WO2015166933A1 - Heat storage material - Google Patents

Heat storage material Download PDF

Info

Publication number
WO2015166933A1
WO2015166933A1 PCT/JP2015/062760 JP2015062760W WO2015166933A1 WO 2015166933 A1 WO2015166933 A1 WO 2015166933A1 JP 2015062760 W JP2015062760 W JP 2015062760W WO 2015166933 A1 WO2015166933 A1 WO 2015166933A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
storage material
heat
container
silicon carbide
Prior art date
Application number
PCT/JP2015/062760
Other languages
French (fr)
Japanese (ja)
Inventor
仁人 吉野
祐岡 輝明
上野 和重
近藤 康雄
鈴木 智之
Original Assignee
北川工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北川工業株式会社 filed Critical 北川工業株式会社
Publication of WO2015166933A1 publication Critical patent/WO2015166933A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular

Definitions

  • the present invention relates to a heat storage material.
  • a supercooled liquid such as sodium acetate trihydrate is known as a latent heat storage material capable of arbitrarily releasing solidification heat.
  • the latent heat storage material releases solidification heat by changing the phase from a supercooled state (liquid state) to a solid state (see, for example, Patent Document 1).
  • the heat generated from the latent heat storage material can be used, for example, for heating a battery, a radiator or the like when starting an automobile engine. In such an application, it is required to warm an object heated by the heat storage material faster.
  • This invention was completed based on the above situations, and it aims at providing the thermal storage material which can warm up the target object heated by a thermal storage material more rapidly.
  • the present invention is a heat storage material containing sodium acetate and silicon carbide.
  • the object can be warmed faster than the heat storage material containing only sodium acetate.
  • content of silicon carbide is 50 to 70 mass% of the whole mass.
  • the target object warmed by the heat storage material can be warmed more quickly.
  • Diagram showing a water temperature measuring device The graph which shows the relationship between time and water temperature at the time of using the thermal storage material of an Example Graph showing the relationship between time and water temperature when using the heat storage material of the comparative example
  • a diagram schematically showing the water temperature measuring device used in Evaluation Test 2 The perspective view which represented typically the measurement container used by the evaluation test 2 The figure which represented typically the process of nucleating the thermal storage material in a measurement container in the water temperature measuring apparatus of the evaluation test 2.
  • the graph which shows the relationship between time and water temperature at the time of using the thermal storage material of Examples 4-8 The graph which shows the relationship between time and water temperature at the time of using the thermal storage material of Examples 9-13
  • the graph which shows the relationship between time and water temperature at the time of using the thermal storage material of Examples 14-18 The graph which shows the relationship between time and water temperature at the time of using the thermal storage material of Examples 19-23
  • the graph which shows the relationship between time and water temperature at the time of using the thermal storage material of Examples 24 and 25 The graph which shows the relationship between time and water temperature at the time of using the thermal storage material of Examples 26-28, Example 18 and Example 23
  • the heat storage material of the present invention contains sodium acetate and silicon carbide.
  • sodium acetate include sodium acetate trihydrate itself, sodium acetate trihydrate dissolved in water, anhydrous sodium acetate dissolved in water (for example, 70 parts by mass with respect to 100 parts by mass of anhydrous sodium acetate)
  • a sodium acetate aqueous solution obtained by adding water of 100 parts by mass or less, preferably 74.61 parts by mass or more and 95.16 parts by mass or less can be used.
  • Silicon carbide is added to a liquid material containing sodium acetate.
  • the “liquid substance containing sodium acetate” includes not only a liquid state but also a semi-fluid (gel) state.
  • the “liquid material containing sodium acetate” includes sodium acetate trihydrate and anhydrous sodium acetate dissolved in water, liquid sodium acetate trihydrate, and the like.
  • the silicon carbide content is preferably 30% by mass to 70% by mass with respect to the total mass of the heat storage material. When the content of silicon carbide is within such a range, heat can be efficiently transmitted to the outside from the heat storage material.
  • the particle size (average particle size) of silicon carbide is not particularly limited as long as the object of the present invention can be achieved.
  • the particle size is preferably 3 ⁇ m to 100 ⁇ m, more preferably 5 ⁇ m to 95 ⁇ m, and more preferably 5.5 ⁇ m to 90 ⁇ m. Is particularly preferred.
  • the particle size (average particle size) of silicon carbide is in such a range, the aqueous sodium acetate solution and silicon carbide can be mixed, and a heat storage material can be prepared.
  • the heat storage material of the present invention can be used by being housed in a resin container or the like together with known members that impart physical stimulation or impact to the heat storage material.
  • Example preparation (1) Production of heat storage materials of Examples 1 to 3 Heat storage materials of Examples 1 to 3 were produced by the following procedure using anhydrous sodium acetate, distilled water, and silicon carbide in the amounts shown in Table 1. Each heat storage material was produced by mixing a sodium acetate aqueous solution obtained by mixing anhydrous sodium acetate and distilled water with silicon carbide in a stainless steel sealed container having a volume of 150 cm 3 . Volume of each heat storage material was 150 cm 3.
  • compositions of Comparative Examples 1 and 2 were prepared according to the following procedure.
  • a composition of Comparative Example 1 was prepared by mixing an aqueous solution of sodium acetate obtained by mixing anhydrous sodium acetate and distilled water with aluminum oxide in a sealed container made of stainless steel having a volume of 150 cm 3 .
  • a composition of Comparative Example 2 was prepared by mixing an aqueous sodium acetate solution obtained by mixing anhydrous sodium acetate and distilled water and aluminum hydroxide into a stainless steel sealed container having a volume of 150 cm 3 .
  • the volume of each composition of Comparative Examples 1 and 2 was 150 cm 3 .
  • addition amount (g) refers to the addition amount (g) of silicon carbide or filler (aluminum oxide, aluminum hydroxide), and “addition amount (mass%)” refers to the heat storage material. It refers to the ratio of silicon carbide or filler to the total mass or the total mass of the composition.
  • particle size refers to the particle size of silicon carbide or the particle size of filler.
  • thermocouple 2 for liquid is attached to the inner wall surface of the heat insulating container 1 containing 250 ml of tap water W, and the heat storage material of the example, the composition of the comparative example, or the sodium acetate aqueous solution is contained.
  • the sealed container 3 was fitted into the groove 1A of the heat insulating container 1.
  • the opening part of the heat insulation container 1 was closed with the heat insulation cover which is not shown in figure.
  • the water temperature in the heat insulation container 1 after fitting the sealed container 3 in the heat insulation container 1 was measured by the temperature logger 4 every 240 seconds until 240 seconds later (refer FIG. 1).
  • the temperature (initial temperature) of tap water before the start of measurement was 17.8 ° C. for all samples.
  • Tables 2 and 3 show the elapsed time (seconds) from the start of measurement, measurement results (temperature ° C), temperature rise per 10 seconds (average value), and FIGS. 2 and 3 show the measurement results. Shown in the graph.
  • the horizontal axis of the graphs shown in FIGS. 2 and 3 indicates the elapsed time (seconds) from the time when the sealed container 3 is fitted into the heat insulating container 1, and the vertical axis of the graph indicates the water temperature (° C.) at that time.
  • the heat storage material (and composition) in the sealed container 3 is opened immediately before the sealed container 3 is fitted into the heat-insulating container 1, and the anhydrous sodium acetate powder is charged by opening the lid of the sealed container 3. Nucleation begins.
  • FIG. 4 is a diagram schematically illustrating the water temperature measuring device 110 used in the evaluation test 2.
  • the water temperature measuring device 110 mainly includes a heat insulating container 11, a thermocouple 12, a measuring container 13, a temperature logger 14, a stirring device 15, and the like.
  • the heat insulating container 11 is the same type as that used in the water temperature measuring device 10 of the evaluation test 1, and water (tap water) W (300 ml) is placed in the heat insulating container 11.
  • the measurement container 13 includes a cylindrical stainless steel container body 13A that opens upward, and a heat insulating lid 13B that closes the opening of the container body 13A.
  • a heat storage material to be measured is accommodated in the container body 13A of the measurement container 13.
  • the volume of the measurement container 13 (the volume of the container body 13A) is 150 cm 3 .
  • FIG. 5 is a perspective view schematically showing the measurement container 13 used in the evaluation test 2.
  • FIG. 5 a through hole 13 ⁇ / b> C that is small enough to insert a needle tip is formed in the approximate center of the lid 13 ⁇ / b> B of the measurement container 13.
  • the through-hole 13C is used to add a nucleating agent (anhydrous sodium acetate powder) to the tip of the needle and put it into the measuring container 13 in order to nucleate the heat storage material in the measuring container 13.
  • a nucleating agent anhydrous sodium acetate powder
  • FIG. 6 is a diagram schematically showing a process of nucleating the heat storage material in the measurement container 13 in the water temperature measuring device 110 of the evaluation test 2.
  • the heat storage material is nucleated while the measurement container 13 that stores the heat storage material is placed on the pedestal 16 so as to be immersed in the water W in the heat insulation container 11. Is done.
  • the nucleating agent is introduced into the measurement container 13 by inserting the needle tip N with the nucleating agent (anhydrous sodium acetate powder) through the through-hole 13C in the lid 13B of the measurement container 13.
  • Heat storage material nucleates.
  • the opening of the heat insulating container 11 is closed with a heat insulating lid 17.
  • the measurement container 13 is placed on a pedestal 16 installed at the bottom of the measurement container 13 in a state where most of the container body 13A is immersed in the water W.
  • the pedestal 16 is disposed at the bottom of the heat insulating container 11 so as to sink into the water W.
  • the water level in the heat insulating container 11 is set so that the lid 13B of the measurement container 13 does not get wet with the water W.
  • thermocouple 12 is the same type as that used in the water temperature measuring device 10 of the evaluation test 1 and is attached to the inner wall surface of the heat insulating container 11.
  • the thermocouple 12 is surrounded by a polypropylene insulating sheet (not shown) so as not to contact the measurement container 13 (container body 13A) in the heat insulating container 11.
  • the temperature logger 14 is the same type as that used in the water temperature measuring device 10 of the evaluation test 1 and measures the water temperature in the heat insulating container 1 at predetermined intervals based on the detection result of the thermocouple 12. In the evaluation test 2, the water temperature in the heat insulating container 1 is measured every 300 seconds from the start of the test until 300 seconds later.
  • the heat insulation container 11 is placed on a stirring device (magnetic stirrer) 15 with the measurement container 13 installed inside.
  • a stirrer (stirrer chip) 15A for stirring the water W is placed on the bottom of the heat insulating container 11 so as to be disposed below the pedestal 16, and when the stirrer 15 is activated, the stirrer 15A is moved. Is rotated by receiving the magnetic force, and the water W in the heat insulating container 11 is stirred.
  • Such a water temperature measuring device 110 has higher measurement accuracy and excellent reproducibility because the heat distribution can be made uniform and the water temperature can be made uniform as compared with the water temperature measuring device 10 of the evaluation test 1.
  • the container body 13A made of stainless steel measuring container 13 volume is 150 cm 3, and sodium acetate aqueous solution obtained by mixing anhydrous sodium acetate 102.62g and distilled water 76.34G, silicon carbide (average particle size: 5.5 [mu] m , True specific gravity: 3.22, trade name “GC # 2500” (manufactured by Showa Denko KK) 76.69 g was added and mixed to prepare a heat storage material.
  • a lid 13B is attached to the container main body 13A of the measurement container 13 in a state where the heat storage material is accommodated.
  • Example 6 ⁇ Production of heat storage material of Example 6>
  • the measurement container 13 was used in the same manner as in Example 4 except that the trade name “Tera-5” (manufactured by TGM, average particle size: 5.4 ⁇ m, true specific gravity: 3.22) was used as silicon carbide. A heat storage material in a state of being housed in the container was produced.
  • Example 7 As silicon carbide, a measurement container was used in the same manner as in Example 4 except that the trade name “GC # 3000”, manufactured by Showa Denko KK, average particle size: 4.0 ⁇ m, true specific gravity: 3.22) was used. A heat storage material in a state of being accommodated in 13 was produced.
  • the measurement container 13 containing the heat storage material 12 is placed on a pedestal 16 at the bottom of the heat insulation container 11. Then, as shown in FIGS. 5 and 6, the needle tip N attached with a nucleating agent (anhydrous sodium acetate powder) is inserted into the lid 13 ⁇ / b> B of the measurement container 13 using the through hole 13 ⁇ / b> C. Thus, the nucleating agent is charged into the measurement container 13, the heat storage material generates heat (heat radiation), and the test (temperature measurement) is started.
  • a nucleating agent anhydrous sodium acetate powder
  • FIG. 7 shows a graph of test results for the heat storage materials of Examples 4 to 8. The horizontal axis of the graph shown in FIG. 7 represents elapsed time, and the vertical axis represents the water temperature in the heat insulating container 11.
  • the heat storage materials of Examples 4 to 8 were compared with the blank not containing silicon carbide (SiC), the release rate (%) (heat release (kcal) / total heat (kcal)). X100) was confirmed to be high.
  • the amount of heat released is determined by the specific heat of water (1 cal / g ⁇ ° C.) ⁇ rising temperature ⁇ T (° C.) ⁇ the amount of water (g), and the total amount of heat is [the amount of sodium acetate trihydrate (reference value: 264). (J / g)) ⁇ sodium acetate trihydrate amount (g)] / 4.186 (J / cal). The same applies to the amount of heat released and the total amount of heat in each example shown below.
  • Heat dissipation characteristics of heat storage material (40% by mass silicon carbide)
  • Heat storage material of Example 9> Measured in the same manner as in Example 4 except that the amount of anhydrous sodium acetate was changed to 94.26 g, the amount of distilled water was changed to 70.12 g, and the amount of silicon carbide was changed to 109.58 g. A heat storage material accommodated in the container 13 was produced.
  • Heat dissipation characteristics of heat storage material (50% by mass silicon carbide)
  • Heat storage material of Example 14> Measured in the same manner as in Example 4 except that the amount of anhydrous sodium acetate was changed to 84.60 g, the amount of distilled water was changed to 62.93 g, and the amount of silicon carbide was changed to 147.53 g. A heat storage material accommodated in the container 13 was produced.
  • Heat dissipation characteristics of heat storage material (60% by mass silicon carbide)
  • ⁇ Production of heat storage material of Example 19> Measured in the same manner as in Example 4 except that the amount of anhydrous sodium acetate was changed to 73.33 g, the amount of distilled water was changed to 54.55 g, and the amount of silicon carbide was changed to 191.82 g. A heat storage material accommodated in the container 13 was produced.
  • Heat dissipation characteristics of heat storage material (70% by mass silicon carbide) ⁇ Production of heat storage material of Example 24> Measured in the same manner as in Example 5 except that the amount of anhydrous sodium acetate was changed to 60.01 g, the amount of distilled water was changed to 44.64 g, and the amount of silicon carbide was changed to 244.18 g. A heat storage material accommodated in the container 13 was produced.
  • Example 25 A heat storage material accommodated in the measurement container 13 was produced in the same manner as in Example 24 except that the silicon carbide shown in Table 8 was used.
  • the heat storage materials of Examples 24 and 25 were compared with the blank not containing silicon carbide (SiC), the release ratio (%) (heat release amount (kcal) / total heat amount (kcal)). X100) was confirmed to be high.
  • Example 25 efficiently transferred heat to the outside of the measurement container 13 as compared with the blank.
  • Heat dissipation characteristics of heat storage material 53 to 57 mass% silicon carbide
  • Preparation of heat storage material of Example 26 55% by mass of silicon carbide
  • Measurement was performed in the same manner as in Example 8 except that the amount of anhydrous sodium acetate was changed to 79.18 g, the amount of distilled water was changed to 58.91 g, and the amount of silicon carbide was changed to 168.78 g.
  • a heat storage material accommodated in the container 13 was produced.
  • Example 27 (53% by mass of silicon carbide)> Measured in the same manner as in Example 8 except that the amount of anhydrous sodium acetate was changed to 81.40 g, the amount of distilled water was changed to 60.56 g, and the amount of silicon carbide was changed to 160.09 g. A heat storage material accommodated in the container 13 was produced.
  • Example 28 ⁇ Production of heat storage material of Example 28 (57% by mass of silicon carbide)> Measurement was carried out in the same manner as in Example 8 except that the amount of anhydrous sodium acetate was changed to 76.91 g, the amount of distilled water was changed to 57.22 g, and the amount of silicon carbide was changed to 177.79 g. A heat storage material accommodated in the container 13 was produced.
  • Example 2 ⁇ Evaluation of heat dissipation characteristics (evaluation test 2)> The heat storage materials of Examples 26 to 28 were heated by the same method as in Example 4 above, and the water temperature in the heat insulating container 11 was measured by the temperature logger 14 every 10 seconds until 300 seconds later. In addition, the temperature of the water W before a measurement start was 20 degreeC.
  • the test results for the heat storage materials of Examples 26 to 28 are shown in Table 9.
  • FIG. 12 shows a graph of test results for the heat storage materials of Examples 26 to 28. The horizontal axis of the graph shown in FIG. 12 represents elapsed time, and the vertical axis represents the water temperature in the heat insulating container 11. Table 9 and FIG. 12 also show the measurement results of the blank.
  • FIG. 12 also shows the results of Example 18 (50% by mass) and Example 23 (60% by mass).
  • the content of silicon carbide in the heat storage material is 54% by mass or more, preferably 55% by mass or more based on the total mass. .
  • the present invention is not limited to the embodiments described with reference to the above description and drawings.
  • the following embodiments are also included in the technical scope of the present invention.
  • the content of silicon carbide may be less than 50% by mass of the total mass, 55% by mass or 65% by mass, or more than 70% by mass.

Abstract

Provided is a heat storage material which is capable of more quickly heating an object to be heated by the heat storage material. This heat storage material includes sodium acetate and silicon carbide. The silicon carbide content of the present invention is preferably 50-70 mass% inclusive with respect to the total mass.

Description

蓄熱材Heat storage material
 本発明は、蓄熱材に関する。 The present invention relates to a heat storage material.
 例えば、酢酸ナトリウム三水和物等の過冷却液体は、凝固発熱を任意に放出させられる潜熱蓄熱材として知られている。潜熱蓄熱材は、過冷却状態(液体状態)から固体状態へ相変化させることにより、凝固発熱を放出するものである(例えば特許文献1を参照)。 For example, a supercooled liquid such as sodium acetate trihydrate is known as a latent heat storage material capable of arbitrarily releasing solidification heat. The latent heat storage material releases solidification heat by changing the phase from a supercooled state (liquid state) to a solid state (see, for example, Patent Document 1).
特開2013-231383号公報JP 2013-231383 A
(発明が解決しようとする課題)
 潜熱蓄熱材から発生する熱は、たとえば自動車エンジン始動時のバッテリやラジエータ等を温める用途などに利用することができる。このような用途においては、蓄熱材により温められる対象物をより速く温めることが求められている。
(Problems to be solved by the invention)
The heat generated from the latent heat storage material can be used, for example, for heating a battery, a radiator or the like when starting an automobile engine. In such an application, it is required to warm an object heated by the heat storage material faster.
 本発明は上記のような事情に基づいて完成されたものであって、蓄熱材により温められる対象物を、より速く温めることのできる蓄熱材を提供することを目的とする。 This invention was completed based on the above situations, and it aims at providing the thermal storage material which can warm up the target object heated by a thermal storage material more rapidly.
(課題を解決するための手段)
 上記課題を解決すべく検討を行った結果、酢酸ナトリウムとともに炭化ケイ素を用いることにより、酢酸ナトリウムのみで用いた場合よりも、対象物を速く温めることができるという知見を得た。
(Means for solving the problem)
As a result of studies to solve the above problems, it has been found that by using silicon carbide together with sodium acetate, it is possible to warm the object faster than when using only sodium acetate.
 本発明は、酢酸ナトリウムと、炭化ケイ素と、を含む蓄熱材である。 The present invention is a heat storage material containing sodium acetate and silicon carbide.
 本発明によれば、酢酸ナトリウムと炭化ケイ素とを含むので、酢酸ナトリウムのみの蓄熱材よりも対象物を早く温めることができる。
 本発明において、炭化ケイ素の含有量は全体の質量の50質量%以上70質量%以下であるのが好ましい。
According to the present invention, since sodium acetate and silicon carbide are included, the object can be warmed faster than the heat storage material containing only sodium acetate.
In this invention, it is preferable that content of silicon carbide is 50 to 70 mass% of the whole mass.
(発明の効果)
 本発明によれば、蓄熱材により温められる対象物を、より速く温めることができる。
(The invention's effect)
According to this invention, the target object warmed by the heat storage material can be warmed more quickly.
水温測定装置を模式的に示した図Diagram showing a water temperature measuring device 実施例の蓄熱材を用いた場合の時間と水温の関係を示すグラフThe graph which shows the relationship between time and water temperature at the time of using the thermal storage material of an Example 比較例の蓄熱材を用いた場合の時間と水温の関係を示すグラフGraph showing the relationship between time and water temperature when using the heat storage material of the comparative example 評価試験2で利用される水温測定装置を模式的に表した図A diagram schematically showing the water temperature measuring device used in Evaluation Test 2 評価試験2で使用される測定容器を模式的に表した斜視図The perspective view which represented typically the measurement container used by the evaluation test 2 評価試験2の水温測定装置において、測定容器内の蓄熱材を発核させる工程を模式的に表した図The figure which represented typically the process of nucleating the thermal storage material in a measurement container in the water temperature measuring apparatus of the evaluation test 2. 実施例4~8の蓄熱材を用いた場合の時間と水温の関係を示すグラフThe graph which shows the relationship between time and water temperature at the time of using the thermal storage material of Examples 4-8 実施例9~13の蓄熱材を用いた場合の時間と水温の関係を示すグラフThe graph which shows the relationship between time and water temperature at the time of using the thermal storage material of Examples 9-13 実施例14~18の蓄熱材を用いた場合の時間と水温の関係を示すグラフThe graph which shows the relationship between time and water temperature at the time of using the thermal storage material of Examples 14-18 実施例19~23の蓄熱材を用いた場合の時間と水温の関係を示すグラフThe graph which shows the relationship between time and water temperature at the time of using the thermal storage material of Examples 19-23 実施例24,25の蓄熱材を用いた場合の時間と水温の関係を示すグラフThe graph which shows the relationship between time and water temperature at the time of using the thermal storage material of Examples 24 and 25 実施例26~28、実施例18及び実施例23の蓄熱材を用いた場合の時間と水温の関係を示すグラフThe graph which shows the relationship between time and water temperature at the time of using the thermal storage material of Examples 26-28, Example 18 and Example 23
 <実施形態1>
 本発明の蓄熱材は、酢酸ナトリウムと、炭化ケイ素と、を含む。
 酢酸ナトリウムとしては、酢酸ナトリウム三水和物そのもの、酢酸ナトリウム三水和物を水に溶解したもの、無水酢酸ナトリウムを水に溶解したもの(例えば無水酢酸ナトリウム100質量部に対して、70質量部以上100質量部以下、好ましくは74.61質量部以上95.16質量部以下の水を加えて得られる酢酸ナトリウム水溶液)等を用いることができる。
<Embodiment 1>
The heat storage material of the present invention contains sodium acetate and silicon carbide.
Examples of sodium acetate include sodium acetate trihydrate itself, sodium acetate trihydrate dissolved in water, anhydrous sodium acetate dissolved in water (for example, 70 parts by mass with respect to 100 parts by mass of anhydrous sodium acetate) For example, a sodium acetate aqueous solution obtained by adding water of 100 parts by mass or less, preferably 74.61 parts by mass or more and 95.16 parts by mass or less can be used.
 炭化ケイ素は、酢酸ナトリウムを含む液状物に添加される。「酢酸ナトリウムを含む液状物」には、液体状態のものだけではなく、半流動体状(ゲル状)等の状態も含まれる。「酢酸ナトリウムを含む液状物」には、具体的には、酢酸ナトリウム三水和物および無水酢酸ナトリウムを水に溶解したものや液状の酢酸ナトリウム三水和物などが含まれる。 Silicon carbide is added to a liquid material containing sodium acetate. The “liquid substance containing sodium acetate” includes not only a liquid state but also a semi-fluid (gel) state. Specifically, the “liquid material containing sodium acetate” includes sodium acetate trihydrate and anhydrous sodium acetate dissolved in water, liquid sodium acetate trihydrate, and the like.
 炭化ケイ素の含有量は、蓄熱材の全質量に対して30質量%以上70質量%以下であるのが好ましい。炭化ケイ素の含有量がこのような範囲であると、蓄熱材より熱を外部に効率的に伝えることができる。 The silicon carbide content is preferably 30% by mass to 70% by mass with respect to the total mass of the heat storage material. When the content of silicon carbide is within such a range, heat can be efficiently transmitted to the outside from the heat storage material.
 炭化ケイ素の粒径(平均粒径)は、本発明の目的を達成できる限り、特に制限はないが、例えば、3μm以上100μm以下が好ましく、5μm以上95μm以下がより好ましく、5.5μm以上90μm以下が特に好ましい。炭化ケイ素の粒径(平均粒径)が、このような範囲であると、酢酸ナトリウム水溶液と炭化ケイ素とを混合することができ、蓄熱材を調製できる。 The particle size (average particle size) of silicon carbide is not particularly limited as long as the object of the present invention can be achieved. For example, the particle size is preferably 3 μm to 100 μm, more preferably 5 μm to 95 μm, and more preferably 5.5 μm to 90 μm. Is particularly preferred. When the particle size (average particle size) of silicon carbide is in such a range, the aqueous sodium acetate solution and silicon carbide can be mixed, and a heat storage material can be prepared.
 本発明の蓄熱材は、蓄熱材に物理的な刺激や衝撃を付与する公知の部材とともに、樹脂製の容器などに収容して使用することができる。 The heat storage material of the present invention can be used by being housed in a resin container or the like together with known members that impart physical stimulation or impact to the heat storage material.
 <実施例>
 以下、実施例により本発明をさらに説明するが、本発明はこれに限定されるものではない。
 (サンプルの作製)
 (1)実施例1~3の蓄熱材の作製
 無水酢酸ナトリウム、蒸留水、および炭化ケイ素を表1に記載の量で用い、以下の手順により実施例1~3の蓄熱材を作製した。
 容積150cmのステンレス製の密封容器に、無水酢酸ナトリウムと蒸留水を混合してなる酢酸ナトリウム水溶液と、炭化ケイ素とを混合して各蓄熱材を作製した。各蓄熱材の体積は150cmであった。
<Example>
EXAMPLES Hereinafter, although an Example demonstrates this invention further, this invention is not limited to this.
(Sample preparation)
(1) Production of heat storage materials of Examples 1 to 3 Heat storage materials of Examples 1 to 3 were produced by the following procedure using anhydrous sodium acetate, distilled water, and silicon carbide in the amounts shown in Table 1.
Each heat storage material was produced by mixing a sodium acetate aqueous solution obtained by mixing anhydrous sodium acetate and distilled water with silicon carbide in a stainless steel sealed container having a volume of 150 cm 3 . Volume of each heat storage material was 150 cm 3.
 (2)比較例1~2の組成物の作製
 以下の手順により比較例1~2の組成物を作製した。
 容積150cmのステンレス製の密封容器に、無水酢酸ナトリウムと蒸留水を混合してなる酢酸ナトリウム水溶液と、酸化アルミニウムとを混合して比較例1の組成物を作製した。
 容積150cmのステンレス製の密封容器に、無水酢酸ナトリウムと蒸留水を混合してなる酢酸ナトリウム水溶液と水酸化アルミニウムとを混合して比較例2の組成物を作製した。
 比較例1~2の各組成物の体積は150cmであった。
(2) Preparation of compositions of Comparative Examples 1 and 2 Compositions of Comparative Examples 1 and 2 were prepared according to the following procedure.
A composition of Comparative Example 1 was prepared by mixing an aqueous solution of sodium acetate obtained by mixing anhydrous sodium acetate and distilled water with aluminum oxide in a sealed container made of stainless steel having a volume of 150 cm 3 .
A composition of Comparative Example 2 was prepared by mixing an aqueous sodium acetate solution obtained by mixing anhydrous sodium acetate and distilled water and aluminum hydroxide into a stainless steel sealed container having a volume of 150 cm 3 .
The volume of each composition of Comparative Examples 1 and 2 was 150 cm 3 .
 (3)ブランクの作製
 炭化ケイ素、水酸化アルミニウムおよび酸化アルミニウムを含まない酢酸ナトリウム水溶液をブランクとした。ブランクは、容積150cmのステンレス製の密封容器に、無水酢酸ナトリウムと蒸留水を混合することにより作製した。ブランクの体積は150cmであった。
(3) Production of blank A sodium acetate aqueous solution not containing silicon carbide, aluminum hydroxide and aluminum oxide was used as a blank. The blank was prepared by mixing anhydrous sodium acetate and distilled water in a stainless steel sealed container having a volume of 150 cm 3 . The volume of the blank was 150 cm 3 .
 実施例1~3の蓄熱材、比較例1~2の組成物、およびブランクの作製において、用いた材料は以下の通りである。
無水酢酸ナトリウム:特級試薬 無水酢酸ナトリウム:和光純薬工業(株)
炭化ケイ素
 GC#2500:昭和電工(株)製
 GC#320:昭和電工(株)製
 NGF180:太平洋ランダム(株)製
酸化アルミニウム
 LS-250:日本軽金属(株)製
水酸化アルミニウム
 BF083:日本軽金属(株)製
表1中、「添加量(g)」とは炭化ケイ素またはフィラー(酸化アルミニウム、水酸化アルミニウム)の添加量(g)をいい、「添加量(質量%)」とは蓄熱材の全質量または組成物全質量に対する炭化ケイ素またはフィラーの割合をいう。
表1中、「粒径」とは炭化ケイ素の粒径またはフィラーの粒径をいう。
The materials used in the production of the heat storage materials of Examples 1 to 3, the compositions of Comparative Examples 1 and 2 and the blanks are as follows.
Anhydrous sodium acetate: Special grade reagent Anhydrous sodium acetate: Wako Pure Chemical Industries, Ltd.
Silicon carbide GC # 2500: Showa Denko Co., Ltd. GC # 320: Showa Denko Co., Ltd. NGF180: Taiheiyo Random Co., Ltd. aluminum oxide LS-250: Nippon Light Metal Co., Ltd. Aluminum hydroxide BF083: Nippon Light Metal ( In Table 1, “addition amount (g)” refers to the addition amount (g) of silicon carbide or filler (aluminum oxide, aluminum hydroxide), and “addition amount (mass%)” refers to the heat storage material. It refers to the ratio of silicon carbide or filler to the total mass or the total mass of the composition.
In Table 1, “particle size” refers to the particle size of silicon carbide or the particle size of filler.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (評価試験1)
 図1に示される水温測定装置10を利用して、実施例1~3の蓄熱材、及び比較例1~2の組成物の放熱特性を以下の手順により評価した。具体的には、250mlの水道水Wを入れた断熱容器1の容器内壁面に液体用の熱電対2を取り付けておき、実施例の蓄熱材、比較例の組成物または酢酸ナトリウム水溶液が入っている密封容器3を断熱容器1の溝部1Aに嵌めこんだ。なお、密封容器3を嵌めこんだ後、断熱容器1の開口部を、図示されない断熱性のフタで閉じた。このように密封容器3を断熱容器1に嵌めこんだ後の断熱容器1内の水温を、温度ロガー4により10秒毎に240秒後まで測定した(図1を参照)。
(Evaluation Test 1)
Using the water temperature measuring device 10 shown in FIG. 1, the heat release characteristics of the heat storage materials of Examples 1 to 3 and the compositions of Comparative Examples 1 and 2 were evaluated by the following procedure. Specifically, the thermocouple 2 for liquid is attached to the inner wall surface of the heat insulating container 1 containing 250 ml of tap water W, and the heat storage material of the example, the composition of the comparative example, or the sodium acetate aqueous solution is contained. The sealed container 3 was fitted into the groove 1A of the heat insulating container 1. In addition, after fitting the sealed container 3, the opening part of the heat insulation container 1 was closed with the heat insulation cover which is not shown in figure. Thus, the water temperature in the heat insulation container 1 after fitting the sealed container 3 in the heat insulation container 1 was measured by the temperature logger 4 every 240 seconds until 240 seconds later (refer FIG. 1).
 測定開始前の水道水の温度(初期温度)は、全サンプルについて17.8℃であった。表2および表3には、測定開始からの経過時間(秒)、測定結果(温度℃)、10秒当たりの温度上昇(平均値)を示すとともに、図2および図3には、測定結果をグラフに示した。図2および図3に示すグラフの横軸は密封容器3を断熱容器1に嵌めこんだ時点からの経過時間(秒)を示し、グラフの縦軸はその時の水温(℃)を示す。なお、密封容器3内の蓄熱材(及び組成物)は、密封容器3が断熱容器1に嵌め込まれる直前に、密封容器3のフタが開けられて、無水酢酸ナトリウム粉が投入されることにより、発核が開始される。 The temperature (initial temperature) of tap water before the start of measurement was 17.8 ° C. for all samples. Tables 2 and 3 show the elapsed time (seconds) from the start of measurement, measurement results (temperature ° C), temperature rise per 10 seconds (average value), and FIGS. 2 and 3 show the measurement results. Shown in the graph. The horizontal axis of the graphs shown in FIGS. 2 and 3 indicates the elapsed time (seconds) from the time when the sealed container 3 is fitted into the heat insulating container 1, and the vertical axis of the graph indicates the water temperature (° C.) at that time. In addition, the heat storage material (and composition) in the sealed container 3 is opened immediately before the sealed container 3 is fitted into the heat-insulating container 1, and the anhydrous sodium acetate powder is charged by opening the lid of the sealed container 3. Nucleation begins.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (結果と考察)
 表2および図2に示すように、実施例1~3の蓄熱材では、測定開始後50秒を超えた後から、ブランクよりも顕著に水温が上昇し、240秒後には2℃以上の差があった。
表3および図3に示すように、比較例2では、測定開始後60秒後から230秒後までは、ブランクよりもわずかに水温が高くなっているが、240秒後の水温は、ほぼ同じであり、比較例1では、測定開始から240秒後までブランクよりも水温上昇は小さかった。
(Results and discussion)
As shown in Table 2 and FIG. 2, in the heat storage materials of Examples 1 to 3, the water temperature rose significantly after 50 seconds after the start of measurement, and the difference of 2 ° C. or more after 240 seconds. was there.
As shown in Table 3 and FIG. 3, in Comparative Example 2, the water temperature is slightly higher than that of the blank from 60 seconds to 230 seconds after the start of measurement, but the water temperature after 240 seconds is almost the same. In Comparative Example 1, the increase in water temperature was smaller than that of the blank until 240 seconds after the start of measurement.
 これらの結果から、本発明によれば、蓄熱材により温められる対象物を、より早く温めることが可能であるということがわかった。 From these results, it was found that the object warmed by the heat storage material can be warmed more quickly according to the present invention.
〔評価試験2〕
 上記評価試験1とは異なる水温測定装置110を利用して、以下に示される実施例4~28の各蓄熱材の放熱特性を評価した。
[Evaluation Test 2]
Using the water temperature measuring device 110 different from the evaluation test 1, the heat dissipation characteristics of the respective heat storage materials of Examples 4 to 28 shown below were evaluated.
(水温測定装置)
 図4は、評価試験2で利用される水温測定装置110を模式的に表した図である。水温測定装置110は、図4に示されるように、主として、断熱容器11、熱電対12、測定容器13、温度ロガー14、撹拌装置15等を備えている。
(Water temperature measuring device)
FIG. 4 is a diagram schematically illustrating the water temperature measuring device 110 used in the evaluation test 2. As shown in FIG. 4, the water temperature measuring device 110 mainly includes a heat insulating container 11, a thermocouple 12, a measuring container 13, a temperature logger 14, a stirring device 15, and the like.
 断熱容器11は、上記評価試験1の水温測定装置10で利用したものと同種であり、断熱容器11内に水(水道水)Wが(300ml)入れられる。測定容器13は、上方に開口した円筒状のステンレス製の容器本体13Aと、容器本体13Aの開口部を塞ぐ断熱性のフタ13Bとを備えている。測定容器13の容器本体13A内に、測定対象の蓄熱材が収容される。なお、測定容器13の容積(容器本体13Aの容積)は、150cmである。 The heat insulating container 11 is the same type as that used in the water temperature measuring device 10 of the evaluation test 1, and water (tap water) W (300 ml) is placed in the heat insulating container 11. The measurement container 13 includes a cylindrical stainless steel container body 13A that opens upward, and a heat insulating lid 13B that closes the opening of the container body 13A. A heat storage material to be measured is accommodated in the container body 13A of the measurement container 13. The volume of the measurement container 13 (the volume of the container body 13A) is 150 cm 3 .
 図5は、評価試験2で使用される測定容器13を模式的に表した斜視図である。図5に示されるように、測定容器13のフタ13Bの略中央には、針先が挿入できる程度の小さな貫通孔13Cが形成されている。この貫通孔13Cは、測定容器13内の蓄熱材を発核させるために、発核剤(無水酢酸ナトリウム粉)を針先に付けて、測定容器13内に投入するために利用される。 FIG. 5 is a perspective view schematically showing the measurement container 13 used in the evaluation test 2. FIG. As shown in FIG. 5, a through hole 13 </ b> C that is small enough to insert a needle tip is formed in the approximate center of the lid 13 </ b> B of the measurement container 13. The through-hole 13C is used to add a nucleating agent (anhydrous sodium acetate powder) to the tip of the needle and put it into the measuring container 13 in order to nucleate the heat storage material in the measuring container 13.
 図6は、評価試験2の水温測定装置110において、測定容器13内の蓄熱材を発核させる工程を模式的に表した図である。図6に示されるように、水温測定装置110では、蓄熱材を収容する測定容器13が、断熱容器11内の水Wに浸かるように台座16上に載せられた状態で、蓄熱材が発核される。具体的には、発核剤(無水酢酸ナトリウム粉)を付けた針先Nを、測定容器13のフタ13Bにある貫通孔13Cに挿し通すことで、測定容器13内に発核剤が投入され、蓄熱材が発核する。なお、測定容器13内の蓄熱材を発核させた後、断熱容器11の開口部は、断熱性のフタ17で閉じられる。 FIG. 6 is a diagram schematically showing a process of nucleating the heat storage material in the measurement container 13 in the water temperature measuring device 110 of the evaluation test 2. As shown in FIG. 6, in the water temperature measuring device 110, the heat storage material is nucleated while the measurement container 13 that stores the heat storage material is placed on the pedestal 16 so as to be immersed in the water W in the heat insulation container 11. Is done. Specifically, the nucleating agent is introduced into the measurement container 13 by inserting the needle tip N with the nucleating agent (anhydrous sodium acetate powder) through the through-hole 13C in the lid 13B of the measurement container 13. , Heat storage material nucleates. After the heat storage material in the measurement container 13 is nucleated, the opening of the heat insulating container 11 is closed with a heat insulating lid 17.
 測定容器13は、容器本体13Aの大部分が水Wの中に浸かるような状態で、測定容器13の底に設置された台座16上に載せられる。台座16は、水Wの中に沈む形で断熱容器11の底に配置されている。なお、断熱容器11内の水位は、測定容器13のフタ13Bが水Wに濡れないように設定されている。 The measurement container 13 is placed on a pedestal 16 installed at the bottom of the measurement container 13 in a state where most of the container body 13A is immersed in the water W. The pedestal 16 is disposed at the bottom of the heat insulating container 11 so as to sink into the water W. The water level in the heat insulating container 11 is set so that the lid 13B of the measurement container 13 does not get wet with the water W.
 熱電対12は、上記評価試験1の水温測定装置10で利用したものと同種であり、断熱容器11の容器内壁面に取り付けられる。なお、熱電対12は、断熱容器11内の測定容器13(容器本体13A)と接触しないように、ポリプロピレン製の絶縁シート(不図示)で囲まれている。 The thermocouple 12 is the same type as that used in the water temperature measuring device 10 of the evaluation test 1 and is attached to the inner wall surface of the heat insulating container 11. The thermocouple 12 is surrounded by a polypropylene insulating sheet (not shown) so as not to contact the measurement container 13 (container body 13A) in the heat insulating container 11.
 温度ロガー14は、評価試験1の水温測定装置10で利用したものと同種であり、熱電対12の検出結果に基づいて、断熱容器1内の水温を、所定の時間毎に測定する。なお、評価試験2では、試験開始から10秒毎に300秒後まで、断熱容器1内の水温が測定される。 The temperature logger 14 is the same type as that used in the water temperature measuring device 10 of the evaluation test 1 and measures the water temperature in the heat insulating container 1 at predetermined intervals based on the detection result of the thermocouple 12. In the evaluation test 2, the water temperature in the heat insulating container 1 is measured every 300 seconds from the start of the test until 300 seconds later.
 断熱容器11は、内側に測定容器13を設置した状態で、撹拌装置(マグネチックスターラー)15上に載せられる。断熱容器11の底には、台座16の下側に配される形で、水Wを撹拌するための撹拌子(スターラーチップ)15Aが載せられており、撹拌装置15が作動すると、撹拌子15Aが磁気的な力を受けることで回転して、断熱容器11内の水Wが撹拌される。 The heat insulation container 11 is placed on a stirring device (magnetic stirrer) 15 with the measurement container 13 installed inside. A stirrer (stirrer chip) 15A for stirring the water W is placed on the bottom of the heat insulating container 11 so as to be disposed below the pedestal 16, and when the stirrer 15 is activated, the stirrer 15A is moved. Is rotated by receiving the magnetic force, and the water W in the heat insulating container 11 is stirred.
 このような水温測定装置110は、評価試験1の水温測定装置10よりも、熱分布を均一化でき、水温を均一にできる等の理由により測定精度が高められており、再現性に優れる。 Such a water temperature measuring device 110 has higher measurement accuracy and excellent reproducibility because the heat distribution can be made uniform and the water temperature can be made uniform as compared with the water temperature measuring device 10 of the evaluation test 1.
(蓄熱材(炭化ケイ素30質量%配合)の放熱特性)
<実施例4の蓄熱材の作製>
 容積が150cmであるステンレス製の測定容器13の容器本体13Aに、無水酢酸ナトリウム102.62g及び蒸留水76.34gを混合してなる酢酸ナトリウム水溶液と、炭化ケイ素(平均粒径:5.5μm、真比重:3.22、商品名「GC#2500」、昭和電工株式会社製)76.69gとを入れ、それらを混合することで蓄熱材を作製した。なお、測定容器13の容器本体13Aには、蓄熱材を収容した状態で、フタ13Bが取り付けられる。
(Heat dissipation characteristics of heat storage material (containing 30% silicon carbide))
<Production of heat storage material of Example 4>
The container body 13A made of stainless steel measuring container 13 volume is 150 cm 3, and sodium acetate aqueous solution obtained by mixing anhydrous sodium acetate 102.62g and distilled water 76.34G, silicon carbide (average particle size: 5.5 [mu] m , True specific gravity: 3.22, trade name “GC # 2500” (manufactured by Showa Denko KK) 76.69 g was added and mixed to prepare a heat storage material. A lid 13B is attached to the container main body 13A of the measurement container 13 in a state where the heat storage material is accommodated.
<実施例5の蓄熱材の作製>
 炭化ケイ素として、商品名「GCF180」(昭和電工株式会社製、平均粒径:90μm、真比重:3.21)を用いたこと以外は、実施例4と同様にして、測定容器13に収容された状態の蓄熱材を作製した。
<Production of heat storage material of Example 5>
As silicon carbide, the product name “GCF180” (manufactured by Showa Denko Co., Ltd., average particle size: 90 μm, true specific gravity: 3.21) was used, and was housed in the measurement container 13 in the same manner as in Example 4. A heat storage material in a heated state was produced.
<実施例6の蓄熱材の作製>
 炭化ケイ素として、商品名「Tera-5」(株式会社TGM製、平均粒径:5.4μm、真比重:3.22)を用いたこと以外は、実施例4と同様にして、測定容器13に収容された状態の蓄熱材を作製した。
<Production of heat storage material of Example 6>
The measurement container 13 was used in the same manner as in Example 4 except that the trade name “Tera-5” (manufactured by TGM, average particle size: 5.4 μm, true specific gravity: 3.22) was used as silicon carbide. A heat storage material in a state of being housed in the container was produced.
<実施例7の蓄熱材の作製>
 炭化ケイ素として、商品名「GC#3000」、昭和電工株式会社製、平均粒径:4.0μm、真比重:3.22)を用いたこと以外は、実施例4と同様にして、測定容器13に収容された状態の蓄熱材を作製した。
<Production of heat storage material of Example 7>
As silicon carbide, a measurement container was used in the same manner as in Example 4 except that the trade name “GC # 3000”, manufactured by Showa Denko KK, average particle size: 4.0 μm, true specific gravity: 3.22) was used. A heat storage material in a state of being accommodated in 13 was produced.
<実施例8の蓄熱材の作製>
 炭化ケイ素として、商品名「GC#240」、昭和電工株式会社製、平均粒径:57μm
、真比重:3.22)を用いたこと以外は、実施例4と同様にして、測定容器13に収容された状態の蓄熱材を作製した。
<Production of heat storage material of Example 8>
As silicon carbide, trade name “GC # 240”, manufactured by Showa Denko KK, average particle size: 57 μm
, True specific gravity: 3.22) A heat storage material in a state of being accommodated in the measurement container 13 was produced in the same manner as in Example 4 except that it was used.
<ブランクの作製>
 容積が150cmであるステンレス製の測定容器13の容器本体13Aに、無水酢酸ナトリウム117.6gと蒸留水87.4gとを混合してなる酢酸ナトリウム水溶液を入れて、ブランク(測定容器13に収容された状態の酢酸ナトリウム水溶液)を作製した。
<Production of blank>
An aqueous sodium acetate solution obtained by mixing 117.6 g of anhydrous sodium acetate and 87.4 g of distilled water is placed in a container main body 13A of a stainless steel measurement container 13 having a volume of 150 cm 3 , and a blank (contained in the measurement container 13). In this state, an aqueous solution of sodium acetate) was prepared.
<放熱特性の評価(評価試験2)>
 実施例4~8の蓄熱材の放熱特性を、水温測定装置110を利用して評価した。具体的には、図4に示されるように、熱電対12、撹拌子15A及び台座16が所定個所にセットされた状態の断熱容器11の内側に、300mlの水(水道水)Wが入れられる。なお、断熱容器11は、撹拌装置15上に載せられており、撹拌装置15からの磁気的な作用を受けることで撹拌子15Aが回転して、断熱容器11内の水Wが撹拌される。
<Evaluation of heat dissipation characteristics (evaluation test 2)>
The heat dissipation characteristics of the heat storage materials of Examples 4 to 8 were evaluated using the water temperature measuring device 110. Specifically, as shown in FIG. 4, 300 ml of water (tap water) W is placed inside the heat insulating container 11 in a state where the thermocouple 12, the stirrer 15 </ b> A and the base 16 are set at predetermined positions. . The heat insulating container 11 is placed on the stirring device 15, and the stirrer 15 </ b> A rotates by receiving a magnetic action from the stirring device 15, and the water W in the heat insulating container 11 is stirred.
 蓄熱材12の入った測定容器13は、断熱容器11の底にある台座16上に載せられる。そして、図5及び図6に示されるように、測定容器13のフタ13Bに、発核剤(無水酢酸ナトリウム粉)が付けられた針先Nが、貫通孔13Cを利用して挿し通されることで、測定容器13内に発核剤が投入され、蓄熱材が発熱(放熱)し、試験(温度測定)が開始される。 The measurement container 13 containing the heat storage material 12 is placed on a pedestal 16 at the bottom of the heat insulation container 11. Then, as shown in FIGS. 5 and 6, the needle tip N attached with a nucleating agent (anhydrous sodium acetate powder) is inserted into the lid 13 </ b> B of the measurement container 13 using the through hole 13 </ b> C. Thus, the nucleating agent is charged into the measurement container 13, the heat storage material generates heat (heat radiation), and the test (temperature measurement) is started.
 なお、測定容器13内に発核剤が投入された後、断熱容器11の開口部は、断熱性のフタ17により閉じられる。このように試験(温度測定)が開始された後、断熱容器11内の水温を、温度ロガー14により10秒毎に300秒後まで測定した。なお、測定開始前の水Wの温度は、20℃であった。実施例4~8の蓄熱材における試験結果は、表4に示した。また、図7に、実施例4~8の蓄熱材における試験結果のグラフを示した。図7に示されるグラフの横軸は、経過時間を表し、縦軸は断熱容器11内の水温を表す。 In addition, after the nucleating agent is charged into the measurement container 13, the opening of the heat insulating container 11 is closed by the heat insulating lid 17. After the test (temperature measurement) was started in this way, the water temperature in the heat insulating container 11 was measured by the temperature logger 14 every 10 seconds until 300 seconds later. In addition, the temperature of the water W before a measurement start was 20 degreeC. The test results for the heat storage materials of Examples 4 to 8 are shown in Table 4. FIG. 7 shows a graph of test results for the heat storage materials of Examples 4 to 8. The horizontal axis of the graph shown in FIG. 7 represents elapsed time, and the vertical axis represents the water temperature in the heat insulating container 11.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示されるように、実施例4~8の蓄熱材は、炭化ケイ素(SiC)が配合されていないブランクと比べて、放出割合(%)(放出熱量(kcal)/総熱量(kcal)×100)が高くなっていることが確かめられた。なお、放出熱量は、水の比熱(1cal/g・℃)×上昇温度ΔT(℃)×水量(g)により求められ、総熱量は、〔酢酸ナトリウム三水和物の熱量(文献値:264(J/g))×酢酸ナトリウム三水和物量(g)〕/4.186(J/cal)により求められる。以降に示される各実施例の放出熱量、及び総熱量についても同様である。 As shown in Table 4, the heat storage materials of Examples 4 to 8 were compared with the blank not containing silicon carbide (SiC), the release rate (%) (heat release (kcal) / total heat (kcal)). X100) was confirmed to be high. The amount of heat released is determined by the specific heat of water (1 cal / g · ° C.) × rising temperature ΔT (° C.) × the amount of water (g), and the total amount of heat is [the amount of sodium acetate trihydrate (reference value: 264). (J / g)) × sodium acetate trihydrate amount (g)] / 4.186 (J / cal). The same applies to the amount of heat released and the total amount of heat in each example shown below.
 また、図7に示されるように、実施例4~7の蓄熱材は、ブランクと比べて、熱を測定容器13の外部に効率よく伝えることが確かめられた。 Further, as shown in FIG. 7, it was confirmed that the heat storage materials of Examples 4 to 7 efficiently transferred heat to the outside of the measurement container 13 as compared with the blank.
(蓄熱材(炭化ケイ素40質量%配合)の放熱特性)
<実施例9の蓄熱材の作製>
 無水酢酸ナトリウムの配合量を94.26gに代え、蒸留水の配合量を70.12gに代え、炭化ケイ素の配合量を109.58gに代えたこと以外は、実施例4と同様にして、測定容器13に収容された蓄熱材を作製した。
(Heat dissipation characteristics of heat storage material (40% by mass silicon carbide))
<Production of heat storage material of Example 9>
Measured in the same manner as in Example 4 except that the amount of anhydrous sodium acetate was changed to 94.26 g, the amount of distilled water was changed to 70.12 g, and the amount of silicon carbide was changed to 109.58 g. A heat storage material accommodated in the container 13 was produced.
<実施例10~13の蓄熱材の作製>
 表5に示される炭化ケイ素に代えたこと以外は、実施例9と同様にして、測定容器13に収容された蓄熱材を作製した。
<Production of heat storage material of Examples 10 to 13>
A heat storage material accommodated in the measurement container 13 was produced in the same manner as in Example 9 except that the silicon carbide shown in Table 5 was used.
<放熱特性の評価(評価試験2)>
 実施例10~13の蓄熱材について、上記実施例4等と同様の方法により、発熱させた後、断熱容器11内の水温を、温度ロガー14により10秒毎に300秒後まで測定した。なお、測定開始前の水Wの温度は、20℃であった。実施例10~13の蓄熱材における試験結果は、表5に示した。また、図8に、実施例10~13の蓄熱材における試験結果のグラフを示した。図8に示されるグラフの横軸は、経過時間を表し、縦軸は断熱容器11内の水温を表す。表5及び図8には、上記ブランクの測定結果も示した。
<Evaluation of heat dissipation characteristics (evaluation test 2)>
The heat storage materials of Examples 10 to 13 were heated by the same method as in Example 4 above, and the water temperature in the heat insulating container 11 was measured by the temperature logger 14 every 10 seconds until 300 seconds later. In addition, the temperature of the water W before a measurement start was 20 degreeC. The test results for the heat storage materials of Examples 10 to 13 are shown in Table 5. In addition, FIG. 8 shows a graph of test results for the heat storage materials of Examples 10 to 13. The horizontal axis of the graph shown in FIG. 8 represents elapsed time, and the vertical axis represents the water temperature in the heat insulating container 11. Table 5 and FIG. 8 also show the measurement results of the blank.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5に示されるように、実施例9~13の蓄熱材は、炭化ケイ素(SiC)が配合されていないブランクと比べて、放出割合(%)(放出熱量(kcal)/総熱量(kcal)×100)が高くなっていることが確かめられた。 As shown in Table 5, the heat storage materials of Examples 9 to 13 were compared with the blank not containing silicon carbide (SiC), the release ratio (%) (heat release (kcal) / total heat (kcal)). X100) was confirmed to be high.
 また、図8に示されるように、実施例9~12の蓄熱材は、ブランクと比べて、熱を測定容器13の外部に効率よく伝えることが確かめられた。 Further, as shown in FIG. 8, it was confirmed that the heat storage materials of Examples 9 to 12 efficiently transferred heat to the outside of the measurement container 13 as compared with the blank.
(蓄熱材(炭化ケイ素50質量%配合)の放熱特性)
<実施例14の蓄熱材の作製>
 無水酢酸ナトリウムの配合量を84.60gに代え、蒸留水の配合量を62.93gに代え、炭化ケイ素の配合量を147.53gに代えたこと以外は、実施例4と同様にして、測定容器13に収容された蓄熱材を作製した。
(Heat dissipation characteristics of heat storage material (50% by mass silicon carbide))
<Production of heat storage material of Example 14>
Measured in the same manner as in Example 4 except that the amount of anhydrous sodium acetate was changed to 84.60 g, the amount of distilled water was changed to 62.93 g, and the amount of silicon carbide was changed to 147.53 g. A heat storage material accommodated in the container 13 was produced.
<実施例15~18の蓄熱材の作製>
 表6に示される炭化ケイ素に代えたこと以外は、実施例14と同様にして、測定容器13に収容された蓄熱材を作製した。
<Production of heat storage material of Examples 15 to 18>
A heat storage material accommodated in the measurement container 13 was produced in the same manner as in Example 14 except that the silicon carbide shown in Table 6 was used.
<放熱特性の評価(評価試験2)>
 実施例14~18の蓄熱材について、上記実施例4等と同様の方法により、発熱させた後、断熱容器11内の水温を、温度ロガー14により10秒毎に300秒後まで測定した。なお、測定開始前の水Wの温度は、20℃であった。実施例14~18の蓄熱材における試験結果は、表6に示した。また、図9に、実施例14~18の蓄熱材における試験結果のグラフを示した。図9に示されるグラフの横軸は、経過時間を表し、縦軸は断熱容器11内の水温を表す。表6及び図9には、上記ブランクの測定結果も示した。
<Evaluation of heat dissipation characteristics (evaluation test 2)>
The heat storage materials of Examples 14 to 18 were heated by the same method as in Example 4 above, and the water temperature in the heat insulating container 11 was measured by the temperature logger 14 every 300 seconds until 300 seconds later. In addition, the temperature of the water W before a measurement start was 20 degreeC. The test results for the heat storage materials of Examples 14 to 18 are shown in Table 6. In addition, FIG. 9 shows a graph of test results for the heat storage materials of Examples 14 to 18. The horizontal axis of the graph shown in FIG. 9 represents elapsed time, and the vertical axis represents the water temperature in the heat insulating container 11. Table 6 and FIG. 9 also show the measurement results of the blank.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6に示されるように、実施例14~18の蓄熱材は、炭化ケイ素(SiC)が配合されていないブランクと比べて、放出割合(%)(放出熱量(kcal)/総熱量(kcal)×100)が高くなっていることが確かめられた。 As shown in Table 6, the heat storage materials of Examples 14 to 18 were compared with the blank not containing silicon carbide (SiC), the release ratio (%) (heat release (kcal) / total heat (kcal)). X100) was confirmed to be high.
 また、図9に示されるように、実施例14~17の蓄熱材は、ブランクと比べて、熱を測定容器13の外部に効率よく伝えることが確かめられた。 Further, as shown in FIG. 9, it was confirmed that the heat storage materials of Examples 14 to 17 efficiently transferred heat to the outside of the measurement container 13 as compared with the blank.
(蓄熱材(炭化ケイ素60質量%配合)の放熱特性)
<実施例19の蓄熱材の作製>
 無水酢酸ナトリウムの配合量を73.33gに代え、蒸留水の配合量を54.55gに代え、炭化ケイ素の配合量を191.82gに代えたこと以外は、実施例4と同様にして、測定容器13に収容された蓄熱材を作製した。
(Heat dissipation characteristics of heat storage material (60% by mass silicon carbide))
<Production of heat storage material of Example 19>
Measured in the same manner as in Example 4 except that the amount of anhydrous sodium acetate was changed to 73.33 g, the amount of distilled water was changed to 54.55 g, and the amount of silicon carbide was changed to 191.82 g. A heat storage material accommodated in the container 13 was produced.
<実施例20~23の蓄熱材の作製>
 表7に示される炭化ケイ素に代えたこと以外は、実施例19と同様にして、測定容器13に収容された蓄熱材を作製した。
<Production of heat storage material of Examples 20 to 23>
A heat storage material accommodated in the measurement container 13 was produced in the same manner as in Example 19 except that the silicon carbide shown in Table 7 was used.
<放熱特性の評価(評価試験2)>
 実施例20~23の蓄熱材について、上記実施例4等と同様の方法により、発熱させた後、断熱容器11内の水温を、温度ロガー14により10秒毎に300秒後まで測定した。なお、測定開始前の水Wの温度は、20℃であった。実施例19~23の蓄熱材における試験結果は、表7に示した。また、図10に、実施例19~23の蓄熱材における試験結果のグラフを示した。図10に示されるグラフの横軸は、経過時間を表し、縦軸は断熱容器11内の水温を表す。表7及び図10には、上記ブランクの測定結果も示した。
<Evaluation of heat dissipation characteristics (evaluation test 2)>
The heat storage materials of Examples 20 to 23 were heated by the same method as in Example 4 above, and then the water temperature in the heat insulating container 11 was measured by the temperature logger 14 every 300 seconds until 300 seconds later. In addition, the temperature of the water W before a measurement start was 20 degreeC. The test results for the heat storage materials of Examples 19 to 23 are shown in Table 7. FIG. 10 shows a graph of the test results for the heat storage materials of Examples 19 to 23. The horizontal axis of the graph shown in FIG. 10 represents elapsed time, and the vertical axis represents the water temperature in the heat insulating container 11. Table 7 and FIG. 10 also show the measurement results of the blank.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表7に示されるように、実施例19~23の蓄熱材は、炭化ケイ素(SiC)が配合されていないブランクと比べて、放出割合(%)(放出熱量(kcal)/総熱量(kcal)×100)が高くなっていることが確かめられた。 As shown in Table 7, the heat storage materials of Examples 19 to 23 were compared with the blank not containing silicon carbide (SiC), the release ratio (%) (heat release (kcal) / total heat (kcal)). X100) was confirmed to be high.
 また、図10に示されるように、実施例19~23の蓄熱材は、ブランクと比べて、熱を測定容器13の外部に効率よく伝えることが確かめられた。 Further, as shown in FIG. 10, it was confirmed that the heat storage materials of Examples 19 to 23 efficiently transferred heat to the outside of the measurement container 13 as compared with the blank.
(蓄熱材(炭化ケイ素70質量%配合)の放熱特性)
<実施例24の蓄熱材の作製>
 無水酢酸ナトリウムの配合量を60.01gに代え、蒸留水の配合量を44.64gに代え、炭化ケイ素の配合量を244.18gに代えたこと以外は、実施例5と同様にして、測定容器13に収容された蓄熱材を作製した。
(Heat dissipation characteristics of heat storage material (70% by mass silicon carbide))
<Production of heat storage material of Example 24>
Measured in the same manner as in Example 5 except that the amount of anhydrous sodium acetate was changed to 60.01 g, the amount of distilled water was changed to 44.64 g, and the amount of silicon carbide was changed to 244.18 g. A heat storage material accommodated in the container 13 was produced.
<実施例25の蓄熱材の作製>
 表8に示される炭化ケイ素に代えたこと以外は、実施例24と同様にして、測定容器13に収容された蓄熱材を作製した。
<Production of heat storage material of Example 25>
A heat storage material accommodated in the measurement container 13 was produced in the same manner as in Example 24 except that the silicon carbide shown in Table 8 was used.
<比較例3~5の蓄熱材の作製>
 表8に示される炭化ケイ素に代えたこと以外は、実施例24と同様にして、蓄熱材の作製を試みたが、炭化ケイ素が凝集してしまい、蓄熱材を作製することができなかった。
<Production of heat storage materials of Comparative Examples 3 to 5>
Except for replacing the silicon carbide shown in Table 8, an attempt was made to produce a heat storage material in the same manner as in Example 24. However, the silicon carbide aggregated and the heat storage material could not be produced.
<放熱特性の評価(評価試験2)>
 実施例24,25の蓄熱材について、上記実施例4等と同様の方法により、発熱させた後、断熱容器11内の水温を、温度ロガー14により10秒毎に300秒後まで測定した。なお、測定開始前の水Wの温度は、20℃であった。実施例24,25の蓄熱材における試験結果は、表8に示した。また、図11に、実施例24,25の蓄熱材における試験結果のグラフを示した。図11に示されるグラフの横軸は、経過時間を表し、縦軸は断熱容器11内の水温を表す。表8及び図11には、上記ブランクの測定結果も示した。
<Evaluation of heat dissipation characteristics (evaluation test 2)>
The heat storage materials of Examples 24 and 25 were heated by the same method as in Example 4 above, and then the water temperature in the heat insulating container 11 was measured by the temperature logger 14 every 10 seconds until 300 seconds later. In addition, the temperature of the water W before a measurement start was 20 degreeC. The test results for the heat storage materials of Examples 24 and 25 are shown in Table 8. Moreover, the graph of the test result in the heat storage material of Examples 24 and 25 was shown in FIG. The horizontal axis of the graph shown in FIG. 11 represents elapsed time, and the vertical axis represents the water temperature in the heat insulating container 11. Table 8 and FIG. 11 also show the measurement results of the blank.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表8に示されるように、実施例24,25の蓄熱材は、炭化ケイ素(SiC)が配合されていないブランクと比べて、放出割合(%)(放出熱量(kcal)/総熱量(kcal)×100)が高くなっていることが確かめられた。 As shown in Table 8, the heat storage materials of Examples 24 and 25 were compared with the blank not containing silicon carbide (SiC), the release ratio (%) (heat release amount (kcal) / total heat amount (kcal)). X100) was confirmed to be high.
 また、図11に示されるように、実施例25の蓄熱材は、ブランクと比べて、熱を測定容器13の外部に効率よく伝えることが確かめられた。 Further, as shown in FIG. 11, it was confirmed that the heat storage material of Example 25 efficiently transferred heat to the outside of the measurement container 13 as compared with the blank.
(蓄熱材(炭化ケイ素53~57質量%配合)の放熱特性)
<実施例26の蓄熱材(炭化ケイ素55質量%配合)の作製>
 無水酢酸ナトリムの配合量を79.18gに代え、蒸留水の配合量を58.91gに代え、炭化ケイ素の配合量を168.78gに代えたこと以外は、実施例8と同様にして、測定容器13に収容された蓄熱材を作製した。
(Heat dissipation characteristics of heat storage material (53 to 57 mass% silicon carbide))
<Preparation of heat storage material of Example 26 (55% by mass of silicon carbide)>
Measurement was performed in the same manner as in Example 8 except that the amount of anhydrous sodium acetate was changed to 79.18 g, the amount of distilled water was changed to 58.91 g, and the amount of silicon carbide was changed to 168.78 g. A heat storage material accommodated in the container 13 was produced.
<実施例27の蓄熱材(炭化ケイ素53質量%配合)の作製>
 無水酢酸ナトリムの配合量を81.40gに代え、蒸留水の配合量を60.56gに代え、炭化ケイ素の配合量を160.09gに代えたこと以外は、実施例8と同様にして、測定容器13に収容された蓄熱材を作製した。
<Preparation of Heat Storage Material of Example 27 (53% by mass of silicon carbide)>
Measured in the same manner as in Example 8 except that the amount of anhydrous sodium acetate was changed to 81.40 g, the amount of distilled water was changed to 60.56 g, and the amount of silicon carbide was changed to 160.09 g. A heat storage material accommodated in the container 13 was produced.
<実施例28の蓄熱材(炭化ケイ素57質量%配合)の作製>
 無水酢酸ナトリムの配合量を76.91gに代え、蒸留水の配合量を57.22gに代え、炭化ケイ素の配合量を177.79gに代えたこと以外は、実施例8と同様にして、測定容器13に収容された蓄熱材を作製した。
<Production of heat storage material of Example 28 (57% by mass of silicon carbide)>
Measurement was carried out in the same manner as in Example 8 except that the amount of anhydrous sodium acetate was changed to 76.91 g, the amount of distilled water was changed to 57.22 g, and the amount of silicon carbide was changed to 177.79 g. A heat storage material accommodated in the container 13 was produced.
<放熱特性の評価(評価試験2)>
 実施例26~28の蓄熱材について、上記実施例4等と同様の方法により、発熱させた後、断熱容器11内の水温を、温度ロガー14により10秒毎に300秒後まで測定した。なお、測定開始前の水Wの温度は、20℃であった。実施例26~28の蓄熱材における試験結果は、表9に示した。また、図12に、実施例26~28の蓄熱材における試験結果のグラフを示した。図12に示されるグラフの横軸は、経過時間を表し、縦軸は断熱容器11内の水温を表す。表9及び図12には、上記ブランクの測定結果も示した。また、図12には、実施例18(50質量%配合)及び実施例23(60質量%配合)の結果も示した。
<Evaluation of heat dissipation characteristics (evaluation test 2)>
The heat storage materials of Examples 26 to 28 were heated by the same method as in Example 4 above, and the water temperature in the heat insulating container 11 was measured by the temperature logger 14 every 10 seconds until 300 seconds later. In addition, the temperature of the water W before a measurement start was 20 degreeC. The test results for the heat storage materials of Examples 26 to 28 are shown in Table 9. FIG. 12 shows a graph of test results for the heat storage materials of Examples 26 to 28. The horizontal axis of the graph shown in FIG. 12 represents elapsed time, and the vertical axis represents the water temperature in the heat insulating container 11. Table 9 and FIG. 12 also show the measurement results of the blank. FIG. 12 also shows the results of Example 18 (50% by mass) and Example 23 (60% by mass).
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表9に示されるように、実施例26~28の蓄熱材は、炭化ケイ素(SiC)が配合されていないブランクと比べて、放出割合(%)(放出熱量(kcal)/総熱量(kcal)×100)が高くなっていることが確かめられた。 As shown in Table 9, the heat storage materials of Examples 26 to 28 were compared with the blank not containing silicon carbide (SiC), the release rate (%) (heat release (kcal) / total heat (kcal)). X100) was confirmed to be high.
 また、図12に示されるように、実施例26,28の蓄熱材は、熱を測定容器13の外部へ取り出す効率が、ブランクと同等であることが確かめられた。なお、実施例18(炭化ケイ素50質量%配合品)の蓄熱材、及び実施例27(炭化ケイ素53質量%配合品)の蓄熱材では、熱を測定容器13の外部へ取り出す効率が、ブランクよりも劣ることが確かめられた。 Also, as shown in FIG. 12, it was confirmed that the heat storage materials of Examples 26 and 28 had the same efficiency as that of the blank in extracting heat to the outside of the measurement container 13. In addition, in the heat storage material of Example 18 (50% by mass of silicon carbide) and the heat storage material of Example 27 (53% by mass of silicon carbide), the efficiency of extracting heat to the outside of the measurement container 13 is higher than that of the blank. Was inferior.
 つまり、炭化ケイ素として、商品名「GC#240」を使用した場合、蓄熱材における炭化ケイ素の含有量は、全体の質量に対して54質量%以上、好ましくは55質量%以上添加することが好ましい。 That is, when the trade name “GC # 240” is used as silicon carbide, the content of silicon carbide in the heat storage material is 54% by mass or more, preferably 55% by mass or more based on the total mass. .
 <他の実施形態>
 本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
 (1)上記実施形態では炭化ケイ素の含有量が全体の質量の50質量%、60質量%、70質量%の例を示したが、これに限定されない。炭化ケイ素の含有量は全体の質量の50質量%未満であってもよいし、55質量%または65質量%であってもよいし、70質量%より多くてもよい。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.
(1) Although the silicon carbide content in the above embodiment is 50% by mass, 60% by mass, and 70% by mass with respect to the total mass, the present invention is not limited to this. The content of silicon carbide may be less than 50% by mass of the total mass, 55% by mass or 65% by mass, or more than 70% by mass.
 1…断熱容器,2…熱電対,3…密封容器,4…温度ロガー,W…水道水,10…水温測定装置、11…断熱容器、12…熱電対、13…測定容器、13A…容器本体、13B…フタ、14…温度ロガー、15…撹拌装置、15A…撹拌子、16…台座、17…フタ、110…水温測定装置、N…針先 DESCRIPTION OF SYMBOLS 1 ... Thermal insulation container, 2 ... Thermocouple, 3 ... Sealed container, 4 ... Temperature logger, W ... Tap water, 10 ... Water temperature measuring device, 11 ... Thermal insulation container, 12 ... Thermocouple, 13 ... Measurement container, 13A ... Container body , 13B ... lid, 14 ... temperature logger, 15 ... stirrer, 15A ... stirrer, 16 ... pedestal, 17 ... lid, 110 ... water temperature measuring device, N ... needle tip

Claims (2)

  1. 酢酸ナトリウムと、炭化ケイ素と、を含む、蓄熱材。 A heat storage material comprising sodium acetate and silicon carbide.
  2. 前記炭化ケイ素の含有量が全体の質量の30質量%以上70質量%以下である請求項1に記載の蓄熱材。 The heat storage material according to claim 1, wherein the content of the silicon carbide is 30% by mass or more and 70% by mass or less of the total mass.
PCT/JP2015/062760 2014-04-28 2015-04-28 Heat storage material WO2015166933A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-092738 2014-04-28
JP2014092738 2014-04-28

Publications (1)

Publication Number Publication Date
WO2015166933A1 true WO2015166933A1 (en) 2015-11-05

Family

ID=54358660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062760 WO2015166933A1 (en) 2014-04-28 2015-04-28 Heat storage material

Country Status (1)

Country Link
WO (1) WO2015166933A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261388A (en) * 1985-05-15 1986-11-19 Nippon Denso Co Ltd Heat storing apparatus
JP2000111286A (en) * 1998-10-02 2000-04-18 Matsushita Electric Ind Co Ltd Cold heat storage device and cold heat storage element
JP2000119643A (en) * 1998-10-16 2000-04-25 Matsushita Electric Ind Co Ltd Heat storage composition and heat storage container
JP2012255105A (en) * 2011-06-09 2012-12-27 Ngk Insulators Ltd Heat reservoir

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261388A (en) * 1985-05-15 1986-11-19 Nippon Denso Co Ltd Heat storing apparatus
JP2000111286A (en) * 1998-10-02 2000-04-18 Matsushita Electric Ind Co Ltd Cold heat storage device and cold heat storage element
JP2000119643A (en) * 1998-10-16 2000-04-25 Matsushita Electric Ind Co Ltd Heat storage composition and heat storage container
JP2012255105A (en) * 2011-06-09 2012-12-27 Ngk Insulators Ltd Heat reservoir

Similar Documents

Publication Publication Date Title
CN105518100B (en) Hard shell microencapsulation latent heat transmission material and preparation method thereof
Zhu et al. Preparation and properties of nanoencapsulated n-octadecane phase change material with organosilica shell for thermal energy storage
Wu et al. Preparation and characterization of hydrated salts/silica composite as shape-stabilized phase change material via sol–gel process
Ghadim et al. Binary mixtures of fatty alcohols and fatty acid esters as novel solid‐liquid phase change materials
Ramirez et al. Tuning of thermal properties of sodium acetate trihydrate by blending with polymer and silver nanoparticles
Zhu et al. Morphological control and thermal properties of nanoencapsulated n-octadecane phase change material with organosilica shell materials
Jin et al. Atmospheric water harvesting: role of surface wettability and edge effect
Adachi et al. Effects of supercooling degree and specimen size on supercooling duration of erythritol
Shin et al. Microencapsulation of imidazole curing agent by solvent evaporation method using W/O/W emulsion
JP6279784B1 (en) Latent heat storage material composition and latent heat storage tank
US8826672B2 (en) Self-cooling compositions, systems and methods
WO2015166933A1 (en) Heat storage material
Mikhaylov et al. Enhanced thermal buffering of phase change materials by the intramicrocapsule sub per mille CNT dopant
Putra et al. Application of Al2O3 nanofluid on sintered copper-powder vapor chamber for electronic cooling
JP2006519704A5 (en)
JP2024050773A (en) Solid-solid phase change materials (PCMs)
CN102391839A (en) Supercooling phase change-inhibiting alkane microcapsule and preparation and application thereof
Subramanian et al. Sol-gel synthesis and characterization of microencapsulated strontium titanate-myristic acid phase change material for thermal energy storage
US10703951B2 (en) Heat-transport medium including latent heat storage material, mixture for heat transport, and heat transport method
Tan et al. A study of the occurrence of supercooling of water
US20180003446A1 (en) Method for manufacturing heat storage device, method for manufacturing heat storage material, heat storage material, and heat storage device
JP6363847B2 (en) Heat storage material
JP6134272B2 (en) Latent heat storage material and latent heat storage tank
CN206604527U (en) A kind of cryoscopic method surveys molecular weight experiment attemperator
US11168358B2 (en) Chemical heating system for diagnostic devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15786508

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15786508

Country of ref document: EP

Kind code of ref document: A1