WO2015166961A1 - 1,1,2-tribromoethane production method - Google Patents

1,1,2-tribromoethane production method Download PDF

Info

Publication number
WO2015166961A1
WO2015166961A1 PCT/JP2015/062878 JP2015062878W WO2015166961A1 WO 2015166961 A1 WO2015166961 A1 WO 2015166961A1 JP 2015062878 W JP2015062878 W JP 2015062878W WO 2015166961 A1 WO2015166961 A1 WO 2015166961A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
tribromoethane
solvent
range
bromine
Prior art date
Application number
PCT/JP2015/062878
Other languages
French (fr)
Japanese (ja)
Inventor
淳 白井
大塚 達也
洋介 岸川
智仁 濱田
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015012510A external-priority patent/JP5987926B2/en
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201580022949.4A priority Critical patent/CN106458797B/en
Publication of WO2015166961A1 publication Critical patent/WO2015166961A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/202Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
    • C07C17/204Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being a halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/075Acyclic saturated compounds containing halogen atoms containing bromine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/14Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing bromine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a method for producing 1,1,2-tribromoethane.
  • 1,1-Dibromoethylene is a synthetic intermediate for pharmaceuticals (for example, antibiotics), a synthetic intermediate for optical fiber sheath materials, a synthetic intermediate for coating materials, a synthetic intermediate for semiconductor resist materials, and a highly functional compound. This compound is useful as an intermediate for the synthesis of molecular monomers.
  • 1,1-dibromoethylene is obtained by dehydrobromination of 1,1,2-tribromoethane (Patent Document 1).
  • Patent Document 1 1,1,2-tribromoethane, which is a raw material of the production method disclosed in Patent Document 1
  • Patent Documents 2 to 4 each disclose a method for producing an alkyl bromide from alkyl chloride using hydrogen bromide or aluminum and bromine.
  • an object of the present invention is to provide a method for producing 1,1,2-tribromoethane which is low in cost and high in yield.
  • Another object of the present invention is to provide a method for producing 1,1-dibromoethylene which is low in cost and high in yield.
  • the present invention includes the following aspects.
  • Item 1 A method for producing 1,1,2-tribromoethane having the formula (1): [Where: X 1 , X 2 , and X 3 represent a chlorine atom or a bromine atom. However, at least one of X 1 , X 2 , and X 3 is a chlorine atom. ] Represented by A production method comprising a step A in which 1,1,2-trihaloethane is brominated to obtain 1,1,2-tribromoethane. Item 2. Item 2. The production method according to Item 1, wherein the 1,1,2-trihaloethane represented by the formula (1) is 1,2-dibromo-1-chloroethane or 1,1,2-trichloroethane. Item 3. Item 3.
  • step A 1,1,2-trihaloethane represented by the formula (1) is reacted with aluminum and bromine to obtain 1,1,2-tribromoethane.
  • step A 1,1,2-trihaloethane represented by the formula (1) is reacted with an aluminum halide having one or more bromine atoms to obtain 1,1,2-tribromoethane 4.
  • Item 5. Item 5. The method according to Item 4, wherein the aluminum halide having one or more bromine atoms is aluminum bromide.
  • Item 6. Item 6. The production method according to any one of Items 1 to 5, wherein the reaction temperature in Step A is in the range of ⁇ 78 ° C.
  • Item 7. The production method according to any one of Items 1 to 6, wherein Step A is carried out in the presence of an alkyl halide compound as a reaction solvent.
  • Item 8. A method for producing 1,1-dibromoethylene, wherein 1,1,2-tribromoethane obtained by the production method according to any one of Items 1 to 7 is dehydrobrominated using a base. , A production method comprising a step B of obtaining 1,1-dibromoethylene.
  • Item 9. The production method according to Item 8, wherein Step B is carried out in the presence of a water-soluble organic solvent as a reaction solvent or a mixed solvent of a water-soluble organic solvent and water.
  • Item 10. Item 9.
  • Step B is one or more amine compounds, and (1) a compound having a hydroxyl group, (2) a compound having a sulfide bond, Items 8 to 10 are carried out in the presence of one or more compounds selected from the group consisting of (3) a compound having a thiophenolic or thiol sulfur atom, and (4) a sulfite compound (5) a nitrite compound. 11. The production method according to any one of 10 above.
  • the present invention provides a method for producing 1,1,2-tribromoethane that is low in cost and high in yield.
  • the present invention also provides a method for producing 1,1-dibromoethylene that is low in cost and high in yield.
  • the method for producing 1,1,2-tribromoethane according to the present invention comprises the steps of brominating 1,1,2-trihaloethane represented by the formula (1) and Step A to obtain 1,2-tribromoethane.
  • the 1,1,2-trihaloethane represented by the formula (1) used in Step A can be produced by a known method or a method analogous thereto. 1,1,2-trihaloethane is also commercially available.
  • the 1,1,2-trihaloethane represented by the formula (1) used in Step A is preferably 1,2-dibromo-1-chloroethane or 1,1,2-trichloroethane, for example.
  • 1,1,2-trihaloethane represented by the formula (1) a mixture of 1,2-dibromo-1-chloroethane and 1,1,2-trichloroethane may be used. Among these, 1,2-dibromo-1-chloroethane is particularly preferable because the production of by-products is highly suppressed.
  • 1,2-dibromo-1-chloroethane is specifically preferred for a method including a step of adding bromine to vinyl chloride, for example. Can be manufactured. This method is advantageous because 1,2-dibromo-1-chloroethane can be produced using vinyl chloride, which is easily available and inexpensive. The method for producing 1,2-dibromo-1-chloroethane will be described in detail later.
  • the reaction of Step A (that is, bromination of 1,1,2-trihaloethane represented by the formula (1)) is preferably represented by the formula (1).
  • This can be done by reacting 1,1,2-trihaloethane with aluminum and bromine. That is, in this embodiment, in step A, 1,1,2-trihaloethane represented by the formula (1) is reacted with aluminum and bromine to obtain 1,1,2-tribromoethane.
  • the form of aluminum is not particularly limited, and can be used in Step A in a normal form such as powder, granule, or foil.
  • the amount of aluminum is preferably in the range of 0.1 equivalents to 5 equivalents, more preferably 0.1 equivalents to 3 equivalents, relative to the 1,1,2-trihaloethane represented by the formula (1). And more preferably in the range of 0.2 to 2 equivalents.
  • Bromine may be added to the reaction system of Step A together with the solvent described later (for example, as bromine dissolved in the solvent described later).
  • the amount of bromine is preferably in the range of 0.1 equivalents to 5 equivalents, more preferably 0.1 equivalents to 3 equivalents, relative to the 1,1,2-trihaloethane represented by the formula (1). And more preferably within the range of 0.1 to 2 equivalents.
  • the reaction of Step A (that is, bromination of 1,1,2-trihaloethane represented by the above formula (1)) is also preferably represented by the above formula (1).
  • the 1,1,2-trihaloethane represented by can be reacted with an aluminum halide having one or more bromine atoms. That is, in this embodiment, in Step A, 1,1,2-trihaloethane represented by the formula (1) is reacted with an aluminum halide having one or more bromine atoms to produce 1,1,2-tribromo. Get ethane.
  • Examples of the aluminum halide having one or more bromine atoms include AlBrCl 2 , AlBr 2 Cl, AlBrF 2 , AlBr 2 F, AlBrClF, and AlBr 3 (aluminum bromide).
  • An aluminum halide may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the aluminum halide having one or more bromine atoms is preferably AlBrCl 2 , AlBr 2 Cl, or AlBr 3 , and more preferably AlBr 3 .
  • the amount of the aluminum halide having one or more bromine atoms varies depending on the type of the aluminum halide, but is preferably 0.1% relative to the 1,1,2-trihaloethane represented by the formula (1). It is in the range of 1 equivalent to 5 equivalents, more preferably in the range of 0.1 equivalents to 3 equivalents, and still more preferably in the range of 0.2 equivalents to 2 equivalents.
  • a suitable reaction temperature in Step A may vary depending on the raw material compound in Step A (that is, 1,1,2-trihaloethane represented by the formula (1)), but in one embodiment of the present invention, in Step A,
  • the upper limit of the reaction temperature is preferably 50 ° C., more preferably 20 ° C .
  • the lower limit of the reaction temperature in Step A is preferably ⁇ 78 ° C., more preferably ⁇ 60 ° C., still more preferably ⁇ 50 ° C, even more preferably -40 ° C
  • the reaction temperature of step A is preferably in the range of -78 ° C to 50 ° C, more preferably in the range of -60 ° C to 20 ° C, further Preferably, it is in the range of ⁇ 50 ° C.
  • the upper limit of the reaction temperature of Step A is preferably 20 ° C., more preferably 0 ° C .; the lower limit of the reaction temperature of Step A is preferably Is ⁇ 78 ° C., more preferably ⁇ 60 ° C., still more preferably ⁇ 50 ° C., even more preferably ⁇ 40 ° C .; and the reaction temperature in Step A is preferably ⁇ 78 ° C. to 20 ° C.
  • the upper limit of the reaction temperature is preferably 20 ° C., more preferably 10 ° C., and even more preferably 0 ° C .;
  • the lower limit is preferably ⁇ 78 ° C., more preferably ⁇ 60 ° C., still more preferably ⁇ 40 ° C .; and the reaction temperature in step A is preferably in the range of ⁇ 78 ° C.
  • the raw material compound of step A is 1,1,2-trichloroethane
  • the upper limit of the reaction temperature is preferably 20 ° C., more preferably 10 ° C., still more preferably 5 ° C .
  • the lower limit of the reaction temperature is Preferably ⁇ 78 ° C., more preferably ⁇ 50 ° C., still more preferably ⁇ 30 ° C .
  • the reaction temperature in step A is preferably within the range of ⁇ 78 ° C.
  • reaction temperature in step A is usually more preferable.
  • reaction time of step A is usually in the range of 0.5 to 10 hours.
  • Step A can be carried out in the presence or absence of a reaction solvent.
  • Step A is preferably carried out in the presence of a reaction solvent from the viewpoint of high reliability of reaction progress.
  • the reaction solvent is preferably an alkyl halide solvent (halogenated alkyl compound).
  • the halogenated alkyl solvent include chlorinated solvents, brominated solvents, and fluorinated solvents.
  • a chlorinated solvent means a solvent containing a chlorine atom
  • a brominated solvent means a solvent containing a bromine atom
  • a fluorinated solvent means a solvent containing a fluorine atom.
  • CH 3 CClF 2 can be a chlorinated solvent as well as a fluorinated solvent.
  • the chlorinated solvent may be a halogenated alkyl solvent having only a chlorine atom as a halogen atom.
  • the bromine-based solvent may be a halogenated alkyl solvent having only a bromine atom as a halogen atom.
  • the fluorine-based solvent may be a halogenated alkyl solvent having only a fluorine atom as a halogen atom.
  • Examples of the chlorine-based solvent include methylene chloride, chloroform, carbon tetrachloride, ethyl chloride, 1,1-dichloroethane, 1, Examples include 2-dichloroethane, 1-chloropropane, 2-chloropropane, 1-chlorobutane, 2-chlorobutane, 1-chloro-2-methylpropane, and 1-chloropentane.
  • Examples of brominated solvents include dibromomethane, dibromoethane, tetrabromoethane, isopropyl bromide, normal propyl bromide, bromochloromethane, and 1,2-dibromo-1,1-difluoroethane.
  • fluorine-based solvent examples include hydrochlorofluoroalkanes such as CH 3 CClF 2 , CH 3 CCl 2 F, CF 3 CF 2 CCl 2 H, and CF 2 ClCF 2 CFHCl; Chlorofluoroalkanes such as CF 2 ClCFClCF 2 CF 3 , CF 3 CFClCFClCF 3 ; and perfluorocyclobutane, CF 3 CF 2 CF 2 CF 3 , CF 3 CF 2 CF 2 CF 2 CF 3 , CF 3 CF 2 CF 2 CF 2 CF 2 Perfluoroalkanes such as CF 2 CF 3 are mentioned.
  • hydrochlorofluoroalkanes such as CH 3 CClF 2 , CH 3 CCl 2 F, CF 3 CF 2 CCl 2 H, and CF 2 ClCF 2 CFHCl
  • Chlorofluoroalkanes such as CF 2 ClCFClCF
  • the said reaction solvent may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the reaction solvent is more preferably methylene chloride, chloroform, carbon tetrachloride, dibromomethane, or dibromoethane, or a mixed solvent of two or more thereof.
  • bromination of 1,1,2-trihaloethane represented by the above formula (1) has a higher priority than bromination of methylene chloride even in the case of using methylene chloride as a solvent in Step A.
  • Progresses to 1,1,2-tribromoethane Since methylene chloride is available at a low cost, it is advantageous in terms of cost to use methylene chloride as a solvent.
  • the reaction solvent is preferably a bromine-based solvent, More preferred is a halogenated alkyl solvent having only a bromine atom as a halogen atom, and particularly preferred is dibromomethane.
  • the amount of the reaction solvent is preferably 3 to 30 weights with respect to 1 part by weight of 1,1,2-trihaloethane represented by the formula (1). In the range of parts, more preferably in the range of 3 to 10 parts by weight.
  • Step A is preferably In the presence of an alkyl halide as the reaction solvent,
  • the upper limit of the reaction temperature is preferably 20 ° C, more preferably 10 ° C, still more preferably 0 ° C; and the lower limit of the reaction temperature is preferably -78 ° C, more preferably -60 ° C, More preferably, it is carried out at -40 ° C.
  • Step A is preferably In the presence of an alkyl halide as a reaction solvent (preferably a bromine-based solvent, more preferably an alkyl halide solvent having only a bromine atom as a halogen atom, particularly preferably dibromomethane),
  • the upper limit of the reaction temperature is preferably 20 ° C, more preferably 10 ° C, still more preferably 5 ° C; and the lower limit of the reaction temperature is preferably -78 ° C, more preferably -50 ° C, further Preferably, it is carried out under the condition of ⁇ 30 ° C.
  • Step A is preferably performed under an inert gas.
  • the inert gas include nitrogen.
  • step A a reaction solvent solution of bromine is dropped into aluminum and a reaction solvent which are put in a reactor, and then 1,1,2-represented by the above formula (1) The method of dripping the reaction solvent solution of trihaloethane is mentioned.
  • step A includes a method in which bromine is added dropwise to aluminum in a reactor and 1,1,2-trihaloethane represented by the above formula (1).
  • the reactor is charged with 1,1,2-trihaloethane represented by the above formula (1), the reaction solvent, and bromine, and after mixing these, The method of putting aluminum is mentioned.
  • 1,1,2-trihaloethane represented by the above formula (1) is dropped into aluminum bromide in a reactor and a reaction solvent. Is mentioned.
  • 1,1,2-trihaloethane represented by the above formula (1) and a reaction solvent are put in a reactor, and after mixing these, aluminum, and Examples include a method of adding bromine in several steps (for example, a method of adding aluminum and dropping bromine three times (three sets), each of which is 1/3 of a predetermined amount).
  • the method for producing 1,1-dibromoethylene of the present invention is 1,1,2-tribromo obtained by the method for producing 1,1,2-tribromoethane of the present invention.
  • Ethane is dehydrobrominated using a base to include step B to give 1,1-dibromoethylene.
  • the 1,1,2-tribromoethane obtained by the method for producing 1,1,2-tribromoethane of the present invention is used as it is, or solvent extraction, drying, filtration, distillation, concentration, or a combination thereof.
  • the product can be purified by the conventional method and used in Step B.
  • the base examples include inorganic bases such as sodium hydroxide, potassium hydroxide, and magnesium hydroxide; inorganic basic salts such as sodium carbonate, potassium carbonate, cesium carbonate, calcium carbonate, and sodium bicarbonate; and amine compounds (E.g., aliphatic primary amines, aliphatic secondary amines, aliphatic tertiary amines, alicyclic secondary amines, alicyclic tertiary amines, aromatic amines, heterocyclic amines, and And organic bases such as polymer-supported amine compounds).
  • the amine compound include amine compounds exemplified below as stabilizers. The amine compound as a stabilizer described later can also function as the base.
  • the base include sodium hydroxide, potassium hydroxide, ammonia, and triethylamine.
  • the said base may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the combination may be, for example, a combination of an inorganic base and an amine compound exemplified as a stabilizer described later.
  • the base may be used in the form of an aqueous solution (eg, sodium hydroxide aqueous solution, aqueous ammonia).
  • the water of the aqueous solution can function as a reaction solvent.
  • the amount of the base is preferably in the range of 0.9 equivalents to 5.0 equivalents, more preferably in the range of 0.9 equivalents to 3.0 equivalents with respect to 1,1,2-tribromoethane. Of these, more preferably in the range of 0.9 equivalents to 2.0 equivalents, still more preferably in the range of 1.0 equivalents to 1.5 equivalents, still more preferably 1.0 equivalents to 1.2 equivalents. Is within the range.
  • the amount of the base including the amine compound is preferably such an amount.
  • the upper limit of the reaction temperature in Step B is preferably 100 ° C, more preferably 80 ° C, and still more preferably 60 ° C.
  • the lower limit of the reaction temperature in Step B is preferably 0 ° C, more preferably 5 ° C, and still more preferably 10 ° C.
  • the reaction temperature in Step B is preferably in the range of 0 ° C. to 100 ° C., more preferably in the range of 5 ° C. to 80 ° C., still more preferably in the range of 10 ° C. to 60 ° C.
  • the reaction time of step B is usually in the range of 0.5 to 40 hours.
  • Step B can be performed preferably in the presence of a stabilizer.
  • the “stabilizer” can be a “polymerization inhibitor”, a “decomposition inhibitor”, or a “polymerization inhibitor” and a “decomposition inhibitor”.
  • the stabilizer can be added to the reaction system before the reaction in Step B and at any time during the reaction. Further, the “before the reaction of Step B” may be any time before the reaction of Step A and during the reaction, which is performed before Step B.
  • the stabilizer is preferably, for example, an aliphatic primary amine, an aliphatic secondary amine, an aliphatic tertiary amine, an alicyclic secondary amine, an alicyclic tertiary amine, an aromatic And amine compounds such as aromatic amines, heterocyclic amines, and polymer-supported amine compounds.
  • the aliphatic primary amine include methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, cyclohexylamine, and ethylenediamine.
  • Examples of the aliphatic secondary amine include dimethylamine, diethylamine, dipropylamine, dibutylamine, dipentylamine, dihexylamine, and dicyclohexylamine.
  • Examples of the aliphatic tertiary amine include trimethylamine, triethylamine, diisopropylethylamine, tributylamine, and N, N, N ′, N′-tetramethylethylenediamine.
  • Examples of the alicyclic secondary amine include piperidine, piperazine, pyrrolidine, and morpholine.
  • Examples of the alicyclic tertiary amine include N-methylpiperazine, N-methylpyrrolidine, 5-diazabicyclo [4.3.0] nonane-5-ene, and 1,4-diazabicyclo [2.2.2]. ] Octane is mentioned.
  • Examples of the aromatic amine include aniline, methylaniline, dimethylaniline, N, N-dimethylaniline, haloaniline, and nitroaniline.
  • Heterocyclic amines include, for example, pyridine, melamine, pyrimidine, piperazine, quinoline, and imidazole.
  • Examples of the polymer-supported amine compound include polyallylamine and polyvinyl pyridine.
  • a stabilizer other than the above that is, a stabilizer other than an amine compound
  • a compound group (C) 1 or more compounds selected from (in the present specification, the compound may be referred to as a compound (C)).
  • the said compound (C) may be used individually by 1 type, or may be used in combination of 2 or more type.
  • Examples of the “(1) hydroxyl group-containing compound” include, for example, a formula such as methanol, ethanol, isopropyl alcohol, and t-butanol: R—OH (wherein R is, for example, an alkyl having 1 to 6 carbon atoms) An alcohol represented by a group; and phenolhydroquinone, 4-methoxyphenol, 2,5-di-tert-butylhydroquinone, methylhydroquinone, tert-butylhydroquinone (TBH), p-benzoquinone, methyl-p -Substituted with one or more hydroxyl groups such as benzoquinone, tert-butyl-p-benzoquinone, 2,5-diphenyl-p-benzoquinone, and 2,6-di-tert-butyl-4-methylphenol (BHT)
  • a compound having a partial structure which is a benzene ring wherein the hydroxyl group is Kis
  • the number of carbon atoms in the compound is preferably a 6-20.
  • the compound may be simply referred to as phenolic compounds.
  • the “(2) compound having a sulfide bond” include, for example, a dialkyl sulfide (the two “alkyl” have the same or different carbon number, preferably 1 to 6), and a diphenyl sulfide structure.
  • compounds having a phenyl sulfide structure and having a sulfide bond having 6 to 20 carbon atoms, such as diphenyl sulfide and phenothiazine such as diphenyl sulfide and phenothiazine.
  • Examples of the “(3) compound having a thiophenolic or thiol sulfur atom” include R (—SH) such as thiophenol, benzenedithiol, 1,2-ethanedithiol, and 1,3-propanedithiol.
  • R represents, for example, an alkane having 1 to 6 carbon atoms or an aromatic carbocyclic ring having 6 to 12 carbon atoms (eg, benzene, diphenyl); and n represents, for example, 1 or 2 Represents an integer.
  • R represents, for example, an alkane having 1 to 6 carbon atoms or an aromatic carbocyclic ring having 6 to 12 carbon atoms (eg, benzene, diphenyl); and n represents, for example, 1 or 2 Represents an integer.
  • the compound represented by this is mentioned.
  • Examples of the “(4) sulfite compound” include potassium sulfite, calcium sulfite, sodium hydrogen sulfite, sodium sulfite, barium sulfite, magnesium sulfite, dimethyl sulfite, diethyl sulfite, diamyl sulfite, dipropyl sulfite, and diisopropyl sulfite.
  • Examples of the “(5) nitrite compound” include potassium nitrite, sodium nitrite, Mention may be made of methyl nitrite, ethyl nitrite, amyl nitrite, propyl nitrite and isopropyl nitrite.
  • the compound (C) as a stabilizer described above is Is preferably “(1) a compound having a hydroxyl group”, more preferably a phenol compound.
  • Preferred examples of the stabilizer include diisopropylethylamine, tributylamine, triethylamine, 4-methoxyphenol, 2,6-di-tert-butyl-4-methylphenol (BHT), pyridine, melamine, and phenothiazine. It is done.
  • the said stabilizer may be used individually by 1 type, or may be used in combination of 2 or more type.
  • Step B is carried out in the presence of (1) one or more amine compounds and (2) one or more compounds (C), each of which can function as a stabilizer.
  • the total amount thereof is preferably in the range of 100 to 50,000 ppm (w / w), more preferably 100 to 10000 ppm (with respect to 1,1,2-tribromoethane).
  • w / w more preferably 100 to 3000 ppm (w / w), even more preferably 100 to 3000 ppm (w / w), particularly preferably 500 to 2000 ppm (w / w).
  • the amine compound as the stabilizer can also function as the base.
  • Step B when Step B is carried out in the presence of the stabilizer, preferably an inorganic base as the base and a stable It is preferable to use in combination with an amine compound as an agent.
  • the amine compound as a stabilizer functions as a base, while it is also within the scope of the present invention that the amine compound as a base functions as a stabilizer. .
  • Step A after purification of 1,1,2-tribromoethane produced in Step A, one or more amine compounds are added thereto, and the resulting composition is treated with Step B. Used for.
  • the reaction of step B is preferably carried out in the presence of a reaction solvent.
  • the reaction solvent include a water-soluble solvent, water, and a mixed solvent of two or more thereof.
  • the reaction solvent is preferably a water-soluble solvent or a mixed solvent of a water-soluble solvent and water.
  • the mixed solvent of water-soluble solvent and water is a mixed solvent containing a water-soluble solvent and water, and may contain a solvent other than these, but preferably consists essentially of a water-soluble solvent and water, More preferably, it consists only of a water-soluble solvent and water.
  • water may be derived from an aqueous base solution as described above.
  • the reaction solvent or the water-soluble solvent in the reaction solvent for example, Alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, and t-butyl alcohol; Ketones such as acetone and methyl ethyl ketone (MEK); And ethers such as diethyl ether and tetrahydrofuran (THF); and acetic acid, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), dimethylacetamide (DMAc), 1-methyl-2-pyrrolidone (NMP), etc.
  • the organic solvent is methanol, DMF, THF, or NMP.
  • the amount of the reaction solvent is usually within a range of 0 to 20 parts by weight, preferably within a range of 0.1 to 15 parts by weight, more preferably, with respect to 1 part by weight of 1,1,2-tribromoethane. Within the range of 0.1 to 10 parts by weight.
  • a phase transfer catalyst When Step B is performed in the presence of water and in the absence of a water-soluble organic solvent, it is preferable to use a phase transfer catalyst.
  • the water can be water as the “reaction solvent” or water of an aqueous solution of the base.
  • phase transfer catalyst examples include quaternary ammonium such as tetramethylammonium chloride, tetraethylammonium chloride, tetrabutylammonium bromide, tetrabutylammonium chloride, tetrabutylammonium iodide, tetrabutylammonium sulfate, and trioctylmethylammonium chloride. Salts; quaternary phosphonium salts such as tetrabutylphosphonium chloride; pyridinium compounds such as dodecylpyridinium chloride; and crown ethers.
  • quaternary ammonium such as tetramethylammonium chloride, tetraethylammonium chloride, tetrabutylammonium bromide, tetrabutylammonium chloride, tetrabutylammonium iodide, tetrabutylammonium
  • tetramethylammonium chloride or tetrabutylammonium bromide is preferable.
  • the amount thereof is preferably within a range of 0.01 equivalents to 1 equivalent, more preferably 0.01 equivalents to 0.5 equivalents relative to 1,1,2-tribromoethane. Within the range of equivalents, more preferably within the range of 0.01 equivalents to 0.1 equivalents.
  • Step B a reaction of a base with 1,1,2-tribromoethane, a reaction solvent, and a stabilizer, which are produced in the production method of the present invention, is put in a reactor.
  • the method of adding a solvent solution is mentioned.
  • the 1,1-dibromoethylene obtained by the production method can be isolated or purified by a conventional method such as adding water for liquid separation, if necessary.
  • a stabilizer may be added to the product.
  • “After the reaction of Step B” can be after isolation or purification of 1,1-dibromoethylene.
  • the storage stability of the product can be improved by adding a stabilizer to the product after the reaction in Step B.
  • the stabilizer include the same stabilizers used before and after the reaction in Step B and at any time during the reaction (that is, during the reaction in Step B).
  • the stabilizer added to the product after the reaction of Step B is the same as the stabilizer used during the reaction of Step B. May be different.
  • the stabilizer used after the reaction in the step B is preferably different from the stabilizer used in the reaction in the step B.
  • at least one of the two or more stabilizers used after the reaction in Step B is different from the stabilizer used in the reaction in Step B. It is also preferable. More preferably, one or more amine compounds that can function as a stabilizer are added before the reaction in Step B, and the one or more compounds (C) that can function as a stabilizer after the reaction in Step B. Add.
  • the compound (C) is preferably the “(1) hydroxyl group-containing compound”, and more preferably a phenol compound.
  • triethylamine is added to the reaction system before or during the reaction of Step B, and BHT is added after the reaction of Step B (preferably 1 , After the isolation or purification of 1-dibromoethylene).
  • the amount of stabilizer added to the product after the reaction of Step B is preferably in the range of 100 to 3000 ppm (w / w), more preferably 100 to 2000 ppm relative to 1,1-dibromoethylene. Within the range of (w / w), more preferably within the range of 100 to 1500 ppm (w / w).
  • Step B includes (1) one or more amine compounds that can function as a stabilizer, and (2) the compound (C) that can function as a stabilizer (preferably, It is carried out in the presence of “(1) a compound having a hydroxyl group”, more preferably a phenol compound). Particularly preferably, Step B is carried out in the presence of one or more amine compounds and 2,6-di-tert-butyl-4-methylphenol (BHT).
  • BHT 2,6-di-tert-butyl-4-methylphenol
  • (1) one or more amine compounds, and (2) the one or more compounds (C) preferably, “(1) a compound having a hydroxyl group”, more preferably a phenol compound.
  • BHT 2,6-di-tert-butyl-4-methylphenol
  • BHT 2,6-di-tert-butyl-4-methylphenol
  • BHT 2,6-di-tert-butyl-4-methylphenol
  • BHT 2,6-di-tert-butyl-4-methylphenol
  • the amount of the one or more amine compounds added to the reaction system of Step B is preferably within a range of 100 to 50000 ppm (w / w), more preferably with respect to 1,1-dibromoethylene. In the range of 100 to 10,000 ppm (w / w), more preferably in the range of 100 to 3000 ppm (w / w), still more preferably in the range of 100 to 2000 ppm (w / w), particularly preferably It is within the range of 100-1500 ppm (w / w).
  • one or more compounds (C) (preferably “(1) a compound having a hydroxyl group”, more preferably a phenol compound, and particularly preferably BHT) added to the reaction system of Step B) Is preferably in the range of 100 to 50000 ppm (w / w), more preferably in the range of 100 to 10000 ppm (w / w), still more preferably 100 It is within the range of -3000 ppm (w / w), more preferably within the range of 100-2000 ppm (w / w), and particularly preferably within the range of 100-1500 ppm (w / w).
  • 1,1-dibromoethylene As an alternative to 1,1-dibromoethylene, the same method as the above-described method for producing 1,1-dibromoethylene of the present invention, except that 1,1,2-tribromoethane is used instead.
  • 1,1,1-tribromoethane or (2) 1,1,2-tribromoethane and 1,1,1-tribromoethane can also be used for production.
  • 1,1-dibromoethylene can be produced, for example, by the production method described below.
  • the 1,1-dibromoethylene is produced by dehydrobromination of 1,1,2-tribromoethane and / or 1,1,1-tribromoethane using a base to obtain 1,1- Obtaining dibromoethylene.
  • the 1,1-dibromoethylene composition of the present invention can be produced by adding one or more compounds (C).
  • (1) one or more amine compounds and (2) one or more compounds (C) may be added as follows: An aspect of adding both from the beginning of the step (this includes “before the reaction of the step”), A mode in which one is added from the beginning of the step and the other is added after the start of the reaction in the step (this includes “after the reaction in the step”), A mode in which one is added from the beginning of the step and both are added after the start of the reaction in the step (that is, a mode in which the “one” is further added), A mode in which both are added after completion of the reaction without adding them at the beginning of the process, An embodiment in which both are added simultaneously during the reaction without adding them at the beginning of the step and an embodiment in which both are added separately during the reaction without adding them at the beginning of the step are exemplified.
  • the steps are added simultaneously during the reaction without adding them at the beginning of the step and an embodiment in which both are added separately during the reaction without adding them at the beginning of the step are exemplified.
  • 1,1,1-tribromoethane can be produced by a known method or a method analogous thereto.
  • 1,2-dibromo-1-chloroethane used in Step A is, for example, It can be suitably produced by a method including the step C of adding bromine to vinyl chloride.
  • bromine to vinyl chloride can be carried out, for example, by reacting vinyl chloride with bromine.
  • the amount of bromine is preferably in the range of 0.9 equivalents to 2.0 equivalents, more preferably in the range of 1.0 equivalents to 1.5 equivalents, and even more preferably 1.0 equivalents relative to vinyl chloride. Within the range of ⁇ 1.1 equivalents.
  • the upper limit of the reaction temperature in Step C is preferably 55 ° C, more preferably 40 ° C, and further preferably 30 ° C.
  • the lower limit of the reaction temperature in Step C is preferably ⁇ 5 ° C., more preferably 0 ° C., and still more preferably 5 ° C.
  • the reaction temperature in Step C is preferably in the range of ⁇ 5 ° C. to 55 ° C., more preferably in the range of 0 ° C. to 40 ° C., and still more preferably in the range of 5 ° C. to 30 ° C.
  • the reaction time of step C is usually within a range of 1 to 20 hours.
  • Step C can be carried out in the presence or absence of a reaction solvent.
  • the said solvent is carbon tetrachloride, chloroform, and those mixed solvents, for example.
  • Step C there is a method of introducing or press-fitting vinyl chloride into a reactor containing bromine by bubbling.
  • the pressure in the reactor is preferably in the range of 0.01 MPa to 0.3 MPa, more preferably in the range of 0.05 MPa to 0.25 MPa. More preferably, it is in the range of 0.05 MPa to 0.2 MPa.
  • the 1,2-dibromo-1-chloroethane obtained by the production method can be used in Step A as it is or after being purified by a conventional method such as distillation under reduced pressure or concentration.
  • gas chromatography was performed according to the following GC conditions. ⁇ GC conditions> GC equipment; SHIMADZU GC-2010 Column: J & W DB-5MS (0.25 ⁇ m, 60 m, 0.25 mm ID) Column oven: 40 ° C. (4 minutes) ⁇ Temperature rise (10 ° C./min) ⁇ 300° C. (0 minute) Vaporization chamber temperature: 200 ° C
  • Example C1 Bromine (50 g, 315 mmol) was added to a reactor equipped with a stirrer, and vinyl chloride (21.5 g, 344 mmol) was injected under cooling. Thereafter, the temperature was raised to room temperature, and the mixture was stirred overnight for 17 hours to complete the reaction. The obtained crude product was purified by distillation under reduced pressure to obtain 1,2-dibromo-1-chloroethane (67.6 g, yield 97%) as a colorless oil.
  • Example C2 Bromine (500 g, 3.13 mol) was added to the reactor, and while cooling, vinyl chloride was added until the bromine color disappeared, and 1,2-dibromo-1-chloroethane (696.5 g, 100% yield) was colorless. Obtained as an oil.
  • Example A1 After the atmosphere in the reactor was replaced with nitrogen, aluminum (109 mg, 4.05 mmol) and dichloromethane (30 mL) were added. The mixture was cooled to ⁇ 20 ° C. with stirring, and a solution of bromine (1.07 g, 6.75 mmol) in dichloromethane (20 mL) was added dropwise. After stirring at ⁇ 20 ° C. for 15 minutes, a solution of 1,2-dibromo-1-chloroethane (3 g, 13.5 mmol) in dichloromethane (20 mL) was added dropwise. After stirring at ⁇ 20 ° C. for 1 hour, the mixture was poured into ice water. After stirring for a while, liquid separation was performed to obtain 1,1,2-tribromoethane (GC area 74%), and 1,2-dibromo-1-chloroethane (GC area 20%) as a raw material was recovered.
  • GC area 74% 1,2-dibromo-1-chloroethan
  • Example A2 1,1,2-tribromoethane (GC area 89%) was obtained in the same manner as in Example A1, except that the equivalent of aluminum to 1,2-dibromo-1-chloroethane was changed to 0.4 and the equivalent of bromine to 0.65. As a result, 1,2-dibromo-1-chloroethane (GC area 9%) as a raw material was recovered.
  • Example A3 Example A1 except that the weight ratio of 1,2-dibromo-1-chloroethane to dichloromethane was changed to 1:10 (where the amount of 1,2-dibromo-1-chloroethane is the same as in Example A1). Similarly, 1,1,2-tribromoethane (GC area 73%) was obtained, and 1,2-dibromo-1-chloroethane (GC area 26%) as a raw material was recovered.
  • Example A4 The equivalent of aluminum to 1,2-dibromo-1-chloroethane was changed to 0.5, the equivalent of bromine to 0.8, and the weight ratio of 1,2-dibromo-1-chloroethane to dichloromethane was changed to 1:10 (where The amount of 1,2-dibromo-1-chloroethane is the same as in Example A1, except that 1,1,2-tribromoethane (GC area 97%) is obtained in the same manner as in Example A1. Some 1,2-dibromo-1-chloroethane (GC area 2%) was recovered.
  • Example A5 The equivalent of aluminum to 1,2-dibromo-1-chloroethane was changed to 0.5, the equivalent of bromine to 0.5, and the weight ratio of 1,2-dibromo-1-chloroethane to dichloromethane was changed to 1:10 (where The amount of 1,2-dibromo-1-chloroethane is the same as in Example A1, except that 1,1,2-tribromoethane (GC area 89%) is obtained in the same manner as in Example A1. Some 1,2-dibromo-1-chloroethane (GC area 5%) was recovered.
  • Example A6 A brominated product of 1,1,2-tribromoethane (GC area 20%), dichlorobromoethane (GC area 14%), and dichloromethane, except that the reaction temperature was changed to 0 ° C. (GC area 37%) was obtained, and 1,2-dibromo-1-chloroethane (GC area 29%) as a raw material was recovered.
  • Example A7 After the atmosphere in the reactor was replaced with nitrogen, aluminum (60.7 mg, 2.25 mmol) and 1,2-dibromo-1-chloroethane (1 g, 4.5 mmol) were added. The mixture was cooled to ⁇ 20 ° C. with stirring, and bromine (360 mg, 2.25 mmol) was added dropwise. After stirring at ⁇ 20 ° C. for 1 hour, the mixture was poured into ice water. After stirring for a while, liquid separation was performed to obtain 1,1,2-tribromoethane (GC area 48%), and 1,2-dibromo-1-chloroethane (GC area 52%) as a raw material was recovered.
  • GC area 48%) 1,1,2-tribromoethane
  • GC area 52%) 1,2-dibromo-1-chloroethane
  • Example A8 Except that the reaction time was changed to 5.5 hours, 1,1,2-tribromoethane (GC area 90%) was obtained in the same manner as in Example A7, and the raw material 1,2-dibromo-1-chloroethane ( GC area 0.3%) was recovered.
  • Example A9 After the atmosphere in the reactor was replaced with nitrogen, aluminum (60 mg, 2.25 mmol) and 1,2-dichloroethane (8 mL) were added. The mixture was cooled to ⁇ 20 ° C. with stirring, and bromine (360 mg, 2.25 mmol) was added dropwise. After stirring at ⁇ 20 ° C. for 15 minutes, 1,2-dibromo-1-chloroethane (1 g, 4.5 mmol) was added dropwise. After stirring at ⁇ 20 ° C. for 1 hour, the mixture was poured into ice water.
  • Example A10 After the atmosphere in the reactor was replaced with nitrogen, aluminum bromide (396 mg, 1.49 mmol) and dichloromethane (7.6 mL) were added. The mixture was cooled to ⁇ 20 ° C. with stirring, and 1,2-dibromo-1-chloroethane (1 g, 4.5 mmol) was added dropwise. After stirring at ⁇ 20 ° C. for 1 hour, the mixture was poured into ice water. After stirring for a while, liquid separation was performed to obtain 1,1,2-tribromoethane (GC area 92%).
  • Example A11 After the atmosphere in the reactor was replaced with nitrogen, aluminum (60.7 mg, 2.25 mmol) and dibromomethane (30 g) were added. The mixture was cooled to 0 ° C. with stirring, and bromine (360 mg, 2.25 mmol) was added dropwise. After stirring at 0 ° C. for 15 minutes, 1,2-dibromo-1-chloroethane (1 g, 4.5 mmol) was added dropwise. After stirring at 0 ° C for 1 hour, the mixture was poured into ice water. After stirring for a while, liquid separation was performed to obtain 1,1,2-tribromoethane (GC area 82%), and 1,2-dibromo-1-chloroethane (GC area 2%) as a raw material was recovered.
  • GC area 82%) 1,2-dibromo-1-chloroethane
  • Example A12 After the atmosphere in the reactor was replaced with nitrogen, aluminum (240 mg, 8.90 mmol) and dibromomethane (30 g) were added. The mixture was cooled to ⁇ 20 ° C. with stirring, and bromine (1.8 g, 11.3 mmol) was added dropwise. After stirring at ⁇ 20 ° C. for 15 minutes, 1,1,2-trichloroethane (1 g, 7.50 mmol) was added dropwise. The temperature was raised to 0 ° C., stirred for 5.5 hours, and then poured into ice water.
  • Example A13 After purging the inside of the reactor with nitrogen, 1,2-dibromo-1-chloroethane (50 g, 225 mmol), dichloromethane (250 g), and bromine (19.8 g, 125 mmol) were added. Cool to ⁇ 10 ° C. with stirring and add aluminum (2.43 g, 90 mmol). After stirring at the same temperature for 1 hour, it was poured into ice water. After stirring for a while, liquid separation was performed to obtain 1,1,2-tribromoethane (GC area 84%), and 1,2-dibromo-1-chloroethane (GC area 15%) as a raw material was recovered.
  • GC area 84%) 1,1,2-tribromoethane
  • GC area 15% 1,2-dibromo-1-chloroethane
  • Example A14 After the atmosphere in the reactor was replaced with nitrogen, 1,2-dibromo-1-chloroethane (1000 g, 3.75 mol) and dichloromethane (4000 mL) were added. The mixture was cooled to ⁇ 20 ° C. with stirring, aluminum (20.3 g, 752 mmol) was added, and bromine (192 g, 1.20 mol) was added dropwise. This addition operation was performed three times in total. After stirring at the same temperature for 3 hours, the mixture was poured into ice water. After stirring for a while, liquid separation was performed to obtain a crude product. The obtained crude product was purified by distillation to obtain 1,1,2-tribromoethane (yield 94%, GC area 99%).
  • Example B1 Methanol (0.3 g), 1,1,2-tribromoethane (3.0 g, 11.2 mmol) and Et 3 N (5 mg) were added to the reactor. Further, 25% aqueous sodium hydroxide solution (1.97 g, 12.3 mmol) was added, and the mixture was heated to 50 ° C. with stirring. After stirring at the same temperature for 20 hours, liquid separation was performed to obtain 1,1-dibromoethylene (1.68 g, yield 81%, GC area 98.7%) as a colorless oil.
  • Example B2 To the reactor, DMF (1 g), 1,1,2-tribromoethane (1.0 g, 3.75 mmol), Et 3 N (1 mg) were added. After adding sodium hydroxide (165.2 mg, 4.13 mmol), the mixture was heated to 50 ° C. with stirring. After completion of the reaction, water was added for liquid separation to obtain 1,1-dibromoethylene (GC area 96.5%) as a colorless oil.
  • Example B3 To the reactor was added THF (1 g), 1,1,2-tribromoethane (1.0 g, 3.75 mmol), Et 3 N (1 mg). After adding sodium hydroxide (165.2 mg, 4.13 mmol), the mixture was heated to 50 ° C. with stirring. After completion of the reaction, water was added and the mixture was separated to give 1,1-dibromoethylene (GC area 95.4%) as a colorless oil.
  • Example B4 To the reactor, NMP (1 g), 1,1,2-tribromoethane (1.0 g, 3.75 mmol) and Et 3 N (1 mg) were added. After adding sodium hydroxide (165.2 mg, 4.13 mmol), the mixture was heated to 50 ° C. with stirring. After completion of the reaction, water was added and the mixture was separated to give 1,1-dibromoethylene (GC area 92.4%) as a colorless oil.
  • Example B5 Methanol (0.5 g), 1,1,2-tribromoethane (5.0 g, 18.7 mmol) and Et 3 N (189 mg, 1.87 mmol) were added to the reactor. A 50% aqueous sodium hydroxide solution (1.65 g, 20.6 mmol) was added to the mixed solution, and the mixture was stirred at room temperature for 15 hours. Analysis by NMR and GC gave 1,1-dibromoethylene (94% yield).
  • Example B6 Methanol (0.5 g), 1,1,2-tribromoethane (5.0 g, 18.7 mmol) and Et 3 N (5 mg) were added to the reactor. A 50% aqueous sodium hydroxide solution (1.65 g, 20.6 mmol) was added to the mixed solution, and the mixture was stirred at room temperature for 15 hours. Analysis by NMR and GC gave 1,1-dibromoethylene (yield 91%, GC area 98.8%).
  • Example B7 Tetramethylammonium chloride (205.5 mg, 1.875 mmol), 1,1,2-tribromoethane (10 g, 37.5 mmol) and Et 3 N (10 mg) were added to the reactor. Under ice-cooling, 50% aqueous sodium hydroxide solution (3.3 g, 41.3 mmol) was added, and the mixture was stirred at room temperature for 51 hours and then separated to give 1,1-dibromoethylene (GC area 56%) as a colorless oil. Got as.
  • 1,1,2-tribromoethane and 1,1-dibromoethylene obtained by the production method of the present invention are pharmaceutical intermediates (for example, antibiotics), synthetic intermediates for optical fiber sheath materials, It is a compound useful as a synthetic intermediate for coating materials, a synthetic intermediate for semiconductor resist materials, a synthetic intermediate for monomers of functional polymers, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The purpose of the present invention is to provide a low-cost and high-yield production method for 1,1,2-tribromoethane. The present invention provides a 1,1,2-tribromoethane production method that includes a step (A) wherein 1,1,2-tribromoethane is obtained by brominating a 1,1,2-trihaloethane that is represented by general formula (1). [In the formula, X1, X2, and X3 represent a chlorine atom or a bromine atom, provided that at least one of X1, X2, and X3 is a chlorine atom.]

Description

1,1,2-トリブロモエタンの製造方法Process for producing 1,1,2-tribromoethane
 本発明は、1,1,2-トリブロモエタンの製造方法に関する。 The present invention relates to a method for producing 1,1,2-tribromoethane.
 1,1-ジブロモエチレンは医薬(例えば、抗生物質)の合成中間体、光学繊維のさや材料用の合成中間体、塗料用材料の合成中間体、半導体レジスト材料の合成中間体、及び機能性高分子の単量体の合成中間体等として有用な化合物である。
 従来、1,1-ジブロモエチレンは、1,1,2-トリブロモエタンの脱臭化水素反応により得られることが知られている(特許文献1)。
 ここで、当該特許文献1に開示されている製造方法の原料である1,1,2-トリブロモエタンは、臭化ビニルの臭素付加反応により得られることが知られている(非特許文献1)。
 また、特許文献2~4には、それぞれ、アルキルクロリドから、臭化水素、又はアルミニウムと臭素とを用いて、アルキルブロミドを製造する方法が開示されている。
1,1-Dibromoethylene is a synthetic intermediate for pharmaceuticals (for example, antibiotics), a synthetic intermediate for optical fiber sheath materials, a synthetic intermediate for coating materials, a synthetic intermediate for semiconductor resist materials, and a highly functional compound. This compound is useful as an intermediate for the synthesis of molecular monomers.
Conventionally, it is known that 1,1-dibromoethylene is obtained by dehydrobromination of 1,1,2-tribromoethane (Patent Document 1).
Here, it is known that 1,1,2-tribromoethane, which is a raw material of the production method disclosed in Patent Document 1, is obtained by a bromine addition reaction of vinyl bromide (Non-Patent Document 1). ).
Patent Documents 2 to 4 each disclose a method for producing an alkyl bromide from alkyl chloride using hydrogen bromide or aluminum and bromine.
特開昭50-52006号公報Japanese Patent Laid-Open No. 50-52006 米国特許第1891415号明細書US Pat. No. 1,891,415 米国特許第2120675号明細書U.S. Pat. No. 2,120,675 米国特許第2057964号明細書US Pat. No. 2,057,964
 前記非特許文献1に記載の製造方法では、原料である臭化ビニルは、エチレンの臭素化、続いて脱臭化水素反応により製造しなければならないので、工程数、及び廃棄物が多いという点で、産業上利用するためには、製造コスト等の観点から、不利である。
 また、特許文献2~4に記載の製造方法のように原料としてアルキルクロリドを用いた場合、本発明者らの検討によれば、目的とするアルキルブロミドの収率、及び純度が低かった。
 従って、本発明は、低コストであり、かつ収率が高い1,1,2-トリブロモエタンの製造方法を提供することを目的とする。
 また、本発明は、低コストであり、かつ収率が高い1,1-ジブロモエチレンの製造方法を提供することを更なる目的とする。
In the production method described in Non-Patent Document 1, vinyl bromide, which is a raw material, must be produced by bromination of ethylene followed by dehydrobromination, so that the number of steps and waste are large. For industrial use, it is disadvantageous from the viewpoint of manufacturing cost and the like.
Further, when alkyl chloride was used as a raw material as in the production methods described in Patent Documents 2 to 4, according to the study by the present inventors, the yield and purity of the target alkyl bromide were low.
Accordingly, an object of the present invention is to provide a method for producing 1,1,2-tribromoethane which is low in cost and high in yield.
Another object of the present invention is to provide a method for producing 1,1-dibromoethylene which is low in cost and high in yield.
 本発明者らは、鋭意検討の結果、式(1):
Figure JPOXMLDOC01-appb-C000002
[式中、
、X、及びXは、塩素原子、又は臭素原子を表す。
但し、X、X、及びXのうち、少なくとも1個は塩素原子である。]
で表される1,1,2-トリハロエタンの塩素原子を臭素原子に変換することにより、1,1,2-トリブロモエタンを、低コスト、かつ高収率で製造できることを見出し、更なる研究の結果、本発明を完成するに至った。
As a result of intensive studies, the present inventors have found that the formula (1):
Figure JPOXMLDOC01-appb-C000002
[Where:
X 1 , X 2 , and X 3 represent a chlorine atom or a bromine atom.
However, at least one of X 1 , X 2 , and X 3 is a chlorine atom. ]
By further converting the chlorine atom of 1,1,2-trihaloethane represented by the following formula to bromine atom, we found that 1,1,2-tribromoethane can be produced at low cost and high yield. As a result, the present invention has been completed.
 本発明は、次の態様を含む。 The present invention includes the following aspects.
項1.
1,1,2-トリブロモエタンの製造方法であって、式(1):
Figure JPOXMLDOC01-appb-C000003
[式中、
、X、及びXは、塩素原子、又は臭素原子を表す。
但し、X、X、及びXのうち、少なくとも1個は塩素原子である。]
で表される
1,1,2-トリハロエタンを臭素化して1,1,2-トリブロモエタンを得る工程Aを含む製造方法。
項2.
前記式(1)で表される1,1,2-トリハロエタンが1,2-ジブロモ-1-クロロエタン又は1,1,2-トリクロロエタンである項1に記載の製造方法。
項3.
工程Aにおいて、前記式(1)で表される1,1,2-トリハロエタンをアルミニウム及び臭素と反応させて1,1,2-トリブロモエタンを得る項1又は2に記載の製造方法。
項4.
工程Aにおいて、前記式(1)で表される1,1,2-トリハロエタンを1個以上の臭素原子を有するハロゲン化アルミニウムと反応させて1,1,2-トリブロモエタンを得る項1~3のいずれか1項に記載の製造方法。
項5.
前記1個以上の臭素原子を有するハロゲン化アルミニウムが臭化アルミニウムである項4に記載の製造方法。
項6.
工程Aの反応温度が-78℃~20℃の範囲内である項1~5のいずれか1項に記載の製造方法。
項7.
工程Aが反応溶媒としてのハロゲン化アルキル化合物の存在下で実施される項1~6のいずれか1項に記載の製造方法。
項8.
1,1-ジブロモエチレンの製造方法であって、項1~7のいずれか1項に記載の製造方法によって得られる1,1,2-トリブロモエタンを、塩基を用いて脱臭化水素して、1,1-ジブロモエチレンを得る工程Bを含む製造方法。
項9.
工程Bが反応溶媒としての水溶性有機溶媒、又は水溶性有機溶媒及び水の混合溶媒の存在下で実施される項8に記載の製造方法。
項10.
工程Bが、水の存在下かつ水溶性有機溶媒の不存在下で、相間移動触媒を用いて実施される項8に記載の製造方法。
項11.
工程Bが、1種以上のアミン化合物、及び
(1)水酸基を有する化合物、
(2)スルフィド結合を有する化合物、
(3)チオフェノール性若しくはチオール性の硫黄原子を有する化合物、及び
(4)亜硫酸化合物
(5)亜硝酸化合物
からなる群より選択される1種以上の化合物
の存在下で実施される項8~10のいずれか1項に記載の製造方法。
Item 1.
A method for producing 1,1,2-tribromoethane having the formula (1):
Figure JPOXMLDOC01-appb-C000003
[Where:
X 1 , X 2 , and X 3 represent a chlorine atom or a bromine atom.
However, at least one of X 1 , X 2 , and X 3 is a chlorine atom. ]
Represented by
A production method comprising a step A in which 1,1,2-trihaloethane is brominated to obtain 1,1,2-tribromoethane.
Item 2.
Item 2. The production method according to Item 1, wherein the 1,1,2-trihaloethane represented by the formula (1) is 1,2-dibromo-1-chloroethane or 1,1,2-trichloroethane.
Item 3.
Item 3. The production method according to Item 1 or 2, wherein in step A, 1,1,2-trihaloethane represented by the formula (1) is reacted with aluminum and bromine to obtain 1,1,2-tribromoethane.
Item 4.
In step A, 1,1,2-trihaloethane represented by the formula (1) is reacted with an aluminum halide having one or more bromine atoms to obtain 1,1,2-tribromoethane 4. The production method according to any one of 3 above.
Item 5.
Item 5. The method according to Item 4, wherein the aluminum halide having one or more bromine atoms is aluminum bromide.
Item 6.
Item 6. The production method according to any one of Items 1 to 5, wherein the reaction temperature in Step A is in the range of −78 ° C. to 20 ° C.
Item 7.
Item 7. The production method according to any one of Items 1 to 6, wherein Step A is carried out in the presence of an alkyl halide compound as a reaction solvent.
Item 8.
A method for producing 1,1-dibromoethylene, wherein 1,1,2-tribromoethane obtained by the production method according to any one of Items 1 to 7 is dehydrobrominated using a base. , A production method comprising a step B of obtaining 1,1-dibromoethylene.
Item 9.
Item 9. The production method according to Item 8, wherein Step B is carried out in the presence of a water-soluble organic solvent as a reaction solvent or a mixed solvent of a water-soluble organic solvent and water.
Item 10.
Item 9. The production method according to Item 8, wherein Step B is carried out using a phase transfer catalyst in the presence of water and in the absence of a water-soluble organic solvent.
Item 11.
Step B is one or more amine compounds, and (1) a compound having a hydroxyl group,
(2) a compound having a sulfide bond,
Items 8 to 10 are carried out in the presence of one or more compounds selected from the group consisting of (3) a compound having a thiophenolic or thiol sulfur atom, and (4) a sulfite compound (5) a nitrite compound. 11. The production method according to any one of 10 above.
 本発明によれば、低コストであり、かつ収率が高い1,1,2-トリブロモエタンの製造方法が提供される。
 また、本発明によれば、低コストであり、かつ収率が高い1,1-ジブロモエチレンの製造方法が提供される。
The present invention provides a method for producing 1,1,2-tribromoethane that is low in cost and high in yield.
The present invention also provides a method for producing 1,1-dibromoethylene that is low in cost and high in yield.
 1,1,2-トリブロモエタンの製造方法
 本発明の1,1,2-トリブロモエタンの製造方法は、前記式(1)で表される1,1,2-トリハロエタンを臭素化して1,1,2-トリブロモエタンを得る工程Aを含む。
 工程Aに用いられる前記式(1)で表される1,1,2-トリハロエタンは、公知の方法、又はこれに準じた方法により、製造できる。また、1,1,2-トリハロエタンは、商業的に入手し得る。
 工程Aで用いられる、前記式(1)で表される1,1,2-トリハロエタンとして好ましくは、例えば、1,2-ジブロモ-1-クロロエタン、又は1,1,2-トリクロロエタンである。前記式(1)で表される1,1,2-トリハロエタンとして、1,2-ジブロモ-1-クロロエタン、及び1,1,2-トリクロロエタンの混合物を用いてもよい。
 なかでも、副生成物の生成が高度に抑制される点で、1,2-ジブロモ-1-クロロエタンが特に好ましい。
 前記式(1)で表される1,1,2-トリハロエタンのうち、1,2-ジブロモ-1-クロロエタンは、具体的には、例えば、塩化ビニルに臭素を付加する工程を含む方法により好適に製造することができる。当該方法によれば、入手が容易であり、安価である塩化ビニルを用いて1,2-ジブロモ-1-クロロエタンを製造できるので、有利である。当該1,2-ジブロモ-1-クロロエタンの製造方法については、後記で詳細に説明する。
Method for Producing 1,1,2-Tribromoethane The method for producing 1,1,2-tribromoethane according to the present invention comprises the steps of brominating 1,1,2-trihaloethane represented by the formula (1) and Step A to obtain 1,2-tribromoethane.
The 1,1,2-trihaloethane represented by the formula (1) used in Step A can be produced by a known method or a method analogous thereto. 1,1,2-trihaloethane is also commercially available.
The 1,1,2-trihaloethane represented by the formula (1) used in Step A is preferably 1,2-dibromo-1-chloroethane or 1,1,2-trichloroethane, for example. As the 1,1,2-trihaloethane represented by the formula (1), a mixture of 1,2-dibromo-1-chloroethane and 1,1,2-trichloroethane may be used.
Among these, 1,2-dibromo-1-chloroethane is particularly preferable because the production of by-products is highly suppressed.
Of the 1,1,2-trihaloethane represented by the formula (1), 1,2-dibromo-1-chloroethane is specifically preferred for a method including a step of adding bromine to vinyl chloride, for example. Can be manufactured. This method is advantageous because 1,2-dibromo-1-chloroethane can be produced using vinyl chloride, which is easily available and inexpensive. The method for producing 1,2-dibromo-1-chloroethane will be described in detail later.
 本発明の好適な一態様においては、工程Aの反応(すなわち前記式(1)で表される1,1,2-トリハロエタンの臭素化)は、好ましくは、前記式(1)で表される1,1,2-トリハロエタンを、アルミニウム及び臭素と反応させることによって実施できる。すなわち、当該態様では、工程Aにおいて、前記式(1)で表される1,1,2-トリハロエタンをアルミニウム及び臭素と反応させて1,1,2-トリブロモエタンを得る。
 アルミニウムの形態は、特に限定されず、例えば、粉末、粒状、又は箔状等の通常の形態で、工程Aにおいて用いることができる。
 アルミニウムの量は、前記式(1)で表される1,1,2-トリハロエタンに対して、好ましくは、0.1当量~5当量の範囲内、より好ましくは、0.1当量~3当量の範囲内、更に好ましくは、0.2当量~2当量の範囲内である。
 臭素は、後記の溶媒と一緒に(例えば、後述する溶媒中に溶解された臭素として)、工程Aの反応系に添加されてもよい。
 臭素の量は、前記式(1)で表される1,1,2-トリハロエタンに対して、好ましくは、0.1当量~5当量の範囲内、より好ましくは、0.1当量~3当量の範囲内、更に好ましくは、0.1当量~2当量の範囲内である。
In a preferred embodiment of the present invention, the reaction of Step A (that is, bromination of 1,1,2-trihaloethane represented by the formula (1)) is preferably represented by the formula (1). This can be done by reacting 1,1,2-trihaloethane with aluminum and bromine. That is, in this embodiment, in step A, 1,1,2-trihaloethane represented by the formula (1) is reacted with aluminum and bromine to obtain 1,1,2-tribromoethane.
The form of aluminum is not particularly limited, and can be used in Step A in a normal form such as powder, granule, or foil.
The amount of aluminum is preferably in the range of 0.1 equivalents to 5 equivalents, more preferably 0.1 equivalents to 3 equivalents, relative to the 1,1,2-trihaloethane represented by the formula (1). And more preferably in the range of 0.2 to 2 equivalents.
Bromine may be added to the reaction system of Step A together with the solvent described later (for example, as bromine dissolved in the solvent described later).
The amount of bromine is preferably in the range of 0.1 equivalents to 5 equivalents, more preferably 0.1 equivalents to 3 equivalents, relative to the 1,1,2-trihaloethane represented by the formula (1). And more preferably within the range of 0.1 to 2 equivalents.
 本発明の別の好適な一態様においては、工程Aの反応(すなわち前記式(1)で表される1,1,2-トリハロエタンの臭素化)は、また、好ましくは、前記式(1)で表される1,1,2-トリハロエタンを、1個以上の臭素原子を有するハロゲン化アルミニウムと反応させることによって実施できる。すなわち、当該態様では、工程Aにおいて、前記式(1)で表される1,1,2-トリハロエタンを1個以上の臭素原子を有するハロゲン化アルミニウムと反応させて1,1,2-トリブロモエタンを得る。1個以上の臭素原子を有するハロゲン化アルミニウムとしては、例えば、AlBrCl、AlBrCl、AlBrF、AlBrF、AlBrClF、及びAlBr(臭化アルミニウム)が挙げられる。ハロゲン化アルミニウムは、1種を単独で用いてもよく、又は2種以上を組み合わせて用いてもよい。1個以上の臭素原子を有するハロゲン化アルミニウムとして好ましくは、AlBrCl、AlBrCl、又はAlBrであり、より好ましくは、AlBrである。
 1個以上の臭素原子を有するハロゲン化アルミニウムの量は、ハロゲン化アルミニウムの種類によっても異なるが、前記式(1)で表される1,1,2-トリハロエタンに対して、好ましくは、0.1当量~5当量の範囲内、より好ましくは、0.1当量~3当量の範囲内、更に好ましくは、0.2当量~2当量の範囲内である。
In another preferred embodiment of the present invention, the reaction of Step A (that is, bromination of 1,1,2-trihaloethane represented by the above formula (1)) is also preferably represented by the above formula (1). The 1,1,2-trihaloethane represented by can be reacted with an aluminum halide having one or more bromine atoms. That is, in this embodiment, in Step A, 1,1,2-trihaloethane represented by the formula (1) is reacted with an aluminum halide having one or more bromine atoms to produce 1,1,2-tribromo. Get ethane. Examples of the aluminum halide having one or more bromine atoms include AlBrCl 2 , AlBr 2 Cl, AlBrF 2 , AlBr 2 F, AlBrClF, and AlBr 3 (aluminum bromide). An aluminum halide may be used individually by 1 type, or may be used in combination of 2 or more type. The aluminum halide having one or more bromine atoms is preferably AlBrCl 2 , AlBr 2 Cl, or AlBr 3 , and more preferably AlBr 3 .
The amount of the aluminum halide having one or more bromine atoms varies depending on the type of the aluminum halide, but is preferably 0.1% relative to the 1,1,2-trihaloethane represented by the formula (1). It is in the range of 1 equivalent to 5 equivalents, more preferably in the range of 0.1 equivalents to 3 equivalents, and still more preferably in the range of 0.2 equivalents to 2 equivalents.
 工程Aの好適な反応温度は、工程Aの原料化合物(すなわち、前記式(1)で表される1,1,2-トリハロエタン)によって異なり得るが、本発明の一態様においては、工程Aの反応温度の上限は、好ましくは、50℃、より好ましくは、20℃であり;工程Aの反応温度の下限は、好ましくは、-78℃、より好ましくは、-60℃、更に好ましくは、-50℃、より更に好ましくは、-40℃であり;及び工程Aの反応温度は、好ましくは、-78℃~50℃の範囲内、より好ましくは、-60℃~20℃の範囲内、更に好ましくは、-50℃~20℃、若しくは-50℃~-20℃の範囲内、より更に好ましくは、-40℃~20℃、若しくは-40℃~-20℃の範囲内である。
 工程Aの好適な反応温度は、別の一態様においては、工程Aの反応温度の上限は、好ましくは、20℃、より好ましくは、0℃であり;工程Aの反応温度の下限は、好ましくは、-78℃、より好ましくは、-60℃、更に好ましくは、-50℃、より更に好ましくは、-40℃であり;及び工程Aの反応温度は、好ましくは、-78℃~20℃の範囲内、より好ましくは、-50℃~0℃の範囲内、更に好ましくは、-50℃~-10℃の範囲内、より更に好ましくは、-40℃~-10℃の範囲内である。
 工程Aの原料化合物が1,2-ジブロモ-1-クロロエタンである場合、反応温度の上限は、好ましくは、20℃、より好ましくは、10℃、更に好ましくは、0℃であり;反応温度の下限は、好ましくは、-78℃、より好ましくは、-60℃、更に好ましくは、-40℃であり;及び工程Aの反応温度は、好ましくは、-78℃~20℃の範囲内、より好ましくは、-60℃~10℃の範囲内、更に好ましくは、-40℃~0℃の範囲内である。
 工程Aの原料化合物が1,1,2-トリクロロエタンである場合、反応温度の上限は、好ましくは、20℃、より好ましくは、10℃、更に好ましくは、5℃であり;反応温度の下限は、好ましくは、-78℃、より好ましくは、-50℃、更に好ましくは-30℃であり;及び工程Aの反応温度は、好ましくは、-78℃~20℃の範囲内、より好ましくは-50℃~10℃の範囲内、更に好ましくは、-30℃~5℃の範囲内である。
 工程Aの反応温度が高すぎると、1,1,2-トリブロモエタンの収率が低下してしまう傾向がある。
 しかし、工程Aの反応温度が低い場合、反応温度をこのように低温にすること自体が困難であり、コストの点で不利である。
 従って、工程Aの反応温度は、1,1,2-トリブロモエタンの収率が充分である場合、通常、より高い方が、より好ましい。
A suitable reaction temperature in Step A may vary depending on the raw material compound in Step A (that is, 1,1,2-trihaloethane represented by the formula (1)), but in one embodiment of the present invention, in Step A, The upper limit of the reaction temperature is preferably 50 ° C., more preferably 20 ° C .; the lower limit of the reaction temperature in Step A is preferably −78 ° C., more preferably −60 ° C., still more preferably − 50 ° C, even more preferably -40 ° C; and the reaction temperature of step A is preferably in the range of -78 ° C to 50 ° C, more preferably in the range of -60 ° C to 20 ° C, further Preferably, it is in the range of −50 ° C. to 20 ° C., or −50 ° C. to −20 ° C., and more preferably in the range of −40 ° C. to 20 ° C., or −40 ° C. to −20 ° C.
As for the suitable reaction temperature of Step A, in another embodiment, the upper limit of the reaction temperature of Step A is preferably 20 ° C., more preferably 0 ° C .; the lower limit of the reaction temperature of Step A is preferably Is −78 ° C., more preferably −60 ° C., still more preferably −50 ° C., even more preferably −40 ° C .; and the reaction temperature in Step A is preferably −78 ° C. to 20 ° C. Within a range of −50 ° C. to 0 ° C., more preferably within a range of −50 ° C. to −10 ° C., and even more preferably within a range of −40 ° C. to −10 ° C. .
When the starting compound of Step A is 1,2-dibromo-1-chloroethane, the upper limit of the reaction temperature is preferably 20 ° C., more preferably 10 ° C., and even more preferably 0 ° C .; The lower limit is preferably −78 ° C., more preferably −60 ° C., still more preferably −40 ° C .; and the reaction temperature in step A is preferably in the range of −78 ° C. to 20 ° C., more Preferably, it is in the range of −60 ° C. to 10 ° C., more preferably in the range of −40 ° C. to 0 ° C.
When the raw material compound of step A is 1,1,2-trichloroethane, the upper limit of the reaction temperature is preferably 20 ° C., more preferably 10 ° C., still more preferably 5 ° C .; the lower limit of the reaction temperature is Preferably −78 ° C., more preferably −50 ° C., still more preferably −30 ° C .; and the reaction temperature in step A is preferably within the range of −78 ° C. to 20 ° C., more preferably − It is in the range of 50 ° C. to 10 ° C., more preferably in the range of −30 ° C. to 5 ° C.
If the reaction temperature in step A is too high, the yield of 1,1,2-tribromoethane tends to decrease.
However, when the reaction temperature in step A is low, it is difficult to reduce the reaction temperature in this way, which is disadvantageous in terms of cost.
Therefore, when the yield of 1,1,2-tribromoethane is sufficient, the reaction temperature in step A is usually more preferable.
 工程Aの反応時間は、通常、0.5~10時間の範囲内である。 The reaction time of step A is usually in the range of 0.5 to 10 hours.
 工程Aは、反応溶媒の存在下、又は非存在下で実施できる。
 工程Aは、反応進行の確実さの高さの観点から、好ましくは、反応溶媒の存在下で実施される。
 工程Aを反応溶媒の存在下で実施する場合、当該反応溶媒は、好ましくは、ハロゲン化アルキル溶媒(ハロゲン化アルキル化合物)である。
 当該ハロゲン化アルキル溶媒としては、例えば、塩素系溶媒、臭素系溶媒、及びフッ素系溶媒が挙げられる。塩素系溶媒とは、塩素原子を含有する溶媒を意味し、臭素系溶媒とは臭素原子を含有する溶媒を意味し、及びフッ素系溶媒とはフッ素原子を含有する溶媒を意味する。以下に、塩素系溶媒、臭素系溶媒、及びフッ素系溶媒を例示するが、ここでは、重複を避けて例示する。すなわち、例えば、CHCClFは、フッ素系溶媒であると同時に、塩素系溶媒であることができる。
 塩素系溶媒は、ハロゲン原子として塩素原子のみを有するハロゲン化アルキル溶媒であってもよい。
 臭素系溶媒は、ハロゲン原子として臭素原子のみを有するハロゲン化アルキル溶媒であってもよい。
 フッ素系溶媒は、ハロゲン原子としてフッ素原子のみを有するハロゲン化アルキル溶媒であってもよい
 塩素系溶媒としては、例えば、塩化メチレン、クロロホルム、四塩化炭素、塩化エチル、1,1-ジクロロエタン、1,2-ジクロロエタン、1-クロロプロパン、2-クロロプロパン、1-クロロブタン、2-クロロブタン、1-クロロ-2-メチルプロパン、及び1-クロロペンタンが挙げられる。
 臭素系溶媒としては、例えば、ジブロモメタン、ジブロモエタン、テトラブロモエタン、イソプロピルブロマイド、ノルマルプロピルブロマイド、ブロモクロロメタン、及び1,2-ジブロモ-1,1-ジフルオロエタンが挙げられる。
 フッ素系溶媒としては、CHCClF、CHCClF、CFCFCClH、CFClCFCFHCl等のハイドロクロロフルオロアルカン;
CFClCFClCFCF、CFCFClCFClCF等のクロロフルオロアルカン;及び
パーフルオロシクロブタン、CFCFCFCF、CFCFCFCFCF、CFCFCFCFCFCF等のパーフルオロアルカンが挙げられる。
 当該反応溶媒は、1種を単独で用いてもよく、又は2種以上を組み合わせて用いてもよい。当該反応溶媒は、より好ましくは、塩化メチレン、クロロホルム、四塩化炭素、ジブロモメタン、又はジブロモエタン、或いはそれらの2種以上の混合溶媒である。
 驚くべきことに、工程Aにおいて、溶媒として塩化メチレンを用いた場合でも、塩化メチレンの臭素化よりも、前記式(1)で表される1,1,2-トリハロエタンの臭素化が高度に優先的に進行して、1,1,2-トリブロモエタンが得られる。塩化メチレンは安価に入手可能なので、溶媒として塩化メチレンを用いることは、コスト的に有利である。
 工程Aの原料化合物が1,1,2-トリクロロエタンである場合、特に高い収率で1,1,2-トリブロモエタンを得る観点からは、当該反応溶媒は、好ましくは臭素系溶媒であり、より好ましくは、ハロゲン原子として臭素原子のみを有するハロゲン化アルキル溶媒であり、特に好ましくは、ジブロモメタンである。
 工程Aを反応溶媒の存在下で実施する場合、当該反応溶媒の量は、前記式(1)で表される1,1,2-トリハロエタンの1重量部に対して、好ましくは3~30重量部の範囲内、より好ましくは3~10重量部の範囲内である。
 工程Aの原料化合物が1,2-ジブロモ-1-クロロエタンである場合、
工程Aは、好ましくは、
反応溶媒としてのハロゲン化アルキルの存在下で、
反応温度の上限が、好ましくは、20℃、より好ましくは、10℃、更に好ましくは、0℃であり;及び反応温度の下限が、好ましくは、-78℃、より好ましくは、-60℃、更に好ましくは-40℃の条件で実施される。
 工程Aの原料化合物が1,1,2-トリクロロエタンである場合、
工程Aは、好ましくは、
反応溶媒としてのハロゲン化アルキル(好ましくは、臭素系溶媒、より好ましくは、ハロゲン原子として臭素原子のみを有するハロゲン化アルキル溶媒、特に好ましくは、ジブロモメタン)の存在下、
反応温度の上限が、好ましくは、20℃、より好ましくは、10℃、更に好ましくは5℃であり;及び反応温度の下限が、好ましくは、―78℃、より好ましくは、-50℃、更に好ましくは-30℃の条件で実施される。
Step A can be carried out in the presence or absence of a reaction solvent.
Step A is preferably carried out in the presence of a reaction solvent from the viewpoint of high reliability of reaction progress.
When step A is carried out in the presence of a reaction solvent, the reaction solvent is preferably an alkyl halide solvent (halogenated alkyl compound).
Examples of the halogenated alkyl solvent include chlorinated solvents, brominated solvents, and fluorinated solvents. A chlorinated solvent means a solvent containing a chlorine atom, a brominated solvent means a solvent containing a bromine atom, and a fluorinated solvent means a solvent containing a fluorine atom. In the following, a chlorinated solvent, a brominated solvent, and a fluorinated solvent will be exemplified. That is, for example, CH 3 CClF 2 can be a chlorinated solvent as well as a fluorinated solvent.
The chlorinated solvent may be a halogenated alkyl solvent having only a chlorine atom as a halogen atom.
The bromine-based solvent may be a halogenated alkyl solvent having only a bromine atom as a halogen atom.
The fluorine-based solvent may be a halogenated alkyl solvent having only a fluorine atom as a halogen atom. Examples of the chlorine-based solvent include methylene chloride, chloroform, carbon tetrachloride, ethyl chloride, 1,1-dichloroethane, 1, Examples include 2-dichloroethane, 1-chloropropane, 2-chloropropane, 1-chlorobutane, 2-chlorobutane, 1-chloro-2-methylpropane, and 1-chloropentane.
Examples of brominated solvents include dibromomethane, dibromoethane, tetrabromoethane, isopropyl bromide, normal propyl bromide, bromochloromethane, and 1,2-dibromo-1,1-difluoroethane.
Examples of the fluorine-based solvent include hydrochlorofluoroalkanes such as CH 3 CClF 2 , CH 3 CCl 2 F, CF 3 CF 2 CCl 2 H, and CF 2 ClCF 2 CFHCl;
Chlorofluoroalkanes such as CF 2 ClCFClCF 2 CF 3 , CF 3 CFClCFClCF 3 ; and perfluorocyclobutane, CF 3 CF 2 CF 2 CF 3 , CF 3 CF 2 CF 2 CF 2 CF 3 , CF 3 CF 2 CF 2 CF 2 Perfluoroalkanes such as CF 2 CF 3 are mentioned.
The said reaction solvent may be used individually by 1 type, or may be used in combination of 2 or more type. The reaction solvent is more preferably methylene chloride, chloroform, carbon tetrachloride, dibromomethane, or dibromoethane, or a mixed solvent of two or more thereof.
Surprisingly, bromination of 1,1,2-trihaloethane represented by the above formula (1) has a higher priority than bromination of methylene chloride even in the case of using methylene chloride as a solvent in Step A. Progresses to 1,1,2-tribromoethane. Since methylene chloride is available at a low cost, it is advantageous in terms of cost to use methylene chloride as a solvent.
When the raw material compound of Step A is 1,1,2-trichloroethane, from the viewpoint of obtaining 1,1,2-tribromoethane in a particularly high yield, the reaction solvent is preferably a bromine-based solvent, More preferred is a halogenated alkyl solvent having only a bromine atom as a halogen atom, and particularly preferred is dibromomethane.
When step A is carried out in the presence of a reaction solvent, the amount of the reaction solvent is preferably 3 to 30 weights with respect to 1 part by weight of 1,1,2-trihaloethane represented by the formula (1). In the range of parts, more preferably in the range of 3 to 10 parts by weight.
When the raw material compound of step A is 1,2-dibromo-1-chloroethane,
Step A is preferably
In the presence of an alkyl halide as the reaction solvent,
The upper limit of the reaction temperature is preferably 20 ° C, more preferably 10 ° C, still more preferably 0 ° C; and the lower limit of the reaction temperature is preferably -78 ° C, more preferably -60 ° C, More preferably, it is carried out at -40 ° C.
When the raw material compound of step A is 1,1,2-trichloroethane,
Step A is preferably
In the presence of an alkyl halide as a reaction solvent (preferably a bromine-based solvent, more preferably an alkyl halide solvent having only a bromine atom as a halogen atom, particularly preferably dibromomethane),
The upper limit of the reaction temperature is preferably 20 ° C, more preferably 10 ° C, still more preferably 5 ° C; and the lower limit of the reaction temperature is preferably -78 ° C, more preferably -50 ° C, further Preferably, it is carried out under the condition of −30 ° C.
 工程Aは、好ましくは、不活性ガス下で行われる。
 不活性ガスとしては、窒素等が挙げられる。
Step A is preferably performed under an inert gas.
Examples of the inert gas include nitrogen.
 工程Aに用いられる前記式(1)で表される1,1,2-トリハロエタンの製造方法は、後述する。 The method for producing 1,1,2-trihaloethane represented by the formula (1) used in the step A will be described later.
 工程Aの具体的な実施態様の一例としては、反応器に入れたアルミニウム、及び反応溶媒に、臭素の反応溶媒溶液を滴下し、次いで前記式(1)で表される1,1,2-トリハロエタンの反応溶媒溶液を滴下する方法が挙げられる。 As an example of a specific embodiment of step A, a reaction solvent solution of bromine is dropped into aluminum and a reaction solvent which are put in a reactor, and then 1,1,2-represented by the above formula (1) The method of dripping the reaction solvent solution of trihaloethane is mentioned.
 工程Aの具体的な実施態様の別の一例としては、反応器に入れたアルミニウム、及び前記式(1)で表される1,1,2-トリハロエタンに、臭素を滴下する方法が挙げられる。 Another example of a specific embodiment of step A includes a method in which bromine is added dropwise to aluminum in a reactor and 1,1,2-trihaloethane represented by the above formula (1).
 工程Aの具体的な実施態様の更に別の一例としては、反応器に前記式(1)で表される1,1,2-トリハロエタン、反応溶媒、及び臭素を入れ、これらを混合した後、アルミニウムを入れる方法が挙げられる。 As yet another example of the specific embodiment of Step A, the reactor is charged with 1,1,2-trihaloethane represented by the above formula (1), the reaction solvent, and bromine, and after mixing these, The method of putting aluminum is mentioned.
 工程Aの具体的な実施態様の更に別の一例としては、反応器に入れた臭化アルミニウム、及び反応溶媒に、前記式(1)で表される1,1,2-トリハロエタンを滴下する方法が挙げられる。 As still another example of the specific embodiment of step A, 1,1,2-trihaloethane represented by the above formula (1) is dropped into aluminum bromide in a reactor and a reaction solvent. Is mentioned.
 工程Aの具体的な実施態様の別の一例としては、反応器に前記式(1)で表される1,1,2-トリハロエタン、及び反応溶媒を入れ、これらを混合した後、アルミニウム、及び臭素の添加を数回に分けて行う方法(例えば、それぞれ所定の添加量の1/3量の、アルミニウムの添加、及び臭素の滴下を、3回(3セット)行う方法)が挙げられる。 As another example of a specific embodiment of Step A, 1,1,2-trihaloethane represented by the above formula (1) and a reaction solvent are put in a reactor, and after mixing these, aluminum, and Examples include a method of adding bromine in several steps (for example, a method of adding aluminum and dropping bromine three times (three sets), each of which is 1/3 of a predetermined amount).
 1,1-ジブロモエチレンの製造方法
 本発明の1,1-ジブロモエチレンの製造方法は、前記本発明の1,1,2-トリブロモエタンの製造方法によって得られる1,1,2-トリブロモエタンを、塩基を用いて脱臭化水素して、1,1-ジブロモエチレンを得る工程Bを含む。
Method for Producing 1,1-Dibromoethylene The method for producing 1,1-dibromoethylene of the present invention is 1,1,2-tribromo obtained by the method for producing 1,1,2-tribromoethane of the present invention. Ethane is dehydrobrominated using a base to include step B to give 1,1-dibromoethylene.
 前記本発明の1,1,2-トリブロモエタンの製造方法によって得られた1,1,2-トリブロモエタンは、そのまま、又は溶媒抽出、乾燥、濾過、蒸留、濃縮、若しくはこれらの組み合わせ等の慣用の方法により精製して、工程Bに用いることができる。 The 1,1,2-tribromoethane obtained by the method for producing 1,1,2-tribromoethane of the present invention is used as it is, or solvent extraction, drying, filtration, distillation, concentration, or a combination thereof. The product can be purified by the conventional method and used in Step B.
 塩基としては、例えば、水酸化ナトリウム、水酸化カリウム、及び水酸化マグネシウム等の無機塩基;炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸カルシウム、及び炭酸水素ナトリウム等の無機塩基性塩;並びに、アミン化合物(例、脂肪族第一級アミン、脂肪族第二級アミン、脂肪族第三級アミン、脂環式第二級アミン、脂環式第三級アミン、芳香族アミン、複素環式アミン、及びポリマー担持アミン化合物)等の有機塩基が挙げられる。当該アミン化合物としては、後記で、安定化剤として例示するアミン化合物が挙げられる。後記安定化剤としてのアミン化合物は、当該塩基としても機能し得る。
 当該塩基として好ましくは、例えば、水酸化ナトリウム、水酸化カリウム、アンモニア、及びトリエチルアミン等が挙げられる。
 当該塩基は、1種を単独で用いてもよく、又は2種以上を組み合わせて用いてもよい。当該組み合わせは、例えば、無機塩基と、後記安定化剤として例示するアミン化合物との組み合わせであってもよい。
 当該塩基は、水溶液の形態(例、水酸化ナトリウム水溶液、アンモニア水)で用いられてもよい。当該水溶液の水は反応溶媒として機能し得る。
 当該塩基の量は、1,1,2-トリブロモエタンに対して、好ましくは、0.9当量~5.0当量の範囲内、より好ましくは、0.9当量~3.0当量の範囲内、更に好ましくは、0.9当量~2.0当量の範囲内、より更に好ましくは、1.0当量~1.5当量の範囲内、更に好ましくは、1.0当量~1.2当量の範囲内である。前述のように、安定化剤として例示するアミン化合物が当該塩基としても機能する場合は、当該アミン化合物も含む塩基の量が、このような量であることが好ましい。
Examples of the base include inorganic bases such as sodium hydroxide, potassium hydroxide, and magnesium hydroxide; inorganic basic salts such as sodium carbonate, potassium carbonate, cesium carbonate, calcium carbonate, and sodium bicarbonate; and amine compounds (E.g., aliphatic primary amines, aliphatic secondary amines, aliphatic tertiary amines, alicyclic secondary amines, alicyclic tertiary amines, aromatic amines, heterocyclic amines, and And organic bases such as polymer-supported amine compounds). Examples of the amine compound include amine compounds exemplified below as stabilizers. The amine compound as a stabilizer described later can also function as the base.
Preferred examples of the base include sodium hydroxide, potassium hydroxide, ammonia, and triethylamine.
The said base may be used individually by 1 type, or may be used in combination of 2 or more type. The combination may be, for example, a combination of an inorganic base and an amine compound exemplified as a stabilizer described later.
The base may be used in the form of an aqueous solution (eg, sodium hydroxide aqueous solution, aqueous ammonia). The water of the aqueous solution can function as a reaction solvent.
The amount of the base is preferably in the range of 0.9 equivalents to 5.0 equivalents, more preferably in the range of 0.9 equivalents to 3.0 equivalents with respect to 1,1,2-tribromoethane. Of these, more preferably in the range of 0.9 equivalents to 2.0 equivalents, still more preferably in the range of 1.0 equivalents to 1.5 equivalents, still more preferably 1.0 equivalents to 1.2 equivalents. Is within the range. As described above, when the amine compound exemplified as the stabilizer functions also as the base, the amount of the base including the amine compound is preferably such an amount.
 工程Bの反応温度の上限は、好ましくは、100℃、より好ましくは、80℃、更に好ましくは、60℃である。
 工程Bの反応温度の下限は、好ましくは、0℃、より好ましくは、5℃、更に好ましくは、10℃である。
 工程Bの反応温度は、好ましくは、0℃~100℃の範囲内、より好ましくは、5℃~80℃の範囲内、更に好ましくは、10℃~60℃の範囲内である。
The upper limit of the reaction temperature in Step B is preferably 100 ° C, more preferably 80 ° C, and still more preferably 60 ° C.
The lower limit of the reaction temperature in Step B is preferably 0 ° C, more preferably 5 ° C, and still more preferably 10 ° C.
The reaction temperature in Step B is preferably in the range of 0 ° C. to 100 ° C., more preferably in the range of 5 ° C. to 80 ° C., still more preferably in the range of 10 ° C. to 60 ° C.
 工程Bの反応時間は、通常、0.5~40時間の範囲内である。 The reaction time of step B is usually in the range of 0.5 to 40 hours.
 工程Bは、好ましくは、安定化剤の存在下で、実施できる。本明細書中、「安定化剤」は、「重合禁止剤」、「分解防止剤」、又は「重合禁止剤」且つ「分解防止剤」であることができる。安定化剤は、工程Bの反応前、及び反応中の任意の時点で反応系に添加できる。更に、当該「工程Bの反応前」は、工程Bの前に実施される、工程Aの反応前、及び反応中の任意の時点であってもよい。
 工程Bを、安定化剤の存在下で実施することにより、工程Bの生成物である1,1-ジブロモエチレンの安定性を向上させることができる。
 当該安定化剤としては、好ましくは、例えば、脂肪族第一級アミン、脂肪族第二級アミン、脂肪族第三級アミン、脂環式第二級アミン、脂環式第三級アミン、芳香族アミン、複素環式アミン、及びポリマー担持アミン化合物等のアミン化合物等が挙げられる。
 脂肪族第一級アミンとしては、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、及びエチレンジアミンが挙げられる。
 脂肪族第二級アミンとしては、例えば、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジペンチルアミン、ジヘキシルアミン、及びジシクロヘキシルアミンが挙げられる。
 脂肪族第三級アミンとしては、例えば、トリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、トリブチルアミン、及びN,N,N’,N’-テトラメチルエチレンジアミンが挙げられる。
 脂環式第二級アミンとしては、例えば、ピペリジン、ピペラジン、ピロリジン、モルホリンが挙げられる。
 脂環式第三級アミンとしては、例えば、N-メチルピペラジン、N-メチルピロリジン、5-ジアザビシクロ[4.3.0]ノナン-5-エン、及び1,4-ジアザビシクロ[2.2.2]オクタンが挙げられる。
 芳香族アミンとしては、例えば、アニリン、メチルアニリン、ジメチルアニリン、N,N-ジメチルアニリン、ハロアニリン、及びニトロアニリンが挙げられる。
 複素環式アミンとしては、例えば、ピリジン、メラミン、ピリミジン、ピペラジン、キノリン、及びイミダゾールが挙げられる。
 ポリマー担持アミン化合物としては、例えば、ポリアリルアミン、及びポリビニルピリジンが挙げられる。
 また、前記以外の安定化剤(すなわち、アミン化合物以外の安定化剤)としては、
(1)水酸基を有する化合物、
(2)スルフィド結合を有する化合物、
(3)チオフェノール性若しくはチオール性の硫黄原子を有する化合物、及び
(4)亜硫酸化合物
(5)亜硝酸化合物
からなる群(本明細書中、当該群は化合物群(C)と称され得る。)より選択される1種以上の化合物(本明細書中、当該化合物を化合物(C)と称する場合がある。)が挙げられる。
 当該化合物(C)は、1種を単独で用いてもよく、又は2種以上を組み合わせて用いてもよい。
 前記「(1)水酸基を有する化合物」としては、例えば、メタノール、エタノール、イソプロピルアルコール、及びt-ブタノール等の式:R-OH(当該式中、Rは、例えば、炭素数1~6のアルキル基を表す。)で表されるアルコール;並びに、フェノールヒドロキノン、4-メトキシフェノール、2,5-ジ-tert-ブチルヒドロキノン、メチルヒドロキノン、tert-ブチルヒドロキノン(TBH)、p-ベンゾキノン、メチル-p-ベンゾキノン、tert-ブチル-p-ベンゾキノン、2,5-ジフェニル-p-ベンゾキノン、及び2,6-ジ-tert-ブチル-4-メチルフェノール(BHT)等の、1個以上の水酸基で置換されたベンゼン環である部分構造を有する化合物(ここで、当該水酸基は、互変異性によりオキソ基(O=)になっていてもよい。当該化合物の炭素数は、好ましくは、6~20である。)(以下、当該化合物を単にフェノール化合物と称する場合がある。)が挙げられる。
 前記「(2)スルフィド結合を有する化合物」としては、例えば、ジアルキルスルフィド(当該2個の「アルキル」の炭素数は、同一又は異なって、好ましくは1~6である。)、及びジフェニルスルフィド構造を有する化合物(例、ジフェニルスルフィド、及びフェノチアジン等の、フェニルスルフィド構造を有する、炭素数6~20の、スルフィド結合を有する化合物)が挙げられる。
 前記「(3)チオフェノール性若しくはチオール性の硫黄原子を有する化合物」としては、例えば、チオフェノール、ベンゼンジチオール、1,2-エタンジチオール、及び1,3-プロパンジチオール等のR(-SH)[当該式中、Rは、例えば、炭素数1~6のアルカン、又は炭素数6~12の芳香族炭素環(例、ベンゼン、ジフェニル)を表し;及びnは、例えば、1、又は2の整数を表す。]で表される化合物が挙げられる。
 前記「(4)亜硫酸化合物」としては、例えば、亜硫酸カリウム、亜硫酸カルシウム、亜硫酸水素ナトリウム、亜硫酸ナトリウム、亜硫酸バリウム、亜硫酸マグネシウム、亜硫酸ジメチル、亜硫酸ジエチル、亜硫酸ジアミル、亜硫酸ジプロピル、及び亜硫酸ジイソプロピルが挙げられる。
 前記「(5)亜硝酸化合物」としては、例えば、亜硝酸カリウム、亜硝酸ナトリウム、
亜硝酸メチル、亜硝酸エチル、亜硝酸アミル、亜硝酸プロピル、及び亜硝酸イソプロピルが挙げられる。
Step B can be performed preferably in the presence of a stabilizer. In the present specification, the “stabilizer” can be a “polymerization inhibitor”, a “decomposition inhibitor”, or a “polymerization inhibitor” and a “decomposition inhibitor”. The stabilizer can be added to the reaction system before the reaction in Step B and at any time during the reaction. Further, the “before the reaction of Step B” may be any time before the reaction of Step A and during the reaction, which is performed before Step B.
By carrying out Step B in the presence of a stabilizer, the stability of 1,1-dibromoethylene, which is the product of Step B, can be improved.
The stabilizer is preferably, for example, an aliphatic primary amine, an aliphatic secondary amine, an aliphatic tertiary amine, an alicyclic secondary amine, an alicyclic tertiary amine, an aromatic And amine compounds such as aromatic amines, heterocyclic amines, and polymer-supported amine compounds.
Examples of the aliphatic primary amine include methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, cyclohexylamine, and ethylenediamine.
Examples of the aliphatic secondary amine include dimethylamine, diethylamine, dipropylamine, dibutylamine, dipentylamine, dihexylamine, and dicyclohexylamine.
Examples of the aliphatic tertiary amine include trimethylamine, triethylamine, diisopropylethylamine, tributylamine, and N, N, N ′, N′-tetramethylethylenediamine.
Examples of the alicyclic secondary amine include piperidine, piperazine, pyrrolidine, and morpholine.
Examples of the alicyclic tertiary amine include N-methylpiperazine, N-methylpyrrolidine, 5-diazabicyclo [4.3.0] nonane-5-ene, and 1,4-diazabicyclo [2.2.2]. ] Octane is mentioned.
Examples of the aromatic amine include aniline, methylaniline, dimethylaniline, N, N-dimethylaniline, haloaniline, and nitroaniline.
Heterocyclic amines include, for example, pyridine, melamine, pyrimidine, piperazine, quinoline, and imidazole.
Examples of the polymer-supported amine compound include polyallylamine and polyvinyl pyridine.
Moreover, as a stabilizer other than the above (that is, a stabilizer other than an amine compound),
(1) a compound having a hydroxyl group,
(2) a compound having a sulfide bond,
(3) A group comprising a compound having a thiophenolic or thiol sulfur atom, and (4) a sulfite compound (5) a nitrous acid compound (in this specification, this group may be referred to as a compound group (C). 1 or more compounds selected from (in the present specification, the compound may be referred to as a compound (C)).
The said compound (C) may be used individually by 1 type, or may be used in combination of 2 or more type.
Examples of the “(1) hydroxyl group-containing compound” include, for example, a formula such as methanol, ethanol, isopropyl alcohol, and t-butanol: R—OH (wherein R is, for example, an alkyl having 1 to 6 carbon atoms) An alcohol represented by a group; and phenolhydroquinone, 4-methoxyphenol, 2,5-di-tert-butylhydroquinone, methylhydroquinone, tert-butylhydroquinone (TBH), p-benzoquinone, methyl-p -Substituted with one or more hydroxyl groups such as benzoquinone, tert-butyl-p-benzoquinone, 2,5-diphenyl-p-benzoquinone, and 2,6-di-tert-butyl-4-methylphenol (BHT) A compound having a partial structure which is a benzene ring (wherein the hydroxyl group is Kiso may be made based on (O =). The number of carbon atoms in the compound is preferably a 6-20.) (Hereinafter, the compound may be simply referred to as phenolic compounds.) Can be mentioned.
Examples of the “(2) compound having a sulfide bond” include, for example, a dialkyl sulfide (the two “alkyl” have the same or different carbon number, preferably 1 to 6), and a diphenyl sulfide structure. (Eg, compounds having a phenyl sulfide structure and having a sulfide bond having 6 to 20 carbon atoms, such as diphenyl sulfide and phenothiazine).
Examples of the “(3) compound having a thiophenolic or thiol sulfur atom” include R (—SH) such as thiophenol, benzenedithiol, 1,2-ethanedithiol, and 1,3-propanedithiol. n [wherein R represents, for example, an alkane having 1 to 6 carbon atoms or an aromatic carbocyclic ring having 6 to 12 carbon atoms (eg, benzene, diphenyl); and n represents, for example, 1 or 2 Represents an integer. ] The compound represented by this is mentioned.
Examples of the “(4) sulfite compound” include potassium sulfite, calcium sulfite, sodium hydrogen sulfite, sodium sulfite, barium sulfite, magnesium sulfite, dimethyl sulfite, diethyl sulfite, diamyl sulfite, dipropyl sulfite, and diisopropyl sulfite. .
Examples of the “(5) nitrite compound” include potassium nitrite, sodium nitrite,
Mention may be made of methyl nitrite, ethyl nitrite, amyl nitrite, propyl nitrite and isopropyl nitrite.
 前記した、安定化剤としての化合物(C)は、
は、好ましくは、前記「(1)水酸基を有する化合物」であり、より好ましくはフェノール化合物である。
 前記安定化剤として好ましくは、例えば、ジイソプロピルエチルアミン、トリブチルアミン、トリエチルアミン、4-メトキシフェノール、2,6-ジ-tert-ブチル-4-メチルフェノール(BHT)、ピリジン、メラミン、及びフェノチアジン等が挙げられる。
 当該安定化剤は、1種を単独で用いてもよく、又は2種以上を組み合わせて用いてもよい。
 本発明の好適な一態様においては、工程Bは、それぞれ安定化剤として機能できる、(1)1種以上のアミン化合物、及び(2)1種以上の化合物(C)の存在下で実施される。
 工程Bに安定化剤を用いる場合、その総量は、1,1,2-トリブロモエタンに対して、好ましくは、100~50000ppm(w/w)の範囲内、より好ましくは、100~10000ppm(w/w)の範囲内、更に好ましくは、100~3000ppm(w/w)、より更に好ましくは、100~3000ppm(w/w)の範囲内、特に好ましくは、500~2000ppm(w/w)の範囲内、より特に好ましくは、500~1500ppm(w/w)の範囲内である。
The compound (C) as a stabilizer described above is
Is preferably “(1) a compound having a hydroxyl group”, more preferably a phenol compound.
Preferred examples of the stabilizer include diisopropylethylamine, tributylamine, triethylamine, 4-methoxyphenol, 2,6-di-tert-butyl-4-methylphenol (BHT), pyridine, melamine, and phenothiazine. It is done.
The said stabilizer may be used individually by 1 type, or may be used in combination of 2 or more type.
In a preferred embodiment of the present invention, Step B is carried out in the presence of (1) one or more amine compounds and (2) one or more compounds (C), each of which can function as a stabilizer. The
When a stabilizer is used in Step B, the total amount thereof is preferably in the range of 100 to 50,000 ppm (w / w), more preferably 100 to 10000 ppm (with respect to 1,1,2-tribromoethane). w / w), more preferably 100 to 3000 ppm (w / w), even more preferably 100 to 3000 ppm (w / w), particularly preferably 500 to 2000 ppm (w / w). And more particularly preferably in the range of 500 to 1500 ppm (w / w).
 前述のように、前記安定化剤としてのアミン化合物は、前記塩基としても機能し得るが、工程Bを安定化剤の存在下で実施する場合、好適には、塩基としての無機塩基と、安定化剤としてのアミン化合物とを、組み合わせて用いることが好ましい。但し、ここで、安定化剤としてのアミン化合物が塩基として機能することは本発明の範囲内であり、一方、塩基としてのアミン化合物が安定化剤として機能することも本発明の範囲内である。 As described above, the amine compound as the stabilizer can also function as the base. However, when Step B is carried out in the presence of the stabilizer, preferably an inorganic base as the base and a stable It is preferable to use in combination with an amine compound as an agent. However, it is within the scope of the present invention that the amine compound as a stabilizer functions as a base, while it is also within the scope of the present invention that the amine compound as a base functions as a stabilizer. .
 本発明の特に好適な一態様においては、工程Aで生成した1,1,2-トリブロモエタンの精製後に、これに1種以上のアミン化合物を添加して、得られた組成物を工程Bに用いる。 In a particularly preferred embodiment of the present invention, after purification of 1,1,2-tribromoethane produced in Step A, one or more amine compounds are added thereto, and the resulting composition is treated with Step B. Used for.
 工程Bの反応は、好ましくは、反応溶媒の存在下で実施される。
 当該反応溶媒としては、例えば、水溶性溶媒、及び水、並びにそれらの2種以上の混合溶媒が挙げられる。
 当該反応溶媒は、好ましくは、水溶性溶媒、又は水溶性溶媒及び水の混合溶媒である。水溶性溶媒及び水の混合溶媒は、水溶性溶媒及び水を含有する混合溶媒であり、これら以外の溶媒を含有していてもよいが、好ましくは、水溶性溶媒及び水から実質的になり、より好ましくは水溶性溶媒及び水のみからなる。当該混合溶媒において、水は前記したように塩基の水溶液に由来してもよい。
 当該反応溶媒としての、又は当該反応溶媒における水溶性溶媒としては、例えば、
メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、及びt-ブチルアルコール等のアルコール;
アセトン、及びメチルエチルケトン(MEK)等のケトン;
ジエチルエーテル、及びテトラヒドロフラン(THF)等のエーテル;並びに
酢酸、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF),ジメチルアセトアミド(DMAc)、及び1-メチル-2-ピロリドン(NMP)等
が挙げられる
 当該水溶性溶媒として好ましくは、メタノール、DMF、THF、又はNMPである。
 このような溶媒を用いることにより、工程Bで得られる1,1-ジブロモエチレンの精製は、水洗等により、蒸留無しで、簡便に行うことができ、及びこのことにより、1,1-ジブロモエチレンの重合の危険性を低減できる。
 当該反応溶媒の量は、1,1,2-トリブロモエタンの1重量部に対して、通常0~20重量部の範囲内、好ましくは0.1~15重量部の範囲内、より好ましくは0.1~10重量部の範囲内である。
 工程Bが水の存在下かつ水溶性有機溶媒の不存在下で実施される場合、相間移動触媒を用いることが好ましい。当該水は、前記「反応溶媒」としての水、又は前記塩基の水溶液の水であることができる。
 相間移動触媒としては、例えば、テトラメチルアンモニウムクロリド、テトラエチルアンモニウムクロリド、テトラブチルアンモニウムブロミド、テトラブチルアンモニウムクロリド、テトラブチルアンモニウムヨージド、テトラブチルアンモニウムサルフェート、及びトリオクチルメチルアンモニウムクロリド等の第四級アンモニウム塩;テトラブチルホスホニウムクロリド等の第四級ホスホニウム塩;ドデシルピリジニウムクロリド等のピリジニウム化合物;並びにクラウンエーテル等が挙げられる。
 なかでも好ましくは、例えば、テトラメチルアンモニウムクロリド、又はテトラブチルアンモニウムブロミドである。
 相間移動触媒を用いる場合、その量は、1,1,2-トリブロモエタンに対して、好ましくは、0.01当量~1当量の範囲内、より好ましくは、0.01当量~0.5当量の範囲内、更に好ましくは、0.01当量~0.1当量の範囲内である。
The reaction of step B is preferably carried out in the presence of a reaction solvent.
Examples of the reaction solvent include a water-soluble solvent, water, and a mixed solvent of two or more thereof.
The reaction solvent is preferably a water-soluble solvent or a mixed solvent of a water-soluble solvent and water. The mixed solvent of water-soluble solvent and water is a mixed solvent containing a water-soluble solvent and water, and may contain a solvent other than these, but preferably consists essentially of a water-soluble solvent and water, More preferably, it consists only of a water-soluble solvent and water. In the mixed solvent, water may be derived from an aqueous base solution as described above.
As the reaction solvent or the water-soluble solvent in the reaction solvent, for example,
Alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, and t-butyl alcohol;
Ketones such as acetone and methyl ethyl ketone (MEK);
And ethers such as diethyl ether and tetrahydrofuran (THF); and acetic acid, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), dimethylacetamide (DMAc), 1-methyl-2-pyrrolidone (NMP), etc. Preferably, the organic solvent is methanol, DMF, THF, or NMP.
By using such a solvent, the purification of 1,1-dibromoethylene obtained in Step B can be easily carried out without distillation by washing with water or the like. The risk of polymerization of can be reduced.
The amount of the reaction solvent is usually within a range of 0 to 20 parts by weight, preferably within a range of 0.1 to 15 parts by weight, more preferably, with respect to 1 part by weight of 1,1,2-tribromoethane. Within the range of 0.1 to 10 parts by weight.
When Step B is performed in the presence of water and in the absence of a water-soluble organic solvent, it is preferable to use a phase transfer catalyst. The water can be water as the “reaction solvent” or water of an aqueous solution of the base.
Examples of the phase transfer catalyst include quaternary ammonium such as tetramethylammonium chloride, tetraethylammonium chloride, tetrabutylammonium bromide, tetrabutylammonium chloride, tetrabutylammonium iodide, tetrabutylammonium sulfate, and trioctylmethylammonium chloride. Salts; quaternary phosphonium salts such as tetrabutylphosphonium chloride; pyridinium compounds such as dodecylpyridinium chloride; and crown ethers.
Of these, tetramethylammonium chloride or tetrabutylammonium bromide is preferable.
When a phase transfer catalyst is used, the amount thereof is preferably within a range of 0.01 equivalents to 1 equivalent, more preferably 0.01 equivalents to 0.5 equivalents relative to 1,1,2-tribromoethane. Within the range of equivalents, more preferably within the range of 0.01 equivalents to 0.1 equivalents.
 工程Bの具体的な実施態様の一例としては、反応器に入れた、本発明の製造方法で製造される1,1,2-トリブロモエタン、反応溶媒、及び安定化剤に、塩基の反応溶媒溶液を加える方法が挙げられる。 As an example of a specific embodiment of Step B, a reaction of a base with 1,1,2-tribromoethane, a reaction solvent, and a stabilizer, which are produced in the production method of the present invention, is put in a reactor. The method of adding a solvent solution is mentioned.
 当該製造方法で得られた1,1-ジブロモエチレンは、必要に応じて、水を加えて分液する等の、慣用の方法により単離又は精製できる。 The 1,1-dibromoethylene obtained by the production method can be isolated or purified by a conventional method such as adding water for liquid separation, if necessary.
 工程Bの反応後、生成物に安定化剤を添加してもよい。「工程Bの反応後」とは、1,1-ジブロモエチレンの単離又は精製後であることができる。このように工程Bの反応後に生成物に安定化剤を添加することで、当該生成物の保存安定性を向上させることができる。当該安定化剤としては、前述した、工程Bの反応前、及び反応中の任意の時点(すなわち、工程Bの反応時)に用いられる安定化剤と同様のものが挙げられる。
 工程Bの反応時、及び工程Bの反応後の両方で安定化剤を用いる場合、工程Bの反応後に生成物に添加される安定化剤は、工程Bの反応時に用いられる安定化剤と同一であってもよく、異なっていてもよい。
 反応性と安定性の観点から、当該工程Bの反応後に用いられる安定化剤は、前記工程Bの反応時に用いられる安定化剤とは異なっていることが好ましい。
 同様に、反応性と安定性の観点から、当該工程Bの反応後に用いられる2種以上の安定化剤のうちの少なくとも1種が、前記工程Bの反応時に用いられる安定化剤とは異なっていることも、また、好ましい。
 より好ましくは、工程Bの反応前に、安定化剤として機能できる、1種以上のアミン化合物を添加し、工程Bの反応後に、安定化剤として機能できる、前記1種以上の化合物(C)を添加する。当該化合物(C)は、好ましくは、前記「(1)水酸基を有する化合物」であり、より好ましくはフェノール化合物である。
 具体的には、本発明の好適な一態様においては、例えば、トリエチルアミンを、工程Bの反応前、又は反応中に反応系に添加し、及びBHTを、工程Bの反応後(好ましくは、1,1-ジブロモエチレンの単離又は精製後)に生成物に添加する。
 工程Bの反応後に生成物に添加される安定化剤の量は、1,1-ジブロモエチレンに対して、好ましくは、100~3000ppm(w/w)の範囲内、より好ましくは、100~2000ppm(w/w)の範囲内、更に好ましくは、100~1500ppm(w/w)の範囲内である。
After the reaction in Step B, a stabilizer may be added to the product. “After the reaction of Step B” can be after isolation or purification of 1,1-dibromoethylene. Thus, the storage stability of the product can be improved by adding a stabilizer to the product after the reaction in Step B. Examples of the stabilizer include the same stabilizers used before and after the reaction in Step B and at any time during the reaction (that is, during the reaction in Step B).
When a stabilizer is used both during the reaction of Step B and after the reaction of Step B, the stabilizer added to the product after the reaction of Step B is the same as the stabilizer used during the reaction of Step B. May be different.
From the viewpoint of reactivity and stability, the stabilizer used after the reaction in the step B is preferably different from the stabilizer used in the reaction in the step B.
Similarly, from the viewpoint of reactivity and stability, at least one of the two or more stabilizers used after the reaction in Step B is different from the stabilizer used in the reaction in Step B. It is also preferable.
More preferably, one or more amine compounds that can function as a stabilizer are added before the reaction in Step B, and the one or more compounds (C) that can function as a stabilizer after the reaction in Step B. Add. The compound (C) is preferably the “(1) hydroxyl group-containing compound”, and more preferably a phenol compound.
Specifically, in a preferred embodiment of the present invention, for example, triethylamine is added to the reaction system before or during the reaction of Step B, and BHT is added after the reaction of Step B (preferably 1 , After the isolation or purification of 1-dibromoethylene).
The amount of stabilizer added to the product after the reaction of Step B is preferably in the range of 100 to 3000 ppm (w / w), more preferably 100 to 2000 ppm relative to 1,1-dibromoethylene. Within the range of (w / w), more preferably within the range of 100 to 1500 ppm (w / w).
 本発明の一態様においては、工程Bは、(1)安定化剤として機能できる、1種以上のアミン化合物、及び(2)安定化剤として機能できる、前記化合物(C)(好ましくは、前記「(1)水酸基を有する化合物」、より好ましくは、フェノール化合物)の存在下で、実施される。
 なかでも好ましくは、工程Bは、1種以上のアミン化合物、及び2,6-ジ-tert-ブチル-4-メチルフェノール(BHT)の存在下で、実施される。
 工程Bの反応において、(1)1種以上のアミン化合物、及び(2)前記1種以上の化合物(C)(好ましくは、前記「(1)水酸基を有する化合物」、より好ましくは、フェノール化合物、特に好ましくは、BHT)は、それぞれ、工程Bの反応前、及び反応中の任意の時点(すなわち、工程Bの反応時)に反応系に添加できるが、工程Bの反応前に添加することが好ましい。当該反応は新規である。
In one embodiment of the present invention, Step B includes (1) one or more amine compounds that can function as a stabilizer, and (2) the compound (C) that can function as a stabilizer (preferably, It is carried out in the presence of “(1) a compound having a hydroxyl group”, more preferably a phenol compound).
Particularly preferably, Step B is carried out in the presence of one or more amine compounds and 2,6-di-tert-butyl-4-methylphenol (BHT).
In the reaction of Step B, (1) one or more amine compounds, and (2) the one or more compounds (C) (preferably, “(1) a compound having a hydroxyl group”, more preferably a phenol compound. Particularly preferably, BHT) can be added to the reaction system before the reaction in Step B and at any time during the reaction (that is, during the reaction in Step B), but it must be added before the reaction in Step B. Is preferred. The reaction is new.
 このように工程Bの反応系に添加される1種以上のアミン化合物の量は、1,1-ジブロモエチレンに対して、好ましくは、100~50000ppm(w/w)の範囲内、より好ましくは、100~10000ppm(w/w)の範囲内、更に好ましくは、100~3000ppm(w/w)の範囲内、より更に好ましくは、100~2000ppm(w/w)の範囲内、特に好ましくは、100~1500ppm(w/w)の範囲内である。
 このように工程Bの反応系に添加される1種以上の前記化合物(C)(好ましくは、前記「(1)水酸基を有する化合物」、より好ましくは、フェノール化合物、特に好ましくは、BHT))の量は、1,1-ジブロモエチレンに対して、好ましくは、100~50000ppm(w/w)の範囲内、より好ましくは、100~10000ppm(w/w)の範囲内、更に好ましくは、100~3000ppm(w/w)の範囲内、より更に好ましくは、100~2000ppm(w/w)の範囲内、特に好ましくは、100~1500ppm(w/w)の範囲内である。
Thus, the amount of the one or more amine compounds added to the reaction system of Step B is preferably within a range of 100 to 50000 ppm (w / w), more preferably with respect to 1,1-dibromoethylene. In the range of 100 to 10,000 ppm (w / w), more preferably in the range of 100 to 3000 ppm (w / w), still more preferably in the range of 100 to 2000 ppm (w / w), particularly preferably It is within the range of 100-1500 ppm (w / w).
As described above, one or more compounds (C) (preferably “(1) a compound having a hydroxyl group”, more preferably a phenol compound, and particularly preferably BHT) added to the reaction system of Step B) Is preferably in the range of 100 to 50000 ppm (w / w), more preferably in the range of 100 to 10000 ppm (w / w), still more preferably 100 It is within the range of -3000 ppm (w / w), more preferably within the range of 100-2000 ppm (w / w), and particularly preferably within the range of 100-1500 ppm (w / w).
 なお、1,1-ジブロモエチレン別法として、前記で説明した本発明の1,1-ジブロモエチレンの製造方法と同様にして、但し、1,1,2-トリブロモエタンに換えて、
(1)1,1,1-トリブロモエタン、又は
(2)1,1,2-トリブロモエタン、及び1,1,1-トリブロモエタンを用いることによっても、製造できる。
As an alternative to 1,1-dibromoethylene, the same method as the above-described method for producing 1,1-dibromoethylene of the present invention, except that 1,1,2-tribromoethane is used instead.
(1) 1,1,1-tribromoethane or (2) 1,1,2-tribromoethane and 1,1,1-tribromoethane can also be used for production.
 1,1-ジブロモエチレンは、具体的には、例えば、以下に説明する製造方法によって製造できる。
 当該1,1-ジブロモエチレンの製造方法は、1,1,2-トリブロモエタン、及び/又は1,1,1-トリブロモエタンを、塩基を用いて脱臭化水素して、1,1-ジブロモエチレンを得る工程を含む。
 当該工程に対して任意の時点、すなわち、当該工程の反応前、反応中、及び反応後の任意の時点で、反応系、又は反応生成物に、(1)1種以上のアミン化合物、並びに(2)1種以上の前記化合物(C)をそれぞれ添加することによって、本発明の1,1-ジブロモエチレン組成物を製造できる。
 (1)1種以上のアミン化合物、及び(2)1種以上の前記化合物(C)の添加の態様としては、例えば、
前記工程の始めから(これは、「前記工程の反応前」を包含する。)の両方を添加する態様、
前記工程の始めから一方を添加し、前記工程の反応開始後(これは、「前記工程の反応後」を包含する。)に他方を添加する態様、
前記工程の始めから一方を添加し、前記工程の反応開始後に両者を添加する態様(すなわち、前記「一方」については、更に追加する態様)、
前記工程の始めにはいずれも添加せずに、反応終了後に両者を添加する態様、
前記工程の始めにはいずれも添加せずに、反応中に両者を同時に添加する態様、及び
前記工程の始めにはいずれも添加せずに、反応中に両者を別々に添加する態様
が例示される。
Specifically, 1,1-dibromoethylene can be produced, for example, by the production method described below.
The 1,1-dibromoethylene is produced by dehydrobromination of 1,1,2-tribromoethane and / or 1,1,1-tribromoethane using a base to obtain 1,1- Obtaining dibromoethylene.
At any point in time for the step, that is, before the reaction in the step, during the reaction, and at any point after the reaction, (1) one or more amine compounds and ( 2) The 1,1-dibromoethylene composition of the present invention can be produced by adding one or more compounds (C).
For example, (1) one or more amine compounds and (2) one or more compounds (C) may be added as follows:
An aspect of adding both from the beginning of the step (this includes “before the reaction of the step”),
A mode in which one is added from the beginning of the step and the other is added after the start of the reaction in the step (this includes “after the reaction in the step”),
A mode in which one is added from the beginning of the step and both are added after the start of the reaction in the step (that is, a mode in which the “one” is further added),
A mode in which both are added after completion of the reaction without adding them at the beginning of the process,
An embodiment in which both are added simultaneously during the reaction without adding them at the beginning of the step and an embodiment in which both are added separately during the reaction without adding them at the beginning of the step are exemplified. The
 1,1,1-トリブロモエタンは、公知の方法、又はこれに準じた方法により、製造できる。 1,1,1-tribromoethane can be produced by a known method or a method analogous thereto.
 1,2-ジブロモ-1-クロロエタンの製造方法
 前述したように、工程Aに用いられる1,2-ジブロモ-1-クロロエタンは、例えば、
塩化ビニルに臭素を付加する工程Cを含む方法により好適に製造することができる。
Method for producing 1,2-dibromo-1-chloroethane As mentioned above, 1,2-dibromo-1-chloroethane used in Step A is, for example,
It can be suitably produced by a method including the step C of adding bromine to vinyl chloride.
 塩化ビニルへの臭素の付加は、例えば、塩化ビニルを臭素と反応させることにより実施できる。
 臭素の量は、塩化ビニルに対して、好ましくは、0.9当量~2.0当量の範囲内、より好ましくは1.0当量~1.5当量の範囲内、更に好ましくは1.0当量~1.1当量の範囲内である。
The addition of bromine to vinyl chloride can be carried out, for example, by reacting vinyl chloride with bromine.
The amount of bromine is preferably in the range of 0.9 equivalents to 2.0 equivalents, more preferably in the range of 1.0 equivalents to 1.5 equivalents, and even more preferably 1.0 equivalents relative to vinyl chloride. Within the range of ˜1.1 equivalents.
 工程Cの反応温度の上限は、好ましくは、55℃、より好ましくは、40℃、更に好ましくは、30℃である。
 工程Cの反応温度の下限は、好ましくは、-5℃、より好ましくは、0℃、更に好ましくは、5℃である。
 工程Cの反応温度は、好ましくは、-5℃~55℃の範囲内、より好ましくは、0℃~40℃の範囲内、更に好ましくは、5℃~30℃の範囲内である。
The upper limit of the reaction temperature in Step C is preferably 55 ° C, more preferably 40 ° C, and further preferably 30 ° C.
The lower limit of the reaction temperature in Step C is preferably −5 ° C., more preferably 0 ° C., and still more preferably 5 ° C.
The reaction temperature in Step C is preferably in the range of −5 ° C. to 55 ° C., more preferably in the range of 0 ° C. to 40 ° C., and still more preferably in the range of 5 ° C. to 30 ° C.
 工程Cの反応時間は、通常、1~20時間の範囲内である。 The reaction time of step C is usually within a range of 1 to 20 hours.
 工程Cは、反応溶媒の存在下、又は非存在下で実施できる。
 当該溶媒は、例えば、四塩化炭素、クロロホルム、及びそれらの混合溶媒である。
Step C can be carried out in the presence or absence of a reaction solvent.
The said solvent is carbon tetrachloride, chloroform, and those mixed solvents, for example.
 工程Cの具体的な実施態様の例としては、臭素を入れた反応器に塩化ビニルをバブリングにより導入又は圧入する方法が挙げられる。 As an example of a specific embodiment of Step C, there is a method of introducing or press-fitting vinyl chloride into a reactor containing bromine by bubbling.
 塩化ビニルを圧入する場合、反応器内の圧力(内圧)(ゲージ圧)は、好ましくは、0.01MPa~0.3MPaの範囲内、より好ましくは、0.05MPa~0.25MPaの範囲内、更に好ましくは0.05MPa~0.2MPaの範囲内である。 When vinyl chloride is injected, the pressure in the reactor (internal pressure) (gauge pressure) is preferably in the range of 0.01 MPa to 0.3 MPa, more preferably in the range of 0.05 MPa to 0.25 MPa. More preferably, it is in the range of 0.05 MPa to 0.2 MPa.
 当該製造方法によって得られた1,2-ジブロモ-1-クロロエタンは、そのまま、又は減圧蒸留、若しくは濃縮等の慣用の方法により精製して、工程Aに用いることができる。 The 1,2-dibromo-1-chloroethane obtained by the production method can be used in Step A as it is or after being purified by a conventional method such as distillation under reduced pressure or concentration.
 以下、実施例によって本発明を更に詳細に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
 以下の実施例において、ガスクロマトグラィー(GC)は次のGC条件に従って実施した。
 <GC条件>
 GC装置;SHIMADZU GC-2010
 カラム:J&W DB-5MS(0.25μm,60m,0.25mmID)
 カラムオーブン:40℃(4分間)→昇温(10℃/分)→300℃(0分間)
 気化室温度:200℃
In the following examples, gas chromatography (GC) was performed according to the following GC conditions.
<GC conditions>
GC equipment; SHIMADZU GC-2010
Column: J & W DB-5MS (0.25 μm, 60 m, 0.25 mm ID)
Column oven: 40 ° C. (4 minutes) → Temperature rise (10 ° C./min)→300° C. (0 minute)
Vaporization chamber temperature: 200 ° C
 実施例C1
 攪拌機を備えた反応器に臭素(50 g, 315 mmol)を加え、冷却しながら、塩化ビニル(21.5g, 344 mmol)を圧入した。その後室温に昇温して17時間終夜撹拌し、反応を終了させた。得られた粗体を減圧蒸留により精製し、1,2-ジブロモ-1-クロロエタン(67.6 g, 収率97%)を無色油状物として得た。
Example C1
Bromine (50 g, 315 mmol) was added to a reactor equipped with a stirrer, and vinyl chloride (21.5 g, 344 mmol) was injected under cooling. Thereafter, the temperature was raised to room temperature, and the mixture was stirred overnight for 17 hours to complete the reaction. The obtained crude product was purified by distillation under reduced pressure to obtain 1,2-dibromo-1-chloroethane (67.6 g, yield 97%) as a colorless oil.
 実施例C2
 反応器に臭素(500 g, 3.13 mol)を加え、冷却しながら、臭素の色が消えるまで塩化ビニルを添加し、1,2-ジブロモ-1-クロロエタン(696.5 g, 収率100%)を無色油状物として得た。
Example C2
Bromine (500 g, 3.13 mol) was added to the reactor, and while cooling, vinyl chloride was added until the bromine color disappeared, and 1,2-dibromo-1-chloroethane (696.5 g, 100% yield) was colorless. Obtained as an oil.
 実施例A1
 反応器内を窒素置換した後、アルミニウム(109 mg, 4.05 mmol)、及びジクロロメタン(30 mL)を加えた。撹拌しながら-20℃に冷却し、臭素(1.07 g, 6.75 mmol)のジクロロメタン(20 mL)溶液を滴下した。-20℃で15分撹拌後、1,2-ジブロモ-1-クロロエタン(3 g, 13.5 mmol)のジクロロメタン(20 mL)溶液を滴下した。-20℃で1時間撹拌した後、氷水へと注いだ。しばらく撹拌した後、分液し、1,1,2-トリブロモエタン(GC area 74%)を得、並びに原料である1,2-ジブロモ-1-クロロエタン(GC area 20%)を回収した。
Example A1
After the atmosphere in the reactor was replaced with nitrogen, aluminum (109 mg, 4.05 mmol) and dichloromethane (30 mL) were added. The mixture was cooled to −20 ° C. with stirring, and a solution of bromine (1.07 g, 6.75 mmol) in dichloromethane (20 mL) was added dropwise. After stirring at −20 ° C. for 15 minutes, a solution of 1,2-dibromo-1-chloroethane (3 g, 13.5 mmol) in dichloromethane (20 mL) was added dropwise. After stirring at −20 ° C. for 1 hour, the mixture was poured into ice water. After stirring for a while, liquid separation was performed to obtain 1,1,2-tribromoethane (GC area 74%), and 1,2-dibromo-1-chloroethane (GC area 20%) as a raw material was recovered.
 実施例A2
 1,2-ジブロモ-1-クロロエタンに対するアルミニウムの当量を0.4、臭素の当量を0.65に変更した以外は実施例A1と同様にして、1,1,2-トリブロモエタン(GC area 89%)を得、並びに原料である1,2-ジブロモ-1-クロロエタン(GC area 9%)を回収した。
Example A2
1,1,2-tribromoethane (GC area 89%) was obtained in the same manner as in Example A1, except that the equivalent of aluminum to 1,2-dibromo-1-chloroethane was changed to 0.4 and the equivalent of bromine to 0.65. As a result, 1,2-dibromo-1-chloroethane (GC area 9%) as a raw material was recovered.
 実施例A3
 1,2-ジブロモ-1-クロロエタンとジクロロメタンの重量比を1:10に変更した(ここで、1,2-ジブロモ-1-クロロエタンの量は実施例A1に同じ。)以外は実施例A1と同様にして、1,1,2-トリブロモエタン(GC area 73%)を得、並びに原料である1,2-ジブロモ-1-クロロエタン(GC area 26%)を回収した。
Example A3
Example A1 except that the weight ratio of 1,2-dibromo-1-chloroethane to dichloromethane was changed to 1:10 (where the amount of 1,2-dibromo-1-chloroethane is the same as in Example A1). Similarly, 1,1,2-tribromoethane (GC area 73%) was obtained, and 1,2-dibromo-1-chloroethane (GC area 26%) as a raw material was recovered.
 実施例A4
 1,2-ジブロモ-1-クロロエタンに対するアルミニウムの当量を0.5、臭素の当量を0.8に変更し、1,2-ジブロモ-1-クロロエタンとジクロロメタンの重量比を1:10に変更した(ここで、1,2-ジブロモ-1-クロロエタンの量は実施例A1に同じ。)以外は実施例A1と同様にして、1,1,2-トリブロモエタン(GC area 97%)を得、並びに原料である1,2-ジブロモ-1-クロロエタン(GC area 2%)を回収した。
Example A4
The equivalent of aluminum to 1,2-dibromo-1-chloroethane was changed to 0.5, the equivalent of bromine to 0.8, and the weight ratio of 1,2-dibromo-1-chloroethane to dichloromethane was changed to 1:10 (where The amount of 1,2-dibromo-1-chloroethane is the same as in Example A1, except that 1,1,2-tribromoethane (GC area 97%) is obtained in the same manner as in Example A1. Some 1,2-dibromo-1-chloroethane (GC area 2%) was recovered.
 実施例A5
1,2-ジブロモ-1-クロロエタンに対するアルミニウムの当量を0.5、臭素の当量を0.5に変更し、1,2-ジブロモ-1-クロロエタンとジクロロメタンの重量比を1:10に変更した(ここで、1,2-ジブロモ-1-クロロエタンの量は実施例A1に同じ。)以外は実施例A1と同様にして、1,1,2-トリブロモエタン(GC area 89%)を得、並びに原料である1,2-ジブロモ-1-クロロエタン(GC area 5%)を回収した。
Example A5
The equivalent of aluminum to 1,2-dibromo-1-chloroethane was changed to 0.5, the equivalent of bromine to 0.5, and the weight ratio of 1,2-dibromo-1-chloroethane to dichloromethane was changed to 1:10 (where The amount of 1,2-dibromo-1-chloroethane is the same as in Example A1, except that 1,1,2-tribromoethane (GC area 89%) is obtained in the same manner as in Example A1. Some 1,2-dibromo-1-chloroethane (GC area 5%) was recovered.
 実施例A6
 反応温度を0℃に変更した以外は実施例A1と同様にして、1,1,2-トリブロモエタン(GC area 20%)、ジクロロブロモエタン(GC area 14%)、及びジクロロメタンの臭素化体(GC area 37%)を得、並びに原料である1,2-ジブロモ-1-クロロエタン(GC area 29%)を回収した。
Example A6
A brominated product of 1,1,2-tribromoethane (GC area 20%), dichlorobromoethane (GC area 14%), and dichloromethane, except that the reaction temperature was changed to 0 ° C. (GC area 37%) was obtained, and 1,2-dibromo-1-chloroethane (GC area 29%) as a raw material was recovered.
 実施例A7
 反応器内を窒素置換した後、アルミニウム(60.7 mg, 2.25 mmol)、及び1,2-ジブロモ-1-クロロエタン(1 g, 4.5 mmol)を加えた。撹拌しながら-20℃に冷却し、臭素(360 mg, 2.25 mmol)を滴下した。-20℃で1時間撹拌した後、氷水へと注いだ。しばらく撹拌した後、分液し、1,1,2-トリブロモエタン(GC area 48%)を得、並びに原料である1,2-ジブロモ-1-クロロエタン(GC area 52%)を回収した。
Example A7
After the atmosphere in the reactor was replaced with nitrogen, aluminum (60.7 mg, 2.25 mmol) and 1,2-dibromo-1-chloroethane (1 g, 4.5 mmol) were added. The mixture was cooled to −20 ° C. with stirring, and bromine (360 mg, 2.25 mmol) was added dropwise. After stirring at −20 ° C. for 1 hour, the mixture was poured into ice water. After stirring for a while, liquid separation was performed to obtain 1,1,2-tribromoethane (GC area 48%), and 1,2-dibromo-1-chloroethane (GC area 52%) as a raw material was recovered.
 実施例A8
 反応時間を5.5時間に変更した以外は実施例A7と同様にして、1,1,2-トリブロモエタン(GC area 90%)を得、並びに原料である1,2-ジブロモ-1-クロロエタン(GC area 0.3%)を回収した。
Example A8
Except that the reaction time was changed to 5.5 hours, 1,1,2-tribromoethane (GC area 90%) was obtained in the same manner as in Example A7, and the raw material 1,2-dibromo-1-chloroethane ( GC area 0.3%) was recovered.
 実施例A9
 反応器内を窒素置換した後、アルミニウム(60 mg, 2.25 mmol)、及び1,2-ジクロロエタン(8 mL)を加えた。撹拌しながら-20℃に冷却し、臭素(360 mg, 2.25 mmol)を滴下した。-20℃で15分撹拌後、1,2-ジブロモ-1-クロロエタン(1 g, 4.5 mmol)を滴下した。-20℃で1時間撹拌した後、氷水へと注いだ。しばらく撹拌した後、分液し、1,1,2-トリブロモエタン(GC area 32%)、及び1,2-ジクロロエタンの臭素化体(GC area 30%)を得、並びに原料である1,2-ジブロモ-1-クロロエタン(GC area 34%)を回収した。
Example A9
After the atmosphere in the reactor was replaced with nitrogen, aluminum (60 mg, 2.25 mmol) and 1,2-dichloroethane (8 mL) were added. The mixture was cooled to −20 ° C. with stirring, and bromine (360 mg, 2.25 mmol) was added dropwise. After stirring at −20 ° C. for 15 minutes, 1,2-dibromo-1-chloroethane (1 g, 4.5 mmol) was added dropwise. After stirring at −20 ° C. for 1 hour, the mixture was poured into ice water. After stirring for a while, liquid separation was performed to obtain 1,1,2-tribromoethane (GC area 32%) and a brominated product of 1,2-dichloroethane (GC area 30%), and the raw material 1, 2-Dibromo-1-chloroethane (GC area 34%) was recovered.
 実施例A10
 反応器内を窒素置換した後、臭化アルミニウム(396 mg, 1.49 mmol)、及びジクロロメタン(7.6 mL)を加えた。撹拌しながら-20℃に冷却し、1,2-ジブロモ-1-クロロエタン(1 g, 4.5 mmol)を滴下した。-20℃で1時間撹拌した後、氷水へと注いだ。しばらく撹拌した後、分液し、1,1,2-トリブロモエタン(GC area 92%)を得た。
Example A10
After the atmosphere in the reactor was replaced with nitrogen, aluminum bromide (396 mg, 1.49 mmol) and dichloromethane (7.6 mL) were added. The mixture was cooled to −20 ° C. with stirring, and 1,2-dibromo-1-chloroethane (1 g, 4.5 mmol) was added dropwise. After stirring at −20 ° C. for 1 hour, the mixture was poured into ice water. After stirring for a while, liquid separation was performed to obtain 1,1,2-tribromoethane (GC area 92%).
 実施例A11
反応器内を窒素置換した後、アルミニウム(60.7 mg, 2.25 mmol)、及びジブロモメタン(30 g)を加えた。撹拌しながら 0℃に冷却し、臭素(360 mg, 2.25 mmol)を滴下した。0℃で15分撹拌後、1,2-ジブロモ-1-クロロエタン(1 g, 4.5 mmol)を滴下した。0℃で1時間撹拌した後、氷水へと注いだ。しばらく撹拌した後、分液し、1,1,2-トリブロモエタン(GC area 82%)を得、並びに原料である1,2-ジブロモ-1-クロロエタン(GC area 2%)を回収した。
Example A11
After the atmosphere in the reactor was replaced with nitrogen, aluminum (60.7 mg, 2.25 mmol) and dibromomethane (30 g) were added. The mixture was cooled to 0 ° C. with stirring, and bromine (360 mg, 2.25 mmol) was added dropwise. After stirring at 0 ° C. for 15 minutes, 1,2-dibromo-1-chloroethane (1 g, 4.5 mmol) was added dropwise. After stirring at 0 ° C for 1 hour, the mixture was poured into ice water. After stirring for a while, liquid separation was performed to obtain 1,1,2-tribromoethane (GC area 82%), and 1,2-dibromo-1-chloroethane (GC area 2%) as a raw material was recovered.
 実施例A12
 反応器内を窒素置換した後、アルミニウム(240 mg, 8.90 mmol)、及びジブロモメタン(30 g)を加えた。撹拌しながら-20℃に冷却し、臭素(1.8 g, 11.3 mmol)を滴下した。-20℃で15分撹拌後、1,1,2-トリクロロエタン(1 g, 7.50 mmol)を滴下した。0℃に昇温し、5.5時間撹拌した後、氷水へと注いだ。しばらく撹拌した後、分液し、1,1,2-トリブロモエタン(GC area 88%)、クロロジブロモエタン(GC area 2%)、及び多種類の構造不明物を得、並びに原料である1,1,2-トリクロロエタン(GC area 5%)を回収した。
Example A12
After the atmosphere in the reactor was replaced with nitrogen, aluminum (240 mg, 8.90 mmol) and dibromomethane (30 g) were added. The mixture was cooled to −20 ° C. with stirring, and bromine (1.8 g, 11.3 mmol) was added dropwise. After stirring at −20 ° C. for 15 minutes, 1,1,2-trichloroethane (1 g, 7.50 mmol) was added dropwise. The temperature was raised to 0 ° C., stirred for 5.5 hours, and then poured into ice water. After stirring for a while, liquid separation was performed to obtain 1,1,2-tribromoethane (GC area 88%), chlorodibromoethane (GC area 2%), and various kinds of unknown structures. 1,2-trichloroethane (GC area 5%) was recovered.
 実施例A13
 反応器内を窒素置換した後、1,2-ジブロモ-1-クロロエタン(50 g, 225 mmol)、ジクロロメタン(250 g)、臭素(19.8 g, 125 mmol)を加えた。撹拌しながら-10℃に冷却し、アルミニウム(2.43 g, 90 mmol)を添加した。そのままの温度で1時間撹拌した後、氷水へと注いだ。しばらく撹拌した後、分液し、1,1,2-トリブロモエタン(GC area 84%)を得、並びに原料である1,2-ジブロモ-1-クロロエタン(GC area 15%)を回収した。
Example A13
After purging the inside of the reactor with nitrogen, 1,2-dibromo-1-chloroethane (50 g, 225 mmol), dichloromethane (250 g), and bromine (19.8 g, 125 mmol) were added. Cool to −10 ° C. with stirring and add aluminum (2.43 g, 90 mmol). After stirring at the same temperature for 1 hour, it was poured into ice water. After stirring for a while, liquid separation was performed to obtain 1,1,2-tribromoethane (GC area 84%), and 1,2-dibromo-1-chloroethane (GC area 15%) as a raw material was recovered.
 実施例A14
 反応器内を窒素置換した後、1,2-ジブロモ-1-クロロエタン(1000 g, 3.75 mol)、ジクロロメタン(4000 mL)を加えた。撹拌しながら-20℃に冷却し、アルミニウム(20.3 g, 752 mmol)を添加後、臭素(192 g, 1.20 mol)を滴下した。この添加操作を合計3回行った。そのままの温度で3時間撹拌した後、氷水へと注いだ。しばらく撹拌した後、分液し、粗体を得た。得られた粗体を蒸留精製することにより、1,1,2-トリブロモエタン(収率 94%, GC area 99%)を得た。
Example A14
After the atmosphere in the reactor was replaced with nitrogen, 1,2-dibromo-1-chloroethane (1000 g, 3.75 mol) and dichloromethane (4000 mL) were added. The mixture was cooled to −20 ° C. with stirring, aluminum (20.3 g, 752 mmol) was added, and bromine (192 g, 1.20 mol) was added dropwise. This addition operation was performed three times in total. After stirring at the same temperature for 3 hours, the mixture was poured into ice water. After stirring for a while, liquid separation was performed to obtain a crude product. The obtained crude product was purified by distillation to obtain 1,1,2-tribromoethane (yield 94%, GC area 99%).
 実施例B1
 反応器に、メタノール(0.3 g)、1,1,2-トリブロモエタン(3.0 g, 11.2 mmol)、Et3N (5 mg) を加えた。さらに25% 水酸化ナトリウム水溶液(1.97 g, 12.3 mmol)を加えた後、撹拌しながら50℃に昇温した。そのままの温度で20時間撹拌した後、分液し、1,1-ジブロモエチレン(1.68 g, 収率81%, GC area 98.7%)を無色油状物として得た。
Example B1
Methanol (0.3 g), 1,1,2-tribromoethane (3.0 g, 11.2 mmol) and Et 3 N (5 mg) were added to the reactor. Further, 25% aqueous sodium hydroxide solution (1.97 g, 12.3 mmol) was added, and the mixture was heated to 50 ° C. with stirring. After stirring at the same temperature for 20 hours, liquid separation was performed to obtain 1,1-dibromoethylene (1.68 g, yield 81%, GC area 98.7%) as a colorless oil.
 実施例B2
 反応器に、DMF(1 g)、1,1,2-トリブロモエタン(1.0 g, 3.75 mmol)、Et3N (1 mg) を加えた。水酸化ナトリウム(165.2 mg, 4.13 mmol)を加えた後、撹拌しながら50℃に昇温した。反応終了後、水を加えて分液し、1,1-ジブロモエチレン(GC area 96.5%)を無色油状物として得た。
Example B2
To the reactor, DMF (1 g), 1,1,2-tribromoethane (1.0 g, 3.75 mmol), Et 3 N (1 mg) were added. After adding sodium hydroxide (165.2 mg, 4.13 mmol), the mixture was heated to 50 ° C. with stirring. After completion of the reaction, water was added for liquid separation to obtain 1,1-dibromoethylene (GC area 96.5%) as a colorless oil.
 実施例B3
 反応器に、THF(1 g)、1,1,2-トリブロモエタン(1.0 g, 3.75 mmol)、Et3N (1 mg) を加えた。水酸化ナトリウム(165.2 mg, 4.13 mmol)を加えた後、撹拌しながら50℃に昇温した。反応終了後、水を加えて分液し、1,1-ジブロモエチレン(GC area 95.4%)を無色油状物として得た。
Example B3
To the reactor was added THF (1 g), 1,1,2-tribromoethane (1.0 g, 3.75 mmol), Et 3 N (1 mg). After adding sodium hydroxide (165.2 mg, 4.13 mmol), the mixture was heated to 50 ° C. with stirring. After completion of the reaction, water was added and the mixture was separated to give 1,1-dibromoethylene (GC area 95.4%) as a colorless oil.
 実施例B4
 反応器に、NMP(1 g)、1,1,2-トリブロモエタン(1.0 g, 3.75 mmol)、Et3N (1 mg) を加えた。水酸化ナトリウム(165.2 mg, 4.13 mmol)を加えた後、撹拌しながら50℃に昇温した。反応終了後、水を加えて分液し、1,1-ジブロモエチレン(GC area 92.4%)を無色油状物として得た。
Example B4
To the reactor, NMP (1 g), 1,1,2-tribromoethane (1.0 g, 3.75 mmol) and Et 3 N (1 mg) were added. After adding sodium hydroxide (165.2 mg, 4.13 mmol), the mixture was heated to 50 ° C. with stirring. After completion of the reaction, water was added and the mixture was separated to give 1,1-dibromoethylene (GC area 92.4%) as a colorless oil.
 実施例B5
 反応器に、メタノール(0.5 g)、1,1,2-トリブロモエタン(5.0 g, 18.7 mmol)、Et3N (189 mg, 1.87 mmol) を加えた。その混合溶液に50% 水酸化ナトリウム水溶液(1.65 g, 20.6 mmol)を加え、室温で15時間撹拌した。NMR及びGCにより分析し、1,1-ジブロモエチレン(収率94%)を得た。
Example B5
Methanol (0.5 g), 1,1,2-tribromoethane (5.0 g, 18.7 mmol) and Et 3 N (189 mg, 1.87 mmol) were added to the reactor. A 50% aqueous sodium hydroxide solution (1.65 g, 20.6 mmol) was added to the mixed solution, and the mixture was stirred at room temperature for 15 hours. Analysis by NMR and GC gave 1,1-dibromoethylene (94% yield).
 実施例B6
 反応器に、メタノール(0.5 g)、1,1,2-トリブロモエタン(5.0 g, 18.7 mmol)、Et3N (5 mg) を加えた。その混合溶液に50% 水酸化ナトリウム水溶液(1.65 g, 20.6 mmol)を加え、室温で15時間撹拌した。NMR及びGCにより分析し、1,1-ジブロモエチレン(収率91%, GC area 98.8%)を得た。
Example B6
Methanol (0.5 g), 1,1,2-tribromoethane (5.0 g, 18.7 mmol) and Et 3 N (5 mg) were added to the reactor. A 50% aqueous sodium hydroxide solution (1.65 g, 20.6 mmol) was added to the mixed solution, and the mixture was stirred at room temperature for 15 hours. Analysis by NMR and GC gave 1,1-dibromoethylene (yield 91%, GC area 98.8%).
 実施例B7
 反応器に、テトラメチルアンモニウムクロリド(205.5 mg, 1.875 mmol)、1,1,2-トリブロモエタン(10 g, 37.5 mmol)、Et3N (10 mg) を加えた。氷冷下、50% 水酸化ナトリウム水溶液(3.3 g, 41.3 mmol)を加えた後、室温で51時間撹拌した後、分液し、1,1-ジブロモエチレン(GC area 56%)を無色油状物として得た。
Example B7
Tetramethylammonium chloride (205.5 mg, 1.875 mmol), 1,1,2-tribromoethane (10 g, 37.5 mmol) and Et 3 N (10 mg) were added to the reactor. Under ice-cooling, 50% aqueous sodium hydroxide solution (3.3 g, 41.3 mmol) was added, and the mixture was stirred at room temperature for 51 hours and then separated to give 1,1-dibromoethylene (GC area 56%) as a colorless oil. Got as.
 本発明の製造方法で得られる、1,1,2-トリブロモエタン、及び1,1-ジブロモエチレンは医薬(例えば、抗生物質)の合成中間体、光学繊維のさや材料用の合成中間体、塗料用材料の合成中間体、半導体レジスト材料の合成中間体、及び機能性高分子の単量体の合成中間体等として有用な化合物である。 1,1,2-tribromoethane and 1,1-dibromoethylene obtained by the production method of the present invention are pharmaceutical intermediates (for example, antibiotics), synthetic intermediates for optical fiber sheath materials, It is a compound useful as a synthetic intermediate for coating materials, a synthetic intermediate for semiconductor resist materials, a synthetic intermediate for monomers of functional polymers, and the like.

Claims (10)

1,1,2-トリブロモエタンの製造方法であって、式(1):
Figure JPOXMLDOC01-appb-C000001
[式中、
、X、及びXは、塩素原子、又は臭素原子を表す。
但し、X、X、及びXのうち、少なくとも1個は塩素原子である。]
で表される
1,1,2-トリハロエタンを臭素化して1,1,2-トリブロモエタンを得る工程Aを含む製造方法。
A method for producing 1,1,2-tribromoethane having the formula (1):
Figure JPOXMLDOC01-appb-C000001
[Where:
X 1 , X 2 , and X 3 represent a chlorine atom or a bromine atom.
However, at least one of X 1 , X 2 , and X 3 is a chlorine atom. ]
Represented by
A production method comprising a step A in which 1,1,2-trihaloethane is brominated to obtain 1,1,2-tribromoethane.
前記式(1)で表される1,1,2-トリハロエタンが1,2-ジブロモ-1-クロロエタン又は1,1,2-トリクロロエタンである請求項1に記載の製造方法。 The production method according to claim 1, wherein the 1,1,2-trihaloethane represented by the formula (1) is 1,2-dibromo-1-chloroethane or 1,1,2-trichloroethane.
工程Aにおいて、前記式(1)で表される1,1,2-トリハロエタンをアルミニウム及び臭素と反応させて1,1,2-トリブロモエタンを得る請求項1又は2に記載の製造方法。 The process according to claim 1 or 2, wherein in step A, 1,1,2-trihaloethane represented by the formula (1) is reacted with aluminum and bromine to obtain 1,1,2-tribromoethane.
工程Aにおいて、前記式(1)で表される1,1,2-トリハロエタンを1個以上の臭素原子を有するハロゲン化アルミニウムと反応させて1,1,2-トリブロモエタンを得る請求項1~3のいずれか1項に記載の製造方法。 In step A, 1,1,2-trihaloethane represented by the formula (1) is reacted with an aluminum halide having one or more bromine atoms to obtain 1,1,2-tribromoethane. 4. The production method according to any one of items 1 to 3.
前記1個以上の臭素原子を有するハロゲン化アルミニウムが臭化アルミニウムである請求項4に記載の製造方法。 The method according to claim 4, wherein the aluminum halide having one or more bromine atoms is aluminum bromide.
工程Aの反応温度が-78℃~20℃の範囲内である請求項1~5のいずれか1項に記載の製造方法。 The process according to any one of claims 1 to 5, wherein the reaction temperature in step A is in the range of -78 ° C to 20 ° C.
工程Aが反応溶媒としてのハロゲン化アルキル化合物の存在下で実施される請求項1~6のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 6, wherein Step A is carried out in the presence of an alkyl halide compound as a reaction solvent.
1,1-ジブロモエチレンの製造方法であって、請求項1~7のいずれか1項に記載の製造方法によって得られる1,1,2-トリブロモエタンを、塩基を用いて脱臭化水素して、1,1-ジブロモエチレンを得る工程Bを含む製造方法。 A method for producing 1,1-dibromoethylene, wherein 1,1,2-tribromoethane obtained by the production method according to any one of claims 1 to 7 is dehydrobrominated using a base. And the production method comprising the step B of obtaining 1,1-dibromoethylene.
工程Bが反応溶媒としての水溶性有機溶媒、又は水溶性有機溶媒及び水の混合溶媒の存在下で実施される請求項8に記載の製造方法。 The production method according to claim 8, wherein Step B is carried out in the presence of a water-soluble organic solvent as a reaction solvent or a mixed solvent of a water-soluble organic solvent and water.
工程Bが、水の存在下かつ水溶性有機溶媒の不存在下で、相間移動触媒を用いて実施される請求項8に記載の製造方法。 The production method according to claim 8, wherein Step B is carried out using a phase transfer catalyst in the presence of water and in the absence of a water-soluble organic solvent.
PCT/JP2015/062878 2014-04-28 2015-04-28 1,1,2-tribromoethane production method WO2015166961A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580022949.4A CN106458797B (en) 2014-04-28 2015-04-28 The manufacturing method of 1,1,2- tribromoethane

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014092900 2014-04-28
JP2014-092900 2014-04-28
JP2015-012505 2015-01-26
JP2015-012510 2015-01-26
JP2015012510A JP5987926B2 (en) 2014-04-28 2015-01-26 Composition
JP2015012505A JP5900671B2 (en) 2014-04-28 2015-01-26 Process for producing 1,1,2-tribromoethane

Publications (1)

Publication Number Publication Date
WO2015166961A1 true WO2015166961A1 (en) 2015-11-05

Family

ID=54358688

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/062878 WO2015166961A1 (en) 2014-04-28 2015-04-28 1,1,2-tribromoethane production method
PCT/JP2015/062879 WO2015166962A1 (en) 2014-04-28 2015-04-28 Composition

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062879 WO2015166962A1 (en) 2014-04-28 2015-04-28 Composition

Country Status (1)

Country Link
WO (2) WO2015166961A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1891415A (en) * 1930-04-09 1932-12-20 Dow Chemical Co Preparation of brominated hydrocarbons
JPS5052006A (en) * 1973-09-13 1975-05-09
JPS59108727A (en) * 1982-11-29 1984-06-23 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− Improved dehalogenation hydrogenation
JPS6456637A (en) * 1987-08-25 1989-03-03 Toso Yuki Kagaku Kk Production of 3-bromobenzaldehyde
JP2013519631A (en) * 2010-02-19 2013-05-30 ダイキン工業株式会社 Process for producing 2-chloro-3,3,3-trifluoropropene
WO2015033985A1 (en) * 2013-09-03 2015-03-12 ダイキン工業株式会社 Method for producing 1,1-dibromo-1-fluoroethane

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3957892A (en) * 1973-05-23 1976-05-18 Ethyl Corporation Stabilized vinylidene halide
JPH1072383A (en) * 1996-09-03 1998-03-17 Tosoh Corp Stabilization of allyl bromide and stabilized allyl bromide composition
JP5360806B2 (en) * 2008-11-11 2013-12-04 独立行政法人産業技術総合研究所 Method for producing fluorinated cyclobutane compound
WO2013008509A1 (en) * 2011-07-13 2013-01-17 東ソー有機化学株式会社 Method for stabilizing allyl bromide compound, and stabilized allyl bromide compound composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1891415A (en) * 1930-04-09 1932-12-20 Dow Chemical Co Preparation of brominated hydrocarbons
JPS5052006A (en) * 1973-09-13 1975-05-09
JPS59108727A (en) * 1982-11-29 1984-06-23 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− Improved dehalogenation hydrogenation
JPS6456637A (en) * 1987-08-25 1989-03-03 Toso Yuki Kagaku Kk Production of 3-bromobenzaldehyde
JP2013519631A (en) * 2010-02-19 2013-05-30 ダイキン工業株式会社 Process for producing 2-chloro-3,3,3-trifluoropropene
WO2015033985A1 (en) * 2013-09-03 2015-03-12 ダイキン工業株式会社 Method for producing 1,1-dibromo-1-fluoroethane

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
COURTLAND L. AGRE ET AL.: "Observations on Certain Silanes Containing Bromine in Side Chains", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 74, 1952, pages 3899 - 902, XP055234224 *

Also Published As

Publication number Publication date
WO2015166962A1 (en) 2015-11-05

Similar Documents

Publication Publication Date Title
US9255044B2 (en) Process for the manufacture of 2-chloro-1,1,1,2-tetrafluoropropane by liquid phase fluorination of 2-chloro-3,3,3-trifluoropropene
TW201119997A (en) Method for the manufacture of fluorinated ethylene carbonates
JP2017137267A (en) Method for producing cyclic sulfate
JP2010037205A (en) Fluorinated alkane compound, method of preparing the same, and method of preparing perfluoroalkyne compound
JP5900671B2 (en) Process for producing 1,1,2-tribromoethane
JP6428465B2 (en) Process for producing 1,1-dibromo-1-fluoroethane
WO2015166961A1 (en) 1,1,2-tribromoethane production method
US20080214878A1 (en) Method For The Production Of 1,3,5-Trifluoro-2,4,6-Trichlorobenzene From Fluorobenzene Derivatives
JP2007186453A (en) Method for producing thiazole compound
WO2020070759A1 (en) Process for the preparation of 2,2-difluoro-1,3-benzodioxole and intermediates thereof
WO2019151267A1 (en) Production methods for 1,3-dioxolane compound and perfluoro(2,2-dimethyl-1,3-dioxole)
US20180282247A1 (en) Process for the preparation of organic halides
WO2022085727A1 (en) Method for producing composition containing purified fluorine-containing ether compound
JPH07291881A (en) Chlorination of difluoromethyl methyl ether
WO2022054609A1 (en) Method for producing hydrochlorofluorocarbon
JP2020011926A (en) Method for producing halogenated ether
JP2018108961A (en) Method for producing 2,2,2,1-tetrafluoloethyl dichloromethyl ether
WO2019064863A1 (en) Production method for 1,2,2,2-tetrafluoroethyl difluoromethyl ether (desflurane)
JP4353688B2 (en) Method for producing 3,3-dimethyl-1-butyne
JP2002255901A (en) New vic-dichloroacid fluoride compound
JP2005200396A (en) Fluorine-containing benzal chloride and method for producing the same
JP2005082515A (en) Method for producing halogenated adamantanes
JP2016141620A (en) Production method of trichloroadamantane
JP2005047824A (en) Method for producing chlorinated hydrocarbon compound
JP2003012661A (en) Method for producing 3-alkoxymethyl oxetane compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15785355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15785355

Country of ref document: EP

Kind code of ref document: A1