WO2015166582A1 - Regenerative refrigeration cycle apparatus - Google Patents

Regenerative refrigeration cycle apparatus Download PDF

Info

Publication number
WO2015166582A1
WO2015166582A1 PCT/JP2014/062167 JP2014062167W WO2015166582A1 WO 2015166582 A1 WO2015166582 A1 WO 2015166582A1 JP 2014062167 W JP2014062167 W JP 2014062167W WO 2015166582 A1 WO2015166582 A1 WO 2015166582A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
heat
heat source
storage tank
refrigerant
Prior art date
Application number
PCT/JP2014/062167
Other languages
French (fr)
Japanese (ja)
Inventor
嶋本 大祐
康平 名島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/062167 priority Critical patent/WO2015166582A1/en
Publication of WO2015166582A1 publication Critical patent/WO2015166582A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a heat storage refrigeration cycle apparatus including a heat storage tank in which a heat storage medium is stored and a refrigerant circuit in which a refrigerant circulates.
  • an air conditioner that includes a heat storage tank that stores a heat storage medium, and uses the heat or cold stored in the heat storage medium for condensation or evaporation of the refrigerant (for example, see Patent Document 1).
  • the heat source machine side heat exchanger provided in the heat source machine functions as an evaporator for evaporating the refrigerant
  • moisture in the air passing through the heat source machine side heat exchanger is condensed and becomes condensed water, and the heat source side heat exchanger Fall from.
  • the drain water that has fallen from the heat source device side heat exchanger is discharged from the drain outlet of the bottom plate of the heat source device housing.
  • the bottom plate (base part) of the heat source unit freezes, making it difficult to drain the drain that has fallen from the heat source unit side heat exchanger, and the inside of the heat source unit is ice.
  • the present invention has been made to solve the above-described problems, and provides a regenerative refrigerating cycle apparatus capable of preventing freezing of water discharged from a heat source machine casing.
  • a heat storage refrigeration cycle apparatus includes a heat storage tank in which a heat storage medium is stored, a compressor, a heat source side heat exchanger, a heat storage heat exchanger that performs heat exchange between the heat storage medium and the refrigerant, a throttle device, and use
  • a refrigerant circuit in which the side heat exchanger is connected by piping and the refrigerant circulates, and a heat source machine housing in which the heat source side heat exchanger is housed and has a bottom plate that receives water falling from the heat source side heat exchanger.
  • the bottom plate is provided with a drain outlet for discharging water dropped from the heat source side heat exchanger, and at least the drain outlet is supplied with the heat of the heat storage medium.
  • the heat of the heat storage medium is supplied to the drain outlet for discharging the water that has fallen from the heat source side heat exchanger. For this reason, freezing of the water discharged
  • FIG. 1 is a refrigerant circuit showing a schematic configuration of an air-conditioning apparatus according to an embodiment. Based on FIG. 1, the example of the refrigerant circuit of the air conditioning apparatus 100 is demonstrated.
  • the air conditioner 100 is mainly composed of units of a heat source unit A, indoor units B1 and B2, and a heat storage tank C. Each unit is connected by a refrigerant pipe. As illustrated in FIG. 1, the heat source unit A and the indoor unit B are connected by two refrigerant pipes. Further, the heat source device A and the heat storage tank C are connected by two refrigerant pipes.
  • the heat storage tank C stores a heat storage agent 17 that is a heat storage medium (for example, water).
  • a single refrigerant such as R-22, R-32, and R-134a
  • a pseudo-azeotropic refrigerant mixture such as R-410A and R-404A, -407C or other non-azeotropic refrigerant
  • a natural refrigerant such as water or paraffin-based brine is used.
  • the air conditioning apparatus 100 stores cold or warm heat in the heat storage agent 17 in the heat storage tank C, for example, at night. Then, for example, during the daytime, the cold or warm heat stored in the heat storage agent 17 is used as a heat source for air conditioning. Further, the heat storage agent 17 in the heat storage tank C is supplied to the base 40 of the heat source unit A to prevent the drainage of the drain discharged from the heat source unit A from freezing.
  • the heat source machine A includes a compressor 1 that compresses refrigerant, a four-way switching valve 2, a heat source machine side heat exchanger 3 that functions as an evaporator or a condenser, and an accumulator 4 that stores excess refrigerant. Connected and mounted.
  • the heat source machine A has a first solenoid valve 10, a second solenoid valve 11, a third solenoid valve 12, and a fourth solenoid valve 13 that switch the refrigerant flow path to the indoor unit B and the heat storage tank C. Is provided.
  • the compressor 1 sucks the refrigerant on the heat source unit side and compresses the refrigerant on the heat source unit side to be in a high temperature and high pressure state.
  • the compressor 1 may be configured by, for example, an inverter compressor that is driven by an inverter device (drive device) and capable of capacity control.
  • the inverter device that drives the compressor 1 includes a power device such as a switching element.
  • a power device for example, a wide band gap semiconductor such as silicon carbide (SiC) or a gallium nitride-based material may be used.
  • SiC silicon carbide
  • gallium nitride-based material may be used.
  • the four-way switching valve 2 includes a refrigerant flow on the heat source side during heating / heat storage operation, compressor heating operation, and heat storage utilization heating operation, and a heat source apparatus side during cooling heat storage operation, compressor cooling operation, and heat storage utilization cooling operation.
  • the refrigerant flow is switched. Details of each operation mode will be described later.
  • the heat source device side heat exchanger 3 functions as an evaporator for heating and heat storage operation, compressor heating operation, and heat storage use heating operation, and as a condenser for cooling heat storage operation, compressor cooling operation, and heat storage use cooling operation. Function.
  • the heat source device side heat exchanger 3 performs heat exchange between air supplied from a blower such as a fan and the refrigerant.
  • the accumulator 4 is provided on the suction side of the compressor 1.
  • the heat source machine A is provided with an outside air temperature detecting means 18 for detecting the outside air temperature around the heat source machine A.
  • the outside air temperature detection means 18 is configured by an arbitrary temperature sensor such as a thermistor.
  • FIG. 2 is a plan view showing a structural example of the base of the heat source unit of the air-conditioning apparatus according to the embodiment.
  • the outline of the structure of the base 40 of the heat source machine A is shown.
  • the base 40 that forms the bottom of the casing of the heat source unit A has a space for installing the lower part of the heat source unit side heat exchanger 3, and a drain drainage channel 42 and a drain port 41 are provided in the vicinity thereof. .
  • the heat source machine side heat exchanger 3 functions as an evaporator, when air (outside air) passes through the heat source machine side heat exchanger 3, moisture in the air condenses to become condensed water and becomes the heat source machine side. It falls from the heat exchanger 3.
  • the frost adhering to the heat source device side heat exchanger 3 is melted by defrosting operation, for example, the dissolved water falls from the heat source device side heat exchanger 3.
  • the water (drain) dropped from the heat source device side heat exchanger 3 flows down to the base 40.
  • the drain that has flowed down to the base 40 flows along the drainage channel 42 and is discharged from the drainage port 41 to the outside of the casing.
  • the base 40 is provided with a base temperature detecting means 20 that detects the temperature of the base 40.
  • the base temperature detection means 20 is comprised by arbitrary temperature sensors, such as a thermistor.
  • the base 40 corresponds to the “bottom plate” in the present invention.
  • the four-way switching valve 2, the first solenoid valve 10, the second solenoid valve 11, the third solenoid valve 12, and the fourth solenoid valve 13 correspond to the “flow path switching means” in the present invention.
  • the indoor unit B1 is provided with an indoor unit side heat exchanger 5a and an indoor unit expansion valve 8a.
  • the indoor unit B2 is provided with an indoor unit side heat exchanger 5b and an indoor unit expansion valve 8b.
  • the indoor unit side heat exchanger 5 functions as a condenser at the time of heating and storage operation, compressor heating operation, and heat storage use heating operation, and functions as an evaporator at cooling heat storage operation, compressor cooling operation, and heat storage use cooling operation. To do.
  • the indoor unit side heat exchanger 5 performs heat exchange between air (indoor air) supplied from a blower such as a fan and the refrigerant.
  • the indoor unit expansion valve 8 is an electronic expansion valve whose opening degree is variably controlled, for example.
  • the indoor unit side heat exchanger 5 corresponds to the “use side heat exchanger” in the present invention
  • the indoor unit expansion valve 8 corresponds to the “throttle device” in the present invention.
  • Heat storage tank C In the heat storage tank C, a heat storage tank 6 is installed.
  • the heat storage tank 6 contains a heat storage tank heat exchanger 7 and a heat storage agent 17.
  • the heat storage tank heat exchanger 7 is divided into two, and the refrigerant flowing to the one heat storage tank heat exchanger 7 can be closed by the fifth electromagnetic valve 14. Further, each of the heat storage tank heat exchangers 7 divided into two is provided with heat storage tank expansion valves 9a and 9b.
  • the heat storage tank C is provided with heat storage agent temperature detection means 19 for detecting the temperature of the heat storage agent 17.
  • the heat storage agent temperature detecting means 19 corresponds to the “first temperature detecting means” in the present invention.
  • the outside air temperature detecting means 18 corresponds to the “second temperature detecting means” in the present invention.
  • the base temperature detection means 20 corresponds to the “third temperature detection means” in the present invention.
  • the measurement value detected by each temperature detection unit is input to the control unit 50.
  • the control means 50 controls the compressor 1, the four-way switching valve 2, each electromagnetic valve, and the like based on the measured value.
  • the control means 50 can be realized by hardware such as a circuit device, or can be realized as software executed on an arithmetic device such as a microcomputer or CPU.
  • FIG. 3 is a figure showing the example of arrangement of the heat source machine and heat storage tank of the air harmony device concerning an embodiment.
  • the heat storage tank C is installed below the housing of the heat source device A.
  • the ceiling panel of the heat storage tank C and the base 40 that is the bottom of the casing of the heat source device A are disposed in close proximity or in contact with each other.
  • the heat of the heat storage agent 17 is supplied to the air between the heat storage tank C and the heat source unit A and the base 40 of the heat source unit A.
  • emitted from the heat source machine side heat exchanger 3 etc. of the heat source machine A can be prevented.
  • a heating device such as a heater in order to prevent the heat source unit A from freezing
  • an increase in power consumption can be suppressed.
  • the increase in the installation area of the heat source machine A can be suppressed.
  • the increase in manufacturing cost can be suppressed.
  • the ceiling panel of the heat storage tank C and the base 40 of the heat source unit A are separated, but the ceiling panel of the heat storage tank C and the base 40 of the heat source unit A may be integrated (identical). good.
  • FIG. 4 is a refrigerant circuit showing another configuration of the air-conditioning apparatus according to the embodiment.
  • FIG. 5 is a plan view showing a structural example of a water pipe and a pump of the air-conditioning apparatus according to the embodiment.
  • the heat source machine A is provided with a water pipe 15 and a pump 16 that sucks the heat storage agent 17 of the heat storage tank C and returns it to the heat storage tank C again.
  • the water piping 15 is arrange
  • the water pipe 15 is installed along the drainage channel 42.
  • the water pipe 15 corresponds to the “heat storage medium pipe” in the present invention.
  • the water pipe 15 is configured to supply the heat of the heat storage agent 17 to the base 40 of the heat source unit A, thereby freezing the drain discharged from the heat source unit side heat exchanger 3 or the like of the heat source unit A. Can be prevented.
  • the position of the water pipe 15 is not limited to this, and any position that can supply the warm heat of the heat storage agent 17 to the base 40 may be used.
  • the water pipe 15 may be provided on the ceiling panel of the heat storage tank C.
  • the heat storage tank C does not necessarily need to be installed below the heat source unit A in order to prevent drain icing in the water pipe 15.
  • a part of the heat transfer tube of the heat storage tank heat exchanger 7 may be installed along the drainage channel 42. In this case, the supply of heat of the heat storage agent 17 is controlled by controlling the flow of the refrigerant by opening and closing the fifth electromagnetic valve 14.
  • FIG. 6 is a cross-sectional view illustrating a schematic structure of the heat source unit and the heat storage tank of the air-conditioning apparatus according to the embodiment.
  • a steam passage hole 43 that connects the heat storage tank C (heat storage tank 6) and the inside of the housing of the heat source apparatus A to the ceiling panel of the heat storage tank C and the base 40 of the heat source apparatus A. Is formed.
  • the heat storage agent 17 in the heat storage tank C evaporates, and the steam passes through the vapor passage hole 43 and the housing of the heat source apparatus A. It flows into the body.
  • the heat of the heat storage agent 17 can be supplied to the base 40 of the heat source unit A, and the freezing of drain discharged from the heat source unit side heat exchanger 3 of the heat source unit A can be prevented.
  • FIG. 7 is a cross-sectional view illustrating a schematic structure of the heat source unit and the heat storage tank of the air-conditioning apparatus according to the embodiment.
  • the base 40 of the heat source machine A includes a drainage pipe 44 through which drainage drained from the drainage port 41 is circulated.
  • the drainage channel 42 of the base 40 is inclined and the drainage port 41 is formed at the lowest position.
  • the drain port 41 and the drain pipe 44 are connected.
  • the drain pipe 44 is disposed so as to pass through the inside of the heat storage agent 17 of the heat storage tank C.
  • the drain pipe 44 is not limited to the inside of the heat storage agent 17 of the heat storage tank C, and may be disposed in the vicinity of the heat storage agent 17.
  • a power device 21 such as a switching element is provided in a drive device that drives at least one of the compressor 1 and the blower that blows air to the heat source device side heat exchanger 3.
  • the power device 21 may be a wide band gap semiconductor such as SiC. Since the power device 21 using a wide band gap semiconductor such as SiC has high heat resistance, it can be driven at a high temperature by reducing the size of the heat sink fins of the heat sink.
  • Such a power device 21 may be arranged on the ceiling panel of the heat storage tank C, the base 40 of the heat source unit A, or a pipe through which the refrigerant in the gas state flows into the heat storage tank heat exchanger 7. Note that the heat pipe from the power device 21 is attached to the ceiling panel of the heat storage tank C, the base 40 of the heat source unit A, or a pipe (see FIG. 4) through which the refrigerant in the gas state flows into the heat storage tank heat exchanger 7. Also good.
  • the heat generated in the power device 21 can be supplied to the base 40 of the heat source device A via the heat storage agent 17 or directly, and is discharged from the heat source device side heat exchanger 3 or the like of the heat source device A. Can prevent the freezing of the drain.
  • the vicinity of the pipe into which the refrigerant in the gas state flows into the heat storage tank heat exchanger 7 may be 100 ° C. or higher and cannot be used in a heat resistant manner in a silicon device, when a wide band gap semiconductor such as SiC is used. good.
  • FIG. 8 is a refrigerant circuit diagram illustrating a refrigerant flow in the compressor cooling operation of the air-conditioning apparatus according to the embodiment.
  • the compressor cooling operation is a cooling operation that does not use the energy stored in the heat storage agent 17 in the heat storage tank C.
  • Control means 50 switches the four-way switching valve 2 to the cooling side. Moreover, the 1st solenoid valve 10 is opened and the 2nd solenoid valve 11, the 3rd solenoid valve 12, and the 4th solenoid valve 13 are closed. Further, the fifth electromagnetic valve 14 is opened, and the heat storage tank expansion valve 9 is closed. The indoor unit expansion valve 8 adjusts the opening according to the operating state.
  • the refrigerant discharged from the compressor 1 passes through the four-way switching valve 2 and then condenses in the heat source unit side heat exchanger 3, and the first electromagnetic valve 10 is pass.
  • the refrigerant that has passed through the first electromagnetic valve 10 flows into the indoor unit B, adiabatically expands at the indoor unit expansion valve 8, evaporates at the indoor unit side heat exchanger 5, and cools the indoor air.
  • the evaporated refrigerant is gasified, flows into the heat source machine A, passes through the four-way switching valve 2, and then returns to the compressor 1 through the accumulator 4.
  • FIG. 9 is a refrigerant circuit diagram illustrating a refrigerant flow in the compressor heating operation of the air-conditioning apparatus according to the embodiment.
  • the compressor heating operation is a heating operation that does not use energy stored in the heat storage agent 17 in the heat storage tank C.
  • Control means 50 switches the four-way switching valve 2 to the heating side. Moreover, the 1st solenoid valve 10 is opened and the 2nd solenoid valve 11, the 3rd solenoid valve 12, and the 4th solenoid valve 13 are closed. Further, the fifth electromagnetic valve 14 is opened, and the heat storage tank expansion valve 9 is closed. The indoor unit expansion valve 8 adjusts the opening according to the operating state.
  • the refrigerant discharged from the compressor 1 passes through the four-way switching valve 2, condenses in the indoor unit side heat exchanger 5, and exchanges heat with the indoor side air. .
  • the condensed refrigerant is adiabatically expanded by the indoor unit expansion valve 8, then passes through the first electromagnetic valve 10, exchanges heat with the outside air in the heat source unit side heat exchanger 3, and is evaporated and gasified.
  • the gasified refrigerant passes through the four-way switching valve 2 and then returns to the compressor 1 via the accumulator 4.
  • FIG. 10 is a refrigerant circuit diagram illustrating a refrigerant flow in the cooling heat storage operation of the air-conditioning apparatus according to Embodiment.
  • the cooling heat storage operation is an ice making operation in which cold heat is stored in the heat storage agent 17 in the heat storage tank C. This cooling heat storage operation is performed in a time zone where air conditioning is not necessary, for example, at night.
  • Control means 50 switches the four-way switching valve 2 to the cooling side. Moreover, the 1st solenoid valve 10 and the 3rd solenoid valve 12 are opened, and the 2nd solenoid valve 11, the 4th solenoid valve 13, and the 5th solenoid valve 14 are closed. Further, the indoor unit expansion valve 8 is closed. In addition, the thermal storage tank expansion valve 9 adjusts an opening degree according to an operation state.
  • the compressor 1 When the compressor 1 is operated in such a state, the refrigerant discharged from the compressor 1 passes through the four-way switching valve 2 and then condenses in the heat source unit side heat exchanger 3, and the first electromagnetic valve 10 is pass.
  • the refrigerant that has passed through the first electromagnetic valve 10 flows into the heat storage tank C and is adiabatically expanded by the heat storage tank expansion valve 9.
  • the refrigerant adiabatically expanded by the heat storage tank expansion valve 9 cools the heat storage agent 17 by the heat storage tank heat exchanger 7.
  • the evaporated refrigerant is gasified, flows into the heat source machine A, passes through the third electromagnetic valve 12 and the four-way switching valve 2, and then returns to the compressor 1 through the accumulator 4.
  • FIG. 11 is a refrigerant circuit diagram illustrating a refrigerant flow in the heating and heat storage operation of the air-conditioning apparatus according to the embodiment.
  • the heating and heat storage operation is a hot water storage operation in which heat is stored in the heat storage agent 17 in the heat storage tank C. This heating and heat storage operation is performed in a time zone where air conditioning is not necessary, for example, at night.
  • Control means 50 switches the four-way switching valve 2 to the heating side. Moreover, the 1st solenoid valve 10 and the 3rd solenoid valve 12 are opened, and the 2nd solenoid valve 11 and the 4th solenoid valve 13 are closed. Further, the indoor unit expansion valve 8 is closed. In addition, the thermal storage tank expansion valve 9 adjusts an opening degree according to an operation state. Moreover, when supplying the heat of the heat storage agent 17 to the base 40 of the heat source machine A, the fifth electromagnetic valve 14 opens at the time of low outside air (for example, 0 ° C. or less).
  • the refrigerant discharged from the compressor 1 passes through the four-way switching valve 2, passes through the third electromagnetic valve 12, and then flows into the heat storage tank C to be stored in the heat storage tank.
  • the heat exchanger 7 condenses, heats the heat storage agent 17, and stores the heat in the heat storage agent 17.
  • the condensed refrigerant is adiabatically expanded by the heat storage tank expansion valve 9, flows into the heat source unit A, passes through the first electromagnetic valve 10, and is evaporated and gasified by the heat source unit side heat exchanger 3.
  • the gasified refrigerant passes through the four-way switching valve 2 and then returns to the compressor 1 via the accumulator 4.
  • FIG. 12 is a refrigerant circuit diagram illustrating a refrigerant flow in the regenerative cooling operation of the air conditioner according to the embodiment.
  • the heat storage use cooling operation is a cooling operation using the energy stored in the heat storage agent 17 in the heat storage tank C. This heat storage use cooling operation is performed after the cooling heat storage operation, for example, in the daytime.
  • Control means 50 switches the four-way switching valve 2 to the cooling side. Moreover, the 2nd solenoid valve 11 is opened and the 1st solenoid valve 10, the 3rd solenoid valve 12, and the 4th solenoid valve 13 are closed. Further, the fifth electromagnetic valve 14 is opened. The indoor unit expansion valve 8 and the heat storage tank expansion valve 9 adjust the opening according to the operating state.
  • the refrigerant discharged from the compressor 1 passes through the four-way switching valve 2 and then condenses in the heat source unit side heat exchanger 3, and the second electromagnetic valve 11 is pass.
  • the refrigerant that has passed through the second electromagnetic valve 11 flows into the heat storage tank C, condenses in the heat storage tank heat exchanger 7 and dissipates heat to the heat storage agent 17, and adiabatically expands in the heat storage tank expansion valve 9 and the indoor unit expansion valve 8. To do.
  • the adiabatically expanded refrigerant evaporates in the indoor unit side heat exchanger 5 to cool the indoor air.
  • the evaporated refrigerant is gasified, flows into the heat source machine A, passes through the four-way switching valve 2, and then returns to the compressor 1 through the accumulator 4.
  • FIG. 13 is a refrigerant circuit diagram illustrating a refrigerant flow in the heat storage utilization heating operation 1 of the air-conditioning apparatus according to Embodiment.
  • the heat storage utilization heating operation 1 is a heating operation using the energy stored in the heat storage agent 17 in the heat storage tank C.
  • the heat storage use heating operation 1 is performed after the heating heat storage operation, for example, in the daytime.
  • Control means 50 switches the four-way switching valve 2 to the heating side.
  • the fourth electromagnetic valve 13 is opened, and the first electromagnetic valve 10, the second electromagnetic valve 11, and the third electromagnetic valve 12 are closed.
  • the fifth electromagnetic valve 14 is opened.
  • the indoor unit expansion valve 8 and the heat storage tank expansion valve 9 adjust the opening according to the operating state.
  • the refrigerant discharged from the compressor 1 passes through the four-way switching valve 2, condenses in the indoor unit side heat exchanger 5, and exchanges heat with the indoor side air. .
  • the condensed refrigerant is adiabatically expanded by the indoor unit expansion valve 8, then flows into the heat storage tank C, and is further adiabatically expanded by the heat storage tank expansion valve 9.
  • the adiabatic and expanded refrigerant evaporates in the heat storage tank heat exchanger 7 and receives heat radiation energy from the heat storage agent 17 to be gasified.
  • the gasified refrigerant passes through the fourth electromagnetic valve 13 and then returns to the compressor 1 via the accumulator 4.
  • FIG. 14 is a refrigerant circuit diagram illustrating a refrigerant flow in the heat storage utilization heating operation 2 of the air-conditioning apparatus according to the embodiment.
  • the heat storage utilization heating operation 2 is a heating operation using the energy stored in the heat storage agent 17 in the heat storage tank C and the heat exchange energy of the heat source unit side heat exchanger 3. This heat storage use heating operation 2 is performed after the heating heat storage operation, for example, in the daytime.
  • Control means 50 switches the four-way switching valve 2 to the heating side. Moreover, the 2nd solenoid valve 11 and the 4th solenoid valve 13 are opened, and the 1st solenoid valve 10 and the 3rd solenoid valve 12 are closed. Further, the fifth electromagnetic valve 14 is opened. The indoor unit expansion valve 8 and the heat storage tank expansion valve 9 adjust the opening according to the operating state.
  • the refrigerant discharged from the compressor 1 passes through the four-way switching valve 2, condenses in the indoor unit side heat exchanger 5, and exchanges heat with the indoor side air. .
  • the condensed refrigerant is adiabatically expanded by the indoor unit expansion valve 8, then flows into the heat storage tank C, and is further adiabatically expanded by the heat storage tank expansion valve 9.
  • the refrigerant which has been adiabatically expanded is evaporated in the heat storage tank heat exchanger 7 to obtain heat radiation energy from the heat storage agent 17 and is in a gasified or gas-liquid two-phase state.
  • the refrigerant in the gasified or gas-liquid two-phase state flows into the heat source unit A.
  • a part of the refrigerant flowing into the heat source machine A passes through the fourth electromagnetic valve 13 and then returns to the compressor 1 via the accumulator 4.
  • the other part passes through the second electromagnetic valve 11, exchanges heat with the outside air in the heat source unit side heat exchanger 3, evaporates and gasifies, passes through the four-way switching valve 2, and then accumulates in the accumulator 4. Return to the compressor 1 via.
  • Heat storage temperature control Next, temperature control of the heat storage agent 17 during heating will be described. This control is control for ensuring the heat for heating the base 40 of the heat source device A by keeping the temperature of the heat storage agent 17 at a certain level or higher.
  • FIG. 15 is a flowchart illustrating an operation example of the air-conditioning apparatus according to the embodiment.
  • the control means 50 starts heating heat storage operation (step 1), and determines whether or not the detected temperature of the heat storage agent 17 in the heat storage tank C is equal to or higher than the first threshold value X (step 2).
  • the detected temperature (heat storage tank water temperature) of the heat storage agent 17 in the heat storage tank C is not equal to or higher than the first threshold X
  • the heating heat storage operation is continued, and when it is equal to or higher than the first threshold X, the heating heat storage operation is stopped ( Step 3).
  • the first threshold value X is provided with an upper limit value and a lower limit value. For example, the upper limit value is set to 50 ° C. and the lower limit value is set to 40 ° C.
  • the control means 50 determines whether or not the heat storage permission time period has ended (for example, ends at 8:00 am) (step 4), and when the heat storage permission time period has ended, execution of the heating operation is performed. Is permitted (step 5). In this state, for example, when a heating operation is performed by a user operation or the like, the control unit 50 performs the heat storage use heating operation 1 (step 6). The control means 50 determines whether or not the detected temperature (heat storage tank water temperature) of the heat storage agent 17 in the heat storage tank C is equal to or lower than the first threshold value X-20 ° C. (step 7). If the first threshold value X is not lower than ⁇ 20 ° C., the heat storage use heating operation 1 is continued.
  • the control means 50 switches from the thermal storage utilization heating operation 1 to the thermal storage utilization heating operation 2 (step 8).
  • the heating operation using the energy stored in the heat storage agent 17 in the heat storage tank C and the heat exchange energy of the heat source unit side heat exchanger 3 is performed by the heat storage use heating operation 2.
  • the control means 50 determines whether or not the detected temperature (heat storage tank water temperature) of the heat storage agent 17 in the heat storage tank C is equal to or lower than a second threshold Y lower than the first threshold (step 9). If it is not less than or equal to the second threshold Y, the heat storage utilization heating operation 2 is continued. Since the heat stored in the heat storage agent 17 is used for air conditioning by the heat storage utilization heating operation 2, the temperature of the heat storage agent 17 further decreases. And when it becomes below the 2nd threshold value Y, the control means 50 switches from the heat storage utilization heating operation 2 to the compressor heating operation (step 10).
  • the second threshold Y is provided with an upper limit value and a lower limit value. For example, the upper limit is set to 30 ° C. and the lower limit is set to 20 ° C.
  • control means 50 determines whether or not the heat storage permission time zone has started (for example, started at 10:00 pm) (step 11), and when the heat storage permission time zone has started, the heating and heat storage operation is performed. Start (step 12) and return to step 1.
  • the temperature of the heat storage agent 17 can be kept above a certain level, and the heat for warming the base 40 of the heat source device A can be secured. Moreover, the heating operation suitable for the temperature of the heat storage agent 17 can be performed, and the stored energy can be efficiently used for air conditioning.
  • the case where the settings of both the first threshold value X and the second threshold value are changed has been described, but only one of the changes may be made. Further, at least one of the first threshold value X and the second threshold value Y may be changed according to the temperature of the base 40 detected by the base temperature detection means 20.

Abstract

 This apparatus is provided with: a thermal storage tank (C) in which a thermal storage medium (17) is held; a refrigerant circuit; and a heat source machine (A) housing a heat source-side heat exchanger (3), and having a base (40) for receiving water that falls from the heat source-side heat exchanger (3). The base (40) has formed therein a drain port (41) for discharging the water falling from the heat source-side heat exchanger (3), and the heat of the thermal storage medium (17) is supplied to at least the drain port (41).

Description

蓄熱式冷凍サイクル装置Thermal storage refrigeration cycle equipment
 本発明は、蓄熱媒体が貯留される蓄熱槽と、冷媒が循環する冷媒回路とを備えた蓄熱式冷凍サイクル装置に関する。 The present invention relates to a heat storage refrigeration cycle apparatus including a heat storage tank in which a heat storage medium is stored and a refrigerant circuit in which a refrigerant circulates.
 従来の技術においては、蓄熱媒体を貯留する蓄熱槽を備え、蓄熱媒体に蓄熱された温熱または冷熱を、冷媒の凝縮または蒸発に利用する空気調和装置がある(例えば、特許文献1参照)。 In the prior art, there is an air conditioner that includes a heat storage tank that stores a heat storage medium, and uses the heat or cold stored in the heat storage medium for condensation or evaporation of the refrigerant (for example, see Patent Document 1).
特開平10-26377号公報(要約、図12)Japanese Patent Laid-Open No. 10-26377 (summary, FIG. 12)
 熱源機に設けた熱源機側熱交換器が冷媒を蒸発させる蒸発器として機能する場合、熱源機側熱交換器を通過する空気中の水分が凝縮して凝縮水となって熱源側熱交換器から落ちる。熱源機側熱交換器から落下したドレン水は、熱源機筐体の底板の排水口から排出される。
 しかしながら、外気温度が0℃を下回るような環境では、熱源機の底板(ベース部)が氷結して、熱源機側熱交換器から落ちたドレンの排水が困難となり、熱源機の内部が氷で覆われて、熱交換効率の低下に伴う能力低下、熱交換器を構成する伝熱管の破損、冷媒配管の破損などが生じる恐れがあった。
 また、熱源機の氷結を防止するために、ヒータ等の加熱装置を設置する場合、加熱装置によって消費電力が増加するという問題点があった。また、加熱装置を設置することで、熱源機の設置面積が増加してしまうという問題点があった。また、製造コストが増加してしまうという問題点があった。
When the heat source machine side heat exchanger provided in the heat source machine functions as an evaporator for evaporating the refrigerant, moisture in the air passing through the heat source machine side heat exchanger is condensed and becomes condensed water, and the heat source side heat exchanger Fall from. The drain water that has fallen from the heat source device side heat exchanger is discharged from the drain outlet of the bottom plate of the heat source device housing.
However, in an environment where the outside air temperature is below 0 ° C, the bottom plate (base part) of the heat source unit freezes, making it difficult to drain the drain that has fallen from the heat source unit side heat exchanger, and the inside of the heat source unit is ice. There is a possibility that the capacity is reduced due to the decrease in heat exchange efficiency, the heat transfer tube constituting the heat exchanger is broken, the refrigerant pipe is broken, and the like.
In addition, when a heating device such as a heater is installed to prevent icing of the heat source machine, there is a problem that power consumption increases due to the heating device. In addition, there is a problem in that the installation area of the heat source device is increased by installing the heating device. In addition, there is a problem that the manufacturing cost increases.
 本発明は、上記のような課題を解決するためになされたもので、熱源機筐体から排出される水の氷結を防ぐことができる蓄熱式冷凍サイクル装置を得るものである。 The present invention has been made to solve the above-described problems, and provides a regenerative refrigerating cycle apparatus capable of preventing freezing of water discharged from a heat source machine casing.
 本発明に係る蓄熱式冷凍サイクル装置は、蓄熱媒体が貯留される蓄熱槽と、圧縮機、熱源側熱交換器、前記蓄熱媒体と冷媒との熱交換を行う蓄熱熱交換器、絞り装置、利用側熱交換器が配管で接続され、前記冷媒が循環する冷媒回路と、前記熱源側熱交換器が収納され、前記熱源側熱交換器から落ちる水を受ける底板を有する熱源機筐体と、を備え、前記底板は、前記熱源側熱交換器から落ちた水を排出する排水口が形成され、少なくとも前記排水口に、前記蓄熱媒体の温熱が供給されるものである。 A heat storage refrigeration cycle apparatus according to the present invention includes a heat storage tank in which a heat storage medium is stored, a compressor, a heat source side heat exchanger, a heat storage heat exchanger that performs heat exchange between the heat storage medium and the refrigerant, a throttle device, and use A refrigerant circuit in which the side heat exchanger is connected by piping and the refrigerant circulates, and a heat source machine housing in which the heat source side heat exchanger is housed and has a bottom plate that receives water falling from the heat source side heat exchanger. The bottom plate is provided with a drain outlet for discharging water dropped from the heat source side heat exchanger, and at least the drain outlet is supplied with the heat of the heat storage medium.
 本発明は、熱源側熱交換器から落ちた水を排出する排水口に、蓄熱媒体の温熱が供給される。このため、熱源機筐体から排出される水の凍結を防ぐことができる。 In the present invention, the heat of the heat storage medium is supplied to the drain outlet for discharging the water that has fallen from the heat source side heat exchanger. For this reason, freezing of the water discharged | emitted from a heat-source equipment housing | casing can be prevented.
実施の形態に係る空気調和装置の概略構成を示す冷媒回路である。It is a refrigerant circuit which shows schematic structure of the air conditioning apparatus which concerns on embodiment. 実施の形態に係る空気調和装置の熱源機のベースの構造例を示す平面図である。It is a top view which shows the structural example of the base of the heat-source equipment of the air conditioning apparatus which concerns on embodiment. 実施の形態に係る空気調和装置の熱源機と蓄熱槽の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the heat-source equipment and heat storage tank of the air conditioning apparatus which concerns on embodiment. 実施の形態に係る空気調和装置の別の構成を示す冷媒回路である。It is a refrigerant circuit which shows another structure of the air conditioning apparatus which concerns on embodiment. 実施の形態に係る空気調和装置の水配管およびポンプの構造例を示す平面図である。It is a top view which shows the water piping of the air conditioning apparatus which concerns on embodiment, and the structural example of a pump. 実施の形態に係る空気調和装置の熱源機と蓄熱槽の概略構造を示す断面図である。It is sectional drawing which shows schematic structure of the heat-source equipment and heat storage tank of the air conditioning apparatus which concerns on embodiment. 実施の形態に係る空気調和装置の熱源機と蓄熱槽の概略構造を示す断面図である。It is sectional drawing which shows schematic structure of the heat-source equipment and heat storage tank of the air conditioning apparatus which concerns on embodiment. 実施の形態に係る空気調和装置の圧縮機冷房運転における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit figure which shows the flow of the refrigerant | coolant in the compressor air_conditionaing | cooling operation of the air conditioning apparatus which concerns on embodiment. 実施の形態に係る空気調和装置の圧縮機暖房運転における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit figure which shows the flow of the refrigerant | coolant in the compressor heating operation of the air conditioning apparatus which concerns on embodiment. 実施の形態に係る空気調和装置の冷房蓄熱運転における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit figure which shows the flow of the refrigerant | coolant in the air conditioning heat storage driving | running of the air conditioning apparatus which concerns on embodiment. 実施の形態に係る空気調和装置の暖房蓄熱運転における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit figure which shows the flow of the refrigerant | coolant in the heating heat storage driving | operation of the air conditioning apparatus which concerns on embodiment. 実施の形態に係る空気調和装置の蓄熱利用冷房運転における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit figure which shows the flow of the refrigerant | coolant in the heat storage utilization cooling operation of the air conditioning apparatus which concerns on embodiment. 実施の形態に係る空気調和装置の蓄熱利用暖房運転1における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit figure which shows the flow of the refrigerant | coolant in the heat storage utilization heating operation 1 of the air conditioning apparatus which concerns on embodiment. 実施の形態に係る空気調和装置の蓄熱利用暖房運転2における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit figure which shows the flow of the refrigerant | coolant in the heat storage utilization heating operation 2 of the air conditioning apparatus which concerns on embodiment. 実施の形態に係る空気調和装置の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the air conditioning apparatus which concerns on embodiment.
実施の形態.
 以下、本発明に係る蓄熱式冷凍サイクル装置を、例えばエアコン等の空気調和装置に適用した場合の実施の形態について説明する。
Embodiment.
Hereinafter, an embodiment when the heat storage type refrigeration cycle apparatus according to the present invention is applied to an air conditioner such as an air conditioner will be described.
 図1は、実施の形態に係る空気調和装置の概略構成を示す冷媒回路である。
 図1に基づいて、空気調和装置100の冷媒回路例について説明する。
 空気調和装置100は、主に、熱源機A、室内機B1、B2、蓄熱槽Cのユニットから構成されている。各ユニット間は、冷媒配管で接続されている。図1に図示されるように、熱源機Aと室内機Bが2本の冷媒配管で接続されている。また、熱源機Aと蓄熱槽Cが2本の冷媒配管で接続されている。
 また、蓄熱槽Cには、蓄熱媒体(例えば水など)である蓄熱剤17が貯留される。
FIG. 1 is a refrigerant circuit showing a schematic configuration of an air-conditioning apparatus according to an embodiment.
Based on FIG. 1, the example of the refrigerant circuit of the air conditioning apparatus 100 is demonstrated.
The air conditioner 100 is mainly composed of units of a heat source unit A, indoor units B1 and B2, and a heat storage tank C. Each unit is connected by a refrigerant pipe. As illustrated in FIG. 1, the heat source unit A and the indoor unit B are connected by two refrigerant pipes. Further, the heat source device A and the heat storage tank C are connected by two refrigerant pipes.
The heat storage tank C stores a heat storage agent 17 that is a heat storage medium (for example, water).
 本実施の形態に係る空気調和装置100は、冷媒として、例えば、R-22、R-32、R-134a等の単一冷媒、R-410A、R-404A等の擬似共沸混合冷媒、R-407C等の非共沸混合冷媒、化学式内に二重結合を含む、CF3 CF=CH2 等の地球温暖化係数が比較的小さい値とされている冷媒やその混合物、あるいはCO2 やプロパン等の自然冷媒が採用された冷媒、蓄熱剤としては水やパラフィン系等のブラインなどが採用されている。 In the air conditioner 100 according to the present embodiment, for example, a single refrigerant such as R-22, R-32, and R-134a, a pseudo-azeotropic refrigerant mixture such as R-410A and R-404A, -407C or other non-azeotropic refrigerant, a refrigerant containing a double bond in the chemical formula, such as CF 3 CF = CH 2 or the like, or a mixture thereof, or CO 2 or propane As a heat storage agent, a natural refrigerant such as water or paraffin-based brine is used.
 本実施の形態に係る空気調和装置100は、例えば夜間に、蓄熱槽C内の蓄熱剤17に、冷熱または温熱を蓄える。そして、例えば昼間に、蓄熱剤17に蓄えられた冷熱または温熱を、空調用の熱源として利用する。
 また、蓄熱槽C内の蓄熱剤17の温熱を、熱源機Aのベース40に供給して、熱源機Aから排出されるドレンの氷結を防止する構成を有している。
The air conditioning apparatus 100 according to the present embodiment stores cold or warm heat in the heat storage agent 17 in the heat storage tank C, for example, at night. Then, for example, during the daytime, the cold or warm heat stored in the heat storage agent 17 is used as a heat source for air conditioning.
Further, the heat storage agent 17 in the heat storage tank C is supplied to the base 40 of the heat source unit A to prevent the drainage of the drain discharged from the heat source unit A from freezing.
[熱源機A]
 熱源機Aには、冷媒を圧縮する圧縮機1、四方切換弁2、蒸発器または凝縮器として機能する熱源機側熱交換器3、および、余剰冷媒を貯留するアキュムレーター4が、冷媒配管に接続されて搭載されている。
 また、熱源機Aには、室内機Bおよび蓄熱槽Cへの冷媒流路を切り換える、第1の電磁弁10、第2の電磁弁11、第3の電磁弁12、第4の電磁弁13が設けられている。
[Heat source machine A]
The heat source machine A includes a compressor 1 that compresses refrigerant, a four-way switching valve 2, a heat source machine side heat exchanger 3 that functions as an evaporator or a condenser, and an accumulator 4 that stores excess refrigerant. Connected and mounted.
In addition, the heat source machine A has a first solenoid valve 10, a second solenoid valve 11, a third solenoid valve 12, and a fourth solenoid valve 13 that switch the refrigerant flow path to the indoor unit B and the heat storage tank C. Is provided.
 圧縮機1は、熱源機側の冷媒を吸入し、その熱源機側の冷媒を圧縮して高温高圧の状態にする。圧縮機1は、例えば、インバータ装置(駆動装置)によって駆動され、容量制御可能なインバータ圧縮機等で構成するとよい。
 圧縮機1を駆動するインバータ装置は、スイッチング素子などのパワーデバイスを備えている。
 パワーデバイスは、例えば、炭化珪素(SiC)あるいは窒化ガリウム系材料などのワイドバンドギャップ半導体を用いても良い。パワーデバイスにワイドバンドギャップ半導体を用いることで、スイッチングの通電損失を減らすことができる。また、ワイドバンドギャップ半導体は、スイッチング周波数を高周波にしても放熱が良好であるため、放熱フィンを小型にすることができ、駆動装置の小型化および低コスト化を実現することができる。
The compressor 1 sucks the refrigerant on the heat source unit side and compresses the refrigerant on the heat source unit side to be in a high temperature and high pressure state. The compressor 1 may be configured by, for example, an inverter compressor that is driven by an inverter device (drive device) and capable of capacity control.
The inverter device that drives the compressor 1 includes a power device such as a switching element.
For the power device, for example, a wide band gap semiconductor such as silicon carbide (SiC) or a gallium nitride-based material may be used. By using a wide bandgap semiconductor for the power device, switching current loss can be reduced. In addition, since the wide band gap semiconductor has good heat dissipation even when the switching frequency is high, the heat dissipating fins can be reduced in size, and the drive device can be reduced in size and cost.
 四方切換弁2は、暖房蓄熱運転、圧縮機暖房運転、および蓄熱利用暖房運転時における熱源機側の冷媒の流れと、冷房蓄熱運転、圧縮機冷房運転、および蓄熱利用冷房運転時における熱源機側の冷媒の流れとを切り換えるものである。なお、各運転モードの詳細は後述する。 The four-way switching valve 2 includes a refrigerant flow on the heat source side during heating / heat storage operation, compressor heating operation, and heat storage utilization heating operation, and a heat source apparatus side during cooling heat storage operation, compressor cooling operation, and heat storage utilization cooling operation. The refrigerant flow is switched. Details of each operation mode will be described later.
 熱源機側熱交換器3は、暖房蓄熱運転、圧縮機暖房運転、および蓄熱利用暖房運転には蒸発器として機能し、冷房蓄熱運転、圧縮機冷房運転、および蓄熱利用冷房運転には凝縮器として機能する。熱源機側熱交換器3は、ファン等の送風機から供給される空気と冷媒との間で熱交換を行う。
 アキュムレーター4は、圧縮機1の吸入側に設けられている。
The heat source device side heat exchanger 3 functions as an evaporator for heating and heat storage operation, compressor heating operation, and heat storage use heating operation, and as a condenser for cooling heat storage operation, compressor cooling operation, and heat storage use cooling operation. Function. The heat source device side heat exchanger 3 performs heat exchange between air supplied from a blower such as a fan and the refrigerant.
The accumulator 4 is provided on the suction side of the compressor 1.
 また、熱源機Aには、熱源機Aの周囲の外気温度を検知する外気温度検知手段18が設けられている。外気温度検知手段18は、サーミスタなど任意の温度センサによって構成される。 Further, the heat source machine A is provided with an outside air temperature detecting means 18 for detecting the outside air temperature around the heat source machine A. The outside air temperature detection means 18 is configured by an arbitrary temperature sensor such as a thermistor.
 図2は、実施の形態に係る空気調和装置の熱源機のベースの構造例を示す平面図である。図2においては、熱源機Aのベース40の構造の概略を示している。
 熱源機Aの筐体の底を形成するベース40には、熱源機側熱交換器3の下部を設置するスペースがあり、その近辺にドレンの排水路42、および排水口41が設けられている。
 熱源機側熱交換器3が蒸発器として機能する場合において、空気(外気)が熱源機側熱交換器3を通過する際に、空気中の水分が凝縮して凝縮水となって熱源機側熱交換器3から落ちる。また、例えば除霜運転によって、熱源機側熱交換器3に付着した霜を溶かした場合、溶解水が熱源機側熱交換器3から落ちる。熱源機側熱交換器3から落下した水(ドレン)は、ベース40に流れ落ちる。ベース40に流れ落ちたドレンは、排水路42に沿って流れ、排水口41から筐体の外へ排出される。
 また、ベース40には、ベース40の温度を検知するベース温度検知手段20が設けられている。ベース温度検知手段20は、サーミスタなど任意の温度センサによって構成される。
FIG. 2 is a plan view showing a structural example of the base of the heat source unit of the air-conditioning apparatus according to the embodiment. In FIG. 2, the outline of the structure of the base 40 of the heat source machine A is shown.
The base 40 that forms the bottom of the casing of the heat source unit A has a space for installing the lower part of the heat source unit side heat exchanger 3, and a drain drainage channel 42 and a drain port 41 are provided in the vicinity thereof. .
When the heat source machine side heat exchanger 3 functions as an evaporator, when air (outside air) passes through the heat source machine side heat exchanger 3, moisture in the air condenses to become condensed water and becomes the heat source machine side. It falls from the heat exchanger 3. Moreover, when the frost adhering to the heat source device side heat exchanger 3 is melted by defrosting operation, for example, the dissolved water falls from the heat source device side heat exchanger 3. The water (drain) dropped from the heat source device side heat exchanger 3 flows down to the base 40. The drain that has flowed down to the base 40 flows along the drainage channel 42 and is discharged from the drainage port 41 to the outside of the casing.
The base 40 is provided with a base temperature detecting means 20 that detects the temperature of the base 40. The base temperature detection means 20 is comprised by arbitrary temperature sensors, such as a thermistor.
 なお、ベース40は、本発明における「底板」に相当する。
 また、四方切換弁2、第1の電磁弁10、第2の電磁弁11、第3の電磁弁12、第4の電磁弁13は、本発明における「流路切換手段」に相当する。
The base 40 corresponds to the “bottom plate” in the present invention.
The four-way switching valve 2, the first solenoid valve 10, the second solenoid valve 11, the third solenoid valve 12, and the fourth solenoid valve 13 correspond to the “flow path switching means” in the present invention.
[室内機B1、B2]
 室内機B1には、室内機側熱交換器5a、室内機膨張弁8aが設けられている。室内機B2には、室内機側熱交換器5b、室内機膨張弁8bが設けられている。以下、室内機B1、B2を区別しないときは符号のサフィックスを省略する。
 室内機側熱交換器5は、暖房蓄熱運転、圧縮機暖房運転、および蓄熱利用暖房運転時には凝縮器として機能し、冷房蓄熱運転、圧縮機冷房運転、および蓄熱利用冷房運転には蒸発器として機能する。室内機側熱交換器5は、ファン等の送風機から供給される空気(室内の空気)と冷媒との間で熱交換を行う。
 室内機膨張弁8は、例えば開度が可変に制御される電子膨張弁である。
[Indoor units B1, B2]
The indoor unit B1 is provided with an indoor unit side heat exchanger 5a and an indoor unit expansion valve 8a. The indoor unit B2 is provided with an indoor unit side heat exchanger 5b and an indoor unit expansion valve 8b. Hereinafter, when the indoor units B1 and B2 are not distinguished from each other, the reference numeral is omitted.
The indoor unit side heat exchanger 5 functions as a condenser at the time of heating and storage operation, compressor heating operation, and heat storage use heating operation, and functions as an evaporator at cooling heat storage operation, compressor cooling operation, and heat storage use cooling operation. To do. The indoor unit side heat exchanger 5 performs heat exchange between air (indoor air) supplied from a blower such as a fan and the refrigerant.
The indoor unit expansion valve 8 is an electronic expansion valve whose opening degree is variably controlled, for example.
 なお、室内機側熱交換器5は、本発明における「利用側熱交換器」に相当し、室内機膨張弁8は、本発明における「絞り装置」に相当する。 The indoor unit side heat exchanger 5 corresponds to the “use side heat exchanger” in the present invention, and the indoor unit expansion valve 8 corresponds to the “throttle device” in the present invention.
[蓄熱槽C]
 蓄熱槽Cには、蓄熱槽タンク6が設置されている。蓄熱槽タンク6には、蓄熱槽熱交換器7、および蓄熱剤17が入っている。
 蓄熱槽熱交換器7は2分割されており、第5の電磁弁14で片方の蓄熱槽熱交換器7へ
流れる冷媒を閉止することができる。また、2分割された蓄熱槽熱交換器7のそれぞれに蓄熱槽膨張弁9a、9bを設けている。
 蓄熱槽Cには、蓄熱剤17の温度を検知する蓄熱剤温度検知手段19が設けられている。
[Heat storage tank C]
In the heat storage tank C, a heat storage tank 6 is installed. The heat storage tank 6 contains a heat storage tank heat exchanger 7 and a heat storage agent 17.
The heat storage tank heat exchanger 7 is divided into two, and the refrigerant flowing to the one heat storage tank heat exchanger 7 can be closed by the fifth electromagnetic valve 14. Further, each of the heat storage tank heat exchangers 7 divided into two is provided with heat storage tank expansion valves 9a and 9b.
The heat storage tank C is provided with heat storage agent temperature detection means 19 for detecting the temperature of the heat storage agent 17.
 なお、蓄熱剤温度検知手段19は、本発明における「第1温度検知手段」に相当する。
 また、外気温度検知手段18は、本発明における「第2温度検知手段」に相当する。
 また、ベース温度検知手段20は、本発明における「第3温度検知手段」に相当する。
The heat storage agent temperature detecting means 19 corresponds to the “first temperature detecting means” in the present invention.
The outside air temperature detecting means 18 corresponds to the “second temperature detecting means” in the present invention.
The base temperature detection means 20 corresponds to the “third temperature detection means” in the present invention.
 各温度検知手段によって検知された計測値は、制御手段50へ入力される。制御手段50は、計測値に基づき、圧縮機1、四方切換弁2、および各電磁弁などを制御する。
 この制御手段50は、回路デバイスなどのハードウェアで実現することもできるし、マイコンやCPUなどの演算装置上で実行されるソフトウェアとして実現することもできる。
The measurement value detected by each temperature detection unit is input to the control unit 50. The control means 50 controls the compressor 1, the four-way switching valve 2, each electromagnetic valve, and the like based on the measured value.
The control means 50 can be realized by hardware such as a circuit device, or can be realized as software executed on an arithmetic device such as a microcomputer or CPU.
[熱源機Aおよび蓄熱槽Cの設置構造]
 図3は、実施の形態に係る空気調和装置の熱源機と蓄熱槽の配置例を示す図である。
 蓄熱槽Cは、熱源機Aの筐体の下方に設置されている。例えば図3に示すように、蓄熱槽Cの天井パネルと、熱源機Aの筐体の底であるベース40とが近接または接触して配置されている。
 これにより、蓄熱槽C内の蓄熱剤17に温熱が蓄えられている場合、蓄熱剤17の温熱が、蓄熱槽Cと熱源機Aと間の空気、および熱源機Aのベース40に供給される配置となる。
[Installation structure of heat source machine A and heat storage tank C]
Drawing 3 is a figure showing the example of arrangement of the heat source machine and heat storage tank of the air harmony device concerning an embodiment.
The heat storage tank C is installed below the housing of the heat source device A. For example, as shown in FIG. 3, the ceiling panel of the heat storage tank C and the base 40 that is the bottom of the casing of the heat source device A are disposed in close proximity or in contact with each other.
Thereby, when heat is stored in the heat storage agent 17 in the heat storage tank C, the heat of the heat storage agent 17 is supplied to the air between the heat storage tank C and the heat source unit A and the base 40 of the heat source unit A. Arrangement.
 このように、蓄熱剤17の温熱を熱源機Aのベース40へ供給する構成とすることで、熱源機Aの熱源機側熱交換器3等から排出されるドレンの氷結を防止することができる。
 また、熱源機Aの氷結を防止するために、ヒータ等の加熱装置を設置する必要がないので、消費電力の増加を抑制することができる。また、加熱装置を設置する必要がないので、熱源機Aの設置面積の増加を抑制することができる。また、製造コストの増加を抑制することができる。
Thus, by setting it as the structure which supplies the warm heat | fever of the thermal storage agent 17 to the base 40 of the heat source machine A, the freezing of the drain discharged | emitted from the heat source machine side heat exchanger 3 etc. of the heat source machine A can be prevented. .
Further, since it is not necessary to install a heating device such as a heater in order to prevent the heat source unit A from freezing, an increase in power consumption can be suppressed. Moreover, since it is not necessary to install a heating apparatus, the increase in the installation area of the heat source machine A can be suppressed. Moreover, the increase in manufacturing cost can be suppressed.
 なお、熱源機Aのベース40または蓄熱槽Cの天井パネルの全体または一部には、熱伝導の良い材質を使用し、または板金の薄肉化により、蓄熱剤17の熱を効率良く伝達する構成として良い。
 なお、図2の例では、蓄熱槽Cの天井パネルと、熱源機Aのベース40とが分かれているが、蓄熱槽Cの天井パネルと熱源機Aのベース40とを一体(同一)としても良い。
In addition, the structure which transmits the heat | fever of the thermal storage agent 17 efficiently by using the material with favorable heat conductivity for the whole or one part of the base 40 of the heat-source unit A or the ceiling panel of the thermal storage tank C, or thinning of a sheet metal. As good.
In the example of FIG. 2, the ceiling panel of the heat storage tank C and the base 40 of the heat source unit A are separated, but the ceiling panel of the heat storage tank C and the base 40 of the heat source unit A may be integrated (identical). good.
(変形例1)
 蓄熱剤17の温熱を熱源機Aのベース40へ供給する、別の構成例を説明する。
(Modification 1)
Another configuration example in which the heat of the heat storage agent 17 is supplied to the base 40 of the heat source device A will be described.
 図4は、実施の形態に係る空気調和装置の別の構成を示す冷媒回路である。
 図5は、実施の形態に係る空気調和装置の水配管およびポンプの構造例を示す平面図である。
 例えば図4、図5に示すように、熱源機Aには、蓄熱槽Cの蓄熱剤17を吸い込み、再び蓄熱槽C内へ戻す、水配管15およびポンプ16が設けられている。
 水配管15は、例えば熱源機Aのベース40の一部に接するように配置されている。例えば、水配管15が排水路42に沿うように設置されている。
 なお、水配管15は、本発明における「蓄熱媒体配管」に相当する。
FIG. 4 is a refrigerant circuit showing another configuration of the air-conditioning apparatus according to the embodiment.
FIG. 5 is a plan view showing a structural example of a water pipe and a pump of the air-conditioning apparatus according to the embodiment.
For example, as shown in FIGS. 4 and 5, the heat source machine A is provided with a water pipe 15 and a pump 16 that sucks the heat storage agent 17 of the heat storage tank C and returns it to the heat storage tank C again.
The water piping 15 is arrange | positioned so that a part of base 40 of the heat source machine A may be contacted, for example. For example, the water pipe 15 is installed along the drainage channel 42.
The water pipe 15 corresponds to the “heat storage medium pipe” in the present invention.
 このように、水配管15によって、蓄熱剤17の温熱を熱源機Aのベース40へ供給する構成とすることで、熱源機Aの熱源機側熱交換器3等から排出されるドレンの氷結を防止することができる。
 なお、水配管15の位置はこれに限定されず、ベース40へ蓄熱剤17の温熱を供給できる位置であれば良い。例えば、水配管15を蓄熱槽Cの天井パネルに設けても良い。
 なお、水配管15でドレンの氷結を防ぐ場合は、蓄熱槽Cは必ずしも熱源機Aの下部に設置する必要はない。
 なお、水配管15の代わりに、蓄熱槽熱交換器7の伝熱管の一部を排水路42に沿うように設置しても良い。この場合、第5の電磁弁14を開閉することで冷媒の流れを制御することで、蓄熱剤17の温熱の供給を制御する。
In this way, the water pipe 15 is configured to supply the heat of the heat storage agent 17 to the base 40 of the heat source unit A, thereby freezing the drain discharged from the heat source unit side heat exchanger 3 or the like of the heat source unit A. Can be prevented.
The position of the water pipe 15 is not limited to this, and any position that can supply the warm heat of the heat storage agent 17 to the base 40 may be used. For example, the water pipe 15 may be provided on the ceiling panel of the heat storage tank C.
Note that the heat storage tank C does not necessarily need to be installed below the heat source unit A in order to prevent drain icing in the water pipe 15.
Instead of the water pipe 15, a part of the heat transfer tube of the heat storage tank heat exchanger 7 may be installed along the drainage channel 42. In this case, the supply of heat of the heat storage agent 17 is controlled by controlling the flow of the refrigerant by opening and closing the fifth electromagnetic valve 14.
(変形例2)
 図6は、実施の形態に係る空気調和装置の熱源機と蓄熱槽の概略構造を示す断面図である。
 例えば図6に示すように、蓄熱槽Cの天井パネル、および熱源機Aのベース40には、蓄熱槽C(蓄熱槽タンク6)と熱源機Aの筐体内部とを連通する蒸気通路穴43が形成されている。
 このような構成により、蓄熱槽C内の蓄熱剤17に温熱が蓄えられている場合、蓄熱槽C内の蓄熱剤17が蒸発し、蒸気が蒸気通路穴43を通過して熱源機Aの筐体内部へ流入する。
(Modification 2)
FIG. 6 is a cross-sectional view illustrating a schematic structure of the heat source unit and the heat storage tank of the air-conditioning apparatus according to the embodiment.
For example, as shown in FIG. 6, a steam passage hole 43 that connects the heat storage tank C (heat storage tank 6) and the inside of the housing of the heat source apparatus A to the ceiling panel of the heat storage tank C and the base 40 of the heat source apparatus A. Is formed.
With such a configuration, when heat is stored in the heat storage agent 17 in the heat storage tank C, the heat storage agent 17 in the heat storage tank C evaporates, and the steam passes through the vapor passage hole 43 and the housing of the heat source apparatus A. It flows into the body.
 これにより、蓄熱剤17の温熱を熱源機Aのベース40へ供給することができ、熱源機Aの熱源機側熱交換器3等から排出されるドレンの氷結を防止することができる。 Thereby, the heat of the heat storage agent 17 can be supplied to the base 40 of the heat source unit A, and the freezing of drain discharged from the heat source unit side heat exchanger 3 of the heat source unit A can be prevented.
(変形例3)
 図7は、実施の形態に係る空気調和装置の熱源機と蓄熱槽の概略構造を示す断面図である。
 例えば図7に示すように、熱源機Aのベース40には、排水口41から排水されたドレンを流通される排水配管44を備えている。例えば、ベース40の排水路42を傾斜させ、最も低い位置に排水口41を形成する。その排水口41と排水配管44とが接続される。排水配管44は、蓄熱槽Cの蓄熱剤17の内部を通過するように配置されている。
(Modification 3)
FIG. 7 is a cross-sectional view illustrating a schematic structure of the heat source unit and the heat storage tank of the air-conditioning apparatus according to the embodiment.
For example, as shown in FIG. 7, the base 40 of the heat source machine A includes a drainage pipe 44 through which drainage drained from the drainage port 41 is circulated. For example, the drainage channel 42 of the base 40 is inclined and the drainage port 41 is formed at the lowest position. The drain port 41 and the drain pipe 44 are connected. The drain pipe 44 is disposed so as to pass through the inside of the heat storage agent 17 of the heat storage tank C.
 これにより、熱源機Aの熱源機側熱交換器3等から排出されるドレンの氷結を防止することができる。
 なお、排水配管44は、蓄熱槽Cの蓄熱剤17の内部に限らず、蓄熱剤17の近接部に配置しても良い。
Thereby, icing of the drain discharged | emitted from the heat source machine side heat exchanger 3 grade | etc., Of the heat source machine A can be prevented.
The drain pipe 44 is not limited to the inside of the heat storage agent 17 of the heat storage tank C, and may be disposed in the vicinity of the heat storage agent 17.
(変形例4)
 圧縮機1、および熱源機側熱交換器3へ送風する送風機の少なくとも一方を駆動する駆動装置には、スイッチング素子などのパワーデバイス21が設けられている。このパワーデバイス21に、SiCなどのワイドバンドギャップ半導体を用いても良い。SiCなどのワイドバンドギャップ半導体を用いたパワーデバイス21は、耐熱性も高いため、ヒートシンクの放熱フィンの小型化等を行い高温状態で駆動することが可能である。
(Modification 4)
A power device 21 such as a switching element is provided in a drive device that drives at least one of the compressor 1 and the blower that blows air to the heat source device side heat exchanger 3. The power device 21 may be a wide band gap semiconductor such as SiC. Since the power device 21 using a wide band gap semiconductor such as SiC has high heat resistance, it can be driven at a high temperature by reducing the size of the heat sink fins of the heat sink.
 このような、パワーデバイス21を、蓄熱槽Cの天井パネル、熱源機Aのベース40、または、蓄熱槽熱交換器7へガス状態の冷媒を流入させる配管に配置しても良い。
 なお、パワーデバイス21からのヒートパイプを、蓄熱槽Cの天井パネル、熱源機Aのベース40、または、蓄熱槽熱交換器7へガス状態の冷媒を流入させる配管(図4参照)に取り付けても良い。
Such a power device 21 may be arranged on the ceiling panel of the heat storage tank C, the base 40 of the heat source unit A, or a pipe through which the refrigerant in the gas state flows into the heat storage tank heat exchanger 7.
Note that the heat pipe from the power device 21 is attached to the ceiling panel of the heat storage tank C, the base 40 of the heat source unit A, or a pipe (see FIG. 4) through which the refrigerant in the gas state flows into the heat storage tank heat exchanger 7. Also good.
 これにより、パワーデバイス21で発生した熱を、蓄熱剤17を介して、または直接、熱源機Aのベース40へ供給することができ、熱源機Aの熱源機側熱交換器3等から排出されるドレンの氷結を防止することができる。 Thereby, the heat generated in the power device 21 can be supplied to the base 40 of the heat source device A via the heat storage agent 17 or directly, and is discharged from the heat source device side heat exchanger 3 or the like of the heat source device A. Can prevent the freezing of the drain.
 なお、蓄熱槽熱交換器7へガス状態の冷媒を流入させる配管の付近は、100℃以上となる場合があり、シリコンデバイスでは耐熱的に使用できないため、SiCなどのワイドバンドギャップ半導体を使用すると良い。 In addition, since the vicinity of the pipe into which the refrigerant in the gas state flows into the heat storage tank heat exchanger 7 may be 100 ° C. or higher and cannot be used in a heat resistant manner in a silicon device, when a wide band gap semiconductor such as SiC is used. good.
[運転モードの説明]
 次に、暖房蓄熱運転、圧縮機暖房運転、蓄熱利用暖房運転、冷房蓄熱運転、圧縮機冷房運転、蓄熱利用冷房運転の各運転モードついて、図8~図14を用いて説明する。
[Description of operation mode]
Next, the respective operation modes of the heating and heat storage operation, the compressor heating operation, the heat storage use heating operation, the cooling heat storage operation, the compressor cooling operation, and the heat storage use cooling operation will be described with reference to FIGS.
(圧縮機冷房運転)
 図8は、実施の形態に係る空気調和装置の圧縮機冷房運転における冷媒の流れを示す冷媒回路図である。
 圧縮機冷房運転とは、蓄熱槽C内の蓄熱剤17に蓄えられたエネルギーを使用しない冷房運転である。
(Compressor cooling operation)
FIG. 8 is a refrigerant circuit diagram illustrating a refrigerant flow in the compressor cooling operation of the air-conditioning apparatus according to the embodiment.
The compressor cooling operation is a cooling operation that does not use the energy stored in the heat storage agent 17 in the heat storage tank C.
 制御手段50は、四方切換弁2を冷房側に切り換える。また、第1の電磁弁10を開き、第2の電磁弁11、第3の電磁弁12、および第4の電磁弁13を閉止させる。また、第5の電磁弁14は開き、蓄熱槽膨張弁9は閉止させる。なお、室内機膨張弁8は、運転状態に応じて開度を調整する。 Control means 50 switches the four-way switching valve 2 to the cooling side. Moreover, the 1st solenoid valve 10 is opened and the 2nd solenoid valve 11, the 3rd solenoid valve 12, and the 4th solenoid valve 13 are closed. Further, the fifth electromagnetic valve 14 is opened, and the heat storage tank expansion valve 9 is closed. The indoor unit expansion valve 8 adjusts the opening according to the operating state.
 このような状態で圧縮機1が運転されると、圧縮機1を吐出した冷媒は、四方切換弁2を通った後、熱源機側熱交換器3で凝縮し、第1の電磁弁10を通過する。第1の電磁弁10を通過した冷媒は、室内機Bへ流入し、室内機膨張弁8で断熱膨張し、室内機側熱交換器5で蒸発して室内側空気を冷却する。この蒸発した冷媒はガス化して、熱源機Aへ流入し、四方切換弁2を通った後、アキュムレーター4を経由して圧縮機1にもどる。 When the compressor 1 is operated in such a state, the refrigerant discharged from the compressor 1 passes through the four-way switching valve 2 and then condenses in the heat source unit side heat exchanger 3, and the first electromagnetic valve 10 is pass. The refrigerant that has passed through the first electromagnetic valve 10 flows into the indoor unit B, adiabatically expands at the indoor unit expansion valve 8, evaporates at the indoor unit side heat exchanger 5, and cools the indoor air. The evaporated refrigerant is gasified, flows into the heat source machine A, passes through the four-way switching valve 2, and then returns to the compressor 1 through the accumulator 4.
(圧縮機暖房運転)
 図9は、実施の形態に係る空気調和装置の圧縮機暖房運転における冷媒の流れを示す冷媒回路図である。
 圧縮機暖房運転とは、蓄熱槽C内の蓄熱剤17に蓄えられたエネルギーを使用しない暖房運転である。
(Compressor heating operation)
FIG. 9 is a refrigerant circuit diagram illustrating a refrigerant flow in the compressor heating operation of the air-conditioning apparatus according to the embodiment.
The compressor heating operation is a heating operation that does not use energy stored in the heat storage agent 17 in the heat storage tank C.
 制御手段50は、四方切換弁2を暖房側に切り換える。また、第1の電磁弁10を開き、第2の電磁弁11、第3の電磁弁12、および第4の電磁弁13を閉止させる。また、第5の電磁弁14は開き、蓄熱槽膨張弁9は閉止させる。なお、室内機膨張弁8は、運転状態に応じて開度を調整する。 Control means 50 switches the four-way switching valve 2 to the heating side. Moreover, the 1st solenoid valve 10 is opened and the 2nd solenoid valve 11, the 3rd solenoid valve 12, and the 4th solenoid valve 13 are closed. Further, the fifth electromagnetic valve 14 is opened, and the heat storage tank expansion valve 9 is closed. The indoor unit expansion valve 8 adjusts the opening according to the operating state.
 このような状態で圧縮機1が運転されると、圧縮機1を吐出した冷媒は、四方切換弁2を通った後、室内機側熱交換器5で凝縮し、室内側空気と熱交換する。凝縮した冷媒は、室内機膨張弁8で断熱膨張した後、第1の電磁弁10を通過し、熱源機側熱交換器3で外気と熱交換して蒸発してガス化する。ガス化した冷媒は、四方切換弁2を通った後、アキュムレーター4を経由して圧縮機1にもどる。 When the compressor 1 is operated in such a state, the refrigerant discharged from the compressor 1 passes through the four-way switching valve 2, condenses in the indoor unit side heat exchanger 5, and exchanges heat with the indoor side air. . The condensed refrigerant is adiabatically expanded by the indoor unit expansion valve 8, then passes through the first electromagnetic valve 10, exchanges heat with the outside air in the heat source unit side heat exchanger 3, and is evaporated and gasified. The gasified refrigerant passes through the four-way switching valve 2 and then returns to the compressor 1 via the accumulator 4.
(冷房蓄熱運転)
 図10は、実施の形態に係る空気調和装置の冷房蓄熱運転における冷媒の流れを示す冷媒回路図である。
 冷房蓄熱運転とは、蓄熱槽C内の蓄熱剤17へ冷熱を蓄える製氷運転である。この冷房蓄熱運転は、例えば夜間など、空調が必要でない時間帯に実施される。
(Cooling heat storage operation)
FIG. 10 is a refrigerant circuit diagram illustrating a refrigerant flow in the cooling heat storage operation of the air-conditioning apparatus according to Embodiment.
The cooling heat storage operation is an ice making operation in which cold heat is stored in the heat storage agent 17 in the heat storage tank C. This cooling heat storage operation is performed in a time zone where air conditioning is not necessary, for example, at night.
 制御手段50は、四方切換弁2を冷房側に切り換える。また、第1の電磁弁10、および第3の電磁弁12を開き、第2の電磁弁11、第4の電磁弁13、および第5の電磁弁14を閉止させる。また、室内機膨張弁8は閉止させる。なお、蓄熱槽膨張弁9は、運転状態に応じて開度を調整する。 Control means 50 switches the four-way switching valve 2 to the cooling side. Moreover, the 1st solenoid valve 10 and the 3rd solenoid valve 12 are opened, and the 2nd solenoid valve 11, the 4th solenoid valve 13, and the 5th solenoid valve 14 are closed. Further, the indoor unit expansion valve 8 is closed. In addition, the thermal storage tank expansion valve 9 adjusts an opening degree according to an operation state.
 このような状態で圧縮機1が運転されると、圧縮機1を吐出した冷媒は、四方切換弁2を通った後、熱源機側熱交換器3で凝縮し、第1の電磁弁10を通過する。第1の電磁弁10を通過した冷媒は、蓄熱槽Cへ流入し、蓄熱槽膨張弁9で断熱膨張する。蓄熱槽膨張弁9で断熱膨張した冷媒は、蓄熱槽熱交換器7で蓄熱剤17を冷却する。この蒸発した冷媒はガス化して、熱源機Aへ流入し、第3の電磁弁12、四方切換弁2を通った後、アキュムレーター4を経由して圧縮機1にもどる。 When the compressor 1 is operated in such a state, the refrigerant discharged from the compressor 1 passes through the four-way switching valve 2 and then condenses in the heat source unit side heat exchanger 3, and the first electromagnetic valve 10 is pass. The refrigerant that has passed through the first electromagnetic valve 10 flows into the heat storage tank C and is adiabatically expanded by the heat storage tank expansion valve 9. The refrigerant adiabatically expanded by the heat storage tank expansion valve 9 cools the heat storage agent 17 by the heat storage tank heat exchanger 7. The evaporated refrigerant is gasified, flows into the heat source machine A, passes through the third electromagnetic valve 12 and the four-way switching valve 2, and then returns to the compressor 1 through the accumulator 4.
(暖房蓄熱運転)
 図11は、実施の形態に係る空気調和装置の暖房蓄熱運転における冷媒の流れを示す冷媒回路図である。
 暖房蓄熱運転とは、蓄熱槽C内の蓄熱剤17へ温熱を蓄える貯湯運転である。この暖房蓄熱運転は、例えば夜間など、空調が必要でない時間帯に実施される。
(Heating heat storage operation)
FIG. 11 is a refrigerant circuit diagram illustrating a refrigerant flow in the heating and heat storage operation of the air-conditioning apparatus according to the embodiment.
The heating and heat storage operation is a hot water storage operation in which heat is stored in the heat storage agent 17 in the heat storage tank C. This heating and heat storage operation is performed in a time zone where air conditioning is not necessary, for example, at night.
 制御手段50は、四方切換弁2を暖房側に切り換える。また、第1の電磁弁10、および第3の電磁弁12を開き、第2の電磁弁11、および第4の電磁弁13を閉止させる。また、室内機膨張弁8は閉止させる。なお、蓄熱槽膨張弁9は、運転状態に応じて開度を調整する。また、熱源機Aのベース40へ蓄熱剤17の温熱を供給する場合には、第5の電磁弁14は、低外気時(例えば0℃以下)に開く。 Control means 50 switches the four-way switching valve 2 to the heating side. Moreover, the 1st solenoid valve 10 and the 3rd solenoid valve 12 are opened, and the 2nd solenoid valve 11 and the 4th solenoid valve 13 are closed. Further, the indoor unit expansion valve 8 is closed. In addition, the thermal storage tank expansion valve 9 adjusts an opening degree according to an operation state. Moreover, when supplying the heat of the heat storage agent 17 to the base 40 of the heat source machine A, the fifth electromagnetic valve 14 opens at the time of low outside air (for example, 0 ° C. or less).
 このような状態で圧縮機1が運転されると、圧縮機1を吐出した冷媒は、四方切換弁2を通り、第3の電磁弁12を経由した後、蓄熱槽Cへ流入し、蓄熱槽熱交換器7で凝縮して蓄熱剤17に熱を与え、蓄熱剤17に蓄熱する。凝縮した冷媒は、蓄熱槽膨張弁9で断熱膨張し、熱源機Aへ流入し、第1の電磁弁10を経由した後、熱源機側熱交換器3で蒸発してガス化する。ガス化した冷媒は、四方切換弁2を通った後、アキュムレーター4を経由して圧縮機1にもどる。 When the compressor 1 is operated in such a state, the refrigerant discharged from the compressor 1 passes through the four-way switching valve 2, passes through the third electromagnetic valve 12, and then flows into the heat storage tank C to be stored in the heat storage tank. The heat exchanger 7 condenses, heats the heat storage agent 17, and stores the heat in the heat storage agent 17. The condensed refrigerant is adiabatically expanded by the heat storage tank expansion valve 9, flows into the heat source unit A, passes through the first electromagnetic valve 10, and is evaporated and gasified by the heat source unit side heat exchanger 3. The gasified refrigerant passes through the four-way switching valve 2 and then returns to the compressor 1 via the accumulator 4.
(蓄熱利用冷房運転)
 図12は、実施の形態に係る空気調和装置の蓄熱利用冷房運転における冷媒の流れを示す冷媒回路図である。
 蓄熱利用冷房運転とは、蓄熱槽C内の蓄熱剤17に蓄えられたエネルギーを使用する冷房運転である。この蓄熱利用冷房運転は、例えば昼間など、冷房蓄熱運転のあとに実施される。
(Cooling operation using heat storage)
FIG. 12 is a refrigerant circuit diagram illustrating a refrigerant flow in the regenerative cooling operation of the air conditioner according to the embodiment.
The heat storage use cooling operation is a cooling operation using the energy stored in the heat storage agent 17 in the heat storage tank C. This heat storage use cooling operation is performed after the cooling heat storage operation, for example, in the daytime.
 制御手段50は、四方切換弁2を冷房側に切り換える。また、第2の電磁弁11を開き、第1の電磁弁10、第3の電磁弁12、および第4の電磁弁13を閉止させる。また、第5の電磁弁14は開く。なお、室内機膨張弁8、および蓄熱槽膨張弁9は、運転状態に応じて開度を調整する。 Control means 50 switches the four-way switching valve 2 to the cooling side. Moreover, the 2nd solenoid valve 11 is opened and the 1st solenoid valve 10, the 3rd solenoid valve 12, and the 4th solenoid valve 13 are closed. Further, the fifth electromagnetic valve 14 is opened. The indoor unit expansion valve 8 and the heat storage tank expansion valve 9 adjust the opening according to the operating state.
 このような状態で圧縮機1が運転されると、圧縮機1を吐出した冷媒は、四方切換弁2を通った後、熱源機側熱交換器3で凝縮し、第2の電磁弁11を通過する。第2の電磁弁11を通過した冷媒は、蓄熱槽Cへ流入し、蓄熱槽熱交換器7で凝縮して蓄熱剤17に放熱し、蓄熱槽膨張弁9、室内機膨張弁8で断熱膨張する。断熱膨張した冷媒は、室内機側熱交換器5で蒸発して室内側空気を冷却する。この蒸発した冷媒はガス化して、熱源機Aへ流入し、四方切換弁2を通った後、アキュムレーター4を経由して圧縮機1にもどる。 When the compressor 1 is operated in such a state, the refrigerant discharged from the compressor 1 passes through the four-way switching valve 2 and then condenses in the heat source unit side heat exchanger 3, and the second electromagnetic valve 11 is pass. The refrigerant that has passed through the second electromagnetic valve 11 flows into the heat storage tank C, condenses in the heat storage tank heat exchanger 7 and dissipates heat to the heat storage agent 17, and adiabatically expands in the heat storage tank expansion valve 9 and the indoor unit expansion valve 8. To do. The adiabatically expanded refrigerant evaporates in the indoor unit side heat exchanger 5 to cool the indoor air. The evaporated refrigerant is gasified, flows into the heat source machine A, passes through the four-way switching valve 2, and then returns to the compressor 1 through the accumulator 4.
(蓄熱利用暖房運転1)
 図13は、実施の形態に係る空気調和装置の蓄熱利用暖房運転1における冷媒の流れを示す冷媒回路図である。
 蓄熱利用暖房運転1とは、蓄熱槽C内の蓄熱剤17に蓄えられたエネルギーを使用する暖房運転である。この蓄熱利用暖房運転1は、例えば昼間など、暖房蓄熱運転のあとに実施される。
(Heat storage heating operation 1)
FIG. 13 is a refrigerant circuit diagram illustrating a refrigerant flow in the heat storage utilization heating operation 1 of the air-conditioning apparatus according to Embodiment.
The heat storage utilization heating operation 1 is a heating operation using the energy stored in the heat storage agent 17 in the heat storage tank C. The heat storage use heating operation 1 is performed after the heating heat storage operation, for example, in the daytime.
 制御手段50は、四方切換弁2を暖房側に切り換える。また、第4の電磁弁13を開き、第1の電磁弁10、第2の電磁弁11、および第3の電磁弁12を閉止させる。また、第5の電磁弁14は開く。なお、室内機膨張弁8、および蓄熱槽膨張弁9は、運転状態に応じて開度を調整する。 Control means 50 switches the four-way switching valve 2 to the heating side. In addition, the fourth electromagnetic valve 13 is opened, and the first electromagnetic valve 10, the second electromagnetic valve 11, and the third electromagnetic valve 12 are closed. Further, the fifth electromagnetic valve 14 is opened. The indoor unit expansion valve 8 and the heat storage tank expansion valve 9 adjust the opening according to the operating state.
 このような状態で圧縮機1が運転されると、圧縮機1を吐出した冷媒は、四方切換弁2を通った後、室内機側熱交換器5で凝縮し、室内側空気と熱交換する。凝縮した冷媒は、室内機膨張弁8で断熱膨張した後、蓄熱槽Cへ流入し、蓄熱槽膨張弁9でさらに断熱膨張する。断熱膨張した冷媒は、蓄熱槽熱交換器7で蒸発して蓄熱剤17から放熱エネルギーをもらいガス化する。ガス化した冷媒は、第4の電磁弁13を通った後、アキュムレーター4を経由して圧縮機1にもどる。 When the compressor 1 is operated in such a state, the refrigerant discharged from the compressor 1 passes through the four-way switching valve 2, condenses in the indoor unit side heat exchanger 5, and exchanges heat with the indoor side air. . The condensed refrigerant is adiabatically expanded by the indoor unit expansion valve 8, then flows into the heat storage tank C, and is further adiabatically expanded by the heat storage tank expansion valve 9. The adiabatic and expanded refrigerant evaporates in the heat storage tank heat exchanger 7 and receives heat radiation energy from the heat storage agent 17 to be gasified. The gasified refrigerant passes through the fourth electromagnetic valve 13 and then returns to the compressor 1 via the accumulator 4.
(蓄熱利用暖房運転2)
 図14は、実施の形態に係る空気調和装置の蓄熱利用暖房運転2における冷媒の流れを示す冷媒回路図である。
 蓄熱利用暖房運転2とは、蓄熱槽C内の蓄熱剤17に蓄えられたエネルギーと、熱源機側熱交換器3の熱交換エネルギーとを使用する暖房運転である。この蓄熱利用暖房運転2は、例えば昼間など、暖房蓄熱運転のあとに実施される。
(Heat storage heating operation 2)
FIG. 14 is a refrigerant circuit diagram illustrating a refrigerant flow in the heat storage utilization heating operation 2 of the air-conditioning apparatus according to the embodiment.
The heat storage utilization heating operation 2 is a heating operation using the energy stored in the heat storage agent 17 in the heat storage tank C and the heat exchange energy of the heat source unit side heat exchanger 3. This heat storage use heating operation 2 is performed after the heating heat storage operation, for example, in the daytime.
 制御手段50は、四方切換弁2を暖房側に切り換える。また、第2の電磁弁11、および第4の電磁弁13を開き、第1の電磁弁10、および第3の電磁弁12を閉止させる。また、第5の電磁弁14は開く。なお、室内機膨張弁8、および蓄熱槽膨張弁9は、運転状態に応じて開度を調整する。 Control means 50 switches the four-way switching valve 2 to the heating side. Moreover, the 2nd solenoid valve 11 and the 4th solenoid valve 13 are opened, and the 1st solenoid valve 10 and the 3rd solenoid valve 12 are closed. Further, the fifth electromagnetic valve 14 is opened. The indoor unit expansion valve 8 and the heat storage tank expansion valve 9 adjust the opening according to the operating state.
 このような状態で圧縮機1が運転されると、圧縮機1を吐出した冷媒は、四方切換弁2を通った後、室内機側熱交換器5で凝縮し、室内側空気と熱交換する。凝縮した冷媒は、室内機膨張弁8で断熱膨張した後、蓄熱槽Cへ流入し、蓄熱槽膨張弁9でさらに断熱膨張する。断熱膨張した冷媒は、蓄熱槽熱交換器7で蒸発して蓄熱剤17から放熱エネルギーをもらいガス化または気液二相状態となる。ガス化または気液二相状態となった冷媒は、熱源機Aへ流入する。熱源機Aへ流入した冷媒の一部は、第4の電磁弁13を通った後、アキュムレーター4を経由して圧縮機1にもどる。また、他の一部は、第2の電磁弁11を通過し、熱源機側熱交換器3で外気と熱交換して蒸発してガス化し、四方切換弁2を通った後、アキュムレーター4を経由して圧縮機1にもどる。 When the compressor 1 is operated in such a state, the refrigerant discharged from the compressor 1 passes through the four-way switching valve 2, condenses in the indoor unit side heat exchanger 5, and exchanges heat with the indoor side air. . The condensed refrigerant is adiabatically expanded by the indoor unit expansion valve 8, then flows into the heat storage tank C, and is further adiabatically expanded by the heat storage tank expansion valve 9. The refrigerant which has been adiabatically expanded is evaporated in the heat storage tank heat exchanger 7 to obtain heat radiation energy from the heat storage agent 17 and is in a gasified or gas-liquid two-phase state. The refrigerant in the gasified or gas-liquid two-phase state flows into the heat source unit A. A part of the refrigerant flowing into the heat source machine A passes through the fourth electromagnetic valve 13 and then returns to the compressor 1 via the accumulator 4. The other part passes through the second electromagnetic valve 11, exchanges heat with the outside air in the heat source unit side heat exchanger 3, evaporates and gasifies, passes through the four-way switching valve 2, and then accumulates in the accumulator 4. Return to the compressor 1 via.
[蓄熱剤温度制御]
 次に、暖房時における蓄熱剤17の温度制御について説明する。この制御は、蓄熱剤17の温度を一定以上に保つことで、熱源機Aのベース40を暖めるための温熱を確保するための制御である。
[Heat storage temperature control]
Next, temperature control of the heat storage agent 17 during heating will be described. This control is control for ensuring the heat for heating the base 40 of the heat source device A by keeping the temperature of the heat storage agent 17 at a certain level or higher.
 図15は、実施の形態に係る空気調和装置の動作例を示すフローチャートである。
 図15において、制御手段50は、暖房蓄熱運転を開始し(ステップ1)、蓄熱槽Cの蓄熱剤17の検知温度が第1閾値X以上であるか否かを判断する(ステップ2)。蓄熱槽Cの蓄熱剤17の検知温度(蓄熱槽水温)が第1閾値X以上でない場合は、暖房蓄熱運転を継続し、第1閾値X以上である場合は、暖房蓄熱運転を運転停止する(ステップ3)。
FIG. 15 is a flowchart illustrating an operation example of the air-conditioning apparatus according to the embodiment.
In FIG. 15, the control means 50 starts heating heat storage operation (step 1), and determines whether or not the detected temperature of the heat storage agent 17 in the heat storage tank C is equal to or higher than the first threshold value X (step 2). When the detected temperature (heat storage tank water temperature) of the heat storage agent 17 in the heat storage tank C is not equal to or higher than the first threshold X, the heating heat storage operation is continued, and when it is equal to or higher than the first threshold X, the heating heat storage operation is stopped ( Step 3).
 なお、制御手段50は、外気温度検知手段18が検知した外気温度に応じて、第1閾値Xを変更する。
 例えば、外気温度が0℃以下となった場合、第1閾値X=40℃-外気温度、に設定する。例えば、外気温度が-10℃の場合は、第1閾値X=40℃-(-10℃)=50℃に設定する。また、第1閾値Xには上限値および下限値を設ける。例えば、上限値を50℃、下限値を40℃に設定する。
The control unit 50 changes the first threshold value X in accordance with the outside temperature detected by the outside temperature detection unit 18.
For example, when the outside air temperature becomes 0 ° C. or lower, the first threshold value X = 40 ° C.−outside air temperature is set. For example, when the outside air temperature is −10 ° C., the first threshold value X = 40 ° C .− (− 10 ° C.) = 50 ° C. is set. The first threshold value X is provided with an upper limit value and a lower limit value. For example, the upper limit value is set to 50 ° C. and the lower limit value is set to 40 ° C.
 次に、制御手段50は、蓄熱許可時間帯が終了したか否か(例えば午前8:00に終了)を判断し(ステップ4)、蓄熱許可時間帯が終了した場合には、暖房運転の実行を許可する(ステップ5)。この状態で、例えば使用者からの操作などによって暖房運転の実行操作がされた場合、制御手段50は、蓄熱利用暖房運転1を実施する(ステップ6)。
 制御手段50は、蓄熱槽Cの蓄熱剤17の検知温度(蓄熱槽水温)が、第1閾値X-20℃、以下であるか否かを判断する(ステップ7)。第1閾値X-20℃以下でない場合は、蓄熱利用暖房運転1を継続する。蓄熱利用暖房運転1によって、蓄熱剤17に蓄熱された温熱が空調に利用されるため、蓄熱剤17の温度は徐々に低下する。そして、第1閾値X-20℃以下となった場合、制御手段50は、蓄熱利用暖房運転1から蓄熱利用暖房運転2に切り換える(ステップ8)。
Next, the control means 50 determines whether or not the heat storage permission time period has ended (for example, ends at 8:00 am) (step 4), and when the heat storage permission time period has ended, execution of the heating operation is performed. Is permitted (step 5). In this state, for example, when a heating operation is performed by a user operation or the like, the control unit 50 performs the heat storage use heating operation 1 (step 6).
The control means 50 determines whether or not the detected temperature (heat storage tank water temperature) of the heat storage agent 17 in the heat storage tank C is equal to or lower than the first threshold value X-20 ° C. (step 7). If the first threshold value X is not lower than −20 ° C., the heat storage use heating operation 1 is continued. Since the heat stored in the heat storage agent 17 is used for air conditioning by the heat storage use heating operation 1, the temperature of the heat storage agent 17 gradually decreases. And when it becomes 1st threshold value X-20 degrees C or less, the control means 50 switches from the thermal storage utilization heating operation 1 to the thermal storage utilization heating operation 2 (step 8).
 蓄熱利用暖房運転2によって、蓄熱槽C内の蓄熱剤17に蓄えられたエネルギーと、熱源機側熱交換器3の熱交換エネルギーとを使用する暖房運転を実施する。
 制御手段50は、蓄熱槽Cの蓄熱剤17の検知温度(蓄熱槽水温)が、第1閾値よりも低い第2閾値Y以下であるか否かを判断する(ステップ9)。第2閾値Y以下でない場合は、蓄熱利用暖房運転2を継続する。蓄熱利用暖房運転2によって、蓄熱剤17に蓄熱された温熱が空調に利用されるため、蓄熱剤17の温度はさらに低下する。そして、第2閾値Y以下となった場合、制御手段50は、蓄熱利用暖房運転2から圧縮機暖房運転に切り換える(ステップ10)。
The heating operation using the energy stored in the heat storage agent 17 in the heat storage tank C and the heat exchange energy of the heat source unit side heat exchanger 3 is performed by the heat storage use heating operation 2.
The control means 50 determines whether or not the detected temperature (heat storage tank water temperature) of the heat storage agent 17 in the heat storage tank C is equal to or lower than a second threshold Y lower than the first threshold (step 9). If it is not less than or equal to the second threshold Y, the heat storage utilization heating operation 2 is continued. Since the heat stored in the heat storage agent 17 is used for air conditioning by the heat storage utilization heating operation 2, the temperature of the heat storage agent 17 further decreases. And when it becomes below the 2nd threshold value Y, the control means 50 switches from the heat storage utilization heating operation 2 to the compressor heating operation (step 10).
 なお、制御手段50は、外気温度検知手段18が検知した外気温度に応じて、第2閾値Yを変更する。
 例えば、外気温度が0℃以下となった場合、第2閾値Y=20℃-外気温度、に設定する。例えば、外気温度が-10℃の場合は、第2閾値Y=20℃-(-10℃)=30℃に設定する。また、第2閾値Yには上限値および下限値を設ける。例えば、上限値を30℃、下限値を20℃に設定する。
The control unit 50 changes the second threshold Y according to the outside temperature detected by the outside temperature detecting unit 18.
For example, when the outside air temperature becomes 0 ° C. or lower, the second threshold Y = 20 ° C.−outside air temperature is set. For example, when the outside air temperature is −10 ° C., the second threshold Y = 20 ° C .− (− 10 ° C.) = 30 ° C. is set. The second threshold Y is provided with an upper limit value and a lower limit value. For example, the upper limit is set to 30 ° C. and the lower limit is set to 20 ° C.
 次に、制御手段50は、蓄熱許可時間帯が開始したか否か(例えば午後10:00に開始)を判断し(ステップ11)、蓄熱許可時間帯が開始した場合には、暖房蓄熱運転を開始し(ステップ12)、ステップ1へもどる。 Next, the control means 50 determines whether or not the heat storage permission time zone has started (for example, started at 10:00 pm) (step 11), and when the heat storage permission time zone has started, the heating and heat storage operation is performed. Start (step 12) and return to step 1.
 以上のような動作により、蓄熱剤17の温度を一定以上に保つことができ、熱源機Aのベース40を暖めるための温熱を確保することができる。また、蓄熱剤17の温度に適した暖房運転を実施することができ、蓄熱されたエネルギーを効率的に空調に利用することができる。 By the operation as described above, the temperature of the heat storage agent 17 can be kept above a certain level, and the heat for warming the base 40 of the heat source device A can be secured. Moreover, the heating operation suitable for the temperature of the heat storage agent 17 can be performed, and the stored energy can be efficiently used for air conditioning.
 なお、上記の説明では、第1閾値Xおよび第2閾値の両方の設定を変更する場合を説明したが、変更は何れか一方のみでも良い。
 また、ベース温度検知手段20が検知したベース40の温度に応じて、第1閾値Xおよび第2閾値Yの少なくとも一方を変更するようにしても良い。
In the above description, the case where the settings of both the first threshold value X and the second threshold value are changed has been described, but only one of the changes may be made.
Further, at least one of the first threshold value X and the second threshold value Y may be changed according to the temperature of the base 40 detected by the base temperature detection means 20.
 1 圧縮機、2 四方切換弁、3 熱源機側熱交換器、4 アキュムレーター、5 室内機側熱交換器、6 蓄熱槽タンク、7 蓄熱槽熱交換器、8 室内機膨張弁、9 蓄熱槽膨張弁、10 第1の電磁弁、11 第2の電磁弁、12 第3の電磁弁、13 第4の電磁弁、14 第5の電磁弁、15 水配管、16 ポンプ、17 蓄熱剤、18 外気温度検知手段、19 蓄熱剤温度検知手段、20 ベース温度検知手段、21 パワーデバイス、40 ベース、41 排水口、42 排水路、43 蒸気通路穴、44 排水配管、50 制御手段、100 空気調和装置、A 熱源機、B 室内機、C 蓄熱槽。 1 compressor, 2 way switching valve, 3 heat source side heat exchanger, 4 accumulator, 5 indoor unit side heat exchanger, 6 heat storage tank, 7 heat storage tank heat exchanger, 8 indoor unit expansion valve, 9 heat storage tank Expansion valve, 10 1st solenoid valve, 11 2nd solenoid valve, 12 3rd solenoid valve, 13 4th solenoid valve, 14 5th solenoid valve, 15 water piping, 16 pump, 17 heat storage agent, 18 Outside air temperature detection means, 19 heat storage agent temperature detection means, 20 base temperature detection means, 21 power device, 40 base, 41 drain outlet, 42 drainage passage, 43 steam passage hole, 44 drainage piping, 50 control means, 100 air conditioner , A heat source machine, B indoor unit, C heat storage tank.

Claims (11)

  1.  蓄熱媒体が貯留される蓄熱槽と、
     圧縮機、熱源側熱交換器、前記蓄熱媒体と冷媒との熱交換を行う蓄熱熱交換器、絞り装置、利用側熱交換器が配管で接続され、前記冷媒が循環する冷媒回路と、
     前記熱源側熱交換器が収納され、前記熱源側熱交換器から落ちる水を受ける底板を有する熱源機筐体と、
     を備え、
     前記底板は、前記熱源側熱交換器から落ちた水を排出する排水口が形成され、
     少なくとも前記排水口に、前記蓄熱媒体の温熱が供給される
    蓄熱式冷凍サイクル装置。
    A heat storage tank in which the heat storage medium is stored;
    A compressor, a heat source side heat exchanger, a heat storage heat exchanger that performs heat exchange between the heat storage medium and the refrigerant, a throttling device, a use side heat exchanger connected by piping, and a refrigerant circuit in which the refrigerant circulates;
    A heat source housing having a bottom plate in which the heat source side heat exchanger is housed and receiving water falling from the heat source side heat exchanger;
    With
    The bottom plate is formed with a drain outlet for discharging water dropped from the heat source side heat exchanger,
    A regenerative refrigeration cycle apparatus in which the heat of the heat storage medium is supplied to at least the drain outlet.
  2.  前記蓄熱槽は、前記熱源機筐体の下方に配置された
    請求項1に記載の蓄熱式冷凍サイクル装置。
    The heat storage refrigeration cycle apparatus according to claim 1, wherein the heat storage tank is disposed below the heat source unit housing.
  3.  前記底板に配置され、前記蓄熱媒体が流通する蓄熱媒体配管を、さらに備えた
    請求項1または2に記載の蓄熱式冷凍サイクル装置。
    The heat storage type refrigeration cycle apparatus according to claim 1, further comprising a heat storage medium pipe disposed on the bottom plate and through which the heat storage medium flows.
  4.  前記蓄熱槽の天井パネルと、前記熱源機筐体の前記底板とが近接して配置された
    請求項1~3の何れか一項に記載の蓄熱式冷凍サイクル装置。
    The heat storage refrigeration cycle apparatus according to any one of claims 1 to 3, wherein a ceiling panel of the heat storage tank and the bottom plate of the heat source unit housing are disposed close to each other.
  5.  前記蓄熱槽の天井パネルと、前記熱源機筐体の前記底板とが一体形成された
    請求項1~3の何れか一項に記載の蓄熱式冷凍サイクル装置。
    The heat storage refrigeration cycle apparatus according to any one of claims 1 to 3, wherein a ceiling panel of the heat storage tank and the bottom plate of the heat source unit housing are integrally formed.
  6.  前記蓄熱槽の天井パネル、および前記熱源機筐体の前記底板は、蒸発した前記蓄熱媒体が通過する穴が形成された
    請求項1~5の何れか一項に記載の蓄熱式冷凍サイクル装置。
    The heat storage refrigeration cycle apparatus according to any one of claims 1 to 5, wherein a hole through which the evaporated heat storage medium passes is formed in the ceiling panel of the heat storage tank and the bottom plate of the heat source unit housing.
  7.  前記排水口から排水された前記水を流通される排水配管を、さらに備え、
     前記排水配管は、前記蓄熱槽の内部を通過するように配置された
    請求項1~6の何れか一項に記載の蓄熱式冷凍サイクル装置。
    A drainage pipe through which the water drained from the drainage port is circulated,
    The heat storage refrigeration cycle apparatus according to any one of claims 1 to 6, wherein the drain pipe is disposed so as to pass through the inside of the heat storage tank.
  8.  前記圧縮機、および前記熱源側熱交換器へ送風する送風機の少なくとも一方を駆動する、駆動装置のパワーデバイスが、ワイドバンドギャップ半導体によって形成され、
     前記ワイドバンドギャップ半導体は、
     前記蓄熱槽の天井パネル、前記熱源機筐体の前記底板、または、前記蓄熱熱交換器へガス状態の前記冷媒を流入させる前記配管に配置された
    請求項1~5の何れか一項に記載の蓄熱式冷凍サイクル装置。
    A power device of a driving device that drives at least one of the compressor and a blower that blows air to the heat source side heat exchanger is formed of a wide band gap semiconductor,
    The wide band gap semiconductor is
    6. The ceiling panel of the heat storage tank, the bottom plate of the heat source unit housing, or the pipe through which the refrigerant in a gas state flows into the heat storage heat exchanger. Thermal storage refrigeration cycle equipment.
  9.  前記蓄熱媒体の温度を検知する第1温度検知手段と、
     前記蓄熱熱交換器へ流れる前記冷媒の流路を切り換える流路切換手段と、
     前記蓄熱媒体の温度に基づき、前記流路切換手段を制御する制御手段と、
     をさらに備え、
     前記制御手段は、
     前記蓄熱熱交換器を凝縮器として機能させ、前記蓄熱媒体の温度を第1閾値以上に加熱する蓄熱運転と、
     前記蓄熱媒体の温度が前記第1閾値よりも低い第2閾値となるまで、前記蓄熱熱交換器を蒸発器として機能させる蓄熱利用運転と、を実行する
    請求項1~8の何れか一項に記載の蓄熱式冷凍サイクル装置。
    First temperature detecting means for detecting the temperature of the heat storage medium;
    Flow path switching means for switching the flow path of the refrigerant flowing to the heat storage heat exchanger;
    Control means for controlling the flow path switching means based on the temperature of the heat storage medium;
    Further comprising
    The control means includes
    A heat storage operation in which the heat storage heat exchanger functions as a condenser, and the temperature of the heat storage medium is heated to a first threshold value or more;
    The heat storage use operation for causing the heat storage heat exchanger to function as an evaporator is performed until the temperature of the heat storage medium becomes a second threshold value lower than the first threshold value. The regenerative refrigerating cycle apparatus described.
  10.  前記熱源機筐体の周囲の外気温度を検知する第2温度検知手段を、さらに備え、
     前記制御手段は、
     前記第2温度検知手段で検知した温度に応じて、前記第1閾値および前記第2閾値の少なくとも一方を変更する
    請求項9に記載の蓄熱式冷凍サイクル装置。
    A second temperature detecting means for detecting an outside air temperature around the heat source machine housing;
    The control means includes
    The regenerative refrigeration cycle apparatus according to claim 9, wherein at least one of the first threshold value and the second threshold value is changed according to the temperature detected by the second temperature detection means.
  11.  前記熱源機筐体の前記底板の温度を検知する第3温度検知手段を、さらに備え、
     前記制御手段は、
     前記第3温度検知手段で検知した温度に応じて、前記第1閾値および前記第2閾値の少なくとも一方を変更する
    請求項9に記載の蓄熱式冷凍サイクル装置。
    A third temperature detecting means for detecting the temperature of the bottom plate of the heat source unit housing;
    The control means includes
    The heat storage type refrigeration cycle apparatus according to claim 9, wherein at least one of the first threshold value and the second threshold value is changed according to the temperature detected by the third temperature detection means.
PCT/JP2014/062167 2014-05-02 2014-05-02 Regenerative refrigeration cycle apparatus WO2015166582A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/062167 WO2015166582A1 (en) 2014-05-02 2014-05-02 Regenerative refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/062167 WO2015166582A1 (en) 2014-05-02 2014-05-02 Regenerative refrigeration cycle apparatus

Publications (1)

Publication Number Publication Date
WO2015166582A1 true WO2015166582A1 (en) 2015-11-05

Family

ID=54358333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062167 WO2015166582A1 (en) 2014-05-02 2014-05-02 Regenerative refrigeration cycle apparatus

Country Status (1)

Country Link
WO (1) WO2015166582A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020056514A (en) * 2018-09-28 2020-04-09 株式会社コロナ Storage type water heater with cooling/heating function

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0163938U (en) * 1987-10-15 1989-04-25
JPH0445335A (en) * 1990-06-11 1992-02-14 Mitsubishi Electric Corp Outdoor unit of air conditioner
JP2003202134A (en) * 2002-01-10 2003-07-18 Sanyo Electric Co Ltd Regenerative air-conditioning device
JP2004218861A (en) * 2003-01-09 2004-08-05 Denso Corp Drain pan anti-freezing structure in heat pump-type hot water supply unit
JP2004347280A (en) * 2003-05-26 2004-12-09 Hitachi Ltd Heat accumulation type refrigerating device, and heat accumulation quantity control method of heat accumulation type refrigerating device
JP2011185469A (en) * 2010-03-05 2011-09-22 Panasonic Corp Heat pump device
JP2013155889A (en) * 2012-01-27 2013-08-15 Mitsubishi Electric Corp Device, refrigerator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0163938U (en) * 1987-10-15 1989-04-25
JPH0445335A (en) * 1990-06-11 1992-02-14 Mitsubishi Electric Corp Outdoor unit of air conditioner
JP2003202134A (en) * 2002-01-10 2003-07-18 Sanyo Electric Co Ltd Regenerative air-conditioning device
JP2004218861A (en) * 2003-01-09 2004-08-05 Denso Corp Drain pan anti-freezing structure in heat pump-type hot water supply unit
JP2004347280A (en) * 2003-05-26 2004-12-09 Hitachi Ltd Heat accumulation type refrigerating device, and heat accumulation quantity control method of heat accumulation type refrigerating device
JP2011185469A (en) * 2010-03-05 2011-09-22 Panasonic Corp Heat pump device
JP2013155889A (en) * 2012-01-27 2013-08-15 Mitsubishi Electric Corp Device, refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020056514A (en) * 2018-09-28 2020-04-09 株式会社コロナ Storage type water heater with cooling/heating function
JP7041037B2 (en) 2018-09-28 2022-03-23 株式会社コロナ Hot water storage type water heater with air conditioning function

Similar Documents

Publication Publication Date Title
JP6125000B2 (en) Dual refrigeration equipment
JP5357418B2 (en) Heat pump air conditioner
KR101387541B1 (en) Air conditioner and Defrosting driving method of the same
BR112015017789B1 (en) Defrosting system for refrigeration appliance and cooling unit
JP2004190917A (en) Refrigeration device
JP2007248005A (en) Refrigerator
WO2007000931A1 (en) Hotwater supply device
JP2010181104A (en) Heat pump type hot water-supply/air-conditioning device
KR20140058416A (en) Thermal energy system and method of operation
JP2005274134A (en) Heat pump type floor heating air conditioner
JP6038382B2 (en) Air conditioner
JP2011179697A (en) Refrigerating cycle device and water heating/cooling device
JP5404471B2 (en) HEAT PUMP DEVICE AND HEAT PUMP DEVICE OPERATION CONTROL METHOD
WO2015166582A1 (en) Regenerative refrigeration cycle apparatus
KR101060511B1 (en) Heat pump system
JP2008025885A (en) Heat pump device
JP2006220332A (en) Composite type air conditioner
JP2017161159A (en) Outdoor uni of air conditioner
KR101060512B1 (en) Cold and hot water generator
JP2008249268A (en) Air conditioner
JP2004190916A (en) Refrigeration device
JP2006220335A (en) Composite type air conditioner
JP2008002695A (en) Heat pump device
KR102113033B1 (en) An air conditioner
KR100389269B1 (en) Heat pump system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14890804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP