WO2015163415A1 - Electrical device - Google Patents

Electrical device Download PDF

Info

Publication number
WO2015163415A1
WO2015163415A1 PCT/JP2015/062387 JP2015062387W WO2015163415A1 WO 2015163415 A1 WO2015163415 A1 WO 2015163415A1 JP 2015062387 W JP2015062387 W JP 2015062387W WO 2015163415 A1 WO2015163415 A1 WO 2015163415A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter circuit
side switching
switching element
motor
voltage
Prior art date
Application number
PCT/JP2015/062387
Other languages
French (fr)
Japanese (ja)
Inventor
和隆 岩田
Original Assignee
日立工機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立工機株式会社 filed Critical 日立工機株式会社
Publication of WO2015163415A1 publication Critical patent/WO2015163415A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to an electric tool that drives a motor using an inverter circuit, and an electric device such as a washing machine.
  • an inverter circuit that drives the motor and a control circuit that controls the inverter circuit may be physically separated, and a structure may be employed in which the two are connected by a wire harness. If there is a connection failure (misconnection, continuity failure, etc.), the inverter circuit may be damaged during operation of the inverter circuit due to the connection failure. Moreover, even when the wire harness is not used, there is a risk of failure due to incorrect wiring. For this reason, it is desirable to prevent the inverter circuit from being damaged by preventing the inverter circuit from starting in a state where there is a connection failure or incorrect wiring.
  • Patent Document 1 mainly aims to detect motor drive coil abnormality by focusing on the motor current when the motor is driven by an inverter circuit.
  • An object of the present invention is to provide an electrical device that can prevent the inverter circuit from being damaged by preventing the inverter circuit from being activated in a state where there is a connection failure or miswiring.
  • the first aspect of the present invention is an electrical device.
  • the electric device includes a motor, an inverter circuit that drives the motor, and a control circuit that controls the inverter circuit, and the inverter circuit is connected in series to each other in a high-side switching element and a low-side switching element.
  • the control circuit is configured not to start the inverter circuit when at least one drive signal line of the switching element is defective in a state before starting the motor. .
  • the inverter circuit has a connection point for detecting a voltage between the high-side switching element and the low-side switching element, and the control circuit is provided before starting the motor.
  • the motor may be configured not to start when the voltage at the connection point is abnormal in the state.
  • the second aspect of the present invention is also an electric device.
  • the electric device includes a motor, an inverter circuit that drives the motor, and a control circuit that controls the inverter circuit, and the inverter circuit is connected in series to each other in a high-side switching element and a low-side switching element.
  • the control circuit is configured not to start up the inverter circuit when the voltage at the connection point is abnormal.
  • the high-side switching element is turned on in the off state of the low-side switching element to detect a voltage at a connection point between the high-side switching element and the low-side switching element. It may be a configuration. *
  • a bootstrap capacitor is provided on the high-side switching element side, and the low-side switching element is turned on once to charge the bootstrap capacitor, The low-side switching element may be turned off and the high-side switching element may be turned on to detect the voltage at the connection point between the high-side switching element and the low-side switching element.
  • the voltage at the connection point between the high-side switching element and the low-side switching element may be detected when all the switching elements of the inverter circuit are off. . *
  • the inverter circuit is mounted on a first board
  • the control circuit is mounted on a second board
  • the first board and the second board are wiring components. It is preferable that the configuration be electrically connected.
  • the inverter circuit has a connection point for detecting a voltage between the high-side switching element and the low-side switching element, and the control circuit is provided before starting the motor.
  • the motor may be configured not to start when the voltage at the connection point is outside a predetermined range in the state.
  • control unit may be configured not to start the motor when the voltage at the connection point is outside a predetermined range.
  • the control circuit has a function of detecting the voltage at the connection point between the high-side switching element and the low-side switching element in the inverter circuit, and the detection result of the voltage at the connection point is By preventing the inverter circuit from starting in the case of an abnormality, it is possible to avoid damage to the inverter circuit.
  • FIG. 1 is an electric system diagram of an electric tool according to an embodiment of an electric device according to the present invention.
  • the circuit diagram which shows the switching element for one phase of an inverter circuit, and its gate drive signal preparation circuit part in embodiment.
  • movement check of the said inverter circuit The flowchart of the operation
  • the electric system of the electric tool 1 includes a three-phase brushless DC motor 2, a battery pack 30 as a DC power source, an inverter circuit 40 that drives the motor 2, and a control circuit 50 that controls the inverter circuit 40.
  • the inverter circuit 40 is supplied with DC power from the battery pack 30, and a predetermined DC power supply voltage is also supplied to the control circuit 50 although connection is omitted.
  • the three-phase brushless DC motor 2 includes a rotor (rotor) 2a and a stator winding (armature winding) 2d.
  • the rotor 2a has N-pole and S-pole permanent magnets (magnets) 2b extending in the direction of the rotation shaft 2e.
  • the stator (stator) 2c has a cylindrical outer shape, and is a so-called internal magnet arrangement type motor having a stator winding 2d wound around a tooth portion thereof.
  • the stator winding 2d is wound around the stator 2c via an insulating layer 2f made of a resin material.
  • the stator winding 2d of each phase (U phase, V phase, W phase) is star-connected.
  • rotational position detecting elements In the vicinity of the rotor 2a, three rotational position detecting elements (Hall elements or the like) 60 are arranged every 60 ° in the rotational direction, and the rotational position of the rotor 2a is detected electromagnetically.
  • the rotational position detection element 60 is mounted on the inverter circuit board 3, for example.
  • the inverter circuit 40 includes six switching elements Q1 to Q6 such as FETs connected in a three-phase bridge format.
  • Switching elements Q1 to Q3 are high-side switching elements
  • switching elements Q4 to Q6 are low-side switching elements
  • the connection points between the high-side switching elements and the low-side switching elements in each phase are star-connected.
  • the phase winding, the V phase, and the W phase are respectively connected to the stator winding 2d. *
  • the control circuit 50 includes a calculation unit 51, a control signal output circuit (gate driver) 52, a rotor position detection circuit 53 that receives detection signals from the three rotation position detection elements 60, and a motor rotation number detection circuit 54. Including at least.
  • the rotor position detection signal of the rotor position detection circuit 53 is input to the calculation unit 51 and the motor rotation number detection circuit 54, and the motor rotation number detection signal of the motor rotation number detection circuit 54 is also input to the calculation unit 51.
  • the calculation unit 51 includes a CPU for outputting a control signal based on a processing program and data, a ROM for storing a processing program and control data for executing a control flow as described later, and data.
  • the microcomputer includes a RAM for temporarily storing, a timer for counting time, and the like, and executes various processes based on the processing program and data.
  • the rotor position detection circuit 53 detects the rotation position of the rotor 2 a based on the output signals of the three rotation position detection elements 60 and outputs the position information of the rotor 2 a to the calculation unit 51.
  • the rotation speed detection circuit 54 detects the rotation speed of the motor 2 from the time interval of signals output at regular intervals from the three rotation position detection elements 60. *
  • the calculation unit 51 controls the control signal output circuit 52 to turn on the switching elements Q1 to Q6. For this reason, the control signal output circuit 52 applies PWM drive signals H1 to H6 to the gates of the switching elements Q1 to Q6.
  • a switch trigger 7 is disposed near the upper end of the handle portion 6b of the housing 6, and the trigger operation portion 7a of the switch trigger 7 protrudes from the handle portion 6b while being biased by a spring force. .
  • the trigger push-in amount (operation amount) can be adjusted and the rotation speed of the motor 2 can be controlled.
  • the amount of trigger pressing by the switch trigger 7 is reflected in the PWM duty of the PWM drive signals H1 to H6 that drive the switching elements Q1 to Q6.
  • PWM control is performed to change the pulse width of the drive signals H1 to H3 of the high side switching elements Q1 to Q3 while keeping the pulse width of the drive signals H4 to H6 of the low side switching elements Q4 to Q6 constant.
  • the inverter circuit board (first board) 3 on which the inverter circuit 30 is mounted is disposed behind the motor 2 housed in the body portion 6 a of the housing 6, and the control circuit 50 is mounted on the control circuit board.
  • the circuit board (second board) 4 is housed in the lower part of the handle 6b of the housing 6, and the inverter circuit board 3 and the control circuit board 4 are electrically connected via a wire harness 80 as a wiring component. Yes.
  • the high-side switching element of each phase (U phase, V phase, W phase) is detected for the purpose of detecting a connection failure (misconnection, conduction failure, etc.) to the substrates 3 and 4 of the wire harness 80. And a voltage obtained by dividing the voltage at the connection point between the low-side switching element and the low-side switching element through a voltage dividing resistor.
  • the voltage Wv ′ obtained by dividing the voltage Wv (the terminal voltage of the W-phase stator winding 2d) of the switching element Q3 and the low-side switching element Q6 by the voltage dividing resistors R5 and R6 is the calculation unit 51.
  • the voltage dividing resistors R1 and R2, the voltage dividing resistors R3 and R4, and the voltage dividing resistors R5 and R6 have the same voltage dividing ratio (for example, 1/5), and the divided voltage Uv ′, voltage Vv ′, and The voltage Wv ′ is set to a voltage range suitable for processing in the calculation unit 51.
  • the electric tool 1 includes a housing 6 having a body portion 6a and a handle portion 6b.
  • the brushless motor 2 is housed in the body portion 6a, and a spindle (output shaft) is transmitted by a power transmission portion 25 that transmits the driving force of the motor 2.
  • a rotational force is applied to a tip tool (not shown) such as a screwdriver or a drill that is detachably held by the chuck (tip tool attaching portion) 28 attached to 8.
  • the stator 2c of the motor 2 is fixed to the body portion 6a.
  • An inverter circuit board 3 on which an inverter circuit 40 for driving the motor 2 is mounted is accommodated on the rear side of the body portion 6a.
  • the intermediate portion and the front side of the body portion 6a are arranged in the direction of the rotating shaft 2e of the motor 2.
  • a speed reduction mechanism portion 26 for transmitting the rotational force and reducing the rotational speed of the motor 2 and a clutch mechanism portion 27 for transmitting the rotational torque obtained at the output shaft of the speed reduction mechanism portion 26 to the spindle 8 are housed.
  • the clutch mechanism 27 is coupled so as to transmit the rotational force of the speed reduction mechanism 26 to the spindle (output shaft) 8.
  • the clutch mechanism unit 27 includes a dial (clutch dial) 5 for mode switching and torque adjustment, and the dial 5 is configured so that an operator can set a driver mode or a drill mode. Instead of the clutch mechanism 27, a normal impact mechanism may be provided.
  • a cooling fan 24 is coaxially provided on the front side of the motor 2, and an exhaust port (ventilation port) is formed in the body portion 6a in the vicinity of the cooling fan 24, although not shown.
  • An intake port (ventilation port) 21 is formed at the rear end portion of the body portion 6a.
  • a passage 23 extending from the intake port 21 to an exhaust port formed in the vicinity of the cooling fan 24 serves as a cooling air flow passage.
  • the inverter circuit board 3 has a disk-like wiring board and covers one end side (rear side) of the stator 2c of the motor 2 entirely.
  • a dustproof cover 22 is provided on the other end side (front side) of the stator 2 c and covers the other end side surface of the stator 2 c, similarly to the inverter circuit board 3.
  • Both the inverter circuit board 3 and the dustproof cover 22 form a dustproof structure (sealed structure) that closes or seals the rotor 2a together with the stator 2c. Thereby, the penetration
  • a switch trigger 7 is disposed in the vicinity of the upper end of the handle portion 6b, and the trigger operation portion 7a of the switch trigger 7 projects from the handle housing portion 6b while being biased by a spring force.
  • the trigger push-in amount operation amount
  • the rotation speed of the motor 2 can be controlled.
  • a battery pack 30 serving as a driving power source for the motor 2 is detachably attached to the lower end portion of the handle portion 6b.
  • a control circuit board 4 on which a control circuit 50 for controlling the inverter circuit 40 of the motor 2 is mounted is provided above the battery pack 30.
  • the battery pack 30 is electrically connected so as to supply drive power to the switch trigger 7 and the control circuit board 4 and further to supply drive power to the inverter circuit board 3.
  • FIG. 3 is a circuit diagram showing a switching element for one phase of the inverter circuit 40 and a gate drive signal generation circuit portion thereof.
  • a diode D1 for charging it is added to the gate drive signal generation circuit of the high-side switching elements Q1 to Q3.
  • the resistors R7 to R10 are inserted in the gate circuits of the high side switching elements Q1 to Q3 and the low side switching elements Q4 to Q6, and the resistor R11 is connected between the drain and source of the high side switching elements Q1 to Q3. Yes.
  • the resistor R11 has such a high resistance that power consumption can be ignored.
  • the terminal voltage of the stator winding 2d of each phase (U-phase, V-phase, W-phase) can be detected by the calculation unit 51 via the set of voltage dividing resistors R5 and R6.
  • the high side control signal output from the calculation unit 51 to the control signal output circuit (gate driver) 52 is a signal for generating drive signals H1 to H3 to be applied to the gates of the high side switching elements Q1 to Q3.
  • the low side control signal is a signal for generating drive signals H4 to H6 to be applied to the gates of the low side switching elements Q4 to Q6.
  • the operation of the bootstrap capacitor C1 will be briefly described. Since the maximum value of the terminal voltage of the stator winding 2d of each phase (U phase, V phase, W phase) of the motor 2 is the DC supply voltage Vcc, the high side switching elements Q1 to Q3 are turned on. Therefore, a gate voltage higher than the DC supply voltage Vcc is required as the drive signals H1 to H3 applied to the gate. Therefore, by charging the bootstrap capacitor C1 in the direction shown in FIG. 3 while the low-side switching elements Q4 to Q6 are on, the low-side switching elements Q4 to Q6 are turned off using this charging voltage. During the period, drive signals H1 to H3 higher than the DC supply voltage Vcc (higher than the source potential of the high side switching elements Q1 to Q3) can be applied to the gates of the high side switching elements Q1 to Q3. *
  • FIG. 4 shows the flow of the operation check of the entire electric system. After the trigger operation unit 7a of the switch trigger 7 is operated and the control circuit 50 starts the control, before the inverter circuit 40 is started (before the motor 2 is normally operated). ) A U-phase operation check is performed in step # 1, then a V-phase operation check is performed in step # 2, and finally a W-phase operation check is performed in step # 3. The order of the phase operation check can be arbitrarily changed.
  • FIG. 5 shows the flow of each phase operation check for the U, V, and W phases.
  • N-type MOSFETs are used as the switching elements Q1 to Q6.
  • the low side (LOW side) MOSFET is once turned on at step # 10, and as a result, the bootstrap capacitor charging at step # 11 is performed. Thereafter, the low side MOSFET is turned off in step # 12, and the high side (HIGH side) MOSFET is turned on in step # 13.
  • the calculation unit 51 determines whether the terminal voltage of the stator winding 2d (the voltage at the connection point between the high-side MOSFET and the low-side MOSFET) is the DC supply voltage Vcc ⁇ 1V.
  • step # 15 When the terminal voltage is the DC supply voltage Vcc ⁇ 1 V which is a predetermined voltage range (in the case of YES), the inverter circuit 40 is normal in step # 15 (that is, there is no conduction failure of the drive signal line to the gate of the low side MOSFET, It is determined that the bootstrap capacitor is charged and there is no conduction failure of the drive signal line to the high-side MOSFET gate. In step # 16, the high-side MOSFET is turned off, and the operation of the phase to be checked End the check.
  • step # 17 If the terminal voltage is not the DC supply voltage Vcc ⁇ 1V (in the case of NO), it is determined in step # 17 that the inverter circuit 40 is abnormal, the high-side MOSFET is turned off in step # 16, and the phase to be checked is checked. End the operation check.
  • the calculation unit 51 controls so that the subsequent normal operation of the inverter circuit 40 cannot be performed (so that the inverter circuit 40 is not activated), and the abnormality is notified to the outside. Output a signal.
  • the inverter circuit 40 If no abnormality is detected in the inverter circuit 40 as a result of the all-phase check of the U, V, and W phases, the inverter circuit 40 is activated by the calculation unit 51, and the normal operation is performed based on the PWM drive signals H1 to H6. The rotation control of the motor 2 is performed.
  • the operation check of FIGS. 4 and 5 can detect an operation failure of the inverter circuit 40 (for example, a conduction failure of the drive signal line to the gate of the switching element), and the inverter circuit 40 is switched by performing motor control in the failure state. It is possible to prevent the elements and the like from being damaged.
  • the inverter circuit board 3 on which the inverter circuit 40 is mounted and the control circuit board 4 on which the control circuit 50 is mounted are connected by a wire harness 80 as a wiring component
  • the connection failure of the wire harness during assembly Incorrect connection, poor conduction, etc.
  • caused an operation failure of the inverter circuit 40 and although the inverter circuit 40 itself was a normal product, the inverter circuit 40 was sometimes damaged. Inconvenience can be prevented.
  • the same effect can be expected when wiring components other than the wire harness (for example, a multi-core cable) are used.
  • FIG. 6 shows another example of the operation check for each phase of the U, V, and W phases, and steps # 20 to # 23 are added to the steps of FIG. ) Is detected.
  • all MOSFETs are turned off in step # 20 by starting phase operation check.
  • the terminal voltage of the stator winding 2d (voltage at the connection point between the high-side MOSFET and the low-side MOSFET) is within a predetermined voltage range, that is, DC supply. Whether the voltage is Vcc ⁇ 1 V is determined by the calculation unit 51. If the terminal voltage is the DC supply voltage Vcc ⁇ 1 V (in the case of YES), it is determined in step # 22 that the inverter circuit 40 is normal, and the same operation check as in FIG.
  • step # 23 If the terminal voltage is not the DC supply voltage Vcc ⁇ 1V (in the case of NO), it is determined in step # 23 that the inverter circuit 40 is abnormal.
  • the calculation unit 51 controls so that the subsequent normal operation of the inverter circuit 40 cannot be performed (so that the inverter circuit 40 is not activated), and the abnormality is notified to the outside. Output a signal.
  • the calculation unit 51 of the control circuit 50 detects the voltage at the connection point between the high-side switching elements Q1 to Q3 and the low-side switching elements Q4 to Q6 (terminal voltage of the stator winding 2d of each phase). Therefore, when the detection result of the voltage at the connection point is abnormal (the voltage at the connection point is out of the predetermined range), the inverter circuit 40 can be prevented from being damaged by performing control that does not start the inverter circuit 40.
  • the inverter circuit 40 is mounted on the inverter circuit board 3 as the first board, the control circuit 50 is mounted on the control circuit board 4 as the second board, and the inverter circuit board 3 and the control circuit board 4 are mounted.
  • the inverter circuit 40 cannot operate normally due to a connection failure of the wire harness 80 or the like. .
  • the inverter circuit 40 may be damaged, but this can be prevented beforehand.
  • the low side switching elements Q4 to Q6 are once turned on to charge the bootstrap capacitor C1, and then the low side switching elements Q4 to Q6 are turned off and the high side switching elements Q1 to Q3 are turned on to be high.
  • an operation check flow for detecting the voltage at the connection point between the side switching elements Q1 to Q3 and the low side switching elements Q4 to Q6 (terminal voltage of the stator winding 2d of each phase)
  • the switching elements Q1 to Q6 Even if an N-type MOSFET is used, the operation of the inverter circuit 40 can be checked.
  • the inverter circuit 40 itself is defective. For example, a short circuit failure of the low side switching element can be detected.
  • P-type MOSFETs may be used as the switching elements Q1 to Q6.
  • the drive signals H1 to H3, which are the gate signals of the high side switching elements Q1 to Q3 have a voltage value lower than the DC supply voltage Vcc, a bootstrap capacitor is not used. For this reason, the step for charging the bootstrap capacitor in step # 10 and step # 11 in FIGS. 5 and 6 is omitted. *
  • this invention is applicable if it is an electric equipment which controls motors, such as not only an electric tool but a high-pressure washing machine, with an inverter circuit.
  • SYMBOLS 1 Electric tool, 2 ... Brushless DC motor, 2a ... Rotor, 2b ... Permanent magnet, 2c ... Stator, 2d ... Stator winding, 2e ... Rotary shaft, 3 ... Inverter circuit board, 4 ... Control circuit board, DESCRIPTION OF SYMBOLS 6 ... Housing, 7 ... Switch trigger, 7a ... Trigger operation part, 25 ... Power transmission part, 26 ... Deceleration mechanism part, 27 ... Clutch mechanism part, 28 ... Chuck (tip tool attachment part), 30 ... Battery pack, 40 ... Inverter circuit, 50 ... control circuit, 51 ... arithmetic unit, 52 ... control signal output circuit, 53 ...
  • rotor position detection circuit 54 ... rotational speed detection circuit, 60 ... rotational position detection element, C1 ... bootstrap capacitor, D1 ... Diodes, H1 to H6 ... Drive signals, Q1 to Q6 ... Switching elements, R1 to R11 ... Resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

To ensure that an inverter circuit is not started when a connection fault or miswiring is present, and to make it possible to prevent the inverter circuit from being damaged, the present invention is provided with a motor (2), an inverter circuit (40) for driving the motor, and a control circuit (50) for controlling the inverter circuit (40). The inverter circuit (40) has a serial connection between high-side switching elements (Q1-Q3) and low-side switching elements (Q4-Q6), and the control circuit (50) is configured so as not to start the inverter circuit (40) when the voltage is irregular at the points of connection between the high-side switching elements (Q1-Q3) and the low-side switching elements (Q4-Q6).

Description

電気機器Electrical equipment
本発明は、インバータ回路を用いてモータを駆動する電動工具や、洗浄機等の電気機器に関する。 The present invention relates to an electric tool that drives a motor using an inverter circuit, and an electric device such as a washing machine.
近年、電動工具を含む各種電気機器において、ブラシレスモータ等のモータ駆動をインバータ回路を介して行う構成が一般的になってきている。この場合、モータを駆動するインバータ回路と、これを制御する制御回路とを物理的に離して配置し、両者間をワイヤーハーネスで接続する構造が採用されることがあるが、組立時にワイヤーハーネスの接続不良(誤接続、導通不良等)が存在すると、その接続不良に起因してインバータ回路の運転時にインバータ回路の破損が発生する可能性がある。また、ワイヤーハーネスを使用しない場合でも誤配線に起因する故障のおそれがある。このため、接続不良や誤配線のある状態ではインバータ回路を起動できないようにして、インバータ回路の破損を未然に回避することが望ましい。 In recent years, in various electric devices including electric tools, a configuration in which a motor such as a brushless motor is driven via an inverter circuit has become common. In this case, an inverter circuit that drives the motor and a control circuit that controls the inverter circuit may be physically separated, and a structure may be employed in which the two are connected by a wire harness. If there is a connection failure (misconnection, continuity failure, etc.), the inverter circuit may be damaged during operation of the inverter circuit due to the connection failure. Moreover, even when the wire harness is not used, there is a risk of failure due to incorrect wiring. For this reason, it is desirable to prevent the inverter circuit from being damaged by preventing the inverter circuit from starting in a state where there is a connection failure or incorrect wiring.
特開2009-40178号公報JP 2009-40178 A
特許文献1はモータ駆動をインバータ回路で行う場合において、モータ電流に着目してモータの駆動コイル異常を検知することを主目的とするものである。本発明の目的は、接続不良や誤配線のある状態ではインバータ回路を起動しないようにして、インバータ回路の破損を未然に回避可能な電気機器を提供することにある。 Patent Document 1 mainly aims to detect motor drive coil abnormality by focusing on the motor current when the motor is driven by an inverter circuit. An object of the present invention is to provide an electrical device that can prevent the inverter circuit from being damaged by preventing the inverter circuit from being activated in a state where there is a connection failure or miswiring.
本発明の第1の態様は電気機器である。この電気機器は、モータと、前記モータを駆動するインバータ回路と、前記インバータ回路を制御する制御回路と、を備え、前記インバータ回路は互いに直列に接続されたハイサイド・スイッチング素子とローサイド・スイッチング素子とを有し、前記制御回路は前記モータを起動する前の状態において前記スイッチング素子の少なくとも一方の駆動信号ラインが導通不良の場合には前記インバータ回路を起動しないように構成したことを特徴とする。 The first aspect of the present invention is an electrical device. The electric device includes a motor, an inverter circuit that drives the motor, and a control circuit that controls the inverter circuit, and the inverter circuit is connected in series to each other in a high-side switching element and a low-side switching element. And the control circuit is configured not to start the inverter circuit when at least one drive signal line of the switching element is defective in a state before starting the motor. .
前記第1の態様において、前記インバータ回路は前記ハイサイド・スイッチング素子と前記ローサイド・スイッチング素子との間に電圧を検知するための接続点を有し、前記制御回路は前記モータを起動する前の状態において前記接続点の電圧が異常の場合には前記モータを起動しないように構成するとよい。  In the first aspect, the inverter circuit has a connection point for detecting a voltage between the high-side switching element and the low-side switching element, and the control circuit is provided before starting the motor. The motor may be configured not to start when the voltage at the connection point is abnormal in the state. *
本発明の第2の態様も電気機器である。この電気機器は、モータと、前記モータを駆動するインバータ回路と、前記インバータ回路を制御する制御回路と、を備え、前記インバータ回路は互いに直列に接続されたハイサイド・スイッチング素子とローサイド・スイッチング素子との間に電圧を検知するための接続点を有し、前記制御回路は前記接続点の電圧が異常の場合には前記インバータ回路を起動しないように構成したことを特徴とする。 The second aspect of the present invention is also an electric device. The electric device includes a motor, an inverter circuit that drives the motor, and a control circuit that controls the inverter circuit, and the inverter circuit is connected in series to each other in a high-side switching element and a low-side switching element. The control circuit is configured not to start up the inverter circuit when the voltage at the connection point is abnormal.
前記第1又は第2の態様において、前記ローサイド・スイッチング素子のオフ状態で前記ハイサイド・スイッチング素子をオンにして前記ハイサイド・スイッチング素子と前記ローサイド・スイッチング素子との接続点の電圧を検知する構成であるとよい。  In the first or second aspect, the high-side switching element is turned on in the off state of the low-side switching element to detect a voltage at a connection point between the high-side switching element and the low-side switching element. It may be a configuration. *
前記第1又は第2の態様において、前記ハイサイド・スイッチング素子側にブートストラップ・コンデンサが設けられており、前記ローサイド・スイッチング素子を一旦オンして前記ブートストラップ・コンデンサを充電してから、前記ローサイド・スイッチング素子をオフするとともに前記ハイサイド・スイッチング素子をオンして前記ハイサイド・スイッチング素子と前記ローサイド・スイッチング素子との接続点の電圧を検知する構成であるとよい。  In the first or second aspect, a bootstrap capacitor is provided on the high-side switching element side, and the low-side switching element is turned on once to charge the bootstrap capacitor, The low-side switching element may be turned off and the high-side switching element may be turned on to detect the voltage at the connection point between the high-side switching element and the low-side switching element. *
前記第1又は第2の態様において、前記インバータ回路の全てのスイッチング素子のオフ状態にて、前記ハイサイド・スイッチング素子と前記ローサイド・スイッチング素子との接続点の電圧を検知する構成であるとよい。  In the first or second aspect, the voltage at the connection point between the high-side switching element and the low-side switching element may be detected when all the switching elements of the inverter circuit are off. . *
前記第1又は第2の態様において、前記インバータ回路が第1の基板に搭載され、前記制御回路が第2の基板に搭載され、前記第1の基板と前記第2の基板とが配線部品で電気接続されている構成であるとよい。 In the first or second aspect, the inverter circuit is mounted on a first board, the control circuit is mounted on a second board, and the first board and the second board are wiring components. It is preferable that the configuration be electrically connected.
前記第1の態様において、前記インバータ回路は前記ハイサイド・スイッチング素子と前記ローサイド・スイッチング素子との間に電圧を検知するための接続点を有し、前記制御回路は前記モータを起動する前の状態において前記接続点の電圧が所定範囲外の場合に前記モータを起動しないように構成するとよい。  In the first aspect, the inverter circuit has a connection point for detecting a voltage between the high-side switching element and the low-side switching element, and the control circuit is provided before starting the motor. The motor may be configured not to start when the voltage at the connection point is outside a predetermined range in the state. *
前記第2の態様において、前記制御部は、前記接続点の電圧が所定範囲外の場合に前記モータを起動しないように構成するとよい。  In the second aspect, the control unit may be configured not to start the motor when the voltage at the connection point is outside a predetermined range. *
なお、以上の構成要素の任意の組合せ、本発明の表現を方法やシステムなどの間で変換したものもまた、本発明の態様として有効である。 It should be noted that any combination of the above-described constituent elements, and those obtained by converting the expression of the present invention between methods and systems are also effective as aspects of the present invention.
本発明に係る電気機器によれば、制御回路が、インバータ回路におけるハイサイド・スイッチング素子とローサイド・スイッチング素子との接続点の電圧を検知する機能を有し、前記接続点の電圧の検知結果が異常の場合には前記インバータ回路を起動しないようにすることで、インバータ回路の破損を未然に回避可能である。 According to the electric device of the present invention, the control circuit has a function of detecting the voltage at the connection point between the high-side switching element and the low-side switching element in the inverter circuit, and the detection result of the voltage at the connection point is By preventing the inverter circuit from starting in the case of an abnormality, it is possible to avoid damage to the inverter circuit.
本発明に係る電気機器の実施の形態であって電動工具の電気系統図。1 is an electric system diagram of an electric tool according to an embodiment of an electric device according to the present invention. 同じく電動工具の側面図。The side view of an electric tool. 実施の形態において、インバータ回路の一相分のスイッチング素子及びそのゲート駆動信号作成回路部分を示す回路図。The circuit diagram which shows the switching element for one phase of an inverter circuit, and its gate drive signal preparation circuit part in embodiment. 前記インバータ回路の3相の動作チェックのフローチャート。The flowchart of the 3-phase operation | movement check of the said inverter circuit. 前記インバータ回路の1相分の動作チェックのフローチャート。The flowchart of the operation | movement check for 1 phase of the said inverter circuit. 前記インバータ回路の1相分の動作チェックの他の例を示すフローチャート。The flowchart which shows the other example of the operation | movement check for 1 phase of the said inverter circuit.
以下、図面を参照しながら本発明の好適な実施の形態を詳述する。なお、各図面に示される同一又は同等の構成要素、部材、処理等には同一の符号を付し、適宜重複した説明は省略する。また、実施の形態は発明を限定するものではなく例示であり、実施の形態に記述されるすべての特徴やその組み合わせは必ずしも発明の本質的なものであるとは限らない。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or equivalent component, member, process, etc. which are shown by each drawing, and the overlapping description is abbreviate | omitted suitably. In addition, the embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.
図1及び図2を用いて本発明に係る電気機器の実施の形態として電動工具を説明する。図1において、電動工具1の電気系統は、3相ブラシレス直流モータ2と、直流電源としての電池パック30と、モータ2を駆動するインバータ回路40と、インバータ回路40を制御する制御回路50とを有している。インバータ回路40には電池パック30からの直流電力が供給されるとともに、結線は省略したが制御回路50にも所定の直流電源電圧が供給されている。  An electric tool will be described as an embodiment of an electric apparatus according to the present invention with reference to FIGS. 1 and 2. In FIG. 1, the electric system of the electric tool 1 includes a three-phase brushless DC motor 2, a battery pack 30 as a DC power source, an inverter circuit 40 that drives the motor 2, and a control circuit 50 that controls the inverter circuit 40. Have. The inverter circuit 40 is supplied with DC power from the battery pack 30, and a predetermined DC power supply voltage is also supplied to the control circuit 50 although connection is omitted. *
3相ブラシレス直流モータ2は、図2に示すように、回転子(ロータ)2aと固定子巻線(電機子巻線)2dを含んで構成される。回転子2aは、回転軸2e方向に延びるN極およびS極の永久磁石(マグネット)2bを有する。固定子(ステータ)2cは円筒状の外形であって、そのティース部に巻かれる固定子巻線2dを有する、いわば内部磁石配置形のモータである。固定子巻線2dは、樹脂材料からなる絶縁層2fを介して固定子2cに巻回される。各相(U相、V相、W相)の固定子巻線2dはスター結線されている。 As shown in FIG. 2, the three-phase brushless DC motor 2 includes a rotor (rotor) 2a and a stator winding (armature winding) 2d. The rotor 2a has N-pole and S-pole permanent magnets (magnets) 2b extending in the direction of the rotation shaft 2e. The stator (stator) 2c has a cylindrical outer shape, and is a so-called internal magnet arrangement type motor having a stator winding 2d wound around a tooth portion thereof. The stator winding 2d is wound around the stator 2c via an insulating layer 2f made of a resin material. The stator winding 2d of each phase (U phase, V phase, W phase) is star-connected.
回転子2aの近傍には、3個の回転位置検出素子(ホール素子等)60が回転方向の60°毎に配置され、回転子2aの回転位置を電磁結合的に検出する。回転位置検出素子60は例えばインバータ回路基板3に搭載される。  In the vicinity of the rotor 2a, three rotational position detecting elements (Hall elements or the like) 60 are arranged every 60 ° in the rotational direction, and the rotational position of the rotor 2a is detected electromagnetically. The rotational position detection element 60 is mounted on the inverter circuit board 3, for example. *
インバータ回路40は、3相ブリッジ形式に接続されたFET等の6個のスイッチング素子Q1~Q6を含む。スイッチング素子Q1~Q3はハイサイド・スイッチング素子であり、スイッチング素子Q4~Q6はローサイド・スイッチング素子であり、各相のハイサイド・スイッチング素子とローサイド・スイッチング素子との接続点がスター結線されたU相、V相、W相の固定子巻線2dにそれぞれ接続されている。  The inverter circuit 40 includes six switching elements Q1 to Q6 such as FETs connected in a three-phase bridge format. Switching elements Q1 to Q3 are high-side switching elements, switching elements Q4 to Q6 are low-side switching elements, and the connection points between the high-side switching elements and the low-side switching elements in each phase are star-connected. The phase winding, the V phase, and the W phase are respectively connected to the stator winding 2d. *
制御回路50は、演算部51と、制御信号出力回路(ゲートドライバ)52と、3個の回転位置検出素子60の検出信号を受ける回転子位置検出回路53と、モータ回転数検出回路54とを少なくとも含む。回転子位置検出回路53の回転子位置検出信号は演算部51及びモータ回転数検出回路54に入力され、モータ回転数検出回路54のモータ回転数検出信号も演算部51に入力される。 The control circuit 50 includes a calculation unit 51, a control signal output circuit (gate driver) 52, a rotor position detection circuit 53 that receives detection signals from the three rotation position detection elements 60, and a motor rotation number detection circuit 54. Including at least. The rotor position detection signal of the rotor position detection circuit 53 is input to the calculation unit 51 and the motor rotation number detection circuit 54, and the motor rotation number detection signal of the motor rotation number detection circuit 54 is also input to the calculation unit 51.
演算部51は、図示していないが、処理プログラムとデータに基づいて制御信号を出力するためのCPU、後述するような制御フローを実行する処理プログラムや制御データを記憶するためのROM、データを一時記憶するためのRAM、時間をカウントするためのタイマ等を含むマイコンによって構成され、処理プログラムとデータに基づいて各種処理を実行する。回転子位置検出回路53は、3個の回転位置検出素子60の出力信号に基づいて回転子2aの回転位置を検出し、演算部51へ回転子2aの位置情報を出力する。回転数検出回路54は、3個の回転位置検出素子60から一定間隔で出力される信号の時間間隔からモータ2の回転数を検出する。  Although not shown, the calculation unit 51 includes a CPU for outputting a control signal based on a processing program and data, a ROM for storing a processing program and control data for executing a control flow as described later, and data. The microcomputer includes a RAM for temporarily storing, a timer for counting time, and the like, and executes various processes based on the processing program and data. The rotor position detection circuit 53 detects the rotation position of the rotor 2 a based on the output signals of the three rotation position detection elements 60 and outputs the position information of the rotor 2 a to the calculation unit 51. The rotation speed detection circuit 54 detects the rotation speed of the motor 2 from the time interval of signals output at regular intervals from the three rotation position detection elements 60. *
回転子位置検出回路53からの回転子位置検出信号及び回転数検出回路54からの回転数検出信号に基づき演算部51は、制御信号出力回路52に各スイッチング素子Q1~Q6のオン期間を制御するための制御信号を出力し、この制御信号によって制御信号出力回路52は各スイッチング素子Q1~Q6のゲートにPWM駆動信号H1~H6を印加するようになっている。 Based on the rotor position detection signal from the rotor position detection circuit 53 and the rotation speed detection signal from the rotation speed detection circuit 54, the calculation unit 51 controls the control signal output circuit 52 to turn on the switching elements Q1 to Q6. For this reason, the control signal output circuit 52 applies PWM drive signals H1 to H6 to the gates of the switching elements Q1 to Q6.
図2に示すように、ハウジング6のハンドル部6bの上端付近にはスイッチトリガ7が配設され、スイッチトリガ7のトリガ操作部7aがバネ力によって付勢された状態でハンドル部6bから突出する。作業者がトリガ操作部7aを後方に押し込むことにより、トリガ押込量(操作量)を調整し、モータ2の回転数を制御することができる。スイッチトリガ7によるトリガ押込量は、スイッチング素子Q1~Q6を駆動するPWM駆動信号H1~H6のPWMデューティーに反映される。但し、一般的には、ローサイド・スイッチング素子Q4~Q6の駆動信号H4~H6のパルス幅は一定とし、ハイサイド・スイッチング素子Q1~Q3の駆動信号H1~H3のパルス幅を変化させるPWM制御を行う。 As shown in FIG. 2, a switch trigger 7 is disposed near the upper end of the handle portion 6b of the housing 6, and the trigger operation portion 7a of the switch trigger 7 protrudes from the handle portion 6b while being biased by a spring force. . When the operator pushes the trigger operation portion 7a backward, the trigger push-in amount (operation amount) can be adjusted and the rotation speed of the motor 2 can be controlled. The amount of trigger pressing by the switch trigger 7 is reflected in the PWM duty of the PWM drive signals H1 to H6 that drive the switching elements Q1 to Q6. However, in general, PWM control is performed to change the pulse width of the drive signals H1 to H3 of the high side switching elements Q1 to Q3 while keeping the pulse width of the drive signals H4 to H6 of the low side switching elements Q4 to Q6 constant. Do.
図2に示すように、インバータ回路30を搭載したインバータ回路基板(第1の基板)3はハウジング6の胴体部6a内に収納されたモータ2の背後に配置され、制御回路50を搭載した制御回路基板(第2の基板)4はハウジング6のハンドル部6b内の下部に収納されており、インバータ回路基板3と制御回路基板4とは配線部品としてのワイヤーハーネス80を介して電気接続されている。 As shown in FIG. 2, the inverter circuit board (first board) 3 on which the inverter circuit 30 is mounted is disposed behind the motor 2 housed in the body portion 6 a of the housing 6, and the control circuit 50 is mounted on the control circuit board. The circuit board (second board) 4 is housed in the lower part of the handle 6b of the housing 6, and the inverter circuit board 3 and the control circuit board 4 are electrically connected via a wire harness 80 as a wiring component. Yes.
本実施の形態では、ワイヤーハーネス80の基板3,4への接続不良(誤接続、導通不良等)を検出する目的で、各相(U相、V相、W相)のハイサイド・スイッチング素子とローサイド・スイッチング素子との接続点の電圧をそれぞれ分圧用抵抗を介して分圧した電圧を演算部51に入力している。すなわち、ハイサイド・スイッチング素子Q1とローサイド・スイッチング素子Q4との接続点の電圧Uv(U相の固定子巻線2dの端子電圧)が分圧用抵抗R1,R2で分圧された電圧Uv’、ハイサイド・スイッチング素子Q2とローサイド・スイッチング素子Q5との接続点の電圧Vv(V相の固定子巻線2dの端子電圧)が分圧用抵抗R3,R4で分圧された電圧Vv’及びハイサイド・スイッチング素子Q3とローサイド・スイッチング素子Q6との接続点の電圧Wv(W相の固定子巻線2dの端子電圧)が分圧用抵抗R5,R6で分圧された電圧Wv’がそれぞれ演算部51に入力されている。分圧用抵抗R1,R2と分圧用抵抗R3,R4と分圧用抵抗R5,R6は、同一の分圧比率(例えば1/5等)であり、分圧後の電圧Uv’、電圧Vv’、及び電圧Wv’が演算部51での処理に適した電圧範囲となるようにしている。 In the present embodiment, the high-side switching element of each phase (U phase, V phase, W phase) is detected for the purpose of detecting a connection failure (misconnection, conduction failure, etc.) to the substrates 3 and 4 of the wire harness 80. And a voltage obtained by dividing the voltage at the connection point between the low-side switching element and the low-side switching element through a voltage dividing resistor. That is, the voltage Uv ′ obtained by dividing the voltage Uv (the terminal voltage of the U-phase stator winding 2d) between the high-side switching element Q1 and the low-side switching element Q4 by the voltage dividing resistors R1 and R2; The voltage Vv ′ obtained by dividing the voltage Vv (the terminal voltage of the V-phase stator winding 2d) of the high-side switching element Q2 and the low-side switching element Q5 by the voltage dividing resistors R3 and R4 and the high side The voltage Wv ′ obtained by dividing the voltage Wv (the terminal voltage of the W-phase stator winding 2d) of the switching element Q3 and the low-side switching element Q6 by the voltage dividing resistors R5 and R6 is the calculation unit 51. Has been entered. The voltage dividing resistors R1 and R2, the voltage dividing resistors R3 and R4, and the voltage dividing resistors R5 and R6 have the same voltage dividing ratio (for example, 1/5), and the divided voltage Uv ′, voltage Vv ′, and The voltage Wv ′ is set to a voltage range suitable for processing in the calculation unit 51.
図2で電動工具1(図示の例はドライバドリル)の機械的構造について述べる。電動工具1は胴体部6a及びハンドル部6bとを有するハウジング6を有し、胴体部6a内にブラシレスモータ2を収納し、モータ2の駆動力を伝達する動力伝達部25により、スピンドル(出力軸)8に装着されたチャック(先端工具取付部)28に着脱自在に保持されるドライバ、ドリル等の先端工具(図示せず)に回転力を与える。モータ2の固定子2cは胴体部6aに固定されている。 The mechanical structure of the electric power tool 1 (the illustrated example is a driver drill) will be described with reference to FIG. The electric tool 1 includes a housing 6 having a body portion 6a and a handle portion 6b. The brushless motor 2 is housed in the body portion 6a, and a spindle (output shaft) is transmitted by a power transmission portion 25 that transmits the driving force of the motor 2. ) A rotational force is applied to a tip tool (not shown) such as a screwdriver or a drill that is detachably held by the chuck (tip tool attaching portion) 28 attached to 8. The stator 2c of the motor 2 is fixed to the body portion 6a.
胴体部6aの後方側には、モータ2を駆動するためのインバータ回路40を搭載したインバータ回路基板3が収容され、胴体部6aの中間部および前方側には、モータ2の回転軸2e方向に回転力を伝達し、モータ2の回転数を減速するための減速機構部26と、減速機構部26の出力軸に得られる回転トルクをスピンドル8に伝達するクラッチ機構部27が収容される。クラッチ機構部27は、減速機構部26の回転力をスピンドル(出力軸)8に伝達するように結合される。クラッチ機構部27は、モード切替およびトルク調整のためのダイヤル(クラッチダイヤル)5を有し、ダイヤル5によって作業者がドライバモード又はドリルモードを設定できるように構成される。なお、このクラッチ機構部27の代わりに、通常のインパクト機構を設けてもよい。 An inverter circuit board 3 on which an inverter circuit 40 for driving the motor 2 is mounted is accommodated on the rear side of the body portion 6a. The intermediate portion and the front side of the body portion 6a are arranged in the direction of the rotating shaft 2e of the motor 2. A speed reduction mechanism portion 26 for transmitting the rotational force and reducing the rotational speed of the motor 2 and a clutch mechanism portion 27 for transmitting the rotational torque obtained at the output shaft of the speed reduction mechanism portion 26 to the spindle 8 are housed. The clutch mechanism 27 is coupled so as to transmit the rotational force of the speed reduction mechanism 26 to the spindle (output shaft) 8. The clutch mechanism unit 27 includes a dial (clutch dial) 5 for mode switching and torque adjustment, and the dial 5 is configured so that an operator can set a driver mode or a drill mode. Instead of the clutch mechanism 27, a normal impact mechanism may be provided.
モータ2の前方側には冷却用ファン24が同軸上に設けられ、冷却用ファン24近傍の胴体部6aには、図示されていないが、排気口(通風口)が形成される。胴体部6aの後端部には吸気口(通風口)21が形成され、この吸気口21から冷却用ファン24の近傍に形成される排気口に至る通路23は、冷却用空気の流通路を形成し、インバータ回路基板3に搭載のスイッチング素子Q1~Q6の温度上昇、およびモータ2の固定子巻線2dの温度上昇を抑制する。 A cooling fan 24 is coaxially provided on the front side of the motor 2, and an exhaust port (ventilation port) is formed in the body portion 6a in the vicinity of the cooling fan 24, although not shown. An intake port (ventilation port) 21 is formed at the rear end portion of the body portion 6a. A passage 23 extending from the intake port 21 to an exhaust port formed in the vicinity of the cooling fan 24 serves as a cooling air flow passage. Thus, the temperature rise of the switching elements Q1 to Q6 mounted on the inverter circuit board 3 and the temperature rise of the stator winding 2d of the motor 2 are suppressed.
インバータ回路基板3は、円板状の配線基板を有し、モータ2の固定子2cの一端部側(後方側)を全面的に覆う。一方、固定子2cの他端部側(前方側)には、防塵カバー22が設けられ、インバータ回路基板3と同様に、固定子2cの他端部側面を覆う。これらインバータ回路基板3および防塵カバー22の両者は、固定子2cと共に、回転子2aを閉塞又は密封する防塵構造(密閉構造)を形成する。これにより、モータ2への粉塵の侵入を防止できる。 The inverter circuit board 3 has a disk-like wiring board and covers one end side (rear side) of the stator 2c of the motor 2 entirely. On the other hand, a dustproof cover 22 is provided on the other end side (front side) of the stator 2 c and covers the other end side surface of the stator 2 c, similarly to the inverter circuit board 3. Both the inverter circuit board 3 and the dustproof cover 22 form a dustproof structure (sealed structure) that closes or seals the rotor 2a together with the stator 2c. Thereby, the penetration | invasion of the dust to the motor 2 can be prevented.
ハンドル部6bの上端付近にはスイッチトリガ7が配設され、スイッチトリガ7のトリガ操作部7aがバネ力によって付勢された状態でハンドルハウジング部6bから突出する。作業者がトリガ操作部7aを後方に押し込むことにより、トリガ押込量(操作量)を調整し、モータ2の回転数を制御することができる。  A switch trigger 7 is disposed in the vicinity of the upper end of the handle portion 6b, and the trigger operation portion 7a of the switch trigger 7 projects from the handle housing portion 6b while being biased by a spring force. When the operator pushes the trigger operation portion 7a backward, the trigger push-in amount (operation amount) can be adjusted and the rotation speed of the motor 2 can be controlled. *
ハンドル部6bの下端部には、モータ2の駆動電源となる電池パック30が着脱可能に装着される。電池パック30の上部には、モータ2のインバータ回路40を制御するための制御回路50が搭載された制御回路基板4が設けられる。電池パック30は、スイッチトリガ7および制御回路基板4へ駆動電源を供給し、さらにインバータ回路基板3へ駆動電力を供給するように電気的に接続される。 A battery pack 30 serving as a driving power source for the motor 2 is detachably attached to the lower end portion of the handle portion 6b. A control circuit board 4 on which a control circuit 50 for controlling the inverter circuit 40 of the motor 2 is mounted is provided above the battery pack 30. The battery pack 30 is electrically connected so as to supply drive power to the switch trigger 7 and the control circuit board 4 and further to supply drive power to the inverter circuit board 3.
図3はインバータ回路40の一相分のスイッチング素子及びそのゲート駆動信号作成回路部分を示す回路図であり、スイッチング素子Q1~Q6としてN型MOSFETを使用した場合に必要となるブートストラップ・コンデンサC1及びこれを充電するためのダイオードD1をハイサイド・スイッチング素子Q1~Q3のゲート駆動信号作成回路に付加している。なお、抵抗R7~R10はハイサイド・スイッチング素子Q1~Q3及びローサイド・スイッチング素子Q4~Q6のゲート回路に挿入され、抵抗R11はハイサイド・スイッチング素子Q1~Q3のドレイン、ソース間に接続されている。抵抗R11は消費電力を無視できるような高抵抗であって、全てのスイッチング素子Q1~Q6がオフの場合であっても、図1の分圧抵抗R1,R2の組、分圧抵抗R3,R4の組、あるいは分圧抵抗R5,R6の組を介して演算部51で各相(U相、V相、W相)の固定子巻線2dの端子電圧を検知できるようにしている。なお、演算部51から制御信号出力回路(ゲートドライバ)52に出力されるハイサイド制御信号はハイサイド・スイッチング素子Q1~Q3のゲートに印加する駆動信号H1~H3を作成するための信号であり、ローサイド制御信号はローサイド・スイッチング素子Q4~Q6のゲートに印加する駆動信号H4~H6を作成するための信号である。 FIG. 3 is a circuit diagram showing a switching element for one phase of the inverter circuit 40 and a gate drive signal generation circuit portion thereof. A bootstrap capacitor C1 required when N-type MOSFETs are used as the switching elements Q1 to Q6. In addition, a diode D1 for charging it is added to the gate drive signal generation circuit of the high-side switching elements Q1 to Q3. The resistors R7 to R10 are inserted in the gate circuits of the high side switching elements Q1 to Q3 and the low side switching elements Q4 to Q6, and the resistor R11 is connected between the drain and source of the high side switching elements Q1 to Q3. Yes. The resistor R11 has such a high resistance that power consumption can be ignored. Even when all the switching elements Q1 to Q6 are turned off, the group of the voltage dividing resistors R1, R2 and the voltage dividing resistors R3, R4 in FIG. The terminal voltage of the stator winding 2d of each phase (U-phase, V-phase, W-phase) can be detected by the calculation unit 51 via the set of voltage dividing resistors R5 and R6. The high side control signal output from the calculation unit 51 to the control signal output circuit (gate driver) 52 is a signal for generating drive signals H1 to H3 to be applied to the gates of the high side switching elements Q1 to Q3. The low side control signal is a signal for generating drive signals H4 to H6 to be applied to the gates of the low side switching elements Q4 to Q6.
ここで、ブートストラップ・コンデンサC1の作用を簡単に説明する。モータ2のスター結線された各相(U相、V相、W相)の固定子巻線2dの端子電圧の最大値は直流供給電圧Vccであるから、ハイサイド・スイッチング素子Q1~Q3をオンさせるためにゲートに印加する駆動信号H1~H3として直流供給電圧Vccよりも高いゲート電圧が必要となる。このため、ローサイド・スイッチング素子Q4~Q6のオン期間に図3の図示の向きにブートストラップ・コンデンサC1を充電しておくことで、この充電電圧を利用してローサイド・スイッチング素子Q4~Q6のオフ期間に直流供給電圧Vccよりも高い(ハイサイド・スイッチング素子Q1~Q3のソース電位より高い)駆動信号H1~H3をハイサイド・スイッチング素子Q1~Q3のゲートに印加することができる。  Here, the operation of the bootstrap capacitor C1 will be briefly described. Since the maximum value of the terminal voltage of the stator winding 2d of each phase (U phase, V phase, W phase) of the motor 2 is the DC supply voltage Vcc, the high side switching elements Q1 to Q3 are turned on. Therefore, a gate voltage higher than the DC supply voltage Vcc is required as the drive signals H1 to H3 applied to the gate. Therefore, by charging the bootstrap capacitor C1 in the direction shown in FIG. 3 while the low-side switching elements Q4 to Q6 are on, the low-side switching elements Q4 to Q6 are turned off using this charging voltage. During the period, drive signals H1 to H3 higher than the DC supply voltage Vcc (higher than the source potential of the high side switching elements Q1 to Q3) can be applied to the gates of the high side switching elements Q1 to Q3. *
図4及び図5のフローチャートを用いて、電動工具1の電気系統の動作チェックについて説明する。  The operation check of the electric system of the electric power tool 1 will be described with reference to the flowcharts of FIGS. 4 and 5. *
図4は電気系統全体の動作チェックの流れを示し、スイッチトリガ7のトリガ操作部7aが操作されて制御回路50による制御開始後、インバータ回路40の起動前に(モータ2の通常運転の前に)ステップ#1でU相動作チェックを行い、次いでステップ#2でV相動作チェックを行い、最後にステップ#3でW相動作チェックを行う。なお、相動作チェックの順番は任意に変更可能である。 FIG. 4 shows the flow of the operation check of the entire electric system. After the trigger operation unit 7a of the switch trigger 7 is operated and the control circuit 50 starts the control, before the inverter circuit 40 is started (before the motor 2 is normally operated). ) A U-phase operation check is performed in step # 1, then a V-phase operation check is performed in step # 2, and finally a W-phase operation check is performed in step # 3. The order of the phase operation check can be arbitrarily changed.
図5はU,V,W相の各相動作チェックの流れを示す。但し、各スイッチング素子Q1~Q6としてN型MOSFETを使用した場合である。まず、相動作チェック開始によりステップ#10でローサイド(LOWサイド)MOSFETを一旦オンにし、この結果ステップ#11のブートストラップ・コンデンサ充電が行われる。その後、ステップ#12でローサイドMOSFETをオフにし、ステップ#13でハイサイド(HIGHサイド)MOSFETをオンにする。そして、ステップ#14で固定子巻線2dの端子電圧(ハイサイドMOSFETとローサイドMOSFETとの接続点の電圧)が直流供給電圧Vcc±1Vであるかどうかを演算部51で判断する。端子電圧が所定電圧範囲である直流供給電圧Vcc±1Vである場合(YESの場合)、ステップ#15でインバータ回路40は正常(つまり、ローサイドMOSFETのゲートへの駆動信号ラインの導通不良が無く、ブートストラップ・コンデンサの充電が行われ、かつハイサイドMOSFETゲートへの駆動信号ラインの導通不良が無い状態)であると判断し、ステップ#16でハイサイドMOSFETをオフにし、チェック対象の相の動作チェックを終了する。また、端子電圧が直流供給電圧Vcc±1Vではない場合(NOの場合)、ステップ#17でインバータ回路40は異常であると判断し、ステップ#16でハイサイドMOSFETをオフにし、チェック対象の相の動作チェックを終了する。インバータ回路40が異常であると判断したときは、演算部51は以後のインバータ回路40の通常運転が出来ないように制御する(インバータ回路40が起動しないようにする)とともに、異常を外部に報知する信号を出力する。また、U,V,W相の全相チェックの結果、インバータ回路40の異常が検知されなかったときは、演算部51によりインバータ回路40が起動され、PWM駆動信号H1~H6に基づいて通常のモータ2の回転制御が行われる。 FIG. 5 shows the flow of each phase operation check for the U, V, and W phases. However, this is a case where N-type MOSFETs are used as the switching elements Q1 to Q6. First, at the start of the phase operation check, the low side (LOW side) MOSFET is once turned on at step # 10, and as a result, the bootstrap capacitor charging at step # 11 is performed. Thereafter, the low side MOSFET is turned off in step # 12, and the high side (HIGH side) MOSFET is turned on in step # 13. In step # 14, the calculation unit 51 determines whether the terminal voltage of the stator winding 2d (the voltage at the connection point between the high-side MOSFET and the low-side MOSFET) is the DC supply voltage Vcc ± 1V. When the terminal voltage is the DC supply voltage Vcc ± 1 V which is a predetermined voltage range (in the case of YES), the inverter circuit 40 is normal in step # 15 (that is, there is no conduction failure of the drive signal line to the gate of the low side MOSFET, It is determined that the bootstrap capacitor is charged and there is no conduction failure of the drive signal line to the high-side MOSFET gate. In step # 16, the high-side MOSFET is turned off, and the operation of the phase to be checked End the check. If the terminal voltage is not the DC supply voltage Vcc ± 1V (in the case of NO), it is determined in step # 17 that the inverter circuit 40 is abnormal, the high-side MOSFET is turned off in step # 16, and the phase to be checked is checked. End the operation check. When it is determined that the inverter circuit 40 is abnormal, the calculation unit 51 controls so that the subsequent normal operation of the inverter circuit 40 cannot be performed (so that the inverter circuit 40 is not activated), and the abnormality is notified to the outside. Output a signal. If no abnormality is detected in the inverter circuit 40 as a result of the all-phase check of the U, V, and W phases, the inverter circuit 40 is activated by the calculation unit 51, and the normal operation is performed based on the PWM drive signals H1 to H6. The rotation control of the motor 2 is performed.
図4及び図5の動作チェックにより、インバータ回路40の動作不良(例えばスイッチング素子のゲートへの駆動信号ラインの導通不良等)を検知でき、不良状態でモータ制御を行うことでインバータ回路40のスイッチング素子等が破損する事態を未然に防止できる。とくに、インバータ回路40を搭載したインバータ回路基板3と、制御回路50を搭載した制御回路基板4とが配線部品としてのワイヤーハーネス80で接続されている場合に、組立時におけるワイヤーハーネスの接続不良(誤接続、導通不良等)に起因してインバータ回路40の動作不良が発生し、インバータ回路40自体は正常品であるのにもかかわらずインバータ回路40を破損する場合があったが、そのような不都合を防止できる。ワイヤーハーネス以外の配線部品(例えば多芯ケーブル等)を用いた場合にも同様の効果が期待できる。 The operation check of FIGS. 4 and 5 can detect an operation failure of the inverter circuit 40 (for example, a conduction failure of the drive signal line to the gate of the switching element), and the inverter circuit 40 is switched by performing motor control in the failure state. It is possible to prevent the elements and the like from being damaged. In particular, when the inverter circuit board 3 on which the inverter circuit 40 is mounted and the control circuit board 4 on which the control circuit 50 is mounted are connected by a wire harness 80 as a wiring component, the connection failure of the wire harness during assembly ( Incorrect connection, poor conduction, etc.) caused an operation failure of the inverter circuit 40, and although the inverter circuit 40 itself was a normal product, the inverter circuit 40 was sometimes damaged. Inconvenience can be prevented. The same effect can be expected when wiring components other than the wire harness (for example, a multi-core cable) are used.
図6はU,V,W相の各相動作チェックの他の例であって、図5の各ステップに加えてステップ#20~#23を付加してインバータ回路40の自体の不良(例えばMOSFETの短絡不良等)を検知するようにしている。まず相動作チェック開始によりステップ#20で全MOSFETをオフにし、ステップ#21で固定子巻線2dの端子電圧(ハイサイドMOSFETとローサイドMOSFETとの接続点の電圧)が所定電圧範囲、つまり直流供給電圧Vcc±1Vであるかどうかを演算部51で判断する。端子電圧が直流供給電圧Vcc±1Vである場合(YESの場合)、ステップ#22でインバータ回路40は正常であると判断し、以下図5と同様の動作チェックを行う。また、端子電圧が直流供給電圧Vcc±1Vではない場合(NOの場合)、ステップ#23でインバータ回路40は異常であると判断する。インバータ回路40が異常であると判断したときは、演算部51は以後のインバータ回路40の通常運転が出来ないように制御する(インバータ回路40が起動しないようにする)とともに、異常を外部に報知する信号を出力する。 FIG. 6 shows another example of the operation check for each phase of the U, V, and W phases, and steps # 20 to # 23 are added to the steps of FIG. ) Is detected. First, all MOSFETs are turned off in step # 20 by starting phase operation check. In step # 21, the terminal voltage of the stator winding 2d (voltage at the connection point between the high-side MOSFET and the low-side MOSFET) is within a predetermined voltage range, that is, DC supply. Whether the voltage is Vcc ± 1 V is determined by the calculation unit 51. If the terminal voltage is the DC supply voltage Vcc ± 1 V (in the case of YES), it is determined in step # 22 that the inverter circuit 40 is normal, and the same operation check as in FIG. If the terminal voltage is not the DC supply voltage Vcc ± 1V (in the case of NO), it is determined in step # 23 that the inverter circuit 40 is abnormal. When it is determined that the inverter circuit 40 is abnormal, the calculation unit 51 controls so that the subsequent normal operation of the inverter circuit 40 cannot be performed (so that the inverter circuit 40 is not activated), and the abnormality is notified to the outside. Output a signal.
図6の動作チェックによれば、さらに念入りにインバータ回路40自体の不良やワイヤーハーネス80の接続不良を検知できる。  According to the operation check in FIG. 6, it is possible to detect a defect in the inverter circuit 40 itself and a connection failure in the wire harness 80 more carefully. *
本実施の形態によれば、下記の効果を奏することができる。  According to the present embodiment, the following effects can be achieved. *
(1) 制御回路50の演算部51はハイサイド・スイッチング素子Q1~Q3とローサイド・スイッチング素子Q4~Q6との接続点の電圧(各相の固定子巻線2dの端子電圧)を検知する機能を有するから、接続点の電圧の検知結果が異常(接続点の電圧が所定範囲外)の場合にはインバータ回路40を起動しない制御を行うことで、インバータ回路40の破損を未然に防止できる。 (1) The calculation unit 51 of the control circuit 50 detects the voltage at the connection point between the high-side switching elements Q1 to Q3 and the low-side switching elements Q4 to Q6 (terminal voltage of the stator winding 2d of each phase). Therefore, when the detection result of the voltage at the connection point is abnormal (the voltage at the connection point is out of the predetermined range), the inverter circuit 40 can be prevented from being damaged by performing control that does not start the inverter circuit 40.
(2) とくに、インバータ回路40が第1の基板としてのインバータ回路基板3に搭載され、制御回路50が第2の基板としての制御回路基板4に搭載され、インバータ回路基板3と制御回路基板4とがワイヤーハーネス80等の配線部品で電気接続されている場合、インバータ回路自体は正常であってもワイヤーハーネス80等の接続不良に起因してインバータ回路40が正常に動作出来ない事態が発生する。このような場合、インバータ回路40を通常のモータ駆動のために起動するとインバータ回路40が破損する可能性があるが、このことを未然に防止できる。  (2) In particular, the inverter circuit 40 is mounted on the inverter circuit board 3 as the first board, the control circuit 50 is mounted on the control circuit board 4 as the second board, and the inverter circuit board 3 and the control circuit board 4 are mounted. Are electrically connected by wiring components such as the wire harness 80, etc., even if the inverter circuit itself is normal, the inverter circuit 40 cannot operate normally due to a connection failure of the wire harness 80 or the like. . In such a case, when the inverter circuit 40 is started for normal motor driving, the inverter circuit 40 may be damaged, but this can be prevented beforehand. *
(3) ローサイド・スイッチング素子Q4~Q6を一旦オンしてブートストラップ・コンデンサC1を充電してから、ローサイド・スイッチング素子Q4~Q6をオフするとともにハイサイド・スイッチング素子Q1~Q3をオンしてハイサイド・スイッチング素子Q1~Q3とローサイド・スイッチング素子Q4~Q6との接続点の電圧(各相の固定子巻線2dの端子電圧)を検知する動作チェックフローとすることで、スイッチング素子Q1~Q6としてN型MOSFETを用いた場合であっても、インバータ回路40の動作チェックが可能である。 (3) The low side switching elements Q4 to Q6 are once turned on to charge the bootstrap capacitor C1, and then the low side switching elements Q4 to Q6 are turned off and the high side switching elements Q1 to Q3 are turned on to be high. By using an operation check flow for detecting the voltage at the connection point between the side switching elements Q1 to Q3 and the low side switching elements Q4 to Q6 (terminal voltage of the stator winding 2d of each phase), the switching elements Q1 to Q6 Even if an N-type MOSFET is used, the operation of the inverter circuit 40 can be checked.
(4) さらに、インバータ回路40の全てのスイッチング素子Q1~Q6のオフ状態において、ハイサイド・スイッチング素子とローサイド・スイッチング素子との接続点の電圧を検知することで、インバータ回路40自体の不良、例えばローサイド・スイッチング素子の短絡不良等を検知できる。 (4) Furthermore, by detecting the voltage at the connection point between the high-side switching element and the low-side switching element in the OFF state of all the switching elements Q1 to Q6 of the inverter circuit 40, the inverter circuit 40 itself is defective. For example, a short circuit failure of the low side switching element can be detected.
以上、実施の形態を例に本発明を説明したが、実施の形態の各構成要素や各処理プロセスには請求項に記載の範囲で種々の変形が可能であることは当業者に理解されるところである。以下、変形例について触れる。  The present invention has been described above by taking the embodiment as an example. However, it is understood by those skilled in the art that various modifications can be made to each component and each processing process of the embodiment within the scope of the claims. By the way. Hereinafter, modifications will be described. *
上記実施の形態において、スイッチング素子Q1~Q6としてP型MOSFETを使用してもよい。この場合、ハイサイド・スイッチング素子Q1~Q3のゲート信号である駆動信号H1~H3は直流供給電圧Vccよりも低い電圧値で済むため、ブートストラップ・コンデンサは使用しない。このため、図5及び図6におけるステップ#10及びステップ#11のブートストラップ・コンデンサを充電するためのステップは省略する。  In the above embodiment, P-type MOSFETs may be used as the switching elements Q1 to Q6. In this case, since the drive signals H1 to H3, which are the gate signals of the high side switching elements Q1 to Q3, have a voltage value lower than the DC supply voltage Vcc, a bootstrap capacitor is not used. For this reason, the step for charging the bootstrap capacitor in step # 10 and step # 11 in FIGS. 5 and 6 is omitted. *
上記実施の形態は電動工具を例示したが、電動工具に限らず高圧洗浄機等のモータをインバータ回路で制御する電気機器であれば、本発明は適用可能である。 Although the said embodiment illustrated the electric tool, this invention is applicable if it is an electric equipment which controls motors, such as not only an electric tool but a high-pressure washing machine, with an inverter circuit.
1…電動工具、2…ブラシレス直流モータ、2a…回転子、2b…永久磁石、2c…固定子、2d…固定子巻線、2e…回転軸、3…インバータ回路基板、4…制御回路基板、6…ハウジング、7…スイッチトリガ、7a…トリガ操作部、25…動力伝達部、26…減速機構部、27…クラッチ機構部、28…チャック(先端工具取付部)、30…電池パック、40…インバータ回路、50…制御回路、51…演算部、52…制御信号出力回路、53…回転子位置検出回路、54…回転数検出回路、60…回転位置検出素子、C1…ブートストラップ・コンデンサ、D1…ダイオード、H1~H6…駆動信号、Q1~Q6…スイッチング素子、R1~R11…抵抗 DESCRIPTION OF SYMBOLS 1 ... Electric tool, 2 ... Brushless DC motor, 2a ... Rotor, 2b ... Permanent magnet, 2c ... Stator, 2d ... Stator winding, 2e ... Rotary shaft, 3 ... Inverter circuit board, 4 ... Control circuit board, DESCRIPTION OF SYMBOLS 6 ... Housing, 7 ... Switch trigger, 7a ... Trigger operation part, 25 ... Power transmission part, 26 ... Deceleration mechanism part, 27 ... Clutch mechanism part, 28 ... Chuck (tip tool attachment part), 30 ... Battery pack, 40 ... Inverter circuit, 50 ... control circuit, 51 ... arithmetic unit, 52 ... control signal output circuit, 53 ... rotor position detection circuit, 54 ... rotational speed detection circuit, 60 ... rotational position detection element, C1 ... bootstrap capacitor, D1 ... Diodes, H1 to H6 ... Drive signals, Q1 to Q6 ... Switching elements, R1 to R11 ... Resistance

Claims (8)

  1. モータと、前記モータを駆動するインバータ回路と、前記インバータ回路を制御する制御回路と、を備え、前記インバータ回路は互いに直列に接続されたハイサイド・スイッチング素子とローサイド・スイッチング素子とを有し、前記制御回路は前記モータを起動する前の状態において前記スイッチング素子の少なくとも一方の駆動信号ラインが導通不良の場合には前記インバータ回路を起動しないように構成したことを特徴とする電気機器。 A motor, an inverter circuit that drives the motor, and a control circuit that controls the inverter circuit, the inverter circuit having a high-side switching element and a low-side switching element connected in series with each other; An electrical apparatus comprising: the control circuit configured not to start the inverter circuit when at least one drive signal line of the switching element is in a poor conduction state before starting the motor.
  2. 前記インバータ回路は前記ハイサイド・スイッチング素子と前記ローサイド・スイッチング素子との間に電圧を検知するための接続点を有し、前記制御回路は前記モータを起動する前の状態において前記接続点の電圧が異常の場合には前記モータを起動しないように構成したことを特徴とする請求項1に記載の電気機器。 The inverter circuit has a connection point for detecting a voltage between the high-side switching element and the low-side switching element, and the control circuit has a voltage at the connection point in a state before starting the motor. The electric device according to claim 1, wherein the motor is not activated when the motor is abnormal.
  3. モータと、前記モータを駆動するインバータ回路と、前記インバータ回路を制御する制御回路と、を備え、前記インバータ回路は互いに直列に接続されたハイサイド・スイッチング素子とローサイド・スイッチング素子との間に電圧を検知するための接続点を有し、前記制御回路は前記接続点の電圧が異常の場合には前記インバータ回路を起動しないように構成したことを特徴とする電気機器。 A motor, an inverter circuit that drives the motor, and a control circuit that controls the inverter circuit, the inverter circuit having a voltage between a high-side switching element and a low-side switching element connected in series with each other An electrical apparatus having a connection point for detecting the inverter circuit, wherein the control circuit is configured not to start the inverter circuit when the voltage at the connection point is abnormal.
  4. 前記ローサイド・スイッチング素子のオフ状態で前記ハイサイド・スイッチング素子をオンにして前記ハイサイド・スイッチング素子と前記ローサイド・スイッチング素子との接続点の電圧を検知することを特徴とする請求項1乃至3のいずれか一項に記載の電気機器。 4. A voltage at a connection point between the high-side switching element and the low-side switching element is detected by turning on the high-side switching element in an off state of the low-side switching element. Electrical equipment as described in any one of.
  5. 前記ハイサイド・スイッチング素子側にブートストラップ・コンデンサが設けられており、前記ローサイド・スイッチング素子を一旦オンして前記ブートストラップ・コンデンサを充電してから、前記ローサイド・スイッチング素子をオフするとともに前記ハイサイド・スイッチング素子をオンして前記ハイサイド・スイッチング素子と前記ローサイド・スイッチング素子との接続点の電圧を検知することを特徴とする請求項1乃至4のいずれか一項に記載の電気機器。 A bootstrap capacitor is provided on the high-side switching element side. The low-side switching element is turned on once to charge the bootstrap capacitor, and then the low-side switching element is turned off and the high-side switching element is turned on. 5. The electrical device according to claim 1, wherein a side switching element is turned on to detect a voltage at a connection point between the high-side switching element and the low-side switching element. 6.
  6. 前記インバータ回路の全てのスイッチング素子のオフ状態において、前記ハイサイド・スイッチング素子と前記ローサイド・スイッチング素子との接続点の電圧を検知することを特徴とする請求項1乃至5のいずれか一項に記載の電気機器。 6. The voltage at a connection point between the high-side switching element and the low-side switching element is detected in an off state of all the switching elements of the inverter circuit. The electrical equipment described.
  7. 前記インバータ回路が第1の基板に搭載され、前記制御回路が第2の基板に搭載され、前記第1の基板と前記第2の基板とが配線部品で電気接続されていることを特徴とする請求項1乃至6のいずれか一項に記載の電気機器。 The inverter circuit is mounted on a first board, the control circuit is mounted on a second board, and the first board and the second board are electrically connected by wiring components. The electrical device according to any one of claims 1 to 6.
  8. 前記制御部は、前記接続点の電圧が所定範囲外の場合に前記モータを起動しないように構成したことを特徴とする請求項2又は3に記載の電気機器。 The electric device according to claim 2, wherein the control unit is configured not to start the motor when a voltage at the connection point is outside a predetermined range.
PCT/JP2015/062387 2014-04-26 2015-04-23 Electrical device WO2015163415A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014092160 2014-04-26
JP2014-092160 2014-04-26

Publications (1)

Publication Number Publication Date
WO2015163415A1 true WO2015163415A1 (en) 2015-10-29

Family

ID=54332577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062387 WO2015163415A1 (en) 2014-04-26 2015-04-23 Electrical device

Country Status (1)

Country Link
WO (1) WO2015163415A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110190799A (en) * 2018-02-23 2019-08-30 松下知识产权经营株式会社 Control device of electric motor and vehicle drive unit
US20220311372A1 (en) * 2021-03-23 2022-09-29 Snap-On Incorporated Short circuit protection for a bldc motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05130795A (en) * 1991-11-05 1993-05-25 Fujitsu Ltd Motor driver and detecting method for malfunction thereof
JPH1056782A (en) * 1996-08-08 1998-02-24 Yaskawa Electric Corp Driving method for inverter apparatus
JP2007143244A (en) * 2005-11-16 2007-06-07 Kyoto Denkiki Kk Controller for three-phase load drive

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05130795A (en) * 1991-11-05 1993-05-25 Fujitsu Ltd Motor driver and detecting method for malfunction thereof
JPH1056782A (en) * 1996-08-08 1998-02-24 Yaskawa Electric Corp Driving method for inverter apparatus
JP2007143244A (en) * 2005-11-16 2007-06-07 Kyoto Denkiki Kk Controller for three-phase load drive

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110190799A (en) * 2018-02-23 2019-08-30 松下知识产权经营株式会社 Control device of electric motor and vehicle drive unit
CN110190799B (en) * 2018-02-23 2022-09-20 松下知识产权经营株式会社 Motor control device and vehicle drive device
US20220311372A1 (en) * 2021-03-23 2022-09-29 Snap-On Incorporated Short circuit protection for a bldc motor
US11929698B2 (en) * 2021-03-23 2024-03-12 Snap-On Incorporated Short circuit protection for a BLDC motor
GB2607404B (en) * 2021-03-23 2024-05-01 Snap On Incorporated Short circuit protection for a BLDC motor

Similar Documents

Publication Publication Date Title
JP5408416B2 (en) Electric tool
JP5182562B2 (en) Electric tool
JP5472683B2 (en) Electric tool
JP5939235B2 (en) Rotating electric machine driving device and electric power steering device using the same
US20180013360A1 (en) Electronic braking of brushless dc motor in a power tool
US20130264987A1 (en) Electric power tool
EP3398724B1 (en) Electric tool
JP6090581B2 (en) Electric tool
WO2009145205A1 (en) Electric power tool
JP2011016210A (en) Power tool
WO2009125683A1 (en) Motor control device and control method thereof
JP6315250B2 (en) Electric tool
JP2011020187A (en) Power tool
JP5381390B2 (en) Electric tool
WO2015163415A1 (en) Electrical device
JP7074074B2 (en) Motor drive device and electric power steering device
US20140035503A1 (en) Three-phase motor driving apparatus and three-phase motor driving method
JP2007259554A (en) Driving device for brushless motor
WO2016031715A1 (en) Motor drive circuit and electric tool
JP2004023823A (en) Controller of brushless dc motor
JP4349777B2 (en) Cordless power tool
JP5727064B2 (en) Electric tool
JP2005312145A (en) Driver of brushless motor
JP2012158318A (en) Electric power steering device
JP2012147658A (en) Motor drive controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15782414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15782414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP