいて、ON状態が設定されたON/OFFセルに対する下りリンクグラント(downlink grant)またはON状態が設定されたON/OFFセルに対する上りリンクグラント(uplink grant)を示すPDCCH/EPDCCHが所定のサブフレーム数以上連続で検出されない場合、基地局装置3がOFF状態であると判定(仮定)し、該ON/OFFセルをOFF状態と認識する(該ON/OFFセルにおいてOFF状態のON/OFFセルと通信する場合の動作に移行する)。すなわち、端末装置1は、ON状態が設定されたON/OFFセルに関連するCIFの値に基づくサーチスペースで、ON状態が設定されたON/OFFセルに対する下りリンクグラント(downlink grant)またはON状態が設定されたON/OFFセルに対する上りリンクグラント(uplink grant)を示すPDCCH/EPDCCHが所定のサブフレーム数以上連続で検出されない場合、基地局装置3がOFF状態であると判定(仮定)し、該ON/OFFセルをOFF状態と認識する(該ON/OFFセルにおいてOFF状態のON/OFFセルと通信する場合の動作に移行する)。すなわち、基地局装置3は、OFF状態が設定されたON/OFFセルに関連するCIFの値に基づくサーチスペースで、ON状態が設定されたON/OFFセルに対する下りリンクグラント(downlink grant)またはON状態が設定されたON/OFFセルに対する上りリンクグラント(uplink grant)を示すPDCCH/EPDCCHを配置しない。
 なお、端末装置1がON/OFFセルにおけるOFF状態を判定する所定のサブフレーム数は、予め定義されていてもよいし、基地局装置3から通知されてもよい。
 ON/OFFセルの暗示的OFF状態の一例について説明する。
 端末装置1は、ON状態が設定されたON/OFFセルに対して間欠受信(DRX: Discontinuous Reception)が設定された場合、基地局装置3がOFF状態であると判定(仮定)し、該ON/OFFセルをOFF状態と認識する(該ON/OFFセルにおいてOFF状態のON/OFFセルと通信する場合の動作に移行する)。
 なお、端末装置1は、ショートDRXに関するパラメータが設定された場合、基地局装置3がON状態であると判定(仮定)し、該ON/OFFセルをOFF状態と認識しないことが好ましい(該ON/OFFセルにおいてOFF状態のON/OFFセルと通信する場合の動作に移行しないことが好ましい)。
 なお、ON/OFFセルに対する間欠受信(DRX: Discontinuous Reception)は、ON/OFFセル毎に独立で設定されてもよい。
 なお、ON/OFFセルに対する間欠受信(DRX: Discontinuous Reception)の継続時間に関連するタイマーは、サブフレーム単位で設定されてもよい。
 ON/OFFセルの暗示的OFF状態の一例について説明する。
 OFF状態となったON/OFFセルにおいては、PHICHが送信されない(端末装置1が送信した上りリンクデータ(Uplink Shared Channel: UL-SCH)に対するACK(ACKnowledgement)またはNACK(Negative ACKnowledgement)を示すHARQインディケータ(HARQフィードバック、応答情報)が送信されない)場合がある。端末装置1は、ON状態が設定されたON/OFFセルにおいてPHICHが検出されない(端末装置1が送信した上りリンクデータ(Uplink Shared Channel: UL-SCH)に対するACK(ACKnowledgement)またはNACK(Negative ACKnowledgement)を示すHARQインディケータ(HARQフィードバック、応答情報)が検出されない)場合、基地局装置3がOFF状態であると判定(仮定)し、該ON/OFFセルをOFF状態と認識する(該ON/OFFセルにおいてOFF状態のON/OFFセルと通信する場合の動作に移行する)。
 例えば、所定の回数PHICHが検出されない場合、もしくは、所定のサブフレーム数連続するサブフレームにおいて所定の回数PHICHが検出されない場合、もしくは、所定の回数連続でPHICHが検出されない場合に、該ON/OFFセルをOFF状態と認識してもよい(該ON/OFFセルにおいてOFF状態のON/OFFセルと通信する場合の動作に移行してもよい)。
 なお、端末装置1がON/OFFセルにおけるOFF状態を判定する所定のサブフレーム数および/または所定の回数は、予め定義されていてもよいし、基地局装置3から通知されてもよい。
 なお、PHICHが検出されない場合は、サブフレームの平均受信電力またはPHICHが送信されていると仮定するリソースの受信電力を所定の閾値と比較することで判定されてもよい。なお、所定の閾値は、予め定義されていてもよいし、基地局装置3から通知されてもよい。
 なお、上記ON/OFFセルの暗示的OFF状態の例は、それぞれ別個に実行されることに限定されず、2つ以上同時に実行されてもよい、また、仕様書などで規定される他のデアクティベーションと同時に実行されてもよい。
 なお、OFF状態であると判定(仮定)したON/OFFセルのOFF状態(OFF状態のON/OFFセルと通信する場合の動作への移行)は、OFF状態であると判定(仮定)した無線フレームおよび/またはサブフレームから適用されてもよいし、OFF状態であると判定(仮定)した無線フレームおよび/またはサブフレームから所定の無線フレーム数/または所定のサブフレーム数後から適用されてもよい。
 なお、OFF状態であると判定(仮定)したON/OFFセルのOFF状態(OFF状態のON/OFFセルと通信する場合の動作への移行)を適用するまでの所定の無線フレーム数/または所定のサブフレーム数は、予め定義されていてもよいし、基地局装置3から通知されてもよい。
 次に、ON/OFFセルの暗示的ON状態(implicit activation)について説明する。
 なお、基地局装置3のON状態は、端末装置1が従来の端末装置と同様の処理が可能な状態である。基地局装置3のON状態における具体的な例は以下の通りである。端末装置1はPSS、SSSおよびPBCHを受信することを期待する。端末装置1は所定のサブフレームにおいてPDCCHおよび/またはEPDCCHのモニタリングをする。端末装置1は設定されたCSI報告モードに基づいてCSI報告を行う。端末装置1はCSI報告のための参照信号(例えば、CRSまたはCSI-RS)およびCSI参照リソースが存在することを期待する。
 なお、ON/OFFセルのON状態において端末装置1は、OFF状態において保持していた、該ON/OFFセルに関連する情報を再び使用してもよい。
 なお、ON/OFFセルがON状態になることと、ON/OFFセルがアクティベーションされることは同じであってもよく、ON/OFFセルのアクティベーションは従来のアクティベーション(非ON/OFFセルのアクティベーション)と同じであってもよい。
 なお、ON/OFFセルがON状態と従来のアクティベーションは同時に実行されてもよい。
 ON/OFFセルがOFF状態からON状態へ遷移する(基地局装置3が停止の状態から起動の状態に遷移する)度に、基地局装置3がL1シグナリング(DCIフォーマット)やL2シグナリング(MAC CE)によってON/OFFセルのON状態を端末装置1に通知すると、制御情報のオーバーヘッドが増加する。
 そこで、基地局装置3がON/OFFセルを用いている場合、端末装置1が暗示的にON/OFFセルのON状態を判定(仮定)し、ON状態と判定(仮定)したON/OFFセルを端末装置1が暗示的にON状態すること(implicit activation)、もしくは、ON状態のON/OFFセルと通信する場合の動作に移行することが有効である。例えば、ON状態のON/OFFセルと通信する場合の動作は、端末装置1がON/OFFセルがOFF状態において保持していた、該ON/OFFセルに関連する情報を再び使用する動作であってもよい。例えば、ON状態のON/OFFセルと通信する場合の動作は、端末装置1が従来の端末装置と同様の処理が可能な動作であってもよい。
 なお、端末装置1は、端末装置1に設定されるセルがON/OFFセルか否かを示すことに関連する情報を基地局装置3から受信してもよい。すなわち、基地局装置3は端末装置1に対して、端末装置1に設定するセルがON/OFFセルか否かを示すことに関連する情報を送信してもよい。
 ON/OFFセルの暗示的ON状態の一例について説明する。
 OFF状態となったON/OFFセルにおいては、DSが送信されない場合がある、すなわち、ON/OFFセルがON状態でのみDSを送信する場合がある。端末装置1は、OFF状態が設定されたON/OFFセルにおいて、DSが検出された場合、もしくは、DSが送信されていると仮定するリソースの受信電力が閾値を超えた場合、ON/OFFセルにおいてDSが送信されている、つまり、基地局装置3がON状態であると判定(仮定)し、該ON/OFFセルをON状態と認識する(該ON/OFFセルにおいてON状態のON/OFFセルと通信する場合の動作に移行する)。
 なお、DSが検出された場合は、RSRPおよび/またはRSRQに基づいて判定されてもよい。
 なお、DSが検出された場合は、サブフレームの平均受信電力またはDSが送信されていると仮定するリソースの受信電力を所定の閾値と比較することで判定されてもよい。なお、所定の閾値は、予め定義されていてもよいし、基地局装置3から通知されてもよい。
 また、ON状態を示すDSパターンとOFF状態を示すDSパターンを独立に定義し、ON状態を示すDSパターンが検出された場合、該ON/OFFセルをON状態と認識してもよい(該ON/OFFセルにおいてON状態のON/OFFセルと通信する場合の動作に移行してもよい)。すなわち、基地局装置3はON状態とOFF状態で異なるDSパターンを用いてDSを送信してもよい。
 ON/OFFセルの暗示的ON状態の一例について説明する。
 ON状態となったON/OFFセルにおいては、DSが送信されない場合がある、すなわち、ON/OFFセルがOFF状態でのみDSを送信する場合がある。端末装置1は、OFF状態が設定されたON/OFFセルにおいて、DSが検出されない場合、もしくは、DSが送信されていると仮定するリソースの受信電力が閾値を超えない場合、ON/OFFセルにおいてDSが送信されていない、つまり、基地局装置3がON状態であると判定(仮定)し、該ON/OFFセルをON状態と認識する(該ON/OFFセルにおいてON状態のON/OFFセルと通信する場合の動作に移行する)。
 なお、DSが検出されない場合は、RSRPおよび/またはRSRQに基づいて判定されてもよい。
 なお、DSが検出されない場合は、サブフレームの平均受信電力またはDSが送信されていると仮定するリソースの受信電力を所定の閾値と比較することで判定されてもよい。なお、所定の閾値は、予め定義されていてもよいし、基地局装置3から通知されてもよい。
 ON/OFFセルの暗示的ON状態の一例について説明する。
 OFF状態となったON/OFFセルにおいては、CRSが送信されない場合がある、すなわち、ON/OFFセルがON状態でのみCRSを送信する場合がある。端末装置1は、OFF状態が設定されたON/OFFセルにおいて、CRSが検出された場合、もしくは、CRSが送信されていると仮定するリソースの受信電力が閾値を超えた場合、ON/OFFセルにおいてCRSが送信されている、つまり、基地局装置3がON状態であると判定(仮定)し、該ON/OFFセルをON状態と認識する(該ON/OFFセルにおいてON状態のON/OFFセルと通信する場合の動作に移行する)。
 なお、CRSが検出された場合は、RSRPおよび/またはRSRQに基づいて判定されてもよい。
 なお、CRSが検出された場合は、サブフレームの平均受信電力またはCRSが送信されていると仮定するリソースの受信電力を所定の閾値と比較することで判定されてもよい。なお、所定の閾値は、予め定義されていてもよいし、基地局装置3から通知されてもよい。
 また、ON状態を示すCRSパターンとOFF状態を示すCRSパターンを独立に定義し、ON状態を示すCRSパターンが検出された場合、該ON/OFFセルをON状態と認識してもよい(該ON/OFFセルにおいてON状態のON/OFFセルと通信する場合の動作に移行してもよい)。すなわち、基地局装置3はON状態とOFF状態で異なるCRSパターンを用いてCRSを送信してもよい。
 ON/OFFセルの暗示的ON状態の一例について説明する。
 端末装置1は、OFF状態が設定されたON/OFFセルをスケジューリングするサービングセルにおいて、OFF状態が設定されたON/OFFセルに対する下りリンクグラント(downlink grant)またはOFF状態が設定されたON/OFFセルに対する上りリンクグラント(uplink grant)を示すPDCCH/EPDCCHが検出された場合、基地局装置3がON状態であると判定(仮定)し、該ON/OFFセルをON状態と認識する(該ON/OFFセルにおいてON状態のON/OFFセルと通信する場合の動作に移行する)。
 なお、OFF状態が設定されたON/OFFセルをスケジューリングするサービングセルにおける、OFF状態が設定されたON/OFFセルに対する下りリンクグラント(downlink grant)またはOFF状態が設定されたON/OFFセルに対する上りリンクグラント(uplink grant)を示すPDCCH/EPDCCHは、OFF状態が設定されたON/OFFセルに関連するキャリアインディケーターフィールド(CIF、Carrier Indicator Field)に基づくサーチスペースに配置されないことが好ましい(ON状態が設定されたセルに関連するキャリアインディケーターフィールド(CIF、Carrier Indicator Field)に基づくサーチスペースに配置されることが好ましい)。
 なお、OFF状態が設定されたON/OFFセルをスケジューリングするサービングセルにおける、OFF状態が設定されたON/OFFセルに対する下りリンクグラント(downlink grant)またはOFF状態が設定されたON/OFFセルに対する上りリンクグラント(uplink grant)を示すPDCCH/EPDCCHは、OFF状態が設定されたON/OFFセルに関連するRNTIでCRCマスクされていることが好ましい。
 なお、OFF状態が設定されたON/OFFセルをスケジューリングするサービングセルにおける、OFF状態が設定されたON/OFFセルに対する下りリンクグラント(downlink grant)またはOFF状態が設定されたON/OFFセルに対する上りリンクグラント(uplink grant)を示すPDCCH/EPDCCHは、OFF状態が設定されたON/OFFセルに関連するキャリアインディケーターフィールド(CIF、Carrier Indicator Field)に関するビット情報を含むペイロードサイズであることが好ましい。
 ON/OFFセルの暗示的ON状態の一例について説明する。
 端末装置1は、OFF状態が設定されたON/OFFセルに対する間欠受信(DRX: Discontinuous Reception)に関連するタイマーが満了した場合、基地局装置3がON状態であると判定(仮定)し、該ON/OFFセルをON状態と認識する(該ON/OFFセルにおいてON状態のON/OFFセルと通信する場合の動作に移行する)。
 なお、ON/OFFセルに対する間欠受信(DRX: Discontinuous Reception)は、ON/OFFセル毎に独立で設定されてもよい。
 なお、ON/OFFセルに対する間欠受信(DRX: Discontinuous Reception)の継続時間に関連するタイマーは、サブフレーム単位で設定されてもよい。
 ON/OFFセルの暗示的ON状態の一例について説明する。
 端末装置1は、OFF状態が設定されたON/OFFセルに対するショートDRXに関連するタイマーが満了した場合、基地局装置3がON状態であると判定(仮定)し、該ON/OFFセルをON状態と認識する(該ON/OFFセルにおいてON状態のON/OFFセルと通信する場合の動作に移行する)。
 なお、ON/OFFセルに対するショートDRXは、ON/OFFセル毎に独立で設定されてもよい。
 なお、ON/OFFセルに対するショートDRXの継続時間に関連するタイマーは、サブフレーム単位で設定されてもよい。
 なお、上記ON/OFFセルの暗示的ON状態の例は、それぞれ別個に実行されることに限定されず、2つ以上同時に実行されてもよい、また、仕様書などで規定される他のアクティベーションと同時に実行されてもよい。
 なお、ON状態であると判定(仮定)したON/OFFセルのON状態(ON状態のON/OFFセルと通信する場合の動作への移行)は、ON状態であると判定(仮定)した無線フレームおよび/またはサブフレームから適用されてもよいし、ON状態であると判定(仮定)した無線フレームおよび/またはサブフレームから所定の無線フレーム数/または所定のサブフレーム数後から適用されてもよい。
 なお、ON状態であると判定(仮定)したON/OFFセルのON状態(ON状態のON/OFFセルと通信する場合の動作への移行)を適用するまでの所定の無線フレーム数/または所定のサブフレーム数は、予め定義されていてもよいし、基地局装置3から通知されてもよい。
 なお、上記ON/OFFセルの暗示的ON状態および/または暗示的OFF状態は、端末装置1が所定の機能(ケイパビリティ、UE Capability)を持っている場合に実行されてもよい。
 なお、上記ON/OFFセルの暗示的ON状態および/または暗示的OFF状態は、端末装置1が所定のモードの場合に実行されてもよい。例えば、Implicit/Explicit activation modeが定義される場合、端末装置1がImplicit modeの場合に上記ON/OFFセルの暗示的ON状態および/または暗示的OFF状態が実行されてもよい。Implicit/Explicit activation modeの切り替えは、MAC CEにおいてリザーブされているRフィールドを用いて通知されることが好ましく、Rフィールドが“0”にセットされている場合、Explicit activation modeを示し、Rフィールドが“1”にセットされている場合、Implicit activation modeを示すことが好ましい。
 次に、ON/OFFセルのOFF状態タイマー(OFFタイマー、スモールセルデアクティベーションタイマー)について説明する。
 ON/OFFセルのON状態の指示を受信した場合、端末装置1は、そのON/OFFセルに関連するOFF状態タイマーをスタートまたはリスタートする。
 ON/OFFセルにおけるPDCCHが、下りリンクグラント(downlink grant)または上りリンクグラント(uplink grant)を示さない場合、もしくは、ON/OFFセルをスケジューリングするサービングセルにおけるPDCCHが、ON/OFFセルに対する下りリンクグラント(downlink grant)またはON/OFFセルに対する上りリンクグラント(uplink grant)を示さない場合、もしくは、ON/OFFセルに対するPDCCHの指示が存在しない場合、端末装置1は、ON/OFFセルに関連するOFF状態タイマーをカウントアップする(1つ進める、1を加算する)。なお、OFF状態タイマーが無線フレーム単位である場合は、所定の無線フレーム全てにおいて、PDCCHの指示が存在しない場合にカウントアップする。なお、OFF状態タイマーが複数サブフレームの単位である場合は、複数サブフレームの全てにおいて、PDCCHの指示が存在しない場合にカウントアップする。
 なお、OFF状態タイマーは、特定のサブフレームのみでカウントアップしてもよい。言い換えると、OFF状態タイマーは、特定のサブフレーム以外ではカウントアップされない。例えば、上りリンクサブフレームでは、OFF状態タイマーは上記の条件を満たしてもカウントアップされない。例えば、MBSFNサブフレームでは、OFF状態タイマーは上記の条件を満たしてもカウントアップされない。例えば、上位層で指示されたサブフレームでは、OFF状態タイマーは上記の条件を満たしてもカウントアップされない。
 ON/OFFセルに関連付けられているOFF状態タイマーが満了した場合、端末装置1は、そのON/OFFセルをOFF状態と認識する。
 ON/OFFセルにおけるPDCCHが、下りリンクグラント(downlink grant)または上りリンクグラント(uplink grant)を示す場合、もしくは、ON/OFFセルをスケジューリングするサービングセルにおけるPDCCHが、ON/OFFセルに対する下りリンクグラント(downlink grant)またはON/OFFセルに対する上りリンクグラント(uplink grant)を示す場合、端末装置1は、ON/OFFセルに関連するOFF状態タイマーをスタートまたはリスタートする。
 ON/OFFセルのOFF状態の指示を受信した場合、もしくは、ON/OFFセルに関連付けられているOFF状態タイマーが満了した場合、端末装置1は、そのON/OFFセルに関連するOFF状態タイマーをストップする。
 なお、ON/OFFセルのOFF状態タイマーはデアクティベーションタイマー(セルの維持時間に関連するタイマー)と同じであってもよい。すなわち、ON/OFFセルのOFF状態タイマーはON/OFFセルの維持時間に関連するタイマーであってもよい。
 ON/OFFセルを用いてセル間干渉を抑圧する場合、端末装置1の位置やトラフィック量に応じて動的にON/OFFセルのON状態とOFF状態を切り換える。そして、ON/OFFセルのON状態とOFF状態の切り替えが高速になるほど端末装置1の位置やトラフィック量への適応性が高くなる。
 なお、ON/OFFセルおよび/または非ON/OFFセルは、プライマリーセルに設定されてもよいし、セカンダリーセルに設定されてもよいし、セカンダリーセルの中でも特別な機能(例えば、プライマリーセルの機能)を持つセカンダリーセル(プライマリーセカンダリーセル、スペシャルセル)に設定されてもよい。
 なお、ON/OFFセルおよび/または非ON/OFFセルは、常にオン状態が設定されてもよい。
 つまり、ON/OFFセルと非ON/OFFセルは、端末装置1において独立に維持されることが好ましい。すなわち、ON/OFFセルに関連するOFF状態タイマーの初期値と非ON/OFFセルに関連するデアクティベーションタイマーの初期値は独立に設定されることが好ましい。
 OFF状態タイマーの初期値設定の一例について説明する。
 ON/OFFセルに関連するOFF状態タイマーの初期値を上位層(RRC層)からパラメータsCellDeactivationTimer-r12を用いて設定し、非ON/OFFセルに関連するデアクティベーションタイマーの初期値を上位層(RRC層)からパラメータsCellDeactivationTimer-r10を用いて設定してもよい。
 OFF状態タイマーの初期値設定の一例について説明する。
 ON/OFFセルに関連するOFF状態タイマーの初期値と非ON/OFFセルに関連するデアクティベーションタイマーの初期値を同じパラメータを2つ以上用いて設定してもよい。例えば、パラメータsCellDeactivationTimer-r10を2つ以上用いてON/OFFセルに関連するOFF状態タイマーの初期値と非ON/OFFセルに関連するデアクティベーションタイマーの初期値を設定してもよい。
 OFF状態タイマーの初期値設定の一例について説明する。
 非ON/OFFセルに関連するデアクティベーションタイマーの初期値に関連するパラメータsCellDeactivationTimer-r10をON/OFFセルに関連するOFF状態タイマーの初期値に読み替えて、ON/OFFセルに関連するOFF状態タイマーの初期値を設定してもよい。例えば、パラメータsCellDeactivationTimer-r10に無線フレームの数に関連する値であるrf2が設定されていた場合、rf1と読み替えてON/OFFセルに関連するOFF状態タイマーの初期値を設定してもよい。
 非ON/OFFセルに関連するデアクティベーションタイマーの初期値に関連するパラメータsCellDeactivationTimer-r10をON/OFFセルに関連するOFF状態タイマーの初期値として設定してもよい。
 なお、パラメータsCellDeactivationTimer-r12とパラメータsCellDeactivationTimer-r10には、無線フレームの数に関連する値であるrf2、rf4、rf8、rf16、rf32、rf64、rf128の内から少なくとも1つが設定されることが好ましい。ここで、rf2は、2無線フレームに対応し、rf4は、4無線フレームに対応し、rf8は、8無線フレームに対応し、rf16は、16無線フレームに対応し、rf32は、32無線フレームに対応し、rf64は、64無線フレームに対応し、rf128は、128無線フレームに対応する。
 なお、パラメータsCellDeactivationTimer-r12とパラメータsCellDeactivationTimer-r10に設定される無線フレームの数に関連する値は異なる値から選択されてもよい。例えば、パラメータsCellDeactivationTimer-r10には、無線フレームの数に関連する値であるrf2、rf4、rf8、rf16、rf32、rf64、rf128の内から少なくとも1つが設定され、パラメータsCellDeactivationTimer-r12には、無線フレームの数に関連する値であるrf1、rf2、rf4、rf8、rf16、rf32、rf64の内から少なくとも1つが設定されることが好ましい。ここで、rf1は、1無線フレームに対応し、rf2は、2無線フレームに対応し、rf4は、4無線フレームに対応し、rf8は、8無線フレームに対応し、rf16は、16無線フレームに対応し、rf32は、32無線フレームに対応し、rf64は、64無線フレームに対応し、rf128は、128無線フレームに対応する。
 なお、パラメータsCellDeactivationTimer-r12および/またはパラメータsCellDeactivationTimer-r10に設定される値は、サブフレームの数に関連する値から選択されてもよい。
 なお、OFF状態タイマーの初期値は、設定を受信した無線フレームおよび/またはサブフレームから適用されてもよいし、設定を受信した無線フレームおよび/またはサブフレームから所定の無線フレーム数/または所定のサブフレーム数後から適用されてもよい。
 なお、第1のOFF状態タイマーの初期値が設定されている端末装置1に対して、第2のOFF状態タイマーの初期値が設定された場合、第2のOFF状態タイマーの初期値の設定を受信した無線フレームおよび/またはサブフレームから適用されてもよいし、第2のOFF状態タイマーの初期値の設定を受信した無線フレームおよび/またはサブフレームから所定の無線フレーム数/または所定のサブフレーム数後から適用されてもよいし、第2のOFF状態タイマーの初期値を無視してもよい。
 なお、OFF状態タイマーの初期値を適用する所定の無線フレーム数/または所定のサブフレーム数は、予め定義されていてもよいし、基地局装置3から通知されてもよい。
 なお、ON/OFFセルに関連するOFF状態タイマーの初期値は上位層(RRC層)を用いて設定してもよい。
 なお、ON/OFFセルに関連するOFF状態タイマーの初期値はL1シグナリング(例えば、DCIフォーマット)を用いて設定してもよい。例えば、ON/OFFセルに関連するOFF状態タイマーの初期値はL1シグナリング(例えば、DCIフォーマット)を用いて設定し、非ON/OFFセルに関連するデアクティベーションタイマーの初期値は上位層(RRC層)を用いて設定してもよい。
 なお、端末装置1に複数のON/OFFセルが設定される場合、ON/OFFセルに関連するOFF状態タイマーの初期値は、設定された複数のON/OFFセルに対して共通の値を設定してもよいし、設定された複数のON/OFFセルそれぞれに対して個別の値を設定してもよいし、設定された複数のON/OFFセルをグループ化してグループに対して共通の値を設定してもよい。
 以下では、端末装置1のCSI測定およびCSI報告の詳細を説明する。
 CSIは、CQI(Channel quality indicator)、PMI(Precoding matrix indicator)、PTI(Precoding type indicator)および/またはRI(Rank indicator)で構成される。RIは、送信レイヤーの数(ランク数)を示す。PMIは、予め規定されたプレコーディング行列を示す情報である。PMIは、1つの情報または2つの情報により、1つのプレコーディング行列を示す。2つの情報を用いる場合のPMIは、第1のPMIと第2のPMIとも呼称される。CQIは、予め規定された変調方式と符号化率との組み合わせを示す情報である。基地局装置3に推奨するCSIを報告する。端末装置2は、トランスポートブロック(コードワード)毎に、所定の受信品質を満たすCQIを報告する。
 周期的CSI報告が可能なサブフレーム(reporting instances)は、上位層で設定される情報(CQIPMIインデックス、RIインデックス)に基づいて、報告の周期およびサブフレームオフセットによって決定される。なお、上位層で設定される情報は、CSIを測定するために設定されるサブフレームセット毎に設定可能である。複数のサブフレームセットに対して1つの情報しか設定されない場合、その情報は、サブフレームセット間で共通であるとみなしてもよい。
 送信モード1~9で設定された端末装置2に対して、各サービングセルに対して1つのP-CSI報告は、上位層シグナリングによって設定される。
 送信モード10で設定された端末装置2に対して、各サービングセルに対して1つ以上のP-CSI報告は、上位層シグナリングによって設定される。
 送信モード9または10で設定された端末装置2に対して、8CSI-RSポートが設定され、ワイドバンドCQIでシングルPMIの報告モード(モード1-1)が上位層シグナリングによってあるパラメータ(PUCCH_format1-1_CSI_reporting_mode)を用いてサブモード1もしくはサブモード2に設定される。
 端末選択サブバンドCQI(UE-selected subband CQI)に対して、あるサービングセルのあるサブフレームでのCQI報告は、帯域幅パートとして示されるサービングセルの帯域幅の特定の部分(一部)におけるチャネル品質の報告である。
 CSI報告タイプは、PUCCH CSI報告モードをサポートしている。CSI報告タイプは、PUCCH報告タイプ(PUCCH reporting type)と呼称される場合もある。タイプ1報告は、端末選択サブバンドに対するCQIフィードバックをサポートしている。タイプ1a報告は、サブバンドCQIと第2のPMIフィードバンクをサポートしている。タイプ2、タイプ2b、タイプ2c報告は、ワイドバンドCQIとPMIフィードバックをサポートしている。タイプ2a報告は、ワイドバンドPMIフィードバンクをサポートしている。タイプ3報告は、RIフィードバックをサポートしている。タイプ4報告は、ワイドバンドCQIをサポートしている。タイプ5報告は、RIとワイドバンドPMIフィードバックをサポートしている。タイプ6報告は、RIとPTIフィードバックをサポートしている。
 以下では、ON状態およびOFF状態をサポートする基地局装置3において、端末装置1のCSI測定およびCSI報告の詳細を説明する。
 端末装置1は、基地局装置3からCSI測定およびCSI報告に関する情報が設定される。CSI測定は、参照信号および/または参照リソース(例えば、CRS、CSI-RS、CSI-IMリソース、および/またはDS)に基づいて行われる。CSI測定に用いられる参照信号は、送信モードの設定などに基づいて決まる。CSI測定は、チャネル測定と干渉測定とに基づいて行われる。例えば、チャネル測定は、所望のセルの電力を測定する。干渉測定は、所望のセル以外の電力と雑音電力とを測定する。
 一例として、端末装置1は、CRSに基づいてチャネル測定と干渉測定とを行う。別の一例として、端末装置1は、CSI-RSに基づいてチャネル測定を行い、CRSに基づいて干渉測定を行う。別の一例として、端末装置1は、CSI-RSに基づいてチャネル測定を行い、CSI-IMリソースに基づいて干渉測定を行う。別の一例として、端末装置1は、DSに基づいてチャネル測定と干渉測定とを行う。
 端末装置1は、基地局装置3のON状態とOFF状態とを考慮して、CSI測定を行うことができる。例えば、端末装置1は、CSI測定を行うための参照信号および/または参照リソースに対して、基地局装置3のON状態とOFF状態とを考慮することができる。なお、以下の説明では、CSI測定における参照信号は参照リソースも含む。特に、干渉測定のための参照信号は、干渉測定のために参照されるリソースと読み替えることができる。すなわち、干渉測定のためのリソースは、信号がマッピングされていなくてもよい。そのため、干渉測定のためのリソースが、基地局装置3のON状態とOFF状態とに応じて、有効か無効かを決定することができる。
 一例として、端末装置1は、CSI測定において、チャネル測定のための参照信号が基地局装置3のON状態でのみ送信され、干渉測定のための参照信号が基地局装置3のON状態でのみ送信される、と想定する。すなわち、端末装置1は、チャネル測定のための参照信号が基地局装置3のON状態のサブフレームで送信され、チャネル測定のための参照信号が基地局装置3のOFF状態のサブフレームで送信されない、と想定する。端末装置1は、干渉測定のための参照信号が基地局装置3のON状態のサブフレームで送信され、干渉測定のための参照信号が基地局装置3のOFF状態のサブフレームで送信されない、と想定する。言い換えると、端末装置1は、基地局装置3がON状態のサブフレームのうち所定のサブフレームで送信される参照信号に基づいてチャネル測定を行い、基地局装置3がON状態のサブフレームのうち所定のサブフレームで送信される参照信号に基づいて干渉測定を行う。これにより、基地局装置3は、OFF状態の場合、端末装置1におけるCSI測定のための参照信号を止めることができる。
 別の一例として、端末装置1は、CSI測定において、チャネル測定のための参照信号が基地局装置3のON状態でのみ送信され、干渉測定のための参照信号が基地局装置3のON状態およびOFF状態で送信される、と想定する。すなわち、端末装置1は、チャネル測定のための参照信号が基地局装置3のON状態のサブフレームで送信され、チャネル測定のための参照信号が基地局装置3のOFF状態のサブフレームで送信されない、と想定する。端末装置1は、干渉測定のための参照信号が基地局装置3のON状態およびOFF状態のサブフレームで送信される、と想定する。言い換えると、端末装置1は、基地局装置3がON状態のサブフレームのうち所定のサブフレームで送信される参照信号に基づいてチャネル測定を行い、基地局装置3がON状態およびOFF状態のサブフレームのうち所定のサブフレームで送信される参照信号に基づいて干渉測定を行う。これにより、基地局装置3は、OFF状態の場合、端末装置1におけるチャネル測定のための参照信号を止めることができる。また、端末装置1は基地局装置3がON状態またはOFF状態に関わらず干渉測定が可能であるため、端末装置1が干渉測定において時間方向に平均化などの処理を行う場合、その処理の精度が向上できる。
 別の一例として、端末装置1は、CSI測定において、チャネル測定のための参照信号が基地局装置3のON状態およびOFF状態で送信され、干渉測定のための参照信号が基地局装置3のON状態でのみ送信される、と想定する。すなわち、端末装置1は、チャネル測定のための参照信号が基地局装置3のON状態およびOFF状態のサブフレームで送信される、と想定する。端末装置1は、干渉測定のための参照信号が基地局装置3のON状態のサブフレームで送信され、干渉測定のための参照信号が基地局装置3のOFF状態のサブフレームで送信されない、と想定する。言い換えると、端末装置1は、基地局装置3がON状態およびOFF状態のサブフレームのうち所定のサブフレームで送信される参照信号に基づいてチャネル測定を行い、基地局装置3がON状態のサブフレームのうち所定のサブフレームで送信される参照信号に基づいて干渉測定を行なう。これにより、基地局装置3は、OFF状態の場合、端末装置1における干渉測定のための参照信号を止めることができる。また、端末装置1は基地局装置3がON状態またはOFF状態に関わらずチャネル測定が可能であるため、端末装置1がチャネル測定において時間方向に平均化などの処理を行う場合、その処理の精度が向上できる。
 別の一例として、端末装置1は、CSI測定において、チャネル測定のための参照信号が基地局装置3のON状態およびOFF状態で送信され、干渉測定のための参照信号が基地局装置3のON状態およびOFF状態で送信される、と想定する。すなわち、端末装置1は、チャネル測定のための参照信号が基地局装置3のON状態およびOFF状態のサブフレームで送信される、と想定する。端末装置1は、干渉測定のための参照信号が基地局装置3のON状態およびOFF状態のサブフレームで送信される、と想定する。言い換えると、端末装置1は、基地局装置3がON状態およびOFF状態のサブフレームのうち所定のサブフレームで送信される参照信号に基づいてチャネル測定を行ない、基地局装置3がON状態およびOFF状態のサブフレームのうち所定のサブフレームで送信される参照信号に基づいて干渉測定を行う。これにより、基地局装置3は、OFF状態において、参照以外の信号およびチャネルの送信を止めた場合でも、端末装置1におけるCSI測定が可能となる。また、端末装置1は基地局装置3がON状態またはOFF状態に関わらずCSI測定が可能であるため、端末装置1が干渉測定において時間方向に平均化などの処理を行う場合、その処理の精度が向上できる。
 以下では、チャネル測定および干渉測定のための参照信号の具体的な例を説明する。
 所定の送信モードに設定された端末装置1において、その端末装置1は、CQIの値を計算するためのチャネル測定を行う。そのCQIの値は、所定のサブフレームで報告され、あるCSIプロセスに対応する。そのチャネル測定は、そのCSIプロセスに関連付けられたCSI-RSリソースの設定における非ゼロパワーCSI-RSのみに基づいて行われる。もし、そのCSIプロセスにおいて、その所定の送信モードに設定された端末装置1に対して、ON状態およびOFF状態に関するRRCパラメータが上位レイヤーによって設定される場合、ON状態のサブフレーム以内のCSI-RSリソースがそのチャネル測定を行うために用いられる。
 所定の送信モードに設定された端末装置1において、その端末装置1は、CQIの値を計算するためのチャネル測定を行う。そのCQIの値は、所定のサブフレームで報告され、あるCSIプロセスに対応する。そのチャネル測定は、そのCSIプロセスに関連付けられたCSI-RSリソースの設定における非ゼロパワーCSI-RSのみに基づいて行われる。もし、そのCSIプロセスにおいて、その所定の送信モードに設定された端末装置1に対して、ON状態およびOFF状態に関するRRCパラメータが上位レイヤーによって設定される場合、ON状態およびOFF状態のサブフレーム以内のCSI-RSリソースがそのチャネル測定を行うために用いられる。
 所定の送信モードに設定された端末装置1において、その端末装置1は、CQIの値を計算するための干渉測定を行う。そのCQIの値は、所定のサブフレームで報告され、あるCSIプロセスに対応する。その干渉測定は、そのCSIプロセスに関連付けられたCSI-IMリソースの設定におけるゼロパワーCSI-RSのみに基づいて行われる。もし、そのCSIプロセスにおいて、その所定の送信モードに設定された端末装置1に対して、CSIサブフレームセットが上位レイヤーによって設定される場合、CSI参照リソースに属するサブフレームのサブセット以内のCSI-IMリソースがその干渉測定を行うために用いられる。もし、そのCSIプロセスにおいて、その所定の送信モードに設定された端末装置1に対して、ON状態およびOFF状態に関するRRCパラメータが上位レイヤーによって設定される場合、ON状態のサブフレーム以内のCSI-RSリソースがその干渉測定を行うために用いられる。
 所定の送信モードに設定された端末装置1において、その端末装置1は、CQIの値を計算するための干渉測定を行う。そのCQIの値は、所定のサブフレームで報告され、あるCSIプロセスに対応する。その干渉測定は、そのCSIプロセスに関連付けられたCSI-IMリソースの設定におけるゼロパワーCSI-RSのみに基づいて行われる。もし、そのCSIプロセスにおいて、その所定の送信モードに設定された端末装置1に対して、CSIサブフレームセットが上位レイヤーによって設定される場合、CSI参照リソースに属するサブフレームのサブセット以内のCSI-IMリソースがその干渉測定を行うために用いられる。もし、そのCSIプロセスにおいて、その所定の送信モードに設定された端末装置1に対して、ON状態およびOFF状態に関するRRCパラメータが上位レイヤーによって設定される場合、ON状態およびOFF状態のサブフレーム以内のCSI-RSリソースがその干渉測定を行うために用いられる。
 なお、本実施形態の説明において、ON状態およびOFF状態に関するRRCパラメータは、上位レイヤーで設定される。ON状態およびOFF状態に関するRRCパラメータの設定は、セル状態情報のための設定とも呼称される。セル状態情報のための設定は、物理レイヤーで明示的または黙示的に通知されるセル状態情報のために用いられる。例えば、セル状態情報のための設定は、物理レイヤーで明示的または黙示的に通知されるセル状態情報を受信するために必要な情報を含む。セル状態情報のための設定は、CSIプロセス毎に個別に設定できる。セル状態情報のための設定は、CSIサブフレームセット毎に個別に設定できる。
 CSIプロセスは、上位レイヤーで端末装置1に固有の情報として設定される。端末装置1は、1つ以上のCSIプロセスが設定され、そのCSIプロセスの設定に基づいてCSI測定およびCSI報告を行う。例えば、端末装置1は、複数のCSIプロセスが設定された場合、それらのCSIプロセスに基づく複数のCSIを独立に報告する。それぞれのCSIプロセスは、セル状態情報のための設定、CSIプロセスの識別子、CSI-RSに関する設定情報、CSI-IMに関する設定情報、CSI報告のために設定されるサブフレームパターン、周期的なCSI報告に関する設定情報、および/または、非周期的なCSI報告に関する設定情報を含む。なお、セル状態情報のための設定は、複数のCSIプロセスに対して共通であってもよい。
 以下では、あるサービングセルにおけるCSI参照リソースの詳細を説明する。
 CSI参照リソースは、端末装置1がCSI測定を行うために用いられるリソースである。例えば、端末装置1は、CSI参照リソースで示される下りリンク物理リソースブロックのグループを用いて、PDSCHが送信される場合のCSIを測定する。CSIサブフレームセットが上位レイヤーで設定された場合、それぞれのCSI参照リソースは、CSIサブフレームセットのいずれかに属し、CSIサブフレームセットの両方に属しない。
 周波数方向において、CSI参照リソースは、求められるCQIの値に関連するバンドに対応する下りリンク物理リソースブロックのグループによって定義される。
 レイヤー方向(空間方向)において、CSI参照リソースは、求められるCQIが条件をつけるRIおよびPMIによって定義される。言い換えると、レイヤー方向(空間方向)において、CSI参照リソースは、CQIを求める時に想定または生成されたRIおよびPMIによって定義される。
 時間方向において、CSI参照リソースは、所定の1つの下りリンクサブフレームによって定義される。具体的には、CSI参照リソースは、CSI報告するサブフレームより所定のサブフレーム数前のサブフレームによって定義される。CSI参照リソースを定義する所定のサブフレーム数は、送信モード、フレーム構成タイプ、設定されるCSIプロセスの数、および/または、CSI報告モードなどに基づいて決まる。例えば、端末装置1に対して、1つのCSIプロセスと周期的なCSI報告のモードが設定される場合、CSI参照リソースを定義する所定のサブフレーム数は、有効な下りリンクサブフレームのうち、4以上の最小値である。
 以下では、有効な下りリンクサブフレームの詳細を説明する。
 あるサービングセルにおける下りリンクサブフレームは、以下の条件の一部または全部が当てはまる場合、有効であると考えられる。条件の1つとして、有効な下りリンクサブフレームは、ON状態およびOFF状態に関するRRCパラメータが設定される端末装置1において、ON状態のサブフレームである。条件の1つとして、有効な下りリンクサブフレームは、端末装置1において下りリンクサブフレームとして設定される。条件の1つとして、有効な下りリンクサブフレームは、所定の送信モードにおいて、MBSFN(Multimedia Broadcast multicast service Single Frequency Network)サブフレームではない。条件の1つとして、有効な下りリンクサブフレームは、端末装置1に設定された測定間隔(measurement gap)の範囲に含まれない。条件の1つとして、有効な下りリンクサブフレームは、周期的なCSI報告において、端末装置1にCSIサブフレームセットが設定される時、周期的なCSI報告にリンクされるCSIサブフレームセットの要素または一部である。条件の1つとして、有効な下りリンクサブフレームは、CSIプロセスに対する非周期的CSI報告において、上りリンクのDCIフォーマット内の対応するCSIリクエストを伴う下りリンクサブフレームにリンクされるCSIサブフレームセットの要素または一部である。その条件において、端末装置1に所定の送信モードと、複数のCSIプロセスと、CSIプロセスに対するCSIサブフレームセットとが設定される。
 また、あるサービングセル内のCSI参照リソースのための有効な下りリンクサブフレームが存在しない場合、そのサービングセルにおけるCSI報告は対応する上りリンクサブフレームで除外される。すなわち、有効な下りリンクサブフレームがON状態のサブフレームであることが条件である場合、端末装置1は、OFF状態のサブフレームは有効な下りリンクサブフレームではないと想定する。
 また、基地局装置3(サービングセル)がOFF状態になった場合、端末装置1は、それ以前のON状態のサブフレームを含む全てのサブフレームは、有効な下りリンクサブフレームではないと想定してもよい。すなわち、基地局装置3(サービングセル)がOFF状態になった場合、端末装置1は、有効な下りリンクサブフレームは、その後にON状態になったサブフレームまたはON状態を通知したサブフレーム以降の所定のサブフレームであると想定する。
 また、OFF状態のサブフレームであっても、端末装置1は、有効な下りリンクサブフレームであるための条件としてもよい。すなわち、端末装置1は、有効な下りリンクサブフレームであるかどうかは、ON状態またはOFF状態のサブフレームに関わらず決定してもよい。
 また、端末装置1は、ON状態のサブフレームと、OFF状態の一部のサブフレームとが、有効な下りリンクサブフレームであるための条件としてもよい。OFF状態の一部のサブフレームは、予め規定された所定のサブフレーム、基地局装置3固有に設定される所定のサブフレーム、または端末装置1固有に設定されるサブフレームである。例えば、OFF状態の一部のサブフレームは、所定のサブフレームと、その所定のサブフレームから所定数前のサブフレームとの間のサブフレームである。例えば、その所定のサブフレームは、ON状態になったサブフレームまたはON状態を通知したサブフレームである。その所定のサブフレームは、CSIリクエストが含まれるDCIフォーマットを受信したサブフレームである。その所定のサブフレームは、CSI報告するサブフレームである。
 以下では、基地局装置3のセル状態(ON状態またはOFF状態)の通知方法の具体的な一例を説明する。
 基地局装置3は、端末装置1に対して、RRCのシグナリングを通じて、セル状態情報に関する設定を行う。基地局装置3は、端末装置1に設定されたセル状態情報に関する設定に基づいて、所定の方法によりセル状態を通知する。端末装置1は、基地局装置3から、RRCのシグナリングを通じて、セル状態情報に関して設定される。端末装置1は、基地局装置3から設定されたセル状態情報に関する設定に基づいて、所定の方法によりセル状態を認識する。
 セル状態を通知する方法は、明示的な方法または黙示的な方法がある。一例として、セル状態は、PDCCHまたはEPDCCHで送信されるDCIを用いて通知されるセル状態情報に基づいて、明示的に通知される。例えば、端末装置1は、セル状態情報が1を示す場合はON状態であり、セル状態情報が0を示す場合はOFF状態であると認識する。別の一例として、セル状態は、参照信号の有無に基づいて黙示的に通知される。参照信号の有無は、参照信号の受信電力または受信レベルと、所定のしきい値との比較によって決まる。別の一例として、セル状態は、DRXの設定または手順に基づいて黙示的に通知される。例えば、端末装置1は、非DRX期間ではON状態であり、DRX期間ではOFF状態であると認識する。別の一例として、セル状態は、MACレイヤーで通知されるセルの活性化(Activation)または非活性化(Deactivation)に基づいて、黙示的に通知される。例えば、端末装置1は、セルの活性化(Activation)の期間ではON状態であり、セルの活性化(Activation)の期間ではOFF状態であると認識する。
 セル状態情報に関する設定は、端末装置1がセル状態を認識するために用いられる情報が設定される。例えば、セル状態情報に関する設定は、セル状態情報が通知されるPDCCHまたはEPDCCHを受信またはモニタリングするために用いられる情報として、サブフレーム情報、サーチスペースに関する情報、RNTIに関する情報などを含む。セル状態情報に関する設定は、参照信号の有無を認識するために用いられる情報として、参照信号に関する情報、仮想セル識別子、所定のしきい値、サブフレーム情報などを含む。
 以下では、端末装置1におけるセル状態の通知の認識の詳細を説明する。
 一例として、端末装置1におけるセル状態の通知の認識は、セル状態情報を通知するDCIを含むPDCCHまたはEPDCCHに付加される巡回冗長検査(Cyclic redundancy check; CRC)に基づいて行われる。例えば、巡回冗長検査で得られる値が正しくなかった場合、端末装置1はセル状態の通知を認識(検出)できなかったと判断する。
 別の一例として、端末装置1におけるセル状態の通知の認識は、参照信号の受信電力または受信レベルが所定のしきい値の範囲内であるかどうかに基づいて行われる。例えば、第1のしきい値と、第1のしきい値より大きい第2のしきい値とが規定または設定され、参照信号の受信電力または受信レベルが第1のしきい値から第2のしきい値までの範囲内であれば、端末装置1はセル状態の通知を認識(検出)できなかったと判断する。また、参照信号の受信電力または受信レベルが第1のしきい値より低い場合、端末装置1はOFF状態であると判断する。参照信号の受信電力または受信レベルが第2のしきい値より高い場合、端末装置1はON状態であると判断する。
 以下では、端末装置1がセル状態の通知を認識(検出)できなかった場合の処理(動作)について説明する。
 一例として、あるサブフレームにおいて端末装置1がセル状態の通知を認識(検出)できなかった場合、端末装置1は、次のセル状態の通知が行われるサブフレームまで、OFF状態であると想定する。すなわち、端末装置1は、次のセル状態の通知が行われるサブフレームまで、OFF状態が通知された場合と同じ処理を行なう。
 一例として、あるサブフレームにおいて端末装置1がセル状態の通知を認識(検出)できなかった場合、端末装置1は、次のセル状態の通知が行われるサブフレームまで、ON状態であると想定する。すなわち、端末装置1は、次のセル状態の通知が行われるサブフレームまで、ON状態が通知された場合と同じ処理を行う。
 一例として、あるサブフレームにおいて端末装置1がセル状態の通知を認識(検出)できなかった場合、端末装置1は、次のセル状態の通知が行われるサブフレームまで、ON状態またはOFF状態とは異なる状態であると想定する。すなわち、端末装置1は、次のセル状態の通知が行われるサブフレームまで、ON状態またはOFF状態が通知された場合と異なる処理を行う。
 例えば、ON状態またはOFF状態とは異なる状態であるサブフレームにおいて、端末装置1は、下りリンクサブフレームがON状態であり、上りリンクサブフレームがOFF状態であると想定する。すなわち、端末装置1は、一部または全部の下りリンクの信号および/またはチャネルの受信またはモニタリングを行い、一部または全部の上りリンクの信号および/またはチャネルの送信は行わない。例えば、端末装置1は、参照信号の受信、PDCCHのモニタリングおよび/またはEPDCCHのモニタリングを行い、周期的なCSI報告および/またはSRSの送信は行わない。
 例えば、ON状態またはOFF状態とは異なる状態であるサブフレームにおいて、端末装置1は、下りリンクサブフレームがOFF状態であり、上りリンクサブフレームがON状態であると想定する。すなわち、端末装置1は、一部または全部の下りリンクの信号および/またはチャネルの受信またはモニタリングを行わず、一部または全部の上りリンクの信号および/またはチャネルの送信は行う。例えば、端末装置1は、参照信号の受信、PDCCHのモニタリングおよび/またはEPDCCHのモニタリングを行わず、周期的なCSI報告および/またはSRSの送信は行う。
 例えば、ON状態またはOFF状態とは異なる状態であるサブフレームにおいて、端末装置1は、ON状態とは異なる所定のPDCCHおよび/またはEPDCCHのモニタリングを行う。所定のPDCCHおよび/またはEPDCCHは、ON状態とは異なる所定のサーチスペースでモニタリングされる。所定のPDCCHおよび/またはEPDCCHは、ON状態とは異なる所定のRNTIでスクランブルされたCRCが付加される。
 以上の説明では、あるサブフレームにおいて端末装置1がセル状態の通知を認識(検出)できなかった場合、端末装置1は、次のセル状態の通知が行われるサブフレームまで、所定の状態であると想定することを説明したが、それに限定されるものではない。例えば、あるサブフレームにおいて端末装置1がセル状態の通知を認識(検出)できなかった場合、端末装置1は、次のセル状態の通知が示すセル状態を適用するサブフレームまで、所定の状態であると想定してもよい。これにより、セル状態の通知が行われるサブフレームと、その通知により示されるセル状態が適用されるサブフレームとが独立に規定または設定できる。
 次に、デュアルコネクティビティにおける端末装置1の上りリンク電力制御について説明する。ここで、上りリンク電力制御とは、上りリンク送信における電力制御を含む。上りリンク送信とは、PUSCH、PUCCH、PRACH、SRSなど、上りリンク信号/上りリンク物理チャネルの送信を含む。
 端末装置1は、プライマリーセルを含むMCGとプライマリーセカンダリーセルを含むSCGで、上りリンク電力制御を個別に行なってもよい。なお、上りリンク電力制御は、上りリンク送信に対する送信電力制御を含む。上りリンク電力制御は、端末装置1の送信電力制御を含む。
 MeNB(端末装置1と接続している第1の基地局装置)とSeNB(端末装置1と接続している第2の基地局装置)はそれぞれ、端末装置1に対して、上位層シグナリングまたはシステム情報ブロック(SIB: System Information Block)を用いて、端末装置1の最大許可出力電力(Maximum allowed UE output power, P-Max, PEMAX, PEMAX,c)や端末装置1のパワークラスの値(または値を規定するために必要なインデックス/パラメータ)を通知(設定)してもよい。なお、この最大許可出力電力は、上位層の最大出力電力と称されてもよい。なお、PEMAXは、サービングセル毎に設定されてもよい(PEMAX,cと称する)。
 端末装置1は、MeNB(またはPCell)とSeNB(pSCell)からそれぞれ、P-Maxを受信した場合、MeNBとSeNBそれぞれに対して、端末装置1は、最大出力電力(configured maximum UE output power, PCMAX, PCMAX, c)(送信電力の設定最大値)をセットする。ここで、MeNBに対する最大出力電力は、PMeNBとし、SeNBに対する最大出力電力は、PSeNBと称してもよい。PMeNBとPSeNBはそれぞれ、PCMAXまたはPCMAX,cを超えないようにセットされてもよい。なお、この最大出力電力は、物理層の最大出力電力と称されてもよい。MeNBは、MCGおよび/またはPCellを含んでもよい。SeNBは、SCGおよび/またはpSCellを含んでもよい。
 また、端末装置1は、MeNB(またはPCell、MCG)および/またはSeNB(pSCell、SCG)から、送信電力(出力電力)の制限ファクタ(scaling factor)を受信した場合には、制限ファクタに基づいて、MeNBに対するPCMAX(PMeNB_MAX)とSeNBに対するPCMAX(PSeNB_MAX)がそれぞれセットされてもよい。なお、MeNBとSeNBで共通の制限ファクタが設定された場合には、あるタイミングにおけるPMeNB_MAXとPSeNB_MAXの合計は、PCMAXまたはPCMAX,cを超えないようにセットされる。なお、PCMAXは、サービングセル毎に設定されてもよい(PCMAX,cと称する)。
また、端末装置1は、MeNB(またはPCell、MCG)とSeNB(pSCell、SCG)それぞれに対する送信電力(出力電力)の制限ファクタ(scaling factor)が設定された場合、PMeNBとPSeNBを個別に設定される。つまり、各基地局装置(サービングセル、セルグループ)に対応する送信電力(出力電力)の制限ファクタ(scaling factor)が設定された場合、それぞれの基地局に対する送信電力の最大値がセットされてもよい。
 P-MaxがMeNBとSeNBで共通(共通の値)である場合、SeNB(またはPCell、MCG)に対する最大出力電力(物理層の最大出力電力、出力電力の最大値)は、P-Maxに基づくPCMAXまたはPCMAX,cとMeNBで必要な送信電力に基づいて、セットされてもよい。
 端末装置1は、SeNBに対する送信電力の最大値がセットされるか否かに応じて、同じタイミングで生じた、MeNBに対する送信とSeNBに対する送信に対して出力電力を共有するか否かを決定してもよい。
 MeNBに対する最大出力電力(PMeNB_MAX)とSeNBに対する最大出力電力(PSeNB_MAX)が個別にセットされる場合、端末装置1に設定される最大出力電力(PUE_MAX)が、個別にセットされてもよい。PMeNB_MAXとPSeNB_MAXの合計は、PUE_MAXを超えないようにセットされてもよい。なお、PUE_MAXは、PCMAXであってもよい。各最大出力電力は、サービングセル毎、セルグループ毎にセットされてもよい。また、各最大出力電力は、サブフレーム毎にセットされてもよい。ここで、PMeNBは、MeNBに対する上りリンク送信に対してセットされる送信電力であり、PSeNBは、SeNBに対する上りリンク送信に対してセットされる送信電力である。これらの送信電力は、最大出力電力を超えないようにセットされる。
 PMeNB_MAXおよびPSeNB_MAXがセットされた場合、あるタイミングにおける、PMeNB_MAXとPSeNB_MAXの合計は、PUE_MAXを超えないようにセットされてもよい。その際、P-Max等のパラメータがMeNBとSeNBで共通または共通の値である場合、例えば、PMeNB_MAXおよびPSeNB_MAXはそれぞれ、PUE_MAXにセットされている場合、制限ファクタなど、最大出力電力を制限するパラメータを用いて、PMeNB_MAXとPSeNB_MAXの合計は、PUE_MAXを超えないようにセットされてもよい。このように、MeNBに対する最大出力電力とSeNBに対する最大出力電力を予め個別に設定することをハードスプリットと称する。
 ここで、PMeNB_MAXとPSeNB_MAXの合計がPUE_MAXを超えないように、予め、端末装置1および/または基地局装置3が、PMeNB_MAXとPSeNB_MAXの値またはPMeNB_MAXとPSeNB_MAXをセットするために必要なパラメータの値をセットすることを第1のハードスプリットと称し、PMeNB_MAXとPSeNB_MAXの合計がPUE_MAXを超えた場合、PMeNB_MAXとPSeNB_MAXの合計がPUE_MAX以下になるように、制限ファクタなどのパラメータを用いて端末装置1の送信電力を調整することを第2のハードスプリットと称する。
 あるタイミングにおいて、PSeNB_MAXがセットされない場合、または、PMeNB_MAXおよびPSeNB_MAXがセットされない場合、または、PUE_MAXのみがセットされる場合、MeNBに対する上りリンク送信に対してセットされる送信電力とSeNBに対する上りリンク送信に対してセットされる送信電力は、共有されてもよい。あるタイミングにおける、PMeNBとPSeNBの合計は、PUE_MAXを超えないように制御される。また、あるタイミングにおける、PMeNBとPSeNBの合計がPUE_MAXを超える場合には、制限ファクタを用いて、PUE_MAXを超えないように制御されてもよい。また、PMeNBとPSeNBの合計が、PUE_MAXを超えないように、PSeNB_MAXは、PUE_MAX-PMeNBとしてもよい。つまり、PSeNB_MAXは、PMeNBを考慮してセットされる。その際、PMeNBは、PUE_MAXであってもよい。このように、MeNBに対する送信電力とSeNBに対する送信電力を共有することをパワーシェアリングと称する。ここで、タイミングは、サブフレームで定義されてもよい。また、タイミングは、シンボルで定義されてもよい。また、タイミングは、時間または期間で定義されてもよい。また、タイミングは、瞬間で定義されてもよい。
 あるタイミングにおいて、PSeNB_MAXがセットされない場合、且つ、PMeNB_MAXが上位層シグナリングでセットされるパラメータ(またはパラメータの値)および端末装置1によってセットされる場合、つまり、PMeNB_MAXのみが、上位層パラメータを用いて、端末装置1によって設定される場合、MeNBに対する上りリンク送信に対してセットされる送信電力とSeNBに対する上りリンク送信に対してセットされる送信電力は、共有されてもよい。あるタイミングにおいて、MeNBに対する上りリンク送信だけの場合、端末装置1でセットされる送信電力の最大値は、PMeNB_MAXである。その際、PMeNB_MAXは、PUE_MAXであってもよい。また、あるタイミングにおいて、SeNBに対する上りリンク送信だけの場合、端末装置1でセットされる送信電力の最大値は、PMeNB_MAXであってもよい。つまり、MeNBに対する上りリンク送信とSeNBに対する上りリンク送信が重複する場合、端末装置1は、SeNBに対する上りリンク送信の送信電力がPMeNB_MAXを超えないようにセットする。なお、あるタイミングにおける、MCGに属する1つ以上のセルに対して設定される送信電力の合計は、PMeNB_MAXを超えないようにセットされる。あるタイミングにおいて、MeNBに対する上りリンク送信とSeNBに対する上りリンク送信が重複する場合、まず、MeNBに対する上りリンク送信に対して必要な送信電力PMeNBが決定してから、SeNBに対する上りリンク送信における送信電力の最大値が決定する。つまり、PMeNBがPMeNB_MAXを超える場合、端末装置1は、SeNBに対する上りリンク送信を行なうことはできない。
 あるタイミングにおいて、PSeNB_MAXがセットされない場合、且つ、PUE_MAXおよびPMeNB_MAXが、上位層パラメータを用いてセットされる場合(ただし、PMeNB_MAX≦PUE_MAX)、MeNBに対する上りリンク送信に対してセットされる送信電力とSeNBに対する上りリンク送信に対してセットされる送信電力は、共有されてもよい。あるタイミングにおいて、MeNBに対する上りリンク送信だけの場合、端末装置1でセットされる送信電力の最大値は、PUE_MAXであってもよい。また、あるタイミングにおいて、MeNBに対する上りリンク送信だけの場合、端末装置1でセットされる送信電力の最大値は、PMeNB_MAXであってもよい。また、あるタイミングにおいて、MeNBに対する上りリンク送信だけの場合、端末装置1でセットされる送信電力の最大値は、PUE_MAXとPMeNB_MAXの小さいほうであってもよい。また、あるタイミングにおいて、SeNBに対する上りリンク送信だけの場合、端末装置1でセットされる送信電力の最大値は、PUE_MAXである。あるタイミングにおいて、MeNBに対する上りリンク送信とSeNBに対する上りリンク送信が重複する場合、SeNBに対する上りリンク送信における送信電力の最大値は、PUE_MAX-PMeNB_MAXである。その際、PMeNB_MAXが、PUE_MAXである、または、PUE_MAXと同じ値である、または、PUE_MAXを超える値である場合、端末装置1は、そのタイミングにおいて、SeNBに対する上りリンク送信を行なうことはできない。SeNBに対する上りリンク送信は、PUE_MAX-PMeNB_MAX>0の場合に、行なうことができる。つまり、PUE_MAX-PMeNB_MAX>0の場合に、SeNBに対する上りリンク送信において、端末装置1は、送信電力をセットする。なお、あるタイミングにおける、MCGに属する1つ以上のセルに対して設定される送信電力の合計は、PUE_MAXを超えないようにセットされる。なお、あるタイミングにおける、MCGに属する1つ以上のセルに対して設定される送信電力の合計は、PMeNB_MAXを超えないようにセットされる。
 言い換えると、サービングセルグループがMCG(MeNBに対応するサービングセルグループ)である場合、閾値(サービングセルグループ毎の最大出力電力)を端末装置1の最大出力電力(全サービングセルグループに対する総出力電力の最大値)であるPCMAXにセットする。あるいは、RRCメッセージなどの上位層のメッセージによって設定された値(上位層により設定されるMCGの最大出力電力値)にセットする。一方、サービングセルグループがSCG(SeNBに対応するサービングセルグループ)である場合、閾値(サービングセルグループ毎の最大出力電力)をPCMAXからMCGにおける上りリンク送信に用いられる実際の送信電力を減算した値にセットする。ここで、MCGにおける上りリンク送信に用いられる実際の送信電力は、SCGにおけるサブフレームとオーバラップする2つのサブフレームのうち、送信電力値が大きい方のサブフレームにおける送信電力値にすることが好ましい。これらの閾値を超えるかどうかにより、端末装置1はサービングセルグループ内のサービングセルのそれぞれにおけるPUSCHなどに対する送信電力のスケーリングを行う。より具体的には、サービングセルグループにおける総送信電力値が閾値を超える場合、各サービングセルにおけるPUSCHの電力にスケーリングファクターを乗算した値の合計値が、閾値からPUCCHの電力を減算した値以下となるという条件を満たすようなスケーリングファクタ(制限ファクタ)を用いてスケーリング(電力を下方調整)する。一方、閾値を超えない場合は、スケーリングしなくてもよい。
 端末装置1は、PUE_MAXのみ、または、PMeNB_MAXのみ、または、PSeNB_MAX、または、PMeNB_MAXおよびPSeNB_MAXがセットされるか否か(あるいは基地局装置3が端末装置1に設定(configure)したか否か)に応じて、あるタイミングにおける、MeNBに対する上りリンク送信とSeNBに対する上りリンク送信に対して、上りリンク電力制御を、ハードスプリット(それぞれのサービングセルグループにおいてPCMAXに替えて設定された最大出力電力値を用いる)で行なうかパワーシェアリング(それぞれのサービングセルグループにおいてPCMAXに替えて、他のサービングセルグループにおける送信電力値を考慮して算出された最大出力電力値を用いる)で行なうかを決定してもよい。
 端末装置1は、PUE_MAXのみがセットされる、または、PSeNB_MAXがセットされない、または、PMeNB_MAXおよびPSeNB_MAXがセットされない場合には、あるタイミングにおける、MeNBに対する上りリンク送信とSeNBに対する上りリンク送信に対して、パワーシェアリングで上りリンク電力制御を行なう。
 端末装置1は、PSeNB_MAXがセットされる、または、PMeNB_MAXおよびPSeNB_MAXがセットされる場合には、あるタイミングにおける、MeNBに対する上りリンク送信とSeNBに対する上りリンク送信に対して、ハードスプリットで上りリンク電力制御を行なう。
 ここで、PMeNB_MAXがセットされないとは、PMeNB_MAXが上位層パラメータ(例えば、P-Maxやパワークラス)を用いてセットされることを含む。また、PMeNB_MAXがセットされないとは、PMeNB_MAXが上位層パラメータとしてセットされないことを含む。
 ここで、PSeNB_MAXがセットされないとは、PSeNB_MAXが上位層パラメータ(例えば、P-Maxやパワークラス)を用いてセットされることを含む。また、PSeNB_MAXがセットされないとは、PSeNB_MAXが上位層パラメータとしてセットされないことを含む。
 SeNBまたはSCGに対して、サブフレームiにおける上りリンク送信が生じる場合、SeNBまたはSCGに対するサブフレームiが、MeNBまたはMCGに対するサブフレームi-1およびサブフレームiと重複するとすれば、SeNBまたはSCGのサブフレームiにおける上りリンク送信の送信電力PSeNB(i)は、MeNBまたはMCGに対するサブフレームi-1およびサブフレームiのいずれかにおける上りリンク送信に対してセットされる送信電力PMeNB(i-1),PMeNB(i)を考慮してセットされる。その際、端末装置1は、PMeNB(i-1)とPMeNB(i)のうち、大きいほうを考慮して、PSeNB(i)をセットしてもよい。なお、この場合、端末装置1は、PMeNB(i-1)のみを考慮して、PSeNB(i)をセットしてもよい。また、MeNBまたはMCGに対するサブフレームi-1において、上りリンク送信がなければ、つまり、PMeNB(i-1)=0であれば、端末装置1は、PMeNB(i)を考慮して、PSeNB(i)をセットしてもよい。ここで、第1の送信電力は、第2の送信電力を考慮してセットされるとは、第2の送信電力を低減することなしに(言い換えると、第2の送信電力を予め確保して)、第1の送信電力がセットされることを含む。
 SeNBまたはSCGに対して、サブフレームiにおける上りリンク送信が生じる場合、SeNBまたはSCGに対するサブフレームiが、MeNBまたはMCGに対するサブフレームiおよびサブフレームi+1と重複するとすれば、SeNBまたはSCGのサブフレームiにおける上りリンク送信の送信電力PSeNB(i)は、MeNBまたはMCGに対するサブフレームiおよびサブフレームi+1のいずれかにおける上りリンク送信に対してセットされる送信電力PMeNB(i),PMeNB(i+1)を考慮してセットされる。その際、端末装置1は、PMeNB(i)とPMeNB(i+1)のうち、大きいほうを考慮して、PSeNB(i)をセットしてもよい。少なくともPMeNB(i)を考慮して、PSeNB(i)をセットしてもよい。また、MeNBまたはMCGに対するサブフレームiにおいて、上りリンク送信がなければ、つまり、PMeNB(i)=0であれば、端末装置1は、PMeNB(i+1)を考慮して、PSeNB(i)をセットしてもよい。
 MeNBまたはMCGに対して、サブフレームiにおける上りリンク送信が生じる場合、SeNBまたはSCGに対するサブフレームi-1およびサブフレームiと重複するとすれば、MeNBまたはMCGのサブフレームiにおける上りリンク送信の送信電力PMeNB(i)は、SeNBまたはSCGに対するサブフレームi-1およびサブフレームiのいずれかにおける上りリンク送信に対してセットされる送信電力PSeNB(i-1),PSeNB(i)を考慮してセットされてもよい。例えば、SeNBまたはSCGに対するサブフレームi-1にUpPTSに配置されるPRACHフォーマット4および/またはPUCCHおよび/またはUCIを伴うPUSCHの送信が含まれる場合、MeNBまたはMCGのサブフレームiにおける上りリンク送信がSRS、UCIを伴わないPUSCHの送信であれば、端末装置1は、まず、PSeNB(i-1)および/またはPSeNB(i)を考慮してから、PMeNB(i)をセットしてもよい。
 MeNBまたはMCGに対して、サブフレームiにおける上りリンク送信が生じる場合、SeNBまたはSCGに対するサブフレームiおよびサブフレームi+1と重複するとすれば、MeNBまたはMCGのサブフレームiにおける上りリンク送信の送信電力PMeNB(i)は、SeNBまたはSCGに対するサブフレームiおよびサブフレームi+1のいずれかにおける上りリンク送信に対してセットされる送信電力PSeNB(i),PSeNB(i+1)を考慮してセットされてもよい。例えば、SeNBまたはSCGに対するサブフレームiまたはサブフレームi+1にUpPTSに配置されるPRACHフォーマット4および/またはPUCCHおよび/またはUCIを伴うPUSCHの送信が含まれる場合、MeNBまたはMCGのサブフレームiにおける上りリンク送信がSRS、UCIを伴わないPUSCHの送信であれば、端末装置1は、まず、PSeNB(i)および/またはPSeNB(i+1)を考慮してから、PMeNB(i)をセットしてもよい。
 あるサービングセルのサブフレームiで送信される上りリンク信号の種類を考慮して、他のサービングセルのサブフレーム(サブフレームi-1,i,i+1)における上りリンク送信にセットされる送信電力は、セットされてもよい。
 第1のセルグループ(第1のCG)または第1のセルグループに属する全てのセルにおいて、システム情報(例えば、SIB1)または上位層シグナリングを用いてフレーム構造タイプ(FDD、TDD)が設定されるのに対し、第2のセルグループ(第2のCG)または第2のセルグループに属する少なくとも1つのセルにおいて、L1シグナリング(DCIフォーマット、PDCCH/EPDCCH)およびシステム情報(または上位層シグナリング)を用いて、TDD UL-DL設定がセットされる場合、条件(状況、状態)に応じて、ハードスプリットで上りリンク電力制御が行なわれるサブフレームのセットとパワーシェアリングで上りリンク電力制御が行なわれるサブフレームのセットが規定されてもよい。なお、サブフレームのセットは、サブフレームセットと称されてもよいし、サブフレームサブセットと称されてもよい。また、サブフレームのセットは、1つのサブフレームで構成されてもよい。また、サブフレームのセットは、複数のサブフレームで構成されてもよい。
 サブフレームiにおいて、第1のCGに対する上りリンクサブフレームと、第2のCGに対する上りリンクサブフレームが、ともに、システム情報を用いて設定されたフレーム構造タイプおよびTDD UL-DL設定で示される上りリンクサブフレームであれば、サブフレームiは、第1のサブフレームセットに属している。また、サブフレームnにおいて、第1のCGに対する上りリンクサブフレームと、第2のCGに対する上りリンクサブフレームが、システム情報を用いて設定されたフレーム構造タイプおよびTDD UL-DL設定で示される上りリンクサブフレームとL1シグナリングを用いて設定されたTDD UL-DL設定で示される上りリンクサブフレームであれば、サブフレームnは、第2のサブフレームセットに属している。つまり、第1のサブフレームセットに属する上りリンクサブフレームは、第1のCGおよび第2のCGでともに、システム情報で設定された上りリンクサブフレームである。また、第1のサブフレームセットに属する上りリンクサブフレームは、第1のCGにおいては、システム情報(または上位層シグナリング)で設定された上りリンクサブフレームであり、第2のCGにおいては、L1シグナリングで設定された上りリンクサブフレームである。
 端末装置1は、第1のCGに対する上りリンク送信と第2のCGに対する上りリンク送信が第1のサブフレームセットで生じた場合、ハードスプリットによる上りリンク電力制御を行ない、第1のCGに対する上りリンク送信における端末装置1の送信電力と、第2のCGに対する上りリンク送信における端末装置1の送信電力をセットする。
 端末装置1は、第1のCGに対する上りリンク送信と第2のCGに対する上りリンク送信が第2のサブフレームセットで生じた場合、パワーシェアリングによる上りリンク電力制御を行ない、第1のCGに対する上りリンク送信における端末装置1の送信電力と、第2のCGに対する上りリンク送信における端末装置1の送信電力をセットする。その際、第1のCGに対する上りリンク送信における端末装置1の送信電力を優先して確保してから、第2のCGに対する上りリンク送信における端末装置1の送信電力をセットしてもよい。
 本実施形態において説明した様々な方法、手順、設定、および/または処理は、デュアルコネクティビティにおいて、PcellとpScellとで独立であってもよい。
 上記の実施形態における端末装置1は、上りリンクCoMPを行なう機能(ul-CoMP)がサポートされてもよい。
 上記の実施形態における端末装置1は、バンドコンビネーション(CA, non-CA)を行なう機能(supportedBandCombination, supportedBandListEUTRA)がサポートされてもよい。
 上記の実施形態における端末装置1は、クロスキャリアスケジューリングを行なう機能(crossCarrierScheduling)がサポートされてもよい。
 上記の実施形態における端末装置1は、複数のタイミングアドバンスの機能(multipleTimingAdvance)がサポートされてもよい。
 上記の実施形態における端末装置1は、CSIプロセスの機能がサポートされてもよい。
 上記の実施形態における端末装置1は、異なるTDD UL-DL設定のセル(複数のセル)を用いて、通信を行なう機能がサポートされてもよい。
 上記の実施形態における端末装置1は、eIMTAを行なう機能がサポートされてもよい。
 上記の実施形態における端末装置1は、スモールセルを用いて通信を行なう機能がサポートされてもよい。
 上記の実施形態における端末装置1は、複数の基地局装置と同時に通信を行なう機能(dual-connectivity)がサポートされてもよい。
 上記の実施形態における端末装置1は、異なるフレーム構造タイプのセル(複数のセル)を用いて、通信を行なう機能がサポートされてもよい。
 上記の実施形態における端末装置1は、同時に送受信を行なう機能がサポートされてもよい。
 上記の実施形態における端末装置1は、EPDCCHを受信する機能がサポートされてもよい。
 上記の実施形態における端末装置1は、上記サポートされた機能を示す情報(UE-EUTRA-capabilityやFeatureGroupIndicator)を基地局装置3に送信してもよい。
 上記の実施形態において、PDCCHサブフレームは、PDCCHを伴うサブフレームとして定義されるだけでなく、EPDCCH(Enhanced PDCCH)やR-PDCCH(Relay-PDCCH)を伴うサブフレームとして定義されてもよい。
 上記の実施形態の詳細により、基地局装置3と端末装置1が通信する無線通信システムにおいて、伝送効率を向上させることができる。
 本発明に関わる基地局装置3、および端末装置1で動作するプログラムは、本発明に関わる上記実施形態の機能を実現するように、CPU(Central Processing Unit)等を制御するプログラム(コンピュータを機能させるプログラム)であっても良い。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAM(Random Access Memory)に蓄積され、その後、Flash ROM(Read Only Memory)などの各種ROMやHDD(Hard Disk Drive)に格納され、必要に応じてCPUによって読み出し、修正・書き込みが行われる。
 なお、上述した実施形態における端末装置1、基地局装置3の一部、をコンピュータで実現するようにしても良い。その場合、この制御機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。
 なお、ここでいう「コンピュータシステム」とは、端末装置1、又は基地局装置3に内蔵されたコンピュータシステムであって、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。
 さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでも良い。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
 また、上述した実施形態における基地局装置3は、複数の装置から構成される集合体(装置グループ)として実現することもできる。装置グループを構成する装置の各々は、上述した実施形態に関わる基地局装置3の各機能または各機能ブロックの一部、または、全部を備えてもよい。装置グループとして、基地局装置3の一通りの各機能または各機能ブロックを有していればよい。また、上述した実施形態に関わる端末装置1は、集合体としての基地局装置3と通信することも可能である。
 また、上述した実施形態における基地局装置3は、EUTRAN(Evolved Universal Terrestrial Radio Access Network)であってもよい。また、上述した実施形態における基地局装置3は、eNodeBに対する上位ノードの機能の一部または全部を有してもよい。
 また、上述した実施形態における端末装置1、基地局装置3の一部、又は全部を典型的には集積回路であるLSIとして実現してもよいし、チップセットとして実現してもよい。端末装置1、基地局装置3の各機能ブロックは個別にチップ化してもよいし、一部、又は全部を集積してチップ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、又は汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
 また、上述した実施形態では、端末装置もしくは通信装置の一例として端末装置を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などの端末装置もしくは通信装置にも適用出来る。
 以上より、本発明は以下の特徴を有してよい。
 (1)本発明の端末装置は、基地局装置と通信する端末装置であって、デュアルコネクティビティが設定され、且つ、第1のセルグループ(第1のCG)に属するサービングセル(第1のサービングセル)に対する上りリンク送信と、第2のセルグループ(第2のCG)に属するサービングセル(第2のサービングセル)に対する上りリンク送信と、が重複する場合、重複した部分における最大出力電力を、前記第1のサービングセルに対する最大出力電力と前記第2のサービングセルに対する最大出力電力に基づいて決定する送信部を備える。
 (2)本発明の端末装置は、上記の端末装置であって、前記送信部は、前記第1のサービングセルのサブフレームiにおける上りリンク送信が、前記第2のサービングセルのサブフレームi-1とiにおける上りリンク送信と重複する場合、前記サブフレームのそれぞれにおける最大出力電力に基づいて、前記サブフレームi1における前記第1のサービングセルに対する最大出力電力を決定する。
 (3)本発明の端末装置は、上記の端末装置であって、前記第1のCGと前記第2のCGのそれぞれに対して、CSS(Cell-specific Search Space)をモニタして、PDCCH(Physical Downlink Control Channel)を受信する受信部を備える。
 (4)本発明の端末装置は、上記の端末装置であって、前記第1のCGと前記第2のCGのそれぞれにおいて、PUCCH(Physical Uplink Control Channel)を送信するセルを含む。
 (5)本発明の端末装置は、上記の端末装置であって、前記第1のCGと前記第2のCGのそれぞれに対して、MAC(Medium Access Control)の設定に関連するパラメータが設定される。
 (6)本発明の端末装置は、上記の端末装置であって、前記第1のCGと前記第2のCGのそれぞれに対して、DRX(Discontinuous Reception)に関するパラメータが設定される場合、CG個別にDRXオペレーションを行なう。
 (7)本発明の基地局装置は、端末装置と通信する基地局装置であって、第1のセルグループ(第1のCG)と第2のセルグループ(第2のCG)のそれぞれに対応する最大出力電力をセットするために用いられる第1の上位層パラメータと第2の上位層パラメータを送信する送信部を備える。
 (8)本発明の基地局装置は、上記の基地局装置であって、前記送信部は、前記第1のCGと前記第2のCGのそれぞれに対して、CSS(Cell-specific Search Space)を用いて、PDCCHを送信する。
 (9)本発明の基地局装置は、上記の基地局装置であって、前記第1のCGと前記第2のCGのそれぞれに対して、PUCCH(Physical Uplink Control Channel)を送信するセルを設定する上位層処理部を備える。
 (10)本発明の基地局装置は、上記の基地局装置であって、前記送信部は、前記第1のCGと前記第2のCGのそれぞれに対応するMAC(Medium Access Control)の設定に関するパラメータを送信する。
 (11)本発明の方法は、基地局装置と通信する端末装置における方法であって、デュアルコネクティビティが設定され、且つ、第1のセルグループ(第1のCG)に属するサービングセル(第1のサービングセル)に対する上りリンク送信と、第2のセルグループ(第2のCG)に属するサービングセル(第2のサービングセル)に対する上りリンク送信と、が重複する場合、重複した部分における最大出力電力を、前記第1のサービングセルに対する最大出力電力と前記第2のサービングセルに対する最大出力電力に基づいて決定するステップを有する。
 (12)本発明の方法は、端末装置と通信する基地局装置における方法であって、第1のセルグループ(第1のCG)と第2のセルグループ(第2のCG)のそれぞれに対応する最大出力電力をセットするために用いられる第1の上位層パラメータと第2の上位層パラメータを送信するステップを有する。
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。
 端末装置、基地局装置、これらを含む通信システム、これらを用いた通信方法などに利用できる。
1(1A、1B、1C) 端末装置
3 基地局装置
101 上位層処理部
103 制御部
105 受信部
107 送信部
301 上位層処理部
303 制御部
305 受信部
307 送信部
1011 無線リソース制御部
1013 サブフレーム設定部
1015 スケジューリング情報解釈部
1017 CSI報告制御部
3011 無線リソース制御部
3013 サブフレーム設定部
3015 スケジューリング部
3017 CSI報告制御部
1301 測定部
13011 第1層フィルタリング部
13012 第3層フィルタリング部
13013 リポート基準の評価部

Claims (12)

  1.  基地局装置と通信する端末装置であって、
     デュアルコネクティビティが設定され、且つ、第1のセルグループ(第1のCG)に属するサービングセル(第1のサービングセル)に対する上りリンク送信と、第2のセルグループ(第2のCG)に属するサービングセル(第2のサービングセル)に対する上りリンク送信と、が重複する場合、
     重複した部分における最大出力電力を、前記第1のサービングセルに対する最大出力電力と前記第2のサービングセルに対する最大出力電力に基づいて決定する送信部を備える
     端末装置。
  2.  前記送信部は、
     前記第1のサービングセルのサブフレームiにおける上りリンク送信が、前記第2のサービングセルのサブフレームi-1とiにおける上りリンク送信と重複する場合、
     前記サブフレームのそれぞれにおける最大出力電力に基づいて、前記サブフレームi1における前記第1のサービングセルに対する最大出力電力を決定する
     請求項1記載の端末装置。
  3.  前記第1のCGと前記第2のCGのそれぞれに対して、CSS(Cell-specific Search Space)をモニタして、PDCCH(Physical Downlink Control Channel)を受信する受信部を備える
     請求項1または請求項2記載の端末装置。
  4.  前記第1のCGと前記第2のCGのそれぞれにおいて、PUCCH(Physical Uplink Control Channel)を送信するセルを含む
     請求項1または請求項1または2記載の端末装置。
  5.  前記第1のCGと前記第2のCGのそれぞれに対して、MAC(Medium Access Control)の設定に関連するパラメータが設定される
     請求項1または2記載の端末装置。
  6.  前記第1のCGと前記第2のCGのそれぞれに対して、DRX(Discontinuous Reception)に関するパラメータが設定される場合、CG個別にDRXオペレーションを行なう
     請求項1または2記載の端末装置。
  7.  端末装置と通信する基地局装置であって、
     第1のセルグループ(第1のCG)と第2のセルグループ(第2のCG)のそれぞれに対応する最大出力電力をセットするために用いられる第1の上位層パラメータと第2の上位層パラメータを送信する送信部を備える
     基地局装置。
  8.  前記送信部は、
     前記第1のCGと前記第2のCGのそれぞれに対して、CSS(Cell-specific Search Space)を用いて、PDCCHを送信する
     請求項7記載の基地局装置。
  9.  前記第1のCGと前記第2のCGのそれぞれに対して、PUCCH(Physical Uplink Control Channel)を送信するセルを設定する上位層処理部を備える
     請求項7記載の基地局装置。
  10.  前記送信部は、
     前記第1のCGと前記第2のCGのそれぞれに対応するMAC(Medium Access Control)の設定に関するパラメータを送信する
     請求項7記載の基地局装置。
  11.  基地局装置と通信する端末装置における方法であって、
     デュアルコネクティビティが設定され、且つ、第1のセルグループ(第1のCG)に属するサービングセル(第1のサービングセル)に対する上りリンク送信と、第2のセルグループ(第2のCG)に属するサービングセル(第2のサービングセル)に対する上りリンク送信と、が重複する場合、
     重複した部分における最大出力電力を、前記第1のサービングセルに対する最大出力電力と前記第2のサービングセルに対する最大出力電力に基づいて決定するステップを有する
     方法。
  12.  端末装置と通信する基地局装置における方法であって、
     第1のセルグループ(第1のCG)と第2のセルグループ(第2のCG)のそれぞれに対応する最大出力電力をセットするために用いられる第1の上位層パラメータと第2の上位層パラメータを送信するステップを有する
     方法。
PCT/JP2015/062932 2014-04-30 2015-04-30 端末装置、基地局装置および方法 WO2015166974A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15786293.9A EP3139672A4 (en) 2014-04-30 2015-04-30 Terminal device, base station device, and method
CN201580008211.2A CN106031257B (zh) 2014-04-30 2015-04-30 终端装置以及方法
JP2016516399A JP6511689B2 (ja) 2014-04-30 2015-04-30 端末装置、基地局装置および方法
US15/119,450 US9974028B2 (en) 2014-04-30 2015-04-30 Terminal device, base station device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014093522 2014-04-30
JP2014-093522 2014-04-30

Publications (1)

Publication Number Publication Date
WO2015166974A1 true WO2015166974A1 (ja) 2015-11-05

Family

ID=54358699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062932 WO2015166974A1 (ja) 2014-04-30 2015-04-30 端末装置、基地局装置および方法

Country Status (5)

Country Link
US (1) US9974028B2 (ja)
EP (1) EP3139672A4 (ja)
JP (1) JP6511689B2 (ja)
CN (1) CN106031257B (ja)
WO (1) WO2015166974A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017195474A1 (ja) * 2016-05-11 2017-11-16 ソニー株式会社 端末装置、基地局装置、通信方法、及びプログラム
WO2018058475A1 (zh) * 2016-09-29 2018-04-05 华为技术有限公司 一种数据传输方法及设备
CN110881202A (zh) * 2019-11-27 2020-03-13 西安交通大学 一种基于部分数据重叠的双连接喷泉码传输方法
JP2020048002A (ja) * 2018-09-14 2020-03-26 株式会社Nttドコモ ユーザ装置及び送信電力制御方法
JP2021514583A (ja) * 2018-02-14 2021-06-10 華為技術有限公司Huawei Technologies Co.,Ltd. 電力制御方法および装置
TWI748006B (zh) * 2016-12-16 2021-12-01 美商高通公司 用於配置新無線電中的對應的上行鏈路控制資訊的傳輸的技術和裝置
JP2022177318A (ja) * 2016-02-03 2022-11-30 三菱電機株式会社 通信システム、基地局およびユーザ装置

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5009410B2 (ja) * 2010-10-29 2012-08-22 シャープ株式会社 移動局装置、無線通信方法および集積回路
CN104811929B (zh) 2014-01-29 2020-01-14 北京三星通信技术研究有限公司 处理基站间载波聚合的激活/去激活的方法及设备
CN105099604B (zh) * 2014-05-07 2018-11-20 中兴通讯股份有限公司 信道状态反馈信息反馈方法、终端、基站及通信系统
CN110740504A (zh) * 2015-03-09 2020-01-31 华为技术有限公司 一种数据传输设备、方法及系统
WO2017043834A1 (ko) * 2015-09-09 2017-03-16 엘지전자 주식회사 채널 상태 보고 방법 및 이를 위한 장치
WO2017146764A1 (en) 2016-02-25 2017-08-31 Intel IP Corporation System and method for beam information and csi report
WO2017166549A1 (en) * 2016-03-31 2017-10-05 Intel IP Corporation Measurement gap configuration
US10659128B2 (en) * 2016-05-19 2020-05-19 Telefonaktiebolaget Lm Ericsson (Publ) Radio network node, wireless device and methods performed therein
WO2018105263A1 (ja) * 2016-12-08 2018-06-14 ソニー株式会社 端末装置、方法及び記録媒体
GB2563412B (en) * 2017-06-14 2020-08-12 Samsung Electronics Co Ltd Improvements in and relating to interference reduction in dynamic TDD systems
CN115515257A (zh) 2017-06-15 2022-12-23 高通股份有限公司 用于多连接性模式中的用户设备移动性的技术和装置
EP3488660B1 (en) * 2017-06-16 2023-08-02 Telefonaktiebolaget LM Ericsson (publ) Methods and apparatuses for measurement report and computer-readable medium
ES2946252T3 (es) 2017-09-07 2023-07-14 Beijing Xiaomi Mobile Software Co Ltd Gestión de haces de enlace ascendente
KR102341309B1 (ko) * 2017-09-11 2021-12-21 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 업링크 전력 제어를 위한 빔 표시
US11576085B2 (en) * 2017-10-25 2023-02-07 Qualcomm Incorporated Secondary cell activation and deactivation enhancements in new radio
US10887073B2 (en) 2017-10-26 2021-01-05 Ofinno, Llc Activation and deactivation of bandwidth part
US10693620B2 (en) 2017-10-27 2020-06-23 Ofinno, Llc Bandwidth part configuration and operation
EP3487206A1 (en) * 2017-11-15 2019-05-22 Fujitsu Limited Measurement gap configuration for 5g
CN107872828B (zh) * 2017-12-15 2021-04-13 北京泰德东腾通信技术有限公司 eIMTA终端一致性测试方法和装置
US11968154B2 (en) * 2017-12-19 2024-04-23 Qualcomm Incorporated Carrier aggregation SCell new state transition design
US10554470B2 (en) * 2017-12-21 2020-02-04 Qualcomm Incorporated Control monitoring and power control for multi-link deployments
JP2019118036A (ja) * 2017-12-27 2019-07-18 シャープ株式会社 基地局装置、端末装置および通信方法
CN110035481A (zh) 2018-01-11 2019-07-19 华为技术有限公司 定时器的处理方法和终端设备
IT201800000832A1 (it) * 2018-01-12 2019-07-12 Inst Rundfunktechnik Gmbh Sender und/oder empfänger zum senden bzw. empfangen von rundfunkinformationssignalen
CN111727636B (zh) * 2018-02-14 2021-09-21 华为技术有限公司 确定最大发送功率的方法、装置、系统及存储介质
JP2019140633A (ja) * 2018-02-15 2019-08-22 シャープ株式会社 基地局装置、端末装置および方法
WO2020000272A1 (zh) * 2018-06-27 2020-01-02 北京小米移动软件有限公司 下行带宽部分调整方法、电子设备和计算机可读存储介质
CN110798903B (zh) * 2018-08-01 2022-05-24 维沃移动通信有限公司 重配方法及终端
WO2020037457A1 (en) * 2018-08-20 2020-02-27 Qualcomm Incorporated Synchronized scheduling for carrier aggregation
CN112187425B (zh) * 2019-07-05 2021-10-29 大唐移动通信设备有限公司 一种信息传输的方法及设备
WO2021034051A1 (ko) * 2019-08-16 2021-02-25 엘지전자 주식회사 무선 통신 시스템에서 단말이 상향링크 신호를 전송하는 방법 및 이를 위한 장치
WO2021062689A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 一种上行传输的方法及装置
US11570682B2 (en) * 2019-10-14 2023-01-31 Lg Electronics Inc. Method and apparatus for mobility handling in wireless communication system
US20220007256A1 (en) * 2020-07-01 2022-01-06 Qualcomm Incorporated Activation of a secondary cell group using a user equipment configured for dual connectivity with multiple radio access technologies
US11716130B2 (en) * 2021-04-07 2023-08-01 Verizon Patent And Licensing Inc. Methods and systems for dynamic interference mitigation
WO2023220290A1 (en) * 2022-05-11 2023-11-16 Texas Instruments Incorporated Methods, apparatus, and articles of manufacture to improve performance of networks operating in multiple frequency bands

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2553860B1 (en) * 2010-04-02 2016-06-01 InterDigital Patent Holdings, Inc. Uplink sounding reference signals configuration and transmission
JP5706047B2 (ja) * 2011-11-01 2015-04-22 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて端末のサウンディング参照信号伝送決定方法及びそのための端末
CN103931242B (zh) 2011-11-04 2018-10-23 交互数字专利控股公司 用于在与多个定时提前关联的多个分量载波上无线传输的功率控制的方法和装置
WO2013069994A1 (ko) * 2011-11-08 2013-05-16 엘지전자 주식회사 무선통신 시스템에서 상향링크 전송 전력을 설정하는 방법 및 이를 위한 장치
CN103220768B (zh) * 2012-01-21 2018-06-19 中兴通讯股份有限公司 一种载波聚合系统中上行信号功率削减方法及装置
US8964683B2 (en) 2012-04-20 2015-02-24 Ofinno Technologies, Llc Sounding signal in a multicarrier wireless device
US9629097B2 (en) 2012-08-01 2017-04-18 Lg Electronics Inc. Method and apparatus for configuring uplink transmission power based on time alignment groups

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CATT: "Further consideration on DRX", 3GPP TSG RAN WG2 MEETING #84 R2-134059, 11 November 2013 (2013-11-11), XP050736863 *
ERICSSON: "DRX configuration alignment", 3GPP TSG-RAN WG2 #85 TDOC R2-140583, 10 February 2014 (2014-02-10), XP050737732 *
LG ELECTONICS: "RAN1 issues for support of dual connectivity with small cell", 3GPP TSG RAN WG1 #73 R1-132240, 20 May 2013 (2013-05-20), XP050698012 *
NTT DOCOMO, INC.: "UE RF spec impact for Dual connectivity", 3GPP TSG-RAN WG4 MEETING #70BIS R4-141805, 31 March 2014 (2014-03-31), XP050796911 *
NTT DOCOMO: "Outcome of the email discussion [76b-08] on TPC aspects of Dual Connectivity", 3GPP TSG RAN WG1 MEETING #76BIS RL-141899, 31 March 2014 (2014-03-31), XP050814250 *
NTT DOCOMO: "Transmit power control for dual connectivity", 3GPP TSG RAN WG1 MEETING #76BIS RL-141469, 31 March 2014 (2014-03-31), XP050787138 *
See also references of EP3139672A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115996363A (zh) * 2016-02-03 2023-04-21 三菱电机株式会社 通信系统
JP2022177318A (ja) * 2016-02-03 2022-11-30 三菱電機株式会社 通信システム、基地局およびユーザ装置
WO2017195474A1 (ja) * 2016-05-11 2017-11-16 ソニー株式会社 端末装置、基地局装置、通信方法、及びプログラム
US10893480B2 (en) 2016-05-11 2021-01-12 Sony Corporation Terminal device, base station device, communication method, and program
WO2018058475A1 (zh) * 2016-09-29 2018-04-05 华为技术有限公司 一种数据传输方法及设备
TWI748006B (zh) * 2016-12-16 2021-12-01 美商高通公司 用於配置新無線電中的對應的上行鏈路控制資訊的傳輸的技術和裝置
US11252671B2 (en) 2018-02-14 2022-02-15 Huawei Technologies Co., Ltd. Power control method and apparatus
JP2021514583A (ja) * 2018-02-14 2021-06-10 華為技術有限公司Huawei Technologies Co.,Ltd. 電力制御方法および装置
JP7017639B2 (ja) 2018-02-14 2022-02-08 華為技術有限公司 電力制御方法および装置
JP2020048002A (ja) * 2018-09-14 2020-03-26 株式会社Nttドコモ ユーザ装置及び送信電力制御方法
JP7265330B2 (ja) 2018-09-14 2023-04-26 株式会社Nttドコモ 端末、通信システム及び通信方法
CN110881202B (zh) * 2019-11-27 2021-07-13 西安交通大学 一种基于部分数据重叠的双连接喷泉码传输方法
CN110881202A (zh) * 2019-11-27 2020-03-13 西安交通大学 一种基于部分数据重叠的双连接喷泉码传输方法

Also Published As

Publication number Publication date
JP6511689B2 (ja) 2019-05-15
CN106031257B (zh) 2020-05-15
EP3139672A4 (en) 2018-01-03
EP3139672A1 (en) 2017-03-08
US20170041880A1 (en) 2017-02-09
CN106031257A (zh) 2016-10-12
US9974028B2 (en) 2018-05-15
JPWO2015166974A1 (ja) 2017-04-20

Similar Documents

Publication Publication Date Title
JP6602756B2 (ja) 端末装置および方法
JP6578272B2 (ja) 端末装置及び通信方法
JP6568058B2 (ja) 端末装置、基地局装置および通信方法
JP6559657B2 (ja) 端末装置、通信方法、および集積回路
JP6511689B2 (ja) 端末装置、基地局装置および方法
JP6618084B2 (ja) 端末装置、基地局装置および方法
JP6675977B2 (ja) 端末装置および方法
JP6628365B2 (ja) 端末装置、基地局装置および通信方法
WO2016072497A1 (ja) 基地局装置、端末装置および方法
WO2016121631A1 (ja) 端末装置、および、基地局装置
WO2016121637A1 (ja) 端末装置、および、基地局装置
WO2016121665A1 (ja) 端末装置、および、基地局装置
WO2016052017A1 (ja) 端末装置、および、基地局装置
WO2016072488A1 (ja) 基地局装置、端末装置および方法
WO2016052019A1 (ja) 端末装置、および、基地局装置
WO2015166886A1 (ja) 端末装置、および、基地局装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15786293

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016516399

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15119450

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015786293

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015786293

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE