WO2015166854A1 - Filter for fuel cell - Google Patents

Filter for fuel cell Download PDF

Info

Publication number
WO2015166854A1
WO2015166854A1 PCT/JP2015/062224 JP2015062224W WO2015166854A1 WO 2015166854 A1 WO2015166854 A1 WO 2015166854A1 JP 2015062224 W JP2015062224 W JP 2015062224W WO 2015166854 A1 WO2015166854 A1 WO 2015166854A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
fuel cell
filter
filter layer
layer
Prior art date
Application number
PCT/JP2015/062224
Other languages
French (fr)
Japanese (ja)
Inventor
理沙子 野田
洋平 武田
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to JP2016516335A priority Critical patent/JP6534653B2/en
Publication of WO2015166854A1 publication Critical patent/WO2015166854A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/017Combinations of electrostatic separation with other processes, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/28Plant or installations without electricity supply, e.g. using electrets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an air filter (filter for fuel cell) that is used in a power generator (fuel cell stack) of a fuel cell system and has dust removal performance and chemical adsorption performance.
  • a fuel cell generates electricity by an electrochemical reaction between hydrogen and oxygen, and oxygen is generally supplied from the atmosphere at that time, but SO X , NO X, etc. are supplied into the supplied atmosphere. If the impurities and dust are included, the electrocatalyst deteriorates and the electromotive force is lowered, so the power generation device (fuel cell stack) in the fuel cell system has dust removal performance, chemical adsorption performance, etc. An air filter is installed.
  • the chemical adsorption performance means the performance of adsorbing harmful substances such as SO x , NO x, toluene, H 2 S, etc.
  • activated carbon is generally used for a filter having this chemical adsorption performance. That is, as shown in FIG. 1, a fuel cell filter in which an activated carbon filter layer 1 and a charged filter layer 2 are combined is known. This air filter is activated carbon for the atmosphere flowing in the direction of the arrow in the figure.
  • the filter layer 1 adsorbs and removes impurity gases such as SO x and NO x, and the charged filter layer 2 removes dust.
  • the activated carbon filter layer 1 for example, a filter or sheet made of activated carbon processed into a fibrous form or a net-like base material or activated carbon processed into a fibrous form is used, and SO X or H 2 S.
  • a technique has been proposed in which a chemical such as an alkaline substance is previously impregnated on activated carbon.
  • the present invention has been made in view of the above circumstances, and is intended to obtain a fuel cell filter capable of maintaining the chemical adsorption performance of sulfur oxides or the like for a long time and extending the life of the fuel cell. Objective.
  • the present inventors have combined an activated carbon filter and a charge filter to remove impurity gases (SO X , NO X, etc.) and dust in the atmosphere, and a fuel cell filter.
  • the activated carbon filter is disposed on the gas inflow side and the charging filter is disposed on the gas discharge side, and an additive containing an alkaline substance and an oxidizing agent is previously attached to the activated carbon of the activated carbon filter layer.
  • SO x sulfur oxide
  • the present invention provides the following fuel cell filters [1] to [4].
  • [1] In the fuel cell filter in which the activated carbon filter layer is disposed on the gas inflow side and the charged filter layer is disposed on the gas exhaust side, the activated carbon of the activated carbon filter layer is attached with an additive containing an alkaline substance and an oxidizing agent.
  • [2] The fuel cell filter according to [1], wherein the concentration of the alkaline substance in the activated carbon is 1 to 10% by mass and the concentration of the oxidizing agent is 1 to 10% by mass.
  • [3] The fuel cell filter according to [1] or [2], wherein the oxidizing agent is a halogen-based oxidizing agent.
  • [4] The fuel cell filter according to [3], wherein the halogen-based oxidizing agent is potassium iodide.
  • the fuel cell filter of the present invention can maintain the chemical adsorption performance well over a long period of time, and can realize a long life of the fuel cell.
  • the fuel cell filter of the present invention has an activated carbon filter layer, a charged filter layer, and a urethane foam layer (or activated carbon container) as described above, and purifies the air supplied to the fuel cell stack of the fuel cell system.
  • the fuel cell filter shown in FIG. 1 or 2 is exemplified.
  • FIG. 1 shows an activated carbon filter layer 1 on the gas inflow side and a charged filter layer 2 on the discharge side.
  • FIG. 2 shows a urethane foam layer 3 disposed between the activated carbon filter layer 1 and the charged filter layer 2.
  • the activated carbon filter layer 1 adsorbs and removes impurities such as SO x and NO x contained in the atmosphere.
  • activated carbon is supported on a filter substrate having a three-dimensional network structure or a honeycomb structure, or is crushed.
  • a filter base material having a three-dimensional network structure on which activated carbon is supported is preferably used.
  • the three-dimensional network structure of the filter substrate is not particularly limited, but a polyurethane foam having a three-dimensional network skeleton structure in which the cell membrane is removed by a blast treatment or the like is preferably used.
  • This polyurethane foam has low pressure loss and good contact efficiency with air.
  • ether-based materials have better hydrolysis resistance than ester-based materials, and suppress hydrolysis degradation of the filter substrate due to the alkali-adhesion treatment described below. This is more preferable.
  • the number of pores of the polyurethane foam of the filter base material varies depending on the relationship with the activated carbon particles attached to the base material. However, it is usually preferable that the number of pores is 4 to 14 / inch, particularly 6 to 12 / inch. When the number of pores is less than 4 / inch, the pressure loss of the filter is lowered, but the contact efficiency with the passing gas is lowered, so that the removal performance of impurities may be lowered, and the number of pores is 14 / If it exceeds 1 inch, the contact efficiency with the gas becomes high, but the pressure loss becomes high, which may cause disadvantages such as an increased load of the air supply fan of the fuel cell system.
  • the activated carbon supported on the filter substrate examples include coconut shell activated carbon, wood activated carbon, petroleum pitch-based activated carbon, coal-based granulated coal, and other molded activated carbon. Among these, coal-based granulated coal is preferably used. .
  • the activated carbon is not particularly limited, but preferably has a BET specific surface area of 500 m 2 / g or more, particularly about 1000 to 2000 m 2 / g. Considering the adsorption capacity, the larger the specific surface area, the better. However, increasing the specific surface area tends to lower the hardness of the adsorbent, which may cause dust generation depending on the type of adsorbent.
  • the activated carbon mesh of the activated carbon filter layer is preferably # 20 or more and 40 or less.
  • the reason for this is that when it is # 20 or less, the gas adsorption capacity of a low molecular weight is lowered, and when it is # 40 or more, activated carbon is buried in the binder, and there is a possibility that a sufficient BET specific surface area cannot be secured.
  • the activated carbon of the activated carbon filter layer is attached with an additive (medicine) containing an alkaline substance and an oxidizing agent.
  • the purpose of adding an alkaline substance to the additive is to efficiently remove sulfur-based compounds in the atmosphere that lower the electromotive force.
  • the alkaline substance include potassium carbonate, sodium carbonate, hydroxide Alkali metal salts, alkali metal hydroxides, alkaline earth metal salts, and alkaline earth metal hydroxides such as potassium, sodium hydroxide, magnesium carbonate, calcium carbonate, magnesium hydroxide, and calcium hydroxide 1 type or 2 types or more chosen from the group which consists of are mentioned.
  • the concentration of the alkaline substance is not particularly limited, but is preferably adjusted to 1 to 10% by mass with respect to the activated carbon.
  • the purpose of adding an oxidizing agent to the additive is to maintain the chemical adsorption performance well for a long time.
  • the oxidizing agent include halogens, permanganates, peroxides, and the like.
  • a halogen-based oxidizing agent such as potassium iodide is used. It is preferable to adopt.
  • the concentration of the oxidizing agent is not particularly limited, but is preferably adjusted to 1 to 10% by mass with respect to the activated carbon.
  • the adsorbent may be added to the activated carbon in advance, or the activated carbon may be retained on the filter base material, and then the additive may be subjected to an addition treatment. If the amount of the additive added to the activated carbon is excessively large, the adsorption performance by the activated carbon is impaired. Therefore, the amount of the additive added is preferably 20% by mass or less with respect to the activated carbon. Even if the amount of the additive is too small, the effect of improving the sulfur compound removal performance due to the addition of the additive containing an alkaline substance or the like cannot be obtained sufficiently. Therefore, the additive is preferably 0.1 to 20% by mass, particularly 5 to 10% by mass, from the viewpoint of maintaining the adsorption performance of activated carbon and ensuring the removal performance of sulfur compounds.
  • the charging filter layer 2 adsorbs and removes dust of about 1 to 2 ⁇ m contained in the atmosphere.
  • a nonwoven fabric or a woven fabric made of a charged fiber can be used, and in particular, a spun pond nonwoven fabric, a melt blown nonwoven fabric, a needle punched nonwoven fabric made of a charged fiber.
  • Embossed nonwoven fabrics are preferably used, and various shapes such as a pleated shape, a honeycomb shape, and a flat shape can be used.
  • the kind of the fiber subjected to the charging treatment is not particularly limited, but organic fibers such as polypropylene, polyester, and polyamide are preferably used, and polypropylene is particularly preferably used from the viewpoint of repair efficiency.
  • the basis weight of the nonwoven fabric or the woven fabric is not particularly limited, but is preferably 15 to 500 g / m 2 , particularly 50 to 200 g / m 2 in terms of dust removal performance and flow resistance.
  • the fuel cell filter of the present invention can be provided with a urethane foam layer 3 as shown in FIG. 2 if necessary.
  • the urethane foam layer 3 removes clogging substances such as ammonium sulfate from the gas that has passed through the activated carbon filter layer 1 to prevent clogging of the charging filter layer 2.
  • a polyurethane foam having a three-dimensional network skeleton without a cell membrane is preferably used.
  • a polyether-based polyurethane foam is hydrolyzed even when used in a high humidity environment. It is preferably used because it can maintain good durability without causing decomposition.
  • the urethane foam for forming the urethane foam layer 3 is not particularly limited, but preferably has a pore number of 30 to 60 / inch, particularly 40 to 50 / inch, and has a pore number of 30 / If it is less than inches, ammonium sulfate may not be sufficiently collected. On the other hand, if it exceeds 60 inches / inch, there may be a problem that the urethane foam layer 3 itself is clogged.
  • This urethane foam layer 3 can be formed by laminating or laminating a plurality of the above polyurethane foams formed in a sheet shape or block shape, and the number of the polyurethane foam layers can be increased or decreased to adjust the adsorption capacity, air permeability, life, etc. can do.
  • the activated carbon filter layer 1 and the charge filter layer 2 may be formed by laminating a plurality of filters or a plurality of filters, and the same adjustment may be performed by increasing or decreasing the number or the number of the filters.
  • an activated carbon container 3 ′ filled with specific activated carbon can be disposed between the activated carbon filter layer 1 and the charged filter layer 2 instead of the urethane foam layer 3.
  • the activated carbon filled in the activated carbon container 3 ′ can reliably adsorb and remove siloxane gas contained in the atmosphere from the gas that has passed through the activated carbon filter layer 1.
  • Examples of the activated carbon used in the activated carbon container 3 ′ include coconut shell activated carbon, wood activated carbon, petroleum pitch-based activated carbon, coal-based granulated coal, and other molded activated carbon. Is preferably used.
  • the BET specific surface area of the above activated carbon in order to effectively adsorb the siloxane gas, it is preferable to use one having about 500 to 2000 m 2 / g, particularly about 1000 to 1500 m 2 / g. .
  • the activated carbon mesh used for the activated carbon container 3 ′ is coarser than the activated carbon used for the activated carbon filter layer.
  • the mesh may be # 6 or more and less than 20. More preferably, the mesh is not less than # 8 and less than 15 inclusive. If it deviates from the range of the mesh of the activated carbon, the siloxane gas cannot be reliably adsorbed and removed, so that it may become saturated immediately and the siloxane gas may flow to the discharge side.
  • the volume of the activated carbon container 3 ′ is not particularly limited. However, in order to ensure the adsorption / removal effect of the siloxane gas which is the object of the present invention, the occupied volume of the activated carbon container 3 ′ is: It is desirable that the volume of the entire filter including the activated carbon filter layer 1, the charging filter layer 2, and the activated carbon container 3 ′ is 1/5 to 1/15, more preferably 1/12 to 1/14.
  • the volume ratio of the activated carbon filter layer 1 / charged filter layer 2 / active carbon container 3 ′ is 5 to 15 / 0.5 to 5 / 0.5 to 10, more preferably 9 to 11 / 0.5. ⁇ 2/1 ⁇ 3.
  • the fuel cell filter of the present invention purifies the air supplied by being attached to the fuel cell stack of the fuel cell system, but there is no particular limitation on the fuel cell system, and the polymer electrolyte fuel cell, alkaline Any one of an aqueous electrolyte fuel cell, a phosphoric acid aqueous electrolyte fuel cell, a molten carbonate electrolyte fuel cell, a solid oxide electrolyte fuel cell and the like may be used.
  • This fuel cell may be a stationary type or a portable type for mounting on a vehicle.
  • Example 1 Each of the following filter materials was used to form an activated carbon filter layer 1, a charged filter layer 2 and a urethane foam layer 3 to which a chemical was attached, thereby producing a fuel cell filter having the structure shown in FIG.
  • the charging filter layer 2 is formed by laminating 24 sheets of the following charging filter materials
  • the activated carbon filter layer 1 is formed by laminating 24 sheets of the following activated carbon filter materials
  • the urethane foam layer 3 is composed of 4 of the following urethane foam materials. It was formed by laminating.
  • [Material of activated carbon filter layer 1] A polyurethane foam having a three-dimensional network skeleton without cell membrane (10 pores / inch, 5 mm in thickness) fixed with 60 mesh coconut shell activated carbon to an adhesion amount of 300 g / m 2 (( DEO filter “OQ-10K” manufactured by Bridgestone Corporation). Size is ⁇ 60mm, thickness 5mm
  • Example 1 uses an agent (additive) that has a concentration of 3% by mass of potassium carbonate and a concentration of 2% by mass of potassium iodide with respect to the activated carbon.
  • a chemical agent (additive) having a concentration of 6% by mass potassium carbonate is used with respect to activated carbon.
  • the fuel cell filter of Example 1 has an adsorption removal rate of SO 2 contained in the atmosphere of about 1.5 to about 1 to that of Comparative Example 1 (conventional product). It can be seen that it can be satisfactorily maintained over a long period of time, twice or more. In particular, when the air condition is a relative humidity of 30 to 50%, the SO 2 removal time is doubled or more, and the life effect is further increased.
  • Example 2 Each of the following filter materials was used to form an activated carbon filter layer 1, a charged filter layer 2 and a urethane foam layer 3 to which a chemical was attached, thereby producing a fuel cell filter having the structure shown in FIG.
  • the charging filter layer 2 is formed by laminating 24 sheets of the following charging filter materials
  • the activated carbon filter layer 1 is formed by laminating 14 sheets of the following activated carbon filter materials
  • the urethane foam layer 3 is composed of 4 of the following urethane foam materials. It was formed by laminating.
  • [Material of activated carbon filter layer 1] A polyurethane foam having a three-dimensional network skeleton without cell membrane (10 pores / inch, 5 mm in thickness) fixed with 60 mesh coconut shell activated carbon to an adhesion amount of 300 g / m 2 (( DEO filter “OQ-10K” manufactured by Bridgestone Corporation). Size is ⁇ 14mm, thickness 5mm
  • Example 2 uses a chemical agent (additive) having a concentration of 3 mass% potassium carbonate and a concentration of 2 mass% potassium iodide with respect to the activated carbon. In Comparative Example 2, a chemical agent (additive) having a concentration of 6% by mass potassium carbonate is used with respect to the activated carbon.
  • Example 2 can maintain the SO 2 adsorption removal rate well over a long period of about three times or more compared with Comparative Example 2 (conventional product).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Filtering Materials (AREA)
  • Electrostatic Separation (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 The purpose of the present invention is to provide a filter for a fuel cell, with which adsorption of sulfur oxides can be maintained for a long period of time, and the life of the fuel cell extended. Provided is a filter for a fuel cell, having an activated carbon filter layer (1) at the gas inflow side and an electrostatic filter layer (2) at the gas discharge side, wherein the filter for a fuel cell is characterized in that an additive that contains an alkaline substance and an oxidant is added to the activated carbon of the activated carbon filter layer (1).

Description

燃料電池用フィルターFuel cell filter
 本発明は、燃料電池システムの発電装置(燃料電池スタック)に用いられ、除塵性能や化学吸着性能を有するエアフィルター(燃料電池用フィルター)に関する。 The present invention relates to an air filter (filter for fuel cell) that is used in a power generator (fuel cell stack) of a fuel cell system and has dust removal performance and chemical adsorption performance.
 燃料電池は、水素と酸素の電気化学反応により発電を行なうものであり、その際に酸素は大気中から供給されるのが一般的であるが、供給される大気中にSOXやNOX等の不純物や塵埃が含まれていると電極触媒を劣化させて起電力を低下させる不都合が生じるため、燃料電池システム内の発電装置(燃料電池スタック)には、除塵性能や化学吸着性能等を有するエアフィルターが取り付けられている。 A fuel cell generates electricity by an electrochemical reaction between hydrogen and oxygen, and oxygen is generally supplied from the atmosphere at that time, but SO X , NO X, etc. are supplied into the supplied atmosphere. If the impurities and dust are included, the electrocatalyst deteriorates and the electromotive force is lowered, so the power generation device (fuel cell stack) in the fuel cell system has dust removal performance, chemical adsorption performance, etc. An air filter is installed.
 化学吸着性能とは、SOX、NOX、トルエン、H2S等の有害物質を吸着する性能を意味し、この化学吸着性能を有するフィルターには、一般的には活性炭が用いられている。即ち、図1に示したように、活性炭フィルター層1と帯電フィルター層2とを組み合わせた燃料電池用フィルターが知られており、このエアフィルターは、図中矢印の方向に流入する大気につき、活性炭フィルター層1によりSOX,NOXなどの不純物ガスを吸着除去し、更に帯電フィルター層2で塵埃を除去するように構成される。 The chemical adsorption performance means the performance of adsorbing harmful substances such as SO x , NO x, toluene, H 2 S, etc., and activated carbon is generally used for a filter having this chemical adsorption performance. That is, as shown in FIG. 1, a fuel cell filter in which an activated carbon filter layer 1 and a charged filter layer 2 are combined is known. This air filter is activated carbon for the atmosphere flowing in the direction of the arrow in the figure. The filter layer 1 adsorbs and removes impurity gases such as SO x and NO x, and the charged filter layer 2 removes dust.
 上記活性炭フィルター層1としては、例えば繊維状やネット状の基材に活性炭を付着させたものや繊維状に加工した活性炭からなるフィルターやシートが用いられており、更に、SOXやH2Sの吸着のために、アルカリ性物質等の薬剤を予め活性炭に添着させた技術が提案されている。 As the activated carbon filter layer 1, for example, a filter or sheet made of activated carbon processed into a fibrous form or a net-like base material or activated carbon processed into a fibrous form is used, and SO X or H 2 S. In order to adsorb these substances, a technique has been proposed in which a chemical such as an alkaline substance is previously impregnated on activated carbon.
 しかしながら、燃料電池の高性能化が課題となっている現在においては、燃料電池用フィルターの小型化や長寿命化が強く求められており、化学吸着性能を長時間に亘り良好に維持できる燃料電池用フィルターを開発することが望まれている。 However, at present, where high performance of fuel cells is an issue, there is a strong demand for miniaturization and long life of fuel cell filters, and fuel cells that can maintain good chemisorption performance over a long period of time. It is desired to develop a filter for use.
 なお、本発明に関連する先行技術としては、下記特許文献を挙げることができる。 Note that the following patent documents can be cited as prior art related to the present invention.
国際公開第2007/060923号International Publication No. 2007/060923 特開2006-107980号公報JP 2006-107980 A 国際公開第2005/062411号International Publication No. 2005/062411 特開2003-297410号公報JP 2003-297410 A 特開2013-251116号公報JP 2013-251116 A
 本発明は、上記事情に鑑みなされたもので、硫黄酸化物等の化学吸着性能を長時間に亘り維持することができ、燃料電池の長寿化を図ることができる燃料電池用フィルターを得ることを目的とする。 The present invention has been made in view of the above circumstances, and is intended to obtain a fuel cell filter capable of maintaining the chemical adsorption performance of sulfur oxides or the like for a long time and extending the life of the fuel cell. Objective.
 本発明者らは、上記目的を達成するため鋭意検討を重ねた結果、活性炭フィルターと帯電フィルターとを組み合わせて大気中の不純物ガス(SOX,NOXなど)及び塵埃を除去する燃料電池用フィルターにおいて、気体の流入側に上記活性炭フィルターを、気体排出側に上記帯電フィルターをそれぞれ配設すると共に、上記活性炭フィルター層の活性炭に、アルカリ性物質と酸化剤とを含有する添着剤を予め添着することにより、硫黄酸化物(SOX)等の化学吸着性能を長時間に亘り維持することができ、燃料電池の長寿化を図ることができることを見出し、本発明を完成したものである。 As a result of intensive studies to achieve the above object, the present inventors have combined an activated carbon filter and a charge filter to remove impurity gases (SO X , NO X, etc.) and dust in the atmosphere, and a fuel cell filter. In the above, the activated carbon filter is disposed on the gas inflow side and the charging filter is disposed on the gas discharge side, and an additive containing an alkaline substance and an oxidizing agent is previously attached to the activated carbon of the activated carbon filter layer. Thus, the present inventors have found that the chemical adsorption performance of sulfur oxide (SO x ) or the like can be maintained for a long time, and the life of the fuel cell can be extended.
 従って、本発明は、下記[1]~[4]の燃料電池用フィルターを提供する。
[1]
 気体の流入側に活性炭フィルター層、気体の排出側に帯電フィルター層が配設された燃料電池用フィルターにおいて、上記活性炭フィルター層の活性炭には、アルカリ性物質と酸化剤とを含有する添着剤が添着されてなることを特徴とする燃料電池用フィルター。
[2]
 上記活性炭中のアルカリ性物質の濃度が1~10質量%であり、酸化剤の濃度が1~10質量%である[1]記載の燃料電池用フィルター。
[3]
 上記酸化剤がハロゲン系酸化剤である[1]又は[2]記載の燃料電池用フィルター。
[4]
 上記ハロゲン系酸化剤がヨウ化カリウムである[3]記載の燃料電池用フィルター。
Accordingly, the present invention provides the following fuel cell filters [1] to [4].
[1]
In the fuel cell filter in which the activated carbon filter layer is disposed on the gas inflow side and the charged filter layer is disposed on the gas exhaust side, the activated carbon of the activated carbon filter layer is attached with an additive containing an alkaline substance and an oxidizing agent. A fuel cell filter characterized by being made.
[2]
The fuel cell filter according to [1], wherein the concentration of the alkaline substance in the activated carbon is 1 to 10% by mass and the concentration of the oxidizing agent is 1 to 10% by mass.
[3]
The fuel cell filter according to [1] or [2], wherein the oxidizing agent is a halogen-based oxidizing agent.
[4]
The fuel cell filter according to [3], wherein the halogen-based oxidizing agent is potassium iodide.
 本発明の燃料電池用フィルターは、化学吸着性能を長時間に亘り良好に維持でき、燃料電池の長寿命化を実現することができる。 The fuel cell filter of the present invention can maintain the chemical adsorption performance well over a long period of time, and can realize a long life of the fuel cell.
燃料電池用フィルターの構造の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the structure of the filter for fuel cells. 燃料電池用フィルターの構造の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of the structure of the filter for fuel cells. 第1実施例における二酸化硫黄(SO2)吸着除去の実験結果を示すグラフである。Is a graph showing experimental results of sulfur dioxide (SO 2) adsorbed and removed in the first embodiment. 第2実施例における二酸化硫黄(SO2)吸着除去の実験結果を示すグラフである。Is a graph showing experimental results of sulfur dioxide (SO 2) adsorbed and removed in the second embodiment.
 本発明の燃料電池用フィルターは、上記のように、活性炭フィルター層、帯電フィルター層及びウレタンフォーム層(または活性炭収容体)を有し、燃料電池システムの燃料電池スタックに供給される大気を浄化するものである。その具体的構成としては、図1又は図2に示した燃料電池用フィルターが例示される。 The fuel cell filter of the present invention has an activated carbon filter layer, a charged filter layer, and a urethane foam layer (or activated carbon container) as described above, and purifies the air supplied to the fuel cell stack of the fuel cell system. Is. As the specific configuration, the fuel cell filter shown in FIG. 1 or 2 is exemplified.
 図1は、気体の流入側に活性炭フィルター層1、排出側に帯電フィルター層2をそれぞれ配設したものである。図2は、活性炭フィルター層1と帯電フィルター層2との間に、ウレタンフォーム層3を配設したものである。 FIG. 1 shows an activated carbon filter layer 1 on the gas inflow side and a charged filter layer 2 on the discharge side. FIG. 2 shows a urethane foam layer 3 disposed between the activated carbon filter layer 1 and the charged filter layer 2.
 上記活性炭フィルター層1は、大気中に含まれるSOX,NOXなどの不純物を吸着除去するものであり、例えば三次元網状構造やハニカム構造のフィルター基材に活性炭が担持されたものや、破砕状又は粒状の活性炭を通気性容器に収容したものなどで形成することができるが、本発明では、三次元網状構造を有するフィルター基材に活性炭を担持させたものが好適に用いられる。 The activated carbon filter layer 1 adsorbs and removes impurities such as SO x and NO x contained in the atmosphere. For example, activated carbon is supported on a filter substrate having a three-dimensional network structure or a honeycomb structure, or is crushed. In the present invention, a filter base material having a three-dimensional network structure on which activated carbon is supported is preferably used.
 この場合、フィルター基材の三次元網状構造体としては、特に制限されるものではないが、ポリウレタンフォームが特に爆破処理等によりセル膜を除去した三次元網状骨格構造を有するポリウレタンフォームが好ましく用いられ、このポリウレタンフォームは低圧力損失で、空気との接触効率が良い。更に、除膜処理を施したポリウレタンフォームとしては、エーテル系素材の方がエステル系素材に比べて耐加水分解性に優れ、後述のアルカリ添着処理等によるフィルター基材の加水分解劣化を抑制することができることから、より好適である。 In this case, the three-dimensional network structure of the filter substrate is not particularly limited, but a polyurethane foam having a three-dimensional network skeleton structure in which the cell membrane is removed by a blast treatment or the like is preferably used. This polyurethane foam has low pressure loss and good contact efficiency with air. Furthermore, for polyurethane foams that have undergone film removal treatment, ether-based materials have better hydrolysis resistance than ester-based materials, and suppress hydrolysis degradation of the filter substrate due to the alkali-adhesion treatment described below. This is more preferable.
 このフィルター基材のポリウレタンフォームの気孔数は、基材に付着させる活性炭粒子との関係で異なるが、通常は、気孔数4~14個/インチ、特に6~12個/インチとすることが好ましく、気孔数が4個/インチ未満であるとフィルターの圧力損失は低下するが、通過する気体との接触効率が低下するため不純物の除去性能が低下する場合があり、また気孔数が14個/インチを超えると気体との接触効率は高くなるが、圧力損失が高くなり、燃料電池システムの空気供給ファンの負荷増大などの不利を生じる場合がある。 The number of pores of the polyurethane foam of the filter base material varies depending on the relationship with the activated carbon particles attached to the base material. However, it is usually preferable that the number of pores is 4 to 14 / inch, particularly 6 to 12 / inch. When the number of pores is less than 4 / inch, the pressure loss of the filter is lowered, but the contact efficiency with the passing gas is lowered, so that the removal performance of impurities may be lowered, and the number of pores is 14 / If it exceeds 1 inch, the contact efficiency with the gas becomes high, but the pressure loss becomes high, which may cause disadvantages such as an increased load of the air supply fan of the fuel cell system.
 このフィルター基材に担持される活性炭としては、例えば椰子殻活性炭、木質活性炭、石油ピッチ系活性炭、石炭系造粒炭、その他の成型活性炭などが例示され、中でも石炭系造粒炭が好ましく用いられる。また、活性炭は特に制限されるものではないが、BET比表面積が500m2/g以上、特に1000~2000m2/g程度のものが好ましい。吸着能を考えると比表面積は大きい程よいが、比表面積を大きくすると吸着体の硬度が下がる傾向にあり、吸着体の種類によっては発塵要因となる可能性がある。更に、上記活性炭フィルター層の活性炭のメッシュは#20以上40以下であることが好適である。その理由は、#20以下となると低分子量のガス吸着能力が低くなり、#40以上になるとバインダーに活性炭が埋もれてしまい、BET比表面積を十分に確保することができないおそれがあるからである。 Examples of the activated carbon supported on the filter substrate include coconut shell activated carbon, wood activated carbon, petroleum pitch-based activated carbon, coal-based granulated coal, and other molded activated carbon. Among these, coal-based granulated coal is preferably used. . The activated carbon is not particularly limited, but preferably has a BET specific surface area of 500 m 2 / g or more, particularly about 1000 to 2000 m 2 / g. Considering the adsorption capacity, the larger the specific surface area, the better. However, increasing the specific surface area tends to lower the hardness of the adsorbent, which may cause dust generation depending on the type of adsorbent. Furthermore, the activated carbon mesh of the activated carbon filter layer is preferably # 20 or more and 40 or less. The reason for this is that when it is # 20 or less, the gas adsorption capacity of a low molecular weight is lowered, and when it is # 40 or more, activated carbon is buried in the binder, and there is a possibility that a sufficient BET specific surface area cannot be secured.
 本発明では、上記活性炭フィルター層の活性炭には、アルカリ性物質と酸化剤とを含有する添着剤(薬剤)が添着されるものである。前記添着剤にアルカリ性物質を含有させた目的は、起電力低下となる大気中の硫黄系化合物を高効率で除去するためであり、アルカリ性物質の具体例としては、炭酸カリウム、炭酸ナトリウム、水酸化カリウム、水酸化ナトリウム、炭酸マグネシウム、炭酸カルシウム、水酸化マグネシウム、水酸化カルシウムなどの、アルカリ金属の塩、アルカリ金属の水酸化物、アルカリ土類金属の塩、及びアルカリ土類金属の水酸化物よりなる群から選ばれる1種又は2種以上が挙げられる。上記アルカリ性物質の濃度は、特に制限はないが、活性炭に対して、1~10質量%となるように調整されることが好適である。 In the present invention, the activated carbon of the activated carbon filter layer is attached with an additive (medicine) containing an alkaline substance and an oxidizing agent. The purpose of adding an alkaline substance to the additive is to efficiently remove sulfur-based compounds in the atmosphere that lower the electromotive force. Specific examples of the alkaline substance include potassium carbonate, sodium carbonate, hydroxide Alkali metal salts, alkali metal hydroxides, alkaline earth metal salts, and alkaline earth metal hydroxides such as potassium, sodium hydroxide, magnesium carbonate, calcium carbonate, magnesium hydroxide, and calcium hydroxide 1 type or 2 types or more chosen from the group which consists of are mentioned. The concentration of the alkaline substance is not particularly limited, but is preferably adjusted to 1 to 10% by mass with respect to the activated carbon.
 また、上記添着剤に酸化剤を含有させる目的は、化学吸着性能を長時間に亘り良好に維持するためである。この酸化剤としては、ハロゲン、過マンガン酸塩、過酸化物等が挙げられ、特に、本発明の上記効果をより効果的に発揮し得るためには、ヨウ化カリウム等のハロゲン系酸化剤を採用することが好適である。また、上記酸化剤の濃度は、特に制限はないが、活性炭に対して、1~10質量%となるように調整されることが好適である。 The purpose of adding an oxidizing agent to the additive is to maintain the chemical adsorption performance well for a long time. Examples of the oxidizing agent include halogens, permanganates, peroxides, and the like. In particular, in order to exhibit the above-described effects of the present invention more effectively, a halogen-based oxidizing agent such as potassium iodide is used. It is preferable to adopt. The concentration of the oxidizing agent is not particularly limited, but is preferably adjusted to 1 to 10% by mass with respect to the activated carbon.
 上記添着剤を添着させた添着活性炭を用いる態様としては、活性炭に予め添着剤を添着して用いるほか、活性炭をフィルター基材に保持させた後、添着剤の添着処理を行っても良い。活性炭への添着剤の添着が過度に多いと、活性炭による吸着性能が損なわれることから、この添着剤の添着量は活性炭に対して20質量%以下とすることが好ましい。添着剤の添着量が少な過ぎても、アルカリ性物質等を含む添着剤を添着したことによる硫黄化合物の除去性能の向上効果を十分に得ることができない。従って、添着剤は、活性炭の吸着性能の維持と、硫黄化合物の除去性能の確保の面から、0.1~20質量%、特に5~10質量%とすることが好ましい。 As an aspect of using the impregnated activated carbon in which the above-mentioned additive is impregnated, the adsorbent may be added to the activated carbon in advance, or the activated carbon may be retained on the filter base material, and then the additive may be subjected to an addition treatment. If the amount of the additive added to the activated carbon is excessively large, the adsorption performance by the activated carbon is impaired. Therefore, the amount of the additive added is preferably 20% by mass or less with respect to the activated carbon. Even if the amount of the additive is too small, the effect of improving the sulfur compound removal performance due to the addition of the additive containing an alkaline substance or the like cannot be obtained sufficiently. Therefore, the additive is preferably 0.1 to 20% by mass, particularly 5 to 10% by mass, from the viewpoint of maintaining the adsorption performance of activated carbon and ensuring the removal performance of sulfur compounds.
 上記帯電フィルター層2は、大気中に含まれる1~2μm程度の塵埃を吸着除去するものである。この帯電フィルター層2を形成するフィルターとしては、帯電処理された繊維からなる不織布や織布を用いることができ、特に帯電処理された繊維からなるスパンポンド不織布、メルトブロー不織布、ニードルパンチ加工された不織布、エンボス加工された不織布などが好ましく用いられ、形状もプリーツ形状、ハニカム形状、フラット形状等、種々の形状のものを用いることができる。また、帯電処理された繊維の種類としては、特に制限されるものではないが、ポリプロピレン、ポリエステル、ポリアミド等の有機繊維が好ましく用いられ、中でもポリプロピレンが補修効率の点で特に好ましく用いられる。また、不織布や織布目付としては、特に制限はないが、除塵性能及び流通抵抗の面から15~500g/m2、特に50~200g/m2であることが好ましい。 The charging filter layer 2 adsorbs and removes dust of about 1 to 2 μm contained in the atmosphere. As the filter for forming the charge filter layer 2, a nonwoven fabric or a woven fabric made of a charged fiber can be used, and in particular, a spun pond nonwoven fabric, a melt blown nonwoven fabric, a needle punched nonwoven fabric made of a charged fiber. Embossed nonwoven fabrics are preferably used, and various shapes such as a pleated shape, a honeycomb shape, and a flat shape can be used. The kind of the fiber subjected to the charging treatment is not particularly limited, but organic fibers such as polypropylene, polyester, and polyamide are preferably used, and polypropylene is particularly preferably used from the viewpoint of repair efficiency. Further, the basis weight of the nonwoven fabric or the woven fabric is not particularly limited, but is preferably 15 to 500 g / m 2 , particularly 50 to 200 g / m 2 in terms of dust removal performance and flow resistance.
 本発明の燃料電池用フィルターは、必要により、図2に示されるように、ウレタンフォーム層3を配設することができる。このウレタンフォーム層3により、活性炭フィルター層1を通過した気体から硫酸アンモニウムなどの目詰まり原因物質を除去し、帯電フィルター層2の目詰まりを防止するものである。 The fuel cell filter of the present invention can be provided with a urethane foam layer 3 as shown in FIG. 2 if necessary. The urethane foam layer 3 removes clogging substances such as ammonium sulfate from the gas that has passed through the activated carbon filter layer 1 to prevent clogging of the charging filter layer 2.
 このウレタンフォーム層3を形成するウレタンフォームとしては、セル膜のない三次元網状骨格を有するポリウレタンフォームが好適に用いられ、特にポリエーテル系のポリウレタンフォームが、湿度の高い環境で使用しても加水分解が生じることなく良好な耐久性を維持し得ることから好ましく用いられる。 As the urethane foam for forming the urethane foam layer 3, a polyurethane foam having a three-dimensional network skeleton without a cell membrane is preferably used. Particularly, a polyether-based polyurethane foam is hydrolyzed even when used in a high humidity environment. It is preferably used because it can maintain good durability without causing decomposition.
 このウレタンフォーム層3を形成するウレタンフォームは、特に制限されるものではないが、気孔数が30~60個/インチ、特に40~50個/インチであることが好ましく、気孔数が30個/インチ未満では十分に硫酸アンモニウムを捕集できない場合があり、一方60個/インチを超えるとウレタンフォーム層3自体に目詰まりが発生する不都合を生じる場合がある。 The urethane foam for forming the urethane foam layer 3 is not particularly limited, but preferably has a pore number of 30 to 60 / inch, particularly 40 to 50 / inch, and has a pore number of 30 / If it is less than inches, ammonium sulfate may not be sufficiently collected. On the other hand, if it exceeds 60 inches / inch, there may be a problem that the urethane foam layer 3 itself is clogged.
 このウレタンフォーム層3は、シート状又はブロック状に形成された上記ポリウレタンフォームを複数枚又は複数個積層して形成することができ、その枚数を増減して吸着能力や通気性、寿命などを調整することができる。なお、上記活性炭フィルター層1及び帯電フィルター層2も同様に、複数枚又は複数個のフィルターを積層して形成すると共に、その枚数又は個数を増減して同様の調整を行なうことができる。 This urethane foam layer 3 can be formed by laminating or laminating a plurality of the above polyurethane foams formed in a sheet shape or block shape, and the number of the polyurethane foam layers can be increased or decreased to adjust the adsorption capacity, air permeability, life, etc. can do. Similarly, the activated carbon filter layer 1 and the charge filter layer 2 may be formed by laminating a plurality of filters or a plurality of filters, and the same adjustment may be performed by increasing or decreasing the number or the number of the filters.
 また、本発明では、活性炭フィルター層1と帯電フィルター層2との間に、上記ウレタンフォーム層3に代えて、特定の活性炭を充填した活性炭収容体3’を配設することもできる。この活性炭収容体3’に充填された活性炭により、活性炭フィルター層1を通過した気体から大気中に含まれるシロキサンガスを確実に吸着・除去できるものである。 In the present invention, an activated carbon container 3 ′ filled with specific activated carbon can be disposed between the activated carbon filter layer 1 and the charged filter layer 2 instead of the urethane foam layer 3. The activated carbon filled in the activated carbon container 3 ′ can reliably adsorb and remove siloxane gas contained in the atmosphere from the gas that has passed through the activated carbon filter layer 1.
 上記の活性炭収容体3’において、使用される活性炭については、例えば椰子殻活性炭、木質活性炭、石油ピッチ系活性炭、石炭系造粒炭、その他の成型活性炭などが例示され、中でも石炭系造粒炭が好ましく用いられる。また、上記の活性炭のBET比表面積としては、シロキサンガスを効果的に吸着させるためには、500~2000m2/g、特に、1000~1500m2/g程度のものを使用することが好適である。 Examples of the activated carbon used in the activated carbon container 3 ′ include coconut shell activated carbon, wood activated carbon, petroleum pitch-based activated carbon, coal-based granulated coal, and other molded activated carbon. Is preferably used. In addition, as the BET specific surface area of the above activated carbon, in order to effectively adsorb the siloxane gas, it is preferable to use one having about 500 to 2000 m 2 / g, particularly about 1000 to 1500 m 2 / g. .
 また、上記の活性炭収容体3’に使用される活性炭のメッシュは上記活性炭フィルター層に使用される活性炭よりもメッシュ粗いものであり、具体的には、メッシュが#6以上20未満であることが好適であり、より好ましくは、メッシュが#8以上15以下未満である。上記の活性炭のメッシュの範囲を逸脱すると、シロキサンガスを確実に吸着・除去することができず、すぐに飽和状態になり排出側にシロキサンガスが流れてしまうおそれがある。 The activated carbon mesh used for the activated carbon container 3 ′ is coarser than the activated carbon used for the activated carbon filter layer. Specifically, the mesh may be # 6 or more and less than 20. More preferably, the mesh is not less than # 8 and less than 15 inclusive. If it deviates from the range of the mesh of the activated carbon, the siloxane gas cannot be reliably adsorbed and removed, so that it may become saturated immediately and the siloxane gas may flow to the discharge side.
 上記活性炭収容体3’の容積は、特に制限はないが、本発明の目的であるシロキサンガスの吸着・除去効果をより確実なものにするためには、活性炭収容体3’の占有容積が、活性炭フィルター層1、帯電フィルター層2及び活性炭収容体3’からなるフィルター全体の容積の1/5~1/15とし、より好ましくは、1/12~1/14とすることが望ましい。 The volume of the activated carbon container 3 ′ is not particularly limited. However, in order to ensure the adsorption / removal effect of the siloxane gas which is the object of the present invention, the occupied volume of the activated carbon container 3 ′ is: It is desirable that the volume of the entire filter including the activated carbon filter layer 1, the charging filter layer 2, and the activated carbon container 3 ′ is 1/5 to 1/15, more preferably 1/12 to 1/14.
 また、本発明の目的及び効果は、大気中のシロキサンガスを確実に除去するほか、不純物ガス(SOX,NOXなど)及び塵埃を除去することにより燃料電池の性能低下や寿命低下の発生をより効果的に防止し得るものである。このため、活性炭フィルター層1/帯電フィルター層2/活性炭収容体3’の容積比は、5~15/0.5~5/0.5~10、より好ましくは、9~11/0.5~2/1~3である。 The objects and advantages of the present invention, in addition to reliably remove the siloxane gases in the atmosphere, the impurity gases (SO X, NO X, etc.) the occurrence of performance degradation or reduction of the service life of the fuel cell by removing and dust This can be prevented more effectively. Therefore, the volume ratio of the activated carbon filter layer 1 / charged filter layer 2 / active carbon container 3 ′ is 5 to 15 / 0.5 to 5 / 0.5 to 10, more preferably 9 to 11 / 0.5. ~ 2/1 ~ 3.
 本発明の燃料電池用フィルターは、燃料電池システムの燃料電池スタックに取り付けて供給される大気を浄化するものであるが、その燃料電池システムには特に制限はなく、固体高分子型燃料電池、アルカリ水溶液電解質型燃料電池、リン酸水溶液電解質型燃料電池、溶融炭酸塩電解質型燃料電池、固体酸化物電解質型燃料電池などのいずれのものであっても良い。この燃料電池は静置型であっても良く、車両搭載用などの可搬型のものであっても良い。 The fuel cell filter of the present invention purifies the air supplied by being attached to the fuel cell stack of the fuel cell system, but there is no particular limitation on the fuel cell system, and the polymer electrolyte fuel cell, alkaline Any one of an aqueous electrolyte fuel cell, a phosphoric acid aqueous electrolyte fuel cell, a molten carbonate electrolyte fuel cell, a solid oxide electrolyte fuel cell and the like may be used. This fuel cell may be a stationary type or a portable type for mounting on a vehicle.
 以下、実施例,比較例を示し、本発明をより具体的に説明する。なお、本発明は下記実施例に制限されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples. In addition, this invention is not restrict | limited to the following Example.
[実施例1,比較例1]
 下記フィルター材をそれぞれ用いて、薬剤が添着された活性炭フィルター層1、帯電フィルター層2及びウレタンフォーム層3を形成して、図2に示した構造の燃料電池用フィルターを作製した。この場合、帯電フィルター層2は下記帯電フィルター材を24枚積層して形成し、活性炭フィルター層1は下記活性炭フィルター材を24枚積層して形成し、ウレタンフォーム層3は下記ウレタンフォーム材料を4枚積層して形成した。
[Example 1, Comparative Example 1]
Each of the following filter materials was used to form an activated carbon filter layer 1, a charged filter layer 2 and a urethane foam layer 3 to which a chemical was attached, thereby producing a fuel cell filter having the structure shown in FIG. In this case, the charging filter layer 2 is formed by laminating 24 sheets of the following charging filter materials, the activated carbon filter layer 1 is formed by laminating 24 sheets of the following activated carbon filter materials, and the urethane foam layer 3 is composed of 4 of the following urethane foam materials. It was formed by laminating.
[活性炭フィルター層1の材料]
 セル膜のない三次元網状骨格を有するポリウレタンフォーム(気孔数10個/インチ、厚さ5mm)の骨格に60メッシュの椰子殻活性炭を付着量300g/m2となるように固着させたもの((株)ブリヂストン製、DEOフィルター「OQ-10K」)。サイズはφ60mm、厚さ5mm
 実施例1は、活性炭に対して、濃度3質量%炭酸カリウム,濃度2質量%ヨウ化カリウムとなる薬剤(添着剤)を用いる。
 比較例1は、活性炭に対して、濃度6質量%炭酸カリウムとなる薬剤(添着剤)を用いる。
[帯電フィルター層2の材料]
 φ64.3mm、厚さ0.5mmのポリプロピレン系エレクトレット不織布(東レファインケミカル(株)「SB050N」)
[ウレタンフォーム層3の材料]
 セル膜のない三次元網状骨格を有するポリエーテル系ポリウレタンフォーム(気孔数50個/インチ)((株)ブリヂストン製、SFフィルター「QOK-50」)。サイズはφ63.6mm、厚さ5mm。
[Material of activated carbon filter layer 1]
A polyurethane foam having a three-dimensional network skeleton without cell membrane (10 pores / inch, 5 mm in thickness) fixed with 60 mesh coconut shell activated carbon to an adhesion amount of 300 g / m 2 (( DEO filter “OQ-10K” manufactured by Bridgestone Corporation). Size is φ60mm, thickness 5mm
Example 1 uses an agent (additive) that has a concentration of 3% by mass of potassium carbonate and a concentration of 2% by mass of potassium iodide with respect to the activated carbon.
In Comparative Example 1, a chemical agent (additive) having a concentration of 6% by mass potassium carbonate is used with respect to activated carbon.
[Material of Charged Filter Layer 2]
Polypropylene electret nonwoven fabric with a diameter of 64.3 mm and a thickness of 0.5 mm (Toray Fine Chemicals Co., Ltd. “SB050N”)
[Material of urethane foam layer 3]
Polyether polyurethane foam having a three-dimensional network skeleton without cell membrane (50 pores / inch) (manufactured by Bridgestone Corporation, SF filter “QOK-50”). The size is φ63.6mm, thickness 5mm.
[二酸化硫黄(SO2)吸着性能試験]
 上記により得られた実施例1,比較例1の燃料電池用フィルターについて、下記の(I),(II)の2種類のエアー条件により、大気をフィルターの上流側から導入し、通過させ、帯電フィルター層が近傍に位置する気体の排出側のSO2の濃度から二酸化硫黄(SO2)除去率を計算した。その結果を下記の表1及び図3に示す。
・吸着測定機:ガステック社製校正ガス調製装置「パーミエーター」
 条件:流量1L/min、SO2濃度10~20ppm
 (I) チッ素(N2)100%・相対湿度0%(ドライ条件)
 (II) 大気・相対湿度30~50%(実際の使用条件)
[Sulfur dioxide (SO 2 ) adsorption performance test]
For the fuel cell filters of Example 1 and Comparative Example 1 obtained as described above, the atmosphere was introduced from the upstream side of the filter under the following two types of air conditions (I) and (II), passed through, and charged. The sulfur dioxide (SO 2 ) removal rate was calculated from the SO 2 concentration on the gas discharge side where the filter layer was located in the vicinity. The results are shown in Table 1 below and FIG.
・ Adsorption measuring device: Gas Tech's calibration gas preparation device "Permeator"
Conditions: Flow rate 1L / min, SO 2 concentration 10 ~ 20ppm
(I) Nitrogen (N 2 ) 100%, relative humidity 0% (dry conditions)
(II) Air / relative humidity 30-50% (actual usage conditions)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1及び図3の測定結果から、実施例1の燃料電池用フィルターは、比較例1(従来品)のものに比べると、大気中に含まれるSO2の吸着除去率を約1.5~2倍以上と長期間に亘り良好に維持できることが分かる。
 特に、エアー条件が、相対湿度30~50%の場合には、SO2の除去時間が2倍以上となり、寿命効果がより大きくなる。
From the measurement results in Table 1 and FIG. 3, the fuel cell filter of Example 1 has an adsorption removal rate of SO 2 contained in the atmosphere of about 1.5 to about 1 to that of Comparative Example 1 (conventional product). It can be seen that it can be satisfactorily maintained over a long period of time, twice or more.
In particular, when the air condition is a relative humidity of 30 to 50%, the SO 2 removal time is doubled or more, and the life effect is further increased.
[実施例2,比較例2]
 下記フィルター材をそれぞれ用いて、薬剤が添着された活性炭フィルター層1、帯電フィルター層2及びウレタンフォーム層3を形成して、図2に示した構造の燃料電池用フィルターを作製した。この場合、帯電フィルター層2は下記帯電フィルター材を24枚積層して形成し、活性炭フィルター層1は下記活性炭フィルター材を14枚積層して形成し、ウレタンフォーム層3は下記ウレタンフォーム材料を4枚積層して形成した。
[Example 2, Comparative Example 2]
Each of the following filter materials was used to form an activated carbon filter layer 1, a charged filter layer 2 and a urethane foam layer 3 to which a chemical was attached, thereby producing a fuel cell filter having the structure shown in FIG. In this case, the charging filter layer 2 is formed by laminating 24 sheets of the following charging filter materials, the activated carbon filter layer 1 is formed by laminating 14 sheets of the following activated carbon filter materials, and the urethane foam layer 3 is composed of 4 of the following urethane foam materials. It was formed by laminating.
[活性炭フィルター層1の材料]
 セル膜のない三次元網状骨格を有するポリウレタンフォーム(気孔数10個/インチ、厚さ5mm)の骨格に60メッシュの椰子殻活性炭を付着量300g/m2となるように固着させたもの((株)ブリヂストン製、DEOフィルター「OQ-10K」)。サイズはφ14mm、厚さ5mm
 実施例2は、活性炭に対して、濃度3質量%炭酸カリウム,濃度2質量%ヨウ化カリウムとなる薬剤(添着剤)を用いる。
 比較例2は、活性炭に対して、濃度6質量%炭酸カリウムとなる薬剤(添着剤)を用いる。
[帯電フィルター層2の材料]
 φ14.3mm、厚さ0.5mmのポリプロピレン系エレクトレット不織布(東レファインケミカル(株)「SB050N」)
[ウレタンフォーム層3の材料]
 セル膜のない三次元網状骨格を有するポリエーテル系ポリウレタンフォーム(気孔数50個/インチ)((株)ブリヂストン製、SFフィルター「QOK-50」)。サイズはφ14.6mm、厚さ5mm。
[Material of activated carbon filter layer 1]
A polyurethane foam having a three-dimensional network skeleton without cell membrane (10 pores / inch, 5 mm in thickness) fixed with 60 mesh coconut shell activated carbon to an adhesion amount of 300 g / m 2 (( DEO filter “OQ-10K” manufactured by Bridgestone Corporation). Size is φ14mm, thickness 5mm
Example 2 uses a chemical agent (additive) having a concentration of 3 mass% potassium carbonate and a concentration of 2 mass% potassium iodide with respect to the activated carbon.
In Comparative Example 2, a chemical agent (additive) having a concentration of 6% by mass potassium carbonate is used with respect to the activated carbon.
[Material of Charged Filter Layer 2]
φ14.3mm, 0.5mm thick polypropylene electret non-woven fabric (Toray Fine Chemicals Co., Ltd. “SB050N”)
[Material of urethane foam layer 3]
Polyether polyurethane foam having a three-dimensional network skeleton without cell membrane (50 pores / inch) (manufactured by Bridgestone Corporation, SF filter “QOK-50”). The size is φ14.6mm, thickness 5mm.
[二酸化硫黄(SO2)吸着性能試験]
 上記により得られた実施例2,比較例2の燃料電池用フィルターについては、上記実施例1と同様に、ガステック社製校正ガス調製装置「パーミエーター」を使用し、下記のエアー条件により、大気をフィルターの上流側から導入し、通過させ、帯電フィルター層が近傍に位置する気体の排出側のSO2の濃度から二酸化硫黄(SO2)除去率を計算した。その結果を図4のグラフに示す。
[Sulfur dioxide (SO 2 ) adsorption performance test]
About the fuel cell filter of Example 2 and Comparative Example 2 obtained as described above, in the same manner as in Example 1 above, using a calibration gas preparation device "Permeator" manufactured by GASTEC, under the following air conditions, Air was introduced from the upstream side of the filter and allowed to pass through, and the sulfur dioxide (SO 2 ) removal rate was calculated from the SO 2 concentration on the gas discharge side where the charged filter layer was located nearby. The result is shown in the graph of FIG.
 〔エアー条件〕
・SO2濃度 ・・・ 500ppb
・ガス ・・・ チッ素(N2)ガス
・流量 ・・・ 1L/min
・空間速度 ・・・ 5600hr-1
[Air condition]
・ SO 2 concentration ・ ・ ・ 500ppb
· Gas ··· Nitrogen (N 2 ) gas · Flow rate ··· 1 L / min
・ Space velocity: 5600hr -1
 図4に示されるように、二酸化硫黄(SO2)の吸着率を99%以上維持することができる時間について、実施例2では「1350時間」、比較例1(従来品)では「420時間」となった。この実験結果から、実施例2は、比較例2(従来品)と比べると、SO2吸着除去率を約3倍以上と長期間に亘り良好に維持できることが分かる。 As shown in FIG. 4, regarding the time during which the adsorption rate of sulfur dioxide (SO 2 ) can be maintained at 99% or more, “1350 hours” in Example 2 and “420 hours” in Comparative Example 1 (conventional product). It became. From this experimental result, it can be seen that Example 2 can maintain the SO 2 adsorption removal rate well over a long period of about three times or more compared with Comparative Example 2 (conventional product).
1 活性炭フィルター層
2 帯電フィルター層
3 ウレタンフォーム層
1 Activated carbon filter layer 2 Charged filter layer 3 Urethane foam layer

Claims (4)

  1.  気体の流入側に活性炭フィルター層、気体の排出側に帯電フィルター層が配設された燃料電池用フィルターにおいて、上記活性炭フィルター層の活性炭には、アルカリ性物質と酸化剤とを含有する添着剤が添着されてなることを特徴とする燃料電池用フィルター。 In the fuel cell filter in which the activated carbon filter layer is disposed on the gas inflow side and the charged filter layer is disposed on the gas exhaust side, the activated carbon of the activated carbon filter layer is attached with an additive containing an alkaline substance and an oxidizing agent. A fuel cell filter characterized by being made.
  2.  上記活性炭中のアルカリ性物質の濃度が1~10質量%であり、酸化剤の濃度が1~10質量%である請求項1記載の燃料電池用フィルター。 The fuel cell filter according to claim 1, wherein the concentration of the alkaline substance in the activated carbon is 1 to 10% by mass and the concentration of the oxidizing agent is 1 to 10% by mass.
  3.  上記酸化剤がハロゲン系酸化剤である請求項1又は2記載の燃料電池用フィルター。 The fuel cell filter according to claim 1 or 2, wherein the oxidizing agent is a halogen-based oxidizing agent.
  4.  上記ハロゲン系酸化剤がヨウ化カリウムである請求項3記載の燃料電池用フィルター。 The fuel cell filter according to claim 3, wherein the halogen-based oxidizing agent is potassium iodide.
PCT/JP2015/062224 2014-05-01 2015-04-22 Filter for fuel cell WO2015166854A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016516335A JP6534653B2 (en) 2014-05-01 2015-04-22 Fuel cell filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-094504 2014-05-01
JP2014094504 2014-05-01

Publications (1)

Publication Number Publication Date
WO2015166854A1 true WO2015166854A1 (en) 2015-11-05

Family

ID=54358585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062224 WO2015166854A1 (en) 2014-05-01 2015-04-22 Filter for fuel cell

Country Status (2)

Country Link
JP (1) JP6534653B2 (en)
WO (1) WO2015166854A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110026052A (en) * 2019-05-13 2019-07-19 江苏优冠汽车配件有限公司 Hydrogen energy source fuel cell chemical filter
CN114725454A (en) * 2022-04-06 2022-07-08 山东工业陶瓷研究设计院有限公司 SOFC (solid oxide Fuel cell) and preparation method thereof
WO2024052574A1 (en) * 2022-09-09 2024-03-14 Bayerische Motoren Werke Aktiengesellschaft Means of transportation and method for determining a state of an air filter of a fuel cell system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02139035A (en) * 1988-08-17 1990-05-29 Hitachi Plant Eng & Constr Co Ltd Air purification agent
JPH0938605A (en) * 1995-07-27 1997-02-10 Toshiba Eng & Constr Co Ltd Method for rinsing and drying substrate and device therefor
JP2003297410A (en) * 2002-04-05 2003-10-17 Bridgestone Corp Fluid purifier for fuel cell
WO2005062411A1 (en) * 2003-12-24 2005-07-07 Bridgestone Corporation Method and apparatus for purifying air for fuel cell and fuel cell
JP2013251116A (en) * 2012-05-31 2013-12-12 Bridgestone Corp Fuel cell filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02139035A (en) * 1988-08-17 1990-05-29 Hitachi Plant Eng & Constr Co Ltd Air purification agent
JPH0938605A (en) * 1995-07-27 1997-02-10 Toshiba Eng & Constr Co Ltd Method for rinsing and drying substrate and device therefor
JP2003297410A (en) * 2002-04-05 2003-10-17 Bridgestone Corp Fluid purifier for fuel cell
WO2005062411A1 (en) * 2003-12-24 2005-07-07 Bridgestone Corporation Method and apparatus for purifying air for fuel cell and fuel cell
JP2013251116A (en) * 2012-05-31 2013-12-12 Bridgestone Corp Fuel cell filter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110026052A (en) * 2019-05-13 2019-07-19 江苏优冠汽车配件有限公司 Hydrogen energy source fuel cell chemical filter
CN114725454A (en) * 2022-04-06 2022-07-08 山东工业陶瓷研究设计院有限公司 SOFC (solid oxide Fuel cell) and preparation method thereof
WO2024052574A1 (en) * 2022-09-09 2024-03-14 Bayerische Motoren Werke Aktiengesellschaft Means of transportation and method for determining a state of an air filter of a fuel cell system

Also Published As

Publication number Publication date
JP6534653B2 (en) 2019-06-26
JPWO2015166854A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
US20060240295A1 (en) Method and device for decontamination air for fuel cell, and fuel cell
US7416580B2 (en) Filter assemblies and systems for intake air for fuel cells
EP2260940B1 (en) Carbonaceous catalyst for flue gas desulfurization, process for producing the same and use thereof for removal of mercury from exhaust gas
WO2003000382A1 (en) Filter member
WO2015166854A1 (en) Filter for fuel cell
JP2018037170A (en) Air cleaner for fuel cell system
JP2019106306A (en) Air cleaner for fuel cell vehicle
JP2008159281A (en) Gas removal filtering device of fuel cell
JP2011233381A (en) Filter unit for fuel battery
EP2159865A1 (en) Arrangement for supplying a fuel cell with recycled reaction gas
JP4790222B2 (en) Gas removal device
KR20080018253A (en) Filter arrangement for fuel cell
US10074884B2 (en) Metal air battery having air purification module and method of operating the metal air battery
JP5790591B2 (en) Fuel cell filter
CN101258633A (en) Supply of fuel cell with pumped gas passed through filter to humidifier for enrichment with water vapor
JP2006341150A (en) Treatment agent for removing acidic gas and acidic gas removing filter
JP5853675B2 (en) Fuel cell filter
JP2007193963A (en) Fuel cell power generating device
JP2007237037A (en) Chemical filter
JP2007179868A (en) Filter unit for fuel cell
JP2017176936A (en) Chemical filter
CN113423485A (en) Filter medium for depositing nitrogen oxides
JP4615257B2 (en) Gas purifier for fuel cell
JP7434711B2 (en) Air filter for fuel cell system
Zhao Sea Salt particles Filtration Using Nonwoven Media at Varying Relative Humidities (RHs)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15786530

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016516335

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15786530

Country of ref document: EP

Kind code of ref document: A1