WO2015163933A1 - Toy vehicle with a tactile response - Google Patents

Toy vehicle with a tactile response Download PDF

Info

Publication number
WO2015163933A1
WO2015163933A1 PCT/US2014/051577 US2014051577W WO2015163933A1 WO 2015163933 A1 WO2015163933 A1 WO 2015163933A1 US 2014051577 W US2014051577 W US 2014051577W WO 2015163933 A1 WO2015163933 A1 WO 2015163933A1
Authority
WO
WIPO (PCT)
Prior art keywords
processor
motor
toy
further configured
back emf
Prior art date
Application number
PCT/US2014/051577
Other languages
French (fr)
Inventor
David Anthony Norman
Iii Robert H. Mimlitch
Mitch Randall
Original Assignee
Innovation First, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/332,599 external-priority patent/US20150306514A1/en
Application filed by Innovation First, Inc. filed Critical Innovation First, Inc.
Priority to US15/111,516 priority Critical patent/US10118105B2/en
Priority to MX2016009680A priority patent/MX2016009680A/en
Priority to CN201480001133.9A priority patent/CN105283234B/en
Publication of WO2015163933A1 publication Critical patent/WO2015163933A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H17/00Toy vehicles, e.g. with self-drive; ; Cranes, winches or the like; Accessories therefor
    • A63H17/26Details; Accessories
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H29/00Drive mechanisms for toys in general
    • A63H29/22Electric drives

Definitions

  • the present invention relates to US Application 14/451,685 filed August 5, 2014, which is a continuation of US Application 14/332,599 filed July 16, 2014, and which is a US Nonprovisional Application claiming the benefit of US Application 61/983,189 filed April 23, 2014. a toy skateboard and more particularly to a toy skateboard that includes a removable motorized assembly housing.
  • the present invention relates to a toy skateboard and more particularly to a toy skateboard that includes a removable motorized assembly housing.
  • Toy skateboards have been a mainstay in kids toys for a number of years. Toy skateboards are often referred to as finger boards because the user of the toy skateboards uses two of their fingers in operating the toy. A skilled operator of the toy skateboard is capable of replicating skateboarding maneuvers with their hand. These skateboards are extremely popular but have become stagnated in their ability to reach a wider audience since their introduction in the 1990s.
  • toy skateboards range from simple wind-up toy skateboards with mounted figurines, to more advanced radio-controlled toy skateboards with figurines that can be controlled in some degree to portray body movement during skateboarding maneuvers and stunts.
  • These motorized skateboards typically include movable battery packs, changeable motor positions, and interchangeable wheel weights to provide different centers of balance for adjusting the performance of various maneuvers.
  • some motorized skateboards include a drive mechanism but no steering mechanism.
  • the skateboard is only maneuverable through body movement of the figurine, as in an actual skateboard, and therefore control of the skateboard may be less than desirable, especially for those of less advanced skill levels.
  • a toy skateboard should be provided that offers the enjoyment of both a motorized toy skateboard and a non-motorized toy skateboard with an easy control system that allows for the performance of various maneuvers without having to employ a toy figurine.
  • a convertible toy skateboard assembly includes a deck, a pair of non-motorized truck assemblies and a rear motorized truck assembly.
  • the toy skateboard is also convertible; as one of the non-motorized truck assemblies may be easily swapped with a rear motorized truck assembly. This allows for the toy skateboard to either have a pair of non- motorized truck assemblies, which allows the operator to use their fingers to manipulate and move the toy skateboard; or have one non-motorized truck assembly and one motorized truck assembly, which allows the operator to use a remote control unit to control and move the toy skateboard.
  • the non-motorized truck assembly as used throughout the various embodiments is typically secured to the lower surface of the deck.
  • the non-motorized truck assembly includes a pair of freely rotatable wheels that are positioned transversely to a longitudinal axis of the deck when attached.
  • the motorized rear truck assembly includes a housing, which is configured to removably attach to the deck. This may include clips, fasteners, or other attachment means well known in the art.
  • the motorized truck assembly is configured to house at least (i) a battery, (ii) a processor, (iii) a receiver in communication with the processor, and (iv) a pair of motors, each motor separately controlling a rear wheel, of a pair of rear wheels, and wherein the pair of rear wheels are positioned transversely to the longitudinal axis of the deck and behind the pair of front wheels.
  • the receiver is configured to receive signals to control the movement of the pair of rear wheels.
  • the toy skateboard would therefore include two configurations: a first configuration is defined by having the front non-motorized truck assembly attached to the lower surface towards the front region of the deck and having the rear non-motorized truck assembly removably attached to the lower surface towards the rear region of the deck.
  • the upper surface of the deck defines a finger engaging region for a user's fingers to engage and move the toy skateboard.
  • a second configuration is defined by removing the rear non-motorized truck assembly and attaching the motorized rear truck assembly to the lower surface towards the rear region of the deck, wherein the movement of the toy skateboard is controllable by the processor in response to signals received by the receiver.
  • the toy skateboard may include a circuit in communication with the processor and battery.
  • the circuit is configured to change the battery voltage to a fixed voltage to create a more consistent performance from the battery - this may include lowering or boosting the voltage. The change helps increase the enjoyment from the toy skateboard as it no longer seems sluggish as the batteries wear down.
  • the remote control unit may include one or more signals to initiate a set of preprogram instructions on the processor to control the pair of rear wheels to perform one or more skateboard maneuvers. These skateboard maneuvers may include, but is not limited to, a skateboard trick, a hill climb, variable speed control, and playback of user recorded input.
  • the skateboard in any one of the embodiments may further be defined to have a first motor (from the pair of motors) coupled to a first rear wheel (from the pair of rear wheels) and the processor configured to detect a back electromotive force (“EMF") voltage generated by the rotation of the first motor caused by a manual manipulation of the first rear wheel.
  • the processor is further configured to include at least a sleep state and a wake state and is configured to transition between the sleep state and the wake state when the detected back EMF voltage reaches a pre-determined value.
  • the processor may further control the pair of motors in accordance with one or more pre-programmed motions resulting in a tactile response when the detected back EMF voltage reaches a pre-determined value.
  • the processor may further be configured to detect a second back EMF voltage generated by the rotation of the first motor in an opposite direction due to a manual manipulation of the first rear wheel in an opposite direction.
  • the processor is further configured to control the first motor in accordance with one or more of the following pre-programmed motions resulting in a tactile response: (a) move the first rear wheel momentarily, (b) move the first rear wheel continuously, (c) resist motion of the first rear wheel momentarily, (d) resist motion of the first rear wheel continuously, (e) oscillate the first rear wheel momentarily, and (f) oscillate the first rear wheel continuously.
  • the motorized rear truck assembly includes a housing defined to include a top profile substantially conforming to a portion of the lower surface of the deck towards the rear region.
  • the battery, processor, receiver, and pair of motors are completely positioned within the housing below the top profile of the housing and thus below the lower surface of the deck.
  • the housing may also include a front end and a rear end with an intermediate region there-between. This provides space for a battery, defined two have two battery compartments separately positioned in the front end and rear end of the housing, and space for the pair of motors.
  • the pair of rear wheels are positioned between the two battery compartments.
  • the rear end of the housing containing one of the battery compartments may be angled upwardly to match an angle of the rear end of the deck such that the at least one battery contained in the battery compartment is angled.
  • the receiver may be defined as an IR sensor for receiving signals from the remote control unit.
  • the IR sensor can be positioned in a window defined in the motorized rear truck assembly towards a front portion thereof and under the lower surface of the deck such that the IR sensor is positioned to receive signals reflected from a surface under the deck of the skateboard.
  • the toy skateboard may include a weight removably secured to a portion of the deck to adjust a center of gravity and configured to adjust a center of spin.
  • the toy skateboard may be poised to define a motorized toy skateboard that can be controlled without needing an object on the upper surface of the deck.
  • the toy skateboard does not need a figurine, with linkages, and control mechanics in the deck to maneuver properly.
  • the toy skateboard may include a truck assembly housing that encloses both a front truck and a motorized rear truck. The truck assembly may be removed and replaced with a pair of non-motorized truck assemblies so the user is able to manually maneuver the skateboard.
  • the present invention may provide for a toy that may include one or more elements, such as the wheels on a skateboard, an appendage on a toy robot or figure, or a propeller on a toy vehicle. These elements are external to the toy and are moved/controlled separately by a motor.
  • the processor is configured to include at least a sleep state and a wake state and is further configured to transition between the two states.
  • the element is accessible for manipulation by the user, operator, or human which when moved will in turn rotate the motor. When the user manipulates the element, rotating the motor, the rotation of the motor generates a back electromotive force (herein after "EMF") voltage.
  • EMF back electromotive force
  • the processor is configured to detect the back EMF voltage and is further configured to transition between the two states when the detected back EMF voltage reaches a pre-determined value.
  • the processor when the detected back EMF voltage reaches the pre-determined value, the processor is further configured to control the motor in accordance with one or more pre-programmed motions, which when executed result in a tactile response.
  • a toy vehicle having a low inductance motor powered by a high frequency switched voltage at a frequency high enough to create continuous conduction.
  • the vehicle includes an H-bridge circuit configured to control a direction of the motor and an adjustable high frequency DC-DC switch configured to convert a supply voltage to an output voltage, that is lower than the supply voltage, for use by the H-bridge circuit to power the low inductance motor in a forward or reverse direction.
  • a processor is provided with instructions configured to change the output voltage from the DC-DC switch from a first voltage to a second voltage.
  • the motor may have an inductance of approximately less than 500 uH and more preferably of about 140uH.
  • the DC-DC switch may be operating at a frequency greater than 250kHz and more preferably at about 1000kHz or higher.
  • the DC-DC switch may be changed digitally.
  • the output voltage from the DC-DC switch may be selected by a voltage divider, having a first resistor value and a second resistor value selected by the instructions from the processor such that the output voltage from the DC-DC switch can define a first output voltage and a second output voltage.
  • the DC-DC switch can be further configured to define a third output voltage.
  • the second resistor value may be selected from a pair of resistors, defined separately to create the first output voltage and the second output voltage respectively and defined in series to create the third output voltage.
  • the processor further includes instructions to the H-bridge circuit to only control the direction of the motor.
  • Figure 1 is a perspective view of a toy skateboard illustrating a pair of front and rear trucks in accordance with one embodiment of the present invention
  • Figure 2 is an exploded view of the toy skateboard from Figure 1 in accordance with one embodiment of the present invention
  • Figure 3A is a partial exploded view of the toy skateboard deck from Figure 1 illustrating a front truck assembly and a motorized rear truck assembly in accordance with one embodiment of the present invention
  • Figure 3B is a lower view of the toy skateboard from Figure 3A;
  • Figure 4A is a perspective view of one of the non-motorized truck assemblies in accordance with one embodiment of the present invention.
  • Figure 4B is an exploded view of Figure 4A in accordance with one embodiment of the present invention.
  • Figure 4C is view from beneath the assembly of Figure 4B in accordance with one embodiment of the present invention.
  • Figure 5A is a perspective view of a motorized toy skateboard in accordance with one embodiment of the present invention.
  • Figure 5B is a lower view of the motorized toy skateboard from Figure 5A in accordance with one embodiment of the present invention.
  • Figure 5C is a lower view of the motorized toy skateboard from Figure 5A in accordance with one embodiment of the present invention.
  • Figure 6 is a side view of the toy skateboard deck from Figure 1 being further illustrated with non- motorized truck assemblies in comparison to a non-motorized front truck and assembly and motorized rear truck assembly to further illustrate the two configurations in accordance with one embodiment of the present invention
  • Figure 7A is a perspective view of the assembled motorized rear truck assembly in accordance with one embodiment of the present invention.
  • Figure 7B is a lower view of the assembled motorized rear truck assembly from Figure 7A in accordance with one embodiment of the present invention.
  • Figure 8 is an exploded view of the motorized rear truck assembly from Figure 7A in accordance with one embodiment of the present invention.
  • Figure 9 is a partial exploded view of the motorized rear truck assembly from Figure 7A in accordance with one embodiment of the present invention.
  • Figure 10 is a perspective view of the housing from the motorized rear truck assembly from Figure 7A in accordance with one embodiment of the present invention.
  • Figure 11 is a partial perspective view of the gear housing compartment from the motorized rear truck assembly from Figure 7A in accordance with one embodiment of the present invention
  • Figure 12 is an exploded view of the gear housing compartment from Figure 11 in accordance with one embodiment of the present invention
  • Figure 13 is a side view perspective view of the assembled motorized rear truck assembly from Figure 7A in accordance with one embodiment of the present invention.
  • Figure 14A is an electrical schematic drawing of a motorized toy skateboard in accordance with one embodiment of the present invention illustrating the use of a direct wire to trigger different functionality states in the vehicle;
  • Figure 14B an electrical schematic drawing of a motorized toy skateboard in accordance with one embodiment of the present invention.
  • Figure 15 is an electrical schematic drawing of a motorized toy skateboard in accordance with one embodiment of the present invention illustrating the use of a booster component to trigger different functionality states in the vehicle;
  • Figure 16 is an electrical schematic drawing of a motorized toy skateboard in accordance with one embodiment of the present invention illustrating the use of an FET component to trigger different functionality states in the vehicle;
  • Figure 17 is an electrical schematic drawing of a motorized toy skateboard in accordance with one embodiment of the present invention illustrating the use of an a pull-down resistor component to trigger different functionality states in the vehicle;
  • Figure 18 is an electrical schematic drawing of a motorized toy skateboard in accordance with one embodiment of the present invention illustrating the use of an a series resistor component to trigger different functionality states in the vehicle;
  • Figure 19 is a perspective view of a skateboard having clips to secure the motorized truck assembly to the deck;
  • Figure 20A is a perspective view of a skateboard having a trick weight attached
  • Figure 20B is a perspective view of the skateboard of Figure 20A with the trick weight removed from the skateboard deck;
  • Figure 21A is a box diagram of an embodiment of a toy showing a processor monitoring one or more motors for a manual generated back EMF voltage;
  • Figure 21B is a box diagram of an embodiment of another toy showing a processor monitoring one or more motors for a manual generated back EMF voltage;
  • Figures 22A - 22E illustrate various embodiments of toy skateboards having vafianj-various housing configurations for different battery compartments
  • Figure 23 is a diagram representing a transmitter in accordance with one embodiment of the present invention for use with a motorized toy skateboard;
  • Figure 24 is an electrical schematic drawing of a remote control unit in accordance with one embodiment of the present invention for use with a motorized toy skateboard;
  • FIG. 25 is a block diagram for a transmitter in accordance with one embodiment of the present invention for use with a motorized toy skateboard;
  • Figure 26A is an electrical schematic drawing of a motorized toy skateboard in accordance with one embodiment of the present invention illustrating the use of a DC to DC switch to vary the voltage power supplied to the motors;
  • Figure 26B is an electrical schematic drawing of a motorized toy skateboard in accordance with one embodiment of the present invention illustrating the use of a DC to DC switch to vary the voltage power supplied to the motors;
  • Figure 27 is a flow chart diagram for a skateboard in accordance with one embodiment of the present invention.
  • Figure 28 is a flow chart diagram for a system in a skateboard in accordance with one embodiment of the present invention to set voltage and H-bridge circuits;
  • Figure 29A - 29C illustrates a current waveform in the motor at three different PWM frequencies, 10 kHz, 100 kHz, and 1000 kHz;
  • Figure 30 is an electrical schematic drawing of a simplified H-bridge motor driver with four drive transistors and four flyback diodes connected to a motor;
  • Figure 31 is an electrical schematic drawing of a pair of simplified H-bridge motor drivers each connected to a pair of motors which are further resistively connected to provide additive EMF detection as per a feature of the present invention.
  • Figure 32 is an electrical schematic drawing of the equivalent circuit of a pair of simplified H-bridge motor drives each connected to a pair of motors which are further resistively connected to provide additive EMF detection as per a feature of the present invention when none of the drive MOSFET transistors are energized.
  • the toy skateboard 100 includes a deck 102 with an upper surface 103 and a lower surface 104. As illustrated in Figures 1 and 3A, the skateboard 100 includes a front truck assembly 110 secured towards the front end 106 of the deck 102 and either a rear truck assembly 120 or a motorized rear truck assembly 200 secured towards the rear end 108 of the deck 102. The trucks are secured to the deck 102 with fasteners 109 that the operator can easily remove.
  • the front and rear non-motorized truck assemblies 110 and 120 may be configured the same as each other, however, the truck assemblies orientation may be reversed.
  • FIG. 4A through 4C there is illustrated one of the non-motorized truck assemblies (110/120) which includes an axle housing hanger 122 with a pair of axles 124 that extends transversely to the deck 102 and through the hanger 122.
  • Wheels 126 are separately mounted at opposing ends of the pair of axles 124 and a secured onto the axles by a nut 128.
  • the wheels 126 rotate independently of each other so that the skateboard can negotiate turns without binding.
  • the nut 128 may be replaced with a more general retainer that allows the user to replace or swap wheels to customize the skateboard.
  • the hanger 122 is attached to a base plate 130, which is secured to the lower surface 104 of the deck 102.
  • the base plate 130 includes a pivot cup 132 ( Figure 4C) which receives a pivot member 134 extending from the hanger 122.
  • a king pin 136 is placed in a bore 140 on the base plate and aligned through an opening 142 in the hanger 122 with a king pin nut 138 being secured on the end; and a pair of bushings 144 are positioned on either side of the opening 142 in the hanger 122.
  • the deck 102 is relatively small in thickness throughout the length of the board. This permits the deck 102 to be used by an operator as illustrated in Figure 1 without a motor assembly or controlled with a remote control unit when the rear truck assembly 120 is removed and replaced with a motorized rear truck assembly 200. As such, the motorized rear truck assembly 200 is completely self-contained. As found in the prior art, motorized toy skateboards include one or more components in a large constructed deck. These components may be batteries, circuit boards, mechanical links, motors, and/or gears. As illustrated herein, the motorized rear truck assembly 200 is completely self-contained and therefore may be easily removed and exchanged with a non-motorized rear truck assembly 120.
  • the skateboard 100 is illustrated with a front truck assembly 110 and a motorized rear truck assembly 200 in accordance with an embodiment of the present invention.
  • the skateboard 100 when employed with the motorized rear truck assembly 200 still rests on the surface in a similar configuration as if the skateboard 100 included a non-motorized rear truck assembly 120 (see Figure 6) and does so without having to place any components into an oversized deck assembly.
  • the skateboard 100 when motorized, maneuverability of the skateboard 100 can be controlled by an operator through a remote control unit 300. Therefore, two complete play patterns are developed. First, using a non-motorized truck assembly 120, the skateboard 100 can be used as a typical fingerboard. Second, by removing the fasteners 109, the non-motorized truck assembly 120 can be removed and replaced with the self-contained motorized truck assembly 200, and then secured to the deck with the same fasteners 109.
  • the motorized rear truck assembly 200 includes a housing 202 that is elongated with an upper surface 204 or upper profile 203 that substantially matches the lower surface 104 of the deck 102 which aids in keeping all of the components substantially below the lower surface of the deck and allows the pair of rear wheels 206 to substantially align along a similar plane as the front wheels 126 when the wheels are resting on a surface.
  • a fastening plate 210 is positioned under a portion 205 of the upper surface 204 of the housing 202.
  • the portion 205 of the upper surface 204 includes openings 207 that are aligned with threaded openings 209 in the fastening plate 210 and which align with the rearward openings through the deck 102 such that the fasteners 109 can easily secure and release the entire housing 202 by the fastening plate 210, and thus configured to release or secure the rear motor truck assembly 200.
  • the housing 202 includes a gear housing compartment 220, a first battery compartment 222 forward of the gear housing compartment 220, and includes a second battery compartment 224 rearward of the gear housing compartment 220.
  • the first battery compartment 222 accommodates a first battery 214 in front of the gear housing compartment 220
  • the second battery compartment 224 accommodates a pair of batteries 214 rearward of the gear housing compartment 220.
  • the first and second battery compartments are accessible from under the housing 202 and secured with battery doors 226.
  • the batteries are connected to a circuit board 230 through various wires 228.
  • the second battery compartment 224 may include a battery bracket 225 secured over the compartment 224.
  • the housing 202 further includes a forward window 232 for the placement of an IR sensor 234 which is in communication with the circuit board 230; its control may be shown and illustrated in the electrical schematic of Figure 14.
  • the IR sensor 234 is positioned to receive signals from the remote control unit 300. From a top view, the circuit board 230 is positioned over the forward window 232 with a PCB cover 240 secured over the circuit board 230 and secured to a forward section of the housing 202. Since all of the components are positioned within the housing and below the lower surface of the deck, the IR sensor 234 is positioned to receive signals from the remote control unit 205 that are bounced from a surface S. In addition, the IR transmitter 305 from the remote control unit 300 is angled downwardly to help in ensuring the signal is sent downwardly towards the surface.
  • the gear housing compartment 220 holds a pair of rotary motors 240 separately driving each of the rear wheels 206.
  • Each motor 240 includes a drive gear 242 which is meshed to a gear reducer 244 and which is further meshed to a wheel axle gear 246 that is capable of freely spinning on a rear axle 248.
  • the rear axle 248 extends through the housing 202 transversely to the deck 102.
  • a pin 250 is employed to rotatably secure the gear reducer 244 to the gear hosing compartment 220.
  • the wheel axle gear 246 further includes an end key 252 with an external profile 254 that matches an internal profile 256 positioned on a wheel hub 258.
  • a tire 260 is positioned over the wheel hub 258 to create the rear wheel 206.
  • the gear housing compartment 220 includes a lower gear housing cover 262 that secures the components in place.
  • the housing 202 defined for the motorized rear truck assembly 200 includes an upper surface profile 203 to match the lower surface 104 of the deck 102, as such the housing includes a rearward portion of the second battery compartment 224 that is angled from a horizontal at an angle between 10 and 45 degrees and more particularly at about 22 degrees to match the upturn angle in the rear end 108 of the deck.
  • the remote controlled battery powered skateboard is defined as a fingerboard toy skateboard approximately 4 inches long. Completely positioned underneath the deck lower surface are the batteries, motors, gears, and circuit board.
  • the motors may be small 6mm diameter by 11mm long cylinder motors. Each motor independently controls one rear wheel. A high efficiency gear reduction provides a drive speed near 1 meter per second.
  • the circuit board receives power from the battery, receives infrared signals from the remote control device, and commands the motors using a processor, DC-DC switch, H-Bridges and software.
  • toy skateboard that is both fast and able to climb steep ramps.
  • Various play patterns and accessories in the field demand various attributes in order for the toy motorized skateboard to operate properly.
  • Various maneuvering capabilities would include the ability to drive straight forward or reverse, turn wide in any four directions, spin left or right, and climb hills starting from a stop position at the base of the hill and from a moving position.
  • Buck circuits may also be employed to provide a consistent and repeatable motor voltage.
  • the choice of buck versus boost circuit depends on whether the motor supply voltage is required to be higher or lower than the battery voltage, which depends on the specific requirements of the embodiment. Either choice of converter type falls within the scope and spirit of the present invention.
  • the remote for the toy skateboard will have the usual forward/reverse and right/left controls.
  • the remote employs "tank” control, with left controls to control the left propulsion and right controls to control the right propulsion.
  • additional "Trick” buttons are added.
  • a Trick button sends a single trick command to the toy skateboard. In one embodiment this trick is a simple 180 degree wide turn. In another embodiment the trick is something more complex. Once the trick command is received user controls are disabled. In another embodiment, user controls are allowedto let the user perform a half of a trick followed by their own move if their timing is good. Embodiments disallowing trick termination may be better for younger users. In another embodiment, holding the trick Play button causes the trick to be repeated.
  • the remote has a record button.
  • every button pressed by the user is simultaneously transmitted and recorded until the record button is pressed again.
  • the recorded moves are transmitted to the toy skateboard, performing a custom user generated trick maneuver.
  • Driving forward can be modified by the addition of a weight 350 at the rear tip of the toy skateboard as shown in Figure 20B. This weight shifts the center of gravity aft, allowing the skateboard 100 to lift the front wheels 126 off the ground when accelerating. Depending on the amount of weight, location of weight 350, and the toy skateboard 100 configuration, the front wheels 126 may stay off the ground as long as the skateboard 100 continues forward.
  • Driving in a spin involves turning the rear wheels 206 in opposite directions. This causes the toy skateboard to spin about a center of spin.
  • the center of spin is a function of the center of the power wheels 206, the center of gravity, and the drag created by friction and load on the wheels 206, 126.
  • the addition of weight 350 at the rear tip of the toy skateboard modifies the spin. When weight 350 is present, the center of gravity is moved aft and the load is transferred off the front wheels. This causes the toy skateboard to spin about a point very near the rear wheels 206, significantly increasing the spin speed.
  • trick weight 350 The two features of adding a rear weight can be accomplished by the same weight 350, hereafter referred to as a trick weight 350.
  • the toy skateboard 100 is not employed with an on/off switch.
  • the operator can push or roll the toy skateboard 100 forward while on a supporting surface.
  • This "Turn ON" feature simplifies use, feels more realistic for kids, and reduces cost.
  • the toy skateboard 100 immediately performs an easily recognizable pre-programmed movement pattern to indicate that it is ON.
  • the pattern is to drive forward for a predetermined amount of time.
  • the skateboard 100 turns right, then left several times.
  • the ON Pattern can be initiated immediately upon detection.
  • the ON Pattern is delayed until the user stops rolling the toy.
  • the delay improves the recognition of a successful ON, and is more visually appealing.
  • the motors can are pulsed in a pattern to create a haptic response that the user can feel.
  • detection of a forward roll is achieved by connecting one of the two motor 240 leads to a processor 406 input.
  • the wheels turn, causing motor 240 to generate a back EMF voltage.
  • the back EMF voltage generated is a function of the speed the motor 240 is turned and the specific design of the motor 240. As an example, voltages of up to 1.5v are easily generated, and voltages up to 3v are generated with higher roll speeds.
  • the processor 406 is configured to wake up from a sleep state.
  • a pre- determined value such as 0.7v, or the threshold voltage of an input pin of a processor 406 or transistor, or a specific voltage read by an analog to digital input
  • the processor 406 is configured to wake up from a sleep state.
  • the skateboard circuit must is carefully designed to minimize current draw during the sleep state. This Turn ON method eliminates the typical ON button or switch, reducing cost.
  • the circuit connects both leads of the motor 240 to two separate processor 406 input pins. In this way, both roll forward and roll reverse are detected by the processor 406. These roll commands are recognized in a sleep state, and at any time.
  • the processor 406 monitors the input pins to both leads of the motor 240, when the motors 240 are not commanded to move, thereby, processor 406 detects user roll commands.
  • this method is expanded to detect both motors 240 and both motor 240 directions. In this embodiment turning the skateboard is also be detected, and provides additional user input to enhance skateboard control.
  • the processor 406 detects roll forward to wake to the ON state, and roll backwards to turn OFF into a sleep state.
  • the use of a plurality of controllers 300 to individually operate a plurality of skateboards 100 is incorporated. This is done by the use of channel address bits in the command signal emitted from the controller 300 and received by the skateboard 100.
  • transmitters 300 are factory preset with specific channel designators. The channel designators are transmitted with each command by controllers 300 comprising the channel address.
  • a skateboard 100 When a skateboard 100 is turned ON, it initially does not know which channel it is intended to respond to. However, it sets its channel address based on the first command it receives. In this way, a user can cause a particular skateboard 100 to respond to a particular controller 300 by ensuring that the first command the skateboard 100 receives after it is turned on comes from the intended controller 300.
  • a skateboard 100 may inadvertently receive a first command from an undesired controller, thereby incorrectly setting its channel address.
  • the user need only turn off skateboard 100, and then turn on skateboard 100, this time ensuring that it receives its first command from the desired controller 300. This may be repeated as necessary until the appropriate pairing has been achieved.
  • the afformentioned technique requires a means of turning off skateboard 100 on demand, and thus, the embodiment provides for a means where the skateboard 100 goes to sleep when it is rolled backwards by the user. Turning OFF additionally increases battery life. Since rolling the skateboard forward is associated with ON, it is intuitive and therefore provided that the opposite would turn the device OFF.
  • the turn ON feature's haptic response of the skateboard 100 moving the desired intuitive feedback corresponding to the act of turning OFF.
  • a haptic response that does match the action is for the skate board to stop, or resist, motion, and thus is implemented in the preferred embodiment.
  • the motors 240 are set into braking mode to accomplish this wherein the motor 240 leads are shorted to one another.
  • as similar sensation is implemented by the application of momentary power to the motor in the opposite direction, creating more resistance than braking alone.
  • additional rolling input from the user changes the skateboards performance.
  • a roll function of the skateboard 100 is recognized by processor 406 when a roll-forward is detected after the skateboard is ON. This causes the skateboard 100 to toggle between modes. In one example, the skateboard 100 alternates between 100% maximum speed and 50% maximum speed. A reduction in overall skateboard speed allows new types of low speed tricks that are more difficult at higher speeds.
  • FIG 19 there is shown a toy skateboard 100 in accordance with one or more of the present embodiments, in which the rear truck assembly 200 includes clips 301 positioned on the upper surface of the rear truck housing 202 and which are used to attach to the deck 102.
  • the rear truck assembly 200 is removable and secured to the deck 102 such that the rear truck housing 202 is below the lower surface of the deck 102.
  • the clips 301 allow the rear truck to either snap or slide onto the deck 102.
  • the skateboard 100 includes a rear weight member 350 removably secured to the rear end 352 of the deck 102.
  • the rear weight member 350 includes a channel 354 that clips into or frictionally engages the rear end of the deck 102.
  • the weight member 350 as noted above allows the user to move the center of spin of the skateboard 100.
  • a processor 406 is used and discussed and may be embodied in a number of different ways.
  • the processor406 may be embodied as one or more of various processing means or devices such as a coprocessor, a microprocessor, a controller, a digital signal processor (DSP), a processing element with or without an accompanying DSP, or various other processing devices including integrated circuits such as, for example, an ASIC (application specific integrated circuit), an FPGA (field programmable gate array), a microcontroller unit (MCU), a hardware accelerator, a special-purpose computer chip, or the like.
  • various processing means or devices such as a coprocessor, a microprocessor, a controller, a digital signal processor (DSP), a processing element with or without an accompanying DSP, or various other processing devices including integrated circuits such as, for example, an ASIC (application specific integrated circuit), an FPGA (field programmable gate array), a microcontroller unit (MCU), a hardware accelerator, a special-purpose computer chip, or the like
  • the processor 406 may be configured to execute instructions stored in a memory device or otherwise accessible to the processor 406.
  • the instructions may be permanent (e.g., firmware) or modifiable (e.g., software) instructions.
  • the instructions can be bundled or otherwise associated with other instructions in functional profiles, which can be saved as, e.g., an electronic file on one or more memory device.
  • the processor 406 may be configured to execute hard coded functionality. As such, whether configured by hardware or software methods, or by a combination thereof, the processor 406 may represent an entity (e.g., physically embodied in circuitry) capable of performing operations according to embodiments of the present invention while configured accordingly.
  • the processor 406 when the processor 406 is embodied as an ASIC, FPGA or the like, the processor 406 may be specifically configured hardware for conducting the operations described herein.
  • the processor 406 when the processor 406 is embodied as an executor of software or firmware instructions, the instructions may specifically configure the processor 406 to perform the algorithms and/or operations described herein when the instructions are executed.
  • the processor 406 may include, among other things, a clock or any other type of timer, an arithmetic logic unit (ALU) and logic gates configured to support operation of the processor 406.
  • ALU arithmetic logic unit
  • haptic technology or haptics may be included in one or more of the discussed embodiments.
  • Haptics involve tactile feedback provided by a device to a user.
  • Low-cost haptic devices tend to provide tactile feedback, in which forces are transmitted to a housing or portion thereof and felt by the user, rather than kinesthetic feedback, in which forces are output directly in the degrees of freedom of motion of the interface device.
  • the tactile feedback is typically provided by applying forces, vibrations and/or motions to one or more portions of a user interface device.
  • Haptics are sometimes used to enhance remote control devices associated with machines and devices. In such systems, sensors in the slave device are sometimes used to detect forces exerted upon such device.
  • the information relating to such forces is communicated to a processor, where the information is used to generate suitable tactile feedback for a user.
  • the present invention does not use haptics to enhance the touch experience or to allow the use to feel a virtual object or to simulate reaction forces.
  • the present invention creates tactile responses to a user interaction with a device that the user can easily correlate or deduce to an unseen setting or mode of the object. Unlike pulsing a pager in different patterns to provide a tactile response, the present invention provides tactile responses so the user can determine which setting or mode the object is now configured. Another important aspect of one or more embodiments, is that the tactile responses are relayed back to the user through the element or mechanism that the user touched to create the input in the first place.
  • the embodiments provided herein use elements, such as wheels and actuated arms that are in communication with a motor.
  • the direct interaction by the user with these elements generates a back electromotive force through the motor, which is monitored or detected by the processor.
  • the processor when triggered by the generated back electromotive force can access and play-back a pre-recorded motion to the element.
  • the user still interacting with the element feels the pre-recorded motion which causes the tactile response.
  • the tactile response felt by the user allows the user to determine or deduce the object or toy's setting or mode, as further detailed and explained herein.
  • a toy 400 may include one or more elements 402, such as the wheels on a skateboard, an appendage on a toy robot or figure, or a propeller on a toy vehicle. These elements are external to the toy 400 and are moved/controlled separately by a motor 404, whether directly or indirectly moved or physically or non-physically coupled is well within the scope of the various embodiments provided for herein.
  • the processor 406 is as described herein, and as such further definition is not warranted.
  • the processor is configured to include at least a sleep state and a wake state and is further configured to transition between the two states 408.
  • the element is accessible for manipulation by the user, operator, or human which when moved will in turn rotate the motor.
  • EMF back electromotive force
  • the processor is configured to detect the back EMF voltage 410 and is further configured to transition between the two states when the detected back EMF voltage reaches a pre-determined value.
  • the processor when the detected back EMF voltage reaches the pre-determined value 412, the processor is further configured to control the motor in accordance with one or more preprogrammed motions 414, which when executed result in a tactile response.
  • the processor when the detected back EMF voltage reaches the pre-determined value, the processor is yet further configured to control the motor in accordance with one or more pre-programmed motions resulting in auditory perception.
  • the toy 400 may include a number of elements connected separately to motors. All or some of the illustrated elements (wheel 420, appendage(s) 422, propeller 424, etc.) can be included.
  • the processor may yet be further configured to detect a second back EMF voltage generated by the rotation of the motor in an opposite direction due to the manipulation of the element by a human in an opposite direction.
  • the processor is configured to control the motor in accordance with one or more of the following pre-programmed motions resulting in a tactile response: (a) move said element momentarily, (b) move said element continuously, (c) resist motion of said element momentarily, (d) resist motion of said element continuously, (e) oscillate said element momentarily, and (f) oscillate said element continuously.
  • the pre-programmed motions are selected based on the rotational direction of the motor and based on whether the processor is in the wake state or sleep state. This allows for greater functions and motion responses.
  • the processor when either the detectable back EMF voltage reaches a predetermined value, the processor may be further configured to a delay by a pre-determined time internal prior to the pre-programmed motions resulting in a tactile response.
  • the pre-programmed motions resulting in a tactile response may be at less than 100% motor speed. In other aspects, the pre-programmed motions result in a tactile response at variating motor speed.
  • the embodiments may also include a second motor configured to cause a motion of a second element of toy and the second element is further accessible for manipulation by a human, which when moved causes a rotation in the motor.
  • the processor is further configured to control the second motor and the pre-programmed output is further configured to control both motors and rotate both wheels resulting in a tactile response.
  • an electrical circuit can be included to alter the back EMF voltage prior to detection by the processor.
  • the electrical circuit may be a transistor, resistor, booster, a combination thereof, or other circuits known in the industry.
  • a toy vehicle is provided with an element, a processor, and a motor configured to cause a motion of the element.
  • the motion of the element is further accessible for manipulation by a human, which in turn is capable of rotating the motor.
  • the processor is configured to detect a back electromotive force ("EMF") voltage that is generated by the rotation of the motor when the element is manipulated by the user.
  • the processor is further configured to include at least two states and the processor includes a function configured to transition between states when the detected back EMF voltage reaches a pre-determined value.
  • the processor is further configured to control the motor in accordance with one or more pre-programmed motions resulting in a tactile response when the detected back EMF voltage reaches a pre-determined value.
  • the pre-programmed tactile responses may be turning the motor in a forward or reverse direction or braking the motor.
  • the toy may include a second motor configured to cause a motion of a second element and the motion of the second element is accessible for manipulation by a human, which when manipulated in turn rotates the motor.
  • the processor is further configured to control the second motor, and wherein the pre-programmed output is further configured to control both motors and rotate both wheels resulting in a tactile response.
  • the processor may be further configured to detect a second back EMF voltage generated by the rotation of the motor in an opposite direction due to the manipulation by a human in an opposite direction.
  • the processor is further configured to control said motors in accordance with one or more pre-programmed motions resulting in a tactile response, when either of the detectable back EMF voltages reach a pre-determined value.
  • the preprogrammed motions resulting in a tactile response may include the following: (a) move one or more of said elements momentarily, (b) move one or more of said elements continuously, (c) resist motion of one or more of said elements momentarily, (d) resist motion of one or more of said elements continuously, (e) oscillate one or more of said elements momentarily, and (f) oscillate one or more of said elements continuously.
  • the pre-programmed motions may be selected based on the rotation direction of the motor and based on whether the processor is in the wake state or sleep state.
  • the processor is further configured to a delay by a pre-determined time internal prior to the pre-programmed motions resulting in a tactile response.
  • a toy vehicle having an element, a processor, and a motor configured to cause a motion of the element and the motion of the element is further accessible for manipulation by a human, which when moved causes a rotation of the motor.
  • the processor is configured to detect a back electromotive force (“EMF”) voltage generated by the rotation of the motor due to the manipulation of the element by the user.
  • EMF back electromotive force
  • the processor is further configured to include at least two of the following states: (a) a lower power state configured to turn the at least one motor off and power the vehicle off; (b) a lower power sleep state configured to turn the at least one motor off and put the processor in a low power sleep state and halt executing code; (c) a wake state configured to power the vehicle on; (d) a wake state configured to bring the processor out of a low power sleep state and begin to executing code; (e) a user controllable drive state configured to control the at least one motor and rotate the at least one wheel; (f) a user controllable drive state configured to control the at least one motor and rotate the at least one wheel at a slower than maximum speed; (g) a user controllable drive state configured to control the at least one motor and rotate the at least one wheel in accordance to a pre-programmed set of instructions and user input from a remote device to cause the vehicle to perform a maneuver; and (h) a non-user autonomous drive state configured to control the at least one motor
  • the processor further includes a function configured to transition between states when the detected back EMF voltage reaches a pre-determined value. Furthermore, when the detected back EMF voltage reaches a pre-determined value, the processor is further configured to control the motor in accordance with one or more pre-programmed motions resulting in a tactile response.
  • the vehicle may include a second motor configured to cause motion of a second element and the motion of the second element is further accessible for manipulation by a human, which in turn causes rotation of the motor.
  • the processor is further configured to control the second motor, and wherein the preprogrammed output is further configured to control both motors and rotate both wheels resulting in a tactile response.
  • the processor of the vehicle may be further configured to detect second back EMF voltage generated by the rotation of the second motor due to the manipulation by a human in an opposite direction.
  • the processor is further configured to transition between the states when the detected second back EMF voltage reaches a predetermined value.
  • the processor is yet further configured to control the second motor in accordance with one or more pre-programmed motions resulting in a tactile response when the detected second back EMF voltage reaches a pre-determined value, which may be the same or different value set to the first back EMF voltage.
  • one embodiment of the invention may provide a toy vehicle or skateboard which includes a deck, a front truck with a pair of front wheels which can secure to the deck towards the front portion, and a rear truck which can secure to the deck towards the rear portion.
  • the rear truck has first and second wheels and a housing configured to include a battery, a processor, a receiver, first and second motors separately in control of the first and second wheels respectively.
  • the first motor is configured to cause a motion of the first wheel, and the motion of the first wheel is also accessible for manipulation by a human, which when manipulated rotates the first motor.
  • the second motor is configured to cause a motion of the second wheel, and the motion of the second wheel is also accessible for manipulation by a human, which when manipulated rotates the second motor.
  • the receiver is configured to receive signals from a remote control unit and the processor is configured to receive signals from the receiver to control the first and second motors in response thereto.
  • the processor is further configured to detect a first back electromotive force (“EMF") voltage generated by the rotation of the first or second motor due to the manipulation by a human of the toy against a surface and in a first direction.
  • the processor is further configured to detect a second back EMF voltage generated by the rotation of the first or second motor due to the manipulation by a human of the toy against a surface and in a second direction generally opposite the first direction.
  • the processor is further configured to include at least a sleep state and a wake state and the processor has a function configured to transition between the sleep state and the wake state when the detected back EMF voltage reaches a pre-determined value.
  • the processor is further configured to control at least one of the motors in accordance with one or more pre-programmed motions resulting in a tactile response, when at least one of the detected first and second back EMF voltages reaches a pre-determined value.
  • the pre-programmed motions resulting in a tactile response may include one or more of the following: (a) rotate one or more of said first and second wheels momentarily; (b) move one or more of said first and second wheels continuously; (c) resist motion of one or more of said first and second wheels momentarily; (d) resist motion of one or more of said first and second wheels continuously; (e) oscillate one or more of said first and second wheels momentarily; and/or (f) oscillate one or more of said first and second wheels continuously.
  • the processor when either of the detectable first or second back EMF voltage reaches a predetermined value, the processor is further configured to a delay by a pre-determined time internal prior to the pre-programmed motions resulting in a tactile response.
  • the embodiment of the invention may include preprogrammed motions resulting in a tactile response that are at less than 100% motor speed or at variating motor speeds.
  • the embodiment of the invention may include an electrical circuit designed to alter at least one of the first and second back EMF voltages prior to detection by the processor.
  • Conversion of the toy in accordance with one embodiment of the present invention may be an important aspect.
  • the rear truck may be removed from the deck and a truck similar to the front truck can be secured to the deck.
  • a surface of the deck opposite of the lower surface can define a finger engaging region accessible for manipulation by a human to move the toy vehicle.
  • an embodiment of the present invention may provide for a convertible toy skateboard assembly.
  • the skateboard assembly typically includes a deck, a pair of non-motorized truck assemblies and a rear motorized truck assembly.
  • the toy skateboard is convertible as one of the non-motorized truck assemblies may be easily swapped with the rear motorized truck assembly. This allows for the toy skateboard to either have a pair of non-motorized truck assemblies, which allows the operator to use their fingers to manipulate and move the toy skateboard; or have one non-motorized truck assembly and a motorized truck assembly, which allows the operator to use a remote control unit to control and move the toy skateboard.
  • the non-motorized truck assembly as used throughout the various embodiments is typically secured to the lower surface of the deck.
  • the non-motorized truck assembly includes a pair of freely rotatable wheels that are positioned transversely to a longitudinal axis of the deck when attached.
  • the motorized rear truck assembly includes a housing is configured to removably attachment to the deck. This may include clips, fasteners, or other attachment means well known in the art.
  • the motorized truck assembly is configured to house at least (i) a battery, (ii) a processor, (iii) a receiver in communication with the processor, and (iv) a pair of motors, each motor separately controlling a rear wheel, of a pair of rear wheels, and wherein the pair of rear wheels are positioned transversely to the longitudinal axis of the deck and behind the pair of front wheels.
  • the receiver is configured to receive signals to control the movement of the pair of rear wheels.
  • the toy skateboard would therefore include two configurations: a first configuration is defined by having the front non-motorized truck assembly attached to the lower surface towards the front region of the deck and having the rear non-motorized truck assembly removably attached to the lower surface towards the rear region of the deck.
  • the upper surface of the deck defines a finger engaging region for a user's fingers to engage and move the toy skateboard.
  • a second configuration is defined by removing the rear non-motorized truck assembly and removably attaching the motorized rear truck assembly to the lower surface towards the rear region of the deck, wherein the movement of the toy skateboard is controllable by the processor in response to signals received by the receiver.
  • the toy skateboard may include a circuit in communication with the processor and battery.
  • the circuit configured to change the battery voltage to a fixed voltage to define a more consistent performance from the battery. This helps increase the enjoyment from the toy skateboard and it no longer seems sluggish as the batteries wear down.
  • the remote control unit may include one or more signals to initiate a set of pre-program instructions on the processor to control the pair of rear wheels to perform one or more skateboard maneuvers. These skateboard maneuvers may include, but is not limited to, a skateboard trick, a hill climb, variable speed control, and playback of user recorded input.
  • the skateboard in any one of the embodiment may further be defined to have a first motor (from the pair of motors) coupled to a first rear wheel (from the pair of rear wheels) and the processor is configured to detect a back electromotive force (“EMF") voltage generated by the rotation of the first motor caused by a manual manipulation of the first rear wheel.
  • the processor is further configured to include at least a sleep state and a wake state and is configured to transition between the sleep state and the wake state when the detected back EMF voltage reaches a pre-determined value.
  • the processor may further control the pair of motors in accordance with one or more pre-programmed motions resulting in a tactile response when the detected back EMF voltage reaches a pre-determined value.
  • the processor may further be configured to detect a second back EMF voltage generated by the rotation of the first motor in an opposite direction due to a manual manipulation of the first rear wheel in an opposite direction.
  • the processor is further configured to control the first motor in accordance with one or more of the following pre-programmed motions resulting in a tactile response: (a) move the first rear wheel momentarily, (b) move the first rear wheel continuously, (c) resist motion of the first rear wheel momentarily, (d) resist motion of the first rear wheel continuously, (e) oscillate the first rear wheel momentarily, and (f) oscillate the first rear wheel continuously.
  • the motorized rear truck assembly includes a housing defined to include a top profile substantially conforming to a portion of the lower surface of the deck towards the rear region.
  • the battery, processor, receiver, and pair of motors are completely positioned within the housing below the top profile of the housing and thus below the lower surface of the deck.
  • the housing may also include a front end and a rear end with an intermediate region there-between. This provides space for a power source, such as batteries, defined by two battery compartments separately positioned in the front end and rear end of the housing and the pair of motors and the pair of rear wheels being positioned between the two battery compartments.
  • the rear end of the housing containing one of the battery compartments may be angled upwardly to match an angle of the rear end of the deck such that the at least one battery contained in the battery compartment is angled.
  • the placement and number of battery compartments may change, as illustrated in Figures 22A - 22E.
  • the receiver may be defined as an IR sensor for receiving signals from the remote control unit.
  • the IR sensor can be positioned in a window defined in the motorized rear truck assembly towards a front portion thereof and under the lower surface of the deck such that the IR sensor is positioned to receive signals reflected from a surface under the deck of the skateboard.
  • the toy skateboard may include a weight removably secured to a portion of the deck to adjust a center of gravity and configured to adjust a center of spin.
  • the toy skateboard is poised to define a motorized toy skateboard that can be controlled without needing an object on the upper surface of the deck.
  • the toy skateboard does not need a figurine, with linkages, and control mechanics in the deck to maneuver properly.
  • the toy skateboard may include a truck assembly housing that encloses both a front truck and a motorized rear truck. The truck assembly may be removed and replaced with a pair of non-motorized truck assemblies so the user is able to manually maneuver.
  • the third driving factor of manufacturers is cost reduction, which makes it desirable to eliminate or reduce buttons, switches, and LEDs. It is therefore desirable to make a product that is easy to use, feature rich, and low cost.
  • a method of physically manipulating a toy and having the toy provide physical and meaningful feedback can eliminate the need for reading users manuals to understand what the different buttons, switches, and LED blink patterns mean.
  • Pushing and/or rolling a toy on the floor or tabletop is a natural play pattern for children. Therefore incorporating rolling can be natural to children. However just the action of rolling a toy is not enough for the child to infer what they just instructed the toy to do.
  • Using the wheels to provide a specialized form of haptic feedback can present the child with a physical acknowledgement to their action, as well as relay the meaning of the action.
  • auditory tactile response may be included. For example, spinning a motor creates sound, and the frequency can be changed with the speed such that slow speeds create lower frequencies of sound which can the interpreted as slow, while high speeds create high frequencies of sound which can the interpreted as fast.
  • pulsing a motor on and off at a low frequency creates lower frequencies of sound which can the interpreted as slow speeds. Pulsing a motor on and off at a high frequency creates higher frequencies of sound which can the interpreted as fast speed.
  • the toy could include multiple responses, such as: Toy response A: While the child is rolling the toy along a surface, the toy wakes from sleep mode and applies power to the wheels in the same direction it was just rolled, while the toy is still in contact with the child's hand and while the toy is still in contact with the surface, resulting in a tactile response of the toy no longer requiring energy to roll but now pulling the child's hand forward; alternately the child may have released the toy after it wakes from sleep but before or during the time power is applied to the wheels, providing a combination of tactile response until the toy is released and an additional visual response as the toy continues to move ahead under its own power.
  • Toy response A While the child is rolling the toy along a surface, the toy wakes from sleep mode and applies power to the wheels in the same direction it was just rolled, while the toy is still in contact with the child's hand and while the toy is still in contact with the surface, resulting in a tactile response of the toy no longer requiring energy
  • the child may lift the toy off the surface after it wakes from sleep but before or during the time power is applied to the wheels, providing a combination of tactile response until the toy is lifted from the surface and an additional audible response as the toy continues to apply power to the motor creating sound from a combination of the spinning motor, gears, axles, and/or wheels.
  • Toy response B Before the child finishes rolling the toy, the toy wakes from sleep mode and pulses power to the wheels in the same direction it was just rolled and in a fashion that resembles a car's engine being revved; or Toy response C: Before the child finishes rolling the toy, the toy wakes from sleep mode and applies a percentage of full power to the wheels in the same direction it was just rolled and in a fashion that resembles a car's engine being revved. From the user's perception, the user feels that the toy is no longer just rolling forward but is now trying to accelerate forward with his hand, relaying to the child that the toy is ON and ready to go. The result of the actions and functions of the vehicle is that the toy is now in normal drive mode.
  • the toy could include multiple responses, such as: Toy response A: Before the child finishes pulling, the toy applies power to the wheels in the opposite direction it was just pulled; Toy response B: Before the child finishes pulling, the toy pulses power to the wheels in a opposite direction it was just pulled; or Toy response C: Before the child finishes pulling, the toy applies brakes to the wheels. From the user's perception, the user feels that the toy is no longer just rolling backward but is now trying to stop his hand, relaying to the child that the toy is trying to stop and turn OFF. The result of the actions and functions of the vehicle is that the toy goes into a low power sleep mode.
  • To Select the Next Mode the child is playing with a toy that is ON and wishes to alter the way it behaves and/or change an action state of the toy.
  • the child as an example, rolls the toy forward across the floor.
  • the toy could include multiple responses, such as: Toy response: After the child finishes rolling the toy, the toy briefly applies low speed power to the wheels in the same direction it was just rolled. From the user's perception, the user feels that the toy is spinning its wheels slowly, relaying to the child that the toy is now in a low speed drive mode. The result of the actions and functions of the vehicle is that the toy is now set to low speed mode.
  • the vehicle may be able to Directly Set a Mode from the user's interface with the vehicle.
  • the child is playing with a toy that is ON and wishes to alter the way it behaves/or change an action state of the toy.
  • the child rolls the toy forward across the floor at a slow or fast speed.
  • the toy briefly applies power to the wheels in the same direction it was just rolled and at a speed similar to the speed the child rolled the toy.
  • the child feels that the toy is spinning its wheels at a specific speed, relaying to the child that the toy is now in a customized speed mode.
  • the toy is now set to high speed, slow speed, or specific measured speed mode respectively.
  • Embodiments that could benefit from back EMF wake, processor changes, haptic response could include vehicles, robots, and cars.
  • FIG. 23 there are illustrated electrical schematic and flow chart diagrams to illustrate embodiment of the present invention.
  • a remote control unit 500 is shown having various functional buttons 502 and slide switches 504.
  • the remote control unit 500 may be fixed to a channel selection or may have a further slide switch to allow the user to switch channels.
  • the remote control unit 300 includes a transmitter 506 to send signals or packets of information to the skateboard 100.
  • the remote control unit executes WAKE UP (box 510) when any button is pressed.
  • the remote control unit may first DETERMINE THE CHANNEL (box 512) and then completes a POLL of the buttons and switches (box 514).
  • a 1 st Packet of Date is transmitted (box 516) to the receiver and then the remote control unit sets the Time and Sleep functions to Zero (box 518).
  • the unit will then WAIT for 25 mSec (box 520), sets TIME to TIME + 1 (box 522) and then POLLS the buttons and Switches (box 524).
  • the remote control unit will then determine IF the buttons or switch have changed (box 526), if no, the remote control unit then determines IF the time internal is equal to 4 (or about 100 mSec) (box 528). If not the remote control unit returns to box 520 to WAIT.
  • the remote control unit transmits a Packet of data to the receiver (box 530). After transmission, the remote control unit checks IF All buttons Off then the remote control unit will set Sleep to Sleep + 1, otherwise Sleep is set to Zero (box 532). If Sleep is greater than 10 (about 1 second) (box 534), then the remote control unit will SLEEP (box 436); otherwise the remote control unit returns to box 520 and WAITS.
  • Figures 29A thru 29C show the current waveform in the motor at three different PWM frequencies, 10 kHz, 100 kHz, and 1000 kHz. It can be seen that a 10kHz PWM frequency has not achieved continuous current conduction, which results in current surges that will adversely affect battery run time. It can be see that 100 kHz results in an improvement, but 1000 kHz is approximately required in order to approach acceptable continuous current conduction. Common low cost processers, which are found in low cost toys and vehicles, cannot create the desired 1000 kHz PWM frequency.
  • DC-DC switches often called buck converters
  • the embodiment employs a variable output DC-DC switch 600 with the voltage set by a voltage divider.
  • the output voltage is typically fixed to one value as defined by the circuits' needs.
  • the voltage divider can be changed by the use of processor 10 pins and multiple resistors R8 and R9, resulting in three output speeds by connecting R8, R9, or R8 + R9 to the voltage divider (as illustrated in Figures 26A).
  • DRVs H-bridge circuits
  • the resulting voltage supplied to the H-bridge circuits (referred to herein as DRVs) 610 which are in communication with the motors and controlled to direct the direction of the motors at a high frequency.
  • the result is continuous current conduction to the motor.
  • a second benefit of this design is the processor is not required to generate a PWM frequency, simplifying software and allowing the use of a less expensive processor.
  • the three output speeds are represented by connecting different resistor values to the R31 resistor value.
  • a toy vehicle having a low inductance motor powered by a high frequency switched voltage at a frequency high enough to create continuous conduction.
  • the vehicle includes an H-bridge circuit configured to control a direction of the motor and an adjustable high frequency DC-DC switch configured to convert a supply voltage to an output voltage, that is lower than the supply voltage, for use by the H-bridge circuit to power the low inductance motor in a forward or reverse direction.
  • a processor is provided with instructions configured to change the output voltage from the DC-DC switch from a first voltage to a second voltage.
  • the motor may have an inductance of approximately less than 500 uH and more preferably of about 140uH.
  • the DC-DC switch may be operating at a frequency greater than 250kHz and more preferably at about 1000kHz or higher.
  • the DC-DC switch may be changed digitally.
  • the output voltage from the DC-DC switch may be selected by a voltage divider, having a first resistor value and a second resistor value selected by the instructions from the processor such that the output voltage from the DC-DC switch can define a first output voltage and a second output voltage.
  • the DC-DC switch can be further configured to define a third output voltage.
  • the second resistor value may be selected from a pair of resistors, defined separately to create the first output voltage and the second output voltage respectively and defined in series to create the third output voltage.
  • the processor further includes instructions to the H-bridge circuit to only control the direction of the motor.
  • the processor determines if Sleep is greater than 2 minutes (box 634).
  • the processor with Go To Sleep (box 636), if No then the process returns to box 626 to determine if IR Data is received.
  • IR Data is started, the processor Receives the IR Packet (box 638) and Checks to determine IF the Packet is Good (box 640). If not, the processor returns to box 626. If Yes, the process will set the Channel to Match if the Packet is the 1 st Packet (box 642). If the Packet is not the 1 st Packet the processor Checks to ensure the Packet is from the Correct Channel (box 644).
  • Ramp Time may be equated to the user holding a button down or holding a slider in a specific position for a predetermined time. If the Ramp Time is 2 then the processor Sets the DC-DC switch to change the voltage to either Normal Speed or Turbo (high) Speed based on the Slider button input on the remote control (box 674). If the Ramp Time is not 2 (from box 672); or after the DC-DC switch is set (from box 674) the processor will Set the DRV directions based on input from the remote control such that the skateboard is moving Forward, Coasting, Reverse or Turning (box 680).
  • the DC-DC switch is able to change the speed of the motor(s) by adjusted voltages by resistor changes to 3 separate speeds, a Start Up Speed, a Normal Speed, and a High Speed; which as noted herein was extremely difficult to obtain using convention chop cycles.
  • motors 240 are connected by resistor means to provide increased back EMF detection by processor 406.
  • a simplified schematic drawing of an H-bridge 700 is shown in Figure 30 to illustrate the protective flyback diodes Dl, D2, D3, D4 integral to such an H-bridge 700.
  • diodes Dl, D2, D3, D4 are present as the parasitic diode intrinsic to the MOSFET Ql, Q2, Q3, Q4 drivers.
  • diodes Dl, D2, D3, D4 are explicitly built into the IC to provide faster reverse recovery performance.
  • the present feature of the invention requires diodes Dl, D2, D3, D4 to be electrically present.
  • MOSFET Ql, Q2, Q3, Q4 are energized in various combinations to provide drive to motor 240.
  • MSOFET Ql, Q2, Q3, Q4 of the simplified schematic of Figure 30 are not energized, and so appear as open circuits.
  • diodes Dl, D2, D3, D4 may conduct electrical current so as to present motor 240 back EMF across its terminals 702, 704 to generate voltages VI, V2.
  • FIG. 31 illustrates the resistive interconnection means of a feature of the present invention.
  • Resistor Rl is connected between motor lead 702a of motor 240a and the voltage sense terminal at the node denoted by voltage VI.
  • Resistor R2 is connected between motor lead 704a of motor 240a and a lead of resistor R2 at the node denoted by voltage V2.
  • the remaining lead of resistor R2 at the node denoted by voltage V3 is connected to motor lead 702b of motor 240b.
  • Motor lead 704b is connected to resistor R3.
  • the remaining lead of resistor R3 connects to the voltage sense terminal at the node denoted by voltage V4.
  • Voltage sense terminal VI and voltage sense terminal V4 constitute the forward and reverse EMF sense signals that drive inputs of processor 406 in order to sense and back EMF voltage from motors 240a, 240b.
  • resistors Rl, R3 prevent damage to processor 406 inputs, while resistor R2 prevents excessive current from flowing between the nodes labeled voltage V2 and voltage V3.
  • MOSFET Ql, Q2, Q3, Q4, Q5, Q6, Q7, Q8 are all off. In this state, the equivalent circuit is as shown in Figure 32.
  • supply voltage Vm may be produced by an adjustable regulator that is disabled when processor 406 is in a sleep state.
  • the sense voltage that appears on the nodes demarked by VI and V4 may be high enough to cause conduction in diodes D2 and D8 respectively.
  • This conduction charges the capacitance on the supply voltage Vm signal through resistor R2.
  • the embodiment of this feature of the invention continues to provide enhanced back EMF sensitivity.
  • the sensitivity enhancement feature of the present invention may be extended to electromechanical devices employing three or more electric motors. This is implemented by cascading additional H-bridges 700 for each additional electric motor. For example, if a third electric motor were used, the method of this feature of the present invention would call for a third motor 240 and H-bridge 700 as shown in Figure 30 added to the right-hand side of the schematic of figure 31.
  • the node demarked by voltage V4 is connected to the node demarked VI in Figure 30.
  • An additional resistor R4 connects to the node demarked V2 of Figure 30 to the input of processor 406. In this way, the back EMF of three motors would add to create the back EMF sense signal.
  • a toy skateboard assembly comprising: a deck having a front region, rear region, an upper surface, and a lower surface; a front non-motorized truck assembly and a rear non-motorized truck assembly configured for attachment to the lower surface of the deck, the front and rear non-motorized truck assemblies having a pair of freely rotatable front wheels and rear wheels, respectively, and wherein the pairs of front and rear wheels extend transversely to a longitudinal axis of the deck when attached; a motorized rear truck assembly configured for attachment to the lower surface of the deck, the motorized rear truck assembly configured to house at least (i) a battery, (ii) a processor, (iii) a receiver in communication with the processor, and (iv) a pair of motors, each motor separately controlling a rear wheel, of a pair of rear wheels, and wherein the pair of rear wheels are positioned transversely to the longitudinal axis of the deck and behind the pair of front wheels, and said receiver configured to receive signals to control the movement of the pair of rear wheels
  • the toy skateboard of Claim 1 further comprising a circuit in communication with the processor and battery, and configured to change the battery voltage to a fixed voltage.
  • the toy skateboard of Claim 1 wherein the remote control unit includes one or more signals to initiate a set of pre-program instructions on the processor to control the pair of rear wheels to perform one or more skateboard maneuvers.
  • the one or more skateboard maneuvers include, but are not limited to, a skateboard trick, a hill climb, variable speed control, and playback of user recorded input.
  • the pair of motors includes a first motor coupled to a first rear wheel, of the pair of rear wheels, and the processor is configured to detect a back electromotive force (“EMF") voltage generated by the rotation of the first motor caused by a manual manipulation of the first rear wheel, and the processor is further configured to include at least a sleep state and a wake state and is configured to transition between said sleep state and said wake state when the detected back EMF voltage reaches a pre-determined value.
  • EMF back electromotive force
  • a toy skateboard comprising: a deck having a front region, rear region, an upper surface, and a lower surface; a front non-motorized truck assembly secured to the lower surface towards the front region and having a pair of front wheels freely rotatably thereto; a motorized rear truck assembly secured to the lower surface towards the rear region, and the motorized rear truck assembly having a housing configured to include a battery, a processor, a pair of motors to separately drive a pair of rear wheels positioned transversely to the longitudinal axis of the deck and positioned behind the pair of front wheels, and a receiver in communication with the processor and configured to receive signals to control the movement of the pair of rear wheels; and a center of gravity defined by the toy skateboard and positioned below the lower surface of the deck.
  • the pair of motors includes a first motor coupled to a first rear wheel, of the pair of rear wheels, and the processor is configured to detect a back electromotive force (“EMF") voltage generated by the rotation of the first motor caused by a manual manipulation of the first rear wheel, and the processor is further configured to include at least a sleep state and a wake state and is configured to transition between said sleep state and said wake state when the detected back EMF voltage reaches a predetermined value.
  • EMF back electromotive force
  • a toy skateboard comprising: a deck having a front region, rear region, an upper surface, and a lower surface; a front non-motorized truck assembly secured to the lower surface towards the front region and having a pair of front wheels freely rotatably thereto; a motorized rear truck assembly secured to the lower surface towards the rear region, and the motorized rear truck assembly having a housing defined to include a top profile substantially conforming to a portion of the lower surface towards the rear region and the housing configured to include at least a battery, a processor, a pair of motors to separately control a pair of rear wheels positioned transversely to the longitudinal axis of the deck, and the pair of rear wheels being positioned behind the pair of front wheels, the housing further including a receiver configured to receive signals to control the movement of the pair of rear wheels; and wherein the processor is configured to detect a back electromotive force voltage generated by the rotation of one or more of the pair of motors due to a manual manipulation by a human on one or more of the rear wheels, and the
  • a toy skateboard comprising: a deck having a front region, rear region, an upper surface, and a lower surface; a front non-motorized truck assembly secured to the lower surface towards the front region and having a pair of front wheels freely rotatably thereto; a motorized rear truck assembly secured to the lower surface towards the rear region, and the motorized rear truck assembly having a housing defined to include a top profile substantially conforming to a portion of the lower surface towards the rear region and the housing configured to include at least a battery, a processor, a pair of motors to control and separately rotate a pair of rear wheels positioned transversely to the longitudinal axis of the deck and positioned behind the pair of front wheels, and the housing further including a receiver configured to receive signals to control the movement of the pair of rear wheels; and a circuit in communication with the processor and battery, the circuit being configured to varying the battery voltage to a fixed voltage.
  • [172] 29 The toy skateboard of Claim 28, wherein the pair of motors, includes a first motor coupled to a first rear wheel, of the pair of rear wheels, and the processor is configured to detect a back electromotive force (“EMF") voltage generated by the rotation of the first motor caused by a manual manipulation of the first rear wheel, and the processor is further configured to include at least a sleep state and a wake state and is configured to transition between said sleep state and said wake state when the detected back EMF voltage reaches a pre-determined value.
  • EMF back electromotive force
  • a toy skateboard comprising: a deck having a front region, rear region, an upper surface, and a lower surface; a front non-motorized truck assembly secured to the lower surface towards the front region and having a pair of front wheels freely rotatably thereto; a motorized rear truck assembly secured to the lower surface towards the rear region, and the motorized rear truck assembly having a housing defined to include a top profile substantially conforming to a portion of the lower surface towards the rear region and the housing configured to include at least a battery, a processor, a pair of motors to control and separately rotate a pair of rear wheels positioned transversely to the longitudinal axis of the deck and positioned behind the pair of front wheels, and the housing further including a receiver configured to receive signals to control the movement of the pair of rear wheels; and a weight removably secured to a portion of the deck to adjust a center of gravity and configured to adjusts a center of spin.
  • the toy skateboard of Claim 34 wherein the pair of motors, includes a first motor coupled to a first rear wheel, of the pair of rear wheels, and the processor is configured to detect a back electromotive force (“EMF") voltage generated by the rotation of the first motor caused by a manual manipulation of the first rear wheel, and the processor is further configured to include at least a sleep state and a wake state and is configured to transition between said sleep state and said wake state when the detected back EMF voltage reaches a pre-determined value.
  • EMF back electromotive force
  • the processor is further configured to control the first motor in accordance with one or more of the following pre-programmed motions resulting in a tactile response: (a) move the rear wheel momentarily, (b) move the rear wheel continuously, (c) resist motion of the rear wheel momentarily, (d) resist motion of the rear wheel continuously, (e) oscillate the rear wheel momentarily, and (f) oscillate the rear wheel continuously.
  • a toy skateboard comprising: a deck having a front region, rear region, an upper surface, and a lower surface; a front non-motorized truck assembly secured to the lower surface towards the front region and having a pair of front wheels freely rotatably thereto; a motorized rear truck assembly removably secured to the deck, and the motorized rear truck assembly having a housing defined to enclose a battery, a processor, a pair of motors to control and separately rotate a pair of rear wheels positioned transversely to the longitudinal axis of the deck and positioned behind the pair of front wheels, and the housing further including a receiver configured to receive signals to control the movement of the pair of rear wheels, such that movement of the skateboard is accomplished without an object on the upper surface of the deck.
  • the toy skateboard of Claim 40 wherein the pair of motors, includes a first motor coupled to a first rear wheel, of the pair of rear wheels, and the processor is configured to detect a back electromotive force (“EMF") voltage generated by the rotation of the first motor caused by a manual manipulation of the first rear wheel, and the processor is further configured to include at least a sleep state and a wake state and is configured to transition between said sleep state and said wake state when the detected back EMF voltage reaches a pre-determined value.
  • EMF back electromotive force
  • the toy skateboard of Claim 40 further comprising a circuit in communication with the processor and battery, and the circuit being configured to vary the battery voltage to a fixed voltage to define a more consistent performance from the battery.
  • the toy skateboard of Claim 40 further comprising a removable weight connected to the deck to adjusts a center of spin.
  • a toy skateboard having a deck, a front truck secured to a lower surface of the deck with a pair of freely rotatable front wheels, a motorized rear truck secured to the lower surface, wherein the rear truck has a housing defined to include a top profile substantially conforming to a portion of the lower surface of the deck and the housing configured to include at least a battery, a processor, a pair of motors to control and separately rotate a pair of rear wheels positioned transversely to the longitudinal axis of the deck and positioned behind the pair of front wheels, and the housing further including a receiver configured to receive signals to control the movement of the pair of rear wheel, and wherein the rear truck is completely removably from the deck such that the rear truck is replaceable with a non-motorized rear truck similarly configured to the front truck and wherein the upper surface of the deck defines a finger engaging region for a user's fingers to engage and move the toy skateboard.
  • a toy skateboard comprising: a deck having a first region, a second region, an upper surface, and a lower surface; a truck assembly secured to the lower surface, the truck assembly having a housing with a defined first end and second end, the housing configured to include a first non-motorized pair of first wheels freely rotatable transversely to a longitudinal axis of the deck and positioned near the first end of the housing adjacent the first region of the deck, the housing further having at least a battery, a processor, a pair of motors to control and separately rotate a pair of second wheels positioned transversely to the longitudinal axis of the deck and positioned behind the pair of first wheels, and the housing further including a receiver configured to receive signals to control the movement of the pair of second wheel.
  • [200] 56 The toy skateboard of Claim 53, wherein the pair of motors, includes a first motor coupled to one of the second wheels and the processor is configured to detect a back electromotive force (“EMF") voltage generated by the rotation of the first motor caused by a manual manipulation of the second wheel, and the processor is further configured to include at least a sleep state and a wake state and is configured to transition between said sleep state and said wake state when the detected back EMF voltage reaches a pre-determined value.
  • EMF back electromotive force
  • a toy skateboard comprising: a deck having a first region, a second region, an upper surface, and a lower surface; a non-motorized truck assembly secured to the lower surface towards the first region and having one or more freely rotatable first wheels; a motorized truck assembly removably secured to the deck, and the motorized truck assembly having a housing defined to enclose, below the lower surface of the deck: (i) a battery, (ii) a processor, (iii) a pair of motors to control and separately rotate a pair of second wheels positioned transversely to the longitudinal axis of the deck and positioned laterally away from the pair of first wheels, and (iv) a receiver configured to receive signals to control the movement of the pair of second wheels.
  • a toy skateboard having a deck, a front truck secured to a lower surface of the deck with a pair of freely rotatably front wheels, the toy skateboard further comprising: a motorized rear truck secured to the lower surface and have a pair of rear wheels, the rear truck having a housing configured to include a battery, a processor, a receiver configured to receive signals from a remote control unit to send signals to the processor, and a first motor configured to rotate a first wheel in response to the signals; and the processor being further configured to detect a voltage generated by the first motor when a human generated force causes the first wheel to rotate, and the processor being further configured to include at least a sleep state and a wake state; and a pre-programmed processor function configured to cause the processor to transition from one state to another state, of the defined sleep state and wake state, when the voltage generated by the human generated force causing the first wheel to rotate reaches a pre-determined trigger voltage defined by the processor.
  • [208] 64 The toy skateboard of Claim 62, wherein the processor is further configured to detect a second voltage generated by the first motor when a human generated force causes the first wheel to rotate, and when the processor transitions from one state to another state, the processor is further configured to control the first motor in accordance with one or more of the following pre-programmed tactile outputs to the first wheel : (a) accelerating the wheel forward momentarily; (b) accelerating the wheel forward continuously; (c) accelerating the wheel in reverse momentarily; (d) accelerating the wheel in reverse continuously; (e) braking the wheel; (f) oscillating the rotation of the wheel;
  • the toy skateboard of Claim 62 further comprising: a second motor in communication with the processor, the second motor configured to rotate a second wheel, and wherein the pre-programmed tactile output is further configured to control both motors and rotate both wheels.
  • the toy skateboard of Claim 62 further comprising: an electrical circuit designed to augment the voltage generated to trip the pre-determined trigger voltage defined by the processor.
  • a toy vehicle comprising: a motor configured to cause a motion of an element of said toy, said motion of said element further accessible for manipulation by a human to in turn rotate said motor; and a processor configured to detect a back electromotive force (“EMF") voltage generated by the rotation of said motor due to said manipulation by a human, and said processor being further configured to include at least a sleep state and a wake state; and said processor comprising a function configured to transition between said sleep state and said wake state when said detected back EMF voltage reaches a pre-determined value.
  • EMF back electromotive force
  • the toy vehicle of Claim 76 further comprising: a second motor configured to cause a motion of a second element of said toy, said motion of said second element further accessible for manipulation by a human to in turn rotate said motor; said processor is further configured to control said second motor, and wherein the preprogrammed output is further configured to control both motors and rotate both wheels resulting in a tactile response.
  • the toy vehicle of Claim 76 further comprising: an electrical circuit designed to alter said back EMF voltage prior to detection by said processor.
  • a toy vehicle comprising: a motor configured to cause a motion of an element of said toy, said motion of said element further accessible for manipulation by a human to in turn rotate said motor; and a processor configured to detect a back electromotive force (“EMF") voltage generated by the actuation of said motor due to said manipulation by a human; and said processor being further configured to include at least two states; and said processor comprising a function configured to transition between states when said detected back EMF voltage reaches a pre-determined value; and said processor is further configured to control said motor in accordance with one or more pre-programmed motions resulting in a tactile response when said detected back EMF voltage reaches a pre-determined value.
  • EMF back electromotive force
  • the toy vehicle of Claim 84 further comprising: a second motor configured to cause a motion of a second element of said toy, said motion of said second element further accessible for manipulation by a human to in turn rotate said motor; said processor is further configured to control said second motor, and wherein the preprogrammed output is further configured to control both motors and rotate both wheels resulting in a tactile response.
  • the toy vehicle of Claim 88 further comprising: an electrical circuit designed to alter said back EMF voltage prior to detection by said processor.
  • a toy vehicle comprising: a motor configured to cause a motion of an element of said toy, said motion of said element further accessible for manipulation by a human to in turn rotate said motor; and a processor configured to detect a back electromotive force (“EMF") voltage generated by the actuation of said motor due to said manipulation by a human; and said processor being further configured to include at least two states of the following states: (a) a lower power state configured to turn the at least one motor off and power the vehicle off; (b) a lower power sleep state configured to turn the at least one motor off and put the processor in a low power sleep state and halt executing code; (c) a wake state configured to power the vehicle on; (d) a wake state configured to bring the processor out of a low power sleep state and begin to executing code; (e) a user controllable drive state configured to control the at least one motor and rotate the at least one wheel; (f) a user controllable drive state configured to control the at least one motor and rotate the at least one wheel; (f
  • the toy vehicle of Claim 93 further comprising: a second motor configured to cause a motion of a second element of said toy, said motion of said second element further accessible for manipulation by a human to in turn rotate said motor; said processor is further configured to control said second motor, and wherein the preprogrammed output is further configured to control both motors and rotate both wheels resulting in a tactile response.
  • a toy vehicle comprising: a motor configured to cause a motion of an element of said toy, said motion of said element further accessible for manipulation by a human to in turn rotate said motor; and a processor configured to detect a back electromotive force (“EMF") voltage generated by the rotation of said motor due to said manipulation by a human, and said processor being further configured to include at least a sleep state and a wake state; and said processor comprising a function configured to transition between said sleep state and said wake state when said detected back EMF voltage reaches a pre-determined value, wherein said processor is further configured to control said motor in accordance with one or more pre-programmed motions resulting in a tactile response when said detected back EMF voltage reaches a pre-determined value.
  • EMF back electromotive force
  • a toy vehicle comprising: a low inductance motor powered by a high frequency switched voltage at a frequency high enough to create continuous conduction; an H-bridge circuit configured to control a direction of the motor; an adjustable high frequency DC-DC switch configured to convert a supply voltage to an output voltage, lower than the supply voltage, for use by the H-bridge circuit to power the low inductance motor in a forward or reverse direction; and a processor having instructions configured to change the output voltage from the DC-DC switch from a first voltage to a second voltage.
  • a toy vehicle comprising: an electromechanical actuator configured to cause a motion of an element of said toy, said motion of said element further accessible for manipulation by a human to in turn rotate said electromechanical actuator; and a processor configured to detect a back electromotive force (“EMF") voltage generated by the actuation of said electromechanical actuator due to said manipulation by a human; and said processor being further configured to include at least two states; and said processor comprising a function configured to transition between states when said detected back EMF voltage reaches a pre-determined value; and said processor is further configured to control said motor in accordance with one or more pre-programmed motions resulting in a tactile response when said detected back EMF voltage reaches a pre-determined value.
  • EMF back electromotive force
  • the toy vehicle of Claim 112 further comprising: a second electromechanical actuator configured to cause a motion of a second element of said toy, said motion of said second element further accessible for manipulation by a human to in turn rotate said second electromechanical actuator; said processor is further configured to control said second electromechanical actuator, and wherein the pre-programmed output is further configured to control both electromechanical actuators and rotate both wheels resulting in a tactile response.
  • the toy vehicle of Claim 116 further comprising: an electrical circuit designed to alter said back EMF voltage prior to detection by said processor.
  • An electromechanical system wherein a two electrical motors actuate motive elements, and wherein a user can manipulate some or all of said motive elements to reciprocally produce motion in some or all of said two electrical motors, further comprising: a current-limited connection from a first terminal of a first said electrical motor to a first logic circuit; a resistive connection between a second terminal of a said first said electrical motor to a first terminal of a second said electrical motor; a current-limited connection from a second terminal of said second said electrical motor to a second logic circuit; wherein said first and second logic circuits detect the sum of the back EMF of said two electrical motors and are in communication with a processor.
  • An electromechanical system wherein a two electrical motors actuate motive elements, and wherein a user can manipulate some or all of said motive elements to reciprocally produce motion in some or all of said two electrical motors, further comprising: a current-limited connection from a first terminal of a first said electrical motor to a logic circuit; a resistive connection between a second terminal of a said first said electrical motor to a first terminal of a second said electrical motor; wherein said logic circuit detects the sum of the back EMF of said two electrical motors and is in communication with a processor.

Abstract

In one embodiment there is a toy vehicle having a motor configured to cause a motion of an element of the toy. The motion of the element further accessible for manipulation by a human to in turn rotate the motor. The toy vehicle further having a processor configured to detect a back electromotive force ("EMF") voltage generated by the rotation of the motor due to the manipulation by a human, and the processor being further configured to include at least a sleep state and a wake state. The processor have a function configured to transition between the sleep state and the wake state when the detected back EMF voltage reaches a pre-determined value.

Description

TOY VEHICLE WITH A TACTILE RESPONSE
Cross Reference to Related Applications
[1] The present invention relates to US Application 14/451,685 filed August 5, 2014, which is a continuation of US Application 14/332,599 filed July 16, 2014, and which is a US Nonprovisional Application claiming the benefit of US Application 61/983,189 filed April 23, 2014. a toy skateboard and more particularly to a toy skateboard that includes a removable motorized assembly housing.
Field of the Invention
[2] The present invention relates to a toy skateboard and more particularly to a toy skateboard that includes a removable motorized assembly housing.
Background of the Invention
[3] Toy skateboards have been a mainstay in kids toys for a number of years. Toy skateboards are often referred to as finger boards because the user of the toy skateboards uses two of their fingers in operating the toy. A skilled operator of the toy skateboard is capable of replicating skateboarding maneuvers with their hand. These skateboards are extremely popular but have become stagnated in their ability to reach a wider audience since their introduction in the 1990s.
[4] As a consequence, various types of toy skateboards have been proposed. Such skateboards range from simple wind-up toy skateboards with mounted figurines, to more advanced radio-controlled toy skateboards with figurines that can be controlled in some degree to portray body movement during skateboarding maneuvers and stunts. These motorized skateboards typically include movable battery packs, changeable motor positions, and interchangeable wheel weights to provide different centers of balance for adjusting the performance of various maneuvers. In addition, some motorized skateboards include a drive mechanism but no steering mechanism. Thus, the skateboard is only maneuverable through body movement of the figurine, as in an actual skateboard, and therefore control of the skateboard may be less than desirable, especially for those of less advanced skill levels. With this need, a toy skateboard should be provided that offers the enjoyment of both a motorized toy skateboard and a non-motorized toy skateboard with an easy control system that allows for the performance of various maneuvers without having to employ a toy figurine.
Summary of the Invention
[5] The present invention provides for various embodiments and combinations of aspects that will be described herein in greater detail. In a first embodiment, there is provided a convertible toy skateboard assembly. The skateboard assembly includes a deck, a pair of non-motorized truck assemblies and a rear motorized truck assembly. The toy skateboard is also convertible; as one of the non-motorized truck assemblies may be easily swapped with a rear motorized truck assembly. This allows for the toy skateboard to either have a pair of non- motorized truck assemblies, which allows the operator to use their fingers to manipulate and move the toy skateboard; or have one non-motorized truck assembly and one motorized truck assembly, which allows the operator to use a remote control unit to control and move the toy skateboard.
[6] The non-motorized truck assembly as used throughout the various embodiments is typically secured to the lower surface of the deck. The non-motorized truck assembly includes a pair of freely rotatable wheels that are positioned transversely to a longitudinal axis of the deck when attached. The motorized rear truck assembly includes a housing, which is configured to removably attach to the deck. This may include clips, fasteners, or other attachment means well known in the art. The motorized truck assembly is configured to house at least (i) a battery, (ii) a processor, (iii) a receiver in communication with the processor, and (iv) a pair of motors, each motor separately controlling a rear wheel, of a pair of rear wheels, and wherein the pair of rear wheels are positioned transversely to the longitudinal axis of the deck and behind the pair of front wheels. The receiver is configured to receive signals to control the movement of the pair of rear wheels.
[7] As mentioned, the toy skateboard would therefore include two configurations: a first configuration is defined by having the front non-motorized truck assembly attached to the lower surface towards the front region of the deck and having the rear non-motorized truck assembly removably attached to the lower surface towards the rear region of the deck. In the first configuration, the upper surface of the deck defines a finger engaging region for a user's fingers to engage and move the toy skateboard. A second configuration is defined by removing the rear non-motorized truck assembly and attaching the motorized rear truck assembly to the lower surface towards the rear region of the deck, wherein the movement of the toy skateboard is controllable by the processor in response to signals received by the receiver.
[8] In accordance with one or more of the embodiments, the toy skateboard may include a circuit in communication with the processor and battery. The circuit is configured to change the battery voltage to a fixed voltage to create a more consistent performance from the battery - this may include lowering or boosting the voltage. The change helps increase the enjoyment from the toy skateboard as it no longer seems sluggish as the batteries wear down. In addition, the remote control unit may include one or more signals to initiate a set of preprogram instructions on the processor to control the pair of rear wheels to perform one or more skateboard maneuvers. These skateboard maneuvers may include, but is not limited to, a skateboard trick, a hill climb, variable speed control, and playback of user recorded input.
[9] The skateboard in any one of the embodiments, may further be defined to have a first motor (from the pair of motors) coupled to a first rear wheel (from the pair of rear wheels) and the processor configured to detect a back electromotive force ("EMF") voltage generated by the rotation of the first motor caused by a manual manipulation of the first rear wheel. The processor is further configured to include at least a sleep state and a wake state and is configured to transition between the sleep state and the wake state when the detected back EMF voltage reaches a pre-determined value. The processor may further control the pair of motors in accordance with one or more pre-programmed motions resulting in a tactile response when the detected back EMF voltage reaches a pre-determined value. In addition, the processor may further be configured to detect a second back EMF voltage generated by the rotation of the first motor in an opposite direction due to a manual manipulation of the first rear wheel in an opposite direction. When either of the detectable back EMF voltages reaches a predetermined value, the processor is further configured to control the first motor in accordance with one or more of the following pre-programmed motions resulting in a tactile response: (a) move the first rear wheel momentarily, (b) move the first rear wheel continuously, (c) resist motion of the first rear wheel momentarily, (d) resist motion of the first rear wheel continuously, (e) oscillate the first rear wheel momentarily, and (f) oscillate the first rear wheel continuously.
[10] In one or more of the embodiments, the motorized rear truck assembly includes a housing defined to include a top profile substantially conforming to a portion of the lower surface of the deck towards the rear region. In this instance, the battery, processor, receiver, and pair of motors are completely positioned within the housing below the top profile of the housing and thus below the lower surface of the deck. The housing may also include a front end and a rear end with an intermediate region there-between. This provides space for a battery, defined two have two battery compartments separately positioned in the front end and rear end of the housing, and space for the pair of motors. The pair of rear wheels are positioned between the two battery compartments. The rear end of the housing containing one of the battery compartments may be angled upwardly to match an angle of the rear end of the deck such that the at least one battery contained in the battery compartment is angled.
[11] In one or more of the embodiments disclosed herein, the receiver may be defined as an IR sensor for receiving signals from the remote control unit. The IR sensor can be positioned in a window defined in the motorized rear truck assembly towards a front portion thereof and under the lower surface of the deck such that the IR sensor is positioned to receive signals reflected from a surface under the deck of the skateboard. In another aspect, the toy skateboard may include a weight removably secured to a portion of the deck to adjust a center of gravity and configured to adjust a center of spin.
[12] As defined in one or more aspects, the toy skateboard may be poised to define a motorized toy skateboard that can be controlled without needing an object on the upper surface of the deck. The toy skateboard does not need a figurine, with linkages, and control mechanics in the deck to maneuver properly. Separately, the toy skateboard may include a truck assembly housing that encloses both a front truck and a motorized rear truck. The truck assembly may be removed and replaced with a pair of non-motorized truck assemblies so the user is able to manually maneuver the skateboard.
[13] In addition to a toy skateboard, the present invention may provide for a toy that may include one or more elements, such as the wheels on a skateboard, an appendage on a toy robot or figure, or a propeller on a toy vehicle. These elements are external to the toy and are moved/controlled separately by a motor. The processor is configured to include at least a sleep state and a wake state and is further configured to transition between the two states. Another aspect of the embodiment is that the element is accessible for manipulation by the user, operator, or human which when moved will in turn rotate the motor. When the user manipulates the element, rotating the motor, the rotation of the motor generates a back electromotive force (herein after "EMF") voltage. The processor is configured to detect the back EMF voltage and is further configured to transition between the two states when the detected back EMF voltage reaches a pre-determined value.
[14] In another aspect of the embodiment, when the detected back EMF voltage reaches the pre-determined value, the processor is further configured to control the motor in accordance with one or more pre-programmed motions, which when executed result in a tactile response.
[15] In accordance with an embodiment of the present invention there is provided a toy vehicle having a low inductance motor powered by a high frequency switched voltage at a frequency high enough to create continuous conduction. The vehicle includes an H-bridge circuit configured to control a direction of the motor and an adjustable high frequency DC-DC switch configured to convert a supply voltage to an output voltage, that is lower than the supply voltage, for use by the H-bridge circuit to power the low inductance motor in a forward or reverse direction. A processor is provided with instructions configured to change the output voltage from the DC-DC switch from a first voltage to a second voltage.
[16] In different aspect of this embodiment, the motor may have an inductance of approximately less than 500 uH and more preferably of about 140uH. The DC-DC switch may be operating at a frequency greater than 250kHz and more preferably at about 1000kHz or higher. In addition, the DC-DC switch may be changed digitally.
[17] In addition, the output voltage from the DC-DC switch may be selected by a voltage divider, having a first resistor value and a second resistor value selected by the instructions from the processor such that the output voltage from the DC-DC switch can define a first output voltage and a second output voltage. In other aspect the DC-DC switch can be further configured to define a third output voltage. The second resistor value may be selected from a pair of resistors, defined separately to create the first output voltage and the second output voltage respectively and defined in series to create the third output voltage. In addition, the processor further includes instructions to the H-bridge circuit to only control the direction of the motor.
[18] Numerous other advantages and features of the invention will become readily apparent from the following detailed description of the invention and the embodiments thereof, from the claims, and from the accompanying drawings.
Brief Description of the Drawings
[19] A fuller understanding of the foregoing may be had by reference to the accompanying drawings, wherein:
[20] Figure 1 is a perspective view of a toy skateboard illustrating a pair of front and rear trucks in accordance with one embodiment of the present invention;
[21] Figure 2 is an exploded view of the toy skateboard from Figure 1 in accordance with one embodiment of the present invention;
[22] Figure 3A is a partial exploded view of the toy skateboard deck from Figure 1 illustrating a front truck assembly and a motorized rear truck assembly in accordance with one embodiment of the present invention;
[23] Figure 3B is a lower view of the toy skateboard from Figure 3A;
[24] Figure 4A is a perspective view of one of the non-motorized truck assemblies in accordance with one embodiment of the present invention;
[25] Figure 4B is an exploded view of Figure 4A in accordance with one embodiment of the present invention;
[26] Figure 4C is view from beneath the assembly of Figure 4B in accordance with one embodiment of the present invention;
[27] Figure 5A is a perspective view of a motorized toy skateboard in accordance with one embodiment of the present invention;
[28] Figure 5B is a lower view of the motorized toy skateboard from Figure 5A in accordance with one embodiment of the present invention;
[29] Figure 5C is a lower view of the motorized toy skateboard from Figure 5A in accordance with one embodiment of the present invention;
[30] Figure 6 is a side view of the toy skateboard deck from Figure 1 being further illustrated with non- motorized truck assemblies in comparison to a non-motorized front truck and assembly and motorized rear truck assembly to further illustrate the two configurations in accordance with one embodiment of the present invention;
[31] Figure 7A is a perspective view of the assembled motorized rear truck assembly in accordance with one embodiment of the present invention;
[32] Figure 7B is a lower view of the assembled motorized rear truck assembly from Figure 7A in accordance with one embodiment of the present invention;
[33] Figure 8 is an exploded view of the motorized rear truck assembly from Figure 7A in accordance with one embodiment of the present invention;
[34] Figure 9 is a partial exploded view of the motorized rear truck assembly from Figure 7A in accordance with one embodiment of the present invention;
[35] Figure 10 is a perspective view of the housing from the motorized rear truck assembly from Figure 7A in accordance with one embodiment of the present invention;
[36] Figure 11 is a partial perspective view of the gear housing compartment from the motorized rear truck assembly from Figure 7A in accordance with one embodiment of the present invention; [37] Figure 12 is an exploded view of the gear housing compartment from Figure 11 in accordance with one embodiment of the present invention;
[38] Figure 13 is a side view perspective view of the assembled motorized rear truck assembly from Figure 7A in accordance with one embodiment of the present invention;
[39] Figure 14A is an electrical schematic drawing of a motorized toy skateboard in accordance with one embodiment of the present invention illustrating the use of a direct wire to trigger different functionality states in the vehicle;
[40] Figure 14B an electrical schematic drawing of a motorized toy skateboard in accordance with one embodiment of the present invention;
[41] Figure 15 is an electrical schematic drawing of a motorized toy skateboard in accordance with one embodiment of the present invention illustrating the use of a booster component to trigger different functionality states in the vehicle;
[42] Figure 16 is an electrical schematic drawing of a motorized toy skateboard in accordance with one embodiment of the present invention illustrating the use of an FET component to trigger different functionality states in the vehicle;
[43] Figure 17 is an electrical schematic drawing of a motorized toy skateboard in accordance with one embodiment of the present invention illustrating the use of an a pull-down resistor component to trigger different functionality states in the vehicle;
[44] Figure 18 is an electrical schematic drawing of a motorized toy skateboard in accordance with one embodiment of the present invention illustrating the use of an a series resistor component to trigger different functionality states in the vehicle;
[45] Figure 19 is a perspective view of a skateboard having clips to secure the motorized truck assembly to the deck;
[46] Figure 20A is a perspective view of a skateboard having a trick weight attached;
[47] Figure 20B is a perspective view of the skateboard of Figure 20A with the trick weight removed from the skateboard deck;
[48] Figure 21A is a box diagram of an embodiment of a toy showing a processor monitoring one or more motors for a manual generated back EMF voltage;
[49] Figure 21B is a box diagram of an embodiment of another toy showing a processor monitoring one or more motors for a manual generated back EMF voltage;
[50] Figures 22A - 22E illustrate various embodiments of toy skateboards having vafianj-various housing configurations for different battery compartments;
[51] Figure 23 is a diagram representing a transmitter in accordance with one embodiment of the present invention for use with a motorized toy skateboard; [52] Figure 24 is an electrical schematic drawing of a remote control unit in accordance with one embodiment of the present invention for use with a motorized toy skateboard;
[53] Figure 25 is a block diagram for a transmitter in accordance with one embodiment of the present invention for use with a motorized toy skateboard;
[54] Figure 26A is an electrical schematic drawing of a motorized toy skateboard in accordance with one embodiment of the present invention illustrating the use of a DC to DC switch to vary the voltage power supplied to the motors;
[55] Figure 26B is an electrical schematic drawing of a motorized toy skateboard in accordance with one embodiment of the present invention illustrating the use of a DC to DC switch to vary the voltage power supplied to the motors;
[56] Figure 27 is a flow chart diagram for a skateboard in accordance with one embodiment of the present invention;
[57] Figure 28 is a flow chart diagram for a system in a skateboard in accordance with one embodiment of the present invention to set voltage and H-bridge circuits;
[58] Figure 29A - 29C illustrates a current waveform in the motor at three different PWM frequencies, 10 kHz, 100 kHz, and 1000 kHz;
[59] Figure 30 is an electrical schematic drawing of a simplified H-bridge motor driver with four drive transistors and four flyback diodes connected to a motor;
[60] Figure 31 is an electrical schematic drawing of a pair of simplified H-bridge motor drivers each connected to a pair of motors which are further resistively connected to provide additive EMF detection as per a feature of the present invention; and
[61] Figure 32 is an electrical schematic drawing of the equivalent circuit of a pair of simplified H-bridge motor drives each connected to a pair of motors which are further resistively connected to provide additive EMF detection as per a feature of the present invention when none of the drive MOSFET transistors are energized.
Detailed Description of the Drawings
[62] While the invention is applicable to embodiments in many different forms, there are shown in the drawings and will be described in detail here in the various embodiments of the present invention. It should be understood, however, that the present disclosure is to be considered an exemplification of the principles of the invention and is not intended to limit the spirit or scope of the invention and/or claims of the embodiments illustrated.
[63] Referring now to the drawings, and to Figures 1 through 3B in particular, a toy skateboard in accordance to one embodiment of the invention is illustrated and generally referenced as numeral 100. The toy skateboard 100 includes a deck 102 with an upper surface 103 and a lower surface 104. As illustrated in Figures 1 and 3A, the skateboard 100 includes a front truck assembly 110 secured towards the front end 106 of the deck 102 and either a rear truck assembly 120 or a motorized rear truck assembly 200 secured towards the rear end 108 of the deck 102. The trucks are secured to the deck 102 with fasteners 109 that the operator can easily remove. The front and rear non-motorized truck assemblies 110 and 120 may be configured the same as each other, however, the truck assemblies orientation may be reversed.
[64] Referring now to Figures 4A through 4C there is illustrated one of the non-motorized truck assemblies (110/120) which includes an axle housing hanger 122 with a pair of axles 124 that extends transversely to the deck 102 and through the hanger 122. Wheels 126 are separately mounted at opposing ends of the pair of axles 124 and a secured onto the axles by a nut 128. Preferably, the wheels 126 rotate independently of each other so that the skateboard can negotiate turns without binding. The nut 128 may be replaced with a more general retainer that allows the user to replace or swap wheels to customize the skateboard. The hanger 122 is attached to a base plate 130, which is secured to the lower surface 104 of the deck 102. The base plate 130 includes a pivot cup 132 (Figure 4C) which receives a pivot member 134 extending from the hanger 122. A king pin 136 is placed in a bore 140 on the base plate and aligned through an opening 142 in the hanger 122 with a king pin nut 138 being secured on the end; and a pair of bushings 144 are positioned on either side of the opening 142 in the hanger 122.
[65] An important aspect to one or more embodiments of the present invention is that the deck 102 is relatively small in thickness throughout the length of the board. This permits the deck 102 to be used by an operator as illustrated in Figure 1 without a motor assembly or controlled with a remote control unit when the rear truck assembly 120 is removed and replaced with a motorized rear truck assembly 200. As such, the motorized rear truck assembly 200 is completely self-contained. As found in the prior art, motorized toy skateboards include one or more components in a large constructed deck. These components may be batteries, circuit boards, mechanical links, motors, and/or gears. As illustrated herein, the motorized rear truck assembly 200 is completely self-contained and therefore may be easily removed and exchanged with a non-motorized rear truck assembly 120.
[66] Referring now to Figures 5A through 6, the skateboard 100 is illustrated with a front truck assembly 110 and a motorized rear truck assembly 200 in accordance with an embodiment of the present invention. As provided herein, the skateboard 100 when employed with the motorized rear truck assembly 200 still rests on the surface in a similar configuration as if the skateboard 100 included a non-motorized rear truck assembly 120 (see Figure 6) and does so without having to place any components into an oversized deck assembly. However, when motorized, maneuverability of the skateboard 100 can be controlled by an operator through a remote control unit 300. Therefore, two complete play patterns are developed. First, using a non-motorized truck assembly 120, the skateboard 100 can be used as a typical fingerboard. Second, by removing the fasteners 109, the non-motorized truck assembly 120 can be removed and replaced with the self-contained motorized truck assembly 200, and then secured to the deck with the same fasteners 109.
[67] Referring now to Figures 7A through 12, the motorized rear truck assembly 200 includes a housing 202 that is elongated with an upper surface 204 or upper profile 203 that substantially matches the lower surface 104 of the deck 102 which aids in keeping all of the components substantially below the lower surface of the deck and allows the pair of rear wheels 206 to substantially align along a similar plane as the front wheels 126 when the wheels are resting on a surface. A fastening plate 210 is positioned under a portion 205 of the upper surface 204 of the housing 202. The portion 205 of the upper surface 204 includes openings 207 that are aligned with threaded openings 209 in the fastening plate 210 and which align with the rearward openings through the deck 102 such that the fasteners 109 can easily secure and release the entire housing 202 by the fastening plate 210, and thus configured to release or secure the rear motor truck assembly 200.
[68] The housing 202 includes a gear housing compartment 220, a first battery compartment 222 forward of the gear housing compartment 220, and includes a second battery compartment 224 rearward of the gear housing compartment 220. The first battery compartment 222 accommodates a first battery 214 in front of the gear housing compartment 220, while the second battery compartment 224 accommodates a pair of batteries 214 rearward of the gear housing compartment 220. The first and second battery compartments are accessible from under the housing 202 and secured with battery doors 226. The batteries are connected to a circuit board 230 through various wires 228. To aid in securing the wires 228 in place the second battery compartment 224 may include a battery bracket 225 secured over the compartment 224.
[69] The housing 202 further includes a forward window 232 for the placement of an IR sensor 234 which is in communication with the circuit board 230; its control may be shown and illustrated in the electrical schematic of Figure 14. The IR sensor 234 is positioned to receive signals from the remote control unit 300. From a top view, the circuit board 230 is positioned over the forward window 232 with a PCB cover 240 secured over the circuit board 230 and secured to a forward section of the housing 202. Since all of the components are positioned within the housing and below the lower surface of the deck, the IR sensor 234 is positioned to receive signals from the remote control unit 205 that are bounced from a surface S. In addition, the IR transmitter 305 from the remote control unit 300 is angled downwardly to help in ensuring the signal is sent downwardly towards the surface.
[70] The gear housing compartment 220 holds a pair of rotary motors 240 separately driving each of the rear wheels 206. Each motor 240 includes a drive gear 242 which is meshed to a gear reducer 244 and which is further meshed to a wheel axle gear 246 that is capable of freely spinning on a rear axle 248. The rear axle 248 extends through the housing 202 transversely to the deck 102. A pin 250 is employed to rotatably secure the gear reducer 244 to the gear hosing compartment 220. The wheel axle gear 246 further includes an end key 252 with an external profile 254 that matches an internal profile 256 positioned on a wheel hub 258. A tire 260 is positioned over the wheel hub 258 to create the rear wheel 206. The gear housing compartment 220 includes a lower gear housing cover 262 that secures the components in place.
[71] Referring now to Figure 13, as noted above, the housing 202 defined for the motorized rear truck assembly 200 includes an upper surface profile 203 to match the lower surface 104 of the deck 102, as such the housing includes a rearward portion of the second battery compartment 224 that is angled from a horizontal at an angle between 10 and 45 degrees and more particularly at about 22 degrees to match the upturn angle in the rear end 108 of the deck.
[72] As defined in various embodiments herein the remote controlled battery powered skateboard is defined as a fingerboard toy skateboard approximately 4 inches long. Completely positioned underneath the deck lower surface are the batteries, motors, gears, and circuit board. The motors may be small 6mm diameter by 11mm long cylinder motors. Each motor independently controls one rear wheel. A high efficiency gear reduction provides a drive speed near 1 meter per second. The circuit board receives power from the battery, receives infrared signals from the remote control device, and commands the motors using a processor, DC-DC switch, H-Bridges and software.
[73] It is desired in one or more embodiments to provide a toy skateboard that is both fast and able to climb steep ramps. Various play patterns and accessories in the field demand various attributes in order for the toy motorized skateboard to operate properly. Various maneuvering capabilities would include the ability to drive straight forward or reverse, turn wide in any four directions, spin left or right, and climb hills starting from a stop position at the base of the hill and from a moving position.
[74] Placing all the components below the skateboard deck has two specific advantages. First, this hides them from the user's line of sight, making the skateboard look like a normal riderless skateboard. Second, keeping the center of gravity as close to the ground as possible reduces rolling forces on the skateboard when turning. Reducing the rolling forces will help keep the skateboard in full contact with the ground and improve maneuverability and control.
[75] Consistent repeatable performance will be critical to the user. Typical battery powered products move faster when the batteries are full and slower when the batteries are nearly depleted. This would make practicing tricks more difficult as the user would need to adjust their timing for the current battery level. Additionally, some maneuvers may not be possible at lower battery levels. To eliminate this issue, a constant voltage is generated and supplied to the motors. This consistent voltage will make all maneuvers and trick timing consistent from full battery to depleted battery. Boost circuits, known to those in the arts, are used to power logic circuits that require a narrow range of voltage to operate. In this application where motor current is relatively low, it is possible to use low cost boost circuits to power two motors. Buck circuits, known to those skilled in the art, may also be employed to provide a consistent and repeatable motor voltage. The choice of buck versus boost circuit depends on whether the motor supply voltage is required to be higher or lower than the battery voltage, which depends on the specific requirements of the embodiment. Either choice of converter type falls within the scope and spirit of the present invention.
[76] The remote for the toy skateboard will have the usual forward/reverse and right/left controls. In another embodiment, the remote employs "tank" control, with left controls to control the left propulsion and right controls to control the right propulsion. In an alternative embodiment, additional "Trick" buttons are added. A Trick button sends a single trick command to the toy skateboard. In one embodiment this trick is a simple 180 degree wide turn. In another embodiment the trick is something more complex. Once the trick command is received user controls are disabled. In another embodiment, user controls are allowedto let the user perform a half of a trick followed by their own move if their timing is good. Embodiments disallowing trick termination may be better for younger users. In another embodiment, holding the trick Play button causes the trick to be repeated. In a further embodiment, the remote has a record button. When the record feature is initiated, every button pressed by the user is simultaneously transmitted and recorded until the record button is pressed again. In this instance, when the Trick button is pressed, the recorded moves are transmitted to the toy skateboard, performing a custom user generated trick maneuver.
[77] Driving forward can be modified by the addition of a weight 350 at the rear tip of the toy skateboard as shown in Figure 20B. This weight shifts the center of gravity aft, allowing the skateboard 100 to lift the front wheels 126 off the ground when accelerating. Depending on the amount of weight, location of weight 350, and the toy skateboard 100 configuration, the front wheels 126 may stay off the ground as long as the skateboard 100 continues forward.
[78] Driving in a spin involves turning the rear wheels 206 in opposite directions. This causes the toy skateboard to spin about a center of spin. The center of spin is a function of the center of the power wheels 206, the center of gravity, and the drag created by friction and load on the wheels 206, 126. The addition of weight 350 at the rear tip of the toy skateboard modifies the spin. When weight 350 is present, the center of gravity is moved aft and the load is transferred off the front wheels. This causes the toy skateboard to spin about a point very near the rear wheels 206, significantly increasing the spin speed.
[79] The two features of adding a rear weight can be accomplished by the same weight 350, hereafter referred to as a trick weight 350.
[80] In another embodiment of the present invention, the toy skateboard 100 is not employed with an on/off switch. To turn on toy skateboard 100, the operator can push or roll the toy skateboard 100 forward while on a supporting surface. This "Turn ON" feature simplifies use, feels more realistic for kids, and reduces cost. Once ON, the toy skateboard 100 immediately performs an easily recognizable pre-programmed movement pattern to indicate that it is ON. In one embodiment, the pattern is to drive forward for a predetermined amount of time. In another embodiment, the skateboard 100 turns right, then left several times. In one embodiment, the ON Pattern can be initiated immediately upon detection. In another embodiment, the ON Pattern is delayed until the user stops rolling the toy. In this embodiment, the delay improves the recognition of a successful ON, and is more visually appealing. In yet another embodiment, the motors can are pulsed in a pattern to create a haptic response that the user can feel. In one embodiment, detection of a forward roll is achieved by connecting one of the two motor 240 leads to a processor 406 input. When the toy skateboard 100 is rolled, the wheels turn, causing motor 240 to generate a back EMF voltage. The back EMF voltage generated is a function of the speed the motor 240 is turned and the specific design of the motor 240. As an example, voltages of up to 1.5v are easily generated, and voltages up to 3v are generated with higher roll speeds. Once the detected back EMF voltage reaches a pre- determined value, such as 0.7v, or the threshold voltage of an input pin of a processor 406 or transistor, or a specific voltage read by an analog to digital input, the processor 406 is configured to wake up from a sleep state. The skateboard circuit must is carefully designed to minimize current draw during the sleep state. This Turn ON method eliminates the typical ON button or switch, reducing cost.
[81] In another embodiment, the circuit connects both leads of the motor 240 to two separate processor 406 input pins. In this way, both roll forward and roll reverse are detected by the processor 406. These roll commands are recognized in a sleep state, and at any time. The processor 406 monitors the input pins to both leads of the motor 240, when the motors 240 are not commanded to move, thereby, processor 406 detects user roll commands. In an alternative embodiment, this method is expanded to detect both motors 240 and both motor 240 directions. In this embodiment turning the skateboard is also be detected, and provides additional user input to enhance skateboard control. In the embodiment, the processor 406 detects roll forward to wake to the ON state, and roll backwards to turn OFF into a sleep state.
[82] In one embodiment the use of a plurality of controllers 300 to individually operate a plurality of skateboards 100 is incorporated. This is done by the use of channel address bits in the command signal emitted from the controller 300 and received by the skateboard 100. In the embodiment, transmitters 300 are factory preset with specific channel designators. The channel designators are transmitted with each command by controllers 300 comprising the channel address. When a skateboard 100 is turned ON, it initially does not know which channel it is intended to respond to. However, it sets its channel address based on the first command it receives. In this way, a user can cause a particular skateboard 100 to respond to a particular controller 300 by ensuring that the first command the skateboard 100 receives after it is turned on comes from the intended controller 300.
[83] As it may be, in executing the above technique a skateboard 100 may inadvertently receive a first command from an undesired controller, thereby incorrectly setting its channel address. In this case, the user need only turn off skateboard 100, and then turn on skateboard 100, this time ensuring that it receives its first command from the desired controller 300. This may be repeated as necessary until the appropriate pairing has been achieved.
[84] The afformentioned technique requires a means of turning off skateboard 100 on demand, and thus, the embodiment provides for a means where the skateboard 100 goes to sleep when it is rolled backwards by the user. Turning OFF additionally increases battery life. Since rolling the skateboard forward is associated with ON, it is intuitive and therefore provided that the opposite would turn the device OFF. The turn ON feature's haptic response of the skateboard 100 moving the desired intuitive feedback corresponding to the act of turning OFF. A haptic response that does match the action is for the skate board to stop, or resist, motion, and thus is implemented in the preferred embodiment. In an embodiment, the motors 240 are set into braking mode to accomplish this wherein the motor 240 leads are shorted to one another. In an alternative embodiment, as similar sensation is implemented by the application of momentary power to the motor in the opposite direction, creating more resistance than braking alone.
[85] In an embodiment, additional rolling input from the user changes the skateboards performance. In the embodiment, a roll function of the skateboard 100 is recognized by processor 406 when a roll-forward is detected after the skateboard is ON. This causes the skateboard 100 to toggle between modes. In one example, the skateboard 100 alternates between 100% maximum speed and 50% maximum speed. A reduction in overall skateboard speed allows new types of low speed tricks that are more difficult at higher speeds.
[86] In addition, there are more settings that may be employed such as disable or enable coasting, disable or enable 50% max speed or 100% max speed, slow turning with full forward/reverse, fast turning and slower forward/reverse, forward & turning normal with braking instead of reverse, and braking for ramps. These can be controlled and set by the user either through a remote control unit or through the manual manipulation of the toy skateboard, as discussed herein.
[87] Referring now to Figure 19, there is shown a toy skateboard 100 in accordance with one or more of the present embodiments, in which the rear truck assembly 200 includes clips 301 positioned on the upper surface of the rear truck housing 202 and which are used to attach to the deck 102. In this embodiment the rear truck assembly 200 is removable and secured to the deck 102 such that the rear truck housing 202 is below the lower surface of the deck 102. However, in this embodiment the clips 301 allow the rear truck to either snap or slide onto the deck 102.
[88] Referring now to Figures 20A and 20B, there is shown a toy skateboard 100 in accordance with one or more of the present embodiments. The skateboard 100 includes a rear weight member 350 removably secured to the rear end 352 of the deck 102. The rear weight member 350 includes a channel 354 that clips into or frictionally engages the rear end of the deck 102. The weight member 350 as noted above allows the user to move the center of spin of the skateboard 100.
[89] As provided in one or more embodiments of the present invention, a processor 406 is used and discussed and may be embodied in a number of different ways. For example, the processor406 may be embodied as one or more of various processing means or devices such as a coprocessor, a microprocessor, a controller, a digital signal processor (DSP), a processing element with or without an accompanying DSP, or various other processing devices including integrated circuits such as, for example, an ASIC (application specific integrated circuit), an FPGA (field programmable gate array), a microcontroller unit (MCU), a hardware accelerator, a special-purpose computer chip, or the like. In an exemplary embodiment, the processor 406 may be configured to execute instructions stored in a memory device or otherwise accessible to the processor 406. The instructions may be permanent (e.g., firmware) or modifiable (e.g., software) instructions. The instructions can be bundled or otherwise associated with other instructions in functional profiles, which can be saved as, e.g., an electronic file on one or more memory device. Alternatively or additionally, the processor 406 may be configured to execute hard coded functionality. As such, whether configured by hardware or software methods, or by a combination thereof, the processor 406 may represent an entity (e.g., physically embodied in circuitry) capable of performing operations according to embodiments of the present invention while configured accordingly. Thus, for example, when the processor 406 is embodied as an ASIC, FPGA or the like, the processor 406 may be specifically configured hardware for conducting the operations described herein. Alternatively, as another example, when the processor 406 is embodied as an executor of software or firmware instructions, the instructions may specifically configure the processor 406 to perform the algorithms and/or operations described herein when the instructions are executed. The processor 406 may include, among other things, a clock or any other type of timer, an arithmetic logic unit (ALU) and logic gates configured to support operation of the processor 406.
[90] In addition and as discussed herein, haptic technology or haptics may be included in one or more of the discussed embodiments. Haptics involve tactile feedback provided by a device to a user. Low-cost haptic devices tend to provide tactile feedback, in which forces are transmitted to a housing or portion thereof and felt by the user, rather than kinesthetic feedback, in which forces are output directly in the degrees of freedom of motion of the interface device. The tactile feedback is typically provided by applying forces, vibrations and/or motions to one or more portions of a user interface device. Haptics are sometimes used to enhance remote control devices associated with machines and devices. In such systems, sensors in the slave device are sometimes used to detect forces exerted upon such device. The information relating to such forces is communicated to a processor, where the information is used to generate suitable tactile feedback for a user. The present invention does not use haptics to enhance the touch experience or to allow the use to feel a virtual object or to simulate reaction forces. The present invention creates tactile responses to a user interaction with a device that the user can easily correlate or deduce to an unseen setting or mode of the object. Unlike pulsing a pager in different patterns to provide a tactile response, the present invention provides tactile responses so the user can determine which setting or mode the object is now configured. Another important aspect of one or more embodiments, is that the tactile responses are relayed back to the user through the element or mechanism that the user touched to create the input in the first place. Unlike the use of sensors or switches in the prior art, the embodiments provided herein use elements, such as wheels and actuated arms that are in communication with a motor. The direct interaction by the user with these elements generates a back electromotive force through the motor, which is monitored or detected by the processor. The processor when triggered by the generated back electromotive force can access and play-back a pre-recorded motion to the element. The user still interacting with the element feels the pre-recorded motion which causes the tactile response. The tactile response felt by the user allows the user to determine or deduce the object or toy's setting or mode, as further detailed and explained herein.
[91] As provided in one or more embodiments described herein and as provided and illustrated in Figures 21A - 21B, there is generally illustrated a toy 400, that may include one or more elements 402, such as the wheels on a skateboard, an appendage on a toy robot or figure, or a propeller on a toy vehicle. These elements are external to the toy 400 and are moved/controlled separately by a motor 404, whether directly or indirectly moved or physically or non-physically coupled is well within the scope of the various embodiments provided for herein. The processor 406 is as described herein, and as such further definition is not warranted. The processor is configured to include at least a sleep state and a wake state and is further configured to transition between the two states 408. Another aspect of the embodiment is that the element is accessible for manipulation by the user, operator, or human which when moved will in turn rotate the motor. When the user manipulates the element, rotating the motor, the rotation of the motor generates a back electromotive force (herein after "EMF") voltage. The processor is configured to detect the back EMF voltage 410 and is further configured to transition between the two states when the detected back EMF voltage reaches a pre-determined value.
[92] In another aspect of the embodiment, when the detected back EMF voltage reaches the pre-determined value 412, the processor is further configured to control the motor in accordance with one or more preprogrammed motions 414, which when executed result in a tactile response. In addition, when the detected back EMF voltage reaches the pre-determined value, the processor is yet further configured to control the motor in accordance with one or more pre-programmed motions resulting in auditory perception.
[93] As provided in Figure 21B the toy 400 may include a number of elements connected separately to motors. All or some of the illustrated elements (wheel 420, appendage(s) 422, propeller 424, etc.) can be included.
[94] The processor may yet be further configured to detect a second back EMF voltage generated by the rotation of the motor in an opposite direction due to the manipulation of the element by a human in an opposite direction. In this instance, when either detectable back EMF voltage reaches the pre-determined value, the processor is configured to control the motor in accordance with one or more of the following pre-programmed motions resulting in a tactile response: (a) move said element momentarily, (b) move said element continuously, (c) resist motion of said element momentarily, (d) resist motion of said element continuously, (e) oscillate said element momentarily, and (f) oscillate said element continuously. In some instances the pre-programmed motions are selected based on the rotational direction of the motor and based on whether the processor is in the wake state or sleep state. This allows for greater functions and motion responses.
[95] In variations of the embodiments, when either the detectable back EMF voltage reaches a predetermined value, the processor may be further configured to a delay by a pre-determined time internal prior to the pre-programmed motions resulting in a tactile response. In addition, the pre-programmed motions resulting in a tactile response may be at less than 100% motor speed. In other aspects, the pre-programmed motions result in a tactile response at variating motor speed.
[96] The embodiments may also include a second motor configured to cause a motion of a second element of toy and the second element is further accessible for manipulation by a human, which when moved causes a rotation in the motor. The processor is further configured to control the second motor and the pre-programmed output is further configured to control both motors and rotate both wheels resulting in a tactile response. If desired or needed an electrical circuit can be included to alter the back EMF voltage prior to detection by the processor. The electrical circuit may be a transistor, resistor, booster, a combination thereof, or other circuits known in the industry. [97] In another embodiment a toy vehicle is provided with an element, a processor, and a motor configured to cause a motion of the element. The motion of the element is further accessible for manipulation by a human, which in turn is capable of rotating the motor. The processor is configured to detect a back electromotive force ("EMF") voltage that is generated by the rotation of the motor when the element is manipulated by the user. The processor is further configured to include at least two states and the processor includes a function configured to transition between states when the detected back EMF voltage reaches a pre-determined value. In addition, the processor is further configured to control the motor in accordance with one or more pre-programmed motions resulting in a tactile response when the detected back EMF voltage reaches a pre-determined value. In this embodiment, the pre-programmed tactile responses may be turning the motor in a forward or reverse direction or braking the motor.
[98] In variations of this embodiment the toy may include a second motor configured to cause a motion of a second element and the motion of the second element is accessible for manipulation by a human, which when manipulated in turn rotates the motor. The processor is further configured to control the second motor, and wherein the pre-programmed output is further configured to control both motors and rotate both wheels resulting in a tactile response.
[99] The processor may be further configured to detect a second back EMF voltage generated by the rotation of the motor in an opposite direction due to the manipulation by a human in an opposite direction. The processor is further configured to control said motors in accordance with one or more pre-programmed motions resulting in a tactile response, when either of the detectable back EMF voltages reach a pre-determined value. The preprogrammed motions resulting in a tactile response may include the following: (a) move one or more of said elements momentarily, (b) move one or more of said elements continuously, (c) resist motion of one or more of said elements momentarily, (d) resist motion of one or more of said elements continuously, (e) oscillate one or more of said elements momentarily, and (f) oscillate one or more of said elements continuously.
[100] As noted above in other embodiments, the pre-programmed motions may be selected based on the rotation direction of the motor and based on whether the processor is in the wake state or sleep state. In addition, when either detectable back EMF voltages reaches a pre-determined value, the processor is further configured to a delay by a pre-determined time internal prior to the pre-programmed motions resulting in a tactile response.
[101] As provided in yet another embodiment, there is provided a toy vehicle having an element, a processor, and a motor configured to cause a motion of the element and the motion of the element is further accessible for manipulation by a human, which when moved causes a rotation of the motor. The processor is configured to detect a back electromotive force ("EMF") voltage generated by the rotation of the motor due to the manipulation of the element by the user. The processor is further configured to include at least two of the following states: (a) a lower power state configured to turn the at least one motor off and power the vehicle off; (b) a lower power sleep state configured to turn the at least one motor off and put the processor in a low power sleep state and halt executing code; (c) a wake state configured to power the vehicle on; (d) a wake state configured to bring the processor out of a low power sleep state and begin to executing code; (e) a user controllable drive state configured to control the at least one motor and rotate the at least one wheel; (f) a user controllable drive state configured to control the at least one motor and rotate the at least one wheel at a slower than maximum speed; (g) a user controllable drive state configured to control the at least one motor and rotate the at least one wheel in accordance to a pre-programmed set of instructions and user input from a remote device to cause the vehicle to perform a maneuver; and (h) a non-user autonomous drive state configured to control the at least one motor and rotate the at least one wheel. The processor further includes a function configured to transition between states when the detected back EMF voltage reaches a pre-determined value. Furthermore, when the detected back EMF voltage reaches a pre-determined value, the processor is further configured to control the motor in accordance with one or more pre-programmed motions resulting in a tactile response.
[102] In other aspect, the vehicle may include a second motor configured to cause motion of a second element and the motion of the second element is further accessible for manipulation by a human, which in turn causes rotation of the motor. The processor is further configured to control the second motor, and wherein the preprogrammed output is further configured to control both motors and rotate both wheels resulting in a tactile response. The processor of the vehicle may be further configured to detect second back EMF voltage generated by the rotation of the second motor due to the manipulation by a human in an opposite direction. The processor is further configured to transition between the states when the detected second back EMF voltage reaches a predetermined value. The processor is yet further configured to control the second motor in accordance with one or more pre-programmed motions resulting in a tactile response when the detected second back EMF voltage reaches a pre-determined value, which may be the same or different value set to the first back EMF voltage.
[103] Various combinations of aspects may be included to provide for variations in the scope of the embodiments without detracting from the spirit of the invention. As such when combined with a toy skateboard, one embodiment of the invention may provide a toy vehicle or skateboard which includes a deck, a front truck with a pair of front wheels which can secure to the deck towards the front portion, and a rear truck which can secure to the deck towards the rear portion. The rear truck has first and second wheels and a housing configured to include a battery, a processor, a receiver, first and second motors separately in control of the first and second wheels respectively. The first motor is configured to cause a motion of the first wheel, and the motion of the first wheel is also accessible for manipulation by a human, which when manipulated rotates the first motor. Similarly, the second motor is configured to cause a motion of the second wheel, and the motion of the second wheel is also accessible for manipulation by a human, which when manipulated rotates the second motor. The receiver is configured to receive signals from a remote control unit and the processor is configured to receive signals from the receiver to control the first and second motors in response thereto. The processor is further configured to detect a first back electromotive force ("EMF") voltage generated by the rotation of the first or second motor due to the manipulation by a human of the toy against a surface and in a first direction. The processor is further configured to detect a second back EMF voltage generated by the rotation of the first or second motor due to the manipulation by a human of the toy against a surface and in a second direction generally opposite the first direction. The processor is further configured to include at least a sleep state and a wake state and the processor has a function configured to transition between the sleep state and the wake state when the detected back EMF voltage reaches a pre-determined value.
[104] In aspects of this embodiment, the processor is further configured to control at least one of the motors in accordance with one or more pre-programmed motions resulting in a tactile response, when at least one of the detected first and second back EMF voltages reaches a pre-determined value. The pre-programmed motions resulting in a tactile response may include one or more of the following: (a) rotate one or more of said first and second wheels momentarily; (b) move one or more of said first and second wheels continuously; (c) resist motion of one or more of said first and second wheels momentarily; (d) resist motion of one or more of said first and second wheels continuously; (e) oscillate one or more of said first and second wheels momentarily; and/or (f) oscillate one or more of said first and second wheels continuously.
[105] In still other aspects, when either of the detectable first or second back EMF voltage reaches a predetermined value, the processor is further configured to a delay by a pre-determined time internal prior to the pre-programmed motions resulting in a tactile response. The embodiment of the invention may include preprogrammed motions resulting in a tactile response that are at less than 100% motor speed or at variating motor speeds. In addition thereto, the embodiment of the invention may include an electrical circuit designed to alter at least one of the first and second back EMF voltages prior to detection by the processor.
[106] Conversion of the toy in accordance with one embodiment of the present invention may be an important aspect. As such the rear truck may be removed from the deck and a truck similar to the front truck can be secured to the deck. In this instance, a surface of the deck opposite of the lower surface can define a finger engaging region accessible for manipulation by a human to move the toy vehicle.
[107] In accordance with the figures and various embodiments and combinations of aspects provided herein, an embodiment of the present invention may provide for a convertible toy skateboard assembly. The skateboard assembly typically includes a deck, a pair of non-motorized truck assemblies and a rear motorized truck assembly. The toy skateboard is convertible as one of the non-motorized truck assemblies may be easily swapped with the rear motorized truck assembly. This allows for the toy skateboard to either have a pair of non-motorized truck assemblies, which allows the operator to use their fingers to manipulate and move the toy skateboard; or have one non-motorized truck assembly and a motorized truck assembly, which allows the operator to use a remote control unit to control and move the toy skateboard.
[108] The non-motorized truck assembly as used throughout the various embodiments is typically secured to the lower surface of the deck. The non-motorized truck assembly includes a pair of freely rotatable wheels that are positioned transversely to a longitudinal axis of the deck when attached. The motorized rear truck assembly includes a housing is configured to removably attachment to the deck. This may include clips, fasteners, or other attachment means well known in the art. The motorized truck assembly is configured to house at least (i) a battery, (ii) a processor, (iii) a receiver in communication with the processor, and (iv) a pair of motors, each motor separately controlling a rear wheel, of a pair of rear wheels, and wherein the pair of rear wheels are positioned transversely to the longitudinal axis of the deck and behind the pair of front wheels. The receiver is configured to receive signals to control the movement of the pair of rear wheels.
[109] As mentioned, the toy skateboard would therefore include two configurations: a first configuration is defined by having the front non-motorized truck assembly attached to the lower surface towards the front region of the deck and having the rear non-motorized truck assembly removably attached to the lower surface towards the rear region of the deck. In the first configuration, the upper surface of the deck defines a finger engaging region for a user's fingers to engage and move the toy skateboard. A second configuration is defined by removing the rear non-motorized truck assembly and removably attaching the motorized rear truck assembly to the lower surface towards the rear region of the deck, wherein the movement of the toy skateboard is controllable by the processor in response to signals received by the receiver.
[110] In accordance with one or more of the embodiments, the toy skateboard may include a circuit in communication with the processor and battery. The circuit configured to change the battery voltage to a fixed voltage to define a more consistent performance from the battery. This helps increase the enjoyment from the toy skateboard and it no longer seems sluggish as the batteries wear down. In addition, the remote control unit may include one or more signals to initiate a set of pre-program instructions on the processor to control the pair of rear wheels to perform one or more skateboard maneuvers. These skateboard maneuvers may include, but is not limited to, a skateboard trick, a hill climb, variable speed control, and playback of user recorded input.
[Ill] The skateboard in any one of the embodiment, may further be defined to have a first motor (from the pair of motors) coupled to a first rear wheel (from the pair of rear wheels) and the processor is configured to detect a back electromotive force ("EMF") voltage generated by the rotation of the first motor caused by a manual manipulation of the first rear wheel. The processor is further configured to include at least a sleep state and a wake state and is configured to transition between the sleep state and the wake state when the detected back EMF voltage reaches a pre-determined value. The processor may further control the pair of motors in accordance with one or more pre-programmed motions resulting in a tactile response when the detected back EMF voltage reaches a pre-determined value. In addition, the processor may further be configured to detect a second back EMF voltage generated by the rotation of the first motor in an opposite direction due to a manual manipulation of the first rear wheel in an opposite direction. When either of the detectable back EMF voltages reaches a predetermined value, the processor is further configured to control the first motor in accordance with one or more of the following pre-programmed motions resulting in a tactile response: (a) move the first rear wheel momentarily, (b) move the first rear wheel continuously, (c) resist motion of the first rear wheel momentarily, (d) resist motion of the first rear wheel continuously, (e) oscillate the first rear wheel momentarily, and (f) oscillate the first rear wheel continuously. [112] In one or more of the embodiments, the motorized rear truck assembly includes a housing defined to include a top profile substantially conforming to a portion of the lower surface of the deck towards the rear region. In this instance, the battery, processor, receiver, and pair of motors are completely positioned within the housing below the top profile of the housing and thus below the lower surface of the deck. The housing may also include a front end and a rear end with an intermediate region there-between. This provides space for a power source, such as batteries, defined by two battery compartments separately positioned in the front end and rear end of the housing and the pair of motors and the pair of rear wheels being positioned between the two battery compartments. The rear end of the housing containing one of the battery compartments may be angled upwardly to match an angle of the rear end of the deck such that the at least one battery contained in the battery compartment is angled. In various embodiments, the placement and number of battery compartments may change, as illustrated in Figures 22A - 22E.
[113] In one or more of the embodiments disclosed herein, the receiver may be defined as an IR sensor for receiving signals from the remote control unit. The IR sensor can be positioned in a window defined in the motorized rear truck assembly towards a front portion thereof and under the lower surface of the deck such that the IR sensor is positioned to receive signals reflected from a surface under the deck of the skateboard. In other aspect, the toy skateboard may include a weight removably secured to a portion of the deck to adjust a center of gravity and configured to adjust a center of spin.
[114] As defined in one ore move aspects, the toy skateboard is poised to define a motorized toy skateboard that can be controlled without needing an object on the upper surface of the deck. The toy skateboard does not need a figurine, with linkages, and control mechanics in the deck to maneuver properly. Separately, the toy skateboard may include a truck assembly housing that encloses both a front truck and a motorized rear truck. The truck assembly may be removed and replaced with a pair of non-motorized truck assemblies so the user is able to manually maneuver.
[115] In another embodiment and building on the ability to have a toy vehicle, whether it be a skateboard, car, motorcycle or any other wheeled motorized vehicle there is a continued need to provide meaningful physical user input combined with an understandable wheel driven haptic feedback. This type of user-machine interface that involves physical input, machine interpretation and adaptions thereto can be combined with a tactile wheel based feedback. For a user's point of view, Young users typically do not read users manuals. Additionally small products require very small users manuals with very small print, increasing the likelihood that the user will not read the manual. Conversely there is a distinct need for manufacturers to increase the number of features contained within a toy, either to differentiate the toy, or to allow more flexible usage patterns. The third driving factor of manufacturers is cost reduction, which makes it desirable to eliminate or reduce buttons, switches, and LEDs. It is therefore desirable to make a product that is easy to use, feature rich, and low cost. A method of physically manipulating a toy and having the toy provide physical and meaningful feedback can eliminate the need for reading users manuals to understand what the different buttons, switches, and LED blink patterns mean. [116] Pushing and/or rolling a toy on the floor or tabletop is a natural play pattern for children. Therefore incorporating rolling can be natural to children. However just the action of rolling a toy is not enough for the child to infer what they just instructed the toy to do. Using the wheels to provide a specialized form of haptic feedback can present the child with a physical acknowledgement to their action, as well as relay the meaning of the action.
[117] In addition, auditory tactile response may be included. For example, spinning a motor creates sound, and the frequency can be changed with the speed such that slow speeds create lower frequencies of sound which can the interpreted as slow, while high speeds create high frequencies of sound which can the interpreted as fast. In addition, pulsing a motor on and off at a low frequency creates lower frequencies of sound which can the interpreted as slow speeds. Pulsing a motor on and off at a high frequency creates higher frequencies of sound which can the interpreted as fast speed.
[118] The following are examples of meaningful physical user input combined with understandable wheel driven haptic feedback, visual feedback, and audible feedback. Multiple toy responses are proposed. Turn the toy ON: The child picks up a toy that is OFF and wishes to turn it ON. One possible input action is that the child rolls the toy forward across the floor. The toy could include multiple responses, such as: Toy response A: While the child is rolling the toy along a surface, the toy wakes from sleep mode and applies power to the wheels in the same direction it was just rolled, while the toy is still in contact with the child's hand and while the toy is still in contact with the surface, resulting in a tactile response of the toy no longer requiring energy to roll but now pulling the child's hand forward; alternately the child may have released the toy after it wakes from sleep but before or during the time power is applied to the wheels, providing a combination of tactile response until the toy is released and an additional visual response as the toy continues to move ahead under its own power. Alternately the child may lift the toy off the surface after it wakes from sleep but before or during the time power is applied to the wheels, providing a combination of tactile response until the toy is lifted from the surface and an additional audible response as the toy continues to apply power to the motor creating sound from a combination of the spinning motor, gears, axles, and/or wheels.
[119] Toy response B: Before the child finishes rolling the toy, the toy wakes from sleep mode and pulses power to the wheels in the same direction it was just rolled and in a fashion that resembles a car's engine being revved; or Toy response C: Before the child finishes rolling the toy, the toy wakes from sleep mode and applies a percentage of full power to the wheels in the same direction it was just rolled and in a fashion that resembles a car's engine being revved. From the user's perception, the user feels that the toy is no longer just rolling forward but is now trying to accelerate forward with his hand, relaying to the child that the toy is ON and ready to go. The result of the actions and functions of the vehicle is that the toy is now in normal drive mode.
[120] Turn the toy OFF, the child picks up a toy that is ON and wants to turn it OFF. One action is that the child pulls the toy backward across the floor. The toy could include multiple responses, such as: Toy response A: Before the child finishes pulling, the toy applies power to the wheels in the opposite direction it was just pulled; Toy response B: Before the child finishes pulling, the toy pulses power to the wheels in a opposite direction it was just pulled; or Toy response C: Before the child finishes pulling, the toy applies brakes to the wheels. From the user's perception, the user feels that the toy is no longer just rolling backward but is now trying to stop his hand, relaying to the child that the toy is trying to stop and turn OFF. The result of the actions and functions of the vehicle is that the toy goes into a low power sleep mode.
[121] To Select the Next Mode, the child is playing with a toy that is ON and wishes to alter the way it behaves and/or change an action state of the toy. The child as an example, rolls the toy forward across the floor. The toy could include multiple responses, such as: Toy response: After the child finishes rolling the toy, the toy briefly applies low speed power to the wheels in the same direction it was just rolled. From the user's perception, the user feels that the toy is spinning its wheels slowly, relaying to the child that the toy is now in a low speed drive mode. The result of the actions and functions of the vehicle is that the toy is now set to low speed mode.
[122] In another section of the Next Mode - Now in High Speed, the child is playing with a toy that is ON and wishes to alter the way it behaves and/or change an action state of the toy. The child rolls the toy forward across the floor. The toy could include multiple responses, such as: Toy response: After the child finishes rolling the toy, the toy briefly applies high speed power to the wheels in the same direction it was just rolled. From the user's perception, the user feels that the toy is spinning its wheels quickly, relaying to the child that the toy is now in a high speed drive mode. The result of the actions and functions of the vehicle is that the toy is now set to high speed mode.
[123] In another aspect, the vehicle may be able to Directly Set a Mode from the user's interface with the vehicle. The child is playing with a toy that is ON and wishes to alter the way it behaves/or change an action state of the toy. The child rolls the toy forward across the floor at a slow or fast speed. After the child finishes rolling the toy, the toy briefly applies power to the wheels in the same direction it was just rolled and at a speed similar to the speed the child rolled the toy. The child feels that the toy is spinning its wheels at a specific speed, relaying to the child that the toy is now in a customized speed mode. The toy is now set to high speed, slow speed, or specific measured speed mode respectively.
[124] Other Embodiments that could benefit from back EMF wake, processor changes, haptic response could include vehicles, robots, and cars.
[125] Referring now to Figures 23 through 25 there are illustrated electrical schematic and flow chart diagrams to illustrate embodiment of the present invention. In Figures 23 and 24 a remote control unit 500 is shown having various functional buttons 502 and slide switches 504. The remote control unit 500 may be fixed to a channel selection or may have a further slide switch to allow the user to switch channels. The remote control unit 300 includes a transmitter 506 to send signals or packets of information to the skateboard 100. In Figure 25, the remote control unit executes WAKE UP (box 510) when any button is pressed. The remote control unit may first DETERMINE THE CHANNEL (box 512) and then completes a POLL of the buttons and switches (box 514). A 1st Packet of Date is transmitted (box 516) to the receiver and then the remote control unit sets the Time and Sleep functions to Zero (box 518). The unit will then WAIT for 25 mSec (box 520), sets TIME to TIME + 1 (box 522) and then POLLS the buttons and Switches (box 524). The remote control unit will then determine IF the buttons or switch have changed (box 526), if no, the remote control unit then determines IF the time internal is equal to 4 (or about 100 mSec) (box 528). If not the remote control unit returns to box 520 to WAIT. If the buttons or Switch have changed (from box 526) or if TIME is equal to 4 (from box 528), then the remote control unit transmits a Packet of data to the receiver (box 530). After transmission, the remote control unit checks IF All buttons Off then the remote control unit will set Sleep to Sleep + 1, otherwise Sleep is set to Zero (box 532). If Sleep is greater than 10 (about 1 second) (box 534), then the remote control unit will SLEEP (box 436); otherwise the remote control unit returns to box 520 and WAITS.
[126] It is well known that the speed of a DC motor can be controlled by changing the voltage. Chopping the DC current into "on" and "off" cycles which have an effective lower voltage is one manner in reducing or controlling the speed. This method is also called pulse-width modulation (PWN) and is often controlled by a processor. Since the skateboard in accordance with the present invention incorporates an extremely small DC motor (in the range of 4 mm to 8 mm diameter DC motor), the motor has a low inductance of approximately 140 uH.
[127] Figures 29A thru 29C show the current waveform in the motor at three different PWM frequencies, 10 kHz, 100 kHz, and 1000 kHz. It can be seen that a 10kHz PWM frequency has not achieved continuous current conduction, which results in current surges that will adversely affect battery run time. It can be see that 100 kHz results in an improvement, but 1000 kHz is approximately required in order to approach acceptable continuous current conduction. Common low cost processers, which are found in low cost toys and vehicles, cannot create the desired 1000 kHz PWM frequency.
[128] In reference to Figures 26A - 28, in one embodiment of the present invention there is employed a novel and unique method of controlling and changing the voltage to extremely small DC motors. DC-DC switches, often called buck converters, can be used to achieve PWM frequencies in excess of 1000 kHz. The embodiment employs a variable output DC-DC switch 600 with the voltage set by a voltage divider. The output voltage is typically fixed to one value as defined by the circuits' needs. The voltage divider can be changed by the use of processor 10 pins and multiple resistors R8 and R9, resulting in three output speeds by connecting R8, R9, or R8 + R9 to the voltage divider (as illustrated in Figures 26A). The resulting voltage supplied to the H-bridge circuits (referred to herein as DRVs) 610, which are in communication with the motors and controlled to direct the direction of the motors at a high frequency. The result is continuous current conduction to the motor. A second benefit of this design is the processor is not required to generate a PWM frequency, simplifying software and allowing the use of a less expensive processor. In Figure 26B the three output speeds are represented by connecting different resistor values to the R31 resistor value.
[129] In accordance with an embodiment of the present invention there is provided a toy vehicle having a low inductance motor powered by a high frequency switched voltage at a frequency high enough to create continuous conduction. The vehicle includes an H-bridge circuit configured to control a direction of the motor and an adjustable high frequency DC-DC switch configured to convert a supply voltage to an output voltage, that is lower than the supply voltage, for use by the H-bridge circuit to power the low inductance motor in a forward or reverse direction. A processor is provided with instructions configured to change the output voltage from the DC-DC switch from a first voltage to a second voltage.
[130] In different aspect of this embodiment, the motor may have an inductance of approximately less than 500 uH and more preferably of about 140uH. The DC-DC switch may be operating at a frequency greater than 250kHz and more preferably at about 1000kHz or higher. In addition, the DC-DC switch may be changed digitally.
[131] In addition, the output voltage from the DC-DC switch may be selected by a voltage divider, having a first resistor value and a second resistor value selected by the instructions from the processor such that the output voltage from the DC-DC switch can define a first output voltage and a second output voltage. In other aspect the DC-DC switch can be further configured to define a third output voltage. The second resistor value may be selected from a pair of resistors, defined separately to create the first output voltage and the second output voltage respectively and defined in series to create the third output voltage. In addition, the processor further includes instructions to the H-bridge circuit to only control the direction of the motor.
[132] As shown in reference to Figure 27, the processor WAKEs on a roll in either direction (box 620), the processor SETs OLD PACKET to 0,0,0,0 (box 622) and then SETs Sleep = 0 and NoPacketTime = 0 (box 624). The processor then checks to see if the IR Data has Started (box 626). If no IR Data is received, the processor sets Sleep = Sleep + 1 (box 628), sets NoPacketTime = NoPacketTime + 1 (box 630), and If NoPacketTime > 200mSec then the processor Disables the DC-DC switch and Disables the DRVs (box 632). The processor then determines if Sleep is greater than 2 minutes (box 634). If Yes then the processor with Go To Sleep (box 636), if No then the process returns to box 626 to determine if IR Data is received. When IR Data is started, the processor Receives the IR Packet (box 638) and Checks to determine IF the Packet is Good (box 640). If not, the processor returns to box 626. If Yes, the process will set the Channel to Match if the Packet is the 1st Packet (box 642). If the Packet is not the 1st Packet the processor Checks to ensure the Packet is from the Correct Channel (box 644). If it is not the correct Channel, the processor determines If NoPacketTime > 200mSec then the processor Disables the DC-DC switch and Disables the DRVs (box 646) and then returns to box 626. If the Channel is correct, the processor Sets Sleep = 0 (box 648), the processor Moves to Figure 28 (box 650) and then when the processor returns from Figure 28, the processor save last Packet information (box 652) and moves to box 626 to continue.
[133] In Reference also to Figure 28, from box 650, the processor check to see if the Buttons from the Remote Control are Off (box 660), if All the Buttons are Off, the processor Disables the DC-DC switch and Disables the DRVs (box 662) and then returns to Box 652 (see Figure 27). If All the Buttons are not Off, then the processor Enables the DC-DC switch and Enables the DRVs (box 664). The processor then checks to determine if Any Button moved from 0 to 1 (box 668). If no, the processor sets the Ramp Time = Ramp Time + 1 (box 670). The processor then Check to determine if Ramp Time is equal to 2 (box 672). In this aspect Ramp Time may be equated to the user holding a button down or holding a slider in a specific position for a predetermined time. If the Ramp Time is 2 then the processor Sets the DC-DC switch to change the voltage to either Normal Speed or Turbo (high) Speed based on the Slider button input on the remote control (box 674). If the Ramp Time is not 2 (from box 672); or after the DC-DC switch is set (from box 674) the processor will Set the DRV directions based on input from the remote control such that the skateboard is moving Forward, Coasting, Reverse or Turning (box 680). Going back to box 668, if any Buttons did move from 0 to 1, the processor will Set the DC-DC switch speed to 1 (box 676), and set the Ramp Time = 0 (Box 678). The processor will then Set the DRV directions based on input from the remote control such that the skateboard is moving Forward, Coasting, Reverse or Turning (box 680). From box 680 the processor returns to box 652 (Figure 27).
[134] In this aspect the DC-DC switch is able to change the speed of the motor(s) by adjusted voltages by resistor changes to 3 separate speeds, a Start Up Speed, a Normal Speed, and a High Speed; which as noted herein was extremely difficult to obtain using convention chop cycles.
[135] In one embodiment, motors 240 are connected by resistor means to provide increased back EMF detection by processor 406. A simplified schematic drawing of an H-bridge 700 is shown in Figure 30 to illustrate the protective flyback diodes Dl, D2, D3, D4 integral to such an H-bridge 700. In some integrated circuit H-bridge 700 devices commercially available, diodes Dl, D2, D3, D4 are present as the parasitic diode intrinsic to the MOSFET Ql, Q2, Q3, Q4 drivers. In other integrated circuit H-bridge devices, diodes Dl, D2, D3, D4 are explicitly built into the IC to provide faster reverse recovery performance. Regardless of the specific implementation of H- bridge 700, the present feature of the invention requires diodes Dl, D2, D3, D4 to be electrically present.
[136] During operation, MOSFET Ql, Q2, Q3, Q4 are energized in various combinations to provide drive to motor 240. During the period when processor 406 is attempting to detect a back EMF signal from motor 240, MSOFET Ql, Q2, Q3, Q4 of the simplified schematic of Figure 30 are not energized, and so appear as open circuits. In the non-energized state H-bridge 700, only diodes Dl, D2, D3, D4 may conduct electrical current so as to present motor 240 back EMF across its terminals 702, 704 to generate voltages VI, V2.
[137] Figure 31 illustrates the resistive interconnection means of a feature of the present invention. Resistor Rl is connected between motor lead 702a of motor 240a and the voltage sense terminal at the node denoted by voltage VI. Resistor R2 is connected between motor lead 704a of motor 240a and a lead of resistor R2 at the node denoted by voltage V2. The remaining lead of resistor R2 at the node denoted by voltage V3 is connected to motor lead 702b of motor 240b. Motor lead 704b is connected to resistor R3. The remaining lead of resistor R3 connects to the voltage sense terminal at the node denoted by voltage V4. Voltage sense terminal VI and voltage sense terminal V4 constitute the forward and reverse EMF sense signals that drive inputs of processor 406 in order to sense and back EMF voltage from motors 240a, 240b.
[138] When motors 240a, 240b are being driven by MOSFET Ql, Q2, Q3, Q4, Q5, Q6, Q7, Q8, in various combinations, resistors Rl, R3 prevent damage to processor 406 inputs, while resistor R2 prevents excessive current from flowing between the nodes labeled voltage V2 and voltage V3. During EMF measurement state periods when processor 406 configures itself to measure sense voltages VI, V4, MOSFET Ql, Q2, Q3, Q4, Q5, Q6, Q7, Q8 are all off. In this state, the equivalent circuit is as shown in Figure 32. It is also assumed, but not shown in any figure, that the back EMF sense inputs of processor 406 provide a pull-down resistance that offers a high- impedance (but finite) current path from the inputs to ground. Thus, nominally when the motors are not turning, and the processor is in the EMF measurement state, the voltages VI, V2, V3, V4 are all near zero volts.
[139] The feature of the present invention in which the sensitivity of back EMF detection is enhanced is now described referring to the simplified equivalent circuit of Figure 32. In the case of a toy skateboard embodiment of the present invention where the player moves the skateboard, motors 240a, 240b are caused to rotate, thereby generating back EMF signals Vemf. In this case, the current through resistors Rl, R2, R3 would quickly settle to substantially zero. Thus voltage V2 would be approximately equal to voltage V3. The back EMF, defined as VI - V2 for motor 240a and V3 - V4 for motor 240b, would be substantially equal at a value of Vemf.
[140] In the case of the skateboard rolling forward, Vemf is positive. Thus D7 conducts to hold voltage V4 to a diode drop below ground (approximately -0.65V). In this case voltages V2, V3 are approximately Vemf - 0.65V. By the means of this invention, the back EMF of motor 240a adds to voltage V2 to produce a voltage VI equal to 2 X Vemf - 0.65V. This enhanced voltage exceeds the input logic high threshold of processor 406 with approximately half the rolling velocity required without this feature.
[141] Similarly, in the case of the skate board rolling backward, Vemf is negative. Thus Dl conducts to hold voltage VI to a diode drop below ground (approximately -0.65V). In this case voltages V2, V3 are approximately - Vemf - 0.65V. By the means of this invention, the back EMF of motor 240b adds to voltage V3 to produce a voltage V4 equal to -2 X Vemf - 0.65V. This enhanced voltage exceeds the input logic high threshold of processor 406 with approximately half the rolling velocity required without this feature.
[142] In some embodiments, supply voltage Vm may be produced by an adjustable regulator that is disabled when processor 406 is in a sleep state. In this case, the sense voltage that appears on the nodes demarked by VI and V4 may be high enough to cause conduction in diodes D2 and D8 respectively. This conduction, in turn, charges the capacitance on the supply voltage Vm signal through resistor R2. Provided the time constant defined by the capacitance of the power supply and the resistor R2 is sufficiently small, the embodiment of this feature of the invention continues to provide enhanced back EMF sensitivity.
[143] The sensitivity enhancement feature of the present invention may be extended to electromechanical devices employing three or more electric motors. This is implemented by cascading additional H-bridges 700 for each additional electric motor. For example, if a third electric motor were used, the method of this feature of the present invention would call for a third motor 240 and H-bridge 700 as shown in Figure 30 added to the right-hand side of the schematic of figure 31. The node demarked by voltage V4 is connected to the node demarked VI in Figure 30. An additional resistor R4 connects to the node demarked V2 of Figure 30 to the input of processor 406. In this way, the back EMF of three motors would add to create the back EMF sense signal.
[144] 1. A toy skateboard assembly comprising: a deck having a front region, rear region, an upper surface, and a lower surface; a front non-motorized truck assembly and a rear non-motorized truck assembly configured for attachment to the lower surface of the deck, the front and rear non-motorized truck assemblies having a pair of freely rotatable front wheels and rear wheels, respectively, and wherein the pairs of front and rear wheels extend transversely to a longitudinal axis of the deck when attached; a motorized rear truck assembly configured for attachment to the lower surface of the deck, the motorized rear truck assembly configured to house at least (i) a battery, (ii) a processor, (iii) a receiver in communication with the processor, and (iv) a pair of motors, each motor separately controlling a rear wheel, of a pair of rear wheels, and wherein the pair of rear wheels are positioned transversely to the longitudinal axis of the deck and behind the pair of front wheels, and said receiver configured to receive signals to control the movement of the pair of rear wheels; a first configuration, defined by having the front non-motorized truck assembly attached to the lower surface towards the front region and having the rear non-motorized truck assembly removably attached to the lower surface towards the rear region, and wherein the upper surface defines a finger engaging region for a user's fingers to engage and move the toy skateboard; and a second configuration, defined by removing the rear non-motorized truck assembly and removably attaching the motorized rear truck assembly to the lower surface towards the rear region, wherein the movement of the toy skateboard is controllable by the processor in response to said signals.
[145] 2. The toy skateboard of Claim 1, wherein the motorized rear truck assembly includes a housing defined to include a top profile substantially conforming to a portion of the lower surface towards the rear region and wherein the battery, processor, and pair of motors are completely positioned within the housing below the top profile of the housing.
[146] 3. The toy skateboard of Claim 2, wherein the motorized rear truck assembly includes a the housing, and the housing has a front end and a rear end with an intermediate region there-between, and wherein the battery is further defined to include two battery compartments separately positioned in the front end and rear end of the housing and the pair of motors and the pair of rear wheels being positioned between the two battery compartments.
[147] 4. The toy skateboard of Claim 3, wherein the rear end of the housing containing one of the battery compartments is angled upwardly to match an angle of the rear end of the deck such that the at least one battery contained in said battery compartment is angled.
[148] 5. The toy skateboard of Claim 1 wherein the receiver is defined as an IR sensor for receiving signals from the remote control unit, the IR sensor being positioned in the motorized rear truck assembly under the lower surface of the deck such that the IR sensor is positioned to receive signals reflected from a surface under the deck of the skateboard.
[149] 6. The toy skateboard of Claim 1 further comprising a circuit in communication with the processor and battery, and configured to change the battery voltage to a fixed voltage.
[150] 7. The toy skateboard of Claim 1, wherein the remote control unit includes one or more signals to initiate a set of pre-program instructions on the processor to control the pair of rear wheels to perform one or more skateboard maneuvers. [151] 8. The toy skateboard of Claim 7, wherein the one or more skateboard maneuvers include, but are not limited to, a skateboard trick, a hill climb, variable speed control, and playback of user recorded input.
[152] 9. The toy skateboard of Claim 8, wherein the remote control unit includes one or more function to record and store user input, and a function to replay the stored commands.
[153] 10. The toy skateboard of Claim 9, wherein said replay of commands can be interrupted when the user initiates a new command during said replay.
[154] 11. The toy skateboard of Claim 1, wherein the pair of motors, includes a first motor coupled to a first rear wheel, of the pair of rear wheels, and the processor is configured to detect a back electromotive force ("EMF") voltage generated by the rotation of the first motor caused by a manual manipulation of the first rear wheel, and the processor is further configured to include at least a sleep state and a wake state and is configured to transition between said sleep state and said wake state when the detected back EMF voltage reaches a pre-determined value.
[155] 12. The toy skateboard of Claim 11, wherein said processor is further configured to control the pair of motors in accordance with one or more pre-programmed motions resulting in a tactile response when said detected back EMF voltage reaches a pre-determined value, and when either said detectable back EMF voltage reaches a pre-determined value, the processor is further configured to control the first motor in accordance with one or more of the following pre-programmed motions resulting in a tactile response: (a) move the rear wheel momentarily, (b) move the rear wheel continuously, (c) resist motion of the rear wheel momentarily, (d) resist motion of the rear wheel continuously, (e) oscillate the rear wheel momentarily, and (f) oscillate the rear wheel continuously.
[156] 13. The toy skateboard of Claim 12, wherein said processor is further configured to detect a second back EMF voltage generated by the rotation of the first motor in an opposite direction due to a manual manipulation of the first rear wheel in an opposite direction; and when either said detectable back EMF voltage reaches a predetermined value, the processor is further configured to control the first motor in accordance with one or more of the following pre-programmed motions resulting in a tactile response: (a) move the rear wheel momentarily, (b) move the rear wheel continuously, (c) resist motion of the rear wheel momentarily, (d) resist motion of the rear wheel continuously, (e) oscillate the rear wheel momentarily, and (f) oscillate the rear wheel continuously.
[157] 14. A toy skateboard comprising: a deck having a front region, rear region, an upper surface, and a lower surface; a front non-motorized truck assembly secured to the lower surface towards the front region and having a pair of front wheels freely rotatably thereto; a motorized rear truck assembly secured to the lower surface towards the rear region, and the motorized rear truck assembly having a housing configured to include a battery, a processor, a pair of motors to separately drive a pair of rear wheels positioned transversely to the longitudinal axis of the deck and positioned behind the pair of front wheels, and a receiver in communication with the processor and configured to receive signals to control the movement of the pair of rear wheels; and a center of gravity defined by the toy skateboard and positioned below the lower surface of the deck. [158] 15. The toy skateboard of Claim 14, wherein the housing of the motorized rear truck assembly includes a top profile substantially conforming to a portion of the lower surface towards the rear region, and wherein the motorized rear truck assembly is completely removable from the deck such that the rear motorized truck assembly is replaceable with a non-motorized rear truck assembly similarly configured to the front truck assembly and wherein the upper surface of the deck thus defines a finger engaging region for a user's fingers to engage and move the toy skateboard.
[159] 16. The toy skateboard of Claim 14, wherein the pair of motors, includes a first motor coupled to a first rear wheel, of the pair of rear wheels, and the processor is configured to detect a back electromotive force ("EMF") voltage generated by the rotation of the first motor caused by a manual manipulation of the first rear wheel, and the processor is further configured to include at least a sleep state and a wake state and is configured to transition between said sleep state and said wake state when the detected back EMF voltage reaches a predetermined value.
[160] 17. The toy skateboard of Claim 16, wherein said processor is further configured to control the pair of motors in accordance with one or more pre-programmed motions resulting in a tactile response when said detected back EMF voltage reaches a pre-determined value, and when said detectable back EMF voltage reaches a pre-determined value, the processor is further configured to control the first motor in accordance with one or more of the following pre-programmed motions resulting in a tactile response: (a) move the rear wheel momentarily, (b) move the rear wheel continuously, (c) resist motion of the rear wheel momentarily, (d) resist motion of the rear wheel continuously, (e) oscillate the rear wheel momentarily, and (f) oscillate the rear wheel continuously.
[161] 18. The toy skateboard of Claim 17, wherein said processor is further configured to detect a second back EMF voltage generated by the rotation of the first motor in an opposite direction due to a manual manipulation of the first rear wheel in an opposite direction; and when either said detectable back EMF voltage reaches a predetermined value, the processor is further configured to control the first motor in accordance with one or more of the following pre-programmed motions resulting in a tactile response, (a) move the rear wheel momentarily, (b) move the rear wheel continuously, (c) resist motion of the rear wheel momentarily, (d) resist motion of the rear wheel continuously, (e) oscillate the rear wheel momentarily, and (f) oscillate the rear wheel continuously.
[162] 19. The toy skateboard of Claim 14, wherein the receiver is defined as an IR sensor for receiving signals from the remote control unit, the IR sensor being positioned in the motorized rear truck assembly under the lower surface of the deck such that the IR sensor is positioned to receive signals reflected from a surface under the deck of the skateboard.
[163] 20. The toy skateboard of Claim 14, wherein the housing includes a front end and a rear end with an intermediate region therebetween, and wherein the battery includes two battery compartments separately positioned in the front end and rear end and the pair of motors is positioned between the two battery compartments. [164] 21. The toy skateboard of Claim 20, wherein the rear end of the housing containing one of the battery compartments is angled upwardly to match an angle of the rear end of the deck such that the at least one battery contained in said battery compartment is angled.
[165] 22. A toy skateboard comprising: a deck having a front region, rear region, an upper surface, and a lower surface; a front non-motorized truck assembly secured to the lower surface towards the front region and having a pair of front wheels freely rotatably thereto; a motorized rear truck assembly secured to the lower surface towards the rear region, and the motorized rear truck assembly having a housing defined to include a top profile substantially conforming to a portion of the lower surface towards the rear region and the housing configured to include at least a battery, a processor, a pair of motors to separately control a pair of rear wheels positioned transversely to the longitudinal axis of the deck, and the pair of rear wheels being positioned behind the pair of front wheels, the housing further including a receiver configured to receive signals to control the movement of the pair of rear wheels; and wherein the processor is configured to detect a back electromotive force voltage generated by the rotation of one or more of the pair of motors due to a manual manipulation by a human on one or more of the rear wheels, and the processor being further configured to include at least a sleep state and a wake state, and wherein the processor includes a function to transition between the sleep state and the wake state, when the detected back electromotive force voltage reaches a pre-determined value.
[166] 23. The toy skateboard of Claim 22, wherein said processor is further configured to control the pair of motors in accordance with one or more pre-programmed motions resulting in a tactile response when said detected back EMF voltage reaches a pre-determined value, and when said detectable back EMF voltage reaches a pre-determined value, the processor is further configured to control the first motor in accordance with one or more of the following pre-programmed motions resulting in a tactile response: (a) move the rear wheel momentarily, (b) move the rear wheel continuously, (c) resist motion of the rear wheel momentarily, (d) resist motion of the rear wheel continuously, (e) oscillate the rear wheel momentarily, and (f) oscillate the rear wheel continuously.
[167] 24. The toy skateboard of Claim 23, wherein said processor is further configured to detect a second back EMF voltage generated by the rotation of the first motor in an opposite direction due to a manual manipulation of the first rear wheel in an opposite direction; and when either said detectable back EMF voltage reaches a predetermined value, the processor is further configured to control the first motor in accordance with one or more of the following pre-programmed motions resulting in a tactile response: (a) move the rear wheel momentarily, (b) move the rear wheel continuously, (c) resist motion of the rear wheel momentarily, (d) resist motion of the rear wheel continuously, (e) oscillate the rear wheel momentarily, and (f) oscillate the rear wheel continuously.
[168] 25. The toy skateboard of Claim 22, wherein the rear motorized truck assembly is removably secured to the lower surface such that the rear motorized truck assembly is replaceable with a rear non-motorized truck assembly and wherein the upper surface of the deck defines a finger engaging region for a user's fingers to engage and move the toy skateboard. [169] 26. The toy skateboard of Claim 22, wherein the receiver is defined as an IR sensor for receiving signals from an external remote control unit, the IR sensor is positioned in a window defined in the housing under the deck and the IR sensor is configured to receive signals sent by the remote control unit and reflected from a surface under the deck of the skateboard.
[170] 27. The toy skateboard of Claim 22, wherein the housing includes a front end and a rear end with an intermediate region therebetween, and wherein the battery includes two battery compartments separately positioned in the front end and rear end and the pair of motors being positioned between the two battery compartments.
[171] 28. A toy skateboard comprising: a deck having a front region, rear region, an upper surface, and a lower surface; a front non-motorized truck assembly secured to the lower surface towards the front region and having a pair of front wheels freely rotatably thereto; a motorized rear truck assembly secured to the lower surface towards the rear region, and the motorized rear truck assembly having a housing defined to include a top profile substantially conforming to a portion of the lower surface towards the rear region and the housing configured to include at least a battery, a processor, a pair of motors to control and separately rotate a pair of rear wheels positioned transversely to the longitudinal axis of the deck and positioned behind the pair of front wheels, and the housing further including a receiver configured to receive signals to control the movement of the pair of rear wheels; and a circuit in communication with the processor and battery, the circuit being configured to varying the battery voltage to a fixed voltage.
[172] 29. The toy skateboard of Claim 28, wherein the pair of motors, includes a first motor coupled to a first rear wheel, of the pair of rear wheels, and the processor is configured to detect a back electromotive force ("EMF") voltage generated by the rotation of the first motor caused by a manual manipulation of the first rear wheel, and the processor is further configured to include at least a sleep state and a wake state and is configured to transition between said sleep state and said wake state when the detected back EMF voltage reaches a pre-determined value.
[173] 30. The toy skateboard of Claim 29, wherein said processor is further configured to control the pair of motors in accordance with one or more pre-programmed motions resulting in a tactile response when said detected back EMF voltage reaches a pre-determined value, when said detectable back EMF voltage reaches a predetermined value, the processor is further configured to control the first motor in accordance with one or more of the following pre-programmed motions resulting in a tactile response: (a) move the rear wheel momentarily, (b) move the rear wheel continuously, (c) resist motion of the rear wheel momentarily, (d) resist motion of the rear wheel continuously, (e) oscillate the rear wheel momentarily, and (f) oscillate the rear wheel continuously.
[174] 31. The toy skateboard of Claim 29, wherein said processor is further configured to detect a second back EMF voltage generated by the rotation of the first motor in an opposite direction due to a manual manipulation of the first rear wheel in an opposite direction; and when either said detectable back EMF voltage reaches a predetermined value, the processor is further configured to control the first motor in accordance with one or more of the following pre-programmed motions resulting in a tactile response: (a) move the rear wheel momentarily, (b) move the rear wheel continuously, (c) resist motion of the rear wheel momentarily, (d) resist motion of the rear wheel continuously, (e) oscillate the rear wheel momentarily, and (f) oscillate the rear wheel continuously.
[175] 32. The toy skateboard of Claim 28, wherein the rear motorized truck assembly is removably secured to the lower surface such that the rear motorized truck assembly is replaceable with a rear non-motorized truck assembly and wherein the upper surface of the deck defines a finger engaging region for a user's fingers to engage and move the toy skateboard.
[176] 33. The toy skateboard of Claim 28, wherein the receiver is defined as an IR sensor for receiving signals from the remote control unit, the IR sensor being positioned in the motorized rear truck assembly under the lower surface of the deck such that the IR sensor is positioned to receive signals reflected from a surface under the deck of the skateboard.
[177] 34. A toy skateboard comprising: a deck having a front region, rear region, an upper surface, and a lower surface; a front non-motorized truck assembly secured to the lower surface towards the front region and having a pair of front wheels freely rotatably thereto; a motorized rear truck assembly secured to the lower surface towards the rear region, and the motorized rear truck assembly having a housing defined to include a top profile substantially conforming to a portion of the lower surface towards the rear region and the housing configured to include at least a battery, a processor, a pair of motors to control and separately rotate a pair of rear wheels positioned transversely to the longitudinal axis of the deck and positioned behind the pair of front wheels, and the housing further including a receiver configured to receive signals to control the movement of the pair of rear wheels; and a weight removably secured to a portion of the deck to adjust a center of gravity and configured to adjusts a center of spin.
[178] 35. The toy skateboard of Claim 34, wherein the pair of motors, includes a first motor coupled to a first rear wheel, of the pair of rear wheels, and the processor is configured to detect a back electromotive force ("EMF") voltage generated by the rotation of the first motor caused by a manual manipulation of the first rear wheel, and the processor is further configured to include at least a sleep state and a wake state and is configured to transition between said sleep state and said wake state when the detected back EMF voltage reaches a pre-determined value.
[179] 36. The toy skateboard of Claim 35, wherein said processor is further configured to control the pair of motors in accordance with one or more pre-programmed motions resulting in a tactile response when said detected back EMF voltage reaches a pre-determined value, and when said detectable back EMF voltage reaches a pre-determined value, the processor is further configured to control the first motor in accordance with one or more of the following pre-programmed motions resulting in a tactile response: (a) move the rear wheel momentarily, (b) move the rear wheel continuously, (c) resist motion of the rear wheel momentarily, (d) resist motion of the rear wheel continuously, (e) oscillate the rear wheel momentarily, and (f) oscillate the rear wheel continuously. [180] 37. The toy skateboard of Claim 36, wherein said processor is further configured to detect a second back EMF voltage generated by the rotation of the first motor in an opposite direction due to a manual manipulation of the first rear wheel in an opposite direction; and
[181] when either said detectable back EMF voltage reaches a pre-determined value, the processor is further configured to control the first motor in accordance with one or more of the following pre-programmed motions resulting in a tactile response: (a) move the rear wheel momentarily, (b) move the rear wheel continuously, (c) resist motion of the rear wheel momentarily, (d) resist motion of the rear wheel continuously, (e) oscillate the rear wheel momentarily, and (f) oscillate the rear wheel continuously.
[182] 38. The toy skateboard of Claim 34, wherein the rear motorized truck assembly is removably secured to the lower surface such that the rear motorized truck assembly is replaceable with a rear non-motorized truck assembly and wherein the upper surface of the deck defines a finger engaging region for a user's fingers to engage and move the toy skateboard.
[183] 39. The toy skateboard of Claim 34, wherein the receiver includes an IR sensor for receiving signals from a remote control unit, the IR sensor being positioned in a window defined in the housing under the deck and the IR sensor is configured to receive signals sent by the remote control unit reflected from a surface under the deck of the skateboard.
[184] 40. A toy skateboard comprising: a deck having a front region, rear region, an upper surface, and a lower surface; a front non-motorized truck assembly secured to the lower surface towards the front region and having a pair of front wheels freely rotatably thereto; a motorized rear truck assembly removably secured to the deck, and the motorized rear truck assembly having a housing defined to enclose a battery, a processor, a pair of motors to control and separately rotate a pair of rear wheels positioned transversely to the longitudinal axis of the deck and positioned behind the pair of front wheels, and the housing further including a receiver configured to receive signals to control the movement of the pair of rear wheels, such that movement of the skateboard is accomplished without an object on the upper surface of the deck.
[185] 41. The toy skateboard of claim 40, wherein the rear wheels are secured to the removably motorized rear truck assembly at a position defined wherein an uppermost plane of the rear wheels is below the lower surface of the deck.
[186] 42. The toy skateboard of Claim 40, wherein pair of rear wheels and pair of front wheels are positioned below the lower surface of the deck at a substantially single plane.
[187] 43. The toy skateboard of Claim 40, wherein the motorized rear truck assembly is removably secured to the lower surface is configured to be replaced with a non-motorized rear truck assembly, such that the upper surface of the deck defines a finger engaging region for a user's fingers to engage and move the toy skateboard.
[188] 44. The toy skateboard of Claim 40, wherein the pair of motors, includes a first motor coupled to a first rear wheel, of the pair of rear wheels, and the processor is configured to detect a back electromotive force ("EMF") voltage generated by the rotation of the first motor caused by a manual manipulation of the first rear wheel, and the processor is further configured to include at least a sleep state and a wake state and is configured to transition between said sleep state and said wake state when the detected back EMF voltage reaches a pre-determined value.
[189] 45. The toy skateboard of Claim 44, wherein said processor is further configured to control the pair of motors in accordance with one or more pre-programmed motions resulting in a tactile response when said detected back EMF voltage reaches a pre-determined value, when said detectable back EMF voltage reaches a predetermined value, the processor is further configured to control the first motor in accordance with one or more of the following pre-programmed motions resulting in a tactile response: (a) move the rear wheel momentarily, (b) move the rear wheel continuously, (c) resist motion of the rear wheel momentarily, (d) resist motion of the rear wheel continuously, (e) oscillate the rear wheel momentarily, and (f) oscillate the rear wheel continuously.
[190] 46. The toy skateboard of Claim 45, wherein said processor is further configured to detect a second back EMF voltage generated by the rotation of the first motor in an opposite direction due to a manual manipulation of the first rear wheel in an opposite direction; and when either said detectable back EMF voltage reaches a predetermined value, the processor is further configured to control the first motor in accordance with one or more of the following pre-programmed motions resulting in a tactile response: (a) move the rear wheel momentarily, (b) move the rear wheel continuously, (c) resist motion of the rear wheel momentarily, (d) resist motion of the rear wheel continuously, (e) oscillate the rear wheel momentarily, and (f) oscillate the rear wheel continuously.
[191] 47. The toy skateboard of Claim 40 further comprising a circuit in communication with the processor and battery, and the circuit being configured to vary the battery voltage to a fixed voltage to define a more consistent performance from the battery.
[192] 48. The toy skateboard of Claim 40, wherein the receiver is defined as an IR sensor for receiving signals from the remote control unit, the IR sensor being positioned in the motorized rear truck assembly under the lower surface of the deck such that the IR sensor is positioned to receive signals reflected from a surface under the deck of the skateboard.
[193] 49. The toy skateboard of Claim 40, wherein the battery, pair of motors, processor, and receiver are completely configured within the removably motorized rear truck assembly and below the top profile thereof.
[194] 50. The toy skateboard of Claim 40, wherein the removably motorized rear truck assembly includes a front end and a rear end with an intermediate region therebetween, and wherein the battery includes two or more battery compartments separately positioned in the front end and rear end and the pair of motors being positioned between the two battery compartments.
[195] 51. The toy skateboard of Claim 40 further comprising a removable weight connected to the deck to adjusts a center of spin.
[196] 52. A toy skateboard having a deck, a front truck secured to a lower surface of the deck with a pair of freely rotatable front wheels, a motorized rear truck secured to the lower surface, wherein the rear truck has a housing defined to include a top profile substantially conforming to a portion of the lower surface of the deck and the housing configured to include at least a battery, a processor, a pair of motors to control and separately rotate a pair of rear wheels positioned transversely to the longitudinal axis of the deck and positioned behind the pair of front wheels, and the housing further including a receiver configured to receive signals to control the movement of the pair of rear wheel, and wherein the rear truck is completely removably from the deck such that the rear truck is replaceable with a non-motorized rear truck similarly configured to the front truck and wherein the upper surface of the deck defines a finger engaging region for a user's fingers to engage and move the toy skateboard.
[197] 53. A toy skateboard comprising: a deck having a first region, a second region, an upper surface, and a lower surface; a truck assembly secured to the lower surface, the truck assembly having a housing with a defined first end and second end, the housing configured to include a first non-motorized pair of first wheels freely rotatable transversely to a longitudinal axis of the deck and positioned near the first end of the housing adjacent the first region of the deck, the housing further having at least a battery, a processor, a pair of motors to control and separately rotate a pair of second wheels positioned transversely to the longitudinal axis of the deck and positioned behind the pair of first wheels, and the housing further including a receiver configured to receive signals to control the movement of the pair of second wheel.
[198] 54. The toy skateboard of Claim 53, wherein the truck assembly is removably secured to the lower surface of the deck and replaceable with a pair of non-motorized truck assemblies secured to the lower surface, each non- motorized truck assembly having a pair of wheels freely rotatably and wherein the upper surface of the deck defines a finger engaging region for a user's fingers to engage and move the toy skateboard
[199] 55. The toy skateboard of Claim 53, wherein the receiver is defined as an IR sensor for receiving signals from the remote control unit, the IR sensor being positioned in the motorized rear truck assembly under the lower surface of the deck such that the IR sensor is positioned to receive signals reflected from a surface under the deck of the skateboard.
[200] 56. The toy skateboard of Claim 53, wherein the pair of motors, includes a first motor coupled to one of the second wheels and the processor is configured to detect a back electromotive force ("EMF") voltage generated by the rotation of the first motor caused by a manual manipulation of the second wheel, and the processor is further configured to include at least a sleep state and a wake state and is configured to transition between said sleep state and said wake state when the detected back EMF voltage reaches a pre-determined value.
[201] 57. The toy skateboard of Claim 56, wherein said processor is further configured to control the pair of motors in accordance with one or more pre-programmed motions resulting in a tactile response when said detected back EMF voltage reaches a pre-determined value, and when said detectable back EMF voltage reaches a pre-determined value, the processor is further configured to control the first motor in accordance with one or more of the following pre-programmed motions resulting in a tactile response: (a) move the second wheel momentarily, (b) move the second wheel continuously, (c) resist motion of the second wheel momentarily, (d) resist motion of the second wheel continuously, (e) oscillate the second wheel momentarily, and (f) oscillate the second wheel continuously. [202] 58. The toy skateboard of Claim 57, wherein said processor is further configured to detect a second back EMF voltage generated by the rotation of the first motor in an opposite direction due to a manual manipulation of the second wheel in an opposite direction; and when either said detectable back EMF voltage reaches a predetermined value, the processor is further configured to control the first motor in accordance with one or more of the following pre-programmed motions resulting in a tactile response: (a) move the second wheel momentarily, (b) move the second wheel continuously, (c) resist motion of the second wheel momentarily, (d) resist motion of the second wheel continuously, (e) oscillate the second wheel momentarily, and (f) oscillate the second wheel continuously.
[203] 59. The toy skateboard of Claim 53, wherein the processor includes a function configured to record and playback signals received from the receiver and configured as user defined controls to the pair of second wheels.
[204] 60. A toy skateboard comprising: a deck having a first region, a second region, an upper surface, and a lower surface; a non-motorized truck assembly secured to the lower surface towards the first region and having one or more freely rotatable first wheels; a motorized truck assembly removably secured to the deck, and the motorized truck assembly having a housing defined to enclose, below the lower surface of the deck: (i) a battery, (ii) a processor, (iii) a pair of motors to control and separately rotate a pair of second wheels positioned transversely to the longitudinal axis of the deck and positioned laterally away from the pair of first wheels, and (iv) a receiver configured to receive signals to control the movement of the pair of second wheels.
[205] 61. The skateboard of Claim 60, wherein the motorized truck assembly is removably attached to the lower surface of the deck.
[206] 62. A toy skateboard having a deck, a front truck secured to a lower surface of the deck with a pair of freely rotatably front wheels, the toy skateboard further comprising: a motorized rear truck secured to the lower surface and have a pair of rear wheels, the rear truck having a housing configured to include a battery, a processor, a receiver configured to receive signals from a remote control unit to send signals to the processor, and a first motor configured to rotate a first wheel in response to the signals; and the processor being further configured to detect a voltage generated by the first motor when a human generated force causes the first wheel to rotate, and the processor being further configured to include at least a sleep state and a wake state; and a pre-programmed processor function configured to cause the processor to transition from one state to another state, of the defined sleep state and wake state, when the voltage generated by the human generated force causing the first wheel to rotate reaches a pre-determined trigger voltage defined by the processor.
[207] 63. The toy skateboard of Claim 62, wherein when the voltage generated reaches a pre-determined trigger voltage causing the processor to transition from one state to another state, the processor is further configured to control the first motor in accordance with one or more pre-programmed tactile outputs to the first wheel.
[208] 64. The toy skateboard of Claim 62, wherein the processor is further configured to detect a second voltage generated by the first motor when a human generated force causes the first wheel to rotate, and when the processor transitions from one state to another state, the processor is further configured to control the first motor in accordance with one or more of the following pre-programmed tactile outputs to the first wheel : (a) accelerating the wheel forward momentarily; (b) accelerating the wheel forward continuously; (c) accelerating the wheel in reverse momentarily; (d) accelerating the wheel in reverse continuously; (e) braking the wheel; (f) oscillating the rotation of the wheel;
[209] 65. The toy skateboard of Claim 62, wherein when the processor transitions from one state to another state, the processor is further configured to a delay by a pre-determined time internal prior to the control of the first motor in accordance with the pre-programmed tactile output to the first wheel.
[210] 66. The toy skateboard of Claim 62, wherein the pre-programmed tactile output to the first wheel are at less than 100% motor speed.
[211] 67. The toy skateboard of Claim 62, wherein the pre-programmed tactile output to the first wheel are at variating motor speeds.
[212] 68. The toy skateboard of Claim 62 further comprising: a second motor in communication with the processor, the second motor configured to rotate a second wheel, and wherein the pre-programmed tactile output is further configured to control both motors and rotate both wheels.
[213] 69. The toy skateboard of Claim 62 further comprising: an electrical circuit designed to augment the voltage generated to trip the pre-determined trigger voltage defined by the processor.
[214] 70. The toy skateboard of Claim 62 further comprising a reduction gear train meshed between the first motor and first wheel.
[215] 71. The toy skateboard of Claim 62, wherein the rear truck is completely removable from the deck such that the rear truck is replaceable with a non-motorized rear truck similarly configured to the front truck and wherein the upper surface of the deck defines a finger engaging region for a user's fingers to engage and move the toy skateboard.
[216] 72. A toy vehicle comprising: a motor configured to cause a motion of an element of said toy, said motion of said element further accessible for manipulation by a human to in turn rotate said motor; anda processor configured to detect a back electromotive force ("EMF") voltage generated by the rotation of said motor due to said manipulation by a human, and said processor being further configured to include at least a sleep state and a wake state; and said processor comprising a function configured to transition between said sleep state and said wake state when said detected back EMF voltage reaches a pre-determined value.
[217] 73. The toy vehicle of Claim 72, wherein said element is a wheel.
[218] 74. The toy vehicle of Claim 72, wherein said processor is further configured to control said motor in accordance with one or more pre-programmed motions resulting in a tactile response when said detected back EMF voltage reaches a pre-determined value.
[219] 75. The toy vehicle of Claim 74, wherein when said detected back EMF voltage reaches a pre-determined value, said processor is further configured to control said motor in accordance with one or more pre-programmed motions resulting in auditory perception, and when either said detectable back EMF voltage reaches a pre- determined value, the processor is further configured to control said motor in accordance with one or more of the following pre-programmed motions resulting in a tactile response: (a) move said element momentarily, (b) move said element continuously, (c) resist motion of said element momentarily, (d) resist motion of said element continuously, (e) oscillate said element momentarily, and (f) oscillate said element continuously.
[220] 76. The toy vehicle of Claim 72, wherein said processor is further configured to detect a second back EMF voltage generated by the rotation of said motor in an opposite direction due to said manipulation by a human in an opposite direction; and when either said detectable back EMF voltage reaches a pre-determined value, the processor is further configured to control said motor in accordance with one or more of the following preprogrammed motions resulting in a tactile response: (a) move said element momentarily, (b) move said element continuously, (c) resist motion of said element momentarily, (d) resist motion of said element continuously, (e) oscillate said element momentarily, and (f) oscillate said element continuously.
[221] 77. The toy vehicle of Claim 76, wherein said pre-programmed motions are selected based on the rotation direction of the motor and based on whether the processor is in the wake state or sleep state.
[222] 78. The toy vehicle of Claim 76, wherein when either said detectable back EMF voltage reaches a predetermined value, the processor is further configured to a delay by a pre-determined time internal prior to the said pre-programmed motions resulting in a tactile response.
[223] 79. The toy vehicle of Claim 76, wherein the pre-programmed motions resulting in a tactile response are at less than 100% motor speed.
[224] 80. The toy vehicle of Claim 76, wherein the pre-programmed motions resulting in a tactile response are at varying motor speeds.
[225] 81. The toy vehicle of Claim 76 further comprising: a second motor configured to cause a motion of a second element of said toy, said motion of said second element further accessible for manipulation by a human to in turn rotate said motor; said processor is further configured to control said second motor, and wherein the preprogrammed output is further configured to control both motors and rotate both wheels resulting in a tactile response.
[226] 82. The toy vehicle of Claim 81, wherein said element is a wheel.
[227] 83. The toy vehicle of Claim 76 further comprising: an electrical circuit designed to alter said back EMF voltage prior to detection by said processor.
[228] 84. A toy vehicle comprising: a motor configured to cause a motion of an element of said toy, said motion of said element further accessible for manipulation by a human to in turn rotate said motor; and a processor configured to detect a back electromotive force ("EMF") voltage generated by the actuation of said motor due to said manipulation by a human; and said processor being further configured to include at least two states; and said processor comprising a function configured to transition between states when said detected back EMF voltage reaches a pre-determined value; and said processor is further configured to control said motor in accordance with one or more pre-programmed motions resulting in a tactile response when said detected back EMF voltage reaches a pre-determined value.
[229] 85. The toy vehicle of Claim 84, wherein said element is a wheel.
[230] 86. The toy vehicle of Claim 84, wherein the pre-programmed tactile responses is turning said motor in a forward or reverse direction or braking said motor.
[231] 87. The toy vehicle of Claim 84 further comprising: a second motor configured to cause a motion of a second element of said toy, said motion of said second element further accessible for manipulation by a human to in turn rotate said motor; said processor is further configured to control said second motor, and wherein the preprogrammed output is further configured to control both motors and rotate both wheels resulting in a tactile response.
[232] 88. The toy vehicle of Claim 87, wherein said processor is further configured to detect a second back EMF voltage generated by the rotation of said motor in an opposite direction due to said manipulation by a human in an opposite direction; and when either of said detectable back EMF voltage reaches a pre-determined value, the processor is further configured to control said motors resulting in a tactile response.
[233] 89. The toy vehicle of Claim 88 further comprising: an electrical circuit designed to alter said back EMF voltage prior to detection by said processor.
[234] 90. The toy vehicle of Claim 88, wherein said pre-programmed motions are selected based on the rotation direction of the motor and based on whether the processor is in the wake state or sleep state.
[235] 91. The toy vehicle of Claim 88, wherein when either said detectable back EMF voltage reaches a predetermined value, the processor is further configured to a delay by a pre-determined time internal prior to the said pre-programmed motions resulting in a tactile response.
[236] 92. The toy vehicle of Claim 88, wherein the pre-programmed motions resulting in a tactile response are at less than 100% motor speed.
[237] 93. A toy vehicle comprising: a motor configured to cause a motion of an element of said toy, said motion of said element further accessible for manipulation by a human to in turn rotate said motor; and a processor configured to detect a back electromotive force ("EMF") voltage generated by the actuation of said motor due to said manipulation by a human; and said processor being further configured to include at least two states of the following states: (a) a lower power state configured to turn the at least one motor off and power the vehicle off; (b) a lower power sleep state configured to turn the at least one motor off and put the processor in a low power sleep state and halt executing code; (c) a wake state configured to power the vehicle on; (d) a wake state configured to bring the processor out of a low power sleep state and begin to executing code; (e) a user controllable drive state configured to control the at least one motor and rotate the at least one wheel; (f) a user controllable drive state configured to control the at least one motor and rotate the at least one wheel at a slower than maximum speed; (g) a user controllable drive state configured to control the at least one motor and rotate the at least one wheel in accordance to a pre-programmed set of instructions and user input from a remote device to cause the vehicle to perform a maneuver; (h) a non-user autonomous drive state configured to control the at least one motor and rotate the at least one wheel; and said processor comprising a function configured to transition between states when said detected back EMF voltage reaches a pre-determined value; and said processor is further configured to control said motor in accordance with one or more pre-programmed motions resulting in a tactile response when said detected back EMF voltage reaches a pre-determined value.
[238] 94. The toy vehicle of Claim 93, wherein said element is a wheel.
[239] 95. The toy vehicle of Claim 93 further comprising: a second motor configured to cause a motion of a second element of said toy, said motion of said second element further accessible for manipulation by a human to in turn rotate said motor; said processor is further configured to control said second motor, and wherein the preprogrammed output is further configured to control both motors and rotate both wheels resulting in a tactile response.
[240] 96. The toy vehicle of Claim 93, wherein said processor is further configured to detect a second back EMF voltage generated by the rotation of said second motor due to said manipulation by a human in an opposite direction; and said processor comprising a function to transition between said states when said detected second back EMF voltage reaches a pre-determined value; and said processor is further configured to control said second motor in accordance with one or more pre-programmed motions resulting in a tactile response when said detected second back EMF voltage reaches a pre-determined value.
[241] 97. The toy vehicle of Claim 93, wherein said pre-programmed motions are selected based on the rotational direction of the motor and based on whether the processor is in the wake state or sleep state.
[242] 98. The toy vehicle of Claim 93, wherein when either said detectable back EMF voltage reaches a predetermined value, the processor is further configured to a delay by a pre-determined time internal prior to the said pre-programmed motions resulting in a tactile response.
[243] 99. A toy vehicle comprising: a motor configured to cause a motion of an element of said toy, said motion of said element further accessible for manipulation by a human to in turn rotate said motor; and a processor configured to detect a back electromotive force ("EMF") voltage generated by the rotation of said motor due to said manipulation by a human, and said processor being further configured to include at least a sleep state and a wake state; and said processor comprising a function configured to transition between said sleep state and said wake state when said detected back EMF voltage reaches a pre-determined value, wherein said processor is further configured to control said motor in accordance with one or more pre-programmed motions resulting in a tactile response when said detected back EMF voltage reaches a pre-determined value.
[244] 100. The toy vehicle of Claim 99, wherein said processor is further configured to detect a second back EMF voltage generated by the rotation of said motor in an opposite direction due to said manipulation by a human in an opposite direction; and when either said detectable back EMF voltage reaches a pre-determined value, the processor is further configured to control said motor resulting in a tactile response, and wherein said tactile response is selected based on the rotation direction of the motor and based on whether the processor is in the wake state or sleep state.
[245] 101. The toy vehicle of Claim 100, wherein said element is a wheel.
[246] 102. A toy vehicle comprising: a low inductance motor powered by a high frequency switched voltage at a frequency high enough to create continuous conduction; an H-bridge circuit configured to control a direction of the motor; an adjustable high frequency DC-DC switch configured to convert a supply voltage to an output voltage, lower than the supply voltage, for use by the H-bridge circuit to power the low inductance motor in a forward or reverse direction; and a processor having instructions configured to change the output voltage from the DC-DC switch from a first voltage to a second voltage.
[247] 103. The toy vehicle of Claim 102, wherein the motor has an inductance of approximately less than 500 uH.
[248] 104. The toy vehicle of Claim 102, wherein the motor has an inductance of about 140 uH.
[249] 105. The toy vehicle of Claim 102, wherein the DC-DC switch is operating at a frequency greater than 250 kHz.
[250] 106. The toy vehicle of Claim 102, wherein the DC-DC switch is operating at a frequency substantially about 1500 kHz.
[251] 107. The toy vehicle of Claim 102, wherein the DC-DC switch is changed digitally.
[252] 108. The toy vehicle of Claim 102, wherein the output voltage from the DC-DC switch is selected by a voltage divider with a first resistor value and a second resistor value and wherein the second resistor value is selected by the instructions from the processor such that the output voltage from the DC-DC switch can define a first output voltage and a second output voltage.
[253] 109. The toy vehicle of Claim 102, wherein the output voltage from the DC-DC switch is selected by a voltage divider with a first resistor value and a second resistor value and wherein the second resistor value is selected by the instructions from the processor such that the output voltage from the DC-DC switch can define a first output voltage, a second output voltage, and a third output voltage.
[254] 110. The toy vehicle of Claim 109, wherein the second resistor value is selected from a pair of resistors, defined separately to create the first output voltage and the second output voltage respectively and defined in series to create the third output voltage.
[255] 111. The toy vehicle of Claim 102, wherein the processor further includes instructions to the H-bridge circuit to only control the direction of the motor.
[256] 112. A toy vehicle comprising: an electromechanical actuator configured to cause a motion of an element of said toy, said motion of said element further accessible for manipulation by a human to in turn rotate said electromechanical actuator; and a processor configured to detect a back electromotive force ("EMF") voltage generated by the actuation of said electromechanical actuator due to said manipulation by a human; and said processor being further configured to include at least two states; and said processor comprising a function configured to transition between states when said detected back EMF voltage reaches a pre-determined value; and said processor is further configured to control said motor in accordance with one or more pre-programmed motions resulting in a tactile response when said detected back EMF voltage reaches a pre-determined value.
[257] 113. The toy vehicle of Claim 112, wherein said element is a wheel.
[258] 114. The toy vehicle of Claim 112, wherein the pre-programmed tactile responses is turning said electromechanical actuator in a forward or reverse direction or braking said motor.
[259] 115. The toy vehicle of Claim 112 further comprising: a second electromechanical actuator configured to cause a motion of a second element of said toy, said motion of said second element further accessible for manipulation by a human to in turn rotate said second electromechanical actuator; said processor is further configured to control said second electromechanical actuator, and wherein the pre-programmed output is further configured to control both electromechanical actuators and rotate both wheels resulting in a tactile response.
[260] 116. The toy vehicle of Claim 115, wherein said processor is further configured to detect a second back EMF voltage generated by the rotation of said electromechanical actuator in an opposite direction due to said manipulation by a human in an opposite direction; and when either of said detectable back EMF voltage reaches a pre-determined value, the processor is further configured to control said electromechanical actuators resulting in a tactile response.
[261] 117. The toy vehicle of Claim 116 further comprising: an electrical circuit designed to alter said back EMF voltage prior to detection by said processor.
[262] 118. The toy vehicle of Claim 116, wherein said pre-programmed motions are selected based on the rotation direction of the electromechanical actuator and based on whether the processor is in the wake state or sleep state.
[263] 119. The toy vehicle of Claim 116, wherein when either said detectable back EMF voltage reaches a predetermined value, the processor is further configured to a delay by a pre-determined time internal prior to the said pre-programmed motions resulting in a tactile response.
[264] 120. The toy vehicle of Claim 116, wherein the pre-programmed motions resulting in a tactile response are at less than 100% electromechanical actuator speed.
[265] 121. The toy vehicle of Claim 115, wherein the tactile response is configured in accordance with one or more of the following pre-programmed motions: (a) move one or more of said elements momentarily, (b) move one or more of said elements continuously, (c) resist motion of one or more of said elements momentarily, (d) resist motion of one or more of said elements continuously, (e) oscillate one or more of said elements momentarily, and (f) oscillate one or more of said elements continuously.
[266] 122. An electromechanical system wherein a two electrical motors actuate motive elements, and wherein a user can manipulate some or all of said motive elements to reciprocally produce motion in some or all of said two electrical motors, further comprising: a current-limited connection from a first terminal of a first said electrical motor to a first logic circuit; a resistive connection between a second terminal of a said first said electrical motor to a first terminal of a second said electrical motor; a current-limited connection from a second terminal of said second said electrical motor to a second logic circuit; wherein said first and second logic circuits detect the sum of the back EMF of said two electrical motors and are in communication with a processor.
[267] 123. The electromechanical system of claim 122, wherein the electromechanical system is a skateboard.
[268] 124. The skateboard of claim 123, wherein the said two electrical motors actuate wheels in a rear truck, wheels in the rear truck accessible for manipulation by a user.
[269] 125. An electromechanical system wherein a two electrical motors actuate motive elements, and wherein a user can manipulate some or all of said motive elements to reciprocally produce motion in some or all of said two electrical motors, further comprising: a current-limited connection from a first terminal of a first said electrical motor to a logic circuit; a resistive connection between a second terminal of a said first said electrical motor to a first terminal of a second said electrical motor; wherein said logic circuit detects the sum of the back EMF of said two electrical motors and is in communication with a processor.
[270] 126. The electromechanical system of claim 125, wherein the electromechanical system is a skateboard.
[271] 127. The skateboard of claim 126, wherein the said two electrical motors actuate wheels in a rear truck, wheels in the rear truck accessible for manipulation by a user.
[272] From the foregoing and as mentioned above, it is observed that numerous variations and modifications may be effected without departing from the spirit and scope of the novel concept of the invention. It is to be understood that no limitation with respect to the embodiments illustrated herein is intended or should be inferred. It is intended to cover, by the appended claims, all such modifications within the scope of the appended claims.

Claims

We Claim:
1. A toy vehicle comprising:
a motor configured to cause a motion of an element of said toy, said motion of said element further accessible for manipulation by a human to in turn rotate said motor; and
a processor configured to detect a back electromotive force ("EMF") voltage generated by the rotation of said motor due to said manipulation by a human, and
said processor being further configured to include at least a sleep state and a wake state; and said processor comprising a function configured to transition between said sleep state and said wake state when said detected back EMF voltage reaches a pre-determined value.
2. The toy vehicle of Claim 1, wherein said element is a wheel.
3. The toy vehicle of Claim 1, wherein said processor is further configured to control said motor in accordance with one or more pre-programmed motions resulting in a tactile response when said detected back EMF voltage reaches a pre-determined value.
4. The toy vehicle of Claim 3, wherein when said detected back EMF voltage reaches a pre-determined value, said processor is further configured to control said motor in accordance with one or more pre-programmed motions resulting in auditory perception, and when either said detectable back EMF voltage reaches a predetermined value, the processor is further configured to control said motor in accordance with one or more of the following pre-programmed motions resulting in a tactile response: (a) move said element momentarily, (b) move said element continuously, (c) resist motion of said element momentarily, (d) resist motion of said element continuously, (e) oscillate said element momentarily, and (f) oscillate said element continuously.
5. The toy vehicle of Claim 1, wherein said processor is further configured to detect a second back EMF voltage generated by the rotation of said motor in an opposite direction due to said manipulation by a human in an opposite direction; and when either said detectable back EMF voltage reaches a pre-determined value, the processor is further configured to control said motor in accordance with one or more of the following preprogrammed motions resulting in a tactile response: (a) move said element momentarily, (b) move said element continuously, (c) resist motion of said element momentarily, (d) resist motion of said element continuously, (e) oscillate said element momentarily, and (f) oscillate said element continuously.
6. The toy vehicle of Claim 5, wherein said pre-programmed motions are selected based on the rotation direction of the motor and based on whether the processor is in the wake state or sleep state.
7. The toy vehicle of Claim 5, wherein when either said detectable back EMF voltage reaches a predetermined value, the processor is further configured to a delay by a pre-determined time internal prior to the said pre-programmed motions resulting in a tactile response.
8. The toy vehicle of Claim 5, wherein the pre-programmed motions resulting in a tactile response are at less than 100% motor speed.
9. The toy vehicle of Claim 5, wherein the pre-programmed motions resulting in a tactile response are at variating motor speeds.
10. The toy vehicle of Claim 5 further comprising:
a second motor configured to cause a motion of a second element of said toy, said motion of said second element further accessible for manipulation by a human to in turn rotate said motor;
said processor is further configured to control said second motor, and wherein the pre-programmed output is further configured to control both motors and rotate both wheels resulting in a tactile response.
11. The toy vehicle of Claim 10, wherein said element is a wheel.
12. The toy vehicle of Claim 5 further comprising:
an electrical circuit designed to alter said back EMF voltage prior to detection by said processor.
13. A toy vehicle comprising:
a motor configured to cause a motion of an element of said toy, said motion of said element further accessible for manipulation by a human to in turn rotate said motor; and
a processor configured to detect a back electromotive force ("EMF") voltage generated by the actuation of said motor due to said manipulation by a human; and
said processor being further configured to include at least two states; and
said processor comprising a function configured to transition between states when said detected back EMF voltage reaches a pre-determined value; and
said processor is further configured to control said motor in accordance with one or more preprogrammed motions resulting in a tactile response when said detected back EMF voltage reaches a predetermined value.
14. The toy vehicle of Claim 13, wherein said element is a wheel.
15. The toy vehicle of Claim 13, wherein the pre-programmed tactile responses is turning said motor in a forward or reverse direction or braking said motor.
16. The toy vehicle of Claim 13 further comprising:
a second motor configured to cause a motion of a second element of said toy, said motion of said second element further accessible for manipulation by a human to in turn rotate said motor;
said processor is further configured to control said second motor, and wherein the pre-programmed output is further configured to control both motors and rotate both wheels resulting in a tactile response.
17. The toy vehicle of Claim 16, wherein said processor is further configured to detect a second back EMF voltage generated by the rotation of said motor in an opposite direction due to said manipulation by a human in an opposite direction; and
when either of said detectable back EMF voltage reaches a pre-determined value, the processor is further configured to control said motors resulting in a tactile response.
18. The toy vehicle of Claim 17 further comprising:
an electrical circuit designed to alter said back EMF voltage prior to detection by said processor.
19. The toy vehicle of Claim 17, wherein said pre-programmed motions are selected based on the rotation direction of the motor and based on whether the processor is in the wake state or sleep state.
20. The toy vehicle of Claim 17, wherein when either said detectable back EMF voltage reaches a predetermined value, the processor is further configured to a delay by a pre-determined time internal prior to the said pre-programmed motions resulting in a tactile response.
21. The toy vehicle of Claim 17, wherein the pre-programmed motions resulting in a tactile response are at less than 100% motor speed.
22. A toy vehicle comprising:
a motor configured to cause a motion of an element of said toy, said motion of said element further accessible for manipulation by a human to in turn rotate said motor; and
a processor configured to detect a back electromotive force ("EMF") voltage generated by the actuation of said motor due to said manipulation by a human; and
said processor being further configured to include at least two states of the following states:
(a) a lower power state configured to turn the at least one motor off and power the vehicle off; (b) a lower power sleep state configured to turn the at least one motor off and put the processor in a low power sleep state and halt executing code;
(c) a wake state configured to power the vehicle on;
(d) a wake state configured to bring the processor out of a low power sleep state and begin to executing code;
(e) a user controllable drive state configured to control the at least one motor and rotate the at least one wheel;
(f) a user controllable drive state configured to control the at least one motor and rotate the at least one wheel at a slower than maximum speed;
(g) a user controllable drive state configured to control the at least one motor and rotate the at least one wheel in accordance to a pre-programmed set of instructions and user input from a remote device to cause the vehicle to perform a maneuver;
(h) a non-user autonomous drive state configured to control the at least one motor and rotate the at least one wheel; and
said processor comprising a function configured to transition between states when said detected back EMF voltage reaches a pre-determined value; and
said processor is further configured to control said motor in accordance with one or more preprogrammed motions resulting in a tactile response when said detected back EMF voltage reaches a predetermined value.
23. The toy vehicle of Claim 22, wherein said element is a wheel.
24. The toy vehicle of Claim 22 further comprising:
a second motor configured to cause a motion of a second element of said toy, said motion of said second element further accessible for manipulation by a human to in turn rotate said motor;
said processor is further configured to control said second motor, and wherein the pre-programmed output is further configured to control both motors and rotate both wheels resulting in a tactile response.
25. The toy vehicle of Claim 22, wherein said processor is further configured to detect a second back EMF voltage generated by the rotation of said second motor due to said manipulation by a human in an opposite direction; and
said processor comprising a function to transition between said states when said detected second back EMF voltage reaches a pre-determined value; and said processor is further configured to control said second motor in accordance with one or more preprogrammed motions resulting in a tactile response when said detected second back EMF voltage reaches a predetermined value.
26. The toy vehicle of Claim 22, wherein said pre-programmed motions are selected based on the rotational direction of the motor and based on whether the processor is in the wake state or sleep state.
27. The toy vehicle of Claim 22, wherein when either said detectable back EMF voltage reaches a predetermined value, the processor is further configured to a delay by a pre-determined time internal prior to the said pre-programmed motions resulting in a tactile response.
28. A toy vehicle comprising:
an electromechanical actuator configured to cause a motion of an element of said toy, said motion of said element further accessible for manipulation by a human to in turn rotate said electromechanical actuator; and a processor configured to detect a back electromotive force ("EMF") voltage generated by the actuation of said electromechanical actuator due to said manipulation by a human; and
said processor being further configured to include at least two states; and
said processor comprising a function configured to transition between states when said detected back EMF voltage reaches a pre-determined value; and
said processor is further configured to control said motor in accordance with one or more preprogrammed motions resulting in a tactile response when said detected back EMF voltage reaches a predetermined value.
29. The toy vehicle of Claim 28, wherein the pre-programmed tactile responses is turning said electromechanical actuator in a forward or reverse direction or braking said motor.
30. The toy vehicle of Claim 28 further comprising:
a second electromechanical actuator configured to cause a motion of a second element of said toy, said motion of said second element further accessible for manipulation by a human to in turn rotate said second electromechanical actuator;
said processor is further configured to control said second electromechanical actuator, and wherein the pre-programmed output is further configured to control both electromechanical actuators and rotate both wheels resulting in a tactile response.
PCT/US2014/051577 2014-04-23 2014-08-19 Toy vehicle with a tactile response WO2015163933A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/111,516 US10118105B2 (en) 2014-04-23 2014-08-19 Toy vehicle with a tactile response
MX2016009680A MX2016009680A (en) 2014-04-23 2014-08-19 Toy vehicle with a tactile response.
CN201480001133.9A CN105283234B (en) 2014-04-23 2014-08-19 Toy car with adjustable DC DC switches

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201461983189P 2014-04-23 2014-04-23
US61/983,189 2014-04-23
US14/332,599 US20150306514A1 (en) 2014-04-23 2014-07-16 Toy Skateboard
US14/332,599 2014-07-16
US201414451685A 2014-08-05 2014-08-05
US14/451,685 2014-08-05

Publications (1)

Publication Number Publication Date
WO2015163933A1 true WO2015163933A1 (en) 2015-10-29

Family

ID=51483308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/051577 WO2015163933A1 (en) 2014-04-23 2014-08-19 Toy vehicle with a tactile response

Country Status (6)

Country Link
EP (1) EP2937120B1 (en)
CN (1) CN105283234B (en)
DK (1) DK2937120T3 (en)
ES (1) ES2586944T3 (en)
MX (1) MX2016009680A (en)
WO (1) WO2015163933A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111966088B (en) * 2020-07-14 2022-04-05 合肥工业大学 Control system and control method for automatically-driven toy car for children

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040116212A1 (en) * 2002-11-22 2004-06-17 Shohei Suto Radio-controlled two-wheeled vehicle toy
US20060170174A1 (en) * 2003-08-07 2006-08-03 Yuji Hiramatsu Skate board
US20100291830A1 (en) * 2009-05-18 2010-11-18 Gregory Doherty Reconfigurable transmission for toy vehicles
US20120126972A1 (en) * 2010-11-22 2012-05-24 Dainuri Rott Ruggedized control glove allowing dynamic balance and undivided visual attention
WO2012163789A1 (en) * 2011-05-27 2012-12-06 Micro-Beam Sa Electrically assisted street scooter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0567695B1 (en) * 1992-04-28 1996-01-17 Kabushiki Kaisha Sega Enterprises Direct current motor driving device
US7988519B2 (en) * 2004-11-08 2011-08-02 Go Products, Inc. Apparatus, method, and computer program product for toy vehicle
US20100261406A1 (en) * 2009-04-13 2010-10-14 James Russell Hornsby Interactive Intelligent Toy
CN201921500U (en) * 2011-01-11 2011-08-10 陈立堂 Multi-control ladder variable speed toy car for children
CN103253151B (en) * 2012-02-16 2015-09-16 赫尼斯有限公司 Electric vehicle for children and brake control method thereof
CN203264272U (en) * 2013-04-16 2013-11-06 广东银润实业有限公司 Double-motor toy car

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040116212A1 (en) * 2002-11-22 2004-06-17 Shohei Suto Radio-controlled two-wheeled vehicle toy
US20060170174A1 (en) * 2003-08-07 2006-08-03 Yuji Hiramatsu Skate board
US20100291830A1 (en) * 2009-05-18 2010-11-18 Gregory Doherty Reconfigurable transmission for toy vehicles
US20120126972A1 (en) * 2010-11-22 2012-05-24 Dainuri Rott Ruggedized control glove allowing dynamic balance and undivided visual attention
WO2012163789A1 (en) * 2011-05-27 2012-12-06 Micro-Beam Sa Electrically assisted street scooter

Also Published As

Publication number Publication date
CN105283234A (en) 2016-01-27
EP2937120B1 (en) 2016-06-15
CN105283234B (en) 2017-07-07
MX2016009680A (en) 2017-05-01
EP2937120A1 (en) 2015-10-28
DK2937120T3 (en) 2016-09-12
ES2586944T3 (en) 2016-10-19

Similar Documents

Publication Publication Date Title
US10118105B2 (en) Toy vehicle with a tactile response
EP2937121B1 (en) Toy vehicle with an adjustable DC-DC switch
US6632122B2 (en) Toy vehicle programmed to follow a manually drawn path
US8641472B2 (en) Toy snake
WO2018183347A1 (en) Interactive ride-on toy apparatus
AU2009256424B2 (en) Children's ride-on vehicles having mechanical assemblies
EP2937120B1 (en) Toy vehicle with a tactile response
US11787472B2 (en) Powered ride-on vehicle
CN100393383C (en) Toy vehicle wireless control system
CN103979044B (en) A kind of juvenile automobile master control system
CN201426977Y (en) Toy car simulation steering wheel and toy car remotely controlled by the same
US20060258261A1 (en) Two-phase stepper motor driven toys
US8932102B2 (en) Steering mechanism for toy vehicle
US20190351345A1 (en) Toy Race Car with Tactical Reactivation
TWI361676B (en)
JP7175073B1 (en) running toy

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480001133.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890233

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15111516

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/009680

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14890233

Country of ref document: EP

Kind code of ref document: A1