WO2015166699A1 - Ground fault detection device, power supply system, and ground fault detection method - Google Patents

Ground fault detection device, power supply system, and ground fault detection method Download PDF

Info

Publication number
WO2015166699A1
WO2015166699A1 PCT/JP2015/055549 JP2015055549W WO2015166699A1 WO 2015166699 A1 WO2015166699 A1 WO 2015166699A1 JP 2015055549 W JP2015055549 W JP 2015055549W WO 2015166699 A1 WO2015166699 A1 WO 2015166699A1
Authority
WO
WIPO (PCT)
Prior art keywords
current value
ground fault
solar cell
output terminal
reference potential
Prior art date
Application number
PCT/JP2015/055549
Other languages
French (fr)
Japanese (ja)
Inventor
康介 森田
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2015166699A1 publication Critical patent/WO2015166699A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a ground fault detection device, a power supply system, and a ground fault detection method.
  • Patent Document 1 an insulation resistance value of a solar cell array or a solar cell string is calculated in a state where the solar cell array or the solar cell string is disconnected, and the solar cell array or the solar cell is calculated based on the calculated insulation resistance value.
  • a ground fault detection device for detecting a ground fault of a string is disclosed.
  • the insulation resistance value of a DC power source such as a solar cell may fluctuate due to environmental changes such as weather. Therefore, there is a possibility that the ground fault of the DC power supply cannot be accurately detected.
  • a ground fault detection device is a ground fault detection device that detects ground faults of a plurality of DC power sources connected in series, and includes a first DC power source and a first DC power source included in the plurality of DC power sources.
  • a connection point with a second DC power source connected in series with the DC power source is connected to a reference potential point through a resistor having a predetermined resistance value, and the first output terminals of the plurality of DC power sources are used as reference potential points.
  • a first current value acquisition unit that acquires a first current value indicating a current flowing through the first output terminal, a connection point not connected to a reference potential point via a resistor, and a first output terminal
  • a second current value acquisition unit for acquiring a second current value indicating a current flowing through the first output terminal in a state of being connected to the reference potential point, and connecting the connection point to the reference potential point via a resistor; Is not connected to the reference potential point through the resistor, and the second output terminals of the plurality of DC power supplies are used as the reference potential point.
  • a third current value acquisition unit that acquires a third current value indicating the current flowing through the second output terminal in the connected state
  • a ground fault detector for detecting ground faults of a plurality of DC power supplies.
  • the ground fault detection device connects the first switching means for switching whether or not the connection point is connected to the reference potential point via a resistor, and connects either the first output terminal or the second output terminal to the reference potential point. You may further provide the 2nd switching means which switches whether to do.
  • the ground fault detection unit is configured to determine the first time at the first time point of the plurality of DC power sources based on the resistance value, the first current value, the second current value, and the third current value at the first time point.
  • a ground fault resistance value is derived, and based on the resistance value, the first current value, the second current value, and the third current value at a second time point after the first time point, Two ground fault resistance values may be derived, and ground faults of a plurality of DC power supplies may be detected based on the first ground fault resistance value and the second ground fault resistance value.
  • each of the plurality of DC power supplies may be a solar cell.
  • a power supply system includes the above ground fault detection device, a plurality of DC power sources, and a load device that consumes or converts power supplied from the plurality of DC power sources.
  • Third switching means for switching between connecting or disconnecting the plurality of DC power supplies and the load device is further provided, and the third switching means electrically disconnects the plurality of DC power supplies and the load device.
  • the first current value acquisition unit acquires a first current value indicating the current flowing through the first output terminal
  • the second current value acquisition unit acquires the second current value indicating the current flowing through the first output terminal.
  • the third current value acquisition unit acquires a third current value indicating a current flowing through the second output end.
  • a ground fault detection method is a ground fault detection method for detecting ground faults of a plurality of DC power sources connected in series, and includes a first DC power source and a first DC power source included in the plurality of DC power sources.
  • a connection point with a second DC power source connected in series with the DC power source is connected to a reference potential point through a resistor having a predetermined resistance value, and the first output terminals of the plurality of DC power sources are used as reference potential points.
  • a connected state In a connected state, obtaining a first current value indicating a current flowing through the first output terminal, connecting the connection point to the reference potential point via a resistor, and connecting the first output terminal to the reference potential point
  • the second current value indicating the current flowing through the first output terminal is obtained, and the connection point is connected to the reference potential point through the resistor, or the connection point is connected to the reference potential point through the resistor.
  • the second output Obtaining a third current value indicating a current flowing through the first current value, and detecting a ground fault of the plurality of DC power sources based on the resistance value, the first current value, the second current value, and the third current value.
  • FIG. 1 shows the circuit structure of the solar cell in 1st electric current value detection conditions in case the ground fault has arisen in the connection point between the solar cell module of the lowest potential side, and the solar cell module of the 2nd lowest potential side. It is. The figure which shows the circuit structure of the solar cell in 2nd electric current value detection conditions in case the ground fault has arisen in the connection point between the solar cell module of the lowest potential side, and the solar cell module of the 2nd lowest potential side. It is.
  • FIG. 1 shows an example of the overall configuration of a photovoltaic power generation system including a ground fault detection device 30 according to the present embodiment.
  • the solar cell 10 including the solar cell 10, the power conversion device 20, and the ground fault detection device 30 may be a solar cell string having a plurality of solar cell modules 12 connected in series.
  • the solar cell 10 will be described with respect to an example in which ten solar cell modules 12 are connected in series.
  • Solar cell 10 is an example of a DC power source.
  • a solar power generation system is an example of a power supply system.
  • the power converter 20 converts the power output from the solar cell 10.
  • the power converter 20 may be a power conditioner that boosts the direct current from the solar cell 10, converts the boosted direct current to alternating current, and links the system power supply.
  • the power conversion device 20 is an example of a load device that consumes or converts power output from the solar cell 10.
  • the ground fault detection device 30 derives a ground fault resistance value between the solar cell 10 and the ground point that is a reference potential point, and when the derived ground fault resistance value is smaller than the reference ground fault resistance value, the ground fault is detected. Is determined to have occurred.
  • the ground fault detection device 30 includes a cutting means 32, a switch 34, a switch 35, a switch 36, a detection resistor 40, an additional resistor 42, a voltage sensor 44, a current sensor 46, and a control unit 100.
  • the cutting means 32 is provided between the solar cell 10 and the power conversion device 20, and electrically disconnects the solar cell 10 and the power conversion device 20.
  • the cutting means 32 includes a relay 32a provided between an output terminal on the high potential side of the solar cell 10 and an input terminal on the high potential side of the power conversion device 20, an output terminal on the low potential side of the solar cell 10, And a relay 32b provided between the input terminal on the low potential side of the power conversion device 20.
  • the relays 32a and 32b may be relays having a b-contact that electrically disconnects the solar cell 10 and the power conversion device 20 when an operation signal is input.
  • the output terminal on the low potential side of the solar cell 10 is an example of a first output terminal.
  • the output terminal on the high potential side of the solar cell 10 is an example of the second output terminal.
  • the high potential side relay 32a of the cutting means 32 and the high potential side output terminal of the solar cell 10 are connected via a high potential side electric wire L1.
  • the low potential side relay 32b of the cutting means 32 and the low potential side output terminal of the solar cell 10 are connected via a low potential side electric wire L2.
  • One end of the switch 34 is connected to the electric wire L1 on the high potential side, and the other end of the switch 34 is connected to one end of the detection resistor 40.
  • One end of the switch 35 is connected to the electric wire L ⁇ b> 2 on the low potential side, and the other end of the switch 35 is connected to one end of the detection resistor 40. The other end of the detection resistor 40 is grounded.
  • the switch 34 and the switch 35 are an example of second switching means for switching whether or not one of the output terminal on the low potential side of the solar cell 10 and the output terminal on the high potential side of the solar cell 10 is connected to the reference potential point. It is.
  • the solar cell 10 includes a solar cell module 12a and a solar cell module 12b connected to a connection point 14 that is a midpoint of the solar cell 10.
  • the solar cell module 12a is an example of a first DC power source
  • the solar cell module 12b is an example of a second DC power source.
  • the resistance connected to the connection point 14 indicates the insulation resistance 200 of the entire solar cell 10 in a pseudo manner. In the present embodiment, it is assumed that the insulation resistance 200 is connected to the midpoint of the solar cell 10. However, the position where the insulation resistance 200 is assumed to be connected may be changed according to the electrical characteristics of the solar cell 10.
  • the switch 36 is an example of a first switching unit that switches whether the connection point 14 is connected to the reference potential point via the additional resistor 42.
  • the other end of the additional resistor 42 is grounded.
  • the additional resistor 42 is an example of a resistor having a predetermined resistance value.
  • the additional resistor 42 has a known resistance value Rc. In the present embodiment, an example in which the additional resistor 42 is connected to the connection point 14 that is the midpoint of the solar cell 10 will be described. However, the additional resistor 42 may be connected to a connection point between other solar cell modules included in the solar cell 10.
  • the voltage sensor 44 detects the voltage value Vo of the voltage output from the solar cell 10.
  • the current sensor 46 is configured so that the high potential output terminal of the solar cell 10 or the low potential output terminal of the solar cell 10 is connected to a ground point via the switch 34 or the switch 35. The current value of the current output from the output terminal on the potential side or the output terminal on the low potential side of the solar cell 10 is detected.
  • the control unit 100 controls the relay operation of the cutting means 32.
  • the control unit 100 controls the switching operations of the switch 34, the switch 35, and the switch 36. Further, the control unit 100 derives the ground fault resistance value Ra of the solar cell 10 based on the voltage value Vo detected by the voltage sensor 44 and the current value detected by the current sensor 46, and sets the ground fault resistance value Ra to the ground fault resistance value Ra. Based on this, the presence or absence of the ground fault of the solar cell 10 is detected.
  • the control unit 100 may determine that a ground fault has occurred in the solar cell 10 when the ground fault resistance value Ra is smaller than the reference ground fault resistance value.
  • FIG. 2 is a diagram illustrating an example of functional blocks of the control unit 100.
  • the control unit 100 includes a relay control unit 102, a switch control unit 104, a voltage value acquisition unit 106, a current value acquisition unit 108, and a ground fault detection unit 110.
  • Each unit included in the control unit 100 is stored in a computer-readable recording medium, and can be configured by installing a program for performing various processes related to detection of a ground fault of the solar battery 10 and causing the computer to execute the program.
  • the ground fault detection device 30 may be configured by causing a computer to function as each unit included in the control unit 100 by executing a program that performs various processes relating to detection of the ground fault of the solar cell 10.
  • the computer has various memories such as a CPU, ROM, RAM, and EEPROM (registered trademark), a communication bus, and an interface.
  • the CPU reads and sequentially executes a processing program stored in the ROM as firmware in advance, thereby causing a ground fault. It functions as the detection device 30.
  • the relay control unit 102 outputs an operation signal to the cutting means 32 at a predetermined timing at which a ground fault of the solar cell 10 is to be detected, and electrically disconnects the solar cell 10 and the power conversion device 20 from each other. To do.
  • the relay control unit 102 may output an operation signal to the disconnecting unit 32 before the power conversion device 20 is started after the power from the solar cell 10 reaches the reference power in the morning.
  • the relay control part 102 may output an operation signal to the cutting
  • the switch control unit 104 controls on / off of the switch 34, the switch 35, and the switch 36.
  • the switch control unit 104 turns off the switch 34, turns on the switch 35, and turns on the switch 36 under the first current value detection condition.
  • the switch control unit 104 turns off the switch 34, turns on the switch 36, and turns off the switch 36 under the second current value detection condition.
  • the switch control unit 104 turns on the switch 34, turns off the switch 35, and turns on the switch 36 under the third current value detection condition.
  • the switch control unit 104 turns on the switch 34, turns off the switch 35, and turns off the switch 36 under the fourth current value detection condition.
  • the voltage value acquisition unit 106 acquires the voltage value Vo of the voltage output from the solar cell 10 via the voltage sensor 44.
  • the current value acquisition unit 108 is a low potential of the solar cell 10 through the current sensor 46 in a state where the switch 34 is turned off, the switch 35 is turned on, and the switch 36 is turned on by the switch control unit 104 under the first current value detection condition.
  • the first current value IA indicating the current output from the output terminal on the side is acquired.
  • the current value acquisition unit 108 sets the connection point 14 between the solar cell module 12a and the solar cell module 12b connected in series to the solar cell module 12a as a reference potential point via an additional resistor 42 having a predetermined resistance value Ra.
  • a first current value for obtaining a first current value indicating a current flowing through the output terminal on the low potential side of the solar cell 10 in a state where the low potential side output terminal of the solar cell 10 is connected to the reference potential point It is an example of an acquisition part.
  • the current value acquisition unit 108 is connected to the low potential of the solar cell 10 via the current sensor 46 in a state where the switch 34 is turned off, the switch 35 is turned on, and the switch 36 is turned off by the switch control unit 104 under the second current value detection condition.
  • the second current value IB indicating the current output from the output terminal on the side is acquired.
  • the current value acquisition unit 108 does not connect the connection point 14 to the reference potential point via the additional resistor 42 and connects the output terminal on the low potential side of the solar cell 10 to the reference potential point.
  • It is an example of the 2nd electric current value acquisition part which acquires the 2nd electric current value which shows the electric current which flows into an output terminal.
  • the current value acquisition unit 108 has a high potential of the solar cell 10 through the current sensor 46 in a state where the switch 34 is turned on, the switch 35 is turned off, and the switch 36 is turned on by the switch control unit 104 under the third current value detection condition.
  • the third current value IC indicating the current output from the output terminal on the side is acquired.
  • the current value acquisition unit 108 has a high potential of the solar cell 10 via the current sensor 46 in a state where the switch 34 is turned on, the switch 35 is turned off, and the switch 36 is turned off by the switch control unit 104 under the fourth current value detection condition.
  • the fourth current value ID indicating the current output from the output terminal on the side is acquired.
  • the current value acquisition unit 108 connects the connection point 14 to the reference potential point via the additional resistor 42, or does not connect the connection point 14 to the reference potential point via the additional resistor 42, and the high potential of the solar cell 10.
  • 4 is an example of a third current value acquisition unit that acquires a third current value indicating a current flowing through an output terminal on the high potential side of the solar cell 10 in a state where the output terminal on the side is connected to a reference potential point.
  • the ground fault detection unit 110 includes the voltage value Vo acquired by the voltage value acquisition unit 106, the first current value IA, the second current value IB, the third current value IC, and the fourth current value acquired by the current value acquisition unit 108. Based on at least three current values of ID, the presence or absence of a ground fault of the solar cell 10 is detected.
  • the ground fault detection unit 110 is connected to the ground of the solar cell 10 based on the voltage value Vo and at least three current values of the first current value IA, the second current value IB, the third current value IC, and the fourth current value ID.
  • the fault resistance value is derived, and when the derived ground fault resistance value is smaller than the reference ground fault resistance value, it may be determined that the ground fault of the solar cell 10 has occurred.
  • 3A, 3B, 3C, and 3D show a case where a ground fault occurs at the connection point between the solar cell module 12c on the lowest potential side and the solar cell module 12d on the second lowest potential side.
  • the circuit structure of the solar cell 10 is shown.
  • FIG. 3A shows a circuit configuration of the solar cell 10 in a state where the switch control unit 104 is turned off, the switch 35 is turned on, and the switch 36 is turned on under the first current value detection condition.
  • the first current value IA output from the output terminal on the low potential side of the solar cell 10 is the current flowing through the combined resistance of the additional resistor 42 and the insulation resistor 200 represented by Expression (1).
  • a current value I2a indicating a current flowing through the ground fault resistance 300 represented by the equation (2).
  • I1a 5Va / R (1)
  • I2a Va / Ra (2)
  • Va represents the voltage value of the voltage at both ends of one solar cell module 12.
  • Va Vo / 10.
  • R is a combined resistance of the additional resistor 42 and the insulation resistor 200.
  • R Rb ⁇ Rc / (Rb + Rc).
  • Ra represents the resistance value of the ground fault resistance 300.
  • FIG. 3B shows a circuit configuration of the solar cell 10 in a state where the switch controller 104 is turned off, the switch 35 is turned on, and the switch 36 is turned off under the second current value detection condition.
  • the first current value IB output from the output terminal on the low potential side of the solar cell 10 is the current value I1b indicating the current flowing through the insulation resistor 200 shown by the formula (4), and the formula This is the total of the current value I2b indicating the current flowing through the ground fault resistance 300 indicated by (5).
  • I1b 5Va / Rb (4)
  • I2b Va / Ra (5)
  • FIG. 3C shows a circuit configuration of the solar cell 10 in a state where the switch control unit 104 is on, the switch 35 is off, and the switch 36 is on under the third current value detection condition.
  • the third current value IC output from the output terminal on the high potential side of the solar cell 10 is a current value I1c indicating a current flowing through the ground fault resistor 300 represented by Expression (7), This is the total of the current value I3c indicating the current flowing through the combined resistance of the additional resistance 42 and the insulation resistance 200 represented by Expression (8).
  • I1c 9Va / Ra (7)
  • I3c 5Va / R (8)
  • FIG. 3D shows a circuit configuration of the solar cell 10 in a state where the switch control unit 104 is turned on, the switch 35 is turned off, and the switch 36 is turned off under the fourth current value detection condition.
  • the fourth current value ID output from the output terminal on the high potential side of the solar cell 10 is the current value I1d indicating the current flowing through the insulation resistance 200 shown by the equation (10), and the equation This is the total of the current value I3d indicating the current flowing through the ground fault resistance 300 indicated by (11).
  • the ground fault detection unit 110 derives the resistance value Ra of the ground fault resistance 300 using the formulas (3), (6), (9), and (12).
  • the ground fault detection unit 110 performs the expressions (3), (6), (9), and
  • the resistance value Ra of the ground fault resistor 300 can be derived using any two of the equations (12).
  • FIG. 4A, FIG. 4B, FIG. 4C, and FIG. 4D are the connection points between the X (X ⁇ 5) th solar cell module and the (X + 1) th solar cell module from the lowest potential side of the ground fault.
  • the circuit configuration of the solar cell 10 when it occurs is shown.
  • FIG. 4A shows a circuit configuration of the solar cell 10 in a state where the switch control unit 104 is turned off, the switch 35 is turned on, and the switch 36 is turned on under the first current value detection condition.
  • the first current value IA output from the output terminal on the low potential side of the solar cell 10 is the current flowing through the combined resistance of the additional resistor 42 and the insulation resistor 200 represented by the equation (20).
  • I1a 5Va / R (20)
  • I2a X ⁇ Va / Ra (21)
  • FIG. 4B shows a circuit configuration of the solar cell 10 in a state where the switch control unit 104 is turned off, the switch 35 is turned on, and the switch 36 is turned off under the second current value detection condition.
  • the first current value IB output from the output terminal on the low potential side of the solar cell 10 is the current value I1b indicating the current flowing through the insulation resistor 200 shown by the equation (23), and the equation This is the total of the current value I2b indicating the current flowing through the ground fault resistance 300 indicated by (24).
  • I1b 5Va / Rb (23)
  • I2b X ⁇ Va / Ra (24)
  • FIG. 4C shows a circuit configuration of the solar cell 10 in a state where the switch control unit 104 is turned on, the switch 35 is turned off, and the switch 36 is turned on under the third current value detection condition.
  • the third current value IC output from the output terminal on the high potential side of the solar cell 10 is a current value I1c indicating the current flowing through the ground fault resistor 300 represented by the equation (26), This is the sum of the current value I3c indicating the current flowing through the combined resistance of the additional resistance 42 and the insulation resistance 200 represented by Expression (27).
  • I1c (5 + 5-X) Va / Ra (26)
  • I3c 5Va / R (27)
  • FIG. 4D shows a circuit configuration of the solar cell 10 in a state where the switch control unit 104 is turned on, the switch 35 is turned off, and the switch 36 is turned off under the fourth current value detection condition.
  • the fourth current value ID output from the output terminal on the high potential side of the solar cell 10 is the current value I1d indicating the current flowing through the insulation resistor 200 shown by the equation (29), and the equation This is the total of the current value I3d indicating the current flowing through the ground fault resistance 300 indicated by (30).
  • I1d (5 + 5-X) Va / Ra (29)
  • I3d 5Va / Rb (30)
  • the ground fault detection unit 110 derives the resistance value Ra of the ground fault resistance 300 using the formula (22), the formula (25), the formula (28), and the formula (31).
  • the ground fault detection unit 110 performs the expressions (22), (25), and (28).
  • the resistance value Ra of the ground fault resistor 300 can be derived using any three of the equations (31) and (31).
  • connection point between any two solar cell modules 12 constituting the solar cell 10 is connected to the ground point that is the reference potential point via the resistor having a known resistance value, and is connected.
  • the ground fault detection unit 110 can derive the resistance value Ra of the ground fault resistance 300 using any three of the four simultaneous equations.
  • the ground fault detection unit 110 regards the combined resistance obtained by combining the insulation resistance 200 and the ground fault resistance 300 as the insulation resistance of the solar cell 10, and the resistance value of the combined resistance is smaller than the reference resistance value, It may be determined that a ground fault of the solar cell 10 has occurred.
  • the resistance value of the insulation resistance 200 varies depending on environmental changes such as temperature. For example, the resistance value of the insulation resistance 200 on a rainy day may be lower than the resistance value of the insulation resistance 200 when a dry sunny day continues. Therefore, when the ground fault detection unit 110 determines the presence or absence of a ground fault based on the combined resistance obtained by synthesizing the insulation resistance 200 and the ground fault resistance 300, the ground fault detection unit 110 includes the insulation resistance 200 according to the environmental change.
  • the change in the resistance value of the solar cell 10 and the change in the resistance value of the ground fault resistor 300 as the deterioration of the solar cell 10 progresses cannot be distinguished. Therefore, when the ground fault detection unit 110 determines the presence / absence of a ground fault based on the combined resistance obtained by combining the insulation resistance 200 and the ground fault resistance 300, the accuracy of the determination of the presence / absence of the ground fault of the solar cell 10 may be reduced. There is sex.
  • the ground fault detection unit 110 distinguishes between the insulation resistance 200 and the ground fault resistance 300, and determines the presence or absence of the ground fault of the solar cell 10 based on the resistance value of the ground fault resistance 300. Yes. Therefore, according to the present embodiment, even when the resistance value of the insulation resistance 200 changes due to a change in the environment, it is possible to prevent the accuracy of the determination of the presence or absence of the ground fault of the solar cell 10 by the ground fault detection unit 110 from being lowered. it can.
  • FIG. 5 is a flowchart illustrating an example of a procedure in which the ground fault detection device 30 detects a ground fault of the solar cell 10.
  • the relay control unit 102 outputs an operation signal to the cutting means 32 at a predetermined timing at which a ground fault of the solar cell 10 is to be detected, operates the relay 32a and the relay 32b, and the solar cell 10 and the power conversion device. Electrically cuts off from 20 (S100).
  • the voltage value acquisition unit 106 acquires the voltage value Vo of the voltage output from the solar cell 10 via the voltage sensor 44 (S102).
  • the switch control unit 104 turns off the switch 34 and turns on the switch 35 to connect the output terminal on the low potential side of the solar cell 10 to the ground point that is the reference potential point (S104).
  • the switch control unit 104 turns on the switch 36 to connect the connection point 14 that is the midpoint of the solar cell 10 to the reference potential point via the additional resistor 42 (S106).
  • the current value acquisition unit 108 is output from the output terminal on the low potential side of the solar cell 10 through the current sensor 46 in a state where the switch 34 is turned off, the switch 35 is turned on, and the switch 36 is turned on by the switch control unit 104.
  • the first current value IA indicating the current to be acquired is acquired (S108).
  • the switch control unit 104 turns off the switch 36 (S110).
  • the current value acquisition unit 108 is output from the output terminal on the low potential side of the solar cell 10 through the current sensor 46 in a state where the switch 34 is turned off, the switch 35 is turned on, and the switch 36 is turned off by the switch control unit 104.
  • the second current value IB indicating the current to be acquired is acquired (S112).
  • the switch control unit 104 turns on the switch 34 and turns off the switch 35 to connect the output terminal on the high potential side of the solar cell 10 to the ground point that is the reference potential point (S114). Further, the switch control unit 104 turns on the switch 36 to connect the connection point 14 that is the midpoint of the solar cell 10 to the reference potential point via the additional resistor 42 (S116).
  • the current value acquisition unit 108 is output from the output terminal on the high potential side of the solar cell 10 through the current sensor 46 in a state where the switch 34 is turned on, the switch 35 is turned off, and the switch 36 is turned on by the switch control unit 104.
  • the third current value IC indicating the current to be acquired is acquired (S118).
  • the switch control unit 104 turns off the switch 36 (S120).
  • the current value acquisition unit 108 is output from the output terminal on the high potential side of the solar cell 10 through the current sensor 46 in a state where the switch 34 is turned on, the switch 35 is turned off, and the switch 36 is turned off by the switch control unit 104.
  • the fourth current value ID indicating the current to be acquired is acquired (S122).
  • the ground fault detection unit 110 includes at least three of a known resistance value Rc, a voltage value Vo of the additional resistor 42, a first current value IA, a second current value IB, a third current value IC, and a fourth current value ID. Based on the current value, the ground fault resistance value Ra is derived using at least three formulas (22), (25), (28), and (31) (S124). The ground fault detection unit 110 determines the presence or absence of a ground fault by comparing the derived ground fault resistance value Ra with a predetermined reference ground fault resistance value (S126).
  • the ground fault detection unit 110 can determine the presence or absence of the ground fault of the solar cell 10 based on the resistance value of the ground fault resistor 300 that does not include the resistance component of the insulation resistance 200. Therefore, according to the present embodiment, even when the resistance value of the insulation resistance 200 changes due to a change in the environment, it is possible to prevent the accuracy of the determination of the presence or absence of the ground fault of the solar cell 10 by the ground fault detection unit 110 from being lowered. it can.
  • the current value acquisition unit 108 acquires only three of the first current value IA, the second current value IB, the third current value IC, and the fourth current value ID, and the ground fault detection unit 110 A ground fault resistance value may be derived using the three acquired current values.
  • the ground fault detection unit 110 has a known resistance value Rc of the additional resistor 42 at the first time point, and at least three currents of the first current value IA, the second current value IB, the third current value IC, and the fourth current value ID.
  • the first ground fault resistance value at the first time point of the solar cell 10 may be derived based on the value.
  • the ground fault detection unit 110 includes the known resistance value Rc of the additional resistor 42 at the second time point after the first time point, the first current value IA, the second current value IB, the third current value IC, and the fourth current value.
  • the second ground fault resistance value at the second time point of the solar cell 10 may be derived based on at least three current values of the current value ID.
  • the ground fault detection part 110 may detect the ground fault of the solar cell 10 based on a 1st ground fault resistance value and a 2nd ground fault resistance value.
  • the ground fault detection unit 110 has a ground fault in the solar cell 10 or the solar cell. It may be determined that ten ground faults are in progress.
  • the ground fault detection unit 110 derives a ground fault resistance value at a first time point such as a time point when the ground fault detection device 30 is installed in the solar power generation system, and based on the ground fault resistance value at the first time point. Determine the reference ground fault resistance value.
  • the ground fault detection unit 110 may use the ground fault resistance value at the first time point as the reference ground fault resistance value.
  • the ground fault detection unit 110 may use a value obtained by subtracting a predetermined value from the ground fault resistance value at the first time point as the reference ground fault resistance value.
  • the ground fault detection unit 110 may set a value obtained by multiplying the ground fault resistance value at the first time point by a predetermined ratio as the reference ground fault resistance value. Then, the ground fault detection unit 110 compares the ground fault resistance value derived at the second time point after the first time point with the reference ground fault resistance value based on the ground fault resistance value at the first time point. The presence or absence of ten ground faults may be determined.
  • the ground fault resistance value of the solar cell 10 depends on the electrical characteristics of the solar cell 10. Therefore, the reference ground fault resistance value unique to the solar cell 10 can be set by setting the reference ground fault resistance value based on the ground fault resistance value derived by the ground fault detection unit 110. Therefore, by setting the reference ground fault resistance value based on the ground fault resistance value derived by the ground fault detection unit 110, the ground fault detection unit 110 can determine the presence or absence of the ground fault of the solar cell 10 with higher accuracy.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Photovoltaic Devices (AREA)

Abstract

There has been a possibility of not accurately detecting a ground fault of a direct current power supply. Disclosed is a ground fault detection device wherein: a first current value indicating a current flowing to a first output terminal is acquired in a state wherein a connection point between a first direct current power supplies and second direct current power supplies connected in series to the first direct current power supplies is connected to a reference potential point via a resistor having a predetermined resistance value, said first direct current power supplies and second direct current power supplies being included in a plurality of direct current power supplies, and a first output terminal of the direct current power supplies is connected to the reference potential point; a second current value indicating a current flowing to the first output terminal is acquired in a state wherein the connection point is not connected to the reference potential point via the resistor, and the first output terminal is connected to the reference potential point; a third current value indicating a current flowing to a second output terminal is acquired in a state wherein the connection point is connected to the reference potential point via the resistor, or the connection point is not connected to the reference potential point via the resistor, and a second output terminal of the direct current power supplies is connected to the reference potential point; and a grounding fault of the direct current power supplies is detected on the basis of the resistance value, the first current value, the second current value, and the third current value.

Description

地絡検出装置、電源システム、および地絡検出方法Ground fault detection device, power supply system, and ground fault detection method
 本発明は、地絡検出装置、電源システム、および地絡検出方法に関する。 The present invention relates to a ground fault detection device, a power supply system, and a ground fault detection method.
 特許文献1には、太陽電池アレイまたは太陽電池ストリングを解列した状態で、太陽電池アレイまたは太陽電池ストリングの絶縁抵抗値を算出し、算出された絶縁抵抗値に基づいて太陽電池アレイまたは太陽電池ストリングの地絡を検出する地絡検出装置が開示されている。
 特許文献1 特開2012-119382号公報
In Patent Document 1, an insulation resistance value of a solar cell array or a solar cell string is calculated in a state where the solar cell array or the solar cell string is disconnected, and the solar cell array or the solar cell is calculated based on the calculated insulation resistance value. A ground fault detection device for detecting a ground fault of a string is disclosed.
Patent Document 1 JP 2012-119382 A
 太陽電池などの直流電源の絶縁抵抗値は、天候などの環境の変化によって変動することがある。したがって、直流電源の地絡を正確に検出できない可能性がある。 The insulation resistance value of a DC power source such as a solar cell may fluctuate due to environmental changes such as weather. Therefore, there is a possibility that the ground fault of the DC power supply cannot be accurately detected.
 本発明の一態様に係る地絡検出装置は、直列に接続された複数の直流電源の地絡を検出する地絡検出装置であって、複数の直流電源に含まれる第1直流電源と第1直流電源に直列に接続された第2直流電源との接続点を予め定められた抵抗値の抵抗を介して基準電位点に接続し、かつ複数の直流電源の第1出力端を基準電位点に接続した状態で、第1出力端に流れる電流を示す第1電流値を取得する第1電流値取得部と、接続点を抵抗を介して基準電位点に接続せず、かつ第1出力端を基準電位点に接続した状態で、第1出力端に流れる電流を示す第2電流値を取得する第2電流値取得部と、接続点を抵抗を介して基準電位点に接続し、または接続点を抵抗を介して基準電位点に接続せず、かつ複数の直流電源の第2出力端を基準電位点に接続した状態で、第2出力端に流れる電流を示す第3電流値を取得する第3電流値取得部と、抵抗値、第1電流値、第2電流値、および第3電流値に基づいて、複数の直流電源の地絡を検出する地絡検出部とを備える。 A ground fault detection device according to an aspect of the present invention is a ground fault detection device that detects ground faults of a plurality of DC power sources connected in series, and includes a first DC power source and a first DC power source included in the plurality of DC power sources. A connection point with a second DC power source connected in series with the DC power source is connected to a reference potential point through a resistor having a predetermined resistance value, and the first output terminals of the plurality of DC power sources are used as reference potential points. In a connected state, a first current value acquisition unit that acquires a first current value indicating a current flowing through the first output terminal, a connection point not connected to a reference potential point via a resistor, and a first output terminal A second current value acquisition unit for acquiring a second current value indicating a current flowing through the first output terminal in a state of being connected to the reference potential point, and connecting the connection point to the reference potential point via a resistor; Is not connected to the reference potential point through the resistor, and the second output terminals of the plurality of DC power supplies are used as the reference potential point. Based on the resistance value, the first current value, the second current value, and the third current value, a third current value acquisition unit that acquires a third current value indicating the current flowing through the second output terminal in the connected state And a ground fault detector for detecting ground faults of a plurality of DC power supplies.
 上記地絡検出装置は、接続点を抵抗を介して基準電位点に接続するか否かを切り替える第1切り替え手段と、第1出力端および第2出力端のいずれか一方を基準電位点に接続するか否かを切り替える第2切り替え手段とをさらに備えてよい。 The ground fault detection device connects the first switching means for switching whether or not the connection point is connected to the reference potential point via a resistor, and connects either the first output terminal or the second output terminal to the reference potential point. You may further provide the 2nd switching means which switches whether to do.
 上記地絡検出装置において、地絡検出部は、第1時点における抵抗値、第1電流値、第2電流値、および第3電流値に基づいて、複数の直流電源の第1時点における第1地絡抵抗値を導出し、第1時点より後の第2時点における抵抗値、第1電流値、第2電流値、および第3電流値に基づいて、複数の直流電源の第2時点における第2地絡抵抗値を導出し、第1地絡抵抗値と第2地絡抵抗値とに基づいて、複数の直流電源の地絡を検出してよい。 In the ground fault detection device, the ground fault detection unit is configured to determine the first time at the first time point of the plurality of DC power sources based on the resistance value, the first current value, the second current value, and the third current value at the first time point. A ground fault resistance value is derived, and based on the resistance value, the first current value, the second current value, and the third current value at a second time point after the first time point, Two ground fault resistance values may be derived, and ground faults of a plurality of DC power supplies may be detected based on the first ground fault resistance value and the second ground fault resistance value.
 上記地絡検出装置において、複数の直流電源のそれぞれは、太陽電池でよい。 In the ground fault detection device, each of the plurality of DC power supplies may be a solar cell.
 本発明の一態様に係る電源システムは、上記地絡検出装置と、複数の直流電源と、複数の直流電源から供給される電力を消費または変換する負荷装置とを備え、地絡検出装置は、複数の直流電源と負荷装置との間を電気的に接続するか切断するかを切り替える第3切り替え手段をさらに備え、第3切り替え手段により複数の直流電源と負荷装置との間を電気的に切断した状態で、第1電流値取得部は、第1出力端に流れる電流を示す第1電流値を取得し、第2電流値取得部は、第1出力端に流れる電流を示す第2電流値を取得し、第3電流値取得部は、第2出力端に流れる電流を示す第3電流値を取得する。 A power supply system according to an aspect of the present invention includes the above ground fault detection device, a plurality of DC power sources, and a load device that consumes or converts power supplied from the plurality of DC power sources. Third switching means for switching between connecting or disconnecting the plurality of DC power supplies and the load device is further provided, and the third switching means electrically disconnects the plurality of DC power supplies and the load device. In this state, the first current value acquisition unit acquires a first current value indicating the current flowing through the first output terminal, and the second current value acquisition unit acquires the second current value indicating the current flowing through the first output terminal. The third current value acquisition unit acquires a third current value indicating a current flowing through the second output end.
 本発明の一態様に係る地絡検出方法は、直列に接続された複数の直流電源の地絡を検出する地絡検出方法であって、複数の直流電源に含まれる第1直流電源と第1直流電源に直列に接続された第2直流電源との接続点を予め定められた抵抗値の抵抗を介して基準電位点に接続し、かつ複数の直流電源の第1出力端を基準電位点に接続した状態で、第1出力端に流れる電流を示す第1電流値を取得する段階と、接続点を抵抗を介して基準電位点に接続せず、かつ第1出力端を基準電位点に接続した状態で、第1出力端に流れる電流を示す第2電流値を取得する段階と、接続点を抵抗を介して基準電位点に接続し、または接続点を抵抗を介して基準電位点に接続せず、かつ複数の直流電源の第2出力端を基準電位点に接続した状態で、第2出力端に流れる電流を示す第3電流値を取得する段階と、抵抗値、第1電流値、第2電流値、および第3電流値に基づいて、複数の直流電源の地絡を検出する段階とを含む。 A ground fault detection method according to an aspect of the present invention is a ground fault detection method for detecting ground faults of a plurality of DC power sources connected in series, and includes a first DC power source and a first DC power source included in the plurality of DC power sources. A connection point with a second DC power source connected in series with the DC power source is connected to a reference potential point through a resistor having a predetermined resistance value, and the first output terminals of the plurality of DC power sources are used as reference potential points. In a connected state, obtaining a first current value indicating a current flowing through the first output terminal, connecting the connection point to the reference potential point via a resistor, and connecting the first output terminal to the reference potential point In this state, the second current value indicating the current flowing through the first output terminal is obtained, and the connection point is connected to the reference potential point through the resistor, or the connection point is connected to the reference potential point through the resistor. In the state where the second output terminals of the plurality of DC power supplies are connected to the reference potential point, the second output Obtaining a third current value indicating a current flowing through the first current value, and detecting a ground fault of the plurality of DC power sources based on the resistance value, the first current value, the second current value, and the third current value. Including.
 なお、上記の発明の概要は、本発明の特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。 Note that the above summary of the invention does not enumerate all the features of the present invention. In addition, a sub-combination of these feature groups can also be an invention.
本実施形態に係る地絡検出装置を含む太陽光発電システムの全体構成の一例を示す図である。It is a figure which shows an example of the whole structure of the solar energy power generation system containing the ground fault detection apparatus which concerns on this embodiment. 制御部の機能ブロックの一例を示す図である。It is a figure which shows an example of the functional block of a control part. 最も低電位側の太陽電池モジュールと2番目に低電位側の太陽電池モジュールとの間の接続点において、地絡が生じている場合の第1電流値検出条件における太陽電池の回路構成を示す図である。The figure which shows the circuit structure of the solar cell in 1st electric current value detection conditions in case the ground fault has arisen in the connection point between the solar cell module of the lowest potential side, and the solar cell module of the 2nd lowest potential side. It is. 最も低電位側の太陽電池モジュールと2番目に低電位側の太陽電池モジュールとの間の接続点において、地絡が生じている場合の第2電流値検出条件における太陽電池の回路構成を示す図である。The figure which shows the circuit structure of the solar cell in 2nd electric current value detection conditions in case the ground fault has arisen in the connection point between the solar cell module of the lowest potential side, and the solar cell module of the 2nd lowest potential side. It is. 最も低電位側の太陽電池モジュールと2番目に低電位側の太陽電池モジュールとの間の接続点において、地絡が生じている場合の第3電流値検出条件における太陽電池の回路構成を示す図である。The figure which shows the circuit structure of the solar cell in 3rd electric current value detection conditions in case the ground fault has arisen in the connection point between the solar cell module of the lowest potential side, and the solar cell module of the 2nd lowest potential side. It is. 最も低電位側の太陽電池モジュールと2番目に低電位側の太陽電池モジュールとの間の接続点において、地絡が生じている場合の第4電流値検出条件における太陽電池の回路構成を示す図である。The figure which shows the circuit structure of the solar cell in 4th electric current value detection conditions in case the ground fault has arisen in the connection point between the solar cell module of the lowest potential side, and the solar cell module of the 2nd lowest potential side. It is. 最も低電位側からX(X<5)枚目の太陽電池モジュールと(X+1)枚目の太陽電池モジュールとの間の接続点において、地絡が生じている場合の第1電流値検出条件における太陽電池の回路構成を示す図である。In the first current value detection condition when a ground fault occurs at the connection point between the X (X <5) th solar cell module and the (X + 1) th solar cell module from the lowest potential side. It is a figure which shows the circuit structure of a solar cell. 最も低電位側からX(X<5)枚目の太陽電池モジュールと(X+1)枚目の太陽電池モジュールとの間の接続点において、地絡が生じている場合の第2電流値検出条件における太陽電池の回路構成を示す図である。In the second current value detection condition when a ground fault occurs at the connection point between the X (X <5) th solar cell module and the (X + 1) th solar cell module from the lowest potential side. It is a figure which shows the circuit structure of a solar cell. 最も低電位側からX(X<5)枚目の太陽電池モジュールと(X+1)枚目の太陽電池モジュールとの間の接続点において、地絡が生じている場合の第3電流値検出条件における太陽電池の回路構成を示す図である。In the third current value detection condition when a ground fault occurs at the connection point between the X (X <5) th solar cell module and the (X + 1) th solar cell module from the lowest potential side. It is a figure which shows the circuit structure of a solar cell. 最も低電位側からX(X<5)枚目の太陽電池モジュールと(X+1)枚目の太陽電池モジュールとの間の接続点において、地絡が生じている場合の第4電流値検出条件における太陽電池の回路構成を示す図である。In the fourth current value detection condition when a ground fault occurs at the connection point between the X (X <5) th solar cell module and the (X + 1) th solar cell module from the lowest potential side. It is a figure which shows the circuit structure of a solar cell. 地絡検出装置が太陽電池の地絡を検出する手順の一例を示すフローチャートである。It is a flowchart which shows an example of the procedure in which a ground fault detection apparatus detects the ground fault of a solar cell.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the present invention will be described through embodiments of the invention. However, the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.
 図1は、本実施形態に係る地絡検出装置30を含む太陽光発電システムの全体構成の一例を示す。 FIG. 1 shows an example of the overall configuration of a photovoltaic power generation system including a ground fault detection device 30 according to the present embodiment.
 太陽光発電システムは、太陽電池10、電力変換装置20、および地絡検出装置30を備える太陽電池10は、直列に接続された複数の太陽電池モジュール12を有する太陽電池ストリングでよい。本実施形態では、太陽電池10は、10枚の太陽電池モジュール12が直列に接続されている例について説明する。太陽電池10は、直流電源の一例である。太陽光発電システムは、電源システムの一例である。 In the photovoltaic power generation system, the solar cell 10 including the solar cell 10, the power conversion device 20, and the ground fault detection device 30 may be a solar cell string having a plurality of solar cell modules 12 connected in series. In the present embodiment, the solar cell 10 will be described with respect to an example in which ten solar cell modules 12 are connected in series. Solar cell 10 is an example of a DC power source. A solar power generation system is an example of a power supply system.
 電力変換装置20は、太陽電池10から出力される電力を変換する。電力変換装置20は、太陽電池10からの直流を昇圧して、昇圧された直流を交流に変換し、系統電源と連系させるパワーコンディショナでよい。電力変換装置20は、太陽電池10から出力される電力を消費または変換する負荷装置の一例である。 The power converter 20 converts the power output from the solar cell 10. The power converter 20 may be a power conditioner that boosts the direct current from the solar cell 10, converts the boosted direct current to alternating current, and links the system power supply. The power conversion device 20 is an example of a load device that consumes or converts power output from the solar cell 10.
 地絡検出装置30は、太陽電池10と基準電位点である接地点との間の地絡抵抗値を導出し、導出された地絡抵抗値が基準地絡抵抗値より小さい場合に、地絡が発生していると判定する。 The ground fault detection device 30 derives a ground fault resistance value between the solar cell 10 and the ground point that is a reference potential point, and when the derived ground fault resistance value is smaller than the reference ground fault resistance value, the ground fault is detected. Is determined to have occurred.
 地絡検出装置30は、切断手段32、スイッチ34、スイッチ35、スイッチ36、検出抵抗40、追加抵抗42、電圧センサ44、電流センサ46、および制御部100を備える。 The ground fault detection device 30 includes a cutting means 32, a switch 34, a switch 35, a switch 36, a detection resistor 40, an additional resistor 42, a voltage sensor 44, a current sensor 46, and a control unit 100.
 切断手段32は、太陽電池10と電力変換装置20との間に設けられ、太陽電池10と電力変換装置20とを電気的に切断させる。切断手段32は、太陽電池10の高電位側の出力端子と、電力変換装置20の高電位側の入力端子との間に設けられるリレー32aと、太陽電池10の低電位側の出力端子と、電力変換装置20の低電位側の入力端子との間に設けられるリレー32bとを含む。リレー32a,32bは、作動信号が入力された場合に太陽電池10と電力変換装置20とを電気的に切断させるb接点を有するリレーでよい。太陽電池10の低電位側の出力端子は、第1出力端の一例である。太陽電池10の高電位側の出力端子は、第2出力端の一例である。 The cutting means 32 is provided between the solar cell 10 and the power conversion device 20, and electrically disconnects the solar cell 10 and the power conversion device 20. The cutting means 32 includes a relay 32a provided between an output terminal on the high potential side of the solar cell 10 and an input terminal on the high potential side of the power conversion device 20, an output terminal on the low potential side of the solar cell 10, And a relay 32b provided between the input terminal on the low potential side of the power conversion device 20. The relays 32a and 32b may be relays having a b-contact that electrically disconnects the solar cell 10 and the power conversion device 20 when an operation signal is input. The output terminal on the low potential side of the solar cell 10 is an example of a first output terminal. The output terminal on the high potential side of the solar cell 10 is an example of the second output terminal.
 切断手段32が有する高電位側のリレー32aと太陽電池10の高電位側の出力端子とは、高電位側の電線L1を介して接続されている。切断手段32が有する低電位側のリレー32bと太陽電池10の低電位側の出力端子とは、低電位側の電線L2を介して接続されている。 The high potential side relay 32a of the cutting means 32 and the high potential side output terminal of the solar cell 10 are connected via a high potential side electric wire L1. The low potential side relay 32b of the cutting means 32 and the low potential side output terminal of the solar cell 10 are connected via a low potential side electric wire L2.
 スイッチ34の一端は、高電位側の電線L1に接続され、スイッチ34の他端は、検出抵抗40の一端に接続されている。スイッチ35の一端は、低電位側の電線L2に接続され、スイッチ35の他端は、検出抵抗40の一端に接続されている。検出抵抗40の他端は、接地されている。スイッチ34およびスイッチ35は、太陽電池10の低電位側の出力端子および太陽電池10の高電位側の出力端子のいずれか一方を基準電位点に接続するか否かを切り替える第2切り替え手段の一例である。 One end of the switch 34 is connected to the electric wire L1 on the high potential side, and the other end of the switch 34 is connected to one end of the detection resistor 40. One end of the switch 35 is connected to the electric wire L <b> 2 on the low potential side, and the other end of the switch 35 is connected to one end of the detection resistor 40. The other end of the detection resistor 40 is grounded. The switch 34 and the switch 35 are an example of second switching means for switching whether or not one of the output terminal on the low potential side of the solar cell 10 and the output terminal on the high potential side of the solar cell 10 is connected to the reference potential point. It is.
 太陽電池10は、太陽電池10の中点である接続点14に接続された太陽電池モジュール12aおよび太陽電池モジュール12bを含む。太陽電池モジュール12aは、第1直流電源の一例であり、太陽電池モジュール12bは、第2直流電源の一例である。接続点14に接続された抵抗は、太陽電池10全体の絶縁抵抗200を疑似的に示している。なお、本実施形態では、太陽電池10の中点に絶縁抵抗200が接続されていると仮定している。しかし、太陽電池10の電気特性に応じて、絶縁抵抗200が接続されていると仮定する位置は、変更してよい。 The solar cell 10 includes a solar cell module 12a and a solar cell module 12b connected to a connection point 14 that is a midpoint of the solar cell 10. The solar cell module 12a is an example of a first DC power source, and the solar cell module 12b is an example of a second DC power source. The resistance connected to the connection point 14 indicates the insulation resistance 200 of the entire solar cell 10 in a pseudo manner. In the present embodiment, it is assumed that the insulation resistance 200 is connected to the midpoint of the solar cell 10. However, the position where the insulation resistance 200 is assumed to be connected may be changed according to the electrical characteristics of the solar cell 10.
 スイッチ36の一端は、接続点14に接続され、スイッチ36の他端は、追加抵抗42の一端に接続されている。スイッチ36は、接続点14を追加抵抗42を介して基準電位点に接続するか否かを切り替える第1切り替え手段の一例である。追加抵抗42の他端は、接地されている。追加抵抗42は、予め定められた抵抗値を有する抵抗の一例である。追加抵抗42は、既知の抵抗値Rcを有する。本実施形態では、太陽電池10の中点である接続点14に追加抵抗42を接続する例について説明する。しかし、追加抵抗42は、太陽電池10に含まれる他の太陽電池モジュール間の接続点に接続されてよい。 One end of the switch 36 is connected to the connection point 14, and the other end of the switch 36 is connected to one end of the additional resistor 42. The switch 36 is an example of a first switching unit that switches whether the connection point 14 is connected to the reference potential point via the additional resistor 42. The other end of the additional resistor 42 is grounded. The additional resistor 42 is an example of a resistor having a predetermined resistance value. The additional resistor 42 has a known resistance value Rc. In the present embodiment, an example in which the additional resistor 42 is connected to the connection point 14 that is the midpoint of the solar cell 10 will be described. However, the additional resistor 42 may be connected to a connection point between other solar cell modules included in the solar cell 10.
 電圧センサ44は、太陽電池10から出力される電圧の電圧値Voを検出する。電流センサ46は、太陽電池10の高電位側の出力端子または太陽電池10の低電位側の出力端子がスイッチ34またはスイッチ35を介して接地点に接続されている場合に、太陽電池10の高電位側の出力端子または太陽電池10の低電位側の出力端子から出力されている電流の電流値を検出する。 The voltage sensor 44 detects the voltage value Vo of the voltage output from the solar cell 10. The current sensor 46 is configured so that the high potential output terminal of the solar cell 10 or the low potential output terminal of the solar cell 10 is connected to a ground point via the switch 34 or the switch 35. The current value of the current output from the output terminal on the potential side or the output terminal on the low potential side of the solar cell 10 is detected.
 制御部100は、切断手段32のリレー動作を制御する。制御部100は、スイッチ34、スイッチ35、およびスイッチ36のスイッチング動作を制御する。また、制御部100は、電圧センサ44により検出された電圧値Voおよび電流センサ46により検出された電流値に基づいて、太陽電池10の地絡抵抗値Raを導出し、地絡抵抗値Raに基づいて、太陽電池10の地絡の有無を検出する。制御部100は、地絡抵抗値Raが基準地絡抵抗値より小さい場合、太陽電池10の地絡が発生していると判断してよい。 The control unit 100 controls the relay operation of the cutting means 32. The control unit 100 controls the switching operations of the switch 34, the switch 35, and the switch 36. Further, the control unit 100 derives the ground fault resistance value Ra of the solar cell 10 based on the voltage value Vo detected by the voltage sensor 44 and the current value detected by the current sensor 46, and sets the ground fault resistance value Ra to the ground fault resistance value Ra. Based on this, the presence or absence of the ground fault of the solar cell 10 is detected. The control unit 100 may determine that a ground fault has occurred in the solar cell 10 when the ground fault resistance value Ra is smaller than the reference ground fault resistance value.
 図2は、制御部100の機能ブロックの一例を示す図である。制御部100は、リレー制御部102、スイッチ制御部104、電圧値取得部106、電流値取得部108、および地絡検出部110を備える。 FIG. 2 is a diagram illustrating an example of functional blocks of the control unit 100. The control unit 100 includes a relay control unit 102, a switch control unit 104, a voltage value acquisition unit 106, a current value acquisition unit 108, and a ground fault detection unit 110.
 制御部100が備える各部は、コンピュータ読み取り可能な記録媒体に記憶され、太陽電池10の地絡の検出に関する各種処理を行うプログラムをインストールし、このプログラムをコンピュータに実行させることで、構成してもよい。つまり、太陽電池10の地絡の検出に関する各種処理を行うプログラムを実行させることにより、制御部100が備える各部としてコンピュータを機能させることで、地絡検出装置30を構成してもよい。 Each unit included in the control unit 100 is stored in a computer-readable recording medium, and can be configured by installing a program for performing various processes related to detection of a ground fault of the solar battery 10 and causing the computer to execute the program. Good. That is, the ground fault detection device 30 may be configured by causing a computer to function as each unit included in the control unit 100 by executing a program that performs various processes relating to detection of the ground fault of the solar cell 10.
 コンピュータは、CPU、ROM、RAM、EEPROM(登録商標)等の各種メモリ、通信バス及びインタフェースを有し、予めファームウェアとしてROMに格納された処理プログラムをCPUが読み出して順次実行することで、地絡検出装置30として機能する。 The computer has various memories such as a CPU, ROM, RAM, and EEPROM (registered trademark), a communication bus, and an interface. The CPU reads and sequentially executes a processing program stored in the ROM as firmware in advance, thereby causing a ground fault. It functions as the detection device 30.
 リレー制御部102は、太陽電池10の地絡を検出すべき予め定められたタイミングで、切断手段32に作動信号を出力して、太陽電池10と電力変換装置20との間を電気的に遮断する。例えば、リレー制御部102は、朝方、太陽電池10からの電力が基準電力に達した後、電力変換装置20が起動する前に、切断手段32に作動信号を出力してよい。また、リレー制御部102は、夕方、太陽電池10からの電力が基準電力を満たさなくなり、電力変換装置20が停止した後に、切断手段32に作動信号を出力してよい。 The relay control unit 102 outputs an operation signal to the cutting means 32 at a predetermined timing at which a ground fault of the solar cell 10 is to be detected, and electrically disconnects the solar cell 10 and the power conversion device 20 from each other. To do. For example, the relay control unit 102 may output an operation signal to the disconnecting unit 32 before the power conversion device 20 is started after the power from the solar cell 10 reaches the reference power in the morning. Moreover, the relay control part 102 may output an operation signal to the cutting | disconnection means 32 after the electric power from the solar cell 10 stops satisfy | filling reference | standard power and the power converter device 20 stops in the evening.
 スイッチ制御部104は、スイッチ34、スイッチ35、およびスイッチ36のオンオフを制御する。スイッチ制御部104は、第1電流値検出条件において、スイッチ34をオフ、スイッチ35をオンし、かつスイッチ36をオンする。スイッチ制御部104は、第2電流値検出条件において、スイッチ34をオフ、スイッチ36をオンし、かつスイッチ36をオフする。スイッチ制御部104は、第3電流値検出条件において、スイッチ34をオン、スイッチ35をオフし、かつスイッチ36をオンする。スイッチ制御部104は、第4電流値検出条件において、スイッチ34をオン、スイッチ35をオフし、かつスイッチ36をオフする。 The switch control unit 104 controls on / off of the switch 34, the switch 35, and the switch 36. The switch control unit 104 turns off the switch 34, turns on the switch 35, and turns on the switch 36 under the first current value detection condition. The switch control unit 104 turns off the switch 34, turns on the switch 36, and turns off the switch 36 under the second current value detection condition. The switch control unit 104 turns on the switch 34, turns off the switch 35, and turns on the switch 36 under the third current value detection condition. The switch control unit 104 turns on the switch 34, turns off the switch 35, and turns off the switch 36 under the fourth current value detection condition.
 電圧値取得部106は、電圧センサ44を介して太陽電池10から出力される電圧の電圧値Voを取得する。電流値取得部108は、第1電流値検出条件においてスイッチ制御部104によりスイッチ34がオフ、スイッチ35がオン、かつスイッチ36がオンした状態で、電流センサ46を介して太陽電池10の低電位側の出力端子から出力される電流を示す第1電流値IAを取得する。電流値取得部108は、太陽電池モジュール12aと太陽電池モジュール12aに直列に接続された太陽電池モジュール12bとの接続点14を予め定められた抵抗値Raの追加抵抗42を介して基準電位点に接続し、かつ太陽電池10の低電位側の出力端子を基準電位点に接続した状態で、太陽電池10の低電位側の出力端子に流れる電流を示す第1電流値を取得する第1電流値取得部の一例である。 The voltage value acquisition unit 106 acquires the voltage value Vo of the voltage output from the solar cell 10 via the voltage sensor 44. The current value acquisition unit 108 is a low potential of the solar cell 10 through the current sensor 46 in a state where the switch 34 is turned off, the switch 35 is turned on, and the switch 36 is turned on by the switch control unit 104 under the first current value detection condition. The first current value IA indicating the current output from the output terminal on the side is acquired. The current value acquisition unit 108 sets the connection point 14 between the solar cell module 12a and the solar cell module 12b connected in series to the solar cell module 12a as a reference potential point via an additional resistor 42 having a predetermined resistance value Ra. A first current value for obtaining a first current value indicating a current flowing through the output terminal on the low potential side of the solar cell 10 in a state where the low potential side output terminal of the solar cell 10 is connected to the reference potential point. It is an example of an acquisition part.
 電流値取得部108は、第2電流値検出条件においてスイッチ制御部104によりスイッチ34がオフ、スイッチ35がオン、かつスイッチ36がオフした状態で、電流センサ46を介して太陽電池10の低電位側の出力端子から出力される電流を示す第2電流値IBを取得する。電流値取得部108は、接続点14を追加抵抗42を介して基準電位点に接続せず、かつ太陽電池10の低電位側の出力端子を基準電位点に接続した状態で、低電位側の出力端子に流れる電流を示す第2電流値を取得する第2電流値取得部の一例である。 The current value acquisition unit 108 is connected to the low potential of the solar cell 10 via the current sensor 46 in a state where the switch 34 is turned off, the switch 35 is turned on, and the switch 36 is turned off by the switch control unit 104 under the second current value detection condition. The second current value IB indicating the current output from the output terminal on the side is acquired. The current value acquisition unit 108 does not connect the connection point 14 to the reference potential point via the additional resistor 42 and connects the output terminal on the low potential side of the solar cell 10 to the reference potential point. It is an example of the 2nd electric current value acquisition part which acquires the 2nd electric current value which shows the electric current which flows into an output terminal.
 電流値取得部108は、第3電流値検出条件においてスイッチ制御部104によりスイッチ34がオン、スイッチ35がオフ、かつスイッチ36がオンした状態で、電流センサ46を介して太陽電池10の高電位側の出力端子から出力される電流を示す第3電流値ICを取得する。電流値取得部108は、第4電流値検出条件においてスイッチ制御部104によりスイッチ34がオン、スイッチ35がオフ、かつスイッチ36がオフした状態で、電流センサ46を介して太陽電池10の高電位側の出力端子から出力される電流を示す第4電流値IDを取得する。電流値取得部108は、接続点14を追加抵抗42を介して基準電位点に接続し、または接続点14を追加抵抗42を介して基準電位点に接続せず、かつ太陽電池10の高電位側の出力端子を基準電位点に接続した状態で、太陽電池10の高電位側の出力端子に流れる電流を示す第3電流値を取得する第3電流値取得部の一例である。 The current value acquisition unit 108 has a high potential of the solar cell 10 through the current sensor 46 in a state where the switch 34 is turned on, the switch 35 is turned off, and the switch 36 is turned on by the switch control unit 104 under the third current value detection condition. The third current value IC indicating the current output from the output terminal on the side is acquired. The current value acquisition unit 108 has a high potential of the solar cell 10 via the current sensor 46 in a state where the switch 34 is turned on, the switch 35 is turned off, and the switch 36 is turned off by the switch control unit 104 under the fourth current value detection condition. The fourth current value ID indicating the current output from the output terminal on the side is acquired. The current value acquisition unit 108 connects the connection point 14 to the reference potential point via the additional resistor 42, or does not connect the connection point 14 to the reference potential point via the additional resistor 42, and the high potential of the solar cell 10. 4 is an example of a third current value acquisition unit that acquires a third current value indicating a current flowing through an output terminal on the high potential side of the solar cell 10 in a state where the output terminal on the side is connected to a reference potential point.
 地絡検出部110は、電圧値取得部106が取得した電圧値Vo、および電流値取得部108が取得した第1電流値IA、第2電流値IB、第3電流値ICおよび第4電流値IDの少なくとも3つの電流値に基づいて、太陽電池10の地絡の有無を検出する。地絡検出部110は、電圧値Vo、および第1電流値IA、第2電流値IB、第3電流値ICおよび第4電流値IDの少なくとも3つの電流値に基づいて、太陽電池10の地絡抵抗値を導出し、導出された地絡抵抗値が基準地絡抵抗値より小さい場合に、太陽電池10の地絡が発生していると判断してよい。 The ground fault detection unit 110 includes the voltage value Vo acquired by the voltage value acquisition unit 106, the first current value IA, the second current value IB, the third current value IC, and the fourth current value acquired by the current value acquisition unit 108. Based on at least three current values of ID, the presence or absence of a ground fault of the solar cell 10 is detected. The ground fault detection unit 110 is connected to the ground of the solar cell 10 based on the voltage value Vo and at least three current values of the first current value IA, the second current value IB, the third current value IC, and the fourth current value ID. The fault resistance value is derived, and when the derived ground fault resistance value is smaller than the reference ground fault resistance value, it may be determined that the ground fault of the solar cell 10 has occurred.
 図3A、図3B、図3C、図3Dは、最も低電位側の太陽電池モジュール12cと2番目に低電位側の太陽電池モジュール12dとの間の接続点において、地絡が生じている場合の太陽電池10の回路構成を示す。 3A, 3B, 3C, and 3D show a case where a ground fault occurs at the connection point between the solar cell module 12c on the lowest potential side and the solar cell module 12d on the second lowest potential side. The circuit structure of the solar cell 10 is shown.
 図3Aは、スイッチ制御部104が、第1電流値検出条件においてスイッチ34がオフ、スイッチ35がオン、かつスイッチ36がオンした状態での太陽電池10の回路構成を示す。図3Aに示す回路構成において、太陽電池10の低電位側の出力端子から出力された第1電流値IAは、式(1)で示される追加抵抗42と絶縁抵抗200との合成抵抗を流れる電流を示す電流値I1aと、式(2)で示される地絡抵抗300を流れる電流を示す電流値I2aとの合計である。 FIG. 3A shows a circuit configuration of the solar cell 10 in a state where the switch control unit 104 is turned off, the switch 35 is turned on, and the switch 36 is turned on under the first current value detection condition. In the circuit configuration shown in FIG. 3A, the first current value IA output from the output terminal on the low potential side of the solar cell 10 is the current flowing through the combined resistance of the additional resistor 42 and the insulation resistor 200 represented by Expression (1). And a current value I2a indicating a current flowing through the ground fault resistance 300 represented by the equation (2).
 I1a=5Va/R   ・・・(1)
 I2a=Va/Ra   ・・・(2)
 IA=I1a+I2a=5Va/R+Va/Ra   ・・・(3)
I1a = 5Va / R (1)
I2a = Va / Ra (2)
IA = I1a + I2a = 5Va / R + Va / Ra (3)
 Vaは、1枚の太陽電池モジュール12の両端の電圧の電圧値を示す。太陽電池10を構成する太陽電池モジュール12のそれぞれの電気的な特性は同一で、太陽電池10を構成する太陽電池モジュール12の枚数がN枚である場合、Va=Vo/Nでよい。例えば、太陽電池モジュール12の枚数が10枚である場合、Va=Vo/10でよい。 Va represents the voltage value of the voltage at both ends of one solar cell module 12. When the electrical characteristics of the solar cell modules 12 constituting the solar cell 10 are the same and the number of the solar cell modules 12 constituting the solar cell 10 is N, Va = Vo / N may be satisfied. For example, when the number of solar cell modules 12 is 10, Va = Vo / 10.
 Rは、追加抵抗42と絶縁抵抗200との合成抵抗であり、追加抵抗42の抵抗値Rc、絶縁抵抗200の抵抗値Rbとした場合、R=Rb×Rc/(Rb+Rc)である。Raは、地絡抵抗300の抵抗値を示す。 R is a combined resistance of the additional resistor 42 and the insulation resistor 200. When the resistance value Rc of the additional resistor 42 and the resistance value Rb of the insulation resistor 200 are R, R = Rb × Rc / (Rb + Rc). Ra represents the resistance value of the ground fault resistance 300.
 図3Bは、スイッチ制御部104が、第2電流値検出条件においてスイッチ34がオフ、スイッチ35がオン、かつスイッチ36がオフした状態での太陽電池10の回路構成を示す。図3Bに示す回路構成において、太陽電池10の低電位側の出力端子から出力された第1電流値IBは、式(4)で示される絶縁抵抗200を流れる電流を示す電流値I1bと、式(5)で示される地絡抵抗300を流れる電流を示す電流値I2bとの合計である。 FIG. 3B shows a circuit configuration of the solar cell 10 in a state where the switch controller 104 is turned off, the switch 35 is turned on, and the switch 36 is turned off under the second current value detection condition. In the circuit configuration shown in FIG. 3B, the first current value IB output from the output terminal on the low potential side of the solar cell 10 is the current value I1b indicating the current flowing through the insulation resistor 200 shown by the formula (4), and the formula This is the total of the current value I2b indicating the current flowing through the ground fault resistance 300 indicated by (5).
 I1b=5Va/Rb   ・・・(4)
 I2b=Va/Ra   ・・・(5)
 IB=I1b+I2b=5Va/Rb+Va/Ra   ・・・(6)
I1b = 5Va / Rb (4)
I2b = Va / Ra (5)
IB = I1b + I2b = 5Va / Rb + Va / Ra (6)
 図3Cは、スイッチ制御部104が、第3電流値検出条件においてスイッチ34がオン、スイッチ35がオフ、かつスイッチ36がオンした状態での太陽電池10の回路構成を示す。図3Cに示す回路構成において、太陽電池10の高電位側の出力端子から出力された第3電流値ICは、式(7)で示される地絡抵抗300を流れる電流を示す電流値I1cと、式(8)で示される追加抵抗42と絶縁抵抗200との合成抵抗を流れる電流を示す電流値I3cとの合計である。 FIG. 3C shows a circuit configuration of the solar cell 10 in a state where the switch control unit 104 is on, the switch 35 is off, and the switch 36 is on under the third current value detection condition. In the circuit configuration shown in FIG. 3C, the third current value IC output from the output terminal on the high potential side of the solar cell 10 is a current value I1c indicating a current flowing through the ground fault resistor 300 represented by Expression (7), This is the total of the current value I3c indicating the current flowing through the combined resistance of the additional resistance 42 and the insulation resistance 200 represented by Expression (8).
 I1c=9Va/Ra   ・・・(7)
 I3c=5Va/R   ・・・(8)
 IC=I1c+I3c=9Va/Ra+5Va/R   ・・・(9)
I1c = 9Va / Ra (7)
I3c = 5Va / R (8)
IC = I1c + I3c = 9Va / Ra + 5Va / R (9)
 図3Dは、スイッチ制御部104が、第4電流値検出条件においてスイッチ34がオン、スイッチ35がオフ、かつスイッチ36がオフした状態での太陽電池10の回路構成を示す。図3Dに示す回路構成において、太陽電池10の高電位側の出力端子から出力された第4電流値IDは、式(10)で示される絶縁抵抗200を流れる電流を示す電流値I1dと、式(11)で示される地絡抵抗300を流れる電流を示す電流値I3dとの合計である。 FIG. 3D shows a circuit configuration of the solar cell 10 in a state where the switch control unit 104 is turned on, the switch 35 is turned off, and the switch 36 is turned off under the fourth current value detection condition. In the circuit configuration shown in FIG. 3D, the fourth current value ID output from the output terminal on the high potential side of the solar cell 10 is the current value I1d indicating the current flowing through the insulation resistance 200 shown by the equation (10), and the equation This is the total of the current value I3d indicating the current flowing through the ground fault resistance 300 indicated by (11).
 I1d=5Va/Ra   ・・・(10)
 I3d=5Va/Rb   ・・・(11)
 ID=I1d+I3d=5Va/Ra+5Va/Rb   ・・・(12)
I1d = 5Va / Ra (10)
I3d = 5Va / Rb (11)
ID = I1d + I3d = 5Va / Ra + 5Va / Rb (12)
 地絡検出部110は、式(3)、式(6)、式(9)、および式(12)を利用して、地絡抵抗300の抵抗値Raを導出する。ここで、太陽電池10の地絡の位置が既知である場合、未知数はRaおよびRbの2つなので、地絡検出部110は、式(3)、式(6)、式(9)、および式(12)のいずれか2つの式を利用して、地絡抵抗300の抵抗値Raを導出できる。 The ground fault detection unit 110 derives the resistance value Ra of the ground fault resistance 300 using the formulas (3), (6), (9), and (12). Here, when the position of the ground fault of the solar cell 10 is known, since the unknowns are two, Ra and Rb, the ground fault detection unit 110 performs the expressions (3), (6), (9), and The resistance value Ra of the ground fault resistor 300 can be derived using any two of the equations (12).
 図4A、図4B、図4C、図4Dは、地絡が最も低電位側からX(X<5)枚目の太陽電池モジュールと(X+1)枚目の太陽電池モジュールとの間の接続点において生じている場合の太陽電池10の回路構成を示す。 FIG. 4A, FIG. 4B, FIG. 4C, and FIG. 4D are the connection points between the X (X <5) th solar cell module and the (X + 1) th solar cell module from the lowest potential side of the ground fault. The circuit configuration of the solar cell 10 when it occurs is shown.
 図4Aは、スイッチ制御部104が、第1電流値検出条件においてスイッチ34がオフ、スイッチ35がオン、かつスイッチ36がオンした状態での太陽電池10の回路構成を示す。図4Aに示す回路構成において、太陽電池10の低電位側の出力端子から出力された第1電流値IAは、式(20)で示される追加抵抗42と絶縁抵抗200との合成抵抗を流れる電流を示す電流値I1aと、式(21)で示される地絡抵抗300を流れる電流を示す電流値I2aとの合計である。 FIG. 4A shows a circuit configuration of the solar cell 10 in a state where the switch control unit 104 is turned off, the switch 35 is turned on, and the switch 36 is turned on under the first current value detection condition. In the circuit configuration shown in FIG. 4A, the first current value IA output from the output terminal on the low potential side of the solar cell 10 is the current flowing through the combined resistance of the additional resistor 42 and the insulation resistor 200 represented by the equation (20). And a current value I2a indicating a current flowing through the ground fault resistance 300 represented by the equation (21).
 I1a=5Va/R   ・・・(20)
 I2a=X×Va/Ra   ・・・(21)
 IA=I1a+I2a=5Va/R+X×Va/Ra   ・・・(22)
I1a = 5Va / R (20)
I2a = X × Va / Ra (21)
IA = I1a + I2a = 5Va / R + X × Va / Ra (22)
 図4Bは、スイッチ制御部104が、第2電流値検出条件においてスイッチ34がオフ、スイッチ35がオン、かつスイッチ36がオフした状態での太陽電池10の回路構成を示す。図4Bに示す回路構成において、太陽電池10の低電位側の出力端子から出力された第1電流値IBは、式(23)で示される絶縁抵抗200を流れる電流を示す電流値I1bと、式(24)で示される地絡抵抗300を流れる電流を示す電流値I2bとの合計である。 FIG. 4B shows a circuit configuration of the solar cell 10 in a state where the switch control unit 104 is turned off, the switch 35 is turned on, and the switch 36 is turned off under the second current value detection condition. In the circuit configuration shown in FIG. 4B, the first current value IB output from the output terminal on the low potential side of the solar cell 10 is the current value I1b indicating the current flowing through the insulation resistor 200 shown by the equation (23), and the equation This is the total of the current value I2b indicating the current flowing through the ground fault resistance 300 indicated by (24).
 I1b=5Va/Rb   ・・・(23)
 I2b=X×Va/Ra   ・・・(24)
 IB=I1b+I2b=5Va/Rb+X×Va/Ra   ・・・(25)
I1b = 5Va / Rb (23)
I2b = X × Va / Ra (24)
IB = I1b + I2b = 5Va / Rb + X × Va / Ra (25)
 図4Cは、スイッチ制御部104が、第3電流値検出条件においてスイッチ34がオン、スイッチ35がオフ、かつスイッチ36がオンした状態での太陽電池10の回路構成を示す。図4Cに示す回路構成において、太陽電池10の高電位側の出力端子から出力された第3電流値ICは、式(26)で示される地絡抵抗300を流れる電流を示す電流値I1cと、式(27)で示される追加抵抗42と絶縁抵抗200との合成抵抗を流れる電流を示す電流値I3cとの合計である。 FIG. 4C shows a circuit configuration of the solar cell 10 in a state where the switch control unit 104 is turned on, the switch 35 is turned off, and the switch 36 is turned on under the third current value detection condition. In the circuit configuration shown in FIG. 4C, the third current value IC output from the output terminal on the high potential side of the solar cell 10 is a current value I1c indicating the current flowing through the ground fault resistor 300 represented by the equation (26), This is the sum of the current value I3c indicating the current flowing through the combined resistance of the additional resistance 42 and the insulation resistance 200 represented by Expression (27).
 I1c=(5+5-X)Va/Ra   ・・・(26)
 I3c=5Va/R   ・・・(27)
 IC=I1c+I3c=(10-X)Va/Ra+5Va/R   ・・・(28)
I1c = (5 + 5-X) Va / Ra (26)
I3c = 5Va / R (27)
IC = I1c + I3c = (10−X) Va / Ra + 5Va / R (28)
 図4Dは、スイッチ制御部104が、第4電流値検出条件においてスイッチ34がオン、スイッチ35がオフ、かつスイッチ36がオフした状態での太陽電池10の回路構成を示す。図4Dに示す回路構成において、太陽電池10の高電位側の出力端子から出力された第4電流値IDは、式(29)で示される絶縁抵抗200を流れる電流を示す電流値I1dと、式(30)で示される地絡抵抗300を流れる電流を示す電流値I3dとの合計である。 FIG. 4D shows a circuit configuration of the solar cell 10 in a state where the switch control unit 104 is turned on, the switch 35 is turned off, and the switch 36 is turned off under the fourth current value detection condition. In the circuit configuration shown in FIG. 4D, the fourth current value ID output from the output terminal on the high potential side of the solar cell 10 is the current value I1d indicating the current flowing through the insulation resistor 200 shown by the equation (29), and the equation This is the total of the current value I3d indicating the current flowing through the ground fault resistance 300 indicated by (30).
 I1d=(5+5-X)Va/Ra   ・・・(29)
 I3d=5Va/Rb   ・・・(30)
 ID=I1d+I3d=(10-X)Va/Ra+5Va/Rb   ・・・(31)
I1d = (5 + 5-X) Va / Ra (29)
I3d = 5Va / Rb (30)
ID = I1d + I3d = (10−X) Va / Ra + 5Va / Rb (31)
 地絡検出部110は、式(22)、式(25)、式(28)、および式(31)を利用して、地絡抵抗300の抵抗値Raを導出する。ここで、太陽電池10の地絡の位置が未知である場合、未知数はRa、Rb、Xの3つなので、地絡検出部110は、式(22)、式(25)、式(28)、および式(31)のいずれか3つの式を利用して、地絡抵抗300の抵抗値Raを導出できる。 The ground fault detection unit 110 derives the resistance value Ra of the ground fault resistance 300 using the formula (22), the formula (25), the formula (28), and the formula (31). Here, when the position of the ground fault of the solar cell 10 is unknown, since there are three unknowns Ra, Rb, and X, the ground fault detection unit 110 performs the expressions (22), (25), and (28). The resistance value Ra of the ground fault resistor 300 can be derived using any three of the equations (31) and (31).
 以上のように、太陽電池10を構成するいずれか2つの太陽電池モジュール12間の接続点を既知の抵抗値を有する抵抗を介して基準電位点である接地点に接続した状態、および接続していない状態のそれぞれについて、太陽電池10の高電位側の出力端子を接地点に接続した場合、および太陽電池10の低電位側の出力端子を接地点に接続した場合のそれぞれについて、接地点に接続した出力端子から出力される電流をそれぞれ検知する。これにより、地絡抵抗300の抵抗値Ra、絶縁抵抗200の抵抗値Rb、および地絡の位置Xの3つの未知数を含む連立方程式を4つ導出できる。よって、地絡検出部110は、4つの連立方程式のいずれか3つの式を利用して、地絡抵抗300の抵抗値Raを導出できる。 As described above, the connection point between any two solar cell modules 12 constituting the solar cell 10 is connected to the ground point that is the reference potential point via the resistor having a known resistance value, and is connected. For each of the unconnected states, when the output terminal on the high potential side of the solar cell 10 is connected to the ground point, and when the output terminal on the low potential side of the solar cell 10 is connected to the ground point, each is connected to the ground point. The current output from each output terminal is detected. Accordingly, four simultaneous equations including three unknowns of the resistance value Ra of the ground fault resistance 300, the resistance value Rb of the insulation resistance 200, and the position X of the ground fault can be derived. Therefore, the ground fault detection unit 110 can derive the resistance value Ra of the ground fault resistance 300 using any three of the four simultaneous equations.
 ここで、地絡検出部110が、絶縁抵抗200と地絡抵抗300とを合成した合成抵抗を太陽電池10の絶縁抵抗とみなして、その合成抵抗の抵抗値が基準抵抗値より小さい場合に、太陽電池10の地絡が発生していると判断することも考えられる。しかし、絶縁抵抗200の抵抗値は、気温などの環境の変化によって変動する。例えば、雨天の日の絶縁抵抗200の抵抗値は、乾燥した晴天の日が続いた場合の絶縁抵抗200の抵抗値より低くなる場合がある。そのため、地絡検出部110が、絶縁抵抗200と地絡抵抗300とを合成した合成抵抗に基づいて地絡の有無を判断する場合、地絡検出部110は、環境の変化に伴う絶縁抵抗200の抵抗値の変化と、太陽電池10の劣化の進行に伴う地絡抵抗300の抵抗値の変化とを区別できない。したがって、地絡検出部110が絶縁抵抗200と地絡抵抗300とを合成した合成抵抗に基づいて地絡の有無を判断する場合、太陽電池10の地絡の有無の判定の精度が低下する可能性がある。 Here, when the ground fault detection unit 110 regards the combined resistance obtained by combining the insulation resistance 200 and the ground fault resistance 300 as the insulation resistance of the solar cell 10, and the resistance value of the combined resistance is smaller than the reference resistance value, It may be determined that a ground fault of the solar cell 10 has occurred. However, the resistance value of the insulation resistance 200 varies depending on environmental changes such as temperature. For example, the resistance value of the insulation resistance 200 on a rainy day may be lower than the resistance value of the insulation resistance 200 when a dry sunny day continues. Therefore, when the ground fault detection unit 110 determines the presence or absence of a ground fault based on the combined resistance obtained by synthesizing the insulation resistance 200 and the ground fault resistance 300, the ground fault detection unit 110 includes the insulation resistance 200 according to the environmental change. The change in the resistance value of the solar cell 10 and the change in the resistance value of the ground fault resistor 300 as the deterioration of the solar cell 10 progresses cannot be distinguished. Therefore, when the ground fault detection unit 110 determines the presence / absence of a ground fault based on the combined resistance obtained by combining the insulation resistance 200 and the ground fault resistance 300, the accuracy of the determination of the presence / absence of the ground fault of the solar cell 10 may be reduced. There is sex.
 そこで、本実施形態に係る地絡検出部110は、絶縁抵抗200と地絡抵抗300とを区別して、地絡抵抗300の抵抗値に基づいて、太陽電池10の地絡の有無を判定している。したがって、本実施形態によれば、環境の変化に伴い絶縁抵抗200の抵抗値が変化した場合でも、地絡検出部110による太陽電池10の地絡の有無の判定の精度が低下することを防止できる。 Therefore, the ground fault detection unit 110 according to the present embodiment distinguishes between the insulation resistance 200 and the ground fault resistance 300, and determines the presence or absence of the ground fault of the solar cell 10 based on the resistance value of the ground fault resistance 300. Yes. Therefore, according to the present embodiment, even when the resistance value of the insulation resistance 200 changes due to a change in the environment, it is possible to prevent the accuracy of the determination of the presence or absence of the ground fault of the solar cell 10 by the ground fault detection unit 110 from being lowered. it can.
 図5は、地絡検出装置30が太陽電池10の地絡を検出する手順の一例を示すフローチャートである。 FIG. 5 is a flowchart illustrating an example of a procedure in which the ground fault detection device 30 detects a ground fault of the solar cell 10.
 リレー制御部102は、太陽電池10の地絡を検出すべき予め定められたタイミングで、切断手段32に作動信号を出力して、リレー32aおよびリレー32bを作動させ、太陽電池10と電力変換装置20との間を電気的に遮断する(S100)。 The relay control unit 102 outputs an operation signal to the cutting means 32 at a predetermined timing at which a ground fault of the solar cell 10 is to be detected, operates the relay 32a and the relay 32b, and the solar cell 10 and the power conversion device. Electrically cuts off from 20 (S100).
 電圧値取得部106は、電圧センサ44を介して太陽電池10から出力される電圧の電圧値Voを取得する(S102)。スイッチ制御部104は、スイッチ34をオフ、スイッチ35をオンして、太陽電池10の低電位側の出力端子を基準電位点である接地点に接続する(S104)。また、スイッチ制御部104は、スイッチ36をオンして、太陽電池10の中点である接続点14を追加抵抗42を介して基準電位点に接続する(S106)。電流値取得部108は、スイッチ制御部104によりスイッチ34がオフ、スイッチ35がオン、かつスイッチ36がオンした状態で、電流センサ46を介して太陽電池10の低電位側の出力端子から出力される電流を示す第1電流値IAを取得する(S108)。 The voltage value acquisition unit 106 acquires the voltage value Vo of the voltage output from the solar cell 10 via the voltage sensor 44 (S102). The switch control unit 104 turns off the switch 34 and turns on the switch 35 to connect the output terminal on the low potential side of the solar cell 10 to the ground point that is the reference potential point (S104). In addition, the switch control unit 104 turns on the switch 36 to connect the connection point 14 that is the midpoint of the solar cell 10 to the reference potential point via the additional resistor 42 (S106). The current value acquisition unit 108 is output from the output terminal on the low potential side of the solar cell 10 through the current sensor 46 in a state where the switch 34 is turned off, the switch 35 is turned on, and the switch 36 is turned on by the switch control unit 104. The first current value IA indicating the current to be acquired is acquired (S108).
 次いで、スイッチ制御部104は、スイッチ36をオフする(S110)。電流値取得部108は、スイッチ制御部104によりスイッチ34がオフ、スイッチ35がオン、かつスイッチ36がオフした状態で、電流センサ46を介して太陽電池10の低電位側の出力端子から出力される電流を示す第2電流値IBを取得する(S112)。 Next, the switch control unit 104 turns off the switch 36 (S110). The current value acquisition unit 108 is output from the output terminal on the low potential side of the solar cell 10 through the current sensor 46 in a state where the switch 34 is turned off, the switch 35 is turned on, and the switch 36 is turned off by the switch control unit 104. The second current value IB indicating the current to be acquired is acquired (S112).
 続いて、スイッチ制御部104は、スイッチ34をオン、スイッチ35をオフして、太陽電池10の高電位側の出力端子を基準電位点である接地点に接続する(S114)。また、スイッチ制御部104は、スイッチ36をオンして、太陽電池10の中点である接続点14を追加抵抗42を介して基準電位点に接続する(S116)。電流値取得部108は、スイッチ制御部104によりスイッチ34がオン、スイッチ35がオフ、かつスイッチ36がオンした状態で、電流センサ46を介して太陽電池10の高電位側の出力端子から出力される電流を示す第3電流値ICを取得する(S118)。 Subsequently, the switch control unit 104 turns on the switch 34 and turns off the switch 35 to connect the output terminal on the high potential side of the solar cell 10 to the ground point that is the reference potential point (S114). Further, the switch control unit 104 turns on the switch 36 to connect the connection point 14 that is the midpoint of the solar cell 10 to the reference potential point via the additional resistor 42 (S116). The current value acquisition unit 108 is output from the output terminal on the high potential side of the solar cell 10 through the current sensor 46 in a state where the switch 34 is turned on, the switch 35 is turned off, and the switch 36 is turned on by the switch control unit 104. The third current value IC indicating the current to be acquired is acquired (S118).
 次いで、スイッチ制御部104は、スイッチ36をオフする(S120)。電流値取得部108は、スイッチ制御部104によりスイッチ34がオン、スイッチ35がオフ、かつスイッチ36がオフした状態で、電流センサ46を介して太陽電池10の高電位側の出力端子から出力される電流を示す第4電流値IDを取得する(S122)。 Next, the switch control unit 104 turns off the switch 36 (S120). The current value acquisition unit 108 is output from the output terminal on the high potential side of the solar cell 10 through the current sensor 46 in a state where the switch 34 is turned on, the switch 35 is turned off, and the switch 36 is turned off by the switch control unit 104. The fourth current value ID indicating the current to be acquired is acquired (S122).
 地絡検出部110は、追加抵抗42の既知の抵抗値Rc、電圧値Vo、並びに第1電流値IA、第2電流値IB、第3電流値IC、および第4電流値IDの少なくとも3つの電流値に基づいて、式(22)、式(25)、式(28)、および式(31)の少なくとも3つの式を利用して、地絡抵抗値Raを導出する(S124)。地絡検出部110は、導出された地絡抵抗値Raと、予め定められた基準地絡抵抗値との比較により地絡の有無を判断する(S126)。 The ground fault detection unit 110 includes at least three of a known resistance value Rc, a voltage value Vo of the additional resistor 42, a first current value IA, a second current value IB, a third current value IC, and a fourth current value ID. Based on the current value, the ground fault resistance value Ra is derived using at least three formulas (22), (25), (28), and (31) (S124). The ground fault detection unit 110 determines the presence or absence of a ground fault by comparing the derived ground fault resistance value Ra with a predetermined reference ground fault resistance value (S126).
 以上、本実施形態によれば、地絡検出部110は、絶縁抵抗200の抵抗値成分を含まない地絡抵抗300の抵抗値に基づいて、太陽電池10の地絡の有無を判定できる。したがって、本実施形態によれば、環境の変化に伴い絶縁抵抗200の抵抗値が変化した場合でも、地絡検出部110による太陽電池10の地絡の有無の判定の精度が低下することを防止できる。 As described above, according to the present embodiment, the ground fault detection unit 110 can determine the presence or absence of the ground fault of the solar cell 10 based on the resistance value of the ground fault resistor 300 that does not include the resistance component of the insulation resistance 200. Therefore, according to the present embodiment, even when the resistance value of the insulation resistance 200 changes due to a change in the environment, it is possible to prevent the accuracy of the determination of the presence or absence of the ground fault of the solar cell 10 by the ground fault detection unit 110 from being lowered. it can.
 なお、電流値取得部108は、第1電流値IA、第2電流値IB、第3電流値IC、および第4電流値IDのいずれか3つのみを取得し、地絡検出部110は、取得された3つの電流値を用いて、地絡抵抗値を導出してもよい。 The current value acquisition unit 108 acquires only three of the first current value IA, the second current value IB, the third current value IC, and the fourth current value ID, and the ground fault detection unit 110 A ground fault resistance value may be derived using the three acquired current values.
 地絡検出部110は、第1時点における追加抵抗42の既知の抵抗値Rc、並びに第1電流値IA、第2電流値IB、第3電流値ICおよび第4電流値IDの少なくとも3つの電流値に基づいて、太陽電池10の第1時点における第1地絡抵抗値を導出してよい。さらに、地絡検出部110は、第1時点より後の第2時点における追加抵抗42の既知の抵抗値Rc、並びに第1電流値IA、第2電流値IB、第3電流値ICおよび第4電流値IDの少なくとも3つの電流値に基づいて、太陽電池10の第2時点における第2地絡抵抗値を導出してよい。そして、地絡検出部110は、第1地絡抵抗値と第2地絡抵抗値とに基づいて、太陽電池10の地絡を検出してよい。地絡検出部110は、第2地絡抵抗値が第1地絡抵抗値に基づいて定められる基準地絡抵抗値より低い場合に、太陽電池10の地絡が発生している、もしくは太陽電池10の地絡が進行していると判断してよい。 The ground fault detection unit 110 has a known resistance value Rc of the additional resistor 42 at the first time point, and at least three currents of the first current value IA, the second current value IB, the third current value IC, and the fourth current value ID. The first ground fault resistance value at the first time point of the solar cell 10 may be derived based on the value. Further, the ground fault detection unit 110 includes the known resistance value Rc of the additional resistor 42 at the second time point after the first time point, the first current value IA, the second current value IB, the third current value IC, and the fourth current value. The second ground fault resistance value at the second time point of the solar cell 10 may be derived based on at least three current values of the current value ID. And the ground fault detection part 110 may detect the ground fault of the solar cell 10 based on a 1st ground fault resistance value and a 2nd ground fault resistance value. When the second ground fault resistance value is lower than the reference ground fault resistance value determined based on the first ground fault resistance value, the ground fault detection unit 110 has a ground fault in the solar cell 10 or the solar cell. It may be determined that ten ground faults are in progress.
 例えば、地絡検出部110は、太陽光発電システムに地絡検出装置30が設置された時点などの第1時点で、地絡抵抗値を導出し、第1時点の地絡抵抗値に基づいて基準地絡抵抗値を決定する。地絡検出部110は、第1時点の地絡抵抗値を基準地絡抵抗値としてよい。地絡検出部110は、第1時点の地絡抵抗値から予め定められた値を減算した値を基準地絡抵抗値としてよい。地絡検出部110は、第1時点の地絡抵抗値に対して予め定められた割合を乗算した値を基準地絡抵抗値としてよい。そして、地絡検出部110は、第1時点より後の第2時点において導出した地絡抵抗値と第1時点の地絡抵抗値に基づく基準地絡抵抗値とを比較することにより、太陽電池10の地絡の有無を判定してよい。 For example, the ground fault detection unit 110 derives a ground fault resistance value at a first time point such as a time point when the ground fault detection device 30 is installed in the solar power generation system, and based on the ground fault resistance value at the first time point. Determine the reference ground fault resistance value. The ground fault detection unit 110 may use the ground fault resistance value at the first time point as the reference ground fault resistance value. The ground fault detection unit 110 may use a value obtained by subtracting a predetermined value from the ground fault resistance value at the first time point as the reference ground fault resistance value. The ground fault detection unit 110 may set a value obtained by multiplying the ground fault resistance value at the first time point by a predetermined ratio as the reference ground fault resistance value. Then, the ground fault detection unit 110 compares the ground fault resistance value derived at the second time point after the first time point with the reference ground fault resistance value based on the ground fault resistance value at the first time point. The presence or absence of ten ground faults may be determined.
 太陽電池10の地絡抵抗値は、太陽電池10の電気的な特性に依存する。したがって、基準地絡抵抗値を、地絡検出部110が導出した地絡抵抗値に基づいて設定することで、太陽電池10固有の基準地絡抵抗値を設定できる。よって、地絡検出部110が導出した地絡抵抗値に基づいて基準地絡抵抗値を設定することで、地絡検出部110は、より精度よく太陽電池10の地絡の有無を判断できる。 The ground fault resistance value of the solar cell 10 depends on the electrical characteristics of the solar cell 10. Therefore, the reference ground fault resistance value unique to the solar cell 10 can be set by setting the reference ground fault resistance value based on the ground fault resistance value derived by the ground fault detection unit 110. Therefore, by setting the reference ground fault resistance value based on the ground fault resistance value derived by the ground fault detection unit 110, the ground fault detection unit 110 can determine the presence or absence of the ground fault of the solar cell 10 with higher accuracy.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The execution order of each process such as operations, procedures, steps, and stages in the apparatus, system, program, and method shown in the claims, the description, and the drawings is particularly “before” or “prior”. It should be noted that they can be implemented in any order unless the output of the previous process is used in the subsequent process. Regarding the operation flow in the claims, the description, and the drawings, even if it is described using “first”, “next”, etc. for the sake of convenience, it means that it is essential to carry out in this order. is not.
10 太陽電池
12 太陽電池モジュール
14 接続点
20 電力変換装置
30 地絡検出装置
32 切断手段
32a,32b リレー
34,35,36 スイッチ
40 検出抵抗
42 追加抵抗
44 電圧センサ
46 電流センサ
100 制御部
102 リレー制御部
104 スイッチ制御部
106 電圧値取得部
108 電流値取得部
110 地絡検出部
200 絶縁抵抗
300 地絡抵抗
DESCRIPTION OF SYMBOLS 10 Solar cell 12 Solar cell module 14 Connection point 20 Power converter 30 Ground fault detector 32 Cutting means 32a, 32b Relay 34, 35, 36 Switch 40 Detection resistor 42 Additional resistance 44 Voltage sensor 46 Current sensor 100 Control part 102 Relay control Unit 104 Switch control unit 106 Voltage value acquisition unit 108 Current value acquisition unit 110 Ground fault detection unit 200 Insulation resistance 300 Ground fault resistance

Claims (6)

  1.  直列に接続された複数の直流電源の地絡を検出する地絡検出装置であって、
     前記複数の直流電源に含まれる第1直流電源と前記第1直流電源に直列に接続された第2直流電源との接続点を予め定められた抵抗値の抵抗を介して基準電位点に接続し、かつ前記複数の直流電源の第1出力端を前記基準電位点に接続した状態で、前記第1出力端に流れる電流を示す第1電流値を取得する第1電流値取得部と、
     前記接続点を前記抵抗を介して前記基準電位点に接続せず、かつ前記第1出力端を前記基準電位点に接続した状態で、前記第1出力端に流れる電流を示す第2電流値を取得する第2電流値取得部と、
     前記接続点を前記抵抗を介して前記基準電位点に接続し、または前記接続点を前記抵抗を介して前記基準電位点に接続せず、かつ前記複数の直流電源の第2出力端を前記基準電位点に接続した状態で、前記第2出力端に流れる電流を示す第3電流値を取得する第3電流値取得部と、
     前記抵抗値、前記第1電流値、前記第2電流値、および前記第3電流値に基づいて、前記複数の直流電源の地絡を検出する地絡検出部と
    を備える地絡検出装置。
    A ground fault detection device for detecting a ground fault of a plurality of DC power supplies connected in series,
    A connection point between a first DC power source included in the plurality of DC power sources and a second DC power source connected in series to the first DC power source is connected to a reference potential point through a resistor having a predetermined resistance value. And a first current value acquisition unit for acquiring a first current value indicating a current flowing through the first output terminal in a state where the first output terminals of the plurality of DC power supplies are connected to the reference potential point;
    A second current value indicating a current flowing through the first output terminal in a state where the connection point is not connected to the reference potential point via the resistor and the first output terminal is connected to the reference potential point. A second current value acquisition unit to acquire;
    The connection point is connected to the reference potential point through the resistor, or the connection point is not connected to the reference potential point through the resistor, and second output terminals of the plurality of DC power supplies are connected to the reference potential point. A third current value acquisition unit that acquires a third current value indicating a current flowing through the second output terminal in a state of being connected to a potential point;
    A ground fault detection apparatus comprising: a ground fault detection unit that detects ground faults of the plurality of DC power sources based on the resistance value, the first current value, the second current value, and the third current value.
  2.  前記接続点を前記抵抗を介して前記基準電位点に接続するか否かを切り替える第1切り替え手段と、
     前記第1出力端および前記第2出力端のいずれか一方を前記基準電位点に接続するか否かを切り替える第2切り替え手段と
    をさらに備える、請求項1に記載の地絡検出装置。
    First switching means for switching whether or not to connect the connection point to the reference potential point via the resistor;
    The ground fault detection device according to claim 1, further comprising second switching means for switching whether or not one of the first output terminal and the second output terminal is connected to the reference potential point.
  3.  前記地絡検出部は、第1時点における前記抵抗値、前記第1電流値、前記第2電流値、および前記第3電流値に基づいて、前記複数の直流電源の前記第1時点における第1地絡抵抗値を導出し、前記第1時点より後の第2時点における前記抵抗値、前記第1電流値、前記第2電流値、および前記第3電流値に基づいて、前記複数の直流電源の前記第2時点における第2地絡抵抗値を導出し、前記第1地絡抵抗値と前記第2地絡抵抗値とに基づいて、前記複数の直流電源の地絡を検出する、請求項1または請求項2に記載の地絡検出装置。 The ground fault detection unit is configured to determine a first time at the first time point of the plurality of DC power sources based on the resistance value, the first current value, the second current value, and the third current value at a first time point. A plurality of DC power sources are derived based on the resistance value, the first current value, the second current value, and the third current value at a second time point after the first time point. A second ground fault resistance value at the second time point is derived, and ground faults of the plurality of DC power sources are detected based on the first ground fault resistance value and the second ground fault resistance value. The ground fault detection apparatus according to claim 1 or 2.
  4.  前記複数の直流電源のそれぞれは、太陽電池である、請求項1から請求項3のいずれか1つに記載の地絡検出装置。 The ground fault detection device according to any one of claims 1 to 3, wherein each of the plurality of DC power supplies is a solar battery.
  5.  請求項1から請求項4のいずれか1つに記載の地絡検出装置と、
     前記複数の直流電源と、
     前記複数の直流電源から供給される電力を消費または変換する負荷装置と
    を備え、
     前記地絡検出装置は、
     前記複数の直流電源と前記負荷装置との間を電気的に接続するか切断するかを切り替える第3切り替え手段をさらに備え、
     前記第3切り替え手段により前記複数の直流電源と前記負荷装置との間を電気的に切断した状態で、前記第1電流値取得部は、前記第1出力端に流れる電流を示す前記第1電流値を取得し、前記第2電流値取得部は、前記第1出力端に流れる電流を示す前記第2電流値を取得し、前記第3電流値取得部は、前記第2出力端に流れる電流を示す前記第3電流値を取得する、電源システム。
    A ground fault detection device according to any one of claims 1 to 4,
    The plurality of DC power supplies;
    A load device that consumes or converts power supplied from the plurality of DC power sources,
    The ground fault detection device is
    Further comprising third switching means for switching between electrically connecting or disconnecting between the plurality of DC power supplies and the load device;
    In the state where the plurality of DC power supplies and the load device are electrically disconnected by the third switching means, the first current value acquisition unit indicates the first current indicating a current flowing through the first output terminal. The second current value acquisition unit acquires the second current value indicating the current flowing through the first output terminal, and the third current value acquisition unit acquires the current flowing through the second output terminal. A power supply system that acquires the third current value indicating
  6.  直列に接続された複数の直流電源の地絡を検出する地絡検出方法であって、
     前記複数の直流電源に含まれる第1直流電源と前記第1直流電源に直列に接続された第2直流電源との接続点を予め定められた抵抗値の抵抗を介して基準電位点に接続し、かつ前記複数の直流電源の第1出力端を前記基準電位点に接続した状態で、前記第1出力端に流れる電流を示す第1電流値を取得する段階と、
     前記接続点を前記抵抗を介して前記基準電位点に接続せず、かつ前記第1出力端を前記基準電位点に接続した状態で、前記第1出力端に流れる電流を示す第2電流値を取得する段階と、
     前記接続点を前記抵抗を介して前記基準電位点に接続し、または前記接続点を前記抵抗を介して前記基準電位点に接続せず、かつ前記複数の直流電源の第2出力端を前記基準電位点に接続した状態で、前記第2出力端に流れる電流を示す第3電流値を取得する段階と、
     前記抵抗値、前記第1電流値、前記第2電流値、および前記第3電流値に基づいて、前記複数の直流電源の地絡を検出する段階と
    を含む地絡検出方法。
    A ground fault detection method for detecting ground faults of a plurality of DC power supplies connected in series,
    A connection point between a first DC power source included in the plurality of DC power sources and a second DC power source connected in series to the first DC power source is connected to a reference potential point through a resistor having a predetermined resistance value. And obtaining a first current value indicating a current flowing through the first output terminal in a state where the first output terminals of the plurality of DC power supplies are connected to the reference potential point;
    A second current value indicating a current flowing through the first output terminal in a state where the connection point is not connected to the reference potential point via the resistor and the first output terminal is connected to the reference potential point. The stage of acquiring,
    The connection point is connected to the reference potential point through the resistor, or the connection point is not connected to the reference potential point through the resistor, and second output terminals of the plurality of DC power supplies are connected to the reference potential point. Obtaining a third current value indicating a current flowing through the second output terminal in a state of being connected to a potential point;
    Detecting a ground fault of the plurality of DC power sources based on the resistance value, the first current value, the second current value, and the third current value.
PCT/JP2015/055549 2014-05-01 2015-02-26 Ground fault detection device, power supply system, and ground fault detection method WO2015166699A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014094601A JP6269299B2 (en) 2014-05-01 2014-05-01 Ground fault detection device, power supply system, and ground fault detection method
JP2014-094601 2014-05-01

Publications (1)

Publication Number Publication Date
WO2015166699A1 true WO2015166699A1 (en) 2015-11-05

Family

ID=54358440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055549 WO2015166699A1 (en) 2014-05-01 2015-02-26 Ground fault detection device, power supply system, and ground fault detection method

Country Status (2)

Country Link
JP (1) JP6269299B2 (en)
WO (1) WO2015166699A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6375042B1 (en) * 2017-10-30 2018-08-15 田淵電機株式会社 Connection circuit and power conditioner
CN110391784A (en) * 2018-04-16 2019-10-29 龙焱能源科技(杭州)有限公司 A kind of the electric continuity monitoring device and system of membrane photovoltaic component
US11815043B2 (en) * 2016-10-14 2023-11-14 Robert Bosch Gmbh Method for detecting a short circuit across a load

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002417A (en) * 2009-06-22 2011-01-06 Jx Nippon Oil & Energy Corp Instrument and method for measuring insulation resistance
JP2012119382A (en) * 2010-11-29 2012-06-21 Jx Nippon Oil & Energy Corp Ground fault detection device, ground fault detection method, photovoltaic power generation system, and ground fault detection program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002417A (en) * 2009-06-22 2011-01-06 Jx Nippon Oil & Energy Corp Instrument and method for measuring insulation resistance
JP2012119382A (en) * 2010-11-29 2012-06-21 Jx Nippon Oil & Energy Corp Ground fault detection device, ground fault detection method, photovoltaic power generation system, and ground fault detection program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11815043B2 (en) * 2016-10-14 2023-11-14 Robert Bosch Gmbh Method for detecting a short circuit across a load
JP6375042B1 (en) * 2017-10-30 2018-08-15 田淵電機株式会社 Connection circuit and power conditioner
JP2019083610A (en) * 2017-10-30 2019-05-30 田淵電機株式会社 Connection circuit and power conditioner
CN110391784A (en) * 2018-04-16 2019-10-29 龙焱能源科技(杭州)有限公司 A kind of the electric continuity monitoring device and system of membrane photovoltaic component

Also Published As

Publication number Publication date
JP6269299B2 (en) 2018-01-31
JP2015212633A (en) 2015-11-26

Similar Documents

Publication Publication Date Title
JP6337468B2 (en) Ground fault detection device
US8723547B2 (en) Solar photovoltaic junction box
EP3203597B1 (en) Safety detection device and method of grid-connected inverter
US10191101B2 (en) System and method for detecting ground fault in a dc system
EP2626712A1 (en) Failure detecting apparatus
US10305424B2 (en) Solar photovoltaic system inspection method and inspection apparatus
EP3264550A1 (en) Access control method for parallel direct current power supplies and device thereof
EP3410552B1 (en) Routing power in a power system
US20180233902A1 (en) Ground fault detection device, communication device, method for controlling same, load device, switch and non-transitory computer-readable recording medium
CN112955758B (en) Method for insulation resistance measurement in an inverter with a multipoint topology and inverter with a multipoint topology
US20180041122A1 (en) Insulation detecting circuit, power converting device and insulation impedance value detecting method
CN105021977A (en) AC relay detection method and system before grid connection of photovoltaic inverter
US20140070815A1 (en) Active diagnostics and ground fault detection on photovoltaic strings
US11404999B2 (en) Method for detecting a contact fault in a photovoltaic system
US20160054421A1 (en) Method for calibrating a short circuit indicator with direction detection and short circuit indicator to use such a method
JP6269299B2 (en) Ground fault detection device, power supply system, and ground fault detection method
CN104364869A (en) Method for checking a separation point of a photovoltaic inverter, and photovoltaic inverter
US20180041164A1 (en) Solar power generation system inspection method and inspection apparatus
JP2014171369A (en) Power supply system
CN110323726B (en) Self-adaptive line protection method and device for direct-current power distribution network
CN110596529B (en) Flexible direct current power grid ground insulation fault detection device and system
WO2016027483A1 (en) Control device, power conversion device, power system and control method
CN110834568B (en) Battery power supply system and control method thereof
JP6269212B2 (en) Control device, power conversion device, power supply system, program, and control method
EP4166953A1 (en) Method and apparatus for detecting insulation impedance of photovoltaic inverter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15785316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15785316

Country of ref document: EP

Kind code of ref document: A1