WO2015163673A1 - Fluid flow energy collecting apparatus, and hydroelectric generator and non-powered pump using same - Google Patents

Fluid flow energy collecting apparatus, and hydroelectric generator and non-powered pump using same Download PDF

Info

Publication number
WO2015163673A1
WO2015163673A1 PCT/KR2015/003971 KR2015003971W WO2015163673A1 WO 2015163673 A1 WO2015163673 A1 WO 2015163673A1 KR 2015003971 W KR2015003971 W KR 2015003971W WO 2015163673 A1 WO2015163673 A1 WO 2015163673A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine
energy
gear
gears
fluid
Prior art date
Application number
PCT/KR2015/003971
Other languages
French (fr)
Korean (ko)
Inventor
최한식
Original Assignee
최한식
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 최한식 filed Critical 최한식
Publication of WO2015163673A1 publication Critical patent/WO2015163673A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B7/00Water wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F1/00Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/04Combinations of toothed gearings only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the present invention relates to a turbine, and more particularly, it is possible to easily combine a plurality of turbine rotors to convert the dispersed kinetic energy of the fluid, such as liquid or gas into rotational energy and to collect and amplify the rotational force of the converted rotational energy It relates to a turbine and a cylindrical gear coupled to the rotary blade end and the outer gear is formed.
  • a turbine In general, a turbine is a mechanism for converting linear kinetic energy flowing through a blade into rotational energy and utilizing this energy.
  • the blade is fixed to a central axis and utilizes rotational energy through a rotating central axis. Most of them are used individually.
  • the blade must be large in order to use the kinetic energy of the small fluid per unit cross-sectional area due to the slow moving speed of the fluid.
  • the water is shallow and widely distributed, such as rivers or rivers, the flow is slow, and there are many changes in the water level, the size of the blade is limited and the rotational force is limited. Therefore, in order to utilize the flow energy of the fluid flowing in the stream, it is necessary to combine the rotational force of a small unit generated through the existing turbine, it is difficult to combine the existing turbine using the rotational force of the central axis.
  • gears should be connected to the central axis of rotation of a small turbine and connected to each other to increase the rotational force by combining several turbines.
  • the center of rotation of a turbine is disclosed.
  • Gears should be geared to the shaft and connected to each other by chains.
  • FIG. 1 in the case of a submersible load and a load such as a tensile force acting on a chain, which is a connection means between turbines, a resistance to hinder the flow of the fluid is generated, resulting in low energy coupling efficiency and high cost for maintenance. .
  • FIG. 1 is a view showing a case of combining an underwater turbine according to the prior art.
  • the conventional turbine is to use a turbine that is to use the rotational energy in the central axis of rotation alone or when a combination of several turbines should be used when the rotational force is insufficient.
  • the gears in the central shaft of the conventional turbine are connected to each other by a chain or the like to use a distributed rotational force.
  • the chain, the central axis and the shaft gear interfere with the fluid flow, reducing the torque of the turbines.
  • the central axis should be above a certain strength. Therefore, the thickness of the central axis is thickened to reduce the effective area of the blade for converting the linear motion of the fluid to the rotational motion to reduce the energy that can convert the flow energy into rotational energy.
  • the present invention is a turbine with a gear having a shape of a combination of a cylinder with a gear blade on the outside of the blade blades to produce a blade to rotate in the opposite direction to each other 2 and 2 of FIG.
  • the turbines are arranged so that the cylindrical gears can be directly coupled to each other by crossing each other to collect individual turbine rotational energy, and an energy collection device that collects the flow energy of a widely dispersed fluid such as a river or a river.
  • An object of the present invention is to provide a used hydro generator and a non-powered pump.
  • the turbine is a turbine for easily combining the outer rotational force of each turbine to increase the rotational force.
  • the blade end of the turbine is fixed to the inner surface of the cylinder in which the gear is formed outside, and the center is It is a turbine in which a blade is coupled to a central axis (fixed) for supporting each turbine as a whole and a bearing thereof. Therefore, the conventional turbine is a turbine in which the central axis is rotated but the central axis is fixed and the outer cylinder geared with the blade rotates with the blade.
  • the directions of the blades are formed to be opposite to each other so as to rotate in the opposite directions to the flow of the fluid in the same direction
  • the energy collection principle of the energy collection device formed as described above is that the gears of the respective turbines mesh with respect to the fluid flowing at the same flow rate in a predetermined direction in FIG. 2, so that all turbines rotate freely with almost no restraining force, but restrict the rotation to a specific turbine.
  • the load that drives the load acts on the specific turbine to which the load is connected, and the farther from the turbine, the smaller the load torque is. That is, if all turbines are geared and rotated at the same speed and the specific rotor is constrained by the load, the constrained rotor becomes slower than the peripheral rotor and the peripheral rotor is constrained to rotate slowly. The rotational force is transmitted to the rotating body.
  • FIG. 2 is a view illustrating an energy collector in which a bevel gear is added to a central turbine rotor gear to transfer collected energy to a load, and the turbine is rotated by connecting the turbine left, right, and up and down according to the load and surrounding conditions. It is also possible to combine more turbines designed to rotate in opposite directions to collect more energy.
  • the energy collecting device as described above can increase the amount of energy collected as the blades of the turbine become larger and more combined.
  • an appropriate amount of turbines can be manufactured in an appropriate quantity to be used alone or in a very wide and fast flow environment.
  • the collected energy is very large and the turbine has to be very robust, so the energy collection efficiency can be lowered. Therefore, the energy collection amount is modularized into the energy collector unit manufactured in an appropriate amount, and the modules are mechanically combined with each other. Preference is given to using.
  • a non-powered pump that can operate without supplying artificial energy such as electricity from the outside by connecting a hydro generator and a pump to generate electricity by operating the rotor of the generator with the rotation energy collected by combining the generator with the energy collector as described above.
  • the geared turbine according to the invention provides the following effects.
  • the kinetic energy of water in places such as rivers or streams with slow flow rates and widely distributed can be used as a hydroelectric generator that generates a large rotational force as an energy collector and uses it as a power source of a generator.
  • FIG. 1 is a schematic perspective view showing rotational energy collection using a turbine according to the prior art.
  • Figure 2 is a perspective view of the energy collection device of one embodiment of the present invention.
  • Figure 3 is a perspective view of a central shaft fixed turbine with a gear according to an embodiment of the present invention.
  • Figure 4 is a perspective view of a central shaft fixed turbine with a gear that rotates in the opposite direction to Figure 3 according to an embodiment of the present invention.
  • FIG. 5 is a perspective view of a central shaft fixed turbine having a gear in which a bevel gear is added to the cylindrical gears of FIGS. 3 and 4 according to an embodiment of the present invention.
  • FIG. 6 is a perspective view of a central shaft rotating turbine with a gear of FIG. 3 in accordance with one embodiment of the present invention.
  • FIG. 7 is a perspective view of a central shaft rotating turbine with a gear of FIG. 4 in accordance with one embodiment of the present invention.
  • FIG. 8 is a perspective view of an energy collecting device for coupling rotational energy by arranging only the central shaft fixed turbine with a gear of FIG. 4 according to an embodiment of the present invention.
  • FIG. 9 is an energy collecting device in which one turbine of a specific portion of an energy collecting device composed of a central fixed shaft turbine with a gear according to an embodiment of the present invention is replaced with a central fixed shaft turbine having a bevel gear in a blade outer cylindrical gear.
  • FIG. An example perspective view.
  • FIG. 10 is a perspective view of a hydroelectric generator coupled to a central shaft fixed turbine with a bevel gear in a blade outer cylindrical gear of the energy collection device according to an embodiment of the present invention.
  • Figure 11 is a perspective view of a non-powered pump coupled to the central shaft fixed turbine with a bevel gear in the blade outer cylindrical gear of the energy collection device according to an embodiment of the present invention.
  • buoyancy device 64 pillar
  • FIG. 1 is a schematic perspective view showing rotational energy collection using an underwater turbine according to the prior art.
  • FIG 3 is a perspective view of a turbine with a gear according to an embodiment of the present invention.
  • the geared turbine comprises a turbine body, a central axis 21, a bearing 22, a blade 23 and a cylindrical gear 24.
  • the turbine body is composed of a support 25 for fixing the central axis and a turbine binding mechanism 26 for holding the support.
  • the support 25 is preferably thin and rigid in the flow direction of the fluid in the direction of the central axis 21 so as to sufficiently support the turbine without disturbing the flow of the fluid.
  • the turbine binding mechanism 26 is preferably such that the coupling can be easily fixed when engaging with the rotating gear of the second turbine.
  • the central axis 21 is preferably to be firmly coupled to the support (25).
  • the blade 23 should be firmly coupled mechanically to rotate in the same manner as the outer cylindrical gear 24, and the bearing 22 has as little rotational friction as possible so that the blade 23 rotates well with respect to the central axis 21. It is preferable to be made of a material that does not cause rust and the like in the water.
  • FIG. 4 is a gear having a blade 33 opposite to the direction of the blade 23 of FIG. 3 so that the rotational direction is opposite to the turbine of FIG. 3 according to an embodiment of the present invention when the flow direction of the fluid is the same. It is a perspective view of a turbine.
  • the geared turbine includes a turbine body, a central shaft 31, a bearing 32, a blade 33, and a cylindrical gear 34 as in the turbine of FIG. 3.
  • the turbine manufactures the blade 33 in the opposite direction to the blade 23 of FIG. 3 so as to rotate at the same speed in the opposite direction as the turbine of FIG. 3 and the other components are the same as the turbine of FIG.
  • FIG. 5 is a perspective view of a central shaft fixed turbine having a gear further formed with a bevel gear in the cylindrical gear portion of the turbine of the gears of FIGS. 3 and 4 according to an embodiment of the present invention.
  • the geared turbine including the bevel gear includes a turbine body, a central shaft 41, a bearing 42, a blade 43, a cylindrical gear 44, and a bevel gear 47. It is done by
  • the turbine with the gear including the bevel gear includes a turbine body, a central shaft 41, a bearing 42, a blade 43, and a cylindrical gear 44 such as the turbine of FIGS. 3 and 4. ) And the bevel gear 47.
  • the turbine has a shape in which the bevel gear 47 is added to the components of the turbine of FIG. 3 or 4, and the turbine of FIGS. 3 and 4 is coupled to a load directly or to a transmission to use the amplified rotational energy. It is desirable for the turbine to be delivered that all components are made more robust than other turbines.
  • FIGS. 6 and 7 are perspective views of a central shaft rotating turbine in which gears are added to the central shaft of the turbine with gears of FIGS. 3 and 4 according to an embodiment of the present invention.
  • the geared turbine includes a turbine body, a central shaft 51, a bearing 52, a blade 53 and a cylindrical gear 54, a central shaft gear 57
  • the central shaft gear 57 may be a bevel gear.
  • the turbine has a gear added to the central axis of the components of the turbine of FIGS. 3 and 4, there is no bearing between the blade and the central axis, and the bearing 52 is inserted between the central axis 51 and the support 55.
  • the turbines of FIGS. 3 and 4 are combined in such a way that the blades and the central axis are rotated together so that all the components are more robust than other turbines in order to transfer the amplified rotational energy directly or to the transmission. It is preferable to be produced.
  • FIG 8 and 9 are perspective views of an energy collection device using the turbine with a gear according to an embodiment of the present invention.
  • the flow energy collecting device of the fluid includes a turbine with the collecting body and the gear of Fig. 3 (hereinafter, the turbine 2) and the turbine with the gear of Fig. 4. (Hereinafter referred to as turbine 3) and a geared turbine (hereinafter referred to as turbine 4 or turbine 5), a bearing 62, and a buoyancy device 63 shown in Figs. 5 or 6 and 7.
  • the collecting device body is composed of a column 64 to be fixed so that the collecting device does not flow into the flow of fluid and a base 65 to which a load capable of using the collected energy is coupled.
  • the column 64 is firmly installed to sufficiently support the collecting device without disturbing the flow of the fluid, and the base 65 of the collecting device correlates with the change of the water level by the buoyancy device 63. It is desirable for the turbine for energy collection to be able to move freely in the vertical direction without being positioned at a constant depth from the water surface.
  • the turbine arrays of the collecting device or the collecting device may be continuously installed in various combinations in the vertical direction to maximize the kinetic energy of the fluid when the water level is high. You can also make conversions.
  • FIG. 10 is a perspective view of a hydroelectric generator using the energy collection device according to an embodiment of the present invention.
  • the hydro generator is an example including a generator body, a flow energy collection device of the fluid of FIG. 9, and a transmission 71.
  • the generator body transfers the energy collected by the energy collector and the base 72 and the base 72 which can be firmly attached to the generator on the base where the rotational energy collected by the energy collector is concentrated It consists of a transmission (71) capable of transmitting energy at a rotational speed appropriate to the standard.
  • the transmission 71 is preferably the energy output from the energy collection device can be adjusted to a transmission ratio to maximize the power generation efficiency of the generator.
  • FIG 11 is a perspective view of a non-powered pump using the flow energy collection device of the fluid according to an embodiment of the present invention.
  • the non-powered pump is an example including a pump body, a flow energy collecting device of the fluid of FIG. 9, and a transmission 81.
  • the pump body is a base 82 that can firmly attach the pump to the base where the collected rotational energy of the energy collector is concentrated and delivers the energy collected by the energy collector to the pump and It consists of a transmission (81) capable of delivering energy at a rotational speed appropriate to the standard.
  • the transmission 81 may be adjusted to a speed ratio in which the energy output from the energy collection device can maximize the efficiency of the pump.

Abstract

The present invention relates to a turbine and, more specifically, to a turbine that has a gear mounted on the periphery of a turbine rotor in order to convert dispersed flow energies of circulating liquid, air, etc. into rotation energies and amplify a rotating force by easily combining the converted rotation energies, and apparatuses using the same. To this end, the present invention provides geared turbines having a shape in which a turbine blade is coupled at an end thereof to a cylinder that has a gear on the periphery thereof, an energy collecting apparatus that is assembled to collect individual turbine rotation energies by directly coupling the individual turbines through the gears and collects dispersed fluid flow energies, and a hydroelectric generator and a non-powered pump using the same. The turbines having a small rotating force, which convert linear motion energy obtained by the flow of a stream or river distributed to be shallow and wide into a rotary motion, can be coupled in an easy and simple manner to collect high rotation energy and use the collected energy as an energy source.

Description

유체의 유동에너지 수집 장치 및 이를 이용한 수력발전기와 무동력 펌프Fluid Collector for Fluid Flow and Hydro Generator and Power Pump Using It
본 발명은 터빈에 관한 것으로서, 보다 상세하게는 액체나 기체 등 유동체의 분산된 운동에너지를 회전에너지로 변환하고 변환된 회전에너지의 회전력을 모아서 증폭하기 위해 다수의 터빈 회전체를 쉽게 결합할 수 있도록 회전 블레이드 끝선과 외곽에 기어가 형성된 원통형 기어가 결합된 터빈과 이를 이용하는 것에 관한 것이다.The present invention relates to a turbine, and more particularly, it is possible to easily combine a plurality of turbine rotors to convert the dispersed kinetic energy of the fluid, such as liquid or gas into rotational energy and to collect and amplify the rotational force of the converted rotational energy It relates to a turbine and a cylindrical gear coupled to the rotary blade end and the outer gear is formed.
일반적으로, 터빈은 블레이드를 통하여 유체가 흐르는 직선 운동에너지를 회전에너지로 변환하고 이 에너지를 활용하기 위한 기구인데 블레이드가 중심축에 고정된 상태로 되어 있고 회전하는 중심축을 통하여 회전에너지를 활용하는 방식으로 되어 있어 대부분 개별적으로 사용된다.In general, a turbine is a mechanism for converting linear kinetic energy flowing through a blade into rotational energy and utilizing this energy. The blade is fixed to a central axis and utilizes rotational energy through a rotating central axis. Most of them are used individually.
따라서, 유체의 이동 속도가 느려 단위 단면적당 작은 유체의 운동에너지를 활용하기 위해서는 블레이드가 커져야 한다. 그런데 강이나 하천과 같이 물이 얕고 넓게 분산되고 흐름이 완만하며 수위의 변화가 많은 경우 블레이드의 크기가 제한되어 회전력을 크게 하는 데는 한계가 있다. 따라서, 이와 같은 하천에 흐르는 유체의 유동 에너지를 활용하기 위해서는 기존의 터빈을 통해 발생되는 작은 단위의 회전력을 결합하여야 하는데 중심축의 회전력을 이용하는 기존의 터빈은 결합하기가 어렵다.Therefore, the blade must be large in order to use the kinetic energy of the small fluid per unit cross-sectional area due to the slow moving speed of the fluid. However, if the water is shallow and widely distributed, such as rivers or rivers, the flow is slow, and there are many changes in the water level, the size of the blade is limited and the rotational force is limited. Therefore, in order to utilize the flow energy of the fluid flowing in the stream, it is necessary to combine the rotational force of a small unit generated through the existing turbine, it is difficult to combine the existing turbine using the rotational force of the central axis.
종래의 터빈으로 이러한 문제점을 보완하기 위해서는 작은 터빈의 회전 중심축에 기어를 달고 서로 연결하여 여러 개의 터빈을 결합하여 회전력을 키워야 하는데 이를 위해서는 특허 공개번호 10-2005-0003976호와 같이 터빈의 회전 중심축에 기어를 달고 체인 등으로 서로 연결하여야 한다. 그런데, 도 1과 같이 터빈 사이의 연결 수단인 체인 등에 작용하는 인장력 등의 부하와 수중식의 경우는 유체의 흐름을 방해하는 저항이 발생되어 에너지 결합 효율이 떨어지며 유지보수를 위해 많은 비용이 발생된다.In order to compensate for this problem with a conventional turbine, gears should be connected to the central axis of rotation of a small turbine and connected to each other to increase the rotational force by combining several turbines. To this end, as shown in Patent Publication No. 10-2005-0003976, the center of rotation of a turbine is disclosed. Gears should be geared to the shaft and connected to each other by chains. However, as shown in FIG. 1, in the case of a submersible load and a load such as a tensile force acting on a chain, which is a connection means between turbines, a resistance to hinder the flow of the fluid is generated, resulting in low energy coupling efficiency and high cost for maintenance. .
도 1은 종래기술에 따른 수중식의 터빈을 결합한 경우를 나타낸 도면이다.1 is a view showing a case of combining an underwater turbine according to the prior art.
도 1에서 보는 바와 같이, 종래의 터빈은 회전 중심축에서 회전에너지를 사용하도록 되어 있는 터빈을 단독으로 사용하거나 회전력이 부족할 경우 여러 개의 터빈을 결합하여 사용하여야 한다.As shown in Figure 1, the conventional turbine is to use a turbine that is to use the rotational energy in the central axis of rotation alone or when a combination of several turbines should be used when the rotational force is insufficient.
이를 위해, 상기 종래의 터빈의 중심축에 있는 기어를 서로 체인 등으로 연결하여 분산된 회전력을 모아서 사용한다.To this end, the gears in the central shaft of the conventional turbine are connected to each other by a chain or the like to use a distributed rotational force.
그러나, 종래기술에 의하면 다음과 같은 문제점이 있었다.However, the prior art has the following problems.
첫째, 체인 등을 통하여 회전에너지를 모으기 때문에 체인 등의 인장력에 의한 마찰력으로 모아진 결합에너지에 손실이 발생된다.First, since the rotational energy is collected through the chain and the like, a loss occurs in the combined energy collected by the frictional force by the tensile force of the chain.
둘째, 체인과 중심축 및 축 기어가 유체 흐름을 방해하여 터빈들의 회전력을 감소시킨다.Second, the chain, the central axis and the shaft gear interfere with the fluid flow, reducing the torque of the turbines.
셋째, 터빈의 중심축을 통해 회전력을 결합하여야 하기 때문에 중심축이 일정 강도 이상이 되어야 한다. 따라서 중심축의 두께가 두꺼워져 유체의 직선 운동을 회전운동으로 변환하는 블레이드의 유효면적이 줄어들어 유동에너지를 회전에너지로 변환할 수 있는 에너지가 감소한다.Third, since the rotational force must be coupled through the central axis of the turbine, the central axis should be above a certain strength. Therefore, the thickness of the central axis is thickened to reduce the effective area of the blade for converting the linear motion of the fluid to the rotational motion to reduce the energy that can convert the flow energy into rotational energy.
넷째, 여러 개의 터빈의 회전력을 결합하기 위한 복잡한 구동형태로 인하여 환경변화에 적절히 대응하기가 용이하지 않고 잦은 고장의 원인이 되어 유지보수비용이 증가되는 문제점이 있다.Fourth, due to the complex drive form for combining the rotational force of several turbines it is not easy to properly respond to environmental changes, causing frequent failures, there is a problem that the maintenance cost increases.
상기 문제점을 해결하기 위하여, 본 발명은 터빈 블레이드 끝을 외곽에 기어가 있는 원통을 결합한 형상의 기어가 있는 터빈을 서로 반대 방향으로 회전하도록 블레이드를 제작한 도 3과 도 4의 2종류 터빈과 2종류 각각의 터빈을 도 2와 같이 서로 교차하여 원통기어끼리 직접 결합하도록 배치함으로써 개개의 터빈 회전에너지를 모을 수 있도록 조립하여 강이나 하천과 같이 넓게 분산된 유체의 유동 에너지를 모으는 에너지 수집 장치와 이를 이용한 수력발전기와 무동력 펌프를 제공하는 것을 과제로 한다.In order to solve the above problems, the present invention is a turbine with a gear having a shape of a combination of a cylinder with a gear blade on the outside of the blade blades to produce a blade to rotate in the opposite direction to each other 2 and 2 of FIG. As shown in FIG. 2, the turbines are arranged so that the cylindrical gears can be directly coupled to each other by crossing each other to collect individual turbine rotational energy, and an energy collection device that collects the flow energy of a widely dispersed fluid such as a river or a river. An object of the present invention is to provide a used hydro generator and a non-powered pump.
상기 과제를 달성하기 위하여, 본 발명에서 터빈은 터빈 각각의 외측 회전력을 간편하게 결합하여 회전력을 키울 수 있도록 하기 위한 터빈으로 이를 위해서 터빈의 블레이드 끝선이 외부에 기어가 형성된 원통의 내면에 고정되고 중심은 각각의 터빈 전체를 지지하기 위한 중심축(고정)과 이 축을 베어링으로 블레이드가 결합한 형상의 터빈이다. 따라서 종래의 터빈은 중심축이 회전하나 본 발명은 중심축이 고정되고 블레이드와 결합된 외부에 기어가 있는 원통이 블레이드와 함께 회전하는 터빈이다.In order to achieve the above object, in the present invention, the turbine is a turbine for easily combining the outer rotational force of each turbine to increase the rotational force. For this purpose, the blade end of the turbine is fixed to the inner surface of the cylinder in which the gear is formed outside, and the center is It is a turbine in which a blade is coupled to a central axis (fixed) for supporting each turbine as a whole and a bearing thereof. Therefore, the conventional turbine is a turbine in which the central axis is rotated but the central axis is fixed and the outer cylinder geared with the blade rotates with the blade.
상기와 같이 형성된 터빈을 이용하여 분산된 유체의 운동에너지에 의한 작은 터빈의 작은 회전에너지를 결합하기 위하여 블레이드의 방향이 서로 정반대로 형성되어 동일 방향의 유체의 흐름에 대하여 서로 반대 방향으로 회전하도록 제작된 상기 터빈의 회전체 원통기어가 서로 맞물리게 사방으로 연속적으로 중심축을 배치하여 설치함으로써 분산된 회전에너지를 수집(집중)하는 에너지 수집 장치이다.In order to combine the small rotational energy of the small turbine by the kinetic energy of the dispersed fluid using the turbine formed as described above, the directions of the blades are formed to be opposite to each other so as to rotate in the opposite directions to the flow of the fluid in the same direction It is an energy collection device that collects (concentrates) distributed rotational energy by arranging and installing a central shaft continuously in all directions so that the rotating cylindrical gears of the turbine are engaged with each other.
상기와 같이 형성된 에너지 수집장치의 에너지 수집 원리는 도 2에서 일정 방향으로 동일유속으로 흐르는 유체에 대하여는 각각의 터빈의 기어가 맞물려 모든 터빈이 거의 구속력이 없이 자유롭게 회전하나 특정의 터빈에 회전을 구속하는 부하가 연결되면 부하가 연결된 특정 터빈에 부하를 구동하는 부하가 작용하며 이 터빈에서 멀어 질수록 부하토크가 작게 분담되어 작용한다. 즉, 모든 터빈이 기어로 결합되어 있고 동일 속력으로 회전하고 있는 상태에서 부하에 의해 특정 회전체를 구속하면 구속된 회전체는 회전속력이 주위 회전체보다 느리게 되어 주위 회전체가 구속된 느리게 회전하는 회전체에 회전력을 전달하게 된다. 따라서 구속된 터빈으로 회전력이 집중되는 에너지 수집장치가 되는 것이다. 도 2에서는 수집된 에너지를 부하로 전달할 수 있도록 중앙의 터빈 회전체 기어에 베벨기어가 추가된 에너지 수집장치를 나타낸 일실시 예이며 부하 및 주변 여건에 따라 터빈은 좌우 및 상하로 연접한 터빈의 회전 방향이 반대로 회전하도록 고안된 더 많은 터빈을 결합하여 더 많은 에너지를 수집할 수도 있다.The energy collection principle of the energy collection device formed as described above is that the gears of the respective turbines mesh with respect to the fluid flowing at the same flow rate in a predetermined direction in FIG. 2, so that all turbines rotate freely with almost no restraining force, but restrict the rotation to a specific turbine. When the load is connected, the load that drives the load acts on the specific turbine to which the load is connected, and the farther from the turbine, the smaller the load torque is. That is, if all turbines are geared and rotated at the same speed and the specific rotor is constrained by the load, the constrained rotor becomes slower than the peripheral rotor and the peripheral rotor is constrained to rotate slowly. The rotational force is transmitted to the rotating body. Therefore, it becomes an energy collector in which rotational force is concentrated to the confined turbine. FIG. 2 is a view illustrating an energy collector in which a bevel gear is added to a central turbine rotor gear to transfer collected energy to a load, and the turbine is rotated by connecting the turbine left, right, and up and down according to the load and surrounding conditions. It is also possible to combine more turbines designed to rotate in opposite directions to collect more energy.
상기와 같은 에너지 수집장치는 상기터빈의 블레이드를 크게 하고 많이 결합할수록 수집하는 에너지량이 많아지나 사용되는 상황에 따라 적정한 크기의 터빈을 적정한 수량으로 제작하여 단독으로 사용할 수도 있고 매우 넓고 유속이 빠른 환경에 적용할 때는 수집된 에너지가 매우 커져 터빈이 매우 견고해져야 하기 때문에 에너지 수집 효율이 낮아질 수 있음으로 에너지 수집량을 적정량으로 제작된 상기 에너지 수집장치 단위로 모듈화하여 이 모듈을 기계적으로 서로 결합하여 사용하는 방식을 사용하는 것이 바람직하다.The energy collecting device as described above can increase the amount of energy collected as the blades of the turbine become larger and more combined. However, according to the situation of use, an appropriate amount of turbines can be manufactured in an appropriate quantity to be used alone or in a very wide and fast flow environment. In the application, the collected energy is very large and the turbine has to be very robust, so the energy collection efficiency can be lowered. Therefore, the energy collection amount is modularized into the energy collector unit manufactured in an appropriate amount, and the modules are mechanically combined with each other. Preference is given to using.
상기와 같이 에너지 수집장치에 발전기를 결합하여 수집된 회전에너지로 발전기의 회전자를 동작시켜 전기를 생성하는 수력발전기와 펌프를 연결하여 외부에서 전기와 같이 인위적인 에너지 공급 없이 작동할 수 있는 무동력 펌프 등의 동력원으로 사용한다. 이때 적정 수준의 회전속도를 얻기 위하여 에너지 수집 장치와 발전기 및 펌프 등의 부하와의 사이에는 변속기를 결합하여 부하에 따라 조절하여 사용한다.A non-powered pump that can operate without supplying artificial energy such as electricity from the outside by connecting a hydro generator and a pump to generate electricity by operating the rotor of the generator with the rotation energy collected by combining the generator with the energy collector as described above. Use as a power source for At this time, in order to obtain a proper level of rotation speed, the transmission is combined between the energy collection device and the loads such as generators and pumps and used according to the load.
본 발명에 따른 기어가 있는 터빈은 다음과 같은 효과를 제공한다.The geared turbine according to the invention provides the following effects.
첫째, 넓은 범위에 분포된 속도가 완만한 유체의 유동에 의한 운동에너지에서 변환한 개별 터빈의 작은 회전력을 쉽게 결합하여 회전력(토크)을 증폭할 수 있는 터빈을 제공한다.First, it provides a turbine capable of amplifying the rotational force (torque) by easily combining the small rotational force of the individual turbine converted from the kinetic energy due to the flow of a gentle fluid flow over a wide range.
둘째, 단위 단면적당 작은 유체의 유동에너지를 회전에너지로 변환하여 쉽게 결합함으로써 강이나 하천과 같이 얕고 넓게 분포된 유체의 유동에너지를 회전에너지로 쉽게 수집하여 큰 에너지원으로 사용할 수 있다.Second, by converting the flow energy of a small fluid per unit cross-sectional area into rotational energy and easily combining it, the flow energy of a shallow and widely distributed fluid such as river or river can be easily collected as the rotational energy and used as a large energy source.
셋째, 유속이 느리고 넓게 분산된 강이나 하천과 같은 곳의 물의 운동에너지를 에너지 수집장치로 큰 회전력을 생성하여 발전기의 동력원으로 사용하는 수력발전기로 사용할 수 있다.Third, the kinetic energy of water in places such as rivers or streams with slow flow rates and widely distributed can be used as a hydroelectric generator that generates a large rotational force as an energy collector and uses it as a power source of a generator.
넷째, 에너지 수집장치에 의해 수집된 회전 에너지로 펌프를 작동시켜 외부에서 제공되는 에너지 없이 유체의 유동에 따른 운동에너지만을 사용하여 작동하는 무동력 펌프로 사용할 수 있다.Fourth, by operating the pump with the rotational energy collected by the energy collector can be used as a non-powered pump to operate using only the kinetic energy according to the flow of the fluid without energy provided from the outside.
도 1은 종래기술에 따른 터빈을 사용한 회전에너지 수집을 나타낸 개략적인 사시도.1 is a schematic perspective view showing rotational energy collection using a turbine according to the prior art.
도 2는 본 발명의 일실시 예의 에너지 수집 장치의 사시도.Figure 2 is a perspective view of the energy collection device of one embodiment of the present invention.
도 3은 본 발명의 일실시 예에 따른 기어가 있는 중심축 고정 터빈의 사시도.Figure 3 is a perspective view of a central shaft fixed turbine with a gear according to an embodiment of the present invention.
도 4는 본 발명의 일실시 예에 따른 도 3과 반대방향으로 회전하는 기어가 있는 중심축 고정 터빈의 사시도.Figure 4 is a perspective view of a central shaft fixed turbine with a gear that rotates in the opposite direction to Figure 3 according to an embodiment of the present invention.
도 5는 본 발명의 일실시 예에 따른 도 3과 도 4의 원통기어에 베벨기어가 추가된 기어가 있는 중심축 고정 터빈의 사시도.5 is a perspective view of a central shaft fixed turbine having a gear in which a bevel gear is added to the cylindrical gears of FIGS. 3 and 4 according to an embodiment of the present invention.
도 6은 본 발명의 일실시 예에 따른 도 3의 기어가 있는 중심축 회전 터빈의 사시도.6 is a perspective view of a central shaft rotating turbine with a gear of FIG. 3 in accordance with one embodiment of the present invention.
도 7는 본 발명의 일실시 예에 따른 도 4의 기어가 있는 중심축 회전 터빈의 사시도.7 is a perspective view of a central shaft rotating turbine with a gear of FIG. 4 in accordance with one embodiment of the present invention.
도 8은 본 발명의 일실시 예에 따른 도 4의 기어가 있는 중심축 고정 터빈만으로 배열하여 회전에너지를 결합하는 에너지 수집장치의 사시도.8 is a perspective view of an energy collecting device for coupling rotational energy by arranging only the central shaft fixed turbine with a gear of FIG. 4 according to an embodiment of the present invention.
도 9는 본 발명의 일실시 예에 따른 기어가 있는 중심축 고정 터빈으로 구성된 에너지 수집장치의 특정 부위의 1개 터빈을 블레이드 외곽 원통기어에 베벨기어가 있는 중심축 고정 터빈으로 대체한 에너지 수집장치 일예의 사시도.FIG. 9 is an energy collecting device in which one turbine of a specific portion of an energy collecting device composed of a central fixed shaft turbine with a gear according to an embodiment of the present invention is replaced with a central fixed shaft turbine having a bevel gear in a blade outer cylindrical gear. FIG. An example perspective view.
도 10은 본 발명의 일실시 예에 따른 에너지 수집장치의 블레이드 외곽 원통기어에 베벨기어가 있는 중심축 고정 터빈에 발전기를 결합한 수력발전기의 사시도.10 is a perspective view of a hydroelectric generator coupled to a central shaft fixed turbine with a bevel gear in a blade outer cylindrical gear of the energy collection device according to an embodiment of the present invention.
도 11은 본 발명의 일실시 예에 따른 에너지 수집장치의 블레이드 외곽 원통기어에 베벨기어가 있는 중심축 고정 터빈에 펌프를 결합한 무동력 펌프의 사시도.Figure 11 is a perspective view of a non-powered pump coupled to the central shaft fixed turbine with a bevel gear in the blade outer cylindrical gear of the energy collection device according to an embodiment of the present invention.
*도면 중 주요 부호에 대한 설명** Description of the major symbols in the drawings *
21: 중심축 22: 베어링 21: central axis 22: bearing
23: 블레이드 24: 원통기어23: blade 24: cylindrical gear
25: 지지대 26: 터빈 결속 기구25: support 26: turbine binding mechanism
31: 중심축 32: 베어링31: central axis 32: bearing
33: 블레이드 34: 원통기어33: Blade 34: Cylindrical Gear
35: 지지대 36: 터빈 결속 기구35: support 36: turbine binding mechanism
41: 중심축 42: 베어링41: central axis 42: bearing
43: 블레이드 44: 원통기어 43: blade 44: cylindrical gear
45: 지지대 46: 터빈 결속 기구45: support 46: turbine binding mechanism
47: 베벨기어 51: 중심축47: bevel gear 51: central axis
52: 베어링 53: 블레이드52: bearing 53: blade
54: 원통기어 55: 지지대 54: Cylindrical Gear 55: Support
56: 터빈 결속 기구 57: 중심축기어56: turbine binding mechanism 57: central shaft gear
63: 부력장치 64: 기둥63: buoyancy device 64: pillar
65: 베이스 71: 변속기65: base 71: transmission
72: 베이스 73: 발전기72: base 73: generator
81: 변속기 82: 베이스81: transmission 82: base
83: 모터가 없는 펌프 84: 펌프 유입구83: pump without motor 84: pump inlet
85: 펌프 토출구85: pump outlet
이하 첨부된 도면을 참조하여, 본 발명의 바람직한 실시 예에 따른 기어가 있는 터빈과 이를 이용한 에너지 수집 장치 및 이를 이용한 수력발전기 및 무동력 펌프를 상세히 설명한다.Hereinafter, with reference to the accompanying drawings, a turbine with a gear according to a preferred embodiment of the present invention, an energy collection device using the same, and a hydroelectric generator and a non-powered pump using the same will be described in detail.
도 1은 종래기술에 따른 수중용 터빈을 사용한 회전에너지 수집을 나타낸 개략적인 사시도이다.1 is a schematic perspective view showing rotational energy collection using an underwater turbine according to the prior art.
도 3은 본 발명의 일실시 예에 따른 기어가 있는 터빈의 사시도 이다.3 is a perspective view of a turbine with a gear according to an embodiment of the present invention.
도 3에서 보는 바와 같이, 상기 기어가 있는 터빈은 터빈몸체, 중심축(21), 베어링(22), 블레이드(23) 그리고 원통기어(24)를 포함하여 이루어진다.As shown in FIG. 3, the geared turbine comprises a turbine body, a central axis 21, a bearing 22, a blade 23 and a cylindrical gear 24.
여기서, 상기 터빈몸체는 중심축을 고정하는 지지대(25)와 상기 지지대를 유지하는 터빈 결속 기구(26)로 이루어진다. 상기 지지대(25)는 유체의 흐름을 방해하지 않고 터빈을 충분히 지지할 수 있도록 중심축(21) 방향인 유체의 흐름 방향으로 얇으며 견고한 것이 바람직하다. 상기 터빈 결속 기구(26)는 제2의 터빈의 회전체 기어와 결합할 때 결합이 용이하게 고정시킬 수 있도록 하는 것이 바람직하다. 상기 중심축(21)은 지지대(25)와 견고하게 결합될 수 있도록 하는 것이 바람직하다. 상기 블레이드(23)는 외부 원통기어(24)와 동일하게 회전하도록 기계적으로 견고하게 결합되어야 하고 상기 베어링(22)은 중심축(21)에 대하여 블레이드(23)가 잘 회전하도록 최대한 회전마찰이 적고 수중에서 녹 등이 발생되지 않는 재질로 제작된 것이 바람직하다.Here, the turbine body is composed of a support 25 for fixing the central axis and a turbine binding mechanism 26 for holding the support. The support 25 is preferably thin and rigid in the flow direction of the fluid in the direction of the central axis 21 so as to sufficiently support the turbine without disturbing the flow of the fluid. The turbine binding mechanism 26 is preferably such that the coupling can be easily fixed when engaging with the rotating gear of the second turbine. The central axis 21 is preferably to be firmly coupled to the support (25). The blade 23 should be firmly coupled mechanically to rotate in the same manner as the outer cylindrical gear 24, and the bearing 22 has as little rotational friction as possible so that the blade 23 rotates well with respect to the central axis 21. It is preferable to be made of a material that does not cause rust and the like in the water.
도 4는 유체의 흐름 방향이 같을 때 본 발명의 일실시 예에 따른 도 3의 터빈과 회전 방향이 반대가 되도록 도 3의 블레이드(23)의 방향과 반대로 블레이드(33)를 형성한 기어가 있는 터빈의 사시도 이다.4 is a gear having a blade 33 opposite to the direction of the blade 23 of FIG. 3 so that the rotational direction is opposite to the turbine of FIG. 3 according to an embodiment of the present invention when the flow direction of the fluid is the same. It is a perspective view of a turbine.
도 4에서 보는 바와 같이, 상기 기어가 있는 터빈은 도 3의 터빈과 같이 터빈몸체, 중심축(31), 베어링(32), 블레이드(33) 그리고 원통기어(34)를 포함하여 이루어진다.As shown in FIG. 4, the geared turbine includes a turbine body, a central shaft 31, a bearing 32, a blade 33, and a cylindrical gear 34 as in the turbine of FIG. 3.
여기서, 상기 터빈은 도 3의 터빈과 반대방향으로 동일 속력으로 회전하도록 도 3의 블레이드(23)와 반대방향으로 블레이드(33)를 제작하고 다른 구성요소는 도 3의 터빈과 동일하다.Here, the turbine manufactures the blade 33 in the opposite direction to the blade 23 of FIG. 3 so as to rotate at the same speed in the opposite direction as the turbine of FIG. 3 and the other components are the same as the turbine of FIG.
도 5는 본 발명의 일실시 예에 따른 도 3과 도 4의 기어가 있는 터빈의 원통기어 부분에 베벨기어가 추가로 형성된 기어가 있는 중심축 고정 터빈의 사시도 이다.5 is a perspective view of a central shaft fixed turbine having a gear further formed with a bevel gear in the cylindrical gear portion of the turbine of the gears of FIGS. 3 and 4 according to an embodiment of the present invention.
도 5에서 보는 바와 같이, 상기 베벨기어가 포함된 기어가 있는 터빈은 터빈몸체, 중심축(41), 베어링(42), 블레이드(43) 그리고 원통기어(44), 베벨기어(47)를 포함하여 이루어진다.As shown in FIG. 5, the geared turbine including the bevel gear includes a turbine body, a central shaft 41, a bearing 42, a blade 43, a cylindrical gear 44, and a bevel gear 47. It is done by
도 5에서 보는 바와 같이, 상기 베벨기어가 포함된 기어가 있는 터빈은 도 3나 도 4의 터빈과 같은 터빈몸체, 중심축(41), 베어링(42), 블레이드(43) 그리고 원통기어(44)와 베벨기어(47)를 포함하여 이루어진다.As shown in FIG. 5, the turbine with the gear including the bevel gear includes a turbine body, a central shaft 41, a bearing 42, a blade 43, and a cylindrical gear 44 such as the turbine of FIGS. 3 and 4. ) And the bevel gear 47.
여기서, 상기 터빈은 도 3나 도 4의 터빈의 구성요소에 베벨기어(47)가 추가된 형상으로 도 3와 도 4의 터빈이 결합되어 증폭된 회전 에너지를 사용하고자 하는 부하로 직접 또는 변속기로 전달하기 위한 터빈으로 모든 구성요소가 다른 터빈보다 견고하게 제작되는 것이 바람직하다.Here, the turbine has a shape in which the bevel gear 47 is added to the components of the turbine of FIG. 3 or 4, and the turbine of FIGS. 3 and 4 is coupled to a load directly or to a transmission to use the amplified rotational energy. It is desirable for the turbine to be delivered that all components are made more robust than other turbines.
도 6과 도 7은 본 발명의 일실시 예에 따른 도 3과 도 4의 기어가 있는 터빈의 중심축에 기어를 추가한 중심축 회전 터빈의 사시도 이다.6 and 7 are perspective views of a central shaft rotating turbine in which gears are added to the central shaft of the turbine with gears of FIGS. 3 and 4 according to an embodiment of the present invention.
도 6과 도 7에서 보는 바와 같이, 상기 기어가 있는 터빈은 터빈몸체, 중심축(51), 베어링(52), 블레이드(53) 그리고 원통기어(54), 중심축기어(57)를 포함하여 이루어지나 중심축기어(57)는 베벨기어로 하여도 된다.As shown in Figures 6 and 7, the geared turbine includes a turbine body, a central shaft 51, a bearing 52, a blade 53 and a cylindrical gear 54, a central shaft gear 57 However, the central shaft gear 57 may be a bevel gear.
여기서, 상기 터빈은 도 3와 도 4의 터빈의 구성요소의 중심축에 기어가 추가되고 블레이드와 중심축 사이에는 베어링이 없고 중심축(51)과 지지대(55) 사이에 베어링(52)을 삽입해 블레이드와 중심축이 함께 회전하도록 구성된 형상으로 도 3와 도 4의 터빈이 조합되어 증폭된 회전 에너지를 사용하고자 하는 부하로 직접 또는 변속기로 전달하기 위한 터빈으로 모든 구성요소가 다른 터빈보다 견고하게 제작되는 것이 바람직하다.Here, the turbine has a gear added to the central axis of the components of the turbine of FIGS. 3 and 4, there is no bearing between the blade and the central axis, and the bearing 52 is inserted between the central axis 51 and the support 55. The turbines of FIGS. 3 and 4 are combined in such a way that the blades and the central axis are rotated together so that all the components are more robust than other turbines in order to transfer the amplified rotational energy directly or to the transmission. It is preferable to be produced.
도 8과 도 9는 본 발명의 일실시 예에 따른 상기의 기어가 있는 터빈을 이용한 에너지 수집 장치의 사시도 이다.8 and 9 are perspective views of an energy collection device using the turbine with a gear according to an embodiment of the present invention.
도 8과 도 9에서 보는 바와 같이, 상기 유체의 유동에너지 수집 장치(이하 수집장치)는 수집장치 몸체와 상기 도 3의 기어가 있는 터빈(이하 터빈(2))과 도 4의 기어가 있는 터빈(이하 터빈(3))과 도 5 또는 도 6과 도 7의 기어가 있는 터빈(이하 터빈(4) 또는 터빈(5)), 베어링(62), 부력장치(63)를 포함하여 이루어진다.As shown in Figs. 8 and 9, the flow energy collecting device of the fluid (hereinafter, the collecting device) includes a turbine with the collecting body and the gear of Fig. 3 (hereinafter, the turbine 2) and the turbine with the gear of Fig. 4. (Hereinafter referred to as turbine 3) and a geared turbine (hereinafter referred to as turbine 4 or turbine 5), a bearing 62, and a buoyancy device 63 shown in Figs. 5 or 6 and 7.
여기서, 상기 수집장치 몸체는 수집장치가 유체의 흐름에 흘러가지 않게 고정할 기둥(64)과 수집된 에너지를 사용할 수 있는 부하가 결합될 베이스(65)로 이루어진다. 상기 기둥(64)은 유체의 흐름을 방해하지 않고 상기 수집장치를 충분이 지지할 수 있도록 견고하게 설치되고 상기 수집장치의 베이스(65)가 상기 부력장치(63)에 의하여 유체의 수위 변화와 상관없이 에너지 수집을 위한 터빈이 수면으로부터 일정한 깊이로 위치하도록 수직 방향으로 자유롭게 움직일 수 있는 것이 바람직하다. 또한, 수위의 변화가 많은 하천에서는 유체의 유동에너지를 최대한 많이 수집하기 위해서 상기 수집장치 또는 수집장치의 터빈열을 수직 방향으로 여러 조합을 연속적으로 설치하여 수위가 높을 때의 유체의 운동에너지를 최대한 변환할 수 있도록 할 수도 있다.Here, the collecting device body is composed of a column 64 to be fixed so that the collecting device does not flow into the flow of fluid and a base 65 to which a load capable of using the collected energy is coupled. The column 64 is firmly installed to sufficiently support the collecting device without disturbing the flow of the fluid, and the base 65 of the collecting device correlates with the change of the water level by the buoyancy device 63. It is desirable for the turbine for energy collection to be able to move freely in the vertical direction without being positioned at a constant depth from the water surface. In addition, in rivers with many changes in the water level, in order to collect as much of the flow energy of the fluid as possible, the turbine arrays of the collecting device or the collecting device may be continuously installed in various combinations in the vertical direction to maximize the kinetic energy of the fluid when the water level is high. You can also make conversions.
도 10은 본 발명의 일실시 예에 따른 상기의 에너지 수집장치를 이용한 수력발전기의 사시도 이다.10 is a perspective view of a hydroelectric generator using the energy collection device according to an embodiment of the present invention.
도 10에서 보는 바와 같이, 상기 수력발전기는 발전기 몸체와 상기 도 9의 유체의 유동에너지 수집장치, 변속기(71)를 포함하여 이루어진 예이다.As shown in FIG. 10, the hydro generator is an example including a generator body, a flow energy collection device of the fluid of FIG. 9, and a transmission 71.
여기서, 상기 발전기 몸체는 상기 에너지 수집장치에서 수집된 회전 에너지가 집중된 곳의 베이스에 발전기를 견고하게 부착할 수 있는 베이스(72)와 상기 에너지 수집장치에서 수집된 에너지를 발전기로 전달하고 상기 발전기의 규격에 적정한 회전속도로 에너지를 전달하게 할 수 있는 변속기(71)로 이루어진다. 상기 변속기(71)는 상기 에너지 수집장치에서 출력된 에너지가 발전기의 발전효율을 극대화 시킬 수 있는 변속비로 조절할 수 있는 것이 바람직하다.Here, the generator body transfers the energy collected by the energy collector and the base 72 and the base 72 which can be firmly attached to the generator on the base where the rotational energy collected by the energy collector is concentrated It consists of a transmission (71) capable of transmitting energy at a rotational speed appropriate to the standard. The transmission 71 is preferably the energy output from the energy collection device can be adjusted to a transmission ratio to maximize the power generation efficiency of the generator.
도 11은 본 발명의 일실시 예에 따른 상기 유체의 유동에너지 수집장치를 이용한 무동력 펌프의 사시도이다.11 is a perspective view of a non-powered pump using the flow energy collection device of the fluid according to an embodiment of the present invention.
도 11에서 보는 바와 같이, 상기 무동력 펌프는 펌프 몸체와 상기 도 9의 유체의 유동에너지 수집장치, 변속기(81)를 포함하여 이루어진 예이다.As shown in FIG. 11, the non-powered pump is an example including a pump body, a flow energy collecting device of the fluid of FIG. 9, and a transmission 81.
여기서, 상기 펌프 몸체는 상기 에너지 수집장치의 수집된 회전 에너지가 집중된 곳의 베이스에 펌프를 견고하게 부착할 수 있는 베이스(82)와 상기 에너지 수집장치에서 수집된 에너지를 펌프로 전달하고 상기 펌프의 규격에 적정한 회전속도로 에너지를 전달할 수 있는 변속기(81)로 이루어진다. 상기 변속기(81)는 상기 에너지 수집장치에서 출력된 에너지가 펌프의 효율을 최대화시킬 수 있는 변속비로 조절할 수 있는 것이 바람직하다.Here, the pump body is a base 82 that can firmly attach the pump to the base where the collected rotational energy of the energy collector is concentrated and delivers the energy collected by the energy collector to the pump and It consists of a transmission (81) capable of delivering energy at a rotational speed appropriate to the standard. The transmission 81 may be adjusted to a speed ratio in which the energy output from the energy collection device can maximize the efficiency of the pump.

Claims (6)

  1. 강이나 하천 등의 물의 유동이나 고층건물 사이나 고지대 등의 바람과 같이 유체의 유속이 있는 유체의 직선 운동을 회전에너지로 변환하기 위한 터빈에 있어서,In the turbine for converting the linear motion of the fluid with the flow velocity of the fluid, such as the flow of water, such as rivers and rivers, wind between high-rise buildings, highlands, etc. into rotational energy,
    상기 터빈은 블레이드 형상의 임펠러와 외면에 기어가 형성된 원통을 포함하며, 상기 임펠러와 상기 원통은 기계적으로 결속되어 유속에 의한 상기 임펠러의 회전이 상기 원통을 회전시키며 상기 원통 외면에 있는 기어를 통해 회전에너지를 전달할 수 있도록 고안된 기어가 있는 터빈.The turbine includes a blade-shaped impeller and a cylinder with gears formed on an outer surface thereof, wherein the impeller and the cylinder are mechanically bound so that the rotation of the impeller due to the flow rate rotates the cylinder and rotates through a gear on the outer surface of the cylinder. Turbine with gears designed to transfer energy.
  2. 제 1 항에 있어서, 상기 기어가 있는 터빈은 동일방향 유체의 운동에너지에 대해 서로 반대 방향으로 회전하도록 상기 임펠러의 기울기가 서로 반대 방향으로 형성되어 있는 기어가 있는 터빈 2종류로, 임펠러와 중심축이 베어링으로 결합 된 중심축 고정 터빈 또는 임펠러와 중심축이 기계적으로 결합되고 중심축과 지지대가 베어링으로 결합되어 있고 중심축에 기어가 형성된 것을 특징으로 하는 기어가 있는 중심축 회전 터빈인 것을 특징으로 하는 기어가 있는 터빈.According to claim 1, wherein the geared turbine is two types of turbine with gears in which the inclination of the impeller is formed in opposite directions to rotate in opposite directions with respect to the kinetic energy of the same direction fluid, the impeller and the central axis A central shaft fixed turbine or impeller and a central shaft coupled by this bearing are mechanically coupled, the central shaft and the support shaft is a central shaft rotary turbine with gears, characterized in that the gear is formed on the central shaft is coupled to the bearing. Turbine with gears.
  3. 제 2 항에 있어서, 상기 기어가 있는 터빈에서 임펠러의 끝에 결합된 상기 원통의 외면 기어에 베벨기어가 추가된 것을 특징으로 하는 기어가 있는 터빈.3. The turbine with a gear according to claim 2, wherein a bevel gear is added to the outer gear of the cylinder coupled to the end of the impeller in the geared turbine.
  4. 기어가 있는 터빈에서 동일 방향의 유속에 대하여 서로 반대방향으로 회전하도록 임펠러가 형성된 2종류의 기어가 있는 터빈이 교차로 연속하여 기계적으로 결합하여 일방향의 유체의 운동에너지를 회전에너지로 변환하고 회전력을 증폭하여 부하에 작용하게 하는 유체의 유동에너지 수집장치.In a turbine with gears, turbines with two types of gears with impellers formed so as to rotate in opposite directions with respect to the flow velocity in the same direction are mechanically coupled in succession at the intersection to convert the kinetic energy of the fluid in one direction into rotational energy and amplify the rotational force. Flow energy collection device of the fluid to act on the load.
  5. 제 4 항에 있어서, 상기 유체의 유동에너지 수집장치에 있어서 임의의 특정 위치의 1개의 기어가 있는 터빈, 회전방향이 동일한 베벨기어가 추가된 기어가 있는 터빈 또는 기어가 있는 중심축 회전 터빈으로 대체하여 증폭된 회전력을 부하에 전달하기 용이하도록 한 유체의 유동에너지 수집장치.5. A device according to claim 4, wherein said fluid flow energy collection device is replaced by a turbine with one gear at any particular position, a turbine with a gear added with a bevel gear in the same direction of rotation, or a central axis rotary turbine with gears. The flow energy collection device of the fluid to facilitate the transfer of the amplified rotational force to the load.
  6. 유체의 유동에너지를 회전에너지로 변환하여 에너지를 수집하는 유체의 유동에너지 수집장치의 터빈, 베벨기어가 추가된 기어가 있는 터빈 또는 기어가 있는 중심축 회전 터빈에 발전기를 결합한 발전기와 펌프를 결합한 무동력 펌프.A non-motorized generator that combines a generator with a generator in a turbine, a turbine with gears with a bevel gear, or a central axis rotary turbine with gears, in a fluid flow energy collector for fluids that converts the energy of a fluid into rotational energy to collect energy. Pump.
PCT/KR2015/003971 2014-04-21 2015-04-21 Fluid flow energy collecting apparatus, and hydroelectric generator and non-powered pump using same WO2015163673A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140047222A KR101700570B1 (en) 2014-04-21 2014-04-21 turbine with ring gear and, systems of gathering or appling hydro dynamic energy by fluid in using it
KR10-2014-0047222 2014-04-21

Publications (1)

Publication Number Publication Date
WO2015163673A1 true WO2015163673A1 (en) 2015-10-29

Family

ID=54332767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/003971 WO2015163673A1 (en) 2014-04-21 2015-04-21 Fluid flow energy collecting apparatus, and hydroelectric generator and non-powered pump using same

Country Status (2)

Country Link
KR (1) KR101700570B1 (en)
WO (1) WO2015163673A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021194366A1 (en) * 2020-03-23 2021-09-30 Tudorache Pitt Codruț System for capturing the energy of the waves and for converting it into electricity

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102087088B1 (en) * 2017-05-11 2020-03-10 최한웅 An apparatus collecting(harvesting) fluid-dynamic energy having single turbine unit or coupled multiple turbine units
KR102078205B1 (en) * 2018-10-25 2020-02-17 주식회사 태양전기 Hydraulic turbine having self cooling function

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020023330A (en) * 2002-01-17 2002-03-28 최진영 Power generating system utilizing natural energy
KR200335762Y1 (en) * 2003-09-23 2003-12-11 정경균 Car Having Apparatus which Generates Electricity Using a Contrary Wind
US6951443B1 (en) * 2000-09-08 2005-10-04 General Electric Company Wind turbine ring/shroud drive system
US20100202869A1 (en) * 2007-03-06 2010-08-12 Saint Louis University Hubless windmill
KR20120034865A (en) * 2010-10-04 2012-04-13 문광호 Structure fo windmill and method of power transmission for wind power generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6951443B1 (en) * 2000-09-08 2005-10-04 General Electric Company Wind turbine ring/shroud drive system
KR20020023330A (en) * 2002-01-17 2002-03-28 최진영 Power generating system utilizing natural energy
KR200335762Y1 (en) * 2003-09-23 2003-12-11 정경균 Car Having Apparatus which Generates Electricity Using a Contrary Wind
US20100202869A1 (en) * 2007-03-06 2010-08-12 Saint Louis University Hubless windmill
KR20120034865A (en) * 2010-10-04 2012-04-13 문광호 Structure fo windmill and method of power transmission for wind power generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021194366A1 (en) * 2020-03-23 2021-09-30 Tudorache Pitt Codruț System for capturing the energy of the waves and for converting it into electricity

Also Published As

Publication number Publication date
KR20150121417A (en) 2015-10-29
KR101700570B1 (en) 2017-02-13

Similar Documents

Publication Publication Date Title
WO2015163673A1 (en) Fluid flow energy collecting apparatus, and hydroelectric generator and non-powered pump using same
WO2011102638A2 (en) Rotational force generating device and a centripetally acting type of water turbine using the same
WO2014025124A1 (en) Wind power generator
KR20110058998A (en) Tide generator having multi-winges type
WO2016163631A1 (en) Power generation apparatus using precessional motion
CN105114249B (en) A kind of wind power generation plant
WO2012002607A1 (en) Wind/tidal power generation ship
JP6910968B2 (en) Wind Turbine Improved wind turbine suitable for installation without tower
WO2022124697A1 (en) Dual-axis hybrid wind power generator
DE69825405D1 (en) Run turbine arranged underwater
US20110089702A1 (en) Fluidkinetic energy converter
WO2012087064A2 (en) Tidal current power generation device
US11549480B2 (en) Floating drum turbine for electricity generation
WO2009103131A2 (en) Pontoon water power plant
EP3426913A1 (en) An energy generating arrangement powered by tidal water and a method for providing such an arrangement
WO2012081862A2 (en) Power generating apparatus using solar light and wind power
WO2020138601A1 (en) Power generation apparatus using wind power and water power
RU2362905C2 (en) Hydraulic driver
JP2003278639A (en) Wind power generator
WO2014084493A1 (en) Power generation apparatus using water power, magnetism, and wind power
KR20110063994A (en) Current energy power generation apparatus having simple structure
CN106150830A (en) Flow velocity type hydroelectric generator
WO2022131694A1 (en) Power generation apparatus using weighted body and fluid movement
US20140097620A1 (en) Fluid power conversion device
KR20040024956A (en) Savonius impeller and power transmission structure of vertical axis type wind power generation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15783399

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15783399

Country of ref document: EP

Kind code of ref document: A1