WO2015163479A1 - Resin composition - Google Patents

Resin composition Download PDF

Info

Publication number
WO2015163479A1
WO2015163479A1 PCT/JP2015/062628 JP2015062628W WO2015163479A1 WO 2015163479 A1 WO2015163479 A1 WO 2015163479A1 JP 2015062628 W JP2015062628 W JP 2015062628W WO 2015163479 A1 WO2015163479 A1 WO 2015163479A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
resin
weight
resin composition
acid
Prior art date
Application number
PCT/JP2015/062628
Other languages
French (fr)
Japanese (ja)
Inventor
瞬 指宿
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Publication of WO2015163479A1 publication Critical patent/WO2015163479A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/03Injection moulding apparatus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/87Non-metals or inter-compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates

Definitions

  • the present invention relates to a resin composition and a molded product containing a polycarbonate resin, a polyester resin, a core-shell polymer having a specific structure, and a filler. More specifically, the present invention relates to a thermoplastic resin composition comprising a polyester resin produced using a catalyst comprising a specific element, having excellent thermal stability, and excellent mechanical strength and chemical resistance.
  • Resin compositions containing polycarbonate resin, polyester resin, fillers and impact modifiers improve chemical resistance while maintaining the excellent appearance, mechanical and dimensional stability of polycarbonate resin, and add rigidity. Therefore, it is widely used in electrical / electronic, mechanical, OA, vehicle, and medical applications.
  • a molded product formed from a resin composition containing a polycarbonate resin, a polyester resin, and a filler (hereinafter sometimes referred to as PC / PEST / filler alloy) is used as a painted member or unpainted.
  • PC / PEST / filler alloy hereinafter sometimes referred to as PC / PEST / filler alloy
  • Patent Document 1 discusses a technique of blending an inorganic compound containing aluminum silicate as a main component in order to improve the heat and moisture resistance of a resin composition containing a polycarbonate resin and a polyester resin.
  • Patent Document 3 discusses a technique in which an acidic phosphorus-based additive and an inorganic filler whose water content is controlled to 0.25% by weight or less are mixed with PC / PEST alloy. Mixing a filler with a water content of 0.25% by weight or less improves the melt stability.
  • the management of the water content of the inorganic filler to be added means an increase in the number of steps for producing the resin composition. It is difficult to say that it is a general-purpose technology that leads to cost increase.
  • examination about the heat-and-moisture resistance of the obtained resin composition is not carried out, and the further improvement is required technically.
  • Patent Document 4 discusses a technique for controlling the dispersion state so that an inorganic compound having a pH of 8.0 or higher and an SiO 2 unit of 30% by weight or higher does not exist in the polycarbonate resin as much as possible. Although such technology has been confirmed to improve the thermal stability during the molding process, no examination has been made on the heat and moisture resistance. Moreover, in order to obtain such a resin composition, there is a high possibility that the manufacturing method will be restricted. As a result, the number of manufacturing steps is increased and the cost is increased, which is not a highly versatile technique. The method of adding additional additives to improve the heat and moisture resistance and thermal stability of PC / PEST / filler alloy and the method of controlling the dispersion state of the filler make it difficult to achieve both heat and moisture stability.
  • Patent Documents 5-7 an alloy material using PET produced with a specific polymerization catalyst has been proposed as a means for PC / PEST / filler alloy to satisfy the above requirements (see Patent Documents 5-7).
  • Patent Document 5 it is proposed to use a germanium catalyst to improve the color tone, melt stability, appearance, and moldability of PET produced with a general antimony compound or titanium compound as a polymerization catalyst. Yes.
  • Patent Document 6 proposes to improve color tone, thermal stability, and melt stability by including a polyester resin produced by using 1 to 30 ppm of a titanium-containing catalyst compound.
  • Patent Document 7 by producing a polyester resin using a titanium-containing catalyst compound having a specific structure, the polyester resin has a good color tone (b value), little foreign matter, and excellent thermal stability during melting. It is described that a polyester resin is obtained. However, the effect on the resin composition containing a resin other than the polyester resin is not mentioned, and no knowledge about wet heat resistance is taught.
  • Patent Document 8 discusses the use of a filler and an impact modifier in combination as a means for PC / PEST / filler alloy to satisfy the requirements of mechanical strength.
  • An object of the present invention is to provide a resin composition containing a polycarbonate resin, a polyester resin, and an impact modifier, and having excellent mechanical strength such as tensile modulus and Charpy impact strength. Another object of the present invention is to provide a resin composition having excellent heat and humidity resistance and thermal stability. Another object of the present invention is to provide a molded article made of the resin composition, particularly a vehicle interior member and a vehicle exterior member. As a result of intensive studies to achieve the above object, the present inventors have obtained a tensile elastic modulus by blending a polyester resin and a core-shell polymer having a specific structure into a polycarbonate resin, as shown in FIGS. It was also found that a resin composition having excellent Charpy impact strength can be obtained.
  • the obtained resin composition was found to be excellent in heat and moisture resistance and heat stability, and the present invention was completed.
  • the above-mentioned problem is based on 100 parts by weight of a resin composition comprising (A) 80 to 50 parts by weight of a polycarbonate resin (component A) and (B) 20 to 50 parts by weight of a polyester resin (component B).
  • a core (C-1 component) comprising a cross-linked acrylate ester elastic body composed of an acrylate ester having 1 to 4 carbon atoms in the alkyl group and an acrylate ester having 5 to 8 carbon atoms in the alkyl group And 1 to 10 parts by weight of a core-shell polymer (component C) consisting of a shell (component C-2) containing methacrylic acid ester as the main component and 0 to 15 parts by weight of a filler (component D) (D) Is achieved.
  • the polycarbonate resin used as the component A of the present invention is obtained by reacting a dihydric phenol and a carbonate precursor.
  • the reaction method include an interfacial polymerization method, a melt transesterification method, a solid phase transesterification method of a carbonate prepolymer, and a ring-opening polymerization method of a cyclic carbonate compound.
  • Representative examples of the dihydric phenol used here include hydroquinone, resorcinol, 4,4′-biphenol, 1,1-bis (4-hydroxyphenyl) ethane, and 2,2-bis (4-hydroxyphenyl).
  • a preferred dihydric phenol is bis (4-hydroxyphenyl) alkane, and bisphenol A is particularly preferred from the viewpoint of impact resistance, and is widely used.
  • a general-purpose polycarbonate which is a bisphenol A-based polycarbonate
  • a special polycarbonate manufactured using other dihydric phenols can be used as the A component.
  • BPM 4,4 ′-(m-phenylenediisopropylidene) diphenol
  • Bis-TMC 1,1-bis (4-hydroxy Phenyl) cyclohexane
  • Bis-TMC 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane
  • BCF 9,9-bis (4-hydroxyphenyl)
  • BCF polycarbonate (homopolymer or copolymer) using fluorene and 9,9-bis (4-hydroxy-3-methylphenyl) fluorene
  • dihydric phenols other than BPA are preferably used in an amount of 5 mol% or more, particularly 10 mol% or more of the entire dihydric phenol component constituting the polycarbonate.
  • the component B constituting the polycarbonate resin composition is the following copolymeric polycarbonate (1) to (3). It is.
  • BPM is 20 to 80 mol% (more preferably 40 to 75 mol%, more preferably 45 to 65 mol%) in 100 mol% of the dihydric phenol component constituting the polycarbonate, and BCF Is a copolymer polycarbonate having a content of 20 to 80 mol% (more preferably 25 to 60 mol%, still more preferably 35 to 55 mol%).
  • BPA is 10 to 95 mol% (more preferably 50 to 90 mol%, more preferably 60 to 85 mol%) in 100 mol% of the dihydric phenol component constituting the polycarbonate, and BCF Is a copolycarbonate having a content of 5 to 90 mol% (more preferably 10 to 50 mol%, more preferably 15 to 40 mol%).
  • BPM is 20 to 80 mol% (more preferably 40 to 75 mol%, more preferably 45 to 65 mol%) in 100 mol% of the dihydric phenol component constituting the polycarbonate, and Bis -Copolymer polycarbonate having a TMC of 20 to 80 mol% (more preferably 25 to 60 mol%, more preferably 35 to 55 mol%).
  • These special polycarbonates may be used alone or in combination of two or more. Moreover, these can also be mixed and used for the bisphenol A type polycarbonate generally used. The production methods and characteristics of these special polycarbonates are described in detail in, for example, JP-A-6-172508, JP-A-8-27370, JP-A-2001-55435, and JP-A-2002-117580.
  • the water absorption of the polycarbonate is a value obtained by measuring the moisture content after being immersed in water at 23 ° C. for 24 hours in accordance with ISO 62-1980 using a disc-shaped test piece having a diameter of 45 mm and a thickness of 3.0 mm. is there.
  • Tg glass transition temperature
  • DSC differential scanning calorimeter
  • the carbonate precursor carbonyl halide, carbonic acid diester, haloformate or the like is used, and specific examples include phosgene, diphenyl carbonate, dihaloformate of dihydric phenol, and the like.
  • the aromatic polycarbonate resin is a branched polycarbonate resin copolymerized with a trifunctional or higher polyfunctional aromatic compound, or a polyester carbonate resin copolymerized with an aromatic or aliphatic (including alicyclic) difunctional carboxylic acid. And a copolymer polycarbonate resin copolymerized with a bifunctional alcohol (including alicyclic), and a polyester carbonate resin copolymerized with the bifunctional carboxylic acid and the bifunctional alcohol together.
  • Branched polycarbonate resin can impart anti-drip performance and the like to the resin composition of the present invention.
  • the trifunctional or higher polyfunctional aromatic compound used in the branched polycarbonate resin include phloroglucin, phloroglucid, or 4,6-dimethyl-2,4,6-tris (4-hydroxydiphenyl) heptene-2, 2 , 4,6-trimethyl-2,4,6-tris (4-hydroxyphenyl) heptane, 1,3,5-tris (4-hydroxyphenyl) benzene, 1,1,1-tris (4-hydroxyphenyl) Ethane, 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane, 2,6-bis (2-hydroxy-5-methylbenzyl) -4-methylphenol, 4- ⁇ 4- [ Trisphenol such as 1,1-bis (4-hydroxyphenyl) ethyl] benz
  • the structural unit derived from the polyfunctional aromatic compound in the branched polycarbonate is 0.1% in a total of 100 mol% of the structural unit derived from the dihydric phenol and the structural unit derived from the polyfunctional aromatic compound.
  • the amount is from 01 to 1 mol%, preferably from 0.05 to 0.9 mol%, particularly preferably from 0.05 to 0.8 mol%.
  • a branched structural unit may be generated as a side reaction.
  • the amount of the branched structural unit is also 0.1% in a total of 100 mol% with a structural unit derived from a dihydric phenol.
  • a content of 001 to 1 mol%, preferably 0.005 to 0.9 mol%, particularly preferably 0.01 to 0.8 mol% is preferred. Regarding the ratio of such branched structures 1 It is possible to calculate by H-NMR measurement.
  • the aliphatic bifunctional carboxylic acid is preferably ⁇ , ⁇ -dicarboxylic acid.
  • aliphatic difunctional carboxylic acid examples include sebacic acid (decanedioic acid), dodecanedioic acid, tetradecanedioic acid, octadecanedioic acid, icosanedioic acid and other straight-chain saturated aliphatic dicarboxylic acids, and cyclohexanedicarboxylic acid.
  • Preferred are alicyclic dicarboxylic acids such as As the bifunctional alcohol, an alicyclic diol is more preferable, and examples thereof include cyclohexanedimethanol, cyclohexanediol, and tricyclodecane dimethanol.
  • the polycarbonate resin can be produced by an interfacial polymerization method, a melt transesterification method, a solid phase transesterification method of a carbonate prepolymer, a ring-opening polymerization method of a cyclic carbonate compound, or the like. These reaction formats are well known in various documents and patent publications.
  • the viscosity average molecular weight of the polycarbonate resin is preferably 10,000 to 50,000, more preferably 14,000 to 30,000, and further preferably 14,000 to 26,000.
  • a resin composition obtained from a polycarbonate resin having a viscosity average molecular weight exceeding 50,000 is inferior in versatility in that it is inferior in fluidity during injection molding.
  • the polycarbonate resin may be obtained by mixing those having a viscosity average molecular weight outside the above range.
  • a polycarbonate resin having a viscosity average molecular weight exceeding the range (50,000) improves the entropy elasticity of the resin. As a result, good moldability is exhibited in gas assist molding and foam molding which may be used when molding a reinforced resin material into a structural member.
  • a polycarbonate resin having a viscosity average molecular weight of 70,000 to 300,000 (component A-1-1) and a polycarbonate resin having a viscosity average molecular weight of 10,000 to 30,000 (A Polycarbonate resin having a viscosity average molecular weight of 16,000 to 35,000 (hereinafter sometimes referred to as “high molecular weight component-containing polycarbonate resin”).
  • the molecular weight of the A-1-1 component is preferably 70,000 to 200,000, more preferably 80,000 to 200,000, still more preferably 100,000 to 200,000, Particularly preferred is 100,000 to 160,000.
  • the molecular weight of the A-1-2 component is preferably 10,000 to 25,000, more preferably 11,000 to 24,000, still more preferably 12,000 to 24,000, and particularly preferably 12,000 to 23. , 000.
  • the high molecular weight component-containing polycarbonate resin can be obtained by mixing the A-1-1 component and the A-1-2 component at various ratios and adjusting so as to satisfy a predetermined molecular weight range.
  • the A-1-1 component is 2 to 40% by weight, more preferably the A-1-1 component is 3 to 30% by weight,
  • the A-1-1 component is preferably 4 to 20% by weight, and particularly preferably the A-1-1 component is 5 to 20% by weight.
  • a method for preparing a polycarbonate resin containing a high molecular weight component (1) a method in which the A-1-1 component and the A-1-2 component are polymerized independently and mixed, (2) In the same system, a polycarbonate resin showing a plurality of polymer peaks in a molecular weight distribution chart by GPC method represented by the method shown in JP-A-306336 is used. And (3) a polycarbonate resin obtained by such a production method (production method (2)), a separately produced A-1-1 component and / or A-1- Examples include a method of mixing two components.
  • the viscosity average molecular weight referred to in the present invention is first determined by the specific viscosity ( ⁇ SP ) At 20 ° C.
  • the viscosity average molecular weight of the polycarbonate resin in the resin composition of the present invention is calculated as follows. That is, the composition is mixed with 20 to 30 times its weight of methylene chloride to dissolve soluble components in the composition. Such soluble matter is collected by Celite filtration. Thereafter, the solvent in the obtained solution is removed. The solid after removal of the solvent is sufficiently dried to obtain a solid component that dissolves in methylene chloride. A specific viscosity at 20 ° C.
  • the polyester resin used as the component B of the present invention is a polymer or copolymer obtained by a condensation reaction mainly comprising an aromatic dicarboxylic acid or a reactive derivative thereof and a diol or an ester derivative thereof.
  • aromatic dicarboxylic acid terephthalic acid, isophthalic acid, orthophthalic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-biphenyldicarboxylic acid, 4,4′-biphenyl ether Dicarboxylic acid, 4,4′-biphenylmethane dicarboxylic acid, 4,4′-biphenylsulfone dicarboxylic acid, 4,4′-biphenylisopropylidenedicarboxylic acid, 1,2-bis (phenoxy) ethane-4,4′-dicarboxylic acid Acid, 2,5-anthracene dicarboxylic acid, 2,6-anthracene dicarboxylic acid, 4,4′-p-terphenylene dicarboxylic acid, aromatic dicarboxylic acid such as 2,5-pyridinedicarboxylic acid, diphenylmethane dicarboxylic acid, di
  • Aromatic dicarboxylic acids may be used as a mixture of two or more. In addition, if the amount is small, it is also possible to use a mixture of one or more aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid and dodecanediic acid, and alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid, etc. together with the dicarboxylic acid. .
  • diol that is a component of the polyester resin examples include ethylene glycol, propylene glycol, butylene glycol, hexylene glycol, neopentyl glycol, pentamethylene glycol, hexamethylene glycol, decamethylene glycol, and 2-methyl-1,3-propanediol.
  • Aliphatic diols such as diethylene glycol and triethylene glycol, alicyclic diols such as 1,4-cyclohexanedimethanol, diols containing aromatic rings such as 2,2-bis ( ⁇ -hydroxyethoxyphenyl) propane, and the like A mixture thereof may be mentioned.
  • one or more long chain diols having a molecular weight of 400 to 6,000 that is, polyethylene glycol, poly-1,3-propylene glycol, polytetramethylene glycol, etc. may be copolymerized.
  • the polyester resin can be branched by introducing a small amount of a branching agent.
  • branching agent A trimesic acid, a trimellitic acid, a trimethylol ethane, a trimethylol propane, a pentaerythritol, etc. are mentioned.
  • polyester resins include polyethylene terephthalate (PET), polypropylene terephthalate, polybutylene terephthalate (PBT), polyhexylene terephthalate, polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), polyethylene-1,2-
  • PET polyethylene terephthalate
  • PBT polypropylene terephthalate
  • PEN polyethylene naphthalate
  • PBN polybutylene naphthalate
  • a copolymer polyester resin such as polyethylene isophthalate / terephthalate, polybutylene terephthalate / isophthalate, and the like can be given.
  • polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate and a mixture thereof having a good balance of mechanical properties and the like can be preferably used.
  • the terminal group structure of the polyester resin is not particularly limited, and the ratio of the hydroxyl group and the carboxyl group in the terminal group may be large, in addition to the case where the ratio is large.
  • those terminal groups may be sealed by reacting a compound having reactivity with such terminal groups.
  • Such a polyester resin is produced by polymerizing a dicarboxylic acid component and the diol component while heating in the presence of a specific titanium-based catalyst and discharging by-product water or lower alcohol out of the system according to a conventional method. It is preferable.
  • the above titanium-based catalyst includes a reaction product of the following titanium compound component (A) and phosphorus compound component (B).
  • the titanium compound component (A) includes a titanium compound (1) represented by the following general formula (I), an aromatic polyvalent carboxylic acid represented by the titanium compound (1) and the following general formula (II), or anhydrous It is at least one titanium compound component selected from the group consisting of a titanium compound (2) obtained by reacting with a product.
  • R 1 , R 2 , R 3 And R 4 Each independently represents an alkyl group having 2 to 10 carbon atoms, k represents an integer of 1 to 3, and when k is 2 or 3, 2 or 3 R 2 And R 3 May be the same as or different from each other.
  • m represents an integer of 2 to 4.
  • the phosphorus compound component (B) is a phosphorus compound component composed of at least one of the phosphorus compounds (3) represented by the following general formula (III).
  • R 5 Represents an unsubstituted or substituted aryl group having 6 to 20 carbon atoms, or an alkyl group having 1 to 20 carbon atoms.
  • the polyester resin produced by using the above-mentioned specific titanium-based catalyst is superior in thermal stability and wet heat resistance compared to the case of using germanium, antimony and other titanium-based catalysts.
  • the quality is stable even if the amount of additives such as hue stabilizer and heat stabilizer during production is less than when other catalysts are used. Since decomposition of the additive in a thermal environment or a moist heat environment is reduced, it is presumed that the thermal stability and the heat and humidity resistance are excellent.
  • the titanium compound equivalent molar amount (mTi) of the titanium compound component (A) and the phosphorus atom equivalent molar amount of the phosphorus compound component (B) is preferably in the range of 1/3 to 1/1, and more preferably in the range of 1/2 to 1/1.
  • the molar amount in terms of titanium atom of the titanium compound component (A) is the product of the molar amount of each titanium compound contained in the titanium compound component (A) and the number of titanium atoms contained in one molecule of the titanium compound.
  • the phosphorus atom equivalent molar amount of the phosphorus compound component (B) is the molar amount of each phosphorus compound contained in the phosphorus compound component (B) and the phosphorus atoms contained in one molecule of the phosphorus compound. It is the total value of the product with the number. However, since the phosphorus compound represented by the formula (III) contains one phosphorus atom per molecule, the phosphorus atom equivalent molar amount of the phosphorus compound is equal to the molar amount of the phosphorus compound.
  • reaction molar ratio (mTi / mP) is greater than 1/1, that is, when the amount of the titanium compound component (A) is excessive, the color tone of the polyester resin obtained using the resulting catalyst (b value is too high). ) And its heat resistance may be reduced. Further, when the reaction molar ratio (mTi / mP) is less than 1/3, that is, when the amount of the titanium compound component (A) becomes too small, the catalytic activity of the resulting catalyst for the polyester formation reaction may be insufficient. is there.
  • Examples of the titanium compound (1) represented by the general formula (I) used for the titanium compound component (A) include titanium tetrabutoxide, titanium tetraisopropoxide, titanium tetrapropoxide, and titanium tetraethoxide.
  • Examples include tetraalkoxides, and alkyl titanates such as octaalkyltrititanates and hexaalkyldititanates, and among these, titanium having good reactivity with the phosphorus compound component used in the present invention. It is preferable to use tetraalkoxides, and it is particularly preferable to use titanium tetrabutoxide.
  • the titanium compound (2) used for the titanium compound component (A) is obtained by reacting the titanium compound (1) with the aromatic polyvalent carboxylic acid represented by the general formula (II) or an anhydride thereof.
  • the aromatic polyvalent carboxylic acid of the general formula (II) and its anhydride are preferably selected from the group consisting of phthalic acid, trimellitic acid, hemimellitic acid, pyromellitic acid and their anhydrides. In particular, it is more preferable to use trimellitic anhydride having good reactivity with the titanium compound (1) and high affinity with the polyester of the resulting polycondensation catalyst.
  • the reaction between the titanium compound (1) and the aromatic polyvalent carboxylic acid of the general formula (II) or its anhydride is carried out by mixing the aromatic polyvalent carboxylic acid or its anhydride in a solvent and partially or entirely Is dissolved in a solvent, and the titanium compound (1) is dropped into this mixed solution and heated at a temperature of 0 ° C. to 200 ° C. for 30 minutes or more, preferably at a temperature of 30 to 150 ° C. for 40 to 90 minutes. Is called.
  • the reaction pressure at this time is not particularly limited, and normal pressure is sufficient.
  • the catalyst can be appropriately selected from those capable of dissolving a required amount of the compound of the formula (II) or part or all of its anhydride, preferably ethanol, ethylene glycol, trimethylene It is selected from glycol, tetramethylene glycol, benzene, xylene and the like.
  • anhydride preferably ethanol, ethylene glycol, trimethylene It is selected from glycol, tetramethylene glycol, benzene, xylene and the like.
  • the reaction molar ratio between the titanium compound (1) and the compound represented by the formula (II) or its anhydride There is no limitation on the reaction molar ratio between the titanium compound (1) and the compound represented by the formula (II) or its anhydride. However, if the proportion of the titanium compound (1) is too high, the color tone of the resulting polyester resin may be deteriorated or the softening point may be lowered. On the contrary, if the proportion of the titanium compound (1) is too low, it is heavy. The condensation reaction may be difficult
  • the reaction molar ratio between the titanium compound (1) and the compound of the formula (II) or its anhydride is preferably controlled within the range of 2/1 to 2/5.
  • the reaction product obtained by this reaction may be directly subjected to the reaction with the above-mentioned phosphorus compound (3) or recrystallized using a solvent comprising acetone, methyl alcohol and / or ethyl acetate. Then, this may be reacted with the phosphorus compound (3).
  • R 5 The aryl group having 6 to 20 carbon atoms or the alkyl group having 1 to 20 carbon atoms represented by the formula may be unsubstituted or substituted by one or more substituents May be. Examples of the substituent include a carboxyl group, an alkyl group, a hydroxyl group, and an amino group.
  • the phosphorus compound (3) of the general formula (III) includes, for example, monomethyl phosphate, monoethyl phosphate, monotrimethyl phosphate, mono-n-butyl phosphate, monohexyl phosphate, monoheptyl phosphate, monooctyl phosphate, monononyl phosphate, Monodecyl phosphate, monododecyl phosphate, monolauryl phosphate, monooleyl phosphate, monotetradecyl phosphate, monophenyl phosphate, monobenzyl phosphate, mono (4-dodecyl) phenyl phosphate, mono (4-methylphenyl) phosphate, mono (4 -Ethylphenyl) phosphate, mono (4-propylphenyl) phosphate, mono (4-dodecylphenyl) phosphate, monotolylphosphate Monoalkyl phosphates and monoaryl phosphates such as phosphat
  • a phosphorus compound component (B) comprising at least one phosphorus compound (3) of the formula (III) and a solvent are prepared.
  • the normal reaction system is preferably 50 ° C to 200 ° C, more preferably Is carried out by heating at a temperature of 70 ° C. to 150 ° C., preferably for 1 minute to 4 hours, more preferably for 30 minutes to 2 hours.
  • the reaction pressure is not particularly limited, and may be any of under pressure (0.1 to 0.5 MPa), normal pressure, or reduced pressure (0.001 to 0.1 MPa). Usually performed under normal pressure.
  • the solvent for the phosphorus compound component (B) of the formula (III) used in the catalyst preparation reaction is not particularly limited as long as at least a part of the phosphorus compound component (B) can be dissolved.
  • ethanol ethylene
  • a solvent consisting of at least one selected from glycol, trimethylene glycol, tetramethylene glycol, benzene, xylene and the like is preferably used.
  • reaction product containing reaction mixture it may be used as a production catalyst, or the separated reaction product is purified by recrystallization from a recrystallization agent such as acetone, methyl alcohol and / or water, and the purified product obtained thereby. May be used as a catalyst. Moreover, you may use the reaction product containing reaction mixture as a catalyst containing mixture as it is, without isolate
  • a recrystallization agent such as acetone, methyl alcohol and / or water
  • a titanium compound component (A) comprising at least one titanium compound (1) of the above formula (I) (where k represents 1), that is, titanium tetraalkoxide, and the above formula (III) It is preferable that the reaction product with the phosphorus compound component (B) comprising at least one phosphorus compound is used as a catalyst. Furthermore, a compound represented by the following general formula (IV) is preferably used as the titanium-based catalyst. [R in the above formula 6 And R 7 Each independently represents an alkyl group having 2 to 12 carbon atoms or an aryl group having 6 to 12 carbon atoms.
  • the catalyst containing the titanium / phosphorus compound represented by the formula (IV) has high catalytic activity, and the polyester resin produced using the catalyst has a good color tone (low b value) and is practically sufficient. In addition, it has a low content of acetaldehyde, a residual metal and a cyclic trimer of an ester of an aromatic dicarboxylic acid and an alkylene glycol, and has practically sufficient polymer performance.
  • the titanium / phosphorus compound of the general formula (IV) is preferably contained in an amount of 50% by weight or more, and more preferably 70% by weight or more.
  • the amount of the titanium-based catalyst used is preferably an amount such that the mmol amount in terms of titanium atom is 2 to 40 mm% with respect to the total mmol amount of the aromatic dicarboxylic acid component contained in the polymerization starting material. It is more preferably ⁇ 35 mm%, and even more preferably 10-30 mm%. If it is less than 2 mm%, the catalyst's promotion effect on the polycondensation reaction of the polymerization starting material becomes insufficient, the polyester production efficiency becomes insufficient, and a polyester resin having a desired degree of polymerization cannot be obtained. There is.
  • the color tone (b value) of the resulting polyester resin becomes insufficient and becomes yellowish, and its practicality may be lowered.
  • the aromatic dicarboxylic acid or its ester-forming derivative and the alkylene glycol or its ester-forming derivative are heated. Produced by reacting.
  • an ethylene glycol ester of terephthalic acid and / or a low polymer thereof used as a raw material for polyethylene terephthalate may be obtained by directly esterifying terephthalic acid and ethylene glycol, or by converting a lower alkyl ester of terephthalic acid and ethylene glycol It is produced by a method of transesterification or an addition reaction of terephthalic acid with ethylene oxide.
  • the above-described aromatic dicarboxylic acid alkylene glycol ester and / or a low polymer thereof may contain other dicarboxylic acid ester copolymerizable therewith as an additional component, so that the effect of the method of the present invention is not substantially impaired.
  • the copolymerizable additional component is preferably an acid component such as aliphatic and alicyclic dicarboxylic acids such as adipic acid, sebacic acid, 1,4-cyclohexanedicarboxylic acid, and hydroxycarboxylic acids such as One or more of ⁇ -hydroxyethoxybenzoic acid, p-oxybenzoic acid, and the like and a glycol component, for example, alkylene glycol having 2 or more carbon atoms, 1,4-cyclohexanedimethanol, neopentyl glycol, bisphenol A , An ester with one or more of aliphatic, cycloaliphatic, aromatic diol compounds such as bisphenol S and polyoxyalkylene glycol, or anhydrides thereof.
  • an acid component such as aliphatic and alicyclic dicarboxylic acids such as adipic acid, sebacic acid, 1,4-cyclohexanedicarboxylic acid, and hydroxycarboxylic
  • the postscript component ester may be used alone or in combination of two or more thereof.
  • the copolymerization amount is preferably within the above range.
  • terephthalic acid and / or dimethyl terephthalate is used as a starting material
  • recovered dimethyl terephthalate obtained by depolymerizing polyalkylene terephthalate or recovered terephthalic acid obtained by hydrolyzing this is used as polyester.
  • the target polyalkylene terephthalate is polyethylene terephthalate.
  • the method for depolymerizing the recovered polyalkylene terephthalate to obtain dimethyl terephthalate is not particularly limited, and any conventionally known method can be employed.
  • the depolymerized product is subjected to a transesterification reaction with a lower alcohol such as methanol, and the reaction mixture is purified to recover the lower alkyl ester of terephthalic acid.
  • the polyester resin can be obtained by subjecting this to an ester exchange reaction with alkylene glycol and polycondensing the resulting phthalic acid / alkylene glycol ester.
  • the method for recovering terephthalic acid from the recovered dimethyl terephthalate is not particularly limited, and any conventional method may be used.
  • dimethyl terephthalate can be recovered from the reaction mixture obtained by the transesterification reaction by recrystallization and / or distillation, and then hydrolyzed with water at high temperature and high pressure to recover terephthalic acid.
  • the total content of 4-carboxybenzaldehyde, p-toluic acid, benzoic acid and dimethyl hydroxyterephthalate is preferably 1 ppm or less.
  • the content of monomethyl terephthalate is preferably in the range of 1 to 5000 ppm.
  • a polyester resin can be produced by directly esterifying the terephthalic acid recovered by the above-described method with an alkylene glycol and polycondensing the resulting ester.
  • the timing of adding the catalyst to the polymerization starting material is any stage before the start of the polycondensation reaction of the aromatic dicarboxylic acid alkylene glycol ester and / or its low polymer.
  • an aromatic dicarboxylic acid alkylene glycol ester may be prepared and a polycondensation reaction may be initiated by adding a catalyst solution or slurry to the reaction system, or the aromatic dicarboxylic acid alkylene glycol ester may be A catalyst solution or slurry may be added to the reaction system together with the starting material during preparation or after its preparation.
  • the production reaction conditions for the polyester resin used in the present invention are not particularly limited.
  • the polycondensation reaction is preferably performed at a temperature of 230 to 320 ° C. under normal pressure or reduced pressure (0.1 Pa to 0.1 MPa) or a combination of these conditions for 15 to 300 minutes.
  • a reaction stabilizer such as trimethyl phosphate may be added to the reaction system at any stage in the production of the polyester.
  • an agent, a flame retardant, a fluorescent brightening agent, a matting agent, a color adjusting agent, an antifoaming agent, and other additives may be blended.
  • the polyester resin preferably contains an antioxidant containing at least one hindered phenol compound, but the content thereof is 1% by weight or less based on the weight of the polyester resin. preferable. When the content exceeds 1% by weight, there may be a disadvantage that the quality of the obtained product is deteriorated due to thermal deterioration of the antioxidant itself.
  • the hindered phenol compound for antioxidant used in the polyester resin used in the present invention is pentaerythritol-tetra extract [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 3.9.
  • organic blue pigments such as azo, triphenylmethane, quinoline, anthraquinone, phthalocyanine and the like are included in the reaction system.
  • a color adjusting agent composed of one or more blue pigments can be added.
  • the polyester resin used in the present invention is substantially free of cobalt.
  • the polyester resin used in the present invention preferably contains 0.001 ppm to 100 ppm of the titanium element derived from the catalyst.
  • the content is more preferably 0.001 ppm to 50 ppm, and further preferably 1 ppm to 50 ppm. If the content of titanium element is more than 100 ppm, thermal stability and heat-and-moisture resistance may be deteriorated. If the content is less than 0.001 ppm, the remaining amount of catalyst of the polyester resin used is significantly lower, making it difficult to produce the polyester resin. In some cases, good mechanical strength, thermal stability and wet heat stability may not be obtained.
  • the intrinsic viscosity of the polyester resin is preferably 0.4 to 1.2. A more preferable range of the intrinsic viscosity is 0.45 to 0.95, and further preferably 0.50 to 0.9.
  • the polyester resin is a polyethylene terephthalate resin (PET) and a polybutylene terephthalate resin (PBT), and the blending ratio (weight ratio) (PET / PBT) is preferably 1/7 to 7/8.
  • the blending ratio is more preferably 1/7 to 1/2, and even more preferably 1/7 to 1/4. When the blending ratio is larger than 7/8, the chemical resistance is lowered, and when it is smaller than 1/7, the fluidity may be lowered.
  • the content of component B is 20 to 50 parts by weight, preferably 20 to 45 parts by weight, more preferably 25 to 40 parts by weight, per 100 parts by weight of the resin component. If the content is less than 20 parts by weight, the chemical resistance improving effect is not observed, and if it exceeds 50 parts by weight, the heat and humidity resistance is lowered and the impact strength is lowered.
  • C component: core-shell polymer The core-shell polymer used in the present invention is a crosslinked acrylate ester elastic body composed of an acrylate ester having 1 to 4 carbon atoms in the alkyl group and an acrylate ester having 5 to 8 carbon atoms in the alkyl group.
  • a core-shell polymer comprising a core (component C-1) and a shell (component C-2) containing methacrylic acid ester as a main component.
  • a core-shell polymer other than those described above is used as the C component, sufficient impact characteristics and rigidity cannot be obtained, and chemical resistance is lowered depending on the compound.
  • the acrylic acid ester having 1 to 4 carbon atoms in the alkyl group which is a constituent monomer of the C-1 component, include methyl acrylate, ethyl acrylate, propyl acrylate, and butyl acrylate.
  • Examples of the acrylate ester having 5 to 8 carbon atoms in the alkyl group include hexyl acrylate, heptyl acrylate, and 2-ethylhexyl acrylate.
  • the most preferred combination is a crosslinked alkyl acrylate elastic body composed of butyl acrylate and 2-ethylhexyl acrylate.
  • the C-2 component is derived from a (meth) acrylic acid ester (for example, methyl methacrylate).
  • the content of the C-1 component is preferably 50 to 99% by weight, more preferably 65 to 95% by weight, and more preferably 75 to 90% of 100% by weight of the C component. Most preferred is wt%. If the content of the C-1 component is less than 50% by weight, sufficient impact characteristics may not be obtained. On the other hand, if it exceeds 99% by weight, sufficient impact characteristics may not be obtained, which is not preferable.
  • the content of the acrylate ester having 5 to 8 carbon atoms in the alkyl group in the C-1 component is preferably 10 to 99% by weight, and 25 to 90% by weight in 100% by weight of the C-1 component. More preferred is 35 to 80% by weight, and most preferred is 40 to 70% by weight. If the amount is less than 10% by weight, sufficient impact characteristics may not be obtained. If the amount is more than 99% by weight, the heat resistance may decrease, which is not preferable.
  • the content of the core-shell polymer is 1 to 10 parts by weight, preferably 2 to 9 parts by weight, and more preferably 3 to 8 parts by weight with respect to 100 parts by weight of the resin component.
  • filler Conventionally known fillers can be used as the filler used in the present invention, and preferred fillers include fibrous glass filler, plate-like glass filler, fibrous carbon filler, and non-fibrous carbon. It is at least one filler selected from the group consisting of fillers and silicate minerals.
  • D-1 fibrous glass filler
  • fibrous glass filler examples include glass fibers (including metal-coated glass fibers) and glass milled fibers.
  • the glass fiber which becomes the base of the fibrous glass filler is obtained by rapidly cooling molten glass while drawing it by various methods to obtain a predetermined fiber shape.
  • the rapid cooling and stretching are not particularly limited.
  • the cross-sectional shape may be other than a perfect circle such as an ellipse, a cane, a flat shape, and a three-leaf shape in addition to a perfect circle. Further, it may be a mixture of a perfect circle and a shape other than a perfect circle.
  • the flat shape means that the average value of the major axis of the fiber cross section is 10 to 50 ⁇ m, preferably 15 to 40 ⁇ m, more preferably 20 to 35 ⁇ m, and the average value of the ratio of major axis to minor axis (major axis / minor axis) is 1.5.
  • the shape is 8 to 8, preferably 2 to 6 and more preferably 2.5 to 5.
  • the average fiber diameter of the fibrous glass filler having a high aspect ratio such as glass fiber is preferably 1 to 25 ⁇ m, and more preferably 3 to 17 ⁇ m. When a filler having an average fiber diameter in this range is used, good mechanical strength can be expressed without impairing the appearance of the molded product.
  • the fiber length of the high aspect ratio fibrous glass filler is preferably 60 to 500 ⁇ m, more preferably 100 to 400 ⁇ m, and particularly preferably 120 to 350 ⁇ m as the number average fiber length in the resin composition.
  • the number-average fiber length is a value calculated by an image analyzer from an image obtained by observing the residue of the filler collected by processing such as high-temperature ashing of a molded product, dissolution with a solvent, and decomposition with a chemical, using an optical microscope. It is. Further, when calculating such a value, the fiber diameter is used as a guide and the length is less than that.
  • the aspect ratio of the high aspect ratio fibrous glass filler is preferably 10 to 200, more preferably 15 to 100, and still more preferably 20 to 50.
  • the aspect ratio of the filler is a value obtained by dividing the average fiber length by the average fiber diameter.
  • Glass milled fiber is usually produced by shortening glass fiber using a pulverizer such as a ball mill.
  • the aspect ratio of the fibrous glass filler having a low aspect ratio such as glass milled fiber is preferably 2 to 10, more preferably 3 to 8.
  • the fiber length of the low aspect ratio fibrous glass filler is preferably 5 to 150 ⁇ m, more preferably 9 to 80 ⁇ m as the number average fiber length in the resin composition.
  • the average fiber diameter is preferably 1 to 15 ⁇ m, more preferably 3 to 13 ⁇ m.
  • the plate-like glass filler suitably used in the present invention include glass flakes including metal-coated glass flakes and metal oxide-coated glass flakes.
  • the glass flake used as the base of the plate-like glass filler is a plate-like glass filler produced by a method such as a cylindrical blow method or a sol-gel method.
  • Various kinds of glass flake raw materials can be selected depending on the degree of pulverization and classification.
  • the average particle size of the glass flakes used as the raw material is preferably 10 to 1000 ⁇ m, more preferably 20 to 500 ⁇ m, and still more preferably 30 to 300 ⁇ m. This is because the above range is excellent in both handleability and moldability.
  • a plate-like glass filler is cracked by melt-kneading with a resin, and its average particle size is reduced.
  • the number average particle size of the plate-like glass filler in the resin composition is preferably 10 to 200 ⁇ m, more preferably 15 to 100 ⁇ m, and still more preferably 20 to 80 ⁇ m.
  • the number average particle size is calculated by an image analyzer from an image obtained by observing the residue of the sheet glass filler collected by high temperature ashing of the molded product, dissolution with a solvent, decomposition with chemicals, etc. with an optical microscope. Is the value to be Further, when calculating such a value, the flake thickness is used as a guide and the length of the flake is not counted.
  • the thickness is preferably 0.5 to 10 ⁇ m, more preferably 1 to 8 ⁇ m, and further preferably 1.5 to 6 ⁇ m.
  • the plate-shaped glass filler having the above-mentioned number average particle diameter and thickness achieves good mechanical strength, appearance, and moldability.
  • Various glass compositions represented by A glass, C glass, E glass and the like are applied to the glass composition of the above-described fibrous glass filler and plate glass filler, and is not particularly limited.
  • Such glass fillers are optionally made of TiO 2 , SO 3 , And P 2 O 5 And the like.
  • E glass non-alkali glass
  • the glass filler is preferably subjected to a surface treatment with a known surface treatment agent such as a silane coupling agent, a titanate coupling agent, or an aluminate coupling agent from the viewpoint of improving mechanical strength.
  • a known surface treatment agent such as a silane coupling agent, a titanate coupling agent, or an aluminate coupling agent from the viewpoint of improving mechanical strength.
  • Glass fibers (including those coated with metal or metal oxide) and glass flakes (including those coated with metal or metal oxide) are olefin resins, styrene resins, acrylic resins, Those that have been converged with a polyester resin, an epoxy resin, a urethane resin, or the like are preferably used.
  • the amount of sizing agent adhering to the sizing agent is preferably 0.5 to 8% by weight, more preferably 1 to 4% by weight in 100% by weight of the filler.
  • the fibrous glass filler and the plate-like glass filler of the present invention include those in which different materials are surface-coated.
  • Preferred examples of such dissimilar materials include metals and metal oxides.
  • the metal include silver, copper, nickel, and aluminum.
  • the metal oxide include titanium oxide, cerium oxide, zirconium oxide, iron oxide, aluminum oxide, and silicon oxide.
  • plating methods for example, electrolytic plating, electroless plating, hot dipping, etc.
  • vacuum deposition methods for example, electrolytic plating, electroless plating, hot dipping, etc.
  • ion plating methods for example, thermal CVD, MOCVD, plasma CVD, etc.
  • PVD method sputtering method, etc.
  • fibrous carbon filler examples include carbon fibers (including metal-coated carbon fibers), carbon milled fibers, vapor grown carbon fibers, and carbon nanotubes.
  • the carbon nanotube may be any one of a fiber diameter of 0.003 to 0.1 ⁇ m, a single layer, a double layer, and a multilayer, and a multilayer (so-called MWCNT) is preferable.
  • carbon fibers (including metal-coated carbon fibers) are preferable in that they are excellent in mechanical strength and can impart good electrical conductivity. Good electrical conductivity has become one of important characteristics required for resin materials in recent digital precision equipment (represented by, for example, a digital still camera).
  • any of cellulose, polyacrylonitrile, pitch and the like can be used.
  • it is obtained by a method in which a raw material composition comprising a polymer and a solvent due to a methylene bond of aromatic sulfonic acids or their salts is prevented or molded, and then subjected to spinning without passing through an infusibilization step typified by carbonization. It is also possible to use those that have been used.
  • any of general-purpose type, medium elastic modulus type, and high elastic modulus type can be used. Among these, polyacrylonitrile-based high elastic modulus type is particularly preferable.
  • the average fiber diameter of the carbon fiber is not particularly limited, but is usually 3 to 15 ⁇ m, preferably 5 to 13 ⁇ m.
  • a carbon fiber having an average fiber diameter in such a range can exhibit good mechanical strength and fatigue characteristics without impairing the appearance of the molded product.
  • the preferred fiber length of the carbon fiber is preferably 60 to 500 ⁇ m, more preferably 80 to 400 ⁇ m, particularly preferably 100 to 300 ⁇ m as the number average fiber length in the resin composition.
  • the number average fiber length is a value calculated by an image analyzer from an optical microscope observation from the carbon fiber residue collected by high temperature ashing of the molded product, dissolution with a solvent, and decomposition with a chemical. is there. Further, when calculating such a value, a value having a length equal to or shorter than the fiber length is a value obtained by a method not counting.
  • the aspect ratio of the carbon fiber is preferably in the range of 10 to 200, more preferably in the range of 15 to 100, and still more preferably in the range of 20 to 50.
  • the aspect ratio of the fibrous carbon filler is a value obtained by dividing the average fiber length by the average fiber diameter. Furthermore, it is preferable that the surface of the carbon fiber is oxidized for the purpose of improving the adhesion with the matrix resin and improving the mechanical strength.
  • the oxidation treatment method is not particularly limited, for example, (1) a method in which a fibrous carbon filler is treated with an acid or alkali or a salt thereof, or an oxidizing gas, (2) a fiber that can be converted into a fibrous carbon filler, or A method of firing the fibrous carbon filler at a temperature of 700 ° C. or higher in the presence of an inert gas containing an oxygen-containing compound; and (3) after the fibrous carbon filler is oxidized and then in the presence of the inert gas.
  • the method of heat-treating with is suitably exemplified.
  • Metal coated carbon fiber is a carbon fiber surface coated with a metal layer.
  • the metal examples include silver, copper, nickel, and aluminum, and nickel is preferable from the viewpoint of the corrosion resistance of the metal layer.
  • various methods described above for the surface coating with different materials in the glass filler can be employed. Of these, the plating method is preferably used.
  • the thickness of the metal coating layer is preferably 0.1 to 1 ⁇ m, more preferably 0.15 to 0.5 ⁇ m. More preferably, it is 0.2 to 0.35 ⁇ m.
  • Such carbon fibers are preferably those that are converged with an olefin resin, a styrene resin, an acrylic resin, a polyester resin, an epoxy resin, a urethane resin, or the like.
  • a fibrous carbon filler treated with a urethane resin or an epoxy resin is suitable in the present invention because of its excellent mechanical strength.
  • D-4; non-fibrous carbon filler examples include carbon black, graphite, fullerene and the like. Among these, carbon black and graphite are preferable from the viewpoint of mechanical strength, heat and humidity resistance, and thermal stability.
  • carbon black having a DBP oil absorption of 100 ml / 100 g to 500 ml / 100 g is preferable from the viewpoint of conductivity.
  • Such carbon black is generally acetylene black or ketjen black. Specific examples include Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd., Vulcan XC-72 and BP-2000 manufactured by Cabot Corporation, Ketjen Black EC and Ketjen Black EC-600JD manufactured by Lion Corporation.
  • graphite either natural graphite, which is made of graphite under the mineral name, or various artificial graphites can be used.
  • any of earth-like graphite, scale-like graphite (Vein Graphite also called massive graphite), and scale-like graphite (Flake Graphite) can be used.
  • Artificial graphite is obtained by heat-treating amorphous carbon and artificially aligning irregularly arranged fine graphite crystals.
  • Kish graphite, cracked graphite, And pyrolytic graphite Kish graphite, cracked graphite, And pyrolytic graphite.
  • Artificial graphite used for general carbon materials is usually produced by graphitization treatment using petroleum coke or coal-based pitch coke as a main raw material.
  • the graphite of the present invention may contain expanded graphite that can be thermally expanded by treatment represented by acid treatment, or graphite that has been expanded.
  • the particle size of the graphite of the present invention is preferably in the range of 2 to 300 ⁇ m.
  • the particle size is more preferably 5 to 200 ⁇ m, further preferably 7 to 100 ⁇ m, and particularly preferably 7 to 50 ⁇ m.
  • good mechanical strength and molded product appearance are achieved.
  • the average particle size is less than 2 ⁇ m, the effect of improving the rigidity may be reduced, and if the average particle size exceeds 300 ⁇ m, the impact resistance is significantly reduced, and so-called graphite floats on the surface of the molded product. This is not preferable.
  • the amount of fixed carbon in the graphite of the present invention is preferably 80% by weight or more, more preferably 90% by weight or more, and still more preferably 98% by weight or more.
  • the volatile content of the graphite of the present invention is preferably 3% by weight or less, more preferably 1.5% by weight or less, and still more preferably 1% by weight or less.
  • the average particle diameter of graphite refers to the particle diameter before becoming a resin composition, and the particle diameter is determined by a laser diffraction / scattering method.
  • the surface of graphite is subjected to surface treatment such as epoxy treatment, urethane treatment, silane coupling treatment, and oxidation treatment in order to increase the affinity with the thermoplastic resin as long as the characteristics of the composition of the present invention are not impaired. It may be given.
  • D-5 silicate mineral
  • D-5 component is at least a metal oxide component and SiO 2
  • SiO 2 It is a silicate mineral composed of components, and orthosilicate, disilicate, cyclic silicate, chain silicate, and the like are suitable.
  • Silicate minerals take a crystalline state, and the crystals may be in any transformation that each silicate mineral can take, and the shape of the crystals may take various forms such as fibers and plates.
  • Silicate minerals may be complex oxides, oxyacid salts (consisting of ionic lattices), or solid solution compounds, and complex oxides are combinations of two or more single oxides, and single oxides and oxygen acids. Any of two or more combinations with a salt may be used, and also in a solid solution, any of a solid solution of two or more metal oxides and a solid solution of two or more oxyacid salts may be used. Hydrates may also be used. The form of water of crystallization in the hydrate is that which enters as hydrogen silicate ion as Si—OH, and hydroxide ion (OH ⁇ ) As ionic ions, and H in the gaps in the structure 2 Any form of O molecules may be used.
  • silicate mineral an artificial synthetic product corresponding to a natural product can be used.
  • artificial compound silicate minerals obtained from various conventionally known methods, for example, various synthetic methods using solid reaction, hydrothermal reaction, ultrahigh pressure reaction and the like can be used.
  • Specific examples of silicate minerals in each metal oxide component include the following.
  • the description in parentheses is the name of a mineral or the like mainly composed of such a silicate mineral, and means that the compound in parentheses can be used as the exemplified metal salt.
  • K 2 As a component containing O in its component, K 2 O ⁇ SiO 2 , K 2 O ⁇ 4SiO 2 ⁇ H 2 O, K 2 O ⁇ Al 2 O 3 ⁇ 2SiO 2 (Calcylite), K 2 O ⁇ Al 2 O 3 ⁇ 4SiO 2 (White ryu), and K 2 O ⁇ Al 2 O 3 ⁇ 6SiO 2 (Positive feldspar).
  • BaO as a component of BaO / SiO 2 2BaO ⁇ SiO 2 , BaO ⁇ Al 2 O 3 ⁇ 2SiO 2 (Celsian) and BaO ⁇ TiO 2 ⁇ 3SiO 2 (Bent eye).
  • Portland cement can be mentioned as a silicate mineral containing CaO as its component.
  • the type of Portland cement is not particularly limited, and any of normal, early strength, ultra-early strength, moderate heat, sulfate resistance, white, and the like can be used.
  • various mixed cements such as blast furnace cement, silica cement, fly ash cement and the like can be used as the B component.
  • blast furnace slag, a ferrite, etc. can be mentioned as a silicate mineral which contains other CaO in the component.
  • ZnO as its component is ZnO.SiO 2 2ZnO ⁇ SiO 2 (Trostite) and 4ZnO ⁇ 2SiO 2 ⁇ H 2 O (heteropolar ore) and the like.
  • MnO MnO ⁇ SiO 2 2MnO ⁇ SiO 2
  • FeO ⁇ SiO 2 Ferocilite
  • 2FeO ⁇ SiO 2 Iron olivine
  • 3FeO ⁇ Al 2 O 3 ⁇ 3SiO 2 Almandin
  • 2CaO ⁇ 5FeO ⁇ 8SiO 2 ⁇ H 2 O Tetsuakuchinosenite
  • CoO as a component in CoO / SiO 2 And 2CoO ⁇ SiO 2 Etc.
  • Fe 2 O 3 As the component containing Fe 2 O 3 ⁇ SiO 2 Etc.
  • ZrO 2 As a component containing ZrO, 2 ⁇ SiO 2 (Zircon) and AZS refractories.
  • Al 2 O 3 As a component containing 2 O 3 ⁇ SiO 2 (Sillimanite, Andalusite, Kyanite), 2Al 2 O 3 ⁇ SiO 2 , Al 2 O 3 ⁇ 3SiO 2 3Al 2 O 3 ⁇ 2SiO 2 (Mullite), Al 2 O 3 ⁇ 2SiO 2 ⁇ 2H 2 O (Kaolinite), Al 2 O 3 ⁇ 4SiO 2 ⁇ H 2 O (Pyrophyllite), Al 2 O 3 ⁇ 4SiO 2 ⁇ H 2 O (bentonite), K 2 O.3Na 2 O ⁇ 4Al 2 O 3 ⁇ 8SiO 2 (Kasumi stone), K 2 O ⁇ 3Al 2 O 3 ⁇ 6SiO 2
  • Talc Talc in the present invention is hydrous magnesium silicate in terms of chemical composition, and generally has the chemical formula 4SiO 2 ⁇ 3MgO ⁇ 2H 2 It is represented by O and is usually a scaly particle having a layered structure. 2 56 to 65% by weight, MgO 28 to 35% by weight, H 2 O is composed of about 5% by weight.
  • Fe as other minor components 2 O 3 0.03 to 1.2% by weight, Al 2 O 3 0.05 to 1.5% by weight, CaO 0.05 to 1.2% by weight, K 2 O is 0.2 wt% or less, Na 2 O contains 0.2% by weight or less.
  • a more preferable composition of talc is SiO. 2 : 62-63.5 wt%, MgO: 31-32.5 wt%, Fe 2 O 3 : 0.03-0.15 wt%, Al 2 O 3 : 0.05 to 0.25% by weight, and CaO: 0.05 to 0.25% by weight are preferable.
  • the ignition loss is preferably 2 to 5.5% by weight.
  • the composition of the present invention can be further fluidized, and can be used for thin molded products having larger or complex shapes.
  • the average particle size measured by the sedimentation method is 0.1 to 50 ⁇ m (more preferably 0.1 to 10 ⁇ m, still more preferably 0.2 to 5 ⁇ m, particularly preferably 0.2 to 3.5 ⁇ m). ) Is preferable. Therefore, a more preferable talc of the present invention is a talc having the above-mentioned preferable composition and having an average particle diameter of 0.2 to 5 ⁇ m.
  • the bulk density is 0.5 (g / cm 3 ) It is particularly preferable to use the talc as described above as a raw material.
  • talc As an example of talc satisfying such conditions, “Upn HS-T0.8” manufactured by Hayashi Kasei Co., Ltd. is exemplified.
  • the average particle size of talc refers to D50 (median diameter of particle size distribution) measured by an X-ray transmission method which is one of liquid phase precipitation methods.
  • Sedigraph 5100 manufactured by Micromeritics Inc. can be cited.
  • the manufacturing method when talc is crushed from raw stone there is no particular restriction on the manufacturing method when talc is crushed from raw stone, and the axial flow mill method, the annular mill method, the roll mill method, the ball mill method, the jet mill method, the container rotary compression shearing mill method, etc. are used. can do. Further, the talc after pulverization is preferably classified by various classifiers and having a uniform particle size distribution.
  • talc is preferably in an aggregated state in view of its handleability and the like, and as such a production method, there are a method by deaeration compression, a method using a sizing agent, and a method of compression.
  • the degassing compression method is preferable in that the sizing agent resin component which is simple and unnecessary is not mixed into the resin composition of the present invention.
  • Mica having an average particle size of 5 to 250 ⁇ m can be used.
  • mica having an average particle diameter (D50 (median diameter of particle diameter distribution)) measured by a laser diffraction / scattering method of 5 to 50 ⁇ m. If the average particle diameter of mica is less than 5 ⁇ m, it is difficult to obtain the effect of improving rigidity.
  • a resin composition containing mica having an average particle size exceeding 250 ⁇ m is inferior in appearance and flame retardancy while its mechanical properties tend to be saturated.
  • the average particle diameter of mica is measured by a laser diffraction / scattering method or a vibration sieving method.
  • the laser diffraction / scattering method it is preferable that the 325 mesh pass is performed on 95% by weight or more of mica by the vibration sieving method.
  • the vibration sieving method is generally used.
  • the vibration sieving method of the present invention first, sieving is carried out for 10 minutes using a JIS standard standard sieve in which 100 g of mica powder to be used is stacked in the order of openings using a vibration sieve device. This is a method of obtaining the particle size distribution by measuring the weight of the powder remaining on each sieve.
  • the thickness of mica one having a thickness measured by observation with an electron microscope of 0.01 to 1 ⁇ m can be used.
  • the thickness is preferably 0.03 to 0.3 ⁇ m.
  • An aspect ratio of 5 to 200, preferably 10 to 100 can be used.
  • the mica used is preferably mascobite mica, and its Mohs hardness is about 3. Muscovite mica can achieve higher rigidity and strength than other mica such as phlogopite, and solves the problems of the present invention at a better level.
  • a more preferred mica of the present invention is a mascobite having an average particle diameter of 5 to 250 ⁇ m, more preferably 5 to 50 ⁇ m.
  • a suitable mica for example, “A-21” manufactured by Yamaguchi Mica Industry Co., Ltd.
  • the mica may be pulverized by either dry pulverization or wet pulverization.
  • the dry pulverization method is more inexpensive and more general, but the wet pulverization method is effective for pulverizing mica more thinly and finely (the rigidity improvement effect of the resin composition becomes higher).
  • the wet pulverized mica is more preferable.
  • (D-5-iii) Wollastonite The fiber diameter of wollastonite is preferably 0.1 to 10 ⁇ m, more preferably 0.1 to 5 ⁇ m, still more preferably 0.1 to 3 ⁇ m.
  • the aspect ratio (average fiber length / average fiber diameter) is preferably 3 or more. The upper limit of the aspect ratio is 30 or less.
  • the fiber diameter is obtained by observing the reinforcing filler with an electron microscope, obtaining individual fiber diameters, and calculating the number average fiber diameter from the measured values.
  • the electron microscope is used because it is difficult for an optical microscope to accurately measure the size of a target level.
  • the filler for which the fiber diameter is to be measured is randomly extracted, the fiber diameter is measured near the center, and the number average fiber is obtained from the obtained measured value. Calculate the diameter.
  • the observation magnification is about 1000 times, and the number of measurement is 500 or more (600 or less is suitable for work).
  • the measurement of average fiber length observes a filler with an optical microscope, calculates
  • Observation with an optical microscope begins with the preparation of a dispersed sample so that the fillers do not overlap each other. Observation is performed under the condition of 20 times the objective lens, and the observed image is taken as image data into a CCD camera having about 250,000 pixels. The obtained image data is calculated by using a program for obtaining the maximum distance between two points of the image data using an image analysis device. Under such conditions, the size per pixel corresponds to a length of 1.25 ⁇ m, and the number of measurement is 500 or more (600 or less is suitable for work).
  • the wollastonite of the present invention is a magnetic separator that reflects the iron content mixed in the raw material ore and the iron content mixed due to equipment wear when pulverizing the raw material ore in order to sufficiently reflect the inherent whiteness in the resin composition. It is preferable to remove as much as possible.
  • the iron content in wollastonite is Fe. 2 O 3 It is preferably 0.5% by weight or less in terms of Therefore, the more preferable wollastonite of the present invention has a fiber diameter of 0.1 to 10 ⁇ m, more preferably 0.1 to 5 ⁇ m, and further preferably 0.1 to 3 ⁇ m.
  • the average particle size is 5 to 250 ⁇ m, more preferably 5 to 50 ⁇ m, and the iron content is Fe 2 O 3 Wollastonite in an amount of 0.5% by weight or less.
  • suitable wollastonite include “SH-1250” and “SH-1800” manufactured by Kinsei Matech Corporation, “KGP-H40” manufactured by Kansai Matec Corporation, “NYGLOS4” manufactured by NYCO Corporation, and the like.
  • the silicate mineral in the present invention is preferably not surface-treated, but a silane coupling agent (including alkylalkoxysilane and polyorganohydrogensiloxane), higher fatty acid ester, acid compound (for example, phosphorous acid, Surface treatment may be carried out with various surface treatment agents such as phosphoric acid, carboxylic acid, and carboxylic acid anhydride) and wax. Furthermore, it may be granulated with a sizing agent such as various resins, higher fatty acid esters, and waxes.
  • talc and wollastonite are particularly suitable.
  • the content of the component D is 0 to 15 parts by weight, preferably 8 to 15 parts by weight, more preferably 9 to 14 parts by weight with respect to 100 parts by weight of the resin component. More preferably, it is 10 to 12 parts by weight. If the upper limit is exceeded, the impact strength will decrease, and if it is less than the lower limit, the effect of improving the rigidity will be insufficient, such being undesirable.
  • the resin composition of the present invention includes various additives (flame retardants, fluorine-containing anti-dripping agents, stabilizers, ultraviolet absorbers, release agents, Dyes and pigments, compounds having heat ray absorbing performance, antistatic agents, acidity adjusting agents, and the like) (for details of various additives, refer to WO2011 / 088741).
  • additives flame retardants, fluorine-containing anti-dripping agents, stabilizers, ultraviolet absorbers, release agents, Dyes and pigments, compounds having heat ray absorbing performance, antistatic agents, acidity adjusting agents, and the like
  • phosphorus stabilizer preferably used in the present invention include phosphorous acid, phosphoric acid, phosphonous acid, phosphonic acid, esters thereof, and tertiary phosphine.
  • phosphorous acid, phosphoric acid, phosphonous acid, phosphonic acid, triorganophosphate compounds, and acid phosphate compounds are particularly preferable.
  • the organic group in the acid phosphate compound includes any of mono-substituted, di-substituted, and mixtures thereof. Any of the following exemplified compounds corresponding to the compound is similarly included.
  • Triorganophosphate compounds include trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, tridecyl phosphate, tridodecyl phosphate, trilauryl phosphate, tristearyl phosphate, tricresyl phosphate, triphenyl phosphate, trichlorophenyl phosphate, diphenyl Examples include cresyl phosphate, diphenyl monoorthoxenyl phosphate, tributoxyethyl phosphate, and the like. Among these, trialkyl phosphate is preferable.
  • the carbon number of the trialkyl phosphate is preferably 1 to 22, more preferably 1 to 4.
  • a particularly preferred trialkyl phosphate is trimethyl phosphate.
  • the acid phosphate compound include methyl acid phosphate, ethyl acid phosphate, butyl acid phosphate, butoxyethyl acid phosphate, octyl acid phosphate, decyl acid phosphate, lauryl acid phosphate, stearyl acid phosphate, oleyl acid phosphate, behenyl acid phosphate, behenyl acid phosphate Nonylphenyl acid phosphate, cyclohexyl acid phosphate, phenoxyethyl acid phosphate, alkoxy polyethylene glycol acid phosphate, bisphenol A acid phosphate, and the like.
  • long-chain dialkyl acid phosphates having 10 or more carbon atoms are effective for improving thermal stability, and the acid phosphate itself is preferable because of high stability.
  • the phosphite compound include triphenyl phosphite, tris (nonylphenyl) phosphite, tridecyl phosphite, trioctyl phosphite, trioctadecyl phosphite, didecyl monophenyl phosphite, dioctyl monophenyl phosphite, diisopropyl Monophenyl phosphite, monobutyl diphenyl phosphite, monodecyl diphenyl phosphite, monooctyl diphenyl phosphite, tris (diethylphenyl) phosphite, tris (di-iso-propylphenyl
  • Still other phosphite compounds that react with dihydric phenols and have a cyclic structure can be used.
  • 2,2′-methylenebis (4,6-di-tert-butylphenyl) (2,4-di-tert-butylphenyl) phosphite 2,2′-methylenebis (4,6-di-tert- Examples include butylphenyl) (2-tert-butyl-4-methylphenyl) phosphite, 2,2-methylenebis (4,6-di-tert-butylphenyl) octyl phosphite, and the like.
  • Examples of the phosphonite compound include tetrakis (2,4-di-tert-butylphenyl) -4,4′-biphenylenediphosphonite, tetrakis (2,4-di-tert-butylphenyl) -4,3′-biphenylenedi.
  • Such a phosphonite compound is preferable because it can be used in combination with a phosphite compound having an aryl group in which two or more alkyl groups are substituted.
  • Examples of the phosphonate compound include dimethyl benzenephosphonate, diethyl benzenephosphonate, and dipropyl benzenephosphonate.
  • Tertiary phosphine includes triethylphosphine, tripropylphosphine, tributylphosphine, trioctylphosphine, triamylphosphine, dimethylphenylphosphine, dibutylphenylphosphine, diphenylmethylphosphine, diphenyloctylphosphine, triphenylphosphine, tri-p-tolyl.
  • Examples include phosphine, trinaphthylphosphine, diphenylbenzylphosphine, and the like.
  • a particularly preferred tertiary phosphine is triphenylphosphine.
  • Suitable phosphorus stabilizers are triorganophosphate compounds, acid phosphate compounds, and phosphite compounds represented by the following formula (XIII). It is particularly preferable to add a triorganophosphate compound.
  • R and R ′ each represents an alkyl group having 6 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an alkylaryl group, and may be the same or different from each other.
  • tetrakis (2,4-di-tert-butylphenyl) -biphenylenediphosphonite is preferred as the phosphonite compound
  • the stabilizer containing phosphonite as a main component is Sandostab P-EPQ (trademark, manufactured by Clariant).
  • Irgafos P-EPQ trademark, CIBA SPECIALTY manufactured by CHEMICALS
  • more preferred phosphite compounds are distearyl pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di). -Tert-butyl-4-methylphenyl) pentaerythritol diphosphite, and bis ⁇ 2,4-bis (1-methyl-1-phenylethyl) phenyl ⁇ pentaerythritol diphosphite.
  • the resin composition of the present invention contains thermoplastic resins other than the A component and B component, elastomers, other flow modifiers, antibacterial agents, dispersants such as liquid paraffin, photocatalytic antifouling agents, photochromic agents and the like. can do.
  • examples of such other resins include polyamide resins, polyimide resins, polyetherimide resins, polyurethane resins, silicone resins, polyphenylene ether resins, polyphenylene sulfide resins, polysulfone resins, polyolefin resins such as polyethylene and polypropylene, polystyrene resins, acrylonitrile / styrene.
  • Resins such as copolymer (AS resin), polymethacrylate resin, phenol resin, epoxy resin, cyclic polyolefin resin, polylactic acid resin, polycaprolactone resin, and thermoplastic fluororesin (for example, represented by polyvinylidene fluoride resin) Can be mentioned.
  • the elastomer include acrylic elastomers, polyester elastomers, polyamide elastomers, and the like.
  • the content of the other thermoplastic resin or elastomer is preferably 30 parts by weight or less, more preferably 20 parts by weight or less based on 100 parts by weight of the resin component. (Production method of resin composition)
  • Arbitrary methods are employ
  • the premixing means include a Nauter mixer, a V-type blender, a Henschel mixer, a mechanochemical device, and an extrusion mixer.
  • granulation can be performed by an extrusion granulator, a briquetting machine, or the like, if necessary.
  • a master batch of an additive diluted with powder by blending a part of the powder and an additive to be blended is manufactured, and the master A method using a batch is mentioned.
  • the mixture is melt-kneaded by a melt-kneader represented by a vent type twin-screw extruder and pelletized by a device such as a pelletizer.
  • the melt kneader include a Banbury mixer, a kneading roll, and a constant temperature stirring vessel, but a vent type twin screw extruder is preferred.
  • a method of supplying each component independently to a melt-kneader represented by a twin-screw extruder without premixing each component can also be used.
  • the method of supplying to a melt-kneader independently of the remaining components is mentioned.
  • the inorganic filler is preferably supplied from a supply port in the middle of the extruder into the molten resin using a supply device such as a side feeder.
  • the premixing means and granulation are the same as described above.
  • a liquid injection apparatus or a liquid addition apparatus can be used for supply to a melt kneader.
  • a liquid injection apparatus or a liquid addition apparatus can be used for supply to a melt kneader.
  • the extruder one having a vent capable of degassing moisture in the raw material and volatile gas generated from the melt-kneaded resin can be preferably used. From the vent, a vacuum pump is preferably installed for efficiently discharging generated moisture and volatile gas to the outside of the extruder. It is also possible to remove a foreign substance from the resin composition by installing a screen for removing foreign substances and the like mixed in the extrusion raw material in the zone in front of the extruder die.
  • melt kneader examples include a banbury mixer, a kneading roll, a single screw extruder, a multi-screw extruder having three or more axes, in addition to a twin screw extruder. Furthermore, it is preferable that the moisture contained in the A component and the B component is small before melt kneading. Therefore, it is more preferable to melt-knead after drying either component A or component B or both by various methods such as hot air drying, electromagnetic wave drying, or vacuum drying.
  • the vent suction during melt-kneading is preferably in the range of 1 to 60 kPa, preferably 2 to 30 kPa.
  • the resin extruded as described above is directly cut into pellets, or after forming the strands, the strands are cut with a pelletizer to be pelletized.
  • a pelletizer to be pelletized.
  • various methods already proposed for polycarbonate resin for optical discs are used to narrow the shape distribution of pellets, reduce miscuts, and reduce fine powder generated during transportation or transportation.
  • bubbles vacuum bubbles
  • the shape of a pellet can take common shapes, such as a cylinder, a prism, and a spherical shape, it is a cylinder more suitably.
  • the diameter of such a cylinder is preferably 1 to 5 mm, more preferably 1.5 to 4 mm, and still more preferably 2 to 3.3 mm.
  • the length of the cylinder is preferably 1 to 30 mm, more preferably 2 to 5 mm, and still more preferably 2.5 to 3.5 mm.
  • injection molding not only ordinary molding methods, but also injection compression molding, injection press molding, gas-assisted injection molding, foam molding (including the method of injecting supercritical fluid), insert molding, in-mold coating molding, and heat insulation gold
  • injection molding not only ordinary molding methods, but also injection compression molding, injection press molding, gas-assisted injection molding, foam molding (including the method of injecting supercritical fluid), insert molding, in-mold coating molding, and heat insulation gold
  • mold molding rapid heating / cooling mold molding, two-color molding, multicolor molding, sandwich molding, and ultrahigh-speed injection molding.
  • a cold runner method or a hot runner method can be selected for molding.
  • extrusion molding various profile extrusion molded products, sheets, films, etc. are obtained. For forming sheets and films, an inflation method, a calendar method, a casting method, or the like can be used.
  • the resin composition of the present invention can also be formed into a molded product by rotational molding, blow molding or the like.
  • the form of the present invention considered to be the best by the present inventor is a collection of the preferred ranges of the above requirements. For example, typical examples are described in the following examples. Of course, the present invention is not limited to these forms.
  • test piece before the wet heat treatment was kept at a constant temperature and humidity of 80 ° C. and a relative humidity of 95%.
  • a test piece left again for 24 hours in an environment of a temperature of 23 ° C. and a relative humidity of 50% was used as a test piece after the wet heat treatment.
  • the test specimens before and after the wet heat treatment were pulverized so that no foreign matter was mixed in, and dried at 120 ° C. for about 5 hours to reduce the moisture content to 200 ppm or less.
  • MVR melt volume rate measurement was performed by a method based on ISO 1133 under the condition of 2.16 kgf. The measurement was performed with a semi-auto melt indexer 2A type manufactured by Toyo Seiki Co., Ltd. The wet heat resistance was calculated according to the following formula, and the rate of change ( ⁇ MVR) before and after wet heat treatment was calculated.
  • ⁇ MVR rate of change
  • a larger ⁇ MVR means that the resin deterioration of the molded product is larger and the heat and moisture resistance is inferior, and ⁇ MVR is preferably 200 or less, more preferably 170 or less.
  • ⁇ MVR (moisture and heat resistance) 100 ⁇ (MVR of test piece after wet heat treatment) / (MVR of test piece before wet heat treatment) (V) Thermal stability: After the obtained resin pellets were dried at 120 ° C. for about 5 hours to reduce the moisture content in the pellets to 200 ppm or less, an injection molding machine (Sumitomo Heavy Industries, Ltd .: SG260M-HP) was used. Using a cylinder temperature of 280 ° C., a mold temperature of 70 ° C., a molding cycle of 50 seconds, and an injection speed of 15 mm / sec, a test piece of length 70 mm ⁇ width 50 mm ⁇ thickness 2.0 mm was continuously injection molded.
  • the test piece of the continuous molded product was obtained (the quality of the test piece of the continuous molded product is substantially the same as the test piece before the wet heat treatment).
  • the molding machine was stopped for 10 minutes, and the molten resin was retained in the molding machine cylinder. 10 minutes after the molding machine was stopped, molding was started again, and the second shot from the re-molding was used as a test piece for the retained molded product.
  • the continuously molded product and the retained molded product are pulverized so that no foreign matter is mixed in, dried at 120 ° C. for about 5 hours to reduce the moisture content to 200 ppm or less, and each pulverized sample has a temperature of 280 ° C.
  • MVR melt volume rate
  • ISO1133 semi-auto melt indexer 2A type manufactured by Toyo Seiki Co., Ltd.
  • the thermal stability was calculated according to the following formula, and the MVR change rate ( ⁇ MVR (thermal stability)) before and after residence was calculated.
  • ⁇ MVR thermal stability
  • ⁇ MVR thermal stability
  • ⁇ MVR is preferably 150 or less, more preferably 130 or less.
  • ⁇ MVR (thermal stability) 100 ⁇ (MVR of test piece of staying molded product) / (MVR of test piece of continuous molded product) (Vi) Chemical resistance: (iii) A test piece prepared by Charpy impact test was subjected to a bending strain of 6 MPa, and immersed in commercial regular gasoline for 30 minutes in an environment of a temperature of 23 ° C. and a relative humidity of 50%. The appearance was visually observed and evaluated. The evaluation was performed according to the following criteria. ⁇ : No abnormality is observed. ⁇ : Appearance changes such as cracks and whitening are observed in the molded products.
  • Examples 1 to 12 and Comparative Examples 1 to 11 A polycarbonate resin, a polyester resin, a filler and various additives are mixed in the blending amounts shown in Tables 1 to 3 in a blender, and then melt-kneaded using a vent type twin screw extruder to obtain the resin composition of the present invention.
  • a pellet consisting of Various additives other than the filler were preliminarily prepared with a polycarbonate resin powder with a concentration of 10 to 100 times the blending amount as a guide, and then the whole was mixed by a blender.
  • the vent type twin screw extruder used was TEX30 ⁇ -31.5BW-2V (completely meshed, rotating in the same direction, two-thread screw) manufactured by Nippon Steel Works.
  • the kneading zone was of one type before the vent opening. Extrusion conditions were a discharge rate of 20 kg / h, a screw rotation speed of 130 rpm, a vent vacuum of 3 kPa, and an extrusion temperature of 270 ° C. from the first supply port to the die part.
  • the components indicated by symbols in Tables 1 to 3 are as follows.
  • a component Linear aromatic polycarbonate resin powder having a viscosity average molecular weight of 22,400 (component B) (B-1 component)
  • PBT-1 Polybutylene terephthalate resin having an IV value of 0.87 (Polyplastics Corporation DURANEX 500FP (trade name))
  • a catalyst was prepared. After producing an ester oligomer from ethylene glycol and terephthalic acid, a polycondensation reaction was carried out in a polycondensation reaction tank together with a catalyst. The degree of progress of the polycondensation was checked by monitoring the load on the stirring blade in the reaction system, and the reaction was terminated when the desired degree of polymerization was reached. Thereafter, the reaction mixture in the system was continuously extruded in a strand form from the discharge part, cooled and solidified, and cut to prepare polyethylene terephthalate granular pellets having a particle size of about 3 mm.
  • C component C-1 EXL2390: Acrylic core-shell polymer (Rohm and Haas Co., Ltd .: Paraloid EXL-2390 (trade name), core is about 50% by weight of butyl acrylate component and about 40% by weight of 2-ethylhexyl acrylate component, shell is Core-shell polymer that is about 10% by weight methyl methacrylate) C-2 (Comparison): EXL2388: Acrylic core-shell polymer (Rohm and Haas Co., Ltd .: Paraloid EXL-2388 (trade name), core is about 90% by weight of butyl acrylate component, shell is about 10% by weight of methyl methacrylate A core-shell polymer) C-3 (Comparison): EXL-2620: Styrenic rubber polymer (Rohm and Haas Co., Ltd .: Paraloid EXL-2620 (trade name), core is 70% polybutadiene, shell is styrene and methyl methacryl
  • D component Polymerized composite rubber graft copolymer (Metbrene S-2001 (trade name) manufactured by Mitsubishi Rayon Co., Ltd.)
  • D-1 Wollastonite with an average particle size of 4 ⁇ m (Kansai Matec Co., Ltd .: KGP-H40)
  • D-2 Wollastonite having an average particle diameter of 5 ⁇ m (manufactured by Kinsei Matech Corporation: SH-1250)
  • D-3 Compressed fine powder talc (Hayashi Kasei Co., Ltd .: Upn HS-T0.8)
  • D-4 wet-pulverized mica having an average particle size of 22 ⁇ m (Yamaguchi Mica Co., Ltd .: A-21)
  • AO-1 Bis (2,4-di-t-butylphenyl) pentaerythritol diphosphite (manufactured by Adeka: Adeka Stub PEP-24G)
  • AO-2 Trimethyl phosphate
  • Example 2 is excellent in both tensile modulus and Charpy impact strength.
  • Example 12 is excellent in both tensile modulus and Charpy impact strength.
  • the resin composition of the present invention is excellent in both tensile elastic modulus and Charpy impact strength.
  • the resin composition of the present invention is excellent in thermal stability and further has good chemical resistance.
  • the resin composition of the present invention is widely useful in various fields such as buildings, building materials, agricultural materials, marine materials, vehicles, electric / electronic devices, machines, and the like.

Abstract

The purpose of the present invention is to provide a thermoplastic resin composition having exceptional heat stability as well as excellent mechanical strength and exceptional chemical resistance. The present invention is a resin composition containing 1-10 parts by weight of (C) a core-shell polymer (component C) that comprises a core (component C-1) comprising a cross-linked acrylic-acid-ester-based elastic material configured from an acrylic acid ester having C1-4 alkyl groups and an acrylic acid ester having C5-8 alkyl groups, and a shell (component C-2) having a methacrylic acid ester as the main component, and 8-15 parts by weight of (D) a filler (component D), per 100 parts by weight of a resin component comprising 80-50 parts by weight of (A) a polycarbonate resin (component A) and 20-50 parts by weight of (B) a polyester resin (component B).

Description

樹脂組成物Resin composition
 本発明はポリカーボネート樹脂、ポリエステル樹脂、特定構造のコアシェルポリマーおよび充填材を含有する樹脂組成物および成形品に関する。さらに詳しくは、本発明は特定元素からなる触媒を使用して生産されたポリエステル樹脂を含み、熱安定性に優れ、更に良好な機械的強度および耐薬品性に優れる熱可塑性樹脂組成物に関する。 The present invention relates to a resin composition and a molded product containing a polycarbonate resin, a polyester resin, a core-shell polymer having a specific structure, and a filler. More specifically, the present invention relates to a thermoplastic resin composition comprising a polyester resin produced using a catalyst comprising a specific element, having excellent thermal stability, and excellent mechanical strength and chemical resistance.
 ポリカーボネート樹脂、ポリエステル樹脂、充填材および衝撃改質剤を含む樹脂組成物は、ポリカーボネート樹脂の優れた外観特性、機械特性、寸法安定性を保持しつつ耐薬品性を改質し、さらに剛性が付与された樹脂組成物であるため、電気・電子、機械、OA、車両、および医療用途などに幅広く使用されている。また、ポリカーボネート樹脂、ポリエステル樹脂および充填材を含有する樹脂組成物(以下、PC/PEST/充填材アロイと称することもある)から成形される成形品は、塗装される部材や未塗装のまま使用される部材などに適するため、特に車両用途やOA用途などに有用であり、種々の検討が行われている。
 近年、車両分野およびOA分野では、部品の軽量化やコストダウンが急速に進行している。例えば、車両用途としては、フェンダーやバックドア等のボディパネルに代表される大型部品を樹脂材料とする技術開発が活発となっており、PC/PEST/充填材アロイは上記に記載の優れた特性から好適な樹脂材料である。しかし、従来まで使用していた鋼板などの材質と比べて耐湿熱性が劣るため、適用可能な部位や大きさに限りがあり使用は限定的であった。
 また軽量化を目的とした部品の薄肉化や、同時にコストダウンのための部品点数の削減、部品のモジュール化の傾向が加速しており、より薄肉でかつより複雑かつ大きな形状の成形品を容易に得るために、加工特性の向上が求められている。既存の設備を使用し加工特性を向上させる方法としては、成形温度をより上げ流動性を高め成形する方法が一般的であるため、より良好な熱安定性が要求される。従って、部品の軽量化やコストダウンを達成するため、PC/PEST/充填材アロイにはより優れた耐湿熱性と熱安定性の両立が強く求められる。
 さらに、車両部材、機械、建築物等の特に機械的強度が必要な分野では、剛性と耐衝撃性の両立が強く求められる。
 特許文献1では、ポリカーボネート樹脂およびポリエステル樹脂を含有する樹脂組成物の耐湿熱性を向上させるためにケイ酸アルミニウムを主成分とする無機化合物を配合する技術が検討されている。かかる添加剤の配合は樹脂組成物のコストアップや樹脂組成物を製造する際の工数の増加以外に、比重が増すなどの本来の目的である軽量化の効果が薄れる問題がある。また熱安定性が低下する恐れがあるが、熱安定性に関する知見は何ら示されておらず、技術的に十分な検討がなされたとは言い難い。
 特許文献2では、PC/PEST/充填材アロイにホスファイト系抗酸化剤を配合する技術が検討されている。かかる技術により成形加工時の樹脂の分解は抑制されるが、耐湿熱性に関する検討はされておらず、技術的には更なる改善が求められる。
 特許文献3では、PC/PESTアロイに酸性リン系添加物および水分量が0.25重量%以下に制御されている無機充填剤を配合する技術が検討されている。水分量が0.25重量%以下の充填剤を配合することで溶融安定性を向上させるが、配合する無機充填剤の水分量の管理は樹脂組成物を製造する際の工数の増加を意味しており、コストアップにつながり汎用的な技術とは言い難い。また得られた樹脂組成物の耐湿熱性に関する検討はされておらず、技術的には更なる改善が必要である。
 特許文献4では、pHが8.0以上であり、SiO単位が30重量%以上を占める無機化合物がポリカーボネート系樹脂内部になるべく存在しないように分散状態を制御する技術が検討されている。かかる技術により成形加工時の熱安定性の向上が確認されているが、耐湿熱性に関する検討はされていない。またかかる樹脂組成物を得るためには製造方法に制約が出る可能性が高く、その結果、製造工数の増加やコストアップにつながり、汎用性の高い技術とは言い難い。
 PC/PEST/充填材アロイの耐湿熱性や熱安定性の向上のために更なる添加剤を配合する方法や充填材の分散状態を制御する方法は、耐湿熱性と熱安定性の両立を困難としまたコストアップ要因にもなるため、更なる技術が求められている。
 こうした状況下でPC/PEST/充填材アロイが上記要求を満たす手段として、特定の重合触媒により製造されたPETを用いたアロイ材料が提案されている(特許文献5−7参照)。特許文献5では、重合触媒として一般的なアンチモン化合物やチタン化合物で製造したPETにみられる色調、溶融安定性、外観、成形性の低下を、ゲルマニウム触媒を用いることにより改善することが提案されている。しかしかかる技術は現在車両やOA用途で求められているより高い熱安定性を十分満足するものではなく、耐湿熱性に関する知見は教示されていない。
 特許文献6では、チタン含有触媒化合物を1~30ppm使用して製造されたポリエステル樹脂を含有させることにより、色調、熱安定性、溶融安定性を改善することが提案されている。触媒量を低減したことで、熱安定性や溶融安定性が改善されるものの、ポリエステル樹脂量が多くなるにつれて熱安定性は低下する傾向にあり、更なる改善が求められる。また耐湿熱性に関する知見は何ら教示されていない。
 特許文献7では、ポリエステル樹脂を特定の構造を有するチタン含有触媒化合物を使用して製造することで、良好な色調(b値)を有し、異物が少なく、溶融時の熱安定性に優れたポリエステル樹脂が得られることが記載されている。しかしながらポリエステル樹脂以外の樹脂を含有する樹脂組成物に対する効果は言及しておらず、耐湿熱性に関する知見は何ら教示されていない。
 特許文献8では、PC/PEST/充填材アロイが機械強度の要求を満たす手段として、充填材と衝撃改質剤を併用することが検討されている。かかる技術により強度や剛性を向上させるが、衝撃改質剤の剛性向上への効果については検討されておらず、技術的には更なる改善が必要である。
 その為、良好な耐湿熱性や熱安定性を有し、剛性や耐衝撃性などの機械的強度にも優れるポリカーボネート樹脂組成物および成形品は未だ提供されていなかった。
特開平10−237295号公報 特開平5−222283号公報 特開2002−121366号公報 特開2000−313799号公報 特開昭51−102043号公報 特表2005−521772号公報 WO03/008479号公報 特開平9−286904号公報
Resin compositions containing polycarbonate resin, polyester resin, fillers and impact modifiers improve chemical resistance while maintaining the excellent appearance, mechanical and dimensional stability of polycarbonate resin, and add rigidity. Therefore, it is widely used in electrical / electronic, mechanical, OA, vehicle, and medical applications. In addition, a molded product formed from a resin composition containing a polycarbonate resin, a polyester resin, and a filler (hereinafter sometimes referred to as PC / PEST / filler alloy) is used as a painted member or unpainted. In particular, it is useful for vehicle applications and OA applications, and various studies have been made.
In recent years, in the vehicle field and OA field, the weight reduction and cost reduction of parts are progressing rapidly. For example, as a vehicle application, technological developments using resin materials for large parts represented by body panels such as fenders and back doors are active, and PC / PEST / filler alloy has the excellent characteristics described above. To a suitable resin material. However, since the heat and moisture resistance is inferior to those of steel plates and the like that have been used up to now, the applicable parts and sizes are limited, and their use is limited.
In addition, thinning of parts for weight reduction, simultaneous reduction in the number of parts for cost reduction, and the trend toward modularization of parts are accelerating, making it easier to form thinner, more complex and large shaped products. Therefore, improvement of processing characteristics is demanded. As a method for improving the processing characteristics by using existing equipment, a method of increasing the molding temperature and increasing the fluidity is generally used, so that better thermal stability is required. Therefore, in order to achieve weight reduction and cost reduction of parts, PC / PEST / filler alloy is strongly required to have both better heat resistance and heat stability.
Furthermore, in fields where mechanical strength is particularly required, such as vehicle members, machines, buildings, etc., it is strongly required to satisfy both rigidity and impact resistance.
Patent Document 1 discusses a technique of blending an inorganic compound containing aluminum silicate as a main component in order to improve the heat and moisture resistance of a resin composition containing a polycarbonate resin and a polyester resin. In addition to the increase in the cost of the resin composition and the increase in the number of steps for producing the resin composition, the blending of such additives has a problem that the effect of weight reduction, which is the original purpose such as an increase in specific gravity, is diminished. Moreover, although there is a possibility that the thermal stability is lowered, no knowledge about the thermal stability is shown, and it cannot be said that a sufficient technical study has been made.
In patent document 2, the technique of mix | blending a phosphite-type antioxidant with PC / PEST / filler alloy is examined. Although this technique suppresses the decomposition of the resin during the molding process, no examination has been made on the resistance to moist heat, and further technical improvements are required.
Patent Document 3 discusses a technique in which an acidic phosphorus-based additive and an inorganic filler whose water content is controlled to 0.25% by weight or less are mixed with PC / PEST alloy. Mixing a filler with a water content of 0.25% by weight or less improves the melt stability. However, the management of the water content of the inorganic filler to be added means an increase in the number of steps for producing the resin composition. It is difficult to say that it is a general-purpose technology that leads to cost increase. Moreover, examination about the heat-and-moisture resistance of the obtained resin composition is not carried out, and the further improvement is required technically.
Patent Document 4 discusses a technique for controlling the dispersion state so that an inorganic compound having a pH of 8.0 or higher and an SiO 2 unit of 30% by weight or higher does not exist in the polycarbonate resin as much as possible. Although such technology has been confirmed to improve the thermal stability during the molding process, no examination has been made on the heat and moisture resistance. Moreover, in order to obtain such a resin composition, there is a high possibility that the manufacturing method will be restricted. As a result, the number of manufacturing steps is increased and the cost is increased, which is not a highly versatile technique.
The method of adding additional additives to improve the heat and moisture resistance and thermal stability of PC / PEST / filler alloy and the method of controlling the dispersion state of the filler make it difficult to achieve both heat and moisture stability. Therefore, further technology is required.
Under such circumstances, an alloy material using PET produced with a specific polymerization catalyst has been proposed as a means for PC / PEST / filler alloy to satisfy the above requirements (see Patent Documents 5-7). In Patent Document 5, it is proposed to use a germanium catalyst to improve the color tone, melt stability, appearance, and moldability of PET produced with a general antimony compound or titanium compound as a polymerization catalyst. Yes. However, such a technique does not sufficiently satisfy the higher thermal stability currently required for vehicles and OA applications, and no knowledge about wet heat resistance is taught.
Patent Document 6 proposes to improve color tone, thermal stability, and melt stability by including a polyester resin produced by using 1 to 30 ppm of a titanium-containing catalyst compound. Although the thermal stability and melt stability are improved by reducing the amount of the catalyst, the thermal stability tends to decrease as the amount of the polyester resin increases, and further improvement is required. In addition, no knowledge about wet heat resistance is taught.
In Patent Document 7, by producing a polyester resin using a titanium-containing catalyst compound having a specific structure, the polyester resin has a good color tone (b value), little foreign matter, and excellent thermal stability during melting. It is described that a polyester resin is obtained. However, the effect on the resin composition containing a resin other than the polyester resin is not mentioned, and no knowledge about wet heat resistance is taught.
Patent Document 8 discusses the use of a filler and an impact modifier in combination as a means for PC / PEST / filler alloy to satisfy the requirements of mechanical strength. Although the strength and rigidity are improved by such a technique, the effect of the impact modifier on improving the rigidity has not been studied, and further improvement is technically necessary.
For this reason, a polycarbonate resin composition and a molded article having good wet heat resistance and thermal stability and excellent mechanical strength such as rigidity and impact resistance have not yet been provided.
JP-A-10-237295 JP-A-5-222283 JP 2002-121366 A JP 2000-313799 A Japanese Patent Laid-Open No. 51-102043 JP-T-2005-521772 WO03 / 008479 Publication JP-A-9-286904
 本発明の目的は、ポリカーボネート樹脂、ポリエステル樹脂、衝撃改質剤を含有し、引張弾性率およびシャルピー衝撃強度などの機械的強度に優れる樹脂組成物を提供することにある。また本発明の目的は、耐湿熱性、熱安定性に優れる樹脂組成物を提供することにある。また本発明の目的は、該樹脂組成物からなる成形品、殊に車両用内装部材、車両用外装部材を提供することにある。
 本発明者らは、上記目的を達成するべく鋭意検討を重ねた結果、図1および図2に示すように、ポリカーボネート樹脂に、ポリエステル樹脂、特定構造のコアシェルポリマーを配合することにより、引張弾性率およびシャルピー衝撃強度に優れる樹脂組成物が得られることを見出した。また得られた樹脂組成物は、耐湿熱性および熱安定性に優れることを見出し、本発明を完成した。
 本発明によれば、上記課題は、(A)ポリカーボネート樹脂(A成分)80~50重量部および(B)ポリエステル樹脂(B成分)20~50重量部からなる樹脂組成物100重量部に対して、
(C)アルキル基の炭素数が1~4のアクリル酸エステルとアルキル基の炭素数が5~8のアクリル酸エステルとから構成される架橋アクリル酸エステル系弾性体からなるコア(C−1成分)とメタクリル酸エステルを主成分とするシェル(C−2成分)からなるコアシェルポリマー(C成分)1~10重量部および
(D)充填材(D成分)0~15重量部を含む樹脂組成物により達成される。
An object of the present invention is to provide a resin composition containing a polycarbonate resin, a polyester resin, and an impact modifier, and having excellent mechanical strength such as tensile modulus and Charpy impact strength. Another object of the present invention is to provide a resin composition having excellent heat and humidity resistance and thermal stability. Another object of the present invention is to provide a molded article made of the resin composition, particularly a vehicle interior member and a vehicle exterior member.
As a result of intensive studies to achieve the above object, the present inventors have obtained a tensile elastic modulus by blending a polyester resin and a core-shell polymer having a specific structure into a polycarbonate resin, as shown in FIGS. It was also found that a resin composition having excellent Charpy impact strength can be obtained. In addition, the obtained resin composition was found to be excellent in heat and moisture resistance and heat stability, and the present invention was completed.
According to the present invention, the above-mentioned problem is based on 100 parts by weight of a resin composition comprising (A) 80 to 50 parts by weight of a polycarbonate resin (component A) and (B) 20 to 50 parts by weight of a polyester resin (component B). ,
(C) A core (C-1 component) comprising a cross-linked acrylate ester elastic body composed of an acrylate ester having 1 to 4 carbon atoms in the alkyl group and an acrylate ester having 5 to 8 carbon atoms in the alkyl group And 1 to 10 parts by weight of a core-shell polymer (component C) consisting of a shell (component C-2) containing methacrylic acid ester as the main component and 0 to 15 parts by weight of a filler (component D) (D) Is achieved.
実施例2と比較例6~8との比較Comparison between Example 2 and Comparative Examples 6-8 実施例12と比較例9~11との比較Comparison between Example 12 and Comparative Examples 9 to 11
 以下、更に本発明の詳細について説明する。
(A成分:ポリカーボネート樹脂)
 本発明のA成分として使用するポリカーボネート樹脂は、二価フェノールとカーボネート前駆体とを反応させて得られるものである。反応方法の一例として界面重合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、および環状カーボネート化合物の開環重合法などを挙げることができる。
 ここで使用される二価フェノールの代表的な例としては、ハイドロキノン、レゾルシノール、4,4’−ビフェノール、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)プロパン(通称ビスフェノールA)、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、2,2−ビス(4−ヒドロキシフェニル)ペンタン、4,4’−(p−フェニレンジイソプロピリデン)ジフェノール、4,4’−(m−フェニレンジイソプロピリデン)ジフェノール、1,1−ビス(4−ヒドロキシフェニル)−4−イソプロピルシクロヘキサン、ビス(4−ヒドロキシフェニル)オキシド、ビス(4−ヒドロキシフェニル)スルフィド、ビス(4−ヒドロキシフェニル)スルホキシド、ビス(4−ヒドロキシフェニル)スルホン、ビス(4−ヒドロキシフェニル)ケトン、ビス(4−ヒドロキシフェニル)エステル、ビス(4−ヒドロキシ−3−メチルフェニル)スルフィド、9,9−ビス(4−ヒドロキシフェニル)フルオレンおよび9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンなどが挙げられる。好ましい二価フェノールは、ビス(4−ヒドロキシフェニル)アルカンであり、なかでも耐衝撃性の点からビスフェノールAが特に好ましく、汎用されている。
 本発明では、汎用のポリカーボネートであるビスフェノールA系のポリカーボネート以外にも、他の2価フェノール類を用いて製造した特殊なポリカーボネ−トをA成分として使用することが可能である。
 例えば、2価フェノール成分の一部または全部として、4,4’−(m−フェニレンジイソプロピリデン)ジフェノール(以下“BPM”と略称することがある)、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン(以下“Bis−TMC”と略称することがある)、9,9−ビス(4−ヒドロキシフェニル)フルオレンおよび9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン(以下“BCF”と略称することがある)を用いたポリカーボネ−ト(単独重合体または共重合体)は、吸水による寸法変化や形態安定性の要求が特に厳しい用途に適当である。これらのBPA以外の2価フェノールは、該ポリカーボネートを構成する2価フェノール成分全体の5モル%以上、特に10モル%以上、使用するのが好ましい。
 殊に、高剛性かつより良好な耐加水分解性が要求される場合には、ポリカーボネート樹脂組成物を構成するB成分が次の(1)~(3)の共重合ポリカーボネートであるのが特に好適である。
(1)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPMが20~80モル%(より好適には40~75モル%、さらに好適には45~65モル%)であり、かつBCFが20~80モル%(より好適には25~60モル%、さらに好適には35~55モル%)である共重合ポリカーボネート。
(2)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPAが10~95モル%(より好適には50~90モル%、さらに好適には60~85モル%)であり、かつBCFが5~90モル%(より好適には10~50モル%、さらに好適には15~40モル%)である共重合ポリカーボネート。
(3)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPMが20~80モル%(より好適には40~75モル%、さらに好適には45~65モル%)であり、かつBis−TMCが20~80モル%(より好適には25~60モル%、さらに好適には35~55モル%)である共重合ポリカーボネート。
 これらの特殊なポリカーボネートは、単独で用いてもよく、2種以上を適宜混合して使用してもよい。また、これらを汎用されているビスフェノールA型のポリカーボネートと混合して使用することもできる。
 これらの特殊なポリカーボネートの製法および特性については、例えば、特開平6−172508号公報、特開平8−27370号公報、特開2001−55435号公報および特開2002−117580号公報等に詳しく記載されている。
 なお、上述した各種のポリカーボネートの中でも、共重合組成等を調整して、吸水率およびTg(ガラス転移温度)を下記の範囲内にしたものは、ポリマー自体の耐加水分解性が良好で、かつ成形後の低反り性においても格段に優れているため、形態安定性が要求される分野では特に好適である。
(i)吸水率が0.05~0.15%、好ましくは0.06~0.13%であり、かつTgが120~180℃であるポリカーボネート、あるいは
(ii)Tgが160~250℃、好ましくは170~230℃であり、かつ吸水率が0.10~0.30%、好ましくは0.13~0.30%、より好ましくは0.14~0.27%であるポリカーボネート。
 ここで、ポリカーボネートの吸水率は、直径45mm、厚み3.0mmの円板状試験片を用い、ISO62−1980に準拠して23℃の水中に24時間浸漬した後の水分率を測定した値である。また、Tg(ガラス転移温度)は、JIS K7121に準拠した示差走査熱量計(DSC)測定により求められる値である。
 カーボネート前駆体としてはカルボニルハライド、炭酸ジエステルまたはハロホルメートなどが使用され、具体的にはホスゲン、ジフェニルカーボネートまたは二価フェノールのジハロホルメートなどが挙げられる。
 前記二価フェノールとカーボネート前駆体を界面重合法によって芳香族ポリカーボネート樹脂を製造するに当っては、必要に応じて触媒、末端停止剤、二価フェノールが酸化するのを防止するための酸化防止剤などを使用してもよい。また芳香族ポリカーボネート樹脂は、三官能以上の多官能性芳香族化合物を共重合した分岐ポリカーボネート樹脂、芳香族または脂肪族(脂環式を含む)の二官能性カルボン酸を共重合したポリエステルカーボネート樹脂、二官能性アルコール(脂環式を含む)を共重合した共重合ポリカーボネート樹脂、並びにかかる二官能性カルボン酸および二官能性アルコールを共に共重合したポリエステルカーボネート樹脂を含む。また、得られた芳香族ポリカーボネート樹脂の2種以上を混合した混合物であってもよい。
 分岐ポリカーボネート樹脂は、本発明の樹脂組成物に、ドリップ防止性能などを付与できる。かかる分岐ポリカーボネート樹脂に使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、または4,6−ジメチル−2,4,6−トリス(4−ヒドロキジフェニル)ヘプテン−2、2,4,6−トリメチル−2,4,6−トリス(4−ヒドロキシフェニル)ヘプタン、1,3,5−トリス(4−ヒドロキシフェニル)ベンゼン、1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタン、2,6−ビス(2−ヒドロキシ−5−メチルベンジル)−4−メチルフェノール、4−{4−[1,1−ビス(4−ヒドロキシフェニル)エチル]ベンゼン}−α,α−ジメチルベンジルフェノール等のトリスフェノール、テトラ(4−ヒドロキシフェニル)メタン、ビス(2,4−ジヒドロキシフェニル)ケトン、1,4−ビス(4,4−ジヒドロキシトリフェニルメチル)ベンゼン、またはトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等が挙げられ、中でも1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタンが好ましく、特に1,1,1−トリス(4−ヒドロキシフェニル)エタンが好ましい。
 分岐ポリカーボネートにおける多官能性芳香族化合物から誘導される構成単位は、2価フェノールから誘導される構成単位とかかる多官能性芳香族化合物から誘導される構成単位との合計100モル%中、0.01~1モル%、好ましくは0.05~0.9モル%、特に好ましくは0.05~0.8モル%である。
 また、特に溶融エステル交換法の場合、副反応として分岐構造単位が生ずる場合があるが、かかる分岐構造単位量についても、2価フェノールから誘導される構成単位との合計100モル%中、0.001~1モル%、好ましくは0.005~0.9モル%、特に好ましくは0.01~0.8モル%であるものが好ましい。なお、かかる分岐構造の割合についてはH−NMR測定により算出することが可能である。
 脂肪族の二官能性のカルボン酸は、α,ω−ジカルボン酸が好ましい。脂肪族の二官能性のカルボン酸としては例えば、セバシン酸(デカン二酸)、ドデカン二酸、テトラデカン二酸、オクタデカン二酸、イコサン二酸などの直鎖飽和脂肪族ジカルボン酸、並びにシクロヘキサンジカルボン酸などの脂環族ジカルボン酸が好ましく挙げられる。二官能性アルコールとしては脂環族ジオールがより好適であり、例えばシクロヘキサンジメタノール、シクロヘキサンジオール、およびトリシクロデカンジメタノールなどが例示される。
 さらにポリオルガノシロキサン単位を共重合した、ポリカーボネート−ポリオルガノシロキサン共重合体の使用も可能である。
 ポリカーボネート樹脂は、界面重合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、および環状カーボネート化合物の開環重合法などで製造することができる。これらの反応形式は、各種の文献および特許公報などで良く知られている方法である。
 ポリカーボネート樹脂の粘度平均分子量は、好ましくは10,000~50,000であり、より好ましくは14,000~30,000であり、さらに好ましくは14,000~26,000である。粘度平均分子量が10,000未満のポリカーボネート樹脂では、良好な機械的特性が得られない。一方、粘度平均分子量が50,000を超えるポリカーボネート樹脂から得られる樹脂組成物は、射出成形時の流動性に劣る点で汎用性に劣る。
 なお、前記ポリカーボネート樹脂は、その粘度平均分子量が前記範囲外のものを混合して得られたものであってもよい。殊に、前記範囲(50,000)を超える粘度平均分子量を有するポリカーボネート樹脂は、樹脂のエントロピー弾性が向上する。その結果、強化樹脂材料を構造部材に成形する際に使用されることのあるガスアシスト成形、および発泡成形において、良好な成形加工性を発現する。かかる成形加工性の改善は前記分岐ポリカーボネートよりもさらに良好である。より好適な態様としては、A−1成分が粘度平均分子量70,000~300,000のポリカーボネート樹脂(A−1−1成分)、および粘度平均分子量10,000~30,000のポリカーボネート樹脂(A−1−2成分)からなり、その粘度平均分子量が16,000~35,000であるポリカーボネート樹脂(以下、“高分子量成分含有ポリカーボネート樹脂”と称することがある)も使用できる。
 かかる高分子量成分含有ポリカーボネート樹脂において、A−1−1成分の分子量は70,000~200,000が好ましく、より好ましくは80,000~200,000、さらに好ましくは100,000~200,000、特に好ましくは100,000~160,000である。またA−1−2成分の分子量は10,000~25,000が好ましく、より好ましくは11,000~24,000、さらに好ましくは12,000~24,000、特に好ましくは12,000~23,000である。
 高分子量成分含有ポリカーボネート樹脂は前記A−1−1成分とA−1−2成分を種々の割合で混合し、所定の分子量範囲を満足するよう調整して得ることができる。好ましくは、高分子量成分含有ポリカーボネート樹脂100重量%中、A−1−1成分が2~40重量%の場合であり、より好ましくはA−1−1成分が3~30重量%であり、さらに好ましくはA−1−1成分が4~20重量%であり、特に好ましくはA−1−1成分が5~20重量%である。
 また、高分子量成分含有ポリカーボネート樹脂の調製方法としては、(1)A−1−1成分とA−1−2成分とを、それぞれ独立に重合しこれらを混合する方法、(2)特開平5−306336号公報に示される方法に代表される、GPC法による分子量分布チャートにおいて複数のポリマーピークを示すポリカーボネート樹脂を同一系内において製造する方法を用い、かかるポリカーボネート樹脂を本発明のA−1成分の条件を満足するよう製造する方法、および(3)かかる製造方法((2)の製造法)により得られたポリカーボネート樹脂と、別途製造されたA−1−1成分および/またはA−1−2成分を混合する方法などを挙げることができる。
 本発明でいう粘度平均分子量は、まず、次式にて算出される比粘度(ηSP)を20℃で塩化メチレン100mlにポリカーボネート樹脂0.7gを溶解した溶液からオストワルド粘度計を用いて求め、
 比粘度(ηSP)=(t−t)/t
 [tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
求められた比粘度(ηSP)から次の数式により粘度平均分子量Mを算出する。
 ηSP/c=[η]+0.45×[η]c(但し[η]は極限粘度)
 [η]=1.23×10−40.83
 c=0.7
 尚、本発明の樹脂組成物におけるポリカーボネート樹脂の粘度平均分子量の算出は次の要領で行なわれる。すなわち、該組成物を、その20~30倍重量の塩化メチレンと混合し、組成物中の可溶分を溶解させる。かかる可溶分をセライト濾過により採取する。その後得られた溶液中の溶媒を除去する。溶媒除去後の固体を十分に乾燥し、塩化メチレンに溶解する成分の固体を得る。かかる固体0.7gを塩化メチレン100mlに溶解した溶液から、上記と同様にして20℃における比粘度を求め、該比粘度から上記と同様にして粘度平均分子量Mを算出する。
(B成分:ポリエステル樹脂)
 本発明のB成分として使用するポリエステル樹脂は、芳香族ジカルボン酸またはその反応性誘導体と、ジオール、またはそのエステル誘導体とを主成分とする縮合反応により得られる重合体ないしは共重合体である。
 ここでいう芳香族ジカルボン酸としてはテレフタル酸、イソフタル酸、オルトフタル酸、1,5−ナフタレンジカルボン酸、2,6−ナフタレンジカルボン酸、4,4’−ビフェニルジカルボン酸、4,4’−ビフェニルエーテルジカルボン酸、4,4’−ビフェニルメタンジカルボン酸、4,4’−ビフェニルスルホンジカルボン酸、4,4’−ビフェニルイソプロピリデンジカルボン酸、1,2−ビス(フェノキシ)エタン−4,4’−ジカルボン酸、2,5−アントラセンジカルボン酸、2,6−アントラセンジカルボン酸、4,4’−p−ターフェニレンジカルボン酸、2,5−ピリジンジカルボン酸等の芳香族系ジカルボン酸、ジフェニルメタンジカルボン酸、ジフェニルエーテルジカルボン酸、およびβ−ヒドロキシエトキシ安息香酸から選ばれることが好適に用いられ、特にテレフタル酸、2,6−ナフタレンジカルボン酸が好ましく使用できる。芳香族ジカルボン酸は二種以上を混合して使用してもよい。なお少量であれば、該ジカルボン酸と共にアジピン酸、アゼライン酸、セバシン酸、ドデカンジ酸等の脂肪族ジカルボン酸、シクロヘキサンジカルボン酸等の脂環族ジカルボン酸等を一種以上混合使用することも可能である。
 またポリエステル樹脂の成分であるジオールとしては、エチレングリコール、プロピレングリコール、ブチレングリコール、ヘキシレングリコール、ネオペンチルグリコール、ペンタメチレングリコール、ヘキサメチレングリコール、デカメチレングリコール、2−メチル−1,3−プロパンジオール、ジエチレングリコール、トリエチレングリコール等の脂肪族ジオール、1,4−シクロヘキサンジメタノール等の脂環族ジオール等、2,2−ビス(β−ヒドロキシエトキシフェニル)プロパン等の芳香環を含有するジオール等およびそれらの混合物等が挙げられる。更に少量であれば、分子量400~6,000の長鎖ジオール、すなわちポリエチレングリコール、ポリ−1,3−プロピレングリコール、ポリテトラメチレングリコール等を1種以上共重合してもよい。
 またポリエステル樹脂は少量の分岐剤を導入することにより分岐させることができる。分岐剤の種類に制限はないがトリメシン酸、トリメリチン酸、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール等が挙げられる。
 具体的なポリエステル樹脂としては、ポリエチレンテレフタレート(PET)、ポリプロピレンテレフタレート、ポリブチレンテレフタレート(PBT)、ポリヘキシレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)、ポリエチレン−1,2−ビス(フェノキシ)エタン−4,4’−ジカルボキシレート、等の他、ポリエチレンイソフタレート/テレフタレート、ポリブチレンテレフタレート/イソフタレート、等の共重合ポリエステル樹脂が挙げられる。これらのうち、機械的性質等のバランスがとれたポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレートおよびこれらの混合物が好ましく使用できる。
 またポリエステル樹脂の末端基構造は特に限定されるものではなく、末端基における水酸基とカルボキシル基の割合がほぼ同量の場合以外に、一方の割合が多い場合であってもよい。またかかる末端基に対して反応性を有する化合物を反応させる等により、それらの末端基が封止されているものであってもよい。
 かかるポリエステル樹脂は常法に従い、特定のチタン系触媒存在下に、加熱しながらジカルボン酸成分と前記ジオール成分とを重合させ、副生する水または低級アルコールを系外に排出することにより製造されることが好ましい。
 上記のチタン系触媒は、下記のチタン化合物成分(A)と、リン化合物成分(B)との反応生成物を含むものである。
 チタン化合物成分(A)は、下記一般式(I)により表されるチタン化合物(1)および、チタン化合物(1)と下記一般式(II)で表される芳香族多価カルボン酸またはその無水物とを反応させて得られたチタン化合物(2)からなる群より選ばれた少なくとも1種のチタン化合物成分である。
Figure JPOXMLDOC01-appb-I000005
〔但し、式(I)中、R、R、RおよびRは、それぞれ互いに独立に2~10個の炭素原子を有するアルキル基を表し、kは1~3の整数を表し、かつkが2または3の場合、2個または3個のRおよびRは、それぞれ互いに同一であってもよく、或いは異なっていてもよい。〕
Figure JPOXMLDOC01-appb-I000006
〔但し、式(II)中、mは2~4の整数を表す。〕
 リン化合物成分(B)は、下記一般式(III)で表されるリン化合物(3)の少なくとも1種からなるリン化合物成分である。
Figure JPOXMLDOC01-appb-I000007
〔但し、式(III)中、Rは、未置換のまたは置換された、6~20個の炭素原子を有するアリール基、または1~20個の炭素原子を有するアルキル基を表す。〕
 上記の特定のチタン系触媒を用いることにより製造されるポリエステル樹脂は、ゲルマニウム、アンチモンおよび他のチタン系触媒を用いた場合に比べ、熱安定性と耐湿熱性に優れる。上記の特定のチタン系触媒を用いた場合、他の触媒を使用した場合よりも製造時の色相安定剤や熱安定剤等の添加剤の添加量が少なくても品質が安定しており、そのため熱環境下や湿熱環境下での添加剤の分解が低減されることから、熱安定性と耐湿熱性に優れたものとなると推定される。
 チタン化合物成分(A)と、リン化合物成分(B)との反応生成物において、チタン化合物成分(A)のチタン原子換算モル量(mTi)と、リン化合物成分(B)のリン原子換算モル量(mP)との反応モル比(mTi/mP)は、1/3~1/1の範囲内にあることが好ましく、1/2~1/1の範囲内にあることがより好ましい。
 チタン化合物成分(A)のチタン原子換算モル量とは、チタン化合物成分(A)に含まれる各チタン化合物のモル量と、当該チタン化合物の1分子中に含まれるチタン原子の個数との積の合計値であり、リン化合物成分(B)のリン原子換算モル量とは、リン化合物成分(B)に含まれる各リン化合物のモル量と、当該リン化合物の1分子中に含まれるリン原子の個数との積の合計値である。但し、式(III)で表されるリン化合物は1分子当たり1個のリン原子を含むものであるから、リン化合物のリン原子換算モル量は当該リン化合物のモル量に等しい。
 反応モル比(mTi/mP)が1/1より大きくなると、すなわち、チタン化合物成分(A)の量が過多になると、得られる触媒を用いて得られるポリエステル樹脂の色調不良(b値が高すぎる)になり、かつその耐熱性が低下することがある。また、反応モル比(mTi/mP)が、1/3未満になると、すなわちチタン化合物成分(A)の量が過少になると、得られる触媒のポリエステル生成反応に対する触媒活性が不十分になることがある。
 チタン化合物成分(A)に用いられる前記一般式(I)で表されるチタン化合物(1)としては、チタンテトラブトキシド、チタンテトライソプロポキシド、チタンテトラプロポキシド、およびチタンテトラエトキシドなどのチタンテトラアルコキシド類、並びにオクタアルキルトリチタネート類およびヘキサアルキルジチタネート類などのアルキルチタネート類を挙げることができるが、これらのなかでも、本発明において使用されるリン化合物成分との反応性の良好なチタンテトラアルコキシド類を用いることが好ましく、特にチタンテトラブトキシドを用いることがより好ましい。
 チタン化合物成分(A)に用いられるチタン化合物(2)はチタン化合物(1)と、前記一般式(II)で表される芳香族多価カルボン酸またはその無水物との反応により得られる。前記一般式(II)の芳香族多価カルボン酸およびその無水物は、フタル酸、トリメリット酸、ヘミメリット酸、ピロメリット酸およびこれらの無水物からなる群より選ばれることが好ましい。特にチタン化合物(1)との反応性がよく、また得られる重縮合触媒のポリエステルとの親和性の高いトリメリット酸無水物を用いることがより好ましい。
 チタン化合物(1)と前記一般式(II)の芳香族多価カルボン酸またはその無水物との反応は、前記芳香族多価カルボン酸またはその無水物を溶媒に混合してその一部または全部を溶媒中に溶解し、この混合液にチタン化合物(1)を滴下し、0℃~200℃の温度で30分間以上、好ましくは30~150℃の温度で40~90分間加熱することによって行われる。この際の反応圧力については特に制限はなく、常圧で充分である。なお、前記触媒としては、所要量の式(II)の化合物またはその無水物の一部または全部を溶解し得るものから適宜に選択することができるが、好ましくは、エタノール、エチレングリコール、トリメチレングリコール、テトラメチレングリコール、ベンゼンおよびキシレン等から選ばれる。
 チタン化合物(1)と式(II)で表される化合物またはその無水物との反応モル比には限定はない。しかし、チタン化合物(1)の割合が高すぎると、得られるポリエステル樹脂の色調が悪化したり、軟化点が低下したりすることがあり、逆にチタン化合物(1)の割合が低すぎると重縮合反応が進みにくくなることがある。このため、チタン化合物(1)と式(II)の化合物またはその無水物との反応モル比は、2/1~2/5の範囲内にコントロールされることが好ましい。この反応によって得られる反応生成物を、そのまま前述のリン化合物(3)との反応に供してもよく、或はこれを、アセトン、メチルアルコールおよび/または酢酸エチルなどからなる溶剤を用いて再結晶して精製した後、これをリン化合物(3)と反応させてもよい。
 リン化合物成分(B)に用いられる前記一般式(III)のリン化合物(3)において、Rにより表される6~20個の炭素原子を有するアリール基、または1~20個の炭素原子を有するアルキル基は、未置換であってもよく、或は1個以上の置換基により置換されていてもよい。この置換基は、例えば、カルボキシル基、アルキル基、ヒドロキシル基およびアミノ基などを包含する。
 前記一般式(III)のリン化合物(3)は、例えば、モノメチルホスフェート、モノエチルホスフェート、モノトリメチルホスフェート、モノ−n−ブチルホスフェート、モノヘキシルホスフェート、モノヘプチルホスフェート、モノオクチルホスフェート、モノノニルホスフェート、モノデシルホスフェート、モノドデシルホスフェート、モノラウリルホスフェート、モノオレイルホスフェート、モノテトラデシルホスフェート、モノフェニルホスフェート、モノベンジルホスフェート、モノ(4−ドデシル)フェニルホスフェート、モノ(4−メチルフェニル)ホスフェート、モノ(4−エチルフェニル)ホスフェート、モノ(4−プロピルフェニル)ホスフェート、モノ(4−ドデシルフェニル)ホスフェート、モノトリルホスフェート、モノキシリルホスフェート、モノビフェニルホスフェート、モノナフチルホスフェート、およびモノアントリルホスフェート等のモノアルキルホスフェート類およびモノアリールホスフェート類を包含し、これらは単独で用いられてもよく、或は2種以上の混合物として、例えばモノアルキルホスフェートとモノアリールホスフェートとの混合物として用いられてもよい。但し、上記リン化合物を2種以上の混合物として用いる場合、モノアルキルホスフェートの比率が50%以上を占めていることが好ましく、90%以上を占めていることがより好ましく、特に100%を占めていることがさらに好ましい。
 チタン化合物成分(A)とリン化合物成分(B)とから触媒を調製するには、例えば、式(III)の少なくとも1種のリン化合物(3)からなるリン化合物成分(B)と溶媒とを混合して、リン化合物成分(B)の一部または全部を溶媒中に溶解し、この混合液にチタン化合物成分(A)を滴下し、通常反応系を好ましくは50℃~200℃、より好ましくは70℃~150℃の温度において好ましくは1分間~4時間、より好ましくは30分間~2時間、加熱することによって行われる。この反応において、反応圧力については格別の制限はなく、加圧下(0.1~0.5MPa)、常圧下、または減圧下(0.001~0.1MPa)のいずれであってもよいが、通常常圧下において行われている。
 また上記触媒調製反応に用いられる式(III)のリン化合物成分(B)用溶媒は、リン化合物成分(B)の少なくとも一部を溶解し得る限り格別の制限はないが、例えば、エタノール、エチレングリコール、トリメチレングリコール、テトラメチレングリコール、ベンゼン、およびキシレン等から選ばれた少なくとも1種からなる溶媒が好ましく用いられる。特に、最終的に得ようとするポリエステルを構成しているグリコール成分と同一の化合物を溶媒として用いることが好ましい。
 チタン化合物成分(A)と、リン化合物成分(B)との反応生成物は、それを反応系から、遠心沈降処理または濾過などの手段により分離された後、これを精製することなく、ポリエステル樹脂製造用触媒として用いてもよく、或は、この分離された反応生成物を、再結晶剤、例えばアセトン、メチルアルコールおよび/または水などにより再結晶して精製し、それによって得られた精製物を触媒として用いてもよい。また、前記反応生成物を、その反応系から分離することなく、反応生成物含有反応混合物をそのまま触媒含有混合物として用いてもよい。
 チタン系触媒として、前記式(I)(但し、kは1を表す)の少なくとも1種のチタン化合物(1)、すなわちチタンテトラアルコキシド、からなるチタン化合物成分(A)と、前記式(III)の少なくとも1種のリン化合物からなるリン化合物成分(B)との反応生成物が触媒として用いられることが好ましい。
 さらに、チタン系触媒として下記一般式(IV)で表される化合物が好ましく使用される。
Figure JPOXMLDOC01-appb-I000008
〔上記式中RおよびRは、それぞれ互いに独立に、2~12個の炭素原子を有するアルキル基、または6~12個の炭素原子を有するアリール基を表す〕
 式(IV)で表されるチタン/リン化合物を含む触媒は、高い触媒活性を有し、これを用いて製造されたポリエステル樹脂は、良好な色調(低いb値)を有し、実用上十分に低いアセトアルデヒド、残留金属および芳香族ジカルボン酸とアルキレングリコールとのエステルの環状三量体の含有量を有し、かつ実用上十分なポリマー性能を有する。
 チタン系触媒において、前記一般式(IV)のチタン/リン化合物が50重量%以上含まれていることが好ましく、70重量%以上含まれることがより好ましい。
 チタン系触媒の使用量は、そのチタン原子換算ミリモル量が重合出発原料中に含まれる芳香族ジカルボン酸成分の合計ミリモル量に対して、2~40ミリ%となる量であることが好ましく、5~35ミリ%であることがさらに好ましく、10~30ミリ%であることがより一層好ましい。2ミリ%未満であると、重合出発原料の重縮合反応に対する触媒の促進効果が不十分になり、ポリエステル製造効率が不十分になり、かつ所望の重合度を有するポリエステル樹脂を得ることができないことがある。また、40ミリ%を超えると、得られるポリエステル樹脂の色調(b値)が、不十分になり黄味を帯びるようになり、その実用性が低下することがある。
 芳香族ジカルボン酸のアルキレングリコールエステルおよび/またはその低重合体の製造方法について制限はないが、通常、芳香族ジカルボン酸またはそのエステル形成性誘導体と、アルキレングリコールまたはそのエステル形成性誘導体とを、加熱反応させることによって製造される。例えばポリエチレンテレフタレートの原料として用いられるテレフタル酸のエチレングリコールエステルおよび/またはその低重合体は、テレフタル酸とエチレングリコールとを直接エステル化反応させるか、或はテレフタル酸の低級アルキルエステルとエチレングリコールとをエステル交換反応させるか、或はテレフタル酸にエチレンオキサイドを付加反応させる方法により製造される。なお、上記の芳香族ジカルボン酸のアルキレングリコールエステルおよび/またはその低重合体には、それと共重合可能な他のジカルボン酸エステルが、追加成分として、本発明方法の効果が実質的に損なわれない範囲内の量の、具体的には酸成分合計モル量を基準として10モル%以下、好ましくは5モル%以下の範囲内の、添加量で含まれていてもよい。
 前記共重合可能な追加成分は、好ましくは、酸成分として、例えば、アジピン酸、セバシン酸、1,4−シクロヘキサンジカルボン酸などの脂肪族および脂環式のジカルボン酸、並びにヒドロキシカルボン酸、例えば、β−ヒドロキシエトキシ安息香酸、p−オキシ安息香酸などの1種以上と、グリコール成分として、例えば、構成炭素数が2個以上のアルキレングリコール、1,4−シクロヘキサンジメタノール、ネオペンチルグリコール、ビスフェノールA、ビスフェノールSのような脂肪族、脂環式、芳香族のジオール化合物およびポリオキシアルキレングリコール、の1種以上とのエステルまたはその無水物から選ばれる。上記追記成分エステルは、単独で用いられてもよく、或はその二種以上を併用してもよい。但しその共重合量は上記の範囲内であることが好ましい。
 なお、出発原料としてテレフタル酸およびまたはテレフタル酸ジメチルを用いる場合には、ポリアルキレンテレフタレートを解重合することによって得られた回収テレフタル酸ジメチルまたはこれを加水分解して得られる回収テレフタル酸を、ポリエステルを構成する全酸成分の重量を基準として70重量%以上使用することもできる。この場合、目的ポリアルキレンテレフタレートはポリエチレンテレフタレートであることが好ましく、特に回収されたPETボトル、回収された繊維製品、回収されたポリエステルフィルム製品、さらには、これら製品の製造工程において発生するポリマー屑などをポリエステル製造用原料源として用いることは、資源の有効活用の観点から好ましいことである。ここで、回収ポリアルキレンテレフタレートを解重合してテレフタル酸ジメチルを得る方法には特に限定はなく、従来公知の方法をいずれも採用することができる。例えば、回収ポリアルキレンテレフタレートをエチレングリコールを用いて解重合した後、解重合生成物を、低級アルコール、例えばメタノールによるエステル交換反応に供し、この反応混合物を精製してテレフタル酸の低級アルキルエステルを回収し、これをアルキレングリコールによるエステル交換反応に供し、得られたフタール酸/アルキレングリコールエステルを重縮合すればポリエステル樹脂を得ることができる。また、上記回収された、テレフタル酸ジメチルからテレフタル酸を回収する方法にも特に制限はなく、従来方法のいずれを用いてもよい。例えばエステル交換反応により得られた反応混合物からテレフタル酸ジメチルを再結晶法および/または蒸留法により回収した後、高温高圧下で水とともに加熱して加水分解してテレフタル酸を回収することができる。この方法によって得られるテレフタル酸に含まれる不純物において、4−カルボキシベンズアルデヒド、パラトルイル酸、安息香酸およびヒドロキシテレフタル酸ジメチルの含有量が、合計で1ppm以下であることが好ましい。また、テレフタル酸モノメチルの含有量が、1~5000ppmの範囲にあることが好ましい。上述の方法により回収されたテレフタル酸と、アルキレングリコールとを直接エステル化反応させ、得られたエステルを重縮合することによりポリエステル樹脂を製造することができる。
 本発明に使用するポリエステル樹脂において、触媒を重合出発原料に添加する時期は、芳香族ジカルボン酸アルキレングリコールエステルおよび/またはその低重合体の重縮合反応の開始時期の前の任意の段階であればよく、さらに、その添加方法にも制限はない。例えば、芳香族ジカルボン酸アルキレングリコールエステルを調製し、この反応系内に触媒の溶液またはスラリーを添加して重縮合反応を開始してもよいし、或は、前記芳香族ジカルボン酸アルキレングリコールエステルを調製する際に出発原料とともに、またはその仕込み後に、触媒の溶液またはスラリーを、反応系に添加してもよい。
 本発明に使用するポリエステル樹脂の製造反応条件にも格別の制限はない。一般に重縮合反応は、230~320℃の温度において、常圧下、または減圧下(0.1Pa~0.1MPa)において、或はこれらの条件を組み合わせて、15~300分間重縮合することが好ましい。
 本発明に使用するポリエステル樹脂において、反応系に、必要に応じて反応安定剤、例えばトリメチルホスフェートをポリエステル製造における任意の段階で加えてもよく、さらに必要により、反応系に酸化防止剤、紫外線吸収剤、難燃剤、蛍光増白剤、艶消剤、整色剤、消泡剤、その他の添加剤の1種以上を配合してもよい。特に、ポリエステル樹脂中には、少なくとも1種のヒンダードフェノール化合物を含む酸化防止剤が含まれることが好ましいが、その含有量は、ポリエステル樹脂の重量に対して、1重量%以下であることが好ましい。その含有量が1重量%をこえると、酸化防止剤自身の熱劣化により、得られた生成物の品質を悪化させるという不都合を生ずることがある。
 本発明に使用するポリエステル樹脂に用いられる酸化防止剤用ヒンダードフェノール化合物は、ペンタエリスリトール−テトラエキス〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート〕、3,9−ビス{2−〔3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ〕−1,1−ジメチルエチル}−2,4,8,10−テトラオキサスピロ〔5,5〕ウンデカンなどから選ばれ、これらヒンダードフェノール系酸化防止剤とチオエーテル系二次酸化防止剤とを併用して用いることも好ましく実施される。上記ヒンダードフェノール系酸化防止剤のポリエステル樹脂への添加方法には特に制限はないが、好ましくはエステル交換反応、またはエステル化反応の終了後、重合反応が完了するまでの間の任意の段階で添加される。
 さらに、得られるポリエステル樹脂の色調を微調整するために、ポリエステル樹脂の製造段階において、その反応系中にアゾ系、トリフェニルメタン系、キノリン系、アントラキノン系、フタロシアニン系等の有機青色顔料および無機青色顔料の1種以上からなる整色剤を添加することができる。なお、本発明の製造方法においては、当然のことながら、ポリエステル樹脂の溶融熱安定性を低下させるコバルト等を含む無機青色顔料を整色剤としては用いる必要はない。従って本発明に使用されるポリエステル樹脂には実質的にコバルトが含まれていないものとなる。
 本発明に使用するポリエステル樹脂は、上記触媒由来のチタン元素を0.001ppm~100ppm含有することが好ましい。該含有量は0.001ppm~50ppmであることがより好ましく、1ppm~50ppmであることがさらに好ましい。含有するチタン元素が100ppmより多いと熱安定性や耐湿熱性の悪化を生じる場合があり、0.001ppmより少ないと使用するポリエステル樹脂の触媒残量を大幅に下回っており、ポリエステル樹脂の製造が困難となることを意味しており、良好な機械強度、熱安定性や湿熱安定性が得られない場合がある。
 ポリエステル樹脂の固有粘度は、0.4~1.2であることが好ましい。前記固有粘度のより好ましい範囲は、0.45~0.95であり、さらに好ましくは0.50~0.9である。ポリエステル樹脂の固有粘度が0.4未満の場合、十分な衝撃特性と耐薬品性が得られない場合があり、1.0より大きい場合、射出成形時の流動性が低下し、フローマークや着色不良といった外観不良が発生する場合がある。
 ポリエステル樹脂は、ポリエチレンテレフタレート樹脂(PET)およびポリブチレンテレフタレート樹脂(PBT)であり、その配合比(重量比)(PET/PBT)が1/7~7/8であることが好ましい。配合比は1/7~1/2がより好ましく、1/7~1/4がさらに好ましい。配合比が7/8よりも大きい場合、耐薬品性が低下するようになり、1/7より小さい場合、流動性が低下する場合がある。
 B成分の含有量は樹脂成分100重量部中、20~50重量部、好ましくは20~45重量部、より好ましくは25~40重量部である。含有量が20重量部未満であると、耐薬品性の改良効果がみられず、50重量部を超えると耐湿熱性の低下や衝撃強度の低下を招く。
(C成分:コアシェルポリマー)
 本発明で使用されるコアシェルポリマーは、アルキル基の炭素数が1~4のアクリル酸エステルとアルキル基の炭素数が5~8のアクリル酸エステルとから構成される架橋アクリル酸エステル系弾性体からなるコア(C−1成分)と、メタクリル酸エステルを主成分とするシェル(C−2成分)からなるコアシェルポリマーである。C成分として上記記載の構成以外のコアシェルポリマーを使用した場合、十分な衝撃特性および剛性が得られず、化合物によっては耐薬品性が低下する。
 C−1成分の構成モノマーであるアルキル基の炭素数が1~4のアクリル酸エステルとしては、メチルアクリレート、エチルアクリレート、プロピルアクリレート、ブチルアクリレートなどが挙げられる。また、アルキル基の炭素数が5~8のアクリル酸エステルとしては、ヘキシルアクリレート、ヘプチルアクリレート、2−エチルヘキシルアクリレートなどが挙げられる。最も好ましい組み合わせとしては、ブチルアクリレートと2−エチルヘキシルアクリレートによって構成される架橋アクリル酸アルキル系弾性体である。また、本発明の効果を阻害しない範囲において、アクリル酸アルキル以外の成分を含有してもよい。
 C−2成分は、(メタ)アクリル酸エステル(例えばメタクリル酸メチルなど)から誘導される。ビニル芳香族化合物やシアン化ビニル化合物と(メタ)アクリル酸エステルとの単量体混合物など、必要に応じて共重合可能な他のビニル単量体を共重合しても良い。
 C成分に使用されるコアシェルポリマーにおいて、C−1成分の含有量はC成分100重量%中50~99重量%であることが好ましく、65~95重量%であることがより好ましく、75~90重量%であることが最も好ましい。C−1成分の含有量が50重量%より少ないと十分な衝撃特性が得られない場合があり好ましくない。また、99重量%より多くても十分な衝撃特性が得られない場合があり好ましくない。
 さらに、C−1成分中のアルキル基の炭素数が5~8のアクリル酸エステルの含有量はC−1成分100重量%中、10~99重量%であることが好ましく、25~90重量%であることがより好ましく、35~80重量%であることがさらに好ましく、40~70重量%であることが最も好ましい。10重量%より少ないと十分な衝撃特性が得られない場合があり、99重量%より多いと耐熱性が低下する場合があり好ましくない。
 コアシェルポリマーの含有量は、樹脂成分100重量部に対し、1~10重量部であり、2~9重量部であることが好ましく、3~8重量部であることがより好ましい。1重量部より少ないと十分な衝撃特性が得られず、10重量部より多いと剛性や耐薬品性が低下する。
(D成分:充填材)
 本発明に用いる充填剤としては従来公知の充填材が使用できるが、好適に使用される充填材とは、繊維状ガラス充填材、板状ガラス充填材、繊維状炭素充填材、非繊維状炭素充填材および珪酸塩鉱物からなる群より選ばれる少なくとも1種の充填材である。
(D−1;繊維状ガラス充填材)
 本発明で好適に使用される繊維状ガラス充填材としては、ガラスファイバー(金属コートガラスファイバーを含む)およびガラスミルドファイバー等が挙げられる。かかる繊維状ガラス充填材の基体となるガラスファイバーは溶融ガラスを種々の方法にて延伸しながら急冷し、所定の繊維状にしたものである。かかる場合の急冷および延伸についても特に限定されるものではない。また、断面の形状は真円状の他に、楕円状、マユ状、扁平状および三つ葉状などの真円以外の形状であってもよい。更に真円状と真円以外の形状が混合したものでもよい。扁平状とは、繊維断面の長径の平均値が10~50μm、好ましくは15~40μm、より好ましくは20~35μmで、長径と短径の比(長径/短径)の平均値が1.5~8、好ましくは2~6、更に好ましくは2.5~5である形状である。
 また、ガラスファイバーの如き高アスペクト比を有する繊維状ガラス充填材の平均繊維径は1~25μmが好ましく、3~17μmがより好ましい。この範囲の平均繊維径を持つ充填材を使用した場合には、成形品外観を損なうことなく良好な機械的強度を発現することができる。また、高アスペクト比の繊維状ガラス充填材の繊維長は、樹脂組成物中における数平均繊維長として、60~500μmが好ましく、100~400μmがより好ましく、120~350μmが特に好ましい。尚、かかる数平均繊維長は、成形品の高温灰化、溶剤による溶解、並びに薬品による分解等の処理で採取される充填材の残さを光学顕微鏡観察した画像から画像解析装置により算出される値である。また、かかる値の算出に際しては繊維径を目安にそれ以下の長さのものはカウントしない方法による値である。高アスペクト比の繊維状ガラス充填材のアスペクト比は、好ましくは10~200、より好ましくは15~100、更に好ましくは20~50である。充填材のアスペクト比は平均繊維長を平均繊維径で除した値をいう。
 ガラスミルドファイバーは、通常ガラスファイバーをボールミルの如き粉砕機を用いて短繊維化して製造されるものである。ガラスミルドファイバーの如き低アスペクト比を有する繊維状ガラス充填材のアスペクト比は、好ましくは2~10、より好ましくは3~8である。低アスペクト比の繊維状ガラス充填材の繊維長は、樹脂組成物中における数平均繊維長として5~150μmが好ましく、9~80μmがより好ましい。またその平均繊維径は1~15μmが好ましく、より好ましくは3~13μmである。
(D−2;板状ガラス充填材)
 本発明で好適に使用される板状ガラス充填材としては、金属コートガラスフレーク、および金属酸化物コートガラスフレークを含むガラスフレーク等が挙げられる。
 板状ガラス充填材の基体となるガラスフレークは、円筒ブロー法やゾル−ゲル法などに方法によって製造される板状のガラスフィラーである。かかるガラスフレークの原料の大きさも粉砕や分級の程度により種々のものを選択可能である。原料に使用するガラスフレークの平均粒径は10~1000μmが好ましく、20~500μmがより好ましく、30~300μmが更に好ましい。上記範囲のものは取り扱い性と成形加工性との両立に優れるためである。通常板状ガラス充填材は樹脂との溶融混練加工により割れが生じ、その平均粒径は小径化する。樹脂組成物中の板状ガラス充填材の数平均粒径は10~200μmが好ましく、15~100μmがより好ましく、20~80μmが更に好ましい。尚、かかる数平均粒径は、成形品の高温灰化、溶剤による溶解、および薬品による分解等の処理で採取される板状ガラス充填材の残さを光学顕微鏡観察した画像から画像解析装置により算出される値である。また、かかる値の算出に際してはフレーク厚みを目安にそれ以下の長さのものはカウントしない方法による値である。また厚みとしては0.5~10μmが好ましく、1~8μmがより好ましく、1.5~6μmが更に好ましい。上記数平均粒径および厚みを有する板状ガラス充填材は良好な機械的強度、外観、成形加工性を達成する。
 上記の繊維状ガラス充填材および板状ガラス充填材のガラス組成は、Aガラス、Cガラス、およびEガラス等に代表される各種のガラス組成が適用され、特に限定されない。かかるガラス充填材は、必要に応じてTiO、SO、およびP等の成分を含有するものであってもよい。これらの中でもEガラス(無アルカリガラス)がより好ましい。またガラス充填材は、周知の表面処理剤、例えばシランカップリング剤、チタネートカップリング剤、またはアルミネートカップリング剤等で表面処理が施されたものが機械的強度の向上の点から好ましい。また、ガラスファイバー(金属コートまたは金属酸化物コートされたものを含む)、およびガラスフレーク(金属コートまたは金属酸化物コートされたものを含む)は、オレフィン系樹脂、スチレン系樹脂、アクリル系樹脂、ポリエステル系樹脂、エポキシ系樹脂、およびウレタン系樹脂等で集束処理されたものが好ましく使用される。集束処理された充填材の集束剤付着量は、充填材100重量%中好ましくは0.5~8重量%、より好ましくは1~4重量%である。
 更に本発明の繊維状ガラス充填材および板状ガラス充填材は、異種材料が表面被覆されたものを含む。かかる異種材料としては金属および金属酸化物が好適に例示される。金属としては、銀、銅、ニッケル、およびアルミニウムなどが例示される。また金属酸化物としては、酸化チタン、酸化セリウム、酸化ジルコニウム、酸化鉄、酸化アルミニウム、および酸化ケイ素などが例示される。かかる異種材料の表面被覆の方法としては特に限定されるものではなく、例えば公知の各種メッキ法(例えば、電解メッキ、無電解メッキ、溶融メッキなど)、真空蒸着法、イオンプレーティング法、CVD法(例えば熱CVD、MOCVD、プラズマCVDなど)、PVD法、およびスパッタリング法などを挙げることができる。
(D−3;繊維状炭素充填材)
 本発明で好適に使用される繊維状炭素充填材としては、例えばカーボンファイバー(金属コートカーボンファイバーを含む)、カーボンミルドファイバー、気相成長カーボンファイバーおよびカーボンナノチューブ等が挙げられる。カーボンナノチューブは繊維径0.003~0.1μm、単層、2層、および多層のいずれであってもよく、多層(いわゆるMWCNT)が好ましい。これらの中でも機械的強度に優れる点、並びに良好な導電性を付与できる点において、カーボンファイバー(金属コートカーボンファイバーを含む)が好ましい。尚、良好な導電性は近年のデジタル精密機器(例えばデジタルスチルカメラに代表される)において、樹脂材料に求められる重要な特性の1つになっている。
 カーボンファイバーとしては、セルロース系、ポリアクリロニトリル系、およびピッチ系などのいずれも使用可能である。また芳香族スルホン酸類またはそれらの塩のメチレン型結合による重合体と溶媒よりなる原料組成を防止または成形し、次いで炭化するなどの方法に代表される不融化工程を経ない紡糸を行う方法により得られたものも使用可能である。更に汎用タイプ、中弾性率タイプ、および高弾性率タイプのいずれも使用可能である。これらの中でも特にポリアクリロニトリル系の高弾性率タイプが好ましい。
 また、カーボンファイバーの平均繊維径は特に限定されないが、通常3~15μmであり、好ましくは5~13μmである。かかる範囲の平均繊維径を持つカーボンファイバーは、成形品外観を損なうことなく良好な機械的強度および疲労特性を発現することができる。また、カーボンファイバーの好ましい繊維長は樹脂組成物中における数平均繊維長として好ましくは60~500μm、より好ましくは80~400μm、特に好ましくは100~300μmのものである。尚、かかる数平均繊維長は、成形品の高温灰化、溶剤による溶解、および薬品による分解等の処理で採取されるカーボンファイバーの残さから光学顕微鏡観察などから画像解析装置により算出される値である。また、かかる値の算出に際しては繊維長以下の長さのものはカウントしない方法による値である。カーボンファイバーのアスペクト比は、好ましくは10~200の範囲、より好ましくは15~100の範囲、更に好ましくは20~50の範囲である。繊維状炭素充填材のアスペクト比は平均繊維長を平均繊維径で除した値をいう。
 さらにカーボンファイバーの表面はマトリックス樹脂との密着性を高め、機械的強度を向上する目的で酸化処理されることが好ましい。酸化処理方法は特に限定されないが、例えば、(1)繊維状炭素充填材を酸もしくはアルカリまたはそれらの塩、あるいは酸化性気体により処理する方法、(2)繊維状炭素充填材化可能な繊維または繊維状炭素充填材を、含酸素化合物を含む不活性ガスの存在下、700℃以上の温度で焼成する方法、および(3)繊維状炭素充填材を酸化処理した後、不活性ガスの存在下で熱処理する方法などが好適に例示される。
 金属コートカーボンファイバーは、カーボンファイバーの表面に金属層をコートしたものである。金属としては、銀、銅、ニッケル、およびアルミニウムなどが挙げられ、ニッケルが金属層の耐腐食性の点から好ましい。金属コートの方法としては、先にガラス充填材における異種材料による表面被覆で述べた各種の方法が採用できる。中でもメッキ法が好適に利用される。また、かかる金属コートカーボンファイバーの場合も、元となるカーボンファイバーとしては上記のカーボンファイバーとして挙げたものが使用可能である。金属被覆層の厚みは好ましくは0.1~1μm、より好ましくは0.15~0.5μmである。更に好ましくは0.2~0.35μmである。
 かかるカーボンファイバー(金属コートカーボンファイバーを含む)は、オレフィン系樹脂、スチレン系樹脂、アクリル系樹脂、ポリエステル系樹脂、エポキシ系樹脂、およびウレタン系樹脂等で集束処理されたものが好ましい。特にウレタン系樹脂、エポキシ系樹脂で処理された繊維状炭素充填材は、機械的強度に優れることから本発明において好適である。
(D−4;非繊維状炭素充填材)
 本発明で好適に使用される非繊維状炭素充填材としては、例えば、カーボンブラック、黒鉛、フラーレン等が挙げられる。これらの中でも機械的強度、耐湿熱性、熱安定性の点から、カーボンブラック、黒鉛が好ましい。カーボンブラックとしては、DBP吸油量が100ml/100g~500ml/100gであるカーボンブラックが導電性の点で好ましい。かかるカーボンブラックは、一般的にはアセチレンブラック、ケッチェンブラックである。具体的には、例えば電気化学工業(株)製のデンカブラック、キャボット社製バルカンXC−72およびBP−2000、ライオン(株)製ケッチェンブラックECおよびケッチェンブラックEC−600JD等が挙げられる。
 黒鉛としては、鉱物名で石墨とされる天然黒鉛、または各種の人造黒鉛のいずれも利用することができる。天然黒鉛としては、土状黒鉛、鱗状黒鉛(塊状黒鉛とも称されるVein Graphite)および鱗片状黒鉛(Flake Graphite)のいずれを利用することもできる。また人造黒鉛は、無定形炭素を熱処理し不規則な配列の微小黒鉛結晶の配向を人工的に行わせたものであり、一般炭素材料に使用される人造黒鉛の他、キッシュ黒鉛、分解黒鉛、および熱分解黒鉛などを含む。一般炭素材料に使用される人造黒鉛は、通常石油コークスや石炭系ピッチコークスを主原料として黒鉛化処理により製造される。
 本発明の黒鉛は、酸処理に代表される処理をすることで、熱膨張可能とした膨張黒鉛、または該膨張処理済みの黒鉛を含んでもよい。本発明の黒鉛の粒径は、2~300μmの範囲であることが好ましい。かかる粒径はより好ましくは5~200μm、さらに好ましくは7~100μm、特に好ましくは7~50μmである。かかる範囲を満足することにより、良好な機械的強度、成形品外観が達成される。一方、平均粒径が2μm未満であると剛性の向上効果が小さくなる場合があり、平均粒径が300μmを超えると耐衝撃性の低下が著しく、成形品表面にいわゆる黒鉛の浮きが目立つようになる場合があり好ましくない。
 本発明の黒鉛の固定炭素量は、好ましくは80重量%以上、より好ましくは90重量%以上、更に好ましくは98重量%以上である。また本発明の黒鉛の揮発分は、好ましくは3重量%以下、より好ましくは1.5重量%以下、更に好ましくは1重量%以下である。
 本発明における黒鉛の平均粒径は、樹脂組成物となる前の粒径をいい、またかかる粒径はレーザー回折・散乱法によって求められたものをいう。
 また黒鉛の表面は、本発明の組成物の特性を損なわない限りにおいて熱可塑性樹脂との親和性を増すために、表面処理、例えばエポキシ処理、ウレタン処理、シランカップリング処理、および酸化処理等が施されていてもよい。
(D−5;珪酸塩鉱物)
 本発明における充填材として、珪酸塩鉱物が挙げられる。D−5成分は、少なくとも金属酸化物成分とSiO成分とからなる珪酸塩鉱物であり、オルトシリケート、ジシリケート、環状シリケート、および鎖状シリケートなどが好適である。珪酸塩鉱物は結晶状態を取るものであり、更に該結晶は各珪酸塩鉱物が取り得るいずれの変態であってもよく、また結晶の形状も繊維状や板状などの各種の形状を取ることができる。
 珪酸塩鉱物は複合酸化物、酸素酸塩(イオン格子からなる)、固溶体のいずれの化合物でもよく、更に複合酸化物は単一酸化物の2種以上の組合せ、および単一酸化物と酸素酸塩との2種以上の組合せのいずれであってもよく、更に固溶体においても2種以上の金属酸化物の固溶体、および2種以上の酸素酸塩の固溶体のいずれであってもよい。また水和物であってもよい。水和物における結晶水の形態はSi−OHとして水素珪酸イオンとして入るもの、金属陽イオンに対して水酸イオン(OH)としてイオン的に入るもの、および構造の隙間にHO分子として入るもののいずれの形態であってもよい。
 珪酸塩鉱物としては、天然物に対応する人工合成物を使用することもできる。人工合成物としては、従来公知の各種の方法、例えば固体反応、水熱反応、および超高圧反応などを利用した各種の合成法、から得られた珪酸塩鉱物が利用できる。
 各金属酸化物成分における珪酸塩鉱物の具体例としては以下のものが挙げられる。ここでカッコ内の表記はかかる珪酸塩鉱物を主成分とする鉱物等の名称であり、例示された金属塩としてカッコ内の化合物が使用できることを意味する。
 KOをその成分に含むものとしては、KO・SiO、KO・4SiO・HO、KO・Al・2SiO(カルシライト)、KO・Al・4SiO(白リュウ石)、およびKO・Al・6SiO(正長石)、などが挙げられる。
 NaOをその成分に含むものとしては、NaO・SiO、およびその水化物、NaO・2SiO、2NaO・SiO、NaO・4SiO、NaO・3SiO・3HO、NaO・Al・2SiO、NaO・Al・4SiO(ヒスイ輝石)、2NaO・3CaO・5SiO、3NaO・2CaO・5SiO、およびNaO・Al・6SiO(曹長石)などが挙げられる。
 LiOをその成分に含むものとしては、LiO・SiO、2LiO・SiO、LiO・SiO・HO、3LiO・2SiO、LiO・Al・4SiO(ペタライト)、LiO・Al・2SiO(ユークリプタイト)、およびLiO・Al・4SiO(スポジュメン)などが挙げられる。
 BaOをその成分に含むものとしては、BaO・SiO、2BaO・SiO、BaO・Al・2SiO(セルシアン)、およびBaO・TiO・3SiO(ベントアイト)などが挙げられる。
 CaOをその成分に含むものとしては、3CaO・SiO(セメントクリンカー鉱物のエーライト)、2CaO・SiO(セメントクリンカー鉱物のビーライト)、2CaO・MgO・2SiO(オーケルマナイト)、2CaO・Al・SiO(ゲーレナイト)、オーケルマナイトとゲーレナイトとの固溶体(メリライト)、CaO・SiO(ワラストナイト(α−型、β−型のいずれも含む))、CaO・MgO・2SiO(ジオプサイド)、CaO・MgO・SiO(灰苦土カンラン石)、3CaO・MgO・2SiO(メルウイナイト)、CaO・Al・2SiO(アノーサイト)、5CaO・6SiO・5HO(トバモライト、その他5CaO・6SiO・9HOなど)などのトバモライトグループ水和物、2CaO・SiO・HO(ヒレブランダイト)などのワラストナイトグループ水和物、6CaO・6SiO・HO(ゾノトライト)などのゾノトライトグループ水和物、2CaO・SiO・2HO(ジャイロライト)などのジャイロライトグループ水和物、CaO・Al・2SiO・HO(ローソナイト)、CaO・FeO・2SiO(ヘデンキ石)、3CaO・2SiO(チルコアナイト)、3CaO・Al・3SiO(グロシュラ)、3CaO・Fe・3SiO(アンドラダイト)、6CaO・4Al・FeO・SiO(プレオクロアイト)、並びにクリノゾイサイト、紅レン石、褐レン石、ベスブ石、オノ石、スコウタイト、およびオージャイトなどが挙げられる。
 更にCaOをその成分に含む珪酸塩鉱物としてポルトランドセメントを挙げることができる。ポルトランドセメントの種類は特に限定されるものではなく、普通、早強、超早強、中よう熱、耐硫酸塩、白色などのいずれの種類も使用できる。更に各種の混合セメント、例えば高炉セメント、シリカセメント、フライアッシュセメントなどもB成分として使用できる。またその他のCaOをその成分に含む珪酸塩鉱物として高炉スラグやフェライトなどを挙げることができる。
 ZnOをその成分に含むものとしては、ZnO・SiO、2ZnO・SiO(トロースタイト)、および4ZnO・2SiO・HO(異極鉱)などが挙げられる。
 MnOをその成分に含むものとしては、MnO・SiO、2MnO・SiO、CaO・4MnO・5SiO(ロードナイト)およびコーズライトなどが挙げられる。
 FeOをその成分に含むものとしては、FeO・SiO(フェロシライト)、2FeO・SiO(鉄カンラン石)、3FeO・Al・3SiO(アルマンジン)、および2CaO・5FeO・8SiO・HO(テツアクチノセン石)などが挙げられる。
 CoOをその成分に含むものとしては、CoO・SiOおよび2CoO・SiOなどが挙げられる。
 MgOをその成分に含むものとしては、MgO・SiO(ステアタイト、エンスタタイト)、2MgO・SiO(フォルステライト)、3MgO・Al・3SiO(バイロープ)、2MgO・2Al・5SiO(コーディエライト)、2MgO・3SiO・5HO、3MgO・4SiO・HO(タルク)、5MgO・8SiO・9HO(アタパルジャイト)、4MgO・6SiO・7HO(セピオライト)、3MgO・2SiO・2HO(クリソライト)、5MgO・2CaO・8SiO・HO(透セン石)、5MgO・Al・3SiO・4HO(緑泥石)、KO・6MgO・Al・6SiO・2HO(フロゴバイト)、NaO・3MgO・3Al・8SiO・HO(ランセン石)、並びにマグネシウム電気石、直セン石、カミントンセン石、バーミキュライト、スメクタイトなどが挙げられる。
 Feをその成分に含むものとしては、Fe・SiOなどが挙げられる。
 ZrOをその成分に含むものとしては、ZrO・SiO(ジルコン)およびAZS耐火物などが挙げられる。
 Alをその成分に含むものとしては、Al・SiO(シリマナイト、アンダリューサイト、カイアナイト)、2Al・SiO、Al・3SiO、3Al・2SiO(ムライト)、Al・2SiO・2HO(カオリナイト)、Al・4SiO・HO(パイロフィライト)、Al・4SiO・HO(ベントナイト)、KO・3NaO・4Al・8SiO(カスミ石)、KO・3Al・6SiO・2HO(マスコバイト、セリサイト)、KO・6MgO・Al・6SiO・2HO(フロゴバイト)、並びに各種のゼオライト、フッ素金雲母、および黒雲母などを挙げることができる。
 上記の珪酸塩鉱物の中でも特に好適であるのは、剛性と耐衝撃性のバランスに優れ、耐湿熱性や熱安定性や外観にも優れ、更に入手も容易である点でから、タルク、マイカ、ワラストナイトである。
(D−5−i)タルク
 本発明におけるタルクとは、化学組成的には含水珪酸マグネシウムであり、一般的には化学式4SiO・3MgO・2HOで表され、通常層状構造を持った鱗片状の粒子であり、また組成的にはSiOを56~65重量%、MgOを28~35重量%、HO約5重量%程度から構成されている。その他の少量成分としてFeが0.03~1.2重量%、Alが0.05~1.5重量%、CaOが0.05~1.2重量%、KOが0.2重量%以下、NaOが0.2重量%以下などを含有している。より好適なタルクの組成としては、SiO:62~63.5重量%、MgO:31~32.5重量%、Fe:0.03~0.15重量%、Al:0.05~0.25重量%、およびCaO:0.05~0.25重量%が好ましい。更に強熱減量が2~5.5重量%であることが好ましい。かかる好適な組成においては、良好な熱安定性および色相を有する樹脂組成物が得られ、更なる成形加工温度の上昇によっても良好な成形品が製造される。これにより本発明の組成物は更に高流動化が可能となり、より大型または複雑形状の薄肉成形品に対応可能となる。
 タルクの粒子径は、沈降法により測定される平均粒径が0.1~50μm(より好ましくは0.1~10μm、更に好ましくは0.2~5μm、特に好ましくは0.2~3.5μm)の範囲であることが好ましい。したがって、本発明のより好適なタルクは、上記の好ましい組成を有し、かつ平均粒径が0.2~5μmのタルクである。更にかさ密度を0.5(g/cm)以上としたタルクを原料として使用することが特に好適である。かかる条件を満足するタルクとして、林化成(株)製「Upn HS−T0.8」が例示される。タルクの平均粒径は、液相沈降法の1つであるX線透過法で測定されたD50(粒子径分布のメジアン径)をいう。かかる測定を行う装置の具体例としてはマイクロメリティックス社製Sedigraph5100などを挙げることができる。
 またタルクを原石から粉砕する際の製法に関しては特に制限はなく、軸流型ミル法、アニュラー型ミル法、ロールミル法、ボールミル法、ジェットミル法、および容器回転式圧縮剪断型ミル法等を利用することができる。さらに粉砕後のタルクは、各種の分級機によって分級処理され、粒子径の分布が揃ったものが好適である。分級機としては特に制限はなく、インパクタ型慣性力分級機(バリアブルインパクターなど)、コアンダ効果利用型慣性力分級機(エルボージェットなど)、遠心場分級機(多段サイクロン、ミクロプレックス、ディスパージョンセパレーター、アキュカット、ターボクラシファイア、ターボプレックス、ミクロンセパレーター、およびスーパーセパレーターなど)などを挙げることができる。
 さらにタルクは、その取り扱い性等の点で凝集状態であるものが好ましく、かかる製法としては脱気圧縮による方法、集束剤を使用し圧縮する方法等がある。特に脱気圧縮による方法が簡便かつ不要の集束剤樹脂成分を本発明の樹脂組成物中に混入させない点で好ましい。
(D−5−ii)マイカ
 マイカは、その平均粒径が5~250μmのものを使用できる。好ましくはレーザー回折・散乱法で測定される平均粒径(D50(粒子径分布のメジアン径))が5~50μmのマイカである。マイカの平均粒径が5μm未満では剛性向上の効果が得られにくくなる。一方250μmを超える平均粒径のマイカを含有する樹脂組成物は、機械的物性が飽和傾向にある一方で外観や難燃性が劣るようになる。尚、マイカの平均粒径は、レーザー回折・散乱法または振動式篩分け法により測定される。レーザー回折・散乱法は、振動式篩分け法により325メッシュパスが、95重量%以上のマイカに対して行うのが好適である。それ以上の粒径のマイカに対しては、振動式篩分け法を使用するのが一般的である。本発明の振動式篩分け法は、まず振動篩器を用い使用するマイカ粉体100gを目開きの順番に重ねたJIS規格の標準篩により10分間篩分けを行う。各篩の上に残った粉体の重量を測定して粒度分布を求める方法である。
 マイカの厚みとしては、電子顕微鏡の観察により実測した厚みが0.01~1μmのものを使用できる。好ましくは厚みが0.03~0.3μmである。アスペクト比としては5~200、好ましくは10~100のものを使用できる。また使用するマイカはマスコバイトマイカが好ましく、そのモース硬度は約3である。マスコバイトマイカはフロゴバイトなど他のマイカに比較してより高剛性および高強度を達成でき、本発明の課題をより良好なレベルにおいて解決する。したがって、本発明のより好適なマイカは、平均粒径が5~250μm、より好ましくは5~50μmであるマスコバイトである。かかる好適なマイカとしては例えば(株)山口雲母工業所製「A−21」が例示される。また、マイカの粉砕法としては乾式粉砕法および湿式粉砕法のいずれで製造されたものであってもよい。乾式粉砕法の方が低コストで一般的であるが、一方湿式粉砕法は、マイカをより薄く細かく粉砕するのに有効である(樹脂組成物の剛性向上効果はより高くなる)。本発明では、湿式粉砕法のマイカがより好適である。
(D−5−iii)ワラストナイト
 ワラストナイトの繊維径は0.1~10μmが好ましく、0.1~5μmがより好ましく、0.1~3μmが更に好ましい。またそのアスペクト比(平均繊維長/平均繊維径)は3以上が好ましい。アスペクト比の上限としては30以下が挙げられる。ここで繊維径は電子顕微鏡で強化フィラーを観察し、個々の繊維径を求め、その測定値から数平均繊維径を算出する。電子顕微鏡を使用するのは、対象とするレベルの大きさを正確に測定することが光学顕微鏡では困難なためである。繊維径は、電子顕微鏡の観察で得られる画像に対して、繊維径を測定する対象のフィラーをランダムに抽出し、中央部の近いところで繊維径を測定し、得られた測定値より数平均繊維径を算出する。観察の倍率は約1000倍とし、測定本数は500本以上(600本以下が作業上好適である)で行う。一方平均繊維長の測定は、フィラーを光学顕微鏡で観察し、個々の長さを求め、その測定値から数平均繊維長を算出する。光学顕微鏡の観察は、フィラー同士があまり重なり合わないように分散されたサンプルを準備することから始まる。観察は対物レンズ20倍の条件で行い、その観察像を画素数が約25万であるCCDカメラに画像データとして取り込む。得られた画像データを画像解析装置を使用して、画像データの2点間の最大距離を求めるプログラムを使用して、繊維長を算出する。かかる条件の下では1画素当りの大きさが1.25μmの長さに相当し、測定本数は500本以上(600本以下が作業上好適である)で行う。本発明のワラストナイトは、その元来有する白色度を十分に樹脂組成物に反映させるため、原料鉱石中に混入する鉄分並びに原料鉱石を粉砕する際に機器の摩耗により混入する鉄分を磁選機によって極力取り除くことが好ましい。かかる磁選機処理によりワラストナイト中の鉄の含有量はFeに換算して、0.5重量%以下であることが好ましい。したがって、本発明のより好適なワラストナイトは、その繊維径が0.1~10μm、より好ましくは0.1~5μm、更に好ましくは0.1~3μmであり、が更に好ましい。平均粒径が5~250μm、より好ましくは5~50μmであり、鉄の含有量はFeに換算して0.5重量%以下のワラストナイトである。かかる好適なワラストナイトとしては例えばキンセイマテック社製「SH−1250」、「SH−1800」、関西マテック社製「KGP−H40」、NYCO社製「NYGLOS4」等が例示される。
 本発明における珪酸塩鉱物は、表面処理されていないことが好ましいが、シランカップリング剤(アルキルアルコキシシランやポリオルガノハイドロジェンシロキサンなどを含む)、高級脂肪酸エステル、酸化合物(例えば、亜リン酸、リン酸、カルボン酸、およびカルボン酸無水物など)並びにワックスなどの各種表面処理剤で表面処理されていてもよい。さらに各種樹脂、高級脂肪酸エステル、およびワックスなどの集束剤で造粒し顆粒状とされていてもよい。本発明における珪酸塩鉱物において特に好適であるのはタルクやワラストナイトである。かかるタルクやワラストナイトは剛性と耐衝撃性との両立において良好であり、ポリカーボネート樹脂およびポリエステル樹脂に配合した場合の色相の悪化および外観の悪化(例えばシルバーストリークの発生)が小さい。
 本発明の樹脂組成物において、D成分の含有量は、樹脂成分100重量部に対して、0~15重量部であり、好ましくは8~15重量部であり、より好ましくは9~14重量部、さらに好ましくは10~12重量部である。上限を超えると、衝撃強度が低下するようになり、下限未満では、剛性改良効果が不十分となり好ましくない。
(その他の添加剤)
 本発明の樹脂組成物は、上記A成分~D成分以外にも、通常ポリカーボネート樹脂に配合される各種の添加剤(難燃剤、含フッ素滴下防止剤、安定剤、紫外線吸収剤、離型剤、染顔料、熱線吸収性能を有する化合物、帯電防止剤、酸性度調節剤等)を含むことができる(各種添加剤の詳細はWO2011/087141等参照)。
 本発明に好ましく用いるリン系安定剤としては、亜リン酸、リン酸、亜ホスホン酸、ホスホン酸、これらのエステル、並びに第3級ホスフィン等が例示される。これらの中でも特に、亜リン酸、リン酸、亜ホスホン酸、ホスホン酸、トリオルガノホスフェート化合物、アシッドホスフェート化合物が好ましい。尚、アシッドホスフェート化合物における有機基は、一置換、二置換、これらの混合物のいずれも含む。該化合物に対応する下記の例示化合物においても同様にいずれをも含むものとする。
 トリオルガノホスフェート化合物としては、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリオクチルホスフェート、トリデシルホスフェート、トリドデシルホスフェート、トリラウリルホスフェート、トリステアリルホスフェート、トリクレジルホスフェート、トリフェニルホスフェート、トリクロルフェニルホスフェート、ジフェニルクレジルホスフェート、ジフェニルモノオルソキセニルホスフェート、トリブトキシエチルホスフェート等が例示される。これらの中でもトリアルキルホスフェートが好ましい。かかるトリアルキルホスフェートの炭素数は、好ましくは1~22、より好ましくは1~4である。特に好ましいトリアルキルホスフェートはトリメチルホスフェートである。
 アシッドホスフェート化合物としては、メチルアシッドホスフェート、エチルアシッドホスフェート、ブチルアシッドホスフェート、ブトキシエチルアシッドホスフェート、オクチルアシッドホスフェート、デシルアシッドホスフェート、ラウリルアシッドホスフェート、ステアリルアシッドホスフェート、オレイルアシッドホスフェート、ベヘニルアシッドホスフェート、フェニルアシッドホスフェート、ノニルフェニルアシッドホスフェート、シクロヘキシルアシッドホスフェート、フェノキシエチルアシッドホスフェート、アルコキシポリエチレングリコールアシッドホスフェート、およびビスフェノールAアシッドホスフェート等が例示される。これらの中でも炭素数10以上の長鎖ジアルキルアシッドホスフェートが熱安定性の向上に有効であり、該アシッドホスフェート自体の安定性が高いことから好ましい。
 ホスファイト化合物としては、例えば、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ−iso−プロピルフェニル)ホスファイト、トリス(ジ−n−ブチルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリス(2,6−ジ−tert−ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−エチルフェニル)ペンタエリスリトールジホスファイト、ビス{2,4−ビス(1−メチル−1−フェニルエチル)フェニル}ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ジシクロヘキシルペンタエリスリトールジホスファイト等が挙げられる。
 更に他のホスファイト化合物としては二価フェノール類と反応し環状構造を有するものも使用できる。例えば、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2,4−ジ−tert−ブチルフェニル)ホスファイト、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイト、2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト等が例示される。
 ホスホナイト化合物としては、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−n−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト等が挙げられる。テトラキス(ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、ビス(ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトが好ましく、テトラキス(2,4−ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトがより好ましい。かかるホスホナイト化合物は上記アルキル基が2以上置換したアリール基を有するホスファイト化合物との併用可能であり好ましい。
 ホスホネイト化合物としては、ベンゼンホスホン酸ジメチル、ベンゼンホスホン酸ジエチル、およびベンゼンホスホン酸ジプロピル等が挙げられる。
 第3級ホスフィンとしては、トリエチルホスフィン、トリプロピルホスフィン、トリブチルホスフィン、トリオクチルホスフィン、トリアミルホスフィン、ジメチルフェニルホスフィン、ジブチルフェニルホスフィン、ジフェニルメチルホスフィン、ジフェニルオクチルホスフィン、トリフェニルホスフィン、トリ−p−トリルホスフィン、トリナフチルホスフィン、ジフェニルベンジルホスフィン等が例示される。特に好ましい第3級ホスフィンは、トリフェニルホスフィンである。
 好適なリン系安定剤は、トリオルガノホスフェート化合物、アシッドホスフェート化合物、および下記式(XIII)で表されるホスファイト化合物である。殊にトリオルガノホスフェート化合物を配合することが好ましい。
Figure JPOXMLDOC01-appb-I000009
 式(XIII)中、RおよびR’は炭素数6~30のアルキル基または炭素数6~30のアリール基またはアルキルアリール基を表し、互いに同一であっても異なっていてもよい。
 上記の如く、ホスホナイト化合物としてはテトラキス(2,4−ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイトが好ましく、該ホスホナイトを主成分とする安定剤は、Sandostab P−EPQ(商標、Clariant社製)およびIrgafos P−EPQ(商標、CIBA SPECIALTY CHEMICALS社製)として市販されておりいずれも利用できる。
 また上記式(XIII)の中でもより好適なホスファイト化合物は、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、およびビス{2,4−ビス(1−メチル−1−フェニルエチル)フェニル}ペンタエリスリトールジホスファイトである。
 本発明の樹脂組成物には、A成分、B成分以外の熱可塑性樹脂、エラストマー、その他の流動改質剤、抗菌剤、流動パラフィンの如き分散剤、光触媒系防汚剤、フォトクロミック剤等を配合することができる。
 かかる他の樹脂としては、例えばポリアミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリウレタン樹脂、シリコーン樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、ポリスチレン樹脂、アクリロニトリル/スチレン共重合体(AS樹脂)、ポリメタクリレート樹脂、フェノール樹脂、エポキシ樹脂、環状ポリオレフィン樹脂、ポリ乳酸樹脂、ポリカプロラクトン樹脂、並びに熱可塑性フッ素樹脂(例えばポリフッ化ビニリデン樹脂に代表される)等の樹脂が挙げられる。エラストマーとしては、アクリル系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー等が挙げられる。
 上記の他の熱可塑性樹脂やエラストマーの含有量は、樹脂成分100重量部を基準として好ましくは30重量部以下、より好ましくは20重量部以下である。
(樹脂組成物の製造方法)
 本発明の樹脂組成物の調製には任意の方法が採用される。例えばA成分、B成分、C成分、D成分および任意に他の成分を予備混合し、その後、溶融混練してペレット化する方法を挙げることができる。
 予備混合の手段としては、ナウターミキサー、V型ブレンダー、ヘンシェルミキサー、メカノケミカル装置、押出混合機等を挙げることができる。予備混合においては必要に応じて押出造粒器やブリケッティングマシーン等により造粒を行うこともできる。他の方法としては例えば、A成分としてパウダーの形態を有するものを含む場合、かかるパウダーの一部と配合する添加剤とをブレンドしてパウダーで希釈した添加剤のマスターバッチを製造し、かかるマスターバッチを利用する方法が挙げられる。予備混合後、ベント式二軸押出機に代表される溶融混練機で溶融混練、およびペレタイザー等の機器によりペレット化する。溶融混練機としては他にバンバリーミキサー、混練ロール、恒熱撹拌容器等を挙げることができるが、ベント式二軸押出機が好ましい。
 他に、各成分を予備混合することなく、それぞれ独立に二軸押出機に代表される溶融混練機に供給する方法も取ることができる。また一部の成分を予備混合した後、残りの成分と独立に溶融混練機に供給する方法が挙げられる。特に無機充填材が配合される場合には、無機充填材は押出機途中の供給口から溶融樹脂中にサイドフィーダーの如き供給装置を用いて供給されることが好ましい。予備混合の手段や造粒に関しては、前記と同様である。なお、配合する成分に液状のものがある場合には、溶融混練機への供給にいわゆる液注装置、または液添装置を使用することができる。
 押出機としては、原料中の水分や、溶融混練樹脂から発生する揮発ガスを脱気できるベントを有するものが好ましく使用できる。ベントからは発生水分や揮発ガスを効率よく押出機外部へ排出するための真空ポンプが好ましく設置される。また押出原料中に混入した異物等を除去するためのスクリーンを押出機ダイス部前のゾーンに設置し、異物を樹脂組成物から取り除くことも可能である。かかるスクリーンとしては金網、スクリーンチェンジャー、焼結金属プレート(ディスクフィルター等)等を挙げることができる。
 溶融混練機としては二軸押出機の他にバンバリーミキサー、混練ロール、単軸押出機、3軸以上の多軸押出機等を挙げることができる。
 さらに溶融混練前にA成分およびB成分に含まれる水分が少ないことが好ましい。したがって各種熱風乾燥、電磁波乾燥、真空乾燥等の方法により、A成分またはB成分のいずれかまたは両者を乾燥した後に溶融混練することがより好ましい。溶融混練中のベント吸引度は、1~60kPa、好ましくは2~30kPaの範囲が好ましい。
 上記の如く押出された樹脂は、直接切断してペレット化するか、またはストランドを形成した後かかるストランドをペレタイザーで切断してペレット化される。ペレット化に際して外部の埃等の影響を低減する必要がある場合には、押出機周囲の雰囲気を清浄化することが好ましい。更にかかるペレットの製造においては、光学ディスク用ポリカーボネート樹脂において既に提案されている様々な方法を用いて、ペレットの形状分布の狭小化、ミスカット物の低減、運送または輸送時に発生する微小粉の低減、並びにストランドやペレット内部に発生する気泡(真空気泡)の低減を適宜行うことができる。これらの処方により成形のハイサイクル化、およびシルバーの如き不良発生割合の低減を行うことができる。またペレットの形状は、円柱、角柱、および球状等一般的な形状を取り得るが、より好適には円柱である。かかる円柱の直径は好ましくは1~5mm、より好ましくは1.5~4mm、さらに好ましくは2~3.3mmである。一方、円柱の長さは好ましくは1~30mm、より好ましくは2~5mm、さらに好ましくは2.5~3.5mmである。
(本発明の樹脂組成物を用いてなる成形品)
 本発明の樹脂組成物を用いてなる成形品は、上記の如く製造されたペレットを成形して得ることができる。好適には、射出成形、押出し成形により得られる。射出成形においては、通常の成形方法だけでなく、射出圧縮成形、射出プレス成形、ガスアシスト射出成形、発泡成形(超臨界流体を注入する方法を含む)、インサート成形、インモールドコーティング成形、断熱金型成形、急速加熱冷却金型成形、二色成形、多色成形、サンドイッチ成形、および超高速射出成形等を挙げることができる。また成形はコールドランナー方式およびホットランナー方式のいずれも選択することができる。
 また、押出成形では、各種異形押出成形品、シート、フィルム等が得られる。シート、フィルムの成形にはインフレーション法や、カレンダー法、キャスティング法等も使用可能である。更に特定の延伸操作をかけることにより熱収縮チューブとして成形することも可能である。また本発明の樹脂組成物を回転成形やブロー成形等により成形品とすることも可能である。
 本発明者が現在最良と考える本発明の形態は、前記の各要件の好ましい範囲を集約したものとなるが、例えば、その代表例を下記の実施例中に記載する。もちろん本発明はこれらの形態に限定されるものではない。
Hereinafter, further details of the present invention will be described.
(A component: polycarbonate resin)
The polycarbonate resin used as the component A of the present invention is obtained by reacting a dihydric phenol and a carbonate precursor. Examples of the reaction method include an interfacial polymerization method, a melt transesterification method, a solid phase transesterification method of a carbonate prepolymer, and a ring-opening polymerization method of a cyclic carbonate compound.
Representative examples of the dihydric phenol used here include hydroquinone, resorcinol, 4,4′-biphenol, 1,1-bis (4-hydroxyphenyl) ethane, and 2,2-bis (4-hydroxyphenyl). ) Propane (commonly called bisphenol A), 2,2-bis (4-hydroxy-3-methylphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 1,1-bis (4-hydroxyphenyl)- 1-phenylethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2,2-bis (4-hydroxyphenyl) Pentane, 4,4 '-(p-phenylenediisopropylidene) diphenol, 4,4'-(m-phenylenediiso (Ropyridene) diphenol, 1,1-bis (4-hydroxyphenyl) -4-isopropylcyclohexane, bis (4-hydroxyphenyl) oxide, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfoxide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) ketone, bis (4-hydroxyphenyl) ester, bis (4-hydroxy-3-methylphenyl) sulfide, 9,9-bis (4-hydroxyphenyl) Examples include fluorene and 9,9-bis (4-hydroxy-3-methylphenyl) fluorene. A preferred dihydric phenol is bis (4-hydroxyphenyl) alkane, and bisphenol A is particularly preferred from the viewpoint of impact resistance, and is widely used.
In the present invention, in addition to a general-purpose polycarbonate, which is a bisphenol A-based polycarbonate, a special polycarbonate manufactured using other dihydric phenols can be used as the A component.
For example, as part or all of the dihydric phenol component, 4,4 ′-(m-phenylenediisopropylidene) diphenol (hereinafter sometimes abbreviated as “BPM”), 1,1-bis (4-hydroxy Phenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane (hereinafter sometimes abbreviated as “Bis-TMC”), 9,9-bis (4-hydroxyphenyl) Polycarbonate (homopolymer or copolymer) using fluorene and 9,9-bis (4-hydroxy-3-methylphenyl) fluorene (hereinafter sometimes abbreviated as “BCF”) has dimensions due to water absorption. It is suitable for applications where the demands for change and shape stability are particularly severe. These dihydric phenols other than BPA are preferably used in an amount of 5 mol% or more, particularly 10 mol% or more of the entire dihydric phenol component constituting the polycarbonate.
In particular, when high rigidity and better hydrolysis resistance are required, it is particularly preferable that the component B constituting the polycarbonate resin composition is the following copolymeric polycarbonate (1) to (3). It is.
(1) BPM is 20 to 80 mol% (more preferably 40 to 75 mol%, more preferably 45 to 65 mol%) in 100 mol% of the dihydric phenol component constituting the polycarbonate, and BCF Is a copolymer polycarbonate having a content of 20 to 80 mol% (more preferably 25 to 60 mol%, still more preferably 35 to 55 mol%).
(2) BPA is 10 to 95 mol% (more preferably 50 to 90 mol%, more preferably 60 to 85 mol%) in 100 mol% of the dihydric phenol component constituting the polycarbonate, and BCF Is a copolycarbonate having a content of 5 to 90 mol% (more preferably 10 to 50 mol%, more preferably 15 to 40 mol%).
(3) BPM is 20 to 80 mol% (more preferably 40 to 75 mol%, more preferably 45 to 65 mol%) in 100 mol% of the dihydric phenol component constituting the polycarbonate, and Bis -Copolymer polycarbonate having a TMC of 20 to 80 mol% (more preferably 25 to 60 mol%, more preferably 35 to 55 mol%).
These special polycarbonates may be used alone or in combination of two or more. Moreover, these can also be mixed and used for the bisphenol A type polycarbonate generally used.
The production methods and characteristics of these special polycarbonates are described in detail in, for example, JP-A-6-172508, JP-A-8-27370, JP-A-2001-55435, and JP-A-2002-117580. ing.
Of the various polycarbonates described above, those having a water absorption and Tg (glass transition temperature) adjusted within the following ranges by adjusting the copolymer composition and the like have good hydrolysis resistance of the polymer itself, and Since it is remarkably excellent in low warpage after molding, it is particularly suitable in a field where form stability is required.
(I) a polycarbonate having a water absorption of 0.05 to 0.15%, preferably 0.06 to 0.13% and a Tg of 120 to 180 ° C., or
(Ii) Tg is 160 to 250 ° C., preferably 170 to 230 ° C., and water absorption is 0.10 to 0.30%, preferably 0.13 to 0.30%, more preferably 0.14 to Polycarbonate which is 0.27%.
Here, the water absorption of the polycarbonate is a value obtained by measuring the moisture content after being immersed in water at 23 ° C. for 24 hours in accordance with ISO 62-1980 using a disc-shaped test piece having a diameter of 45 mm and a thickness of 3.0 mm. is there. Moreover, Tg (glass transition temperature) is a value calculated | required by the differential scanning calorimeter (DSC) measurement based on JISK7121.
As the carbonate precursor, carbonyl halide, carbonic acid diester, haloformate or the like is used, and specific examples include phosgene, diphenyl carbonate, dihaloformate of dihydric phenol, and the like.
In producing the aromatic polycarbonate resin by the interfacial polymerization method using the dihydric phenol and the carbonate precursor, a catalyst, a terminal terminator, and an antioxidant for preventing the dihydric phenol from being oxidized as necessary. Etc. may be used. The aromatic polycarbonate resin is a branched polycarbonate resin copolymerized with a trifunctional or higher polyfunctional aromatic compound, or a polyester carbonate resin copolymerized with an aromatic or aliphatic (including alicyclic) difunctional carboxylic acid. And a copolymer polycarbonate resin copolymerized with a bifunctional alcohol (including alicyclic), and a polyester carbonate resin copolymerized with the bifunctional carboxylic acid and the bifunctional alcohol together. Moreover, the mixture which mixed 2 or more types of the obtained aromatic polycarbonate resin may be sufficient.
Branched polycarbonate resin can impart anti-drip performance and the like to the resin composition of the present invention. Examples of the trifunctional or higher polyfunctional aromatic compound used in the branched polycarbonate resin include phloroglucin, phloroglucid, or 4,6-dimethyl-2,4,6-tris (4-hydroxydiphenyl) heptene-2, 2 , 4,6-trimethyl-2,4,6-tris (4-hydroxyphenyl) heptane, 1,3,5-tris (4-hydroxyphenyl) benzene, 1,1,1-tris (4-hydroxyphenyl) Ethane, 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane, 2,6-bis (2-hydroxy-5-methylbenzyl) -4-methylphenol, 4- {4- [ Trisphenol such as 1,1-bis (4-hydroxyphenyl) ethyl] benzene} -α, α-dimethylbenzylphenol, tetra (4-hydride) Loxyphenyl) methane, bis (2,4-dihydroxyphenyl) ketone, 1,4-bis (4,4-dihydroxytriphenylmethyl) benzene, or trimellitic acid, pyromellitic acid, benzophenonetetracarboxylic acid and their acids Among them, 1,1,1-tris (4-hydroxyphenyl) ethane and 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane are preferable. 1-Tris (4-hydroxyphenyl) ethane is preferred.
The structural unit derived from the polyfunctional aromatic compound in the branched polycarbonate is 0.1% in a total of 100 mol% of the structural unit derived from the dihydric phenol and the structural unit derived from the polyfunctional aromatic compound. The amount is from 01 to 1 mol%, preferably from 0.05 to 0.9 mol%, particularly preferably from 0.05 to 0.8 mol%.
In particular, in the case of the melt transesterification method, a branched structural unit may be generated as a side reaction. However, the amount of the branched structural unit is also 0.1% in a total of 100 mol% with a structural unit derived from a dihydric phenol. A content of 001 to 1 mol%, preferably 0.005 to 0.9 mol%, particularly preferably 0.01 to 0.8 mol% is preferred. Regarding the ratio of such branched structures1It is possible to calculate by H-NMR measurement.
The aliphatic bifunctional carboxylic acid is preferably α, ω-dicarboxylic acid. Examples of the aliphatic difunctional carboxylic acid include sebacic acid (decanedioic acid), dodecanedioic acid, tetradecanedioic acid, octadecanedioic acid, icosanedioic acid and other straight-chain saturated aliphatic dicarboxylic acids, and cyclohexanedicarboxylic acid. Preferred are alicyclic dicarboxylic acids such as As the bifunctional alcohol, an alicyclic diol is more preferable, and examples thereof include cyclohexanedimethanol, cyclohexanediol, and tricyclodecane dimethanol.
Furthermore, it is possible to use a polycarbonate-polyorganosiloxane copolymer obtained by copolymerizing polyorganosiloxane units.
The polycarbonate resin can be produced by an interfacial polymerization method, a melt transesterification method, a solid phase transesterification method of a carbonate prepolymer, a ring-opening polymerization method of a cyclic carbonate compound, or the like. These reaction formats are well known in various documents and patent publications.
The viscosity average molecular weight of the polycarbonate resin is preferably 10,000 to 50,000, more preferably 14,000 to 30,000, and further preferably 14,000 to 26,000. With a polycarbonate resin having a viscosity average molecular weight of less than 10,000, good mechanical properties cannot be obtained. On the other hand, a resin composition obtained from a polycarbonate resin having a viscosity average molecular weight exceeding 50,000 is inferior in versatility in that it is inferior in fluidity during injection molding.
The polycarbonate resin may be obtained by mixing those having a viscosity average molecular weight outside the above range. In particular, a polycarbonate resin having a viscosity average molecular weight exceeding the range (50,000) improves the entropy elasticity of the resin. As a result, good moldability is exhibited in gas assist molding and foam molding which may be used when molding a reinforced resin material into a structural member. Such improvement in moldability is even better than that of the branched polycarbonate. As a more preferred embodiment, a polycarbonate resin having a viscosity average molecular weight of 70,000 to 300,000 (component A-1-1) and a polycarbonate resin having a viscosity average molecular weight of 10,000 to 30,000 (A Polycarbonate resin having a viscosity average molecular weight of 16,000 to 35,000 (hereinafter sometimes referred to as “high molecular weight component-containing polycarbonate resin”).
In such a high molecular weight component-containing polycarbonate resin, the molecular weight of the A-1-1 component is preferably 70,000 to 200,000, more preferably 80,000 to 200,000, still more preferably 100,000 to 200,000, Particularly preferred is 100,000 to 160,000. The molecular weight of the A-1-2 component is preferably 10,000 to 25,000, more preferably 11,000 to 24,000, still more preferably 12,000 to 24,000, and particularly preferably 12,000 to 23. , 000.
The high molecular weight component-containing polycarbonate resin can be obtained by mixing the A-1-1 component and the A-1-2 component at various ratios and adjusting so as to satisfy a predetermined molecular weight range. Preferably, in 100% by weight of the high molecular weight component-containing polycarbonate resin, the A-1-1 component is 2 to 40% by weight, more preferably the A-1-1 component is 3 to 30% by weight, The A-1-1 component is preferably 4 to 20% by weight, and particularly preferably the A-1-1 component is 5 to 20% by weight.
As a method for preparing a polycarbonate resin containing a high molecular weight component, (1) a method in which the A-1-1 component and the A-1-2 component are polymerized independently and mixed, (2) In the same system, a polycarbonate resin showing a plurality of polymer peaks in a molecular weight distribution chart by GPC method represented by the method shown in JP-A-306336 is used. And (3) a polycarbonate resin obtained by such a production method (production method (2)), a separately produced A-1-1 component and / or A-1- Examples include a method of mixing two components.
The viscosity average molecular weight referred to in the present invention is first determined by the specific viscosity (ηSP) At 20 ° C. using an Ostwald viscometer from a solution of 0.7 g of polycarbonate resin in 100 ml of methylene chloride,
Specific viscosity (ηSP) = (T−t0) / T0
[T0Is the drop time of methylene chloride, t is the drop time of the sample solution]
Calculated specific viscosity (ηSP) To calculate the viscosity average molecular weight M by the following formula.
ΗSP/C=[η]+0.45×[η]2c (where [η] is the intrinsic viscosity)
[Η] = 1.23 × 10-4M0.83
C = 0.7
The viscosity average molecular weight of the polycarbonate resin in the resin composition of the present invention is calculated as follows. That is, the composition is mixed with 20 to 30 times its weight of methylene chloride to dissolve soluble components in the composition. Such soluble matter is collected by Celite filtration. Thereafter, the solvent in the obtained solution is removed. The solid after removal of the solvent is sufficiently dried to obtain a solid component that dissolves in methylene chloride. A specific viscosity at 20 ° C. is determined from a solution obtained by dissolving 0.7 g of the solid in 100 ml of methylene chloride in the same manner as described above, and the viscosity average molecular weight M is calculated from the specific viscosity in the same manner as described above.
(B component: polyester resin)
The polyester resin used as the component B of the present invention is a polymer or copolymer obtained by a condensation reaction mainly comprising an aromatic dicarboxylic acid or a reactive derivative thereof and a diol or an ester derivative thereof.
As the aromatic dicarboxylic acid here, terephthalic acid, isophthalic acid, orthophthalic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-biphenyldicarboxylic acid, 4,4′-biphenyl ether Dicarboxylic acid, 4,4′-biphenylmethane dicarboxylic acid, 4,4′-biphenylsulfone dicarboxylic acid, 4,4′-biphenylisopropylidenedicarboxylic acid, 1,2-bis (phenoxy) ethane-4,4′-dicarboxylic acid Acid, 2,5-anthracene dicarboxylic acid, 2,6-anthracene dicarboxylic acid, 4,4′-p-terphenylene dicarboxylic acid, aromatic dicarboxylic acid such as 2,5-pyridinedicarboxylic acid, diphenylmethane dicarboxylic acid, diphenyl ether Dicarboxylic acid and β-hydroxyethoxy It is preferably used selected from Ikiko acid, particularly terephthalic acid, 2,6-naphthalenedicarboxylic acid can be preferably used. Aromatic dicarboxylic acids may be used as a mixture of two or more. In addition, if the amount is small, it is also possible to use a mixture of one or more aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid and dodecanediic acid, and alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid, etc. together with the dicarboxylic acid. .
Examples of the diol that is a component of the polyester resin include ethylene glycol, propylene glycol, butylene glycol, hexylene glycol, neopentyl glycol, pentamethylene glycol, hexamethylene glycol, decamethylene glycol, and 2-methyl-1,3-propanediol. , Aliphatic diols such as diethylene glycol and triethylene glycol, alicyclic diols such as 1,4-cyclohexanedimethanol, diols containing aromatic rings such as 2,2-bis (β-hydroxyethoxyphenyl) propane, and the like A mixture thereof may be mentioned. If the amount is smaller, one or more long chain diols having a molecular weight of 400 to 6,000, that is, polyethylene glycol, poly-1,3-propylene glycol, polytetramethylene glycol, etc. may be copolymerized.
The polyester resin can be branched by introducing a small amount of a branching agent. Although there is no restriction | limiting in the kind of branching agent, A trimesic acid, a trimellitic acid, a trimethylol ethane, a trimethylol propane, a pentaerythritol, etc. are mentioned.
Specific polyester resins include polyethylene terephthalate (PET), polypropylene terephthalate, polybutylene terephthalate (PBT), polyhexylene terephthalate, polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), polyethylene-1,2- In addition to bis (phenoxy) ethane-4,4′-dicarboxylate, a copolymer polyester resin such as polyethylene isophthalate / terephthalate, polybutylene terephthalate / isophthalate, and the like can be given. Among these, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate and a mixture thereof having a good balance of mechanical properties and the like can be preferably used.
Further, the terminal group structure of the polyester resin is not particularly limited, and the ratio of the hydroxyl group and the carboxyl group in the terminal group may be large, in addition to the case where the ratio is large. Moreover, those terminal groups may be sealed by reacting a compound having reactivity with such terminal groups.
Such a polyester resin is produced by polymerizing a dicarboxylic acid component and the diol component while heating in the presence of a specific titanium-based catalyst and discharging by-product water or lower alcohol out of the system according to a conventional method. It is preferable.
The above titanium-based catalyst includes a reaction product of the following titanium compound component (A) and phosphorus compound component (B).
The titanium compound component (A) includes a titanium compound (1) represented by the following general formula (I), an aromatic polyvalent carboxylic acid represented by the titanium compound (1) and the following general formula (II), or anhydrous It is at least one titanium compound component selected from the group consisting of a titanium compound (2) obtained by reacting with a product.
Figure JPOXMLDOC01-appb-I000005
[However, in formula (I), R1, R2, R3And R4Each independently represents an alkyl group having 2 to 10 carbon atoms, k represents an integer of 1 to 3, and when k is 2 or 3, 2 or 3 R2And R3May be the same as or different from each other. ]
Figure JPOXMLDOC01-appb-I000006
[In the formula (II), m represents an integer of 2 to 4. ]
The phosphorus compound component (B) is a phosphorus compound component composed of at least one of the phosphorus compounds (3) represented by the following general formula (III).
Figure JPOXMLDOC01-appb-I000007
[In the formula (III), R5Represents an unsubstituted or substituted aryl group having 6 to 20 carbon atoms, or an alkyl group having 1 to 20 carbon atoms. ]
The polyester resin produced by using the above-mentioned specific titanium-based catalyst is superior in thermal stability and wet heat resistance compared to the case of using germanium, antimony and other titanium-based catalysts. When the above specific titanium-based catalyst is used, the quality is stable even if the amount of additives such as hue stabilizer and heat stabilizer during production is less than when other catalysts are used. Since decomposition of the additive in a thermal environment or a moist heat environment is reduced, it is presumed that the thermal stability and the heat and humidity resistance are excellent.
In the reaction product of the titanium compound component (A) and the phosphorus compound component (B), the titanium compound equivalent molar amount (mTi) of the titanium compound component (A) and the phosphorus atom equivalent molar amount of the phosphorus compound component (B) The reaction molar ratio (mTi / mP) with (mP) is preferably in the range of 1/3 to 1/1, and more preferably in the range of 1/2 to 1/1.
The molar amount in terms of titanium atom of the titanium compound component (A) is the product of the molar amount of each titanium compound contained in the titanium compound component (A) and the number of titanium atoms contained in one molecule of the titanium compound. It is a total value, and the phosphorus atom equivalent molar amount of the phosphorus compound component (B) is the molar amount of each phosphorus compound contained in the phosphorus compound component (B) and the phosphorus atoms contained in one molecule of the phosphorus compound. It is the total value of the product with the number. However, since the phosphorus compound represented by the formula (III) contains one phosphorus atom per molecule, the phosphorus atom equivalent molar amount of the phosphorus compound is equal to the molar amount of the phosphorus compound.
When the reaction molar ratio (mTi / mP) is greater than 1/1, that is, when the amount of the titanium compound component (A) is excessive, the color tone of the polyester resin obtained using the resulting catalyst (b value is too high). ) And its heat resistance may be reduced. Further, when the reaction molar ratio (mTi / mP) is less than 1/3, that is, when the amount of the titanium compound component (A) becomes too small, the catalytic activity of the resulting catalyst for the polyester formation reaction may be insufficient. is there.
Examples of the titanium compound (1) represented by the general formula (I) used for the titanium compound component (A) include titanium tetrabutoxide, titanium tetraisopropoxide, titanium tetrapropoxide, and titanium tetraethoxide. Examples include tetraalkoxides, and alkyl titanates such as octaalkyltrititanates and hexaalkyldititanates, and among these, titanium having good reactivity with the phosphorus compound component used in the present invention. It is preferable to use tetraalkoxides, and it is particularly preferable to use titanium tetrabutoxide.
The titanium compound (2) used for the titanium compound component (A) is obtained by reacting the titanium compound (1) with the aromatic polyvalent carboxylic acid represented by the general formula (II) or an anhydride thereof. The aromatic polyvalent carboxylic acid of the general formula (II) and its anhydride are preferably selected from the group consisting of phthalic acid, trimellitic acid, hemimellitic acid, pyromellitic acid and their anhydrides. In particular, it is more preferable to use trimellitic anhydride having good reactivity with the titanium compound (1) and high affinity with the polyester of the resulting polycondensation catalyst.
The reaction between the titanium compound (1) and the aromatic polyvalent carboxylic acid of the general formula (II) or its anhydride is carried out by mixing the aromatic polyvalent carboxylic acid or its anhydride in a solvent and partially or entirely Is dissolved in a solvent, and the titanium compound (1) is dropped into this mixed solution and heated at a temperature of 0 ° C. to 200 ° C. for 30 minutes or more, preferably at a temperature of 30 to 150 ° C. for 40 to 90 minutes. Is called. The reaction pressure at this time is not particularly limited, and normal pressure is sufficient. The catalyst can be appropriately selected from those capable of dissolving a required amount of the compound of the formula (II) or part or all of its anhydride, preferably ethanol, ethylene glycol, trimethylene It is selected from glycol, tetramethylene glycol, benzene, xylene and the like.
There is no limitation on the reaction molar ratio between the titanium compound (1) and the compound represented by the formula (II) or its anhydride. However, if the proportion of the titanium compound (1) is too high, the color tone of the resulting polyester resin may be deteriorated or the softening point may be lowered. On the contrary, if the proportion of the titanium compound (1) is too low, it is heavy. The condensation reaction may be difficult to proceed. Therefore, the reaction molar ratio between the titanium compound (1) and the compound of the formula (II) or its anhydride is preferably controlled within the range of 2/1 to 2/5. The reaction product obtained by this reaction may be directly subjected to the reaction with the above-mentioned phosphorus compound (3) or recrystallized using a solvent comprising acetone, methyl alcohol and / or ethyl acetate. Then, this may be reacted with the phosphorus compound (3).
In the phosphorus compound (3) of the general formula (III) used for the phosphorus compound component (B), R5The aryl group having 6 to 20 carbon atoms or the alkyl group having 1 to 20 carbon atoms represented by the formula may be unsubstituted or substituted by one or more substituents May be. Examples of the substituent include a carboxyl group, an alkyl group, a hydroxyl group, and an amino group.
The phosphorus compound (3) of the general formula (III) includes, for example, monomethyl phosphate, monoethyl phosphate, monotrimethyl phosphate, mono-n-butyl phosphate, monohexyl phosphate, monoheptyl phosphate, monooctyl phosphate, monononyl phosphate, Monodecyl phosphate, monododecyl phosphate, monolauryl phosphate, monooleyl phosphate, monotetradecyl phosphate, monophenyl phosphate, monobenzyl phosphate, mono (4-dodecyl) phenyl phosphate, mono (4-methylphenyl) phosphate, mono (4 -Ethylphenyl) phosphate, mono (4-propylphenyl) phosphate, mono (4-dodecylphenyl) phosphate, monotolylphosphate Monoalkyl phosphates and monoaryl phosphates such as phosphate, monoxylyl phosphate, monobiphenyl phosphate, mononaphthyl phosphate, and monoanthryl phosphate, which may be used alone or in combination As the above mixture, for example, a mixture of a monoalkyl phosphate and a monoaryl phosphate may be used. However, when the above phosphorus compound is used as a mixture of two or more kinds, it is preferable that the proportion of monoalkyl phosphate occupies 50% or more, more preferably 90% or more, particularly 100%. More preferably.
In order to prepare a catalyst from the titanium compound component (A) and the phosphorus compound component (B), for example, a phosphorus compound component (B) comprising at least one phosphorus compound (3) of the formula (III) and a solvent are prepared. After mixing, a part or all of the phosphorus compound component (B) is dissolved in a solvent, and the titanium compound component (A) is dropped into this mixed solution, and the normal reaction system is preferably 50 ° C to 200 ° C, more preferably Is carried out by heating at a temperature of 70 ° C. to 150 ° C., preferably for 1 minute to 4 hours, more preferably for 30 minutes to 2 hours. In this reaction, the reaction pressure is not particularly limited, and may be any of under pressure (0.1 to 0.5 MPa), normal pressure, or reduced pressure (0.001 to 0.1 MPa). Usually performed under normal pressure.
The solvent for the phosphorus compound component (B) of the formula (III) used in the catalyst preparation reaction is not particularly limited as long as at least a part of the phosphorus compound component (B) can be dissolved. For example, ethanol, ethylene A solvent consisting of at least one selected from glycol, trimethylene glycol, tetramethylene glycol, benzene, xylene and the like is preferably used. In particular, it is preferable to use, as a solvent, the same compound as the glycol component constituting the polyester to be finally obtained.
After the reaction product of the titanium compound component (A) and the phosphorus compound component (B) is separated from the reaction system by means such as centrifugal sedimentation or filtration, the polyester resin is purified without purification. It may be used as a production catalyst, or the separated reaction product is purified by recrystallization from a recrystallization agent such as acetone, methyl alcohol and / or water, and the purified product obtained thereby. May be used as a catalyst. Moreover, you may use the reaction product containing reaction mixture as a catalyst containing mixture as it is, without isolate | separating the said reaction product from the reaction system.
As a titanium-based catalyst, a titanium compound component (A) comprising at least one titanium compound (1) of the above formula (I) (where k represents 1), that is, titanium tetraalkoxide, and the above formula (III) It is preferable that the reaction product with the phosphorus compound component (B) comprising at least one phosphorus compound is used as a catalyst.
Furthermore, a compound represented by the following general formula (IV) is preferably used as the titanium-based catalyst.
Figure JPOXMLDOC01-appb-I000008
[R in the above formula6And R7Each independently represents an alkyl group having 2 to 12 carbon atoms or an aryl group having 6 to 12 carbon atoms.
The catalyst containing the titanium / phosphorus compound represented by the formula (IV) has high catalytic activity, and the polyester resin produced using the catalyst has a good color tone (low b value) and is practically sufficient. In addition, it has a low content of acetaldehyde, a residual metal and a cyclic trimer of an ester of an aromatic dicarboxylic acid and an alkylene glycol, and has practically sufficient polymer performance.
In the titanium-based catalyst, the titanium / phosphorus compound of the general formula (IV) is preferably contained in an amount of 50% by weight or more, and more preferably 70% by weight or more.
The amount of the titanium-based catalyst used is preferably an amount such that the mmol amount in terms of titanium atom is 2 to 40 mm% with respect to the total mmol amount of the aromatic dicarboxylic acid component contained in the polymerization starting material. It is more preferably ~ 35 mm%, and even more preferably 10-30 mm%. If it is less than 2 mm%, the catalyst's promotion effect on the polycondensation reaction of the polymerization starting material becomes insufficient, the polyester production efficiency becomes insufficient, and a polyester resin having a desired degree of polymerization cannot be obtained. There is. On the other hand, if it exceeds 40 mm%, the color tone (b value) of the resulting polyester resin becomes insufficient and becomes yellowish, and its practicality may be lowered.
There is no limitation on the production method of the alkylene glycol ester of aromatic dicarboxylic acid and / or its low polymer, but usually, the aromatic dicarboxylic acid or its ester-forming derivative and the alkylene glycol or its ester-forming derivative are heated. Produced by reacting. For example, an ethylene glycol ester of terephthalic acid and / or a low polymer thereof used as a raw material for polyethylene terephthalate may be obtained by directly esterifying terephthalic acid and ethylene glycol, or by converting a lower alkyl ester of terephthalic acid and ethylene glycol It is produced by a method of transesterification or an addition reaction of terephthalic acid with ethylene oxide. In addition, the above-described aromatic dicarboxylic acid alkylene glycol ester and / or a low polymer thereof may contain other dicarboxylic acid ester copolymerizable therewith as an additional component, so that the effect of the method of the present invention is not substantially impaired. It may be contained in an amount within the range, specifically, 10 mol% or less, preferably 5 mol% or less, based on the total molar amount of the acid components.
The copolymerizable additional component is preferably an acid component such as aliphatic and alicyclic dicarboxylic acids such as adipic acid, sebacic acid, 1,4-cyclohexanedicarboxylic acid, and hydroxycarboxylic acids such as One or more of β-hydroxyethoxybenzoic acid, p-oxybenzoic acid, and the like and a glycol component, for example, alkylene glycol having 2 or more carbon atoms, 1,4-cyclohexanedimethanol, neopentyl glycol, bisphenol A , An ester with one or more of aliphatic, cycloaliphatic, aromatic diol compounds such as bisphenol S and polyoxyalkylene glycol, or anhydrides thereof. The postscript component ester may be used alone or in combination of two or more thereof. However, the copolymerization amount is preferably within the above range.
When terephthalic acid and / or dimethyl terephthalate is used as a starting material, recovered dimethyl terephthalate obtained by depolymerizing polyalkylene terephthalate or recovered terephthalic acid obtained by hydrolyzing this is used as polyester. It is also possible to use 70% by weight or more based on the weight of the total acid component. In this case, it is preferable that the target polyalkylene terephthalate is polyethylene terephthalate. In particular, recovered PET bottles, recovered fiber products, recovered polyester film products, polymer waste generated in the manufacturing process of these products, etc. It is preferable to use as a raw material source for producing polyester from the viewpoint of effective utilization of resources. Here, the method for depolymerizing the recovered polyalkylene terephthalate to obtain dimethyl terephthalate is not particularly limited, and any conventionally known method can be employed. For example, after the recovered polyalkylene terephthalate is depolymerized with ethylene glycol, the depolymerized product is subjected to a transesterification reaction with a lower alcohol such as methanol, and the reaction mixture is purified to recover the lower alkyl ester of terephthalic acid. The polyester resin can be obtained by subjecting this to an ester exchange reaction with alkylene glycol and polycondensing the resulting phthalic acid / alkylene glycol ester. Further, the method for recovering terephthalic acid from the recovered dimethyl terephthalate is not particularly limited, and any conventional method may be used. For example, dimethyl terephthalate can be recovered from the reaction mixture obtained by the transesterification reaction by recrystallization and / or distillation, and then hydrolyzed with water at high temperature and high pressure to recover terephthalic acid. In impurities contained in terephthalic acid obtained by this method, the total content of 4-carboxybenzaldehyde, p-toluic acid, benzoic acid and dimethyl hydroxyterephthalate is preferably 1 ppm or less. The content of monomethyl terephthalate is preferably in the range of 1 to 5000 ppm. A polyester resin can be produced by directly esterifying the terephthalic acid recovered by the above-described method with an alkylene glycol and polycondensing the resulting ester.
In the polyester resin used in the present invention, the timing of adding the catalyst to the polymerization starting material is any stage before the start of the polycondensation reaction of the aromatic dicarboxylic acid alkylene glycol ester and / or its low polymer. Moreover, there is no limitation on the addition method. For example, an aromatic dicarboxylic acid alkylene glycol ester may be prepared and a polycondensation reaction may be initiated by adding a catalyst solution or slurry to the reaction system, or the aromatic dicarboxylic acid alkylene glycol ester may be A catalyst solution or slurry may be added to the reaction system together with the starting material during preparation or after its preparation.
The production reaction conditions for the polyester resin used in the present invention are not particularly limited. In general, the polycondensation reaction is preferably performed at a temperature of 230 to 320 ° C. under normal pressure or reduced pressure (0.1 Pa to 0.1 MPa) or a combination of these conditions for 15 to 300 minutes. .
In the polyester resin used in the present invention, if necessary, a reaction stabilizer such as trimethyl phosphate may be added to the reaction system at any stage in the production of the polyester. One or more of an agent, a flame retardant, a fluorescent brightening agent, a matting agent, a color adjusting agent, an antifoaming agent, and other additives may be blended. In particular, the polyester resin preferably contains an antioxidant containing at least one hindered phenol compound, but the content thereof is 1% by weight or less based on the weight of the polyester resin. preferable. When the content exceeds 1% by weight, there may be a disadvantage that the quality of the obtained product is deteriorated due to thermal deterioration of the antioxidant itself.
The hindered phenol compound for antioxidant used in the polyester resin used in the present invention is pentaerythritol-tetra extract [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 3.9. -Bis {2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1-dimethylethyl} -2,4,8,10-tetraoxaspiro [5 5] It is also preferably practiced to use these hindered phenolic antioxidants in combination with thioether secondary antioxidants selected from undecane and the like. The method for adding the hindered phenolic antioxidant to the polyester resin is not particularly limited, but preferably at any stage between the completion of the ester exchange reaction or the esterification reaction and the completion of the polymerization reaction. Added.
Furthermore, in order to finely adjust the color tone of the obtained polyester resin, in the production stage of the polyester resin, organic blue pigments such as azo, triphenylmethane, quinoline, anthraquinone, phthalocyanine and the like are included in the reaction system. A color adjusting agent composed of one or more blue pigments can be added. In the production method of the present invention, as a matter of course, it is not necessary to use an inorganic blue pigment containing cobalt or the like which lowers the melt heat stability of the polyester resin as a color adjusting agent. Therefore, the polyester resin used in the present invention is substantially free of cobalt.
The polyester resin used in the present invention preferably contains 0.001 ppm to 100 ppm of the titanium element derived from the catalyst. The content is more preferably 0.001 ppm to 50 ppm, and further preferably 1 ppm to 50 ppm. If the content of titanium element is more than 100 ppm, thermal stability and heat-and-moisture resistance may be deteriorated. If the content is less than 0.001 ppm, the remaining amount of catalyst of the polyester resin used is significantly lower, making it difficult to produce the polyester resin. In some cases, good mechanical strength, thermal stability and wet heat stability may not be obtained.
The intrinsic viscosity of the polyester resin is preferably 0.4 to 1.2. A more preferable range of the intrinsic viscosity is 0.45 to 0.95, and further preferably 0.50 to 0.9. If the intrinsic viscosity of the polyester resin is less than 0.4, sufficient impact characteristics and chemical resistance may not be obtained. If it is greater than 1.0, the fluidity at the time of injection molding decreases, and flow marks and coloring Appearance defects such as defects may occur.
The polyester resin is a polyethylene terephthalate resin (PET) and a polybutylene terephthalate resin (PBT), and the blending ratio (weight ratio) (PET / PBT) is preferably 1/7 to 7/8. The blending ratio is more preferably 1/7 to 1/2, and even more preferably 1/7 to 1/4. When the blending ratio is larger than 7/8, the chemical resistance is lowered, and when it is smaller than 1/7, the fluidity may be lowered.
The content of component B is 20 to 50 parts by weight, preferably 20 to 45 parts by weight, more preferably 25 to 40 parts by weight, per 100 parts by weight of the resin component. If the content is less than 20 parts by weight, the chemical resistance improving effect is not observed, and if it exceeds 50 parts by weight, the heat and humidity resistance is lowered and the impact strength is lowered.
(C component: core-shell polymer)
The core-shell polymer used in the present invention is a crosslinked acrylate ester elastic body composed of an acrylate ester having 1 to 4 carbon atoms in the alkyl group and an acrylate ester having 5 to 8 carbon atoms in the alkyl group. A core-shell polymer comprising a core (component C-1) and a shell (component C-2) containing methacrylic acid ester as a main component. When a core-shell polymer other than those described above is used as the C component, sufficient impact characteristics and rigidity cannot be obtained, and chemical resistance is lowered depending on the compound.
Examples of the acrylic acid ester having 1 to 4 carbon atoms in the alkyl group, which is a constituent monomer of the C-1 component, include methyl acrylate, ethyl acrylate, propyl acrylate, and butyl acrylate. Examples of the acrylate ester having 5 to 8 carbon atoms in the alkyl group include hexyl acrylate, heptyl acrylate, and 2-ethylhexyl acrylate. The most preferred combination is a crosslinked alkyl acrylate elastic body composed of butyl acrylate and 2-ethylhexyl acrylate. Moreover, you may contain components other than alkyl acrylate in the range which does not inhibit the effect of this invention.
The C-2 component is derived from a (meth) acrylic acid ester (for example, methyl methacrylate). You may copolymerize the other vinyl monomer which can be copolymerized as needed, such as a monomer mixture of a vinyl aromatic compound or a vinyl cyanide compound, and (meth) acrylic acid ester.
In the core-shell polymer used for the C component, the content of the C-1 component is preferably 50 to 99% by weight, more preferably 65 to 95% by weight, and more preferably 75 to 90% of 100% by weight of the C component. Most preferred is wt%. If the content of the C-1 component is less than 50% by weight, sufficient impact characteristics may not be obtained. On the other hand, if it exceeds 99% by weight, sufficient impact characteristics may not be obtained, which is not preferable.
Further, the content of the acrylate ester having 5 to 8 carbon atoms in the alkyl group in the C-1 component is preferably 10 to 99% by weight, and 25 to 90% by weight in 100% by weight of the C-1 component. More preferred is 35 to 80% by weight, and most preferred is 40 to 70% by weight. If the amount is less than 10% by weight, sufficient impact characteristics may not be obtained. If the amount is more than 99% by weight, the heat resistance may decrease, which is not preferable.
The content of the core-shell polymer is 1 to 10 parts by weight, preferably 2 to 9 parts by weight, and more preferably 3 to 8 parts by weight with respect to 100 parts by weight of the resin component. If it is less than 1 part by weight, sufficient impact characteristics cannot be obtained, and if it is more than 10 parts by weight, rigidity and chemical resistance are lowered.
(D component: filler)
Conventionally known fillers can be used as the filler used in the present invention, and preferred fillers include fibrous glass filler, plate-like glass filler, fibrous carbon filler, and non-fibrous carbon. It is at least one filler selected from the group consisting of fillers and silicate minerals.
(D-1; fibrous glass filler)
Examples of the fibrous glass filler suitably used in the present invention include glass fibers (including metal-coated glass fibers) and glass milled fibers. The glass fiber which becomes the base of the fibrous glass filler is obtained by rapidly cooling molten glass while drawing it by various methods to obtain a predetermined fiber shape. In such a case, the rapid cooling and stretching are not particularly limited. Further, the cross-sectional shape may be other than a perfect circle such as an ellipse, a cane, a flat shape, and a three-leaf shape in addition to a perfect circle. Further, it may be a mixture of a perfect circle and a shape other than a perfect circle. The flat shape means that the average value of the major axis of the fiber cross section is 10 to 50 μm, preferably 15 to 40 μm, more preferably 20 to 35 μm, and the average value of the ratio of major axis to minor axis (major axis / minor axis) is 1.5. The shape is 8 to 8, preferably 2 to 6 and more preferably 2.5 to 5.
The average fiber diameter of the fibrous glass filler having a high aspect ratio such as glass fiber is preferably 1 to 25 μm, and more preferably 3 to 17 μm. When a filler having an average fiber diameter in this range is used, good mechanical strength can be expressed without impairing the appearance of the molded product. The fiber length of the high aspect ratio fibrous glass filler is preferably 60 to 500 μm, more preferably 100 to 400 μm, and particularly preferably 120 to 350 μm as the number average fiber length in the resin composition. The number-average fiber length is a value calculated by an image analyzer from an image obtained by observing the residue of the filler collected by processing such as high-temperature ashing of a molded product, dissolution with a solvent, and decomposition with a chemical, using an optical microscope. It is. Further, when calculating such a value, the fiber diameter is used as a guide and the length is less than that. The aspect ratio of the high aspect ratio fibrous glass filler is preferably 10 to 200, more preferably 15 to 100, and still more preferably 20 to 50. The aspect ratio of the filler is a value obtained by dividing the average fiber length by the average fiber diameter.
Glass milled fiber is usually produced by shortening glass fiber using a pulverizer such as a ball mill. The aspect ratio of the fibrous glass filler having a low aspect ratio such as glass milled fiber is preferably 2 to 10, more preferably 3 to 8. The fiber length of the low aspect ratio fibrous glass filler is preferably 5 to 150 μm, more preferably 9 to 80 μm as the number average fiber length in the resin composition. The average fiber diameter is preferably 1 to 15 μm, more preferably 3 to 13 μm.
(D-2; plate glass filler)
Examples of the plate-like glass filler suitably used in the present invention include glass flakes including metal-coated glass flakes and metal oxide-coated glass flakes.
The glass flake used as the base of the plate-like glass filler is a plate-like glass filler produced by a method such as a cylindrical blow method or a sol-gel method. Various kinds of glass flake raw materials can be selected depending on the degree of pulverization and classification. The average particle size of the glass flakes used as the raw material is preferably 10 to 1000 μm, more preferably 20 to 500 μm, and still more preferably 30 to 300 μm. This is because the above range is excellent in both handleability and moldability. Usually, a plate-like glass filler is cracked by melt-kneading with a resin, and its average particle size is reduced. The number average particle size of the plate-like glass filler in the resin composition is preferably 10 to 200 μm, more preferably 15 to 100 μm, and still more preferably 20 to 80 μm. The number average particle size is calculated by an image analyzer from an image obtained by observing the residue of the sheet glass filler collected by high temperature ashing of the molded product, dissolution with a solvent, decomposition with chemicals, etc. with an optical microscope. Is the value to be Further, when calculating such a value, the flake thickness is used as a guide and the length of the flake is not counted. The thickness is preferably 0.5 to 10 μm, more preferably 1 to 8 μm, and further preferably 1.5 to 6 μm. The plate-shaped glass filler having the above-mentioned number average particle diameter and thickness achieves good mechanical strength, appearance, and moldability.
Various glass compositions represented by A glass, C glass, E glass and the like are applied to the glass composition of the above-described fibrous glass filler and plate glass filler, and is not particularly limited. Such glass fillers are optionally made of TiO2, SO3, And P2O5And the like. Among these, E glass (non-alkali glass) is more preferable. The glass filler is preferably subjected to a surface treatment with a known surface treatment agent such as a silane coupling agent, a titanate coupling agent, or an aluminate coupling agent from the viewpoint of improving mechanical strength. Glass fibers (including those coated with metal or metal oxide) and glass flakes (including those coated with metal or metal oxide) are olefin resins, styrene resins, acrylic resins, Those that have been converged with a polyester resin, an epoxy resin, a urethane resin, or the like are preferably used. The amount of sizing agent adhering to the sizing agent is preferably 0.5 to 8% by weight, more preferably 1 to 4% by weight in 100% by weight of the filler.
Furthermore, the fibrous glass filler and the plate-like glass filler of the present invention include those in which different materials are surface-coated. Preferred examples of such dissimilar materials include metals and metal oxides. Examples of the metal include silver, copper, nickel, and aluminum. Examples of the metal oxide include titanium oxide, cerium oxide, zirconium oxide, iron oxide, aluminum oxide, and silicon oxide. There are no particular limitations on the method of surface coating of such different materials, for example, various known plating methods (for example, electrolytic plating, electroless plating, hot dipping, etc.), vacuum deposition methods, ion plating methods, CVD methods (For example, thermal CVD, MOCVD, plasma CVD, etc.), PVD method, sputtering method, etc. can be mentioned.
(D-3; fibrous carbon filler)
Examples of the fibrous carbon filler suitably used in the present invention include carbon fibers (including metal-coated carbon fibers), carbon milled fibers, vapor grown carbon fibers, and carbon nanotubes. The carbon nanotube may be any one of a fiber diameter of 0.003 to 0.1 μm, a single layer, a double layer, and a multilayer, and a multilayer (so-called MWCNT) is preferable. Among these, carbon fibers (including metal-coated carbon fibers) are preferable in that they are excellent in mechanical strength and can impart good electrical conductivity. Good electrical conductivity has become one of important characteristics required for resin materials in recent digital precision equipment (represented by, for example, a digital still camera).
As the carbon fiber, any of cellulose, polyacrylonitrile, pitch and the like can be used. In addition, it is obtained by a method in which a raw material composition comprising a polymer and a solvent due to a methylene bond of aromatic sulfonic acids or their salts is prevented or molded, and then subjected to spinning without passing through an infusibilization step typified by carbonization. It is also possible to use those that have been used. Furthermore, any of general-purpose type, medium elastic modulus type, and high elastic modulus type can be used. Among these, polyacrylonitrile-based high elastic modulus type is particularly preferable.
The average fiber diameter of the carbon fiber is not particularly limited, but is usually 3 to 15 μm, preferably 5 to 13 μm. A carbon fiber having an average fiber diameter in such a range can exhibit good mechanical strength and fatigue characteristics without impairing the appearance of the molded product. The preferred fiber length of the carbon fiber is preferably 60 to 500 μm, more preferably 80 to 400 μm, particularly preferably 100 to 300 μm as the number average fiber length in the resin composition. The number average fiber length is a value calculated by an image analyzer from an optical microscope observation from the carbon fiber residue collected by high temperature ashing of the molded product, dissolution with a solvent, and decomposition with a chemical. is there. Further, when calculating such a value, a value having a length equal to or shorter than the fiber length is a value obtained by a method not counting. The aspect ratio of the carbon fiber is preferably in the range of 10 to 200, more preferably in the range of 15 to 100, and still more preferably in the range of 20 to 50. The aspect ratio of the fibrous carbon filler is a value obtained by dividing the average fiber length by the average fiber diameter.
Furthermore, it is preferable that the surface of the carbon fiber is oxidized for the purpose of improving the adhesion with the matrix resin and improving the mechanical strength. Although the oxidation treatment method is not particularly limited, for example, (1) a method in which a fibrous carbon filler is treated with an acid or alkali or a salt thereof, or an oxidizing gas, (2) a fiber that can be converted into a fibrous carbon filler, or A method of firing the fibrous carbon filler at a temperature of 700 ° C. or higher in the presence of an inert gas containing an oxygen-containing compound; and (3) after the fibrous carbon filler is oxidized and then in the presence of the inert gas. The method of heat-treating with is suitably exemplified.
Metal coated carbon fiber is a carbon fiber surface coated with a metal layer. Examples of the metal include silver, copper, nickel, and aluminum, and nickel is preferable from the viewpoint of the corrosion resistance of the metal layer. As the method of metal coating, various methods described above for the surface coating with different materials in the glass filler can be employed. Of these, the plating method is preferably used. In addition, in the case of such metal-coated carbon fiber, as the original carbon fiber, those mentioned as the above carbon fiber can be used. The thickness of the metal coating layer is preferably 0.1 to 1 μm, more preferably 0.15 to 0.5 μm. More preferably, it is 0.2 to 0.35 μm.
Such carbon fibers (including metal-coated carbon fibers) are preferably those that are converged with an olefin resin, a styrene resin, an acrylic resin, a polyester resin, an epoxy resin, a urethane resin, or the like. In particular, a fibrous carbon filler treated with a urethane resin or an epoxy resin is suitable in the present invention because of its excellent mechanical strength.
(D-4; non-fibrous carbon filler)
Examples of the non-fibrous carbon filler preferably used in the present invention include carbon black, graphite, fullerene and the like. Among these, carbon black and graphite are preferable from the viewpoint of mechanical strength, heat and humidity resistance, and thermal stability. As the carbon black, carbon black having a DBP oil absorption of 100 ml / 100 g to 500 ml / 100 g is preferable from the viewpoint of conductivity. Such carbon black is generally acetylene black or ketjen black. Specific examples include Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd., Vulcan XC-72 and BP-2000 manufactured by Cabot Corporation, Ketjen Black EC and Ketjen Black EC-600JD manufactured by Lion Corporation.
As graphite, either natural graphite, which is made of graphite under the mineral name, or various artificial graphites can be used. As natural graphite, any of earth-like graphite, scale-like graphite (Vein Graphite also called massive graphite), and scale-like graphite (Flake Graphite) can be used. Artificial graphite is obtained by heat-treating amorphous carbon and artificially aligning irregularly arranged fine graphite crystals. In addition to artificial graphite used for general carbon materials, Kish graphite, cracked graphite, And pyrolytic graphite. Artificial graphite used for general carbon materials is usually produced by graphitization treatment using petroleum coke or coal-based pitch coke as a main raw material.
The graphite of the present invention may contain expanded graphite that can be thermally expanded by treatment represented by acid treatment, or graphite that has been expanded. The particle size of the graphite of the present invention is preferably in the range of 2 to 300 μm. The particle size is more preferably 5 to 200 μm, further preferably 7 to 100 μm, and particularly preferably 7 to 50 μm. By satisfying such a range, good mechanical strength and molded product appearance are achieved. On the other hand, if the average particle size is less than 2 μm, the effect of improving the rigidity may be reduced, and if the average particle size exceeds 300 μm, the impact resistance is significantly reduced, and so-called graphite floats on the surface of the molded product. This is not preferable.
The amount of fixed carbon in the graphite of the present invention is preferably 80% by weight or more, more preferably 90% by weight or more, and still more preferably 98% by weight or more. The volatile content of the graphite of the present invention is preferably 3% by weight or less, more preferably 1.5% by weight or less, and still more preferably 1% by weight or less.
In the present invention, the average particle diameter of graphite refers to the particle diameter before becoming a resin composition, and the particle diameter is determined by a laser diffraction / scattering method.
Further, the surface of graphite is subjected to surface treatment such as epoxy treatment, urethane treatment, silane coupling treatment, and oxidation treatment in order to increase the affinity with the thermoplastic resin as long as the characteristics of the composition of the present invention are not impaired. It may be given.
(D-5; silicate mineral)
As the filler in the present invention, a silicate mineral can be mentioned. D-5 component is at least a metal oxide component and SiO2It is a silicate mineral composed of components, and orthosilicate, disilicate, cyclic silicate, chain silicate, and the like are suitable. Silicate minerals take a crystalline state, and the crystals may be in any transformation that each silicate mineral can take, and the shape of the crystals may take various forms such as fibers and plates. Can do.
Silicate minerals may be complex oxides, oxyacid salts (consisting of ionic lattices), or solid solution compounds, and complex oxides are combinations of two or more single oxides, and single oxides and oxygen acids. Any of two or more combinations with a salt may be used, and also in a solid solution, any of a solid solution of two or more metal oxides and a solid solution of two or more oxyacid salts may be used. Hydrates may also be used. The form of water of crystallization in the hydrate is that which enters as hydrogen silicate ion as Si—OH, and hydroxide ion (OH) As ionic ions, and H in the gaps in the structure2Any form of O molecules may be used.
As the silicate mineral, an artificial synthetic product corresponding to a natural product can be used. As the artificial compound, silicate minerals obtained from various conventionally known methods, for example, various synthetic methods using solid reaction, hydrothermal reaction, ultrahigh pressure reaction and the like can be used.
Specific examples of silicate minerals in each metal oxide component include the following. Here, the description in parentheses is the name of a mineral or the like mainly composed of such a silicate mineral, and means that the compound in parentheses can be used as the exemplified metal salt.
K2As a component containing O in its component, K2O ・ SiO2, K2O ・ 4SiO2・ H2O, K2O ・ Al2O3・ 2SiO2(Calcylite), K2O ・ Al2O3・ 4SiO2(White ryu), and K2O ・ Al2O3・ 6SiO2(Positive feldspar).
Na2As the component containing O, Na2O ・ SiO2And its hydrate, Na2O ・ 2SiO22Na2O ・ SiO2, Na2O ・ 4SiO2, Na2O ・ 3SiO2・ 3H2O, Na2O ・ Al2O3・ 2SiO2, Na2O ・ Al2O3・ 4SiO2(Jadeite), 2Na2O ・ 3CaO ・ 5SiO23Na2O ・ 2CaO ・ 5SiO2And Na2O ・ Al2O3・ 6SiO2(Sorite).
Li2As a component containing O in its component, Li2O ・ SiO22Li2O ・ SiO2, Li2O ・ SiO2・ H2O, 3Li2O ・ 2SiO2, Li2O ・ Al2O3・ 4SiO2(Petalite), Li2O ・ Al2O3・ 2SiO2(Eucryptite), and Li2O ・ Al2O3・ 4SiO2(Spodumen).
Included BaO as a component of BaO / SiO22BaO · SiO2, BaO · Al2O3・ 2SiO2(Celsian) and BaO · TiO2・ 3SiO2(Bent eye).
As a component containing CaO, 3CaO · SiO2(Celite clinker mineral alite), 2CaO · SiO2(Belite of cement clinker mineral) 2CaO · MgO · 2SiO2(Ochermanite), 2CaO · Al2O3・ SiO2(Gelenite), solid solution of akermanite and Gelenite (Merilite), CaO · SiO2(Wollastonite (including both α-type and β-type)), CaO · MgO · 2SiO2(Diopside), CaO / MgO / SiO2(Gray olivine) 3CaO · MgO · 2SiO2(Melwinite), CaO · Al2O3・ 2SiO2(Anosite) 5CaO · 6SiO2・ 5H2O (Tobermorite, other 5CaO · 6SiO2・ 9H2Tobermorite Group Hydrate such as 2CaO · SiO2・ H2Wollastonite group hydrates such as O (Hillebrandite), 6CaO · 6SiO2・ H2Zonotolite group hydrates such as O (zonotolite), 2CaO.SiO2・ 2H2Gyrolite group hydrates such as O (gyrolite), CaO.Al2O3・ 2SiO2・ H2O (Losonite), CaO · FeO · 2SiO2(Hedenite), 3CaO · 2SiO2(Chill coreite), 3CaO · Al2O3・ 3SiO2(Grossula), 3CaO · Fe2O3・ 3SiO2(Andradite), 6CaO · 4Al2O3・ FeO ・ SiO2(Preocroite), clinozoite, olivine, olivine, vesuvite, onolite, scootite, and augite.
Furthermore, Portland cement can be mentioned as a silicate mineral containing CaO as its component. The type of Portland cement is not particularly limited, and any of normal, early strength, ultra-early strength, moderate heat, sulfate resistance, white, and the like can be used. Furthermore, various mixed cements such as blast furnace cement, silica cement, fly ash cement and the like can be used as the B component. Moreover, blast furnace slag, a ferrite, etc. can be mentioned as a silicate mineral which contains other CaO in the component.
Included ZnO as its component is ZnO.SiO22ZnO · SiO2(Trostite) and 4ZnO · 2SiO2・ H2O (heteropolar ore) and the like.
Included as a component of MnO is MnO · SiO22MnO · SiO2, CaO · 4MnO · 5SiO2(Rhodonite) and cause light.
As a component containing FeO, FeO · SiO2(Ferocilite), 2FeO · SiO2(Iron olivine), 3FeO · Al2O3・ 3SiO2(Almandin), and 2CaO · 5FeO · 8SiO2・ H2O (Tetsuakuchinosenite) and the like.
Include CoO as a component in CoO / SiO2And 2CoO · SiO2Etc.
As the component containing MgO, MgO / SiO2(Steatite, enstatite), 2MgO · SiO2(Forsterite), 3MgO · Al2O3・ 3SiO2(Birop) 2MgO · 2Al2O3・ 5SiO2(Cordierite), 2MgO · 3SiO2・ 5H2O, 3MgO · 4SiO2・ H2O (talc), 5MgO · 8SiO2・ 9H2O (attapulgite), 4MgO · 6SiO2・ 7H2O (Sepiolite), 3MgO · 2SiO2・ 2H2O (Chrysolite), 5MgO · 2CaO · 8SiO2・ H2O (Translucentite), 5MgO · Al2O3・ 3SiO2・ 4H2O (chlorite), K2O ・ 6MgO ・ Al2O3・ 6SiO2・ 2H2O (phlogobyte), Na2O ・ 3MgO ・ 3Al2O3・ 8SiO2・ H2Examples thereof include O (lanthanite), magnesium tourmaline, orthoxenite, camingtonite, vermiculite, and smectite.
Fe2O3As the component containing Fe2O3・ SiO2Etc.
ZrO2As a component containing ZrO,2・ SiO2(Zircon) and AZS refractories.
Al2O3As a component containing2O3・ SiO2(Sillimanite, Andalusite, Kyanite), 2Al2O3・ SiO2, Al2O3・ 3SiO23Al2O3・ 2SiO2(Mullite), Al2O3・ 2SiO2・ 2H2O (Kaolinite), Al2O3・ 4SiO2・ H2O (Pyrophyllite), Al2O3・ 4SiO2・ H2O (bentonite), K2O.3Na2O · 4Al2O3・ 8SiO2(Kasumi stone), K2O · 3Al2O3・ 6SiO2・ 2H2O (mascobyte, sericite), K2O ・ 6MgO ・ Al2O3・ 6SiO2・ 2H2O (phlogopite), various zeolites, fluorine phlogopite, biotite, and the like can be mentioned.
Among the above-mentioned silicate minerals, talc, mica, and the like are particularly suitable because they have an excellent balance between rigidity and impact resistance, are excellent in moisture and heat resistance, thermal stability and appearance, and are easily available. Wollastonite.
(D-5-i) Talc
Talc in the present invention is hydrous magnesium silicate in terms of chemical composition, and generally has the chemical formula 4SiO2・ 3MgO ・ 2H2It is represented by O and is usually a scaly particle having a layered structure.256 to 65% by weight, MgO 28 to 35% by weight, H2O is composed of about 5% by weight. Fe as other minor components2O30.03 to 1.2% by weight, Al2O30.05 to 1.5% by weight, CaO 0.05 to 1.2% by weight, K2O is 0.2 wt% or less, Na2O contains 0.2% by weight or less. A more preferable composition of talc is SiO.2: 62-63.5 wt%, MgO: 31-32.5 wt%, Fe2O3: 0.03-0.15 wt%, Al2O3: 0.05 to 0.25% by weight, and CaO: 0.05 to 0.25% by weight are preferable. Further, the ignition loss is preferably 2 to 5.5% by weight. With such a suitable composition, a resin composition having good thermal stability and hue can be obtained, and a good molded product can be produced by further increasing the molding processing temperature. As a result, the composition of the present invention can be further fluidized, and can be used for thin molded products having larger or complex shapes.
As for the particle size of talc, the average particle size measured by the sedimentation method is 0.1 to 50 μm (more preferably 0.1 to 10 μm, still more preferably 0.2 to 5 μm, particularly preferably 0.2 to 3.5 μm). ) Is preferable. Therefore, a more preferable talc of the present invention is a talc having the above-mentioned preferable composition and having an average particle diameter of 0.2 to 5 μm. Furthermore, the bulk density is 0.5 (g / cm3) It is particularly preferable to use the talc as described above as a raw material. As an example of talc satisfying such conditions, “Upn HS-T0.8” manufactured by Hayashi Kasei Co., Ltd. is exemplified. The average particle size of talc refers to D50 (median diameter of particle size distribution) measured by an X-ray transmission method which is one of liquid phase precipitation methods. As a specific example of an apparatus for performing such a measurement, Sedigraph 5100 manufactured by Micromeritics Inc. can be cited.
In addition, there is no particular restriction on the manufacturing method when talc is crushed from raw stone, and the axial flow mill method, the annular mill method, the roll mill method, the ball mill method, the jet mill method, the container rotary compression shearing mill method, etc. are used. can do. Further, the talc after pulverization is preferably classified by various classifiers and having a uniform particle size distribution. There are no particular restrictions on the classifier, impactor type inertial force classifier (variable impactor, etc.), Coanda effect type inertial force classifier (elbow jet, etc.), centrifugal field classifier (multistage cyclone, microplex, dispersion separator) , Accucut, Turbo Classifier, Turboplex, Micron Separator, and Super Separator).
Furthermore, talc is preferably in an aggregated state in view of its handleability and the like, and as such a production method, there are a method by deaeration compression, a method using a sizing agent, and a method of compression. In particular, the degassing compression method is preferable in that the sizing agent resin component which is simple and unnecessary is not mixed into the resin composition of the present invention.
(D-5-ii) Mica
Mica having an average particle size of 5 to 250 μm can be used. Preferably, mica having an average particle diameter (D50 (median diameter of particle diameter distribution)) measured by a laser diffraction / scattering method of 5 to 50 μm. If the average particle diameter of mica is less than 5 μm, it is difficult to obtain the effect of improving rigidity. On the other hand, a resin composition containing mica having an average particle size exceeding 250 μm is inferior in appearance and flame retardancy while its mechanical properties tend to be saturated. The average particle diameter of mica is measured by a laser diffraction / scattering method or a vibration sieving method. In the laser diffraction / scattering method, it is preferable that the 325 mesh pass is performed on 95% by weight or more of mica by the vibration sieving method. For mica having a larger particle size, the vibration sieving method is generally used. In the vibration sieving method of the present invention, first, sieving is carried out for 10 minutes using a JIS standard standard sieve in which 100 g of mica powder to be used is stacked in the order of openings using a vibration sieve device. This is a method of obtaining the particle size distribution by measuring the weight of the powder remaining on each sieve.
As the thickness of mica, one having a thickness measured by observation with an electron microscope of 0.01 to 1 μm can be used. The thickness is preferably 0.03 to 0.3 μm. An aspect ratio of 5 to 200, preferably 10 to 100 can be used. The mica used is preferably mascobite mica, and its Mohs hardness is about 3. Muscovite mica can achieve higher rigidity and strength than other mica such as phlogopite, and solves the problems of the present invention at a better level. Accordingly, a more preferred mica of the present invention is a mascobite having an average particle diameter of 5 to 250 μm, more preferably 5 to 50 μm. As such a suitable mica, for example, “A-21” manufactured by Yamaguchi Mica Industry Co., Ltd. is exemplified. The mica may be pulverized by either dry pulverization or wet pulverization. The dry pulverization method is more inexpensive and more general, but the wet pulverization method is effective for pulverizing mica more thinly and finely (the rigidity improvement effect of the resin composition becomes higher). In the present invention, the wet pulverized mica is more preferable.
(D-5-iii) Wollastonite
The fiber diameter of wollastonite is preferably 0.1 to 10 μm, more preferably 0.1 to 5 μm, still more preferably 0.1 to 3 μm. The aspect ratio (average fiber length / average fiber diameter) is preferably 3 or more. The upper limit of the aspect ratio is 30 or less. Here, the fiber diameter is obtained by observing the reinforcing filler with an electron microscope, obtaining individual fiber diameters, and calculating the number average fiber diameter from the measured values. The electron microscope is used because it is difficult for an optical microscope to accurately measure the size of a target level. For the fiber diameter, for the image obtained by observation with an electron microscope, the filler for which the fiber diameter is to be measured is randomly extracted, the fiber diameter is measured near the center, and the number average fiber is obtained from the obtained measured value. Calculate the diameter. The observation magnification is about 1000 times, and the number of measurement is 500 or more (600 or less is suitable for work). On the other hand, the measurement of average fiber length observes a filler with an optical microscope, calculates | requires individual length, and calculates a number average fiber length from the measured value. Observation with an optical microscope begins with the preparation of a dispersed sample so that the fillers do not overlap each other. Observation is performed under the condition of 20 times the objective lens, and the observed image is taken as image data into a CCD camera having about 250,000 pixels. The obtained image data is calculated by using a program for obtaining the maximum distance between two points of the image data using an image analysis device. Under such conditions, the size per pixel corresponds to a length of 1.25 μm, and the number of measurement is 500 or more (600 or less is suitable for work). The wollastonite of the present invention is a magnetic separator that reflects the iron content mixed in the raw material ore and the iron content mixed due to equipment wear when pulverizing the raw material ore in order to sufficiently reflect the inherent whiteness in the resin composition. It is preferable to remove as much as possible. By this magnetic separator processing, the iron content in wollastonite is Fe.2O3It is preferably 0.5% by weight or less in terms of Therefore, the more preferable wollastonite of the present invention has a fiber diameter of 0.1 to 10 μm, more preferably 0.1 to 5 μm, and further preferably 0.1 to 3 μm. The average particle size is 5 to 250 μm, more preferably 5 to 50 μm, and the iron content is Fe2O3Wollastonite in an amount of 0.5% by weight or less. Examples of such suitable wollastonite include “SH-1250” and “SH-1800” manufactured by Kinsei Matech Corporation, “KGP-H40” manufactured by Kansai Matec Corporation, “NYGLOS4” manufactured by NYCO Corporation, and the like.
The silicate mineral in the present invention is preferably not surface-treated, but a silane coupling agent (including alkylalkoxysilane and polyorganohydrogensiloxane), higher fatty acid ester, acid compound (for example, phosphorous acid, Surface treatment may be carried out with various surface treatment agents such as phosphoric acid, carboxylic acid, and carboxylic acid anhydride) and wax. Furthermore, it may be granulated with a sizing agent such as various resins, higher fatty acid esters, and waxes. Among the silicate minerals in the present invention, talc and wollastonite are particularly suitable. Such talc and wollastonite are good in terms of both rigidity and impact resistance, and the deterioration of hue and appearance (for example, the occurrence of silver streak) when blended with a polycarbonate resin and a polyester resin are small.
In the resin composition of the present invention, the content of the component D is 0 to 15 parts by weight, preferably 8 to 15 parts by weight, more preferably 9 to 14 parts by weight with respect to 100 parts by weight of the resin component. More preferably, it is 10 to 12 parts by weight. If the upper limit is exceeded, the impact strength will decrease, and if it is less than the lower limit, the effect of improving the rigidity will be insufficient, such being undesirable.
(Other additives)
In addition to the above components A to D, the resin composition of the present invention includes various additives (flame retardants, fluorine-containing anti-dripping agents, stabilizers, ultraviolet absorbers, release agents, Dyes and pigments, compounds having heat ray absorbing performance, antistatic agents, acidity adjusting agents, and the like) (for details of various additives, refer to WO2011 / 088741).
Examples of the phosphorus stabilizer preferably used in the present invention include phosphorous acid, phosphoric acid, phosphonous acid, phosphonic acid, esters thereof, and tertiary phosphine. Among these, phosphorous acid, phosphoric acid, phosphonous acid, phosphonic acid, triorganophosphate compounds, and acid phosphate compounds are particularly preferable. The organic group in the acid phosphate compound includes any of mono-substituted, di-substituted, and mixtures thereof. Any of the following exemplified compounds corresponding to the compound is similarly included.
Triorganophosphate compounds include trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, tridecyl phosphate, tridodecyl phosphate, trilauryl phosphate, tristearyl phosphate, tricresyl phosphate, triphenyl phosphate, trichlorophenyl phosphate, diphenyl Examples include cresyl phosphate, diphenyl monoorthoxenyl phosphate, tributoxyethyl phosphate, and the like. Among these, trialkyl phosphate is preferable. The carbon number of the trialkyl phosphate is preferably 1 to 22, more preferably 1 to 4. A particularly preferred trialkyl phosphate is trimethyl phosphate.
Examples of the acid phosphate compound include methyl acid phosphate, ethyl acid phosphate, butyl acid phosphate, butoxyethyl acid phosphate, octyl acid phosphate, decyl acid phosphate, lauryl acid phosphate, stearyl acid phosphate, oleyl acid phosphate, behenyl acid phosphate, behenyl acid phosphate Nonylphenyl acid phosphate, cyclohexyl acid phosphate, phenoxyethyl acid phosphate, alkoxy polyethylene glycol acid phosphate, bisphenol A acid phosphate, and the like. Among these, long-chain dialkyl acid phosphates having 10 or more carbon atoms are effective for improving thermal stability, and the acid phosphate itself is preferable because of high stability.
Examples of the phosphite compound include triphenyl phosphite, tris (nonylphenyl) phosphite, tridecyl phosphite, trioctyl phosphite, trioctadecyl phosphite, didecyl monophenyl phosphite, dioctyl monophenyl phosphite, diisopropyl Monophenyl phosphite, monobutyl diphenyl phosphite, monodecyl diphenyl phosphite, monooctyl diphenyl phosphite, tris (diethylphenyl) phosphite, tris (di-iso-propylphenyl) phosphite, tris (di-n-butyl) Phenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite, tris (2,6-di-tert-butylphenyl) phosphite, distearyl Intererythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, bis ( 2,6-di-tert-butyl-4-ethylphenyl) pentaerythritol diphosphite, bis {2,4-bis (1-methyl-1-phenylethyl) phenyl} pentaerythritol diphosphite, phenylbisphenol A penta Examples include erythritol diphosphite, bis (nonylphenyl) pentaerythritol diphosphite, and dicyclohexyl pentaerythritol diphosphite.
Still other phosphite compounds that react with dihydric phenols and have a cyclic structure can be used. For example, 2,2′-methylenebis (4,6-di-tert-butylphenyl) (2,4-di-tert-butylphenyl) phosphite, 2,2′-methylenebis (4,6-di-tert- Examples include butylphenyl) (2-tert-butyl-4-methylphenyl) phosphite, 2,2-methylenebis (4,6-di-tert-butylphenyl) octyl phosphite, and the like.
Examples of the phosphonite compound include tetrakis (2,4-di-tert-butylphenyl) -4,4′-biphenylenediphosphonite, tetrakis (2,4-di-tert-butylphenyl) -4,3′-biphenylenedi. Phosphonite, tetrakis (2,4-di-tert-butylphenyl) -3,3′-biphenylenediphosphonite, tetrakis (2,6-di-tert-butylphenyl) -4,4′-biphenylenediphosphonite Tetrakis (2,6-di-tert-butylphenyl) -4,3′-biphenylene diphosphonite, tetrakis (2,6-di-tert-butylphenyl) -3,3′-biphenylene diphosphonite, bis (2,4-di-tert-butylphenyl) -4-phenyl-phenylphosphonite, bis (2,4- -Tert-butylphenyl) -3-phenyl-phenylphosphonite, bis (2,6-di-n-butylphenyl) -3-phenyl-phenylphosphonite, bis (2,6-di-tert-butylphenyl) Examples include -4-phenyl-phenyl phosphonite, bis (2,6-di-tert-butylphenyl) -3-phenyl-phenyl phosphonite. Tetrakis (di-tert-butylphenyl) -biphenylenediphosphonite, bis (di-tert-butylphenyl) -phenyl-phenylphosphonite are preferred, and tetrakis (2,4-di-tert-butylphenyl) -biphenylenediphosphonite Knight and bis (2,4-di-tert-butylphenyl) -phenyl-phenylphosphonite are more preferred. Such a phosphonite compound is preferable because it can be used in combination with a phosphite compound having an aryl group in which two or more alkyl groups are substituted.
Examples of the phosphonate compound include dimethyl benzenephosphonate, diethyl benzenephosphonate, and dipropyl benzenephosphonate.
Tertiary phosphine includes triethylphosphine, tripropylphosphine, tributylphosphine, trioctylphosphine, triamylphosphine, dimethylphenylphosphine, dibutylphenylphosphine, diphenylmethylphosphine, diphenyloctylphosphine, triphenylphosphine, tri-p-tolyl. Examples include phosphine, trinaphthylphosphine, diphenylbenzylphosphine, and the like. A particularly preferred tertiary phosphine is triphenylphosphine.
Suitable phosphorus stabilizers are triorganophosphate compounds, acid phosphate compounds, and phosphite compounds represented by the following formula (XIII). It is particularly preferable to add a triorganophosphate compound.
Figure JPOXMLDOC01-appb-I000009
In the formula (XIII), R and R ′ each represents an alkyl group having 6 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an alkylaryl group, and may be the same or different from each other.
As described above, tetrakis (2,4-di-tert-butylphenyl) -biphenylenediphosphonite is preferred as the phosphonite compound, and the stabilizer containing phosphonite as a main component is Sandostab P-EPQ (trademark, manufactured by Clariant). ) And Irgafos P-EPQ (trademark, CIBA SPECIALTY manufactured by CHEMICALS), both of which are available.
Among the above formulas (XIII), more preferred phosphite compounds are distearyl pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di). -Tert-butyl-4-methylphenyl) pentaerythritol diphosphite, and bis {2,4-bis (1-methyl-1-phenylethyl) phenyl} pentaerythritol diphosphite.
The resin composition of the present invention contains thermoplastic resins other than the A component and B component, elastomers, other flow modifiers, antibacterial agents, dispersants such as liquid paraffin, photocatalytic antifouling agents, photochromic agents and the like. can do.
Examples of such other resins include polyamide resins, polyimide resins, polyetherimide resins, polyurethane resins, silicone resins, polyphenylene ether resins, polyphenylene sulfide resins, polysulfone resins, polyolefin resins such as polyethylene and polypropylene, polystyrene resins, acrylonitrile / styrene. Resins such as copolymer (AS resin), polymethacrylate resin, phenol resin, epoxy resin, cyclic polyolefin resin, polylactic acid resin, polycaprolactone resin, and thermoplastic fluororesin (for example, represented by polyvinylidene fluoride resin) Can be mentioned. Examples of the elastomer include acrylic elastomers, polyester elastomers, polyamide elastomers, and the like.
The content of the other thermoplastic resin or elastomer is preferably 30 parts by weight or less, more preferably 20 parts by weight or less based on 100 parts by weight of the resin component.
(Production method of resin composition)
Arbitrary methods are employ | adopted for preparation of the resin composition of this invention. For example, there can be mentioned a method in which the A component, the B component, the C component, the D component and optionally other components are premixed and then melt-kneaded to form pellets.
Examples of the premixing means include a Nauter mixer, a V-type blender, a Henschel mixer, a mechanochemical device, and an extrusion mixer. In the preliminary mixing, granulation can be performed by an extrusion granulator, a briquetting machine, or the like, if necessary. As another method, for example, when a component having a powder form is included as the component A, a master batch of an additive diluted with powder by blending a part of the powder and an additive to be blended is manufactured, and the master A method using a batch is mentioned. After the preliminary mixing, the mixture is melt-kneaded by a melt-kneader represented by a vent type twin-screw extruder and pelletized by a device such as a pelletizer. Other examples of the melt kneader include a Banbury mixer, a kneading roll, and a constant temperature stirring vessel, but a vent type twin screw extruder is preferred.
In addition, a method of supplying each component independently to a melt-kneader represented by a twin-screw extruder without premixing each component can also be used. Moreover, after premixing some components, the method of supplying to a melt-kneader independently of the remaining components is mentioned. In particular, when an inorganic filler is blended, the inorganic filler is preferably supplied from a supply port in the middle of the extruder into the molten resin using a supply device such as a side feeder. The premixing means and granulation are the same as described above. In addition, when there exists a liquid thing in the component to mix | blend, what is called a liquid injection apparatus or a liquid addition apparatus can be used for supply to a melt kneader.
As the extruder, one having a vent capable of degassing moisture in the raw material and volatile gas generated from the melt-kneaded resin can be preferably used. From the vent, a vacuum pump is preferably installed for efficiently discharging generated moisture and volatile gas to the outside of the extruder. It is also possible to remove a foreign substance from the resin composition by installing a screen for removing foreign substances and the like mixed in the extrusion raw material in the zone in front of the extruder die. Examples of such screens include wire meshes, screen changers, sintered metal plates (disc filters, etc.) and the like.
Examples of the melt kneader include a banbury mixer, a kneading roll, a single screw extruder, a multi-screw extruder having three or more axes, in addition to a twin screw extruder.
Furthermore, it is preferable that the moisture contained in the A component and the B component is small before melt kneading. Therefore, it is more preferable to melt-knead after drying either component A or component B or both by various methods such as hot air drying, electromagnetic wave drying, or vacuum drying. The vent suction during melt-kneading is preferably in the range of 1 to 60 kPa, preferably 2 to 30 kPa.
The resin extruded as described above is directly cut into pellets, or after forming the strands, the strands are cut with a pelletizer to be pelletized. When it is necessary to reduce the influence of external dust or the like during pelletization, it is preferable to clean the atmosphere around the extruder. Furthermore, in the manufacture of such pellets, various methods already proposed for polycarbonate resin for optical discs are used to narrow the shape distribution of pellets, reduce miscuts, and reduce fine powder generated during transportation or transportation. In addition, it is possible to appropriately reduce bubbles (vacuum bubbles) generated inside the strands and pellets. By these prescriptions, it is possible to increase the molding cycle and reduce the occurrence rate of defects such as silver. Moreover, although the shape of a pellet can take common shapes, such as a cylinder, a prism, and a spherical shape, it is a cylinder more suitably. The diameter of such a cylinder is preferably 1 to 5 mm, more preferably 1.5 to 4 mm, and still more preferably 2 to 3.3 mm. On the other hand, the length of the cylinder is preferably 1 to 30 mm, more preferably 2 to 5 mm, and still more preferably 2.5 to 3.5 mm.
(Molded product using the resin composition of the present invention)
A molded product using the resin composition of the present invention can be obtained by molding the pellets produced as described above. Preferably, it is obtained by injection molding or extrusion molding. In injection molding, not only ordinary molding methods, but also injection compression molding, injection press molding, gas-assisted injection molding, foam molding (including the method of injecting supercritical fluid), insert molding, in-mold coating molding, and heat insulation gold Examples thereof include mold molding, rapid heating / cooling mold molding, two-color molding, multicolor molding, sandwich molding, and ultrahigh-speed injection molding. In addition, either a cold runner method or a hot runner method can be selected for molding.
Also, in extrusion molding, various profile extrusion molded products, sheets, films, etc. are obtained. For forming sheets and films, an inflation method, a calendar method, a casting method, or the like can be used. It is also possible to form a heat-shrinkable tube by applying a specific stretching operation. The resin composition of the present invention can also be formed into a molded product by rotational molding, blow molding or the like.
The form of the present invention considered to be the best by the present inventor is a collection of the preferred ranges of the above requirements. For example, typical examples are described in the following examples. Of course, the present invention is not limited to these forms.
 以下に実施例を挙げて本発明をさらに説明するが、本発明はこれに限定されるものではない。なお特に説明が無い限り実施例中の部は重量部、%は重量%である。なお、評価および樹脂ペレットの製造は以下の方法によって製造した。
(I)樹脂組成物の評価
(i)チタン含有量分析:アジレント・テクノロジー社製ICP質量分析装置Agilent7500csを用いて測定した。なお、試料は、秤量した試料に硫酸添加し、マイクロウェーブ分解により樹脂を灰化後、更に硝酸添加しマイクロウェーブ分解を行って得られた残渣金属を超純水で定容し、残渣からTi元素量を測定した。
(ii)剛性:得られた各種ペレットを120℃で5時間乾燥した後に射出成形機(住友重機械工業(株)製 SG−150U)によりシリンダー温度280℃、金型温度70℃で、成形片を成形し、ISO527−1、2に従い、引張弾性率の測定を実施した。
(iii)シャルピー衝撃強度:得られた各種ペレットを120℃で5時間乾燥した後に射出成形機(住友重機械工業(株)製 SG−150U)によりシリンダー温度280℃、金型温度70℃で、成形片を成形し、ISO179に従い、ノッチ付きのシャルピー衝撃強度の測定を実施した。
(iv)耐湿熱性:得られた樹脂ペレットを120℃にて約5時間乾燥させペレット中の水分率を200ppm以下にした後、射出成形機(住友重機械工業社製:SG260M−HP)を用いて、シリンダー温度280℃、金型温度70℃、成形サイクル50秒、射出速度15mm/secの条件で、長さ70mm×幅50mm×厚さ2mmの試験片を連続的に射出成形した。該試験片を温度23℃、相対湿度50%の環境下で24時間放置したものを湿熱処理前の試験片とし、該湿熱処理前の試験片を温度80℃、相対湿度95%の恒温恒湿試験機に500時間放置して湿熱処理した後、再び温度23℃、相対湿度50%の環境下で24時間放置した試験片を湿熱処理後の試験片とした。
 湿熱処理前および湿熱処理後の試験片を、それぞれ異物が混入しないように粉砕し、120℃にて約5時間乾燥させ水分率を200ppm以下にした後、それぞれの粉砕サンプルについて温度280℃、荷重2.16kgfの条件下でISO1133に準拠した方法でMVR(メルトボリュームレイト)測定を行った。測定は東洋精機(株)製セミオートメルトインデクサー2A型により行った。耐湿熱性は下記式にしたがって計算し、湿熱処理前後の変化率(ΔMVR)を算出した。このΔMVRが大きいほど、成形品の樹脂劣化が大きく耐湿熱性に劣ることを意味し、ΔMVRは好ましくは200以下、より好ましくは170以下である。
ΔMVR(耐湿熱性)=100×(湿熱処理後の試験片のMVR)/(湿熱処理前の試験片のMVR)
(v)熱安定性:得られた樹脂ペレットを120℃にて約5時間乾燥させペレット中の水分率を200ppm以下にした後、射出成形機(住友重機械工業社製:SG260M−HP)を用いて、シリンダー温度280℃、金型温度70℃、成形サイクル50秒、射出速度15mm/secの条件で、長さ70mm×幅50mm×厚さ2.0mmの試験片を連続的に射出成形し、連続成形品の試験片を得た(連続成形品の試験片の品質は、前記の湿熱処理前の試験片と実質同じである)。連続成形品の試験片を得た後、成形機を10分間停止し、成形機シリンダー内で溶融樹脂を滞留させた。成形機を停止して10分後に再び成形を開始し、再成形から2ショット目を滞留成形品の試験片とした。
 連続成形品と滞留成形品を異物が混入しないように粉砕し、120℃にて約5時間乾燥させ水分率を200ppm以下にした後、それぞれの粉砕サンプルについて温度280℃、荷重2.16kgfの条件下でISO1133に準拠した方法でMVR(メルトボリュームレイト)測定を行った。測定は東洋精機(株)製セミオートメルトインデクサー2A型により行った。熱安定性は下記式にしたがって計算し、滞留前後のMVR変化率(ΔMVR(熱安定性))を算出した。このΔMVR(熱安定性)が大きいほど、滞留時の樹脂劣化が大きく熱安定性に劣ることを意味し、ΔMVRは好ましくは150以下、より好ましくは130以下である。
ΔMVR(熱安定性)=100×(滞留成形品の試験片のMVR)/(連続成形品の試験片のMVR)
(vi)耐薬品性:(iii)シャルピー衝撃試験で作成した試験片に6MPaの曲げ歪みを与え、温度23℃、相対湿度50%の環境下で30分間、市販のレギュラーガソリンに浸漬した後の外観を目視にて観察し評価を行った。なお、評価は以下の基準により実施した。
 ○:異常が認められないもの
 ×:成形品にクラックや白化などの外観変化がみられるもの
実施例1~12、比較例1~11
 ポリカーボネート樹脂、ポリエステル樹脂、充填材および各種添加剤を表1~3に記載の配合量で、ブレンダーにて混合した後、ベント式二軸押出機を用いて溶融混練し、本発明の樹脂組成物からなるペレットを得た。充填材を除く各種添加剤は配合量の10~100倍の濃度を目安に予めポリカーボネート樹脂パウダーとの予備混合物を作成した後、ブレンダーによる全体の混合を行った。ベント式二軸押出機は日本製鋼所社製:TEX30α−31.5BW−2V(完全かみ合い、同方向回転、2条ネジスクリュー)を使用した。混練ゾーンはベント口手前に1箇所のタイプとした。押出条件は吐出量20kg/h、スクリュー回転数130rpm、ベントの真空度3kPaであり、また押出温度は第1供給口からダイス部分まで270℃とした。
 表1~3中の記号表記の各成分は下記の通りである。
(A成分)
A−1:粘度平均分子量22,400の直鎖状芳香族ポリカーボネート樹脂パウダー
(B成分)
(B−1成分)
PBT−1:IV値0.87のポリブチレンテレフタレート樹脂(ポリプラスチックス(株)ジュラネックス500FP(商品名))
(B−2成分)
PET−1:以下の製造方法により調製されたポリエチレンテレフタレート樹脂(固有粘度=0.53、チタン含有量23ppm)
(製造方法)
 100℃まで加熱したエチレングリコールにモノラウリルホスフェートを溶解させた溶液を攪拌しながら、チタンテトラブトキシドを含むエチレングリコールと酢酸の混合液をゆっくり添加し、チタン化合物とリン化合物との反応を完結させて触媒を製造した。エチレングリコールとテレフタル酸からエステルオリゴマーを生成した後、触媒とともに重縮合反応槽に入れて重縮合反応を行った。重縮合の進行の度合いを、反応系内における攪拌翼への負荷をモニターすることによりチェックし、所望の重合度に達したとき反応を終了させた。その後、系内の反応混合物を吐出部からストランド状に連続的に押出し、冷却固化し、カッティングして、粒径が約3mm程度のポリエチレンテレフタレートの粒状ペレットを調整した。
(C成分)
C−1:EXL2390:アクリル系コアシェルポリマー(ロームアンドハース(株)製:パラロイドEXL−2390(商品名)、コアがブチルアクリレート成分約50重量%と2−エチルヘキシルアクリレート成分約40重量%、シェルがメチルメタクリレート約10重量%であるコアシェルポリマー)
C−2(比較):EXL2388:アクリル系コアシェルポリマー(ロームアンドハース(株)製:パラロイドEXL−2388(商品名)、コアがブチルアクリレート成分約90重量%、シェルがメチルメタクリレート約10重量%であるコアシェルポリマー)
C−3(比較):EXL−2620:スチレン系ゴム質重合体(ロームアンドハース(株)製:パラロイド EXL−2620(商品名)、コアがポリブタジエン70重量%、シェルがスチレンおよびメチルメタクリレート30重量%であるコアシェルポリマー)
C−4(比較):S2001:ポリオルガノシリコンゴム成分とポリアルキル(メタ)アクリレートゴム成分とが分離できないように相互に絡み合った構造を有している複合ゴム90重量%に、メチルメタクリレートがグラフト重合されてなる複合ゴム系グラフト共重合体(三菱レイヨン(株)製メタブレンS−2001(商品名))
(D成分)
D−1:平均粒径が4μmのワラストナイト(関西マテック社製:KGP−H40)
D−2:平均粒径が5μmのワラストナイト(キンセイマテック社製:SH−1250)
D−3:圧縮微粉タルク(林化成社製:Upn HS−T0.8)
D−4:平均粒径が22μmの湿式粉砕マイカ(ヤマグチマイカ社製:A−21)
(その他成分)
AO−1:ビス(2,4−ジ−t−ブチルフェニル)ペンタエリスリトールジホスファイト(アデカ社製:アデカスタブ PEP−24G)
AO−2:トリメチルホスフェート(大八化学工業社製:TMP)
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
発明の効果
 C成分としてC−1を用いた実施例2と、C成分としてC−2、C−3、C−4を用いた比較例6~8とを比べた図1から明らかなように、実施例2は、引張弾性率およびシャルピー衝撃強度の双方に優れている。
 同様に、C成分としてC−1を用いた実施例12と、C成分としてC−2、C−3、C−4を用いた比較例9~11とを比べた図2から明らかなように、実施例11は、引張弾性率およびシャルピー衝撃強度の双方に優れている。
 このように本発明の樹脂組成物は、引張弾性率およびシャルピー衝撃強度の双方に優れている。また本発明の樹脂組成物は、熱安定性に優れ、さらに良好な耐薬品性を併せ持つ。
EXAMPLES The present invention will be further described below with reference to examples, but the present invention is not limited thereto. Unless otherwise specified, parts in the examples are parts by weight and% is% by weight. In addition, evaluation and manufacture of the resin pellet were manufactured with the following method.
(I) Evaluation of resin composition (i) Titanium content analysis: Measured using an ICP mass spectrometer Agilent 7500cs manufactured by Agilent Technologies. In addition, after adding sulfuric acid to the weighed sample and ashing the resin by microwave decomposition, the sample was further added with nitric acid and subjected to microwave decomposition to constant volume of the residual metal with ultrapure water. The amount of element was measured.
(Ii) Rigidity: Various pellets obtained were dried at 120 ° C. for 5 hours, and then molded using an injection molding machine (SG-150U, manufactured by Sumitomo Heavy Industries, Ltd.) at a cylinder temperature of 280 ° C. and a mold temperature of 70 ° C. Was measured and the tensile modulus was measured in accordance with ISO527-1,2.
(Iii) Charpy impact strength: The various pellets obtained were dried at 120 ° C. for 5 hours, and then the cylinder temperature was 280 ° C. and the mold temperature was 70 ° C. using an injection molding machine (SG-150U, manufactured by Sumitomo Heavy Industries, Ltd.) A molded piece was molded, and the Charpy impact strength with a notch was measured according to ISO179.
(Iv) Heat-and-moisture resistance: After the obtained resin pellets are dried at 120 ° C. for about 5 hours to make the moisture content in the pellets 200 ppm or less, an injection molding machine (manufactured by Sumitomo Heavy Industries, Ltd .: SG260M-HP) is used. A test piece of length 70 mm × width 50 mm × thickness 2 mm was continuously injection-molded under the conditions of a cylinder temperature of 280 ° C., a mold temperature of 70 ° C., a molding cycle of 50 seconds, and an injection speed of 15 mm / sec. The test piece left for 24 hours in an environment of a temperature of 23 ° C. and a relative humidity of 50% was used as a test piece before the wet heat treatment, and the test piece before the wet heat treatment was kept at a constant temperature and humidity of 80 ° C. and a relative humidity of 95%. After leaving the test machine for 500 hours to perform wet heat treatment, a test piece left again for 24 hours in an environment of a temperature of 23 ° C. and a relative humidity of 50% was used as a test piece after the wet heat treatment.
The test specimens before and after the wet heat treatment were pulverized so that no foreign matter was mixed in, and dried at 120 ° C. for about 5 hours to reduce the moisture content to 200 ppm or less. MVR (melt volume rate) measurement was performed by a method based on ISO 1133 under the condition of 2.16 kgf. The measurement was performed with a semi-auto melt indexer 2A type manufactured by Toyo Seiki Co., Ltd. The wet heat resistance was calculated according to the following formula, and the rate of change (ΔMVR) before and after wet heat treatment was calculated. A larger ΔMVR means that the resin deterioration of the molded product is larger and the heat and moisture resistance is inferior, and ΔMVR is preferably 200 or less, more preferably 170 or less.
ΔMVR (moisture and heat resistance) = 100 × (MVR of test piece after wet heat treatment) / (MVR of test piece before wet heat treatment)
(V) Thermal stability: After the obtained resin pellets were dried at 120 ° C. for about 5 hours to reduce the moisture content in the pellets to 200 ppm or less, an injection molding machine (Sumitomo Heavy Industries, Ltd .: SG260M-HP) was used. Using a cylinder temperature of 280 ° C., a mold temperature of 70 ° C., a molding cycle of 50 seconds, and an injection speed of 15 mm / sec, a test piece of length 70 mm × width 50 mm × thickness 2.0 mm was continuously injection molded. The test piece of the continuous molded product was obtained (the quality of the test piece of the continuous molded product is substantially the same as the test piece before the wet heat treatment). After obtaining a test piece of a continuously molded product, the molding machine was stopped for 10 minutes, and the molten resin was retained in the molding machine cylinder. 10 minutes after the molding machine was stopped, molding was started again, and the second shot from the re-molding was used as a test piece for the retained molded product.
The continuously molded product and the retained molded product are pulverized so that no foreign matter is mixed in, dried at 120 ° C. for about 5 hours to reduce the moisture content to 200 ppm or less, and each pulverized sample has a temperature of 280 ° C. and a load of 2.16 kgf. Below, MVR (melt volume rate) measurement was performed by the method based on ISO1133. The measurement was performed with a semi-auto melt indexer 2A type manufactured by Toyo Seiki Co., Ltd. The thermal stability was calculated according to the following formula, and the MVR change rate (ΔMVR (thermal stability)) before and after residence was calculated. The larger this ΔMVR (thermal stability), the greater the deterioration of the resin during residence and the lower the thermal stability. ΔMVR is preferably 150 or less, more preferably 130 or less.
ΔMVR (thermal stability) = 100 × (MVR of test piece of staying molded product) / (MVR of test piece of continuous molded product)
(Vi) Chemical resistance: (iii) A test piece prepared by Charpy impact test was subjected to a bending strain of 6 MPa, and immersed in commercial regular gasoline for 30 minutes in an environment of a temperature of 23 ° C. and a relative humidity of 50%. The appearance was visually observed and evaluated. The evaluation was performed according to the following criteria.
○: No abnormality is observed. ×: Appearance changes such as cracks and whitening are observed in the molded products. Examples 1 to 12 and Comparative Examples 1 to 11
A polycarbonate resin, a polyester resin, a filler and various additives are mixed in the blending amounts shown in Tables 1 to 3 in a blender, and then melt-kneaded using a vent type twin screw extruder to obtain the resin composition of the present invention. A pellet consisting of Various additives other than the filler were preliminarily prepared with a polycarbonate resin powder with a concentration of 10 to 100 times the blending amount as a guide, and then the whole was mixed by a blender. The vent type twin screw extruder used was TEX30α-31.5BW-2V (completely meshed, rotating in the same direction, two-thread screw) manufactured by Nippon Steel Works. The kneading zone was of one type before the vent opening. Extrusion conditions were a discharge rate of 20 kg / h, a screw rotation speed of 130 rpm, a vent vacuum of 3 kPa, and an extrusion temperature of 270 ° C. from the first supply port to the die part.
The components indicated by symbols in Tables 1 to 3 are as follows.
(A component)
A-1: Linear aromatic polycarbonate resin powder having a viscosity average molecular weight of 22,400 (component B)
(B-1 component)
PBT-1: Polybutylene terephthalate resin having an IV value of 0.87 (Polyplastics Corporation DURANEX 500FP (trade name))
(B-2 component)
PET-1: Polyethylene terephthalate resin prepared by the following production method (intrinsic viscosity = 0.53, titanium content 23 ppm)
(Production method)
While stirring a solution obtained by dissolving monolauryl phosphate in ethylene glycol heated to 100 ° C, a mixed solution of ethylene glycol and acetic acid containing titanium tetrabutoxide was slowly added to complete the reaction between the titanium compound and the phosphorus compound. A catalyst was prepared. After producing an ester oligomer from ethylene glycol and terephthalic acid, a polycondensation reaction was carried out in a polycondensation reaction tank together with a catalyst. The degree of progress of the polycondensation was checked by monitoring the load on the stirring blade in the reaction system, and the reaction was terminated when the desired degree of polymerization was reached. Thereafter, the reaction mixture in the system was continuously extruded in a strand form from the discharge part, cooled and solidified, and cut to prepare polyethylene terephthalate granular pellets having a particle size of about 3 mm.
(C component)
C-1: EXL2390: Acrylic core-shell polymer (Rohm and Haas Co., Ltd .: Paraloid EXL-2390 (trade name), core is about 50% by weight of butyl acrylate component and about 40% by weight of 2-ethylhexyl acrylate component, shell is Core-shell polymer that is about 10% by weight methyl methacrylate)
C-2 (Comparison): EXL2388: Acrylic core-shell polymer (Rohm and Haas Co., Ltd .: Paraloid EXL-2388 (trade name), core is about 90% by weight of butyl acrylate component, shell is about 10% by weight of methyl methacrylate A core-shell polymer)
C-3 (Comparison): EXL-2620: Styrenic rubber polymer (Rohm and Haas Co., Ltd .: Paraloid EXL-2620 (trade name), core is 70% polybutadiene, shell is styrene and methyl methacrylate 30% % Core-shell polymer)
C-4 (Comparison): S2001: Methyl methacrylate is grafted on 90% by weight of a composite rubber having a structure in which a polyorganosilicon rubber component and a polyalkyl (meth) acrylate rubber component are intertwined so that they cannot be separated. Polymerized composite rubber graft copolymer (Metbrene S-2001 (trade name) manufactured by Mitsubishi Rayon Co., Ltd.)
(D component)
D-1: Wollastonite with an average particle size of 4 μm (Kansai Matec Co., Ltd .: KGP-H40)
D-2: Wollastonite having an average particle diameter of 5 μm (manufactured by Kinsei Matech Corporation: SH-1250)
D-3: Compressed fine powder talc (Hayashi Kasei Co., Ltd .: Upn HS-T0.8)
D-4: wet-pulverized mica having an average particle size of 22 μm (Yamaguchi Mica Co., Ltd .: A-21)
(Other ingredients)
AO-1: Bis (2,4-di-t-butylphenyl) pentaerythritol diphosphite (manufactured by Adeka: Adeka Stub PEP-24G)
AO-2: Trimethyl phosphate (manufactured by Daihachi Chemical Industry Co., Ltd .: TMP)
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Advantages of the Invention As is clear from FIG. 1 comparing Example 2 using C-1 as the C component and Comparative Examples 6 to 8 using C-2, C-3, and C-4 as the C component. Example 2 is excellent in both tensile modulus and Charpy impact strength.
Similarly, as is clear from FIG. 2 comparing Example 12 using C-1 as the C component and Comparative Examples 9 to 11 using C-2, C-3, and C-4 as the C component. Example 11 is excellent in both tensile modulus and Charpy impact strength.
Thus, the resin composition of the present invention is excellent in both tensile elastic modulus and Charpy impact strength. Further, the resin composition of the present invention is excellent in thermal stability and further has good chemical resistance.
 本発明樹脂組成物は、建築物、建築資材、農業資材、海洋資材、車両、電気・電子機器、機械、その他の各種分野において幅広く有用である。 The resin composition of the present invention is widely useful in various fields such as buildings, building materials, agricultural materials, marine materials, vehicles, electric / electronic devices, machines, and the like.

Claims (12)

  1.  (A)ポリカーボネート樹脂(A成分)80~50重量部および(B)ポリエステル樹脂(B成分)20~50重量部からなる樹脂成分100重量部に対して、
    (C)アルキル基の炭素数が1~4のアクリル酸エステルとアルキル基の炭素数が5~8のアクリル酸エステルとから構成される架橋アクリル酸エステル系弾性体からなるコア(C−1成分)とメタクリル酸エステルを主成分とするシェル(C−2成分)からなるコアシェルポリマー(C成分)1~10重量部および
    (D)充填材(D成分)0~15重量部を含む樹脂組成物。
    (A) Polycarbonate resin (component A) 80 to 50 parts by weight and (B) polyester resin (component B) 20 to 50 parts by weight of resin component 100 parts by weight,
    (C) A core (C-1 component) comprising a cross-linked acrylate ester elastic body composed of an acrylate ester having 1 to 4 carbon atoms in the alkyl group and an acrylate ester having 5 to 8 carbon atoms in the alkyl group And 1 to 10 parts by weight of a core-shell polymer (component C) consisting of a shell (component C-2) containing methacrylic acid ester as the main component and 0 to 15 parts by weight of a filler (component D) (D) .
  2.  B成分が、ポリエチレンテレフタレート樹脂(PET)およびポリブチレンテレフタレート樹脂(PBT)であり、その配合比(重量比)(PET/PBT)が1/7~7/8である請求項1に記載の樹脂組成物。 2. The resin according to claim 1, wherein the component B is a polyethylene terephthalate resin (PET) and a polybutylene terephthalate resin (PBT), and the blending ratio (weight ratio) (PET / PBT) is 1/7 to 7/8. Composition.
  3.  ポリエステル樹脂(B成分)が、
    下記一般式(I)で表されるチタン化合物(1)、およびチタン化合物(1)と下記一般式(II)で表される芳香族多価カルボン酸またはその無水物とを反応させて得られたチタン化合物(2)からなる群より選ばれた少なくとも1種のチタン化合物成分と、
    下記一般式(III)で表されるリン化合物(3)の少なくとも1種からなるリン化合物成分を、
    該チタン化合物成分のチタン原子換算モル量(mTi)と該リン化合物成分のリン原子換算モル量(mP)との反応性モル比(mTi/mP)が1/3~1/1の範囲で反応させた反応生成物を含む化合物を触媒として使用して重合されたポリエステル樹脂であり、かつ下記(i)および(ii)を満たすことを特徴とする請求項1に記載の樹脂組成物。
     (i)固有粘度が0.4~1.2である。
     (ii)触媒由来のチタン元素含有量が0.001ppm~100ppmである。
    Figure JPOXMLDOC01-appb-I000001
    〔但し、式(I)中、R、R、RおよびRは、それぞれ互いに独立に2~10個の炭素原子を有するアルキル基を表し、kは1~3の整数を表し、かつkが2または3の場合、2個または3個のRおよびRは、それぞれ互いに同一であってもよく、或いは異なっていてもよい。〕
    Figure JPOXMLDOC01-appb-I000002
    〔但し、式(II)中、mは2~4の整数を表す。〕
    Figure JPOXMLDOC01-appb-I000003
    〔但し、式(III)中、Rは、未置換のまたは置換された、6~20個の炭素原子を有するアリール基、または1~20個の炭素原子を有するアルキル基を表す。〕
    Polyester resin (component B)
    Obtained by reacting the titanium compound (1) represented by the following general formula (I), and the titanium compound (1) with the aromatic polycarboxylic acid represented by the following general formula (II) or an anhydride thereof. At least one titanium compound component selected from the group consisting of titanium compounds (2),
    A phosphorus compound component comprising at least one phosphorus compound (3) represented by the following general formula (III):
    Reacts when the molar molar ratio (mTi / mP) of the titanium compound component in terms of titanium atom (mTi) and the phosphorus compound component in terms of phosphorus atom (mP) is 1/3 to 1/1. 2. The resin composition according to claim 1, wherein the resin composition is a polyester resin polymerized by using a compound containing a reaction product as a catalyst and satisfies the following (i) and (ii):
    (I) The intrinsic viscosity is 0.4 to 1.2.
    (Ii) The catalyst-derived titanium element content is 0.001 ppm to 100 ppm.
    Figure JPOXMLDOC01-appb-I000001
    [In the formula (I), R 1, R 2, R 3 and R 4 each represent an alkyl group having 2 to 10 carbon atoms each independently, k is an integer of 1 to 3, And when k is 2 or 3, two or three R 2 and R 3 may be the same or different from each other. ]
    Figure JPOXMLDOC01-appb-I000002
    [In the formula (II), m represents an integer of 2 to 4. ]
    Figure JPOXMLDOC01-appb-I000003
    [In the formula (III), R 5 represents an unsubstituted or substituted aryl group having 6 to 20 carbon atoms, or an alkyl group having 1 to 20 carbon atoms. ]
  4.  ポリエステル樹脂(B成分)のチタン元素含有量が0.001~50ppmである請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the content of titanium element in the polyester resin (component B) is 0.001 to 50 ppm.
  5.  ポリエステル樹脂(B成分)が、下記式(IV)で表される化合物を触媒として使用して重合されたポリエステル樹脂である請求項1に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-I000004
    〔上記式中RおよびRは、それぞれ互いに独立に、2~12個の炭素原子を有するアルキル基、または6~12個の炭素原子を有するアリール基を表す〕
    The resin composition according to claim 1, wherein the polyester resin (component B) is a polyester resin polymerized using a compound represented by the following formula (IV) as a catalyst.
    Figure JPOXMLDOC01-appb-I000004
    [In the above formula, R 6 and R 7 each independently represent an alkyl group having 2 to 12 carbon atoms or an aryl group having 6 to 12 carbon atoms]
  6.  ポリエステル樹脂(B成分)が、ポリエチレンテレフタレートである請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the polyester resin (component B) is polyethylene terephthalate.
  7.  ポリエステル樹脂(B成分)が、ポリブチレンテレフタレートである請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the polyester resin (component B) is polybutylene terephthalate.
  8.  C−1成分が、ブチルアクリレートと2−エチルヘキシルアクリレートとから構成される架橋アクリル酸エステル系弾性体からなるコアである請求項1に記載の樹脂組成物。 2. The resin composition according to claim 1, wherein the C-1 component is a core composed of a crosslinked acrylate-based elastic body composed of butyl acrylate and 2-ethylhexyl acrylate.
  9.  D成分がガラス、タルク、マイカ、ワラストナイト、ゼオライト、炭素繊維および黒鉛からなる群から選ばれる少なくとも一種の充填材である請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the component D is at least one filler selected from the group consisting of glass, talc, mica, wollastonite, zeolite, carbon fiber, and graphite.
  10.  D成分が、タルク、マイカおよびワラストナイトよりなる群から選ばれる少なくとも一種の無機充填材である請求項9に記載の樹脂組成物。 The resin composition according to claim 9, wherein the D component is at least one inorganic filler selected from the group consisting of talc, mica and wollastonite.
  11.  請求項1~10のいずれか一項に記載の樹脂組成物を射出成形してなる成形品。 A molded product formed by injection molding the resin composition according to any one of claims 1 to 10.
  12.  射出成形品が車両用内外装部材である請求項11記載の射出成形品。 The injection molded product according to claim 11, wherein the injection molded product is a vehicle interior / exterior member.
PCT/JP2015/062628 2014-04-23 2015-04-21 Resin composition WO2015163479A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014089256A JP2017132822A (en) 2014-04-23 2014-04-23 Thermoplastic resin composition
JP2014-089256 2014-04-23

Publications (1)

Publication Number Publication Date
WO2015163479A1 true WO2015163479A1 (en) 2015-10-29

Family

ID=54332637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062628 WO2015163479A1 (en) 2014-04-23 2015-04-21 Resin composition

Country Status (3)

Country Link
JP (1) JP2017132822A (en)
TW (1) TW201540774A (en)
WO (1) WO2015163479A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200165445A1 (en) * 2015-12-03 2020-05-28 Sabic Global Technologies B.V. Heat resistant, weatherable polyester - polycarbonate composition
CN116675836A (en) * 2023-08-02 2023-09-01 宁波聚嘉新材料科技有限公司 Liquid crystal polymer, film, preparation method of liquid crystal polymer and film, and solar cell backboard

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102221425B1 (en) * 2017-11-30 2021-02-26 롯데케미칼 주식회사 Thermoplastic polyester resin composition having good color and heat resistance
CN112266598B (en) * 2020-10-28 2022-08-30 武汉金发科技有限公司 Talcum powder filled PC/PBT alloy material and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03124764A (en) * 1989-10-09 1991-05-28 Mitsubishi Gas Chem Co Inc Thermoplastic resin composition
JPH0465460A (en) * 1990-07-06 1992-03-02 Idemitsu Petrochem Co Ltd Polycarbonate resin composition
JPH09286904A (en) * 1996-04-24 1997-11-04 Aisin Seiki Co Ltd Vehicle exterior part
JP2004514782A (en) * 2000-11-30 2004-05-20 ゼネラル・エレクトリック・カンパニイ Conductive polyester / polycarbonate blends, methods for their preparation, and resulting products
JP2006176569A (en) * 2004-12-21 2006-07-06 Idemitsu Kosan Co Ltd Aromatic polycarbonate resin composition and molding thereof
JP2013018864A (en) * 2011-07-11 2013-01-31 Teijin Chem Ltd Polycarbonate resin composition and molded article thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03124764A (en) * 1989-10-09 1991-05-28 Mitsubishi Gas Chem Co Inc Thermoplastic resin composition
JPH0465460A (en) * 1990-07-06 1992-03-02 Idemitsu Petrochem Co Ltd Polycarbonate resin composition
JPH09286904A (en) * 1996-04-24 1997-11-04 Aisin Seiki Co Ltd Vehicle exterior part
JP2004514782A (en) * 2000-11-30 2004-05-20 ゼネラル・エレクトリック・カンパニイ Conductive polyester / polycarbonate blends, methods for their preparation, and resulting products
JP2006176569A (en) * 2004-12-21 2006-07-06 Idemitsu Kosan Co Ltd Aromatic polycarbonate resin composition and molding thereof
JP2013018864A (en) * 2011-07-11 2013-01-31 Teijin Chem Ltd Polycarbonate resin composition and molded article thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200165445A1 (en) * 2015-12-03 2020-05-28 Sabic Global Technologies B.V. Heat resistant, weatherable polyester - polycarbonate composition
US10934430B2 (en) * 2015-12-03 2021-03-02 Sabic Global Technologies B.V. Heat resistant, weatherable polyester—polycarbonate composition
CN116675836A (en) * 2023-08-02 2023-09-01 宁波聚嘉新材料科技有限公司 Liquid crystal polymer, film, preparation method of liquid crystal polymer and film, and solar cell backboard
CN116675836B (en) * 2023-08-02 2023-10-20 宁波聚嘉新材料科技有限公司 Liquid crystal polymer, film, preparation method of liquid crystal polymer and film, and solar cell backboard

Also Published As

Publication number Publication date
JP2017132822A (en) 2017-08-03
TW201540774A (en) 2015-11-01

Similar Documents

Publication Publication Date Title
JP5346994B2 (en) Polycarbonate resin composition and molded article thereof
JP5902409B2 (en) Method for producing flame retardant polycarbonate resin composition and method for producing molded product thereof
JP4907899B2 (en) Resin composition containing carbon nanotube, and concentrate for compounding carbon nanotube
JP2010126706A (en) Resin composition for film insert molding, and molded article of the same
JP5541881B2 (en) Glass reinforced resin composition
JP2007023118A (en) Thermoplastic resin composition
WO2015163479A1 (en) Resin composition
EP3858919B1 (en) Flame-retardant polycarbonate resin composition
JP2015059138A (en) Flame retardant glass fiber-reinforced polycarbonate resin composition
TWI818023B (en) Flame retardant polycarbonate resin composition
JP2020079341A (en) Flame-retardant polycarbonate resin composition
JP2015137308A (en) Fire retardant carbon fiber reinforced polycarbonate resin composition
JP7264737B2 (en) Flame-retardant polycarbonate resin composition
JP2008214431A (en) Thermoplastic resin composition
JP6854655B2 (en) Thermoplastic resin composition and its molded product
JP7282180B2 (en) Thermoplastic resin composition
JP2006249287A (en) Reinforced aromatic polycarbonate resin composition
US11760840B2 (en) Thermoplastic resin composition and molded article thereof
JP2024053656A (en) Flame-retardant polycarbonate resin composition and molded article made therefrom
WO2023145342A1 (en) Flame retardant polycarbonate resin composition and molded article thereof
WO2024070342A1 (en) Thermoplastic resin composition and molded article comprising same
WO2023228768A1 (en) Thermoplastic resin composition and molded article formed from same
JP2023121906A (en) Flame retardant polycarbonate resin composition and molded article thereof
JP2022142248A (en) Polycarbonate resin composition and molded circuit for communication devices
CN116348529A (en) Polycarbonate resin composition and circuit molded article for communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15783826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15783826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP