WO2015163383A1 - Surface modification method, surface-modified material, and polymerization liquid - Google Patents

Surface modification method, surface-modified material, and polymerization liquid Download PDF

Info

Publication number
WO2015163383A1
WO2015163383A1 PCT/JP2015/062305 JP2015062305W WO2015163383A1 WO 2015163383 A1 WO2015163383 A1 WO 2015163383A1 JP 2015062305 W JP2015062305 W JP 2015062305W WO 2015163383 A1 WO2015163383 A1 WO 2015163383A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylamide
water
solid
acrylate
Prior art date
Application number
PCT/JP2015/062305
Other languages
French (fr)
Japanese (ja)
Inventor
ギャリー ダンダーデール
篤 穂積
千尋 浦田
Original Assignee
国立研究開発法人産業技術総合研究所
ギャリー ダンダーデール
篤 穂積
千尋 浦田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所, ギャリー ダンダーデール, 篤 穂積, 千尋 浦田 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2016515191A priority Critical patent/JP6229989B2/en
Publication of WO2015163383A1 publication Critical patent/WO2015163383A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F292/00Macromolecular compounds obtained by polymerising monomers on to inorganic materials

Definitions

  • the present invention relates to a surface modification method, a surface modification material, and a polymerization liquid.
  • Polymer brushes are known as materials that can provide various excellent surface properties related to a wide range of industrial fields. Recently, application as a surface exhibiting oil repellency in water has also been proposed.
  • Non-Patent Document 1 discloses that polyhydroxy 2-hydroxyethyl methacrylate is prepared by using the ATRP method in an inert gas on gold having an 11- (2-bromoisobutyryloxy) undecylthio group introduced on the surface. A method of introducing a polymer brush is disclosed.
  • an ATRP method for generating an ATRP catalyst by reducing a metal salt for an ATRP catalyst using a reducing agent an AGEN (Activator Generated by Electron Transfer) ATRP method and an ARGET (Activator Regenerated by ElectroTrans) intelligent method are known. (For example, see Patent Documents 1 and 2).
  • One aspect of the present invention is a surface modification method in which a polymer brush excellent in oil repellency after being immersed in water having a predetermined pH can be easily introduced on a solid surface in view of the problems of the above-described conventional technology. And a polymerization solution can be provided.
  • an amino group or a hydroxyl group is introduced on the surface of a solid, and a solid having an amino group or a hydroxyl group introduced on the surface is reacted with a 2-bromo-2-methylpropionic acid derivative. Then, the step of introducing 2-bromoisobutyryl group on the surface of the solid and the solid having the 2-bromoisobutyryl group introduced on the surface are used in water for water-soluble monomer, water, ATRP catalyst.
  • a polymer brush is introduced on the surface of the solid by immersing in a polymerization solution containing a metal salt, a ligand for ATRP catalyst, and a reducing agent, and polymerizing the water-soluble monomer using the AGET ATRP method or the ARGET ATRP method.
  • the water-soluble monomer is (meth) acrylic acid, 2-dimethylaminoethyl (meth) acrylate, 2-diethylamino (meth) acrylate.
  • an amino group or a hydroxyl group is introduced on the surface of a solid, and a solid having an amino group or a hydroxyl group introduced on the surface is reacted with a 2-bromo-2-methylpropionic acid derivative.
  • a polymer solution containing a metal salt, an ATRP catalyst ligand, and a reducing agent is applied, and a polymer brush is introduced onto the solid surface by polymerizing the water-soluble monomer using the AGET ATRP method or the ARGET ATRP method.
  • the water-soluble monomer includes (meth) acrylic acid, 2-dimethylaminoethyl (meth) acrylate, 2-diethylamino (meth) acrylate Chill, 1,2-dihydroxyethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2- (meth) acryloyloxyethyl phosphorylcholine, [2- (meth) acryloyloxyethyl] dimethyl (3-sulfopropyl) ) Ammonium hydroxide, (meth) acrylamide, N-2-dimethylaminoethyl (meth) acrylamide, N-2-diethylaminoethyl (meth) acrylamide, N-1,2-dihydroxyethyl (meth) acrylamide or N-2- Hydroxyethyl (meth) acrylamide.
  • One embodiment of the present invention includes a polymerization solution containing a water-soluble monomer, water, a metal salt for ATRP catalyst, a ligand for ATRP catalyst, and a reducing agent, wherein the water-soluble monomer includes (meth) acrylic acid, (meth) 2-dimethylaminoethyl acrylate, 2-diethylaminoethyl (meth) acrylate, 1,2-dihydroxyethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2- (meth) acryloyloxyethyl phosphorylcholine, [2- (Meth) acryloyloxyethyl] dimethyl (3-sulfopropyl) ammonium hydroxide, (meth) acrylamide, N-2-dimethylaminoethyl (meth) acrylamide, N-2-diethylaminoethyl (meth) acrylamide, N -1,2-dihydroxyethy
  • a surface modification method and a polymerization solution capable of simply introducing a polymer brush having excellent oil repellency after being immersed in water having a predetermined pH on a solid surface. Can do.
  • Example 1-1 It is a figure which shows the relationship of the thickness of the polymer brush with respect to the polymerization time of Example 1-1.
  • 2 is a SEM photograph of a cross section of the polymer brush of Example 1-1. It is a figure which shows the relationship of the thickness of the polymer brush with respect to the polymerization time of Example 1-1, 1-2. 6 is a graph showing the relationship of the thickness of a polymer brush with respect to the polymerization time of Comparative Example 1.
  • FIG. The relationship of the thickness of the polymer brush to the concentration of ascorbic acid in the polymerization solutions of Examples 3-1 to 3-7 is shown.
  • the surface modification method comprises a step of introducing an amino group or a hydroxyl group on the surface of a solid, a reaction of a solid having an amino group or a hydroxyl group introduced on the surface with a 2-bromo-2-methylpropionic acid derivative, A step of introducing 2-bromoisobutyryl group on the surface of the solid, and a solid having the 2-bromoisobutyryl group introduced on the surface thereof, in the air, water-soluble monomer, water, metal salt for ATRP catalyst, ATRP It has the process of introduce
  • Water-soluble monomers include (meth) acrylic acid, 2-dimethylaminoethyl (meth) acrylate, 2-diethylaminoethyl (meth) acrylate, 1,2-dihydroxyethyl (meth) acrylate, (meth) acrylic acid 2 -Hydroxyethyl, 2- (meth) acryloyloxyethyl phosphorylcholine, [2- (meth) acryloyloxyethyl] dimethyl (3-sulfopropyl) ammonium hydroxide, (meth) acrylamide, N-2-dimethylaminoethyl (meth) Acrylamide, N-2-diethylaminoethyl (meth) acrylamide, N-1,2-dihydroxyethyl (meth) acrylamide or N-2-hydroxyethyl (meth) acrylamide.
  • the polymer brush excellent in oil repellency after being immersed in the water of predetermined
  • the concentration of the water-soluble monomer in the polymerization solution is preferably 1 to 50% by volume, and more preferably 5 to 45% by volume.
  • concentration of the water-soluble monomer in the polymerization solution is 1% by volume or more, the cost can be reduced, and when it is 50% by volume or less, the environmental load can be reduced.
  • the solid is not particularly limited, and examples thereof include metals, metal oxides, alloys, semiconductors, ceramics, and glass.
  • the shape of the solid surface is not particularly limited, and examples thereof include a flat surface, a curved surface, an uneven surface, and a porous surface.
  • the polymerization solution contains water
  • the water-soluble monomer can be polymerized in a short time at room temperature, and a thick polymer brush can be introduced on the solid surface.
  • the polymerization liquid may further contain an organic solvent that is miscible with water.
  • the organic solvent that can be mixed with water is not particularly limited, and examples thereof include ethanol.
  • the metal salt for ATRP catalyst is not particularly limited as long as it can be reduced by a reducing agent contained in the polymerization solution after being oxidized or not, but copper (I) chloride, copper (II) chloride , Copper (I) bromide, copper (II) bromide, titanium (II) chloride, titanium (III) chloride, titanium (IV) chloride, titanium (IV) bromide, iron (II) chloride, iron chloride (III) ), Iron (II) bromide, iron (III) bromide, cobalt (II) chloride, cobalt (II) bromide, nickel (II) chloride, nickel (II) bromide, molybdenum (III) chloride, molybdenum chloride (V), ruthenium (III) chloride, etc. are mentioned.
  • the molar ratio of the catalyst metal salt to the water-soluble monomer is preferably 0.004 to 0.03.
  • the ligand for ATRP catalyst is not particularly limited, but 2,2′-bipyridyl, 4,4′-dimethyl-2,2′-bipyridyl, 4,4′-di-t-butyl-2,2 ′ -Bipyridyl, 4,4'-dinonyl-2,2'-bipyridyl, N-butyl-2-pyridylmethanimine, N-octyl-2-pyridylmethanimine, N-dodecyl-N- (2-pyridylmethylene) amine N-octadecyl-N- (2-pyridylmethylene) amine, N, N, N ′, N ′′, N ′′ ′-pentamethyldiethylenetriamine, tris (2-pyridylmethyl) amine, 1,1,4, 7,10,10-hexamethyltriethylenetetramine, tris (2-dimethylaminoethyl
  • the molar ratio of the ATRP catalyst ligand to the ATRP catalyst metal salt is 0.50 to 1.5.
  • reducing agent examples include, but are not limited to, ascorbic acid, glucose, di-n-butyltin bis (2-ethylhexanoate) and the like.
  • ascorbic acid is preferable because it has a small environmental load and exhibits a strong reducing action.
  • the molar ratio of the reducing agent to the metal salt for ATRP catalyst is preferably 0.30 to 50, and more preferably 7 to 31.
  • the molar ratio of the reducing agent to the metal salt for ATRP catalyst is 0.30 or more, the decrease in the concentration of the metal salt for ATRP catalyst (for example, copper (I) chloride) as a reductant in the polymerization system is suppressed.
  • the polymerization termination reaction can be suppressed by being 50 or less.
  • the method for introducing an amino group or hydroxyl group onto the solid surface is not particularly limited, and examples thereof include a method for treating the solid surface with a silane coupling agent having an amino group or a hydroxyl group.
  • the silane coupling agent having an amino group is not particularly limited, and examples thereof include 3-aminopropyltriethoxysilane.
  • the 2-bromo-2-methylpropionic acid derivative is not particularly limited, but 2-bromoisobutyryl bromide, 2-bromoisobutyryl chloride, 2-bromoisobutyryl iodide, 2-bromo-2-methyl Examples include methyl propionate, ethyl 2-bromo-2-methylpropionate, and propyl 2-bromo-2-methylpropionate.
  • Other methods for introducing a 2-bromoisobutyryl group onto the surface of a solid include 3- (2-bromoisobutyrylamino) propyltrialkoxysilane or 3- (2-bromoisobutyryloxy) propyltrimethyl.
  • a method of chemical vapor deposition of an alkoxysilane on a solid surface comprising 3- (2-bromoisobutyrylamino) propyltrialkoxysilane or 3- (2-bromoisobutyryloxy) propyltrialkoxysilane, Accordingly, a method of applying a sol-gel solution further containing tetraalkoxysilane to a solid surface can be used.
  • the application method of the sol-gel solution is not particularly limited, and examples thereof include a spin coating method, a spray coating method, and a dip coating method.
  • the alkoxy group in the alkoxysilane is not particularly limited, and examples thereof include a methyl group, an ethyl group, and a propyl group.
  • the polymerization solution may be applied to the solid having 2-bromoisobutyryl group introduced on the surface.
  • the polymerization solution may further contain a thickener.
  • a thickener thereby, the repelling of a polymerization liquid can be prevented and a polymerization liquid can be uniformly apply
  • the thickener is not particularly limited, and examples thereof include polyvinyl alcohol.
  • the method for applying the polymerization solution is not particularly limited, and examples thereof include a method for applying the polymerization solution using a brush or a brush, and a method for dropping the polymerization solution using a dropper.
  • the coating material is not particularly limited, and examples thereof include filter paper and film.
  • the surface of the surface modifying material is modified by the surface modifying method described above.
  • the thickness of the polymer brush as the surface modifying material is preferably 4 to 700 nm.
  • the advancing contact angle ( ⁇ A ) and receding contact angle ( ⁇ R ) of n-hexadecane of the surface modifying material after being immersed in an acid aqueous solution having a pH of 2 is preferably 150 ° or more.
  • the contact angle hysteresis ⁇ A - ⁇ R with respect to n-hexadecane of the surface modifying material after being immersed in an acid aqueous solution having a pH of 2 is preferably 10 ° or less, and more preferably 5 ° or less. For this reason, oil droplets can be slid down at an inclination angle of 5 ° or less (referred to as sliding angle), and a surface modifying material having excellent oil repellency (droplet removal ability and antifouling property) can be obtained.
  • the surface modifying material When the surface modifying material is immersed in an acid aqueous solution or a base aqueous solution having different pHs, the advancing contact angle ( ⁇ A ), receding contact angle ( ⁇ R ), contact angle hysteresis ( ⁇ A ⁇ R ) and sliding angle with respect to the oil droplets are immersed. Changes. The pH responsiveness of this surface modifying material functions repeatedly.
  • the ratio of the contact angle hysteresis ⁇ A - ⁇ R to hexadecane is preferably 0.1 or less, and more preferably 0.05 or less. For this reason, the change in oil repellency due to the change in pH of the water to be immersed is large.
  • Surface modification material can be applied to lubrication treatment, antibacterial treatment, antifouling treatment, super water / oil repellent treatment, stimulus responsive surface, and the like.
  • Preparation of pretreatment substrate A 1 cm ⁇ 1 cm silicon substrate was ultrasonically cleaned in ethanol for 5 minutes and then dried in a nitrogen stream. Next, after ozone cleaning at 1 ⁇ 10 3 Pa for 30 minutes, together with about 100 ⁇ L of 3-aminopropyltriethoxysilane (APTES), it is put into a sealed Teflon (registered trademark) container and heated at 100 ° C. for 60 minutes. did. As a result, silanol groups present on the surface of the silicon substrate and the triethoxysilyl group of APTES were dehydrated and condensed to introduce amino groups on the surface of the silicon substrate.
  • APTES 3-aminopropyltriethoxysilane
  • APTES adsorbed on the silicon substrate was rinsed with toluene and then dried in a nitrogen stream.
  • the amino substrate-introduced silicon substrate was immersed overnight in a 0.1 M 1,4-dioxane solution of 2-bromoisobutyryl bromide (BIBB) as an ATRP initiator, and 2 -A bromoisobutyryl group was introduced to obtain a pretreated substrate.
  • BIBB 2-bromoisobutyryl bromide
  • Example 1-1 A polymer brush of poly (2- (dimethylamino) ethyl methacrylate) (PDMAEMA) was introduced onto the surface of the pretreated substrate using the AGET ATRP method. Specifically, 2-dimethylaminoethyl methacrylate (DMAEMA) 8 mL, water 7 mL, copper (II) chloride 16 mg and N, N, N ′, N ′′, N ′ ′′-pentamethyldiethylenetriamine 50 ⁇ L in 20 mL After putting in a glass bottle, 20 ⁇ L of a 1 mg / mL aqueous solution of ascorbic acid was added and stirred for about 2 minutes to obtain a polymerization solution.
  • DMAEMA 2-dimethylaminoethyl methacrylate
  • the glass bottle was sealed with a screw cap made of PTFE. At this time, since the polymerization solution was not degassed, the glass bottle contained about 4 mL of air. Further, after polymerization at room temperature (23 to 28 ° C.) without stirring, the glass substrate into which the polymer brush was introduced was taken out of the glass bottle and thoroughly rinsed with water to obtain a surface modified substrate.
  • FIG. 1 shows the relationship of the polymer brush thickness to the polymerization time.
  • FIG. 1 indicates that the thickness of the polymer brush increases linearly at about 2 nm / min after an incubation period of about 30 minutes and reaches 300 nm about 200 minutes after the start of polymerization.
  • the linear increase in the thickness of the polymer brush indicates that the polymerization is controlled at a high level and that bromo or chloro groups are retained at the ends of the growing polymer chain. After the thickness of the polymer brush reached 300 nm, the increase in the thickness of the polymer brush became gradual. This is considered to be because the number of growing polymer chains is decreased by decreasing the bromo group or chloro group at the terminal of the growing polymer chain. As a result, the thickness of the polymer brush reached 670 nm after 1380 minutes from the start of polymerization.
  • the thickness of the polymer brush was measured using an ellipsometer.
  • FIG. 2 shows an SEM photograph of the cross section of the polymer brush.
  • FIG. 2 shows that the polymer brush is smooth and homogeneous.
  • Example 1-2 Except for changing the addition amount of 1 mg / mL aqueous solution of copper (II) chloride, N, N, N ′, N ′′, N ′ ′′-pentamethyldiethylenetriamine and ascorbic acid to 8 mg, 25 ⁇ L and 10 ⁇ L, respectively.
  • a surface modified substrate was obtained in the same manner as in Example 1-1.
  • FIG. 3 shows the relationship between the polymer brush thickness and the polymerization time of Examples 1-1 and 1-2.
  • Example 1-2 From FIG. 3, it can be seen from Example 1-2 that the addition amounts of copper (II) chloride, pentamethyldiethylenetriamine and ascorbic acid are half the amount of Example 1-1, and the incubation period is from about 30 minutes to about 0.1 minutes in Example 1-1. It turns out that it increases in 80 minutes. This is considered to be because the rate at which oxygen that inhibits the polymerization reaction is removed from the polymerization system is slowed by the oxidation of Cu (I) to Cu (II).
  • Example 1-1 the polymer brush grew rapidly about 30 minutes after the start of polymerization, whereas in Example 1-2, the polymer brush was about 160 minutes after the start of polymerization. Grows rapidly.
  • the growth rate of the polymer brush is proportional to [Cu (I)] / [Cu (II)] in the polymerization system.
  • the growth of the polymer brush is slow because the amount of Cu (I) present in the polymerization system is small 80 minutes after the start of the polymerization.
  • 120 minutes after the start of the polymerization the amount of [Cu (I)] / [Cu (II)] in the polymerization system increases, so the growth of the polymer brush becomes faster and the polymerization starts.
  • About 160 minutes after the removal almost all oxygen is removed from the polymerization system, and [Cu (I)] / [Cu (II)] in the polymerization system becomes maximum and becomes constant.
  • Example 2 A polymer brush of poly (2- (diethylamino) ethyl methacrylate) (PDEAEMA) was introduced onto the surface of the pretreated substrate using the ARGET ATRP method. Specifically, 2-diethylaminoethyl methacrylate (DEAEMA) 8 mL, water 3 mL, ethanol 4 mL, copper (II) chloride 2.8 mg and N, N, N ′, N ′′, N ′ ′′-pentamethyldiethylenetriamine 5 ⁇ L was placed in a 20 mL glass bottle.
  • DEAEMA 2-diethylaminoethyl methacrylate
  • the glass bottle was sealed with a screw cap made of PTFE. At this time, since the polymerization solution was not degassed, the glass bottle contained about 4 mL of air. Furthermore, after polymerization for 24 hours at room temperature (23 to 28 ° C.) without stirring, the glass substrate with the polymer brush introduced was taken out of the glass bottle and thoroughly rinsed with water to obtain a surface modified substrate. .
  • the polymer brush introduced into the surface treatment substrate had a thickness of 70 nm.
  • a polymer brush of poly (sodium methacrylate) was introduced on the surface of the pretreatment substrate using the AGET ATRP method. Specifically, 3 g of sodium methacrylate, 4.6 mL of water, 8 mg of copper (II) chloride and 25 ⁇ L of N, N, N ′, N ′′, N ′ ′′-pentamethyldiethylenetriamine were placed in a 20 mL glass bottle. Then, 10 ⁇ L of a 1 mg / mL aqueous solution of ascorbic acid was added and stirred for about 2 minutes to obtain a polymerization solution.
  • the glass bottle was sealed with a screw cap made of PTFE. At this time, since the polymerization solution was not degassed, the glass bottle contained about 4 mL of air. Further, after polymerization at room temperature (23 to 28 ° C.) without stirring, the glass substrate into which the polymer brush was introduced was taken out of the glass bottle and thoroughly rinsed with water to obtain a surface modified substrate.
  • FIG. 4 shows the relationship of the polymer brush thickness to the polymerization time.
  • FIG. 4 shows that the thickness of the polymer brush increases without passing through the incubation period, but reaches 150 nm 1320 minutes after the start of polymerization.
  • Table 1 shows the evaluation results of the oil repellency after immersion in the acid aqueous solution having a pH of 2 or the base aqueous solution having a pH of 10 of the surface-modified substrates of Examples 1-1 and Comparative Example 1.
  • ⁇ pH means a change in ⁇ A and ⁇ R due to a change in pH.
  • the surface-modified substrates of Examples 1-1 and 2 were immersed in an aqueous acid solution having a pH of 2 with respect to the contact angle hysteresis ⁇ for n-hexadecane after being immersed in an aqueous base solution having a pH of 10. Since the ratio of the contact angle hysteresis ⁇ to n-hexadecane is 0.04 and 0.08, respectively, the change in oil repellency due to the change in pH of the immersion water is large.
  • the surface-modified substrate of Comparative Example 1 is n after being immersed in an acid aqueous solution having a pH of 2 with respect to the contact angle hysteresis ⁇ for n-hexadecane after being immersed in a basic aqueous solution having a pH of 10.
  • the ratio of the contact angle hysteresis ⁇ to hexadecane is 9, the change in oil repellency due to the change in the pH of the water to be immersed is small.
  • Example 3-1 A polymer brush of poly (2- (dimethylamino) ethyl methacrylate) (PDMAEMA) was introduced onto the surface of the pretreated substrate using the ARGET ATRP method. Specifically, 2-dimethylaminoethyl methacrylate (DMAEMA) 0.8 mL, water 15.2 mL, copper (II) chloride 2.8 mg and N, N, N ′, N ′′, N ′ ′′-penta After putting 5 ⁇ L of methyldiethylenetriamine in a 20 mL glass bottle, 1 mg of ascorbic acid was added and stirred for about 2 minutes to obtain a polymerization solution.
  • DMAEMA 2-dimethylaminoethyl methacrylate
  • the surface-modified substrate was immersed in water and then n-hexadecane was dropped onto the surface-modified substrate, the n-hexadecane droplet was able to move freely on the surface of the surface-modified substrate. From this, it was found that the surface-modified substrate was excellent in oil repellency after being immersed in water.
  • Examples 3-2 to 3-7 A surface-modified substrate was obtained in the same manner as in Example 3-1, except that the amount of ascorbic acid added was changed to 2 mg, 10 mg, 20 mg, 30 mg, 40 mg, and 80 mg.
  • the surface-modified substrate was immersed in water and then n-hexadecane was dropped onto the surface-modified substrate, the n-hexadecane droplet was able to move freely on the surface of the surface-modified substrate. From this, it was found that the surface-modified substrate was excellent in oil repellency after being immersed in water.
  • FIG. 5 shows the relationship between the thickness of the polymer brush and the concentration of ascorbic acid in the polymerization solution.
  • the thickness of the polymer brush was measured using an ellipsometer.
  • Example 4 DMAEMA 4.8 mL, water 7.0 mL, copper (II) chloride 8.0 mg, N, N, N ′, N ′′, N ′ ′′-pentamethyldiethylenetriamine 50 ⁇ L and polyvinyl alcohol 0.50 g are placed in a 20 mL glass bottle. Thereafter, 0.01 mg of ascorbic acid was added and stirred for about 2 minutes to obtain a polymerization solution.
  • a surface-modified substrate was obtained in the same manner as in Example 3-1, except that the surface of the pretreated substrate on which the polymerization solution was dropped was not coated with Whatman filter paper.
  • the polymer brush had a thickness of 4-6 nm.
  • the surface-modified substrate was immersed in water and then n-hexadecane was dropped onto the surface-modified substrate, the n-hexadecane droplet was able to move freely on the surface of the surface-modified substrate. From this, it was found that the surface-modified substrate was excellent in oil repellency after being immersed in water.
  • Example 5 DMAEMA 0.8 mL, water 15.2 mL, copper (II) chloride 2.8 mg and N, N, N ′, N ′′, N ′ ′′-pentamethyldiethylenetriamine 5 ⁇ L were placed in a 20 mL glass bottle, and then ascorbic acid 20 mg was added and stirred for about 2 minutes to obtain a polymerization solution.
  • a surface-modified substrate was obtained in the same manner as in Example 3-1, except that the obtained polymerization solution was used.
  • the polymer brush had a thickness of 10 nm.
  • the surface-modified substrate was immersed in water and then n-hexadecane was dropped onto the surface-modified substrate, the n-hexadecane droplet was able to move freely on the surface of the surface-modified substrate. From this, it was found that the surface-modified substrate was excellent in oil repellency after being immersed in water.

Abstract

One embodiment of the present invention has: a step for introducing an amino group or hydroxyl group to the surface of a solid; a step for reacting the solid, to the surface of which the amino group or hydroxyl group has been introduced, with a 2-bromo-2-methylpropionic acid derivative, introducing a 2-bromoisobutyryl group to the surface of the solid; and a step for, in air, immersing the solid, to the surface of which a 2-bromoisobutyryl group has been introduced, in a polymerization liquid containing a water-soluble monomer, water, an ATRP catalyst metal salt, an ATRP catalyst ligand, and a reducing agent, and using an AGET ATRP method or an ARGET ATRP method, introducing to the surface of the solid a polymer brush by means of polymerizing the water-soluble monomer. The water-soluble monomer is (meth)acrylic acid, 2-dimethylaminoethyl (meth)acrylate, 2-diethylaminoethyl (meth)acrylate, 1,2-dihydroxyethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-(meth)acryloyloxyethylphosphorylcholine, [2-(meth)acryloyloxyethyl]dimethyl(3-sulfopropyl)ammonium hydroxide, (meth)acrylamide, N-2-dimethylaminoethyl(meth)acrylamide, N-2-diethylaminoethyl(meth)acrylamide, N-1,2-dihdroxyethyl(meth)acrylamide, or N-2-hydroxyethyl(meth)acrylamide.

Description

表面改質方法、表面改質材料及び重合液Surface modification method, surface modification material and polymerization liquid
 本発明は、表面改質方法、表面改質材料及び重合液に関する。 The present invention relates to a surface modification method, a surface modification material, and a polymerization liquid.
 ポリマーブラシは、幅広い産業分野に関連する、様々な優れた表面特性を提供することができる材料として知られている。最近では、水中で撥油性を示す表面としての応用も提案されている。 Polymer brushes are known as materials that can provide various excellent surface properties related to a wide range of industrial fields. Recently, application as a surface exhibiting oil repellency in water has also been proposed.
 非特許文献1には、表面に11-(2-ブロモイソブチリルオキシ)ウンデシルチオ基が導入されている金に、不活性ガス中で、ATRP法を用いて、ポリメタクリル酸2-ヒドロキシエチルのポリマーブラシを導入する方法が開示されている。 Non-Patent Document 1 discloses that polyhydroxy 2-hydroxyethyl methacrylate is prepared by using the ATRP method in an inert gas on gold having an 11- (2-bromoisobutyryloxy) undecylthio group introduced on the surface. A method of introducing a polymer brush is disclosed.
 一方、還元剤を用いて、ATRP触媒用金属塩を還元することによりATRP触媒を生成させるATRP法として、AGET(Activator Generated by Electron Transfer) ATRP法及びARGET(Activator ReGenerated by Electron Transfer) ATRP法が知られている(例えば、特許文献1、2参照)。 On the other hand, as an ATRP method for generating an ATRP catalyst by reducing a metal salt for an ATRP catalyst using a reducing agent, an AGEN (Activator Generated by Electron Transfer) ATRP method and an ARGET (Activator Regenerated by ElectroTrans) intelligent method are known. (For example, see Patent Documents 1 and 2).
WO2007/025310号WO2007 / 025310 WO2008/021500号WO2008 / 021500
 しかしながら、所定のpHの水に浸漬した後の撥油性に優れるポリマーブラシを簡便に導入することができないという問題がある。 However, there is a problem that a polymer brush excellent in oil repellency after being immersed in water having a predetermined pH cannot be easily introduced.
 なお、特許文献1、2に開示されている方法では、重合系中から酸素を除去する必要がある。また、重合液中のモノマーの濃度を10体積%以上にする必要がある。さらに、重合液に環境負荷が大きいDMF等の有機溶媒を添加する必要がある。 In the methods disclosed in Patent Documents 1 and 2, it is necessary to remove oxygen from the polymerization system. Further, the concentration of the monomer in the polymerization solution needs to be 10% by volume or more. Furthermore, it is necessary to add an organic solvent such as DMF, which has a large environmental load, to the polymerization solution.
 本発明の一態様は、上記従来技術が有する問題に鑑み、固体の表面に、所定のpHの水に浸漬した後の撥油性に優れるポリマーブラシを簡便に導入することが可能な表面改質方法及び重合液を提供することができる。 One aspect of the present invention is a surface modification method in which a polymer brush excellent in oil repellency after being immersed in water having a predetermined pH can be easily introduced on a solid surface in view of the problems of the above-described conventional technology. And a polymerization solution can be provided.
 本発明の一態様は、固体の表面に、アミノ基又はヒドロキシル基を導入する工程と、該表面にアミノ基又はヒドロキシル基が導入された固体と2-ブロモ-2-メチルプロピオン酸誘導体を反応させて、前記固体の表面に2-ブロモイソブチリル基を導入する工程と、該表面に2-ブロモイソブチリル基が導入された固体を、空気中で、水溶性モノマー、水、ATRP触媒用金属塩、ATRP触媒用配位子及び還元剤を含む重合液中に浸漬し、AGET ATRP法又はARGET ATRP法を用いて、前記水溶性モノマーを重合することにより前記固体の表面にポリマーブラシを導入する工程を有し、前記水溶性モノマーは、(メタ)アクリル酸、(メタ)アクリル酸2-ジメチルアミノエチル、(メタ)アクリル酸2-ジエチルアミノエチル、(メタ)アクリル酸1,2-ジヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシエチル、2-(メタ)アクリロイルオキシエチルホスホリルコリン、[2-(メタ)アクリロイルオキシエチル]ジメチル(3-スルホプロピル)アンモニウムヒドロキシド、(メタ)アクリルアミド、N-2-ジメチルアミノエチル(メタ)アクリルアミド、N-2-ジエチルアミノエチル(メタ)アクリルアミド、N-1,2-ジヒドロキシエチル(メタ)アクリルアミド又はN-2-ヒドロキシエチル(メタ)アクリルアミドである。 In one embodiment of the present invention, an amino group or a hydroxyl group is introduced on the surface of a solid, and a solid having an amino group or a hydroxyl group introduced on the surface is reacted with a 2-bromo-2-methylpropionic acid derivative. Then, the step of introducing 2-bromoisobutyryl group on the surface of the solid and the solid having the 2-bromoisobutyryl group introduced on the surface are used in water for water-soluble monomer, water, ATRP catalyst. A polymer brush is introduced on the surface of the solid by immersing in a polymerization solution containing a metal salt, a ligand for ATRP catalyst, and a reducing agent, and polymerizing the water-soluble monomer using the AGET ATRP method or the ARGET ATRP method. The water-soluble monomer is (meth) acrylic acid, 2-dimethylaminoethyl (meth) acrylate, 2-diethylamino (meth) acrylate. Ethyl, 1,2-dihydroxyethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2- (meth) acryloyloxyethyl phosphorylcholine, [2- (meth) acryloyloxyethyl] dimethyl (3-sulfopropyl) ) Ammonium hydroxide, (meth) acrylamide, N-2-dimethylaminoethyl (meth) acrylamide, N-2-diethylaminoethyl (meth) acrylamide, N-1,2-dihydroxyethyl (meth) acrylamide or N-2- Hydroxyethyl (meth) acrylamide.
 本発明の一態様は、固体の表面に、アミノ基又はヒドロキシル基を導入する工程と、該表面にアミノ基又はヒドロキシル基が導入された固体と2-ブロモ-2-メチルプロピオン酸誘導体を反応させて、前記固体の表面に2-ブロモイソブチリル基を導入する工程と、該表面に2-ブロモイソブチリル基が導入された固体に、空気中で、水溶性モノマー、水、ATRP触媒用金属塩、ATRP触媒用配位子及び還元剤を含む重合液を塗布し、AGET ATRP法又はARGET ATRP法を用いて、前記水溶性モノマーを重合することにより前記固体の表面にポリマーブラシを導入する工程を有し、前記水溶性モノマーは、(メタ)アクリル酸、(メタ)アクリル酸2-ジメチルアミノエチル、(メタ)アクリル酸2-ジエチルアミノエチル、(メタ)アクリル酸1,2-ジヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシエチル、2-(メタ)アクリロイルオキシエチルホスホリルコリン、[2-(メタ)アクリロイルオキシエチル]ジメチル(3-スルホプロピル)アンモニウムヒドロキシド、(メタ)アクリルアミド、N-2-ジメチルアミノエチル(メタ)アクリルアミド、N-2-ジエチルアミノエチル(メタ)アクリルアミド、N-1,2-ジヒドロキシエチル(メタ)アクリルアミド又はN-2-ヒドロキシエチル(メタ)アクリルアミドである。 In one embodiment of the present invention, an amino group or a hydroxyl group is introduced on the surface of a solid, and a solid having an amino group or a hydroxyl group introduced on the surface is reacted with a 2-bromo-2-methylpropionic acid derivative. Introducing a 2-bromoisobutyryl group on the surface of the solid, and a solid in which the 2-bromoisobutyryl group is introduced on the surface, in the air, for water-soluble monomer, water, ATRP catalyst A polymer solution containing a metal salt, an ATRP catalyst ligand, and a reducing agent is applied, and a polymer brush is introduced onto the solid surface by polymerizing the water-soluble monomer using the AGET ATRP method or the ARGET ATRP method. The water-soluble monomer includes (meth) acrylic acid, 2-dimethylaminoethyl (meth) acrylate, 2-diethylamino (meth) acrylate Chill, 1,2-dihydroxyethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2- (meth) acryloyloxyethyl phosphorylcholine, [2- (meth) acryloyloxyethyl] dimethyl (3-sulfopropyl) ) Ammonium hydroxide, (meth) acrylamide, N-2-dimethylaminoethyl (meth) acrylamide, N-2-diethylaminoethyl (meth) acrylamide, N-1,2-dihydroxyethyl (meth) acrylamide or N-2- Hydroxyethyl (meth) acrylamide.
 本発明の一態様は、重合液において、水溶性モノマー、水、ATRP触媒用金属塩、ATRP触媒用配位子及び還元剤を含み、前記水溶性モノマーは、(メタ)アクリル酸、(メタ)アクリル酸2-ジメチルアミノエチル、(メタ)アクリル酸2-ジエチルアミノエチル、(メタ)アクリル酸1,2-ジヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシエチル、2-(メタ)アクリロイルオキシエチルホスホリルコリン、[2-(メタ)アクリロイルオキシエチル]ジメチル(3-スルホプロピル)アンモニウムヒドロキシド、(メタ)アクリルアミド、N-2-ジメチルアミノエチル(メタ)アクリルアミド、N-2-ジエチルアミノエチル(メタ)アクリルアミド、N-1,2-ジヒドロキシエチル(メタ)アクリルアミド又はN-2-ヒドロキシエチル(メタ)アクリルアミドであることを特徴とする。 One embodiment of the present invention includes a polymerization solution containing a water-soluble monomer, water, a metal salt for ATRP catalyst, a ligand for ATRP catalyst, and a reducing agent, wherein the water-soluble monomer includes (meth) acrylic acid, (meth) 2-dimethylaminoethyl acrylate, 2-diethylaminoethyl (meth) acrylate, 1,2-dihydroxyethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2- (meth) acryloyloxyethyl phosphorylcholine, [2- (Meth) acryloyloxyethyl] dimethyl (3-sulfopropyl) ammonium hydroxide, (meth) acrylamide, N-2-dimethylaminoethyl (meth) acrylamide, N-2-diethylaminoethyl (meth) acrylamide, N -1,2-dihydroxyethyl (meth) acrylamide or Characterized in that it is a 2-hydroxyethyl (meth) acrylamide.
 本発明の一態様によれば、固体の表面に、所定のpHの水に浸漬した後の撥油性に優れるポリマーブラシを簡便に導入することが可能な表面改質方法及び重合液を提供することができる。 According to one aspect of the present invention, there are provided a surface modification method and a polymerization solution capable of simply introducing a polymer brush having excellent oil repellency after being immersed in water having a predetermined pH on a solid surface. Can do.
実施例1-1の重合時間に対するポリマーブラシの厚さの関係を示す図である。It is a figure which shows the relationship of the thickness of the polymer brush with respect to the polymerization time of Example 1-1. 実施例1-1のポリマーブラシの断面のSEM写真である。2 is a SEM photograph of a cross section of the polymer brush of Example 1-1. 実施例1-1、1-2の重合時間に対するポリマーブラシの厚さの関係を示す図である。It is a figure which shows the relationship of the thickness of the polymer brush with respect to the polymerization time of Example 1-1, 1-2. 比較例1の重合時間に対するポリマーブラシの厚さの関係を示す図である。6 is a graph showing the relationship of the thickness of a polymer brush with respect to the polymerization time of Comparative Example 1. FIG. 実施例3-1~3-7の重合液中のアスコルビン酸の濃度に対するポリマーブラシの厚さの関係を示す。The relationship of the thickness of the polymer brush to the concentration of ascorbic acid in the polymerization solutions of Examples 3-1 to 3-7 is shown.
 次に、本発明を実施するための形態を図面と共に説明する。 Next, an embodiment for carrying out the present invention will be described with reference to the drawings.
 表面改質方法は、固体の表面に、アミノ基又はヒドロキシル基を導入する工程と、表面にアミノ基又はヒドロキシル基が導入された固体と2-ブロモ-2-メチルプロピオン酸誘導体を反応させて、固体の表面に2-ブロモイソブチリル基を導入する工程と、表面に2-ブロモイソブチリル基が導入された固体を、空気中で、水溶性モノマー、水、ATRP触媒用金属塩、ATRP触媒用配位子及び還元剤を含む重合液中に浸漬し、AGET ATRP法又はARGET ATRP法を用いて、水溶性モノマーを重合することにより固体の表面にポリマーブラシを導入する工程を有する。このため、固体の表面にポリマーブラシを簡便に導入することができる。 The surface modification method comprises a step of introducing an amino group or a hydroxyl group on the surface of a solid, a reaction of a solid having an amino group or a hydroxyl group introduced on the surface with a 2-bromo-2-methylpropionic acid derivative, A step of introducing 2-bromoisobutyryl group on the surface of the solid, and a solid having the 2-bromoisobutyryl group introduced on the surface thereof, in the air, water-soluble monomer, water, metal salt for ATRP catalyst, ATRP It has the process of introduce | transducing a polymer brush on the surface of a solid by immersing in the polymerization liquid containing the catalyst ligand and a reducing agent, and polymerizing a water-soluble monomer using AGET ATRP method or ARGET ATRP method. For this reason, a polymer brush can be simply introduced on the solid surface.
 水溶性モノマーは、(メタ)アクリル酸、(メタ)アクリル酸2-ジメチルアミノエチル、(メタ)アクリル酸2-ジエチルアミノエチル、(メタ)アクリル酸1,2-ジヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシエチル、2-(メタ)アクリロイルオキシエチルホスホリルコリン、[2-(メタ)アクリロイルオキシエチル]ジメチル(3-スルホプロピル)アンモニウムヒドロキシド、(メタ)アクリルアミド、N-2-ジメチルアミノエチル(メタ)アクリルアミド、N-2-ジエチルアミノエチル(メタ)アクリルアミド、N-1,2-ジヒドロキシエチル(メタ)アクリルアミド又はN-2-ヒドロキシエチル(メタ)アクリルアミドである。このため、所定のpHの水に浸漬した後の撥油性に優れるポリマーブラシを形成することができる。 Water-soluble monomers include (meth) acrylic acid, 2-dimethylaminoethyl (meth) acrylate, 2-diethylaminoethyl (meth) acrylate, 1,2-dihydroxyethyl (meth) acrylate, (meth) acrylic acid 2 -Hydroxyethyl, 2- (meth) acryloyloxyethyl phosphorylcholine, [2- (meth) acryloyloxyethyl] dimethyl (3-sulfopropyl) ammonium hydroxide, (meth) acrylamide, N-2-dimethylaminoethyl (meth) Acrylamide, N-2-diethylaminoethyl (meth) acrylamide, N-1,2-dihydroxyethyl (meth) acrylamide or N-2-hydroxyethyl (meth) acrylamide. For this reason, the polymer brush excellent in oil repellency after being immersed in the water of predetermined | prescribed pH can be formed.
 重合液中の水溶性モノマーの濃度は、1~50体積%であることが好ましく、5~45体積%であることがさらに好ましい。重合液中の水溶性モノマーの濃度が1体積%以上であることにより、コストを低減することができ、50体積%以下であることにより、環境負荷を低減することができる。 The concentration of the water-soluble monomer in the polymerization solution is preferably 1 to 50% by volume, and more preferably 5 to 45% by volume. When the concentration of the water-soluble monomer in the polymerization solution is 1% by volume or more, the cost can be reduced, and when it is 50% by volume or less, the environmental load can be reduced.
 固体としては、特に限定されないが、金属、金属酸化物、合金、半導体、セラミックス、ガラス等が挙げられる。 The solid is not particularly limited, and examples thereof include metals, metal oxides, alloys, semiconductors, ceramics, and glass.
 固体の表面の形状としては、特に限定されないが、平面、曲面、凹凸面、ポーラス面等が挙げられる。 The shape of the solid surface is not particularly limited, and examples thereof include a flat surface, a curved surface, an uneven surface, and a porous surface.
 このとき、重合液が水を含むため、室温下、短時間で水溶性モノマーを重合させることができ、固体の表面に、厚いポリマーブラシを導入することができる。 At this time, since the polymerization solution contains water, the water-soluble monomer can be polymerized in a short time at room temperature, and a thick polymer brush can be introduced on the solid surface.
 重合液は、水と混和することが可能な有機溶媒をさらに含んでいてもよい。 The polymerization liquid may further contain an organic solvent that is miscible with water.
 水と混和することが可能な有機溶媒としては、特に限定されないが、エタノール等が挙げられる。 The organic solvent that can be mixed with water is not particularly limited, and examples thereof include ethanol.
 ATRP触媒用金属塩としては、酸化された後又はそれ自体が重合液に含まれる還元剤により還元されることが可能であれば、特に限定されないが、塩化銅(I)、塩化銅(II)、臭化銅(I)、臭化銅(II)、塩化チタン(II)、塩化チタン(III)、塩化チタン(IV)、臭化チタン(IV)、塩化鉄(II)、塩化鉄(III)、臭化鉄(II)、臭化鉄(III)、塩化コバルト(II)、臭化コバルト(II)、塩化ニッケル(II)、臭化ニッケル(II)、塩化モリブデン(III)、塩化モリブデン(V)、塩化ルテニウム(III)等が挙げられる。 The metal salt for ATRP catalyst is not particularly limited as long as it can be reduced by a reducing agent contained in the polymerization solution after being oxidized or not, but copper (I) chloride, copper (II) chloride , Copper (I) bromide, copper (II) bromide, titanium (II) chloride, titanium (III) chloride, titanium (IV) chloride, titanium (IV) bromide, iron (II) chloride, iron chloride (III) ), Iron (II) bromide, iron (III) bromide, cobalt (II) chloride, cobalt (II) bromide, nickel (II) chloride, nickel (II) bromide, molybdenum (III) chloride, molybdenum chloride (V), ruthenium (III) chloride, etc. are mentioned.
 水溶性モノマーに対する触媒用金属塩のモル比は、0.004~0.03であることが好ましい。 The molar ratio of the catalyst metal salt to the water-soluble monomer is preferably 0.004 to 0.03.
 ATRP触媒用配位子としては、特に限定されないが、2,2’-ビピリジル、4,4’-ジメチル-2,2’-ビピリジル、4,4’-ジ-t-ブチル-2,2’-ビピリジル、4,4’-ジノニル-2,2’-ビピリジル、N-ブチル-2-ピリジルメタンイミン、N-オクチル-2-ピリジルメタンイミン、N-ドデシル-N-(2-ピリジルメチレン)アミン、N-オクタデシル-N-(2-ピリジルメチレン)アミン、N,N,N’,N’’,N’’’-ペンタメチルジエチレントリアミン、トリス(2-ピリジルメチル)アミン、1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン、トリス(2-ジメチルアミノエチル)アミン、1,4,8,11-テトラアザシクロテトラデカン、1,4,8,11-テトラメチル-1,4,8,11-テトラアザシクロテトラデカン、N,N,N’,N’-テトラキス(2-ピリジルメチル)エチレンジアミン等が挙げられる。 The ligand for ATRP catalyst is not particularly limited, but 2,2′-bipyridyl, 4,4′-dimethyl-2,2′-bipyridyl, 4,4′-di-t-butyl-2,2 ′ -Bipyridyl, 4,4'-dinonyl-2,2'-bipyridyl, N-butyl-2-pyridylmethanimine, N-octyl-2-pyridylmethanimine, N-dodecyl-N- (2-pyridylmethylene) amine N-octadecyl-N- (2-pyridylmethylene) amine, N, N, N ′, N ″, N ″ ′-pentamethyldiethylenetriamine, tris (2-pyridylmethyl) amine, 1,1,4, 7,10,10-hexamethyltriethylenetetramine, tris (2-dimethylaminoethyl) amine, 1,4,8,11-tetraazacyclotetradecane, 1,4,8,11-teto Methyl -1,4,8,11- tetraazacyclotetradecane, N, N, N ', N'- tetrakis (2-pyridylmethyl) ethylenediamine, and the like.
 ATRP触媒用金属塩に対するATRP触媒用配位子のモル比は、0.50~1.5である。 The molar ratio of the ATRP catalyst ligand to the ATRP catalyst metal salt is 0.50 to 1.5.
 還元剤としては、特に限定されないが、アスコルビン酸、グルコース、ジ-n-ブチルスズビス(2-エチルヘキサノエート)等が挙げられる。中でも、環境負荷が小さく、強力な還元作用を示すことから、アスコルビン酸が好ましい。 Examples of the reducing agent include, but are not limited to, ascorbic acid, glucose, di-n-butyltin bis (2-ethylhexanoate) and the like. Among them, ascorbic acid is preferable because it has a small environmental load and exhibits a strong reducing action.
 ATRP触媒用金属塩に対する還元剤のモル比は、0.30~50であることが好ましく、7~31であることがさらに好ましい。ATRP触媒用金属塩に対する還元剤のモル比が0.30以上であることにより、重合系中の還元体としてのATRP触媒用金属塩(例えば、塩化銅(I))の濃度の低下を抑制することができ、50以下であることにより、重合停止反応を抑制することができる。 The molar ratio of the reducing agent to the metal salt for ATRP catalyst is preferably 0.30 to 50, and more preferably 7 to 31. When the molar ratio of the reducing agent to the metal salt for ATRP catalyst is 0.30 or more, the decrease in the concentration of the metal salt for ATRP catalyst (for example, copper (I) chloride) as a reductant in the polymerization system is suppressed. The polymerization termination reaction can be suppressed by being 50 or less.
 固体の表面にアミノ基又はヒドロキシル基を導入する方法としては、特に限定されないが、アミノ基又はヒドロキシル基を有するシランカップリング剤で固体の表面を処理する方法等が挙げられる。 The method for introducing an amino group or hydroxyl group onto the solid surface is not particularly limited, and examples thereof include a method for treating the solid surface with a silane coupling agent having an amino group or a hydroxyl group.
 アミノ基を有するシランカップリング剤としては、特に限定されないが、3-アミノプロピルトリエトキシシラン等が挙げられる。 The silane coupling agent having an amino group is not particularly limited, and examples thereof include 3-aminopropyltriethoxysilane.
 ヒドロキシル基を有するシランカップリング剤としては、特に限定されないが、ヒドロキシメチルトリエトキシシラン等が挙げられる。 Although it does not specifically limit as a silane coupling agent which has a hydroxyl group, Hydroxymethyltriethoxysilane etc. are mentioned.
 2-ブロモ-2-メチルプロピオン酸誘導体としては、特に限定されないが、2-ブロモイソブチリルブロミド、2-ブロモイソブチリルクロリド、2-ブロモイソブチリルヨージド、2-ブロモ-2-メチルプロピオン酸メチル、2-ブロモ-2-メチルプロピオン酸エチル、2-ブロモ-2-メチルプロピオン酸プロピル等が挙げられる。 The 2-bromo-2-methylpropionic acid derivative is not particularly limited, but 2-bromoisobutyryl bromide, 2-bromoisobutyryl chloride, 2-bromoisobutyryl iodide, 2-bromo-2-methyl Examples include methyl propionate, ethyl 2-bromo-2-methylpropionate, and propyl 2-bromo-2-methylpropionate.
 上記以外の固体の表面に2-ブロモイソブチリル基を導入する方法としては、3-(2-ブロモイソブチリルアミノ)プロピルトリアルコキシシラン又は3-(2-ブロモイソブチリルオキシ)プロピルトリアルコキシシランを固体の表面に化学気相蒸着させる方法、3-(2-ブロモイソブチリルアミノ)プロピルトリアルコキシシラン又は3-(2-ブロモイソブチリルオキシ)プロピルトリアルコキシシランを含み、必要に応じて、テトラアルコキシシランをさらに含むゾルゲル溶液を固体の表面に塗布する方法等が挙げられる。 Other methods for introducing a 2-bromoisobutyryl group onto the surface of a solid include 3- (2-bromoisobutyrylamino) propyltrialkoxysilane or 3- (2-bromoisobutyryloxy) propyltrimethyl. A method of chemical vapor deposition of an alkoxysilane on a solid surface, comprising 3- (2-bromoisobutyrylamino) propyltrialkoxysilane or 3- (2-bromoisobutyryloxy) propyltrialkoxysilane, Accordingly, a method of applying a sol-gel solution further containing tetraalkoxysilane to a solid surface can be used.
 ゾルゲル溶液の塗布方法としては、特に限定されないが、スピンコーティング法、スプレーコーティング法、ディップコーティング法等が挙げられる。 The application method of the sol-gel solution is not particularly limited, and examples thereof include a spin coating method, a spray coating method, and a dip coating method.
 アルコキシシランにおけるアルコキシ基としては、特に限定されないが、メチル基、エチル基、プロピル基等が挙げられる。 The alkoxy group in the alkoxysilane is not particularly limited, and examples thereof include a methyl group, an ethyl group, and a propyl group.
 なお、表面に2-ブロモイソブチリル基が導入された固体を重合液中に浸漬する代わりに、表面に2-ブロモイソブチリル基が導入された固体に重合液を塗布してもよい。 In addition, instead of immersing the solid having 2-bromoisobutyryl group introduced on the surface in the polymerization solution, the polymerization solution may be applied to the solid having 2-bromoisobutyryl group introduced on the surface.
 この場合、重合液は、増粘剤をさらに含んでいてもよい。これにより、重合液のはじきを防ぎ、固体の表面に重合液を均一に塗布することができる。 In this case, the polymerization solution may further contain a thickener. Thereby, the repelling of a polymerization liquid can be prevented and a polymerization liquid can be uniformly apply | coated to the surface of a solid.
 増粘剤としては、特に限定されないが、ポリビニルアルコール等が挙げられる。 The thickener is not particularly limited, and examples thereof include polyvinyl alcohol.
 重合液の塗布方法としては、特に限定されないが、筆又は刷毛を用いて、重合液を塗布する方法、スポイトを用いて、重合液を滴下する方法等が挙げられる。 The method for applying the polymerization solution is not particularly limited, and examples thereof include a method for applying the polymerization solution using a brush or a brush, and a method for dropping the polymerization solution using a dropper.
 なお、重合液が塗布された固体の表面を被覆材で被覆してもよい。これにより、重合液を固体の表面全体に均一に行き渡らせることができる。 In addition, you may coat | cover the solid surface with which the polymerization liquid was apply | coated with a coating material. Thereby, the polymerization liquid can be uniformly distributed over the entire surface of the solid.
 被覆材としては、特に限定されないが、濾紙、フィルム等が挙げられる。 The coating material is not particularly limited, and examples thereof include filter paper and film.
 表面改質材料は、前述の表面改質方法により表面が改質されている。 The surface of the surface modifying material is modified by the surface modifying method described above.
 表面改質材料のポリマーブラシの厚さは、4~700nmであることが好ましい。 The thickness of the polymer brush as the surface modifying material is preferably 4 to 700 nm.
 pHが2である酸水溶液に浸漬した後の表面改質材料のn-ヘキサデカンに対する前進接触角(θ)及び後退接触角(θ)は、150°以上であることが好ましい。 The advancing contact angle (θ A ) and receding contact angle (θ R ) of n-hexadecane of the surface modifying material after being immersed in an acid aqueous solution having a pH of 2 is preferably 150 ° or more.
 pHが2である酸水溶液に浸漬した後の表面改質材料のn-ヘキサデカンに対する接触角ヒステリシスθ-θは、10°以下であることが好ましく、5°以下であることがさらに好ましい。このため、5°以下の傾斜角(滑落角という)で油滴を滑落させることができ、撥油性(液滴除去能及び防汚性)に優れる表面改質材料が得られる。 The contact angle hysteresis θ AR with respect to n-hexadecane of the surface modifying material after being immersed in an acid aqueous solution having a pH of 2 is preferably 10 ° or less, and more preferably 5 ° or less. For this reason, oil droplets can be slid down at an inclination angle of 5 ° or less (referred to as sliding angle), and a surface modifying material having excellent oil repellency (droplet removal ability and antifouling property) can be obtained.
 表面改質材料は、pHが異なる酸水溶液又は塩基水溶液に浸漬すると、油滴に対する前進接触角(θ)、後退接触角(θ)、接触角ヒステリシス(θ-θ)及び滑落角が変化する。この表面改質材料のpH応答性は、繰り返し機能する。 When the surface modifying material is immersed in an acid aqueous solution or a base aqueous solution having different pHs, the advancing contact angle (θ A ), receding contact angle (θ R ), contact angle hysteresis (θ A −θ R ) and sliding angle with respect to the oil droplets are immersed. Changes. The pH responsiveness of this surface modifying material functions repeatedly.
 pHが10である塩基水溶液に浸漬した後の表面改質材料のn-ヘキサデカンに対する接触角ヒステリシスθ-θに対する、pHが2である酸水溶液に浸漬した後の表面改質材料のn-ヘキサデカンに対する接触角ヒステリシスθ-θの比は、0.1以下であることが好ましく、0.05以下であることがさらに好ましい。このため、浸漬する水のpHの変化による撥油性の変化が大きい。 n- of the surface modification material after dipping in an acid aqueous solution having a pH of 2 relative to the contact angle hysteresis θ AR of the surface modification material to n-hexadecane after dipping in an aqueous base solution having a pH of 10. The ratio of the contact angle hysteresis θ AR to hexadecane is preferably 0.1 or less, and more preferably 0.05 or less. For this reason, the change in oil repellency due to the change in pH of the water to be immersed is large.
 表面改質材料は、潤滑処理、抗菌処理、防汚処理、超撥水/撥油処理、刺激応答性表面等に適用することができる。 Surface modification material can be applied to lubrication treatment, antibacterial treatment, antifouling treatment, super water / oil repellent treatment, stimulus responsive surface, and the like.
 [前処理基板の作製]
 1cm×1cmのシリコン基板をエタノール中で5分間超音波洗浄した後、窒素気流中で乾燥させた。次に、1×10Paで30分間オゾン洗浄した後、約100μLの3-アミノプロピルトリエトキシシラン(APTES)と共に、密封式のテフロン(登録商標)容器に入れ、100℃で60分間加熱処理した。これにより、シリコン基板の表面に存在するシラノール基と、APTESのトリエトキシシリル基を、脱水縮合させ、シリコン基板の表面にアミノ基を導入した。さらに、シリコン基板に吸着している余分なAPTESをトルエンでリンスした後、窒素気流中で乾燥させた。次に、アミノ基が導入されたシリコン基板を、ATRP開始剤としての、2-ブロモイソブチリルブロミド(BIBB)を0.1M1,4-ジオキサン溶液に一晩浸漬し、シリコン基板の表面に2-ブロモイソブチリル基を導入し、前処理基板を得た。
[Preparation of pretreatment substrate]
A 1 cm × 1 cm silicon substrate was ultrasonically cleaned in ethanol for 5 minutes and then dried in a nitrogen stream. Next, after ozone cleaning at 1 × 10 3 Pa for 30 minutes, together with about 100 μL of 3-aminopropyltriethoxysilane (APTES), it is put into a sealed Teflon (registered trademark) container and heated at 100 ° C. for 60 minutes. did. As a result, silanol groups present on the surface of the silicon substrate and the triethoxysilyl group of APTES were dehydrated and condensed to introduce amino groups on the surface of the silicon substrate. Further, excess APTES adsorbed on the silicon substrate was rinsed with toluene and then dried in a nitrogen stream. Next, the amino substrate-introduced silicon substrate was immersed overnight in a 0.1 M 1,4-dioxane solution of 2-bromoisobutyryl bromide (BIBB) as an ATRP initiator, and 2 -A bromoisobutyryl group was introduced to obtain a pretreated substrate.
 [実施例1-1]
 AGET ATRP法を用いて、前処理基板の表面に、ポリ(メタクリル酸2-(ジメチルアミノ)エチル)(PDMAEMA)のポリマーブラシを導入した。具体的には、メタクリル酸2-ジメチルアミノエチル(DMAEMA)8mL、水7mL、塩化銅(II)16mg及びN,N,N’,N’’,N’’’-ペンタメチルジエチレントリアミン50μLを20mLのガラス瓶に入れた後、アスコルビン酸の1mg/mL水溶液20μLを加えて、約2分間攪拌し、重合液を得た。次に、前処理基板を重合液中に浸漬して重合を開始した後、ガラス瓶をPTFE製のネジ蓋で密封した。このとき、重合液を脱気していないため、ガラス瓶には約4mLの空気が含まれていた。さらに、攪拌せずに、室温下(23~28℃)で重合した後、ガラス瓶からポリマーブラシが導入されたガラス基板を取り出して、水で十分にリンスし、表面改質基板を得た。
[Example 1-1]
A polymer brush of poly (2- (dimethylamino) ethyl methacrylate) (PDMAEMA) was introduced onto the surface of the pretreated substrate using the AGET ATRP method. Specifically, 2-dimethylaminoethyl methacrylate (DMAEMA) 8 mL, water 7 mL, copper (II) chloride 16 mg and N, N, N ′, N ″, N ′ ″-pentamethyldiethylenetriamine 50 μL in 20 mL After putting in a glass bottle, 20 μL of a 1 mg / mL aqueous solution of ascorbic acid was added and stirred for about 2 minutes to obtain a polymerization solution. Next, after prepolymerizing the substrate by immersing the pretreated substrate in the polymerization solution, the glass bottle was sealed with a screw cap made of PTFE. At this time, since the polymerization solution was not degassed, the glass bottle contained about 4 mL of air. Further, after polymerization at room temperature (23 to 28 ° C.) without stirring, the glass substrate into which the polymer brush was introduced was taken out of the glass bottle and thoroughly rinsed with water to obtain a surface modified substrate.
 図1に、重合時間に対するポリマーブラシの厚さの関係を示す。 FIG. 1 shows the relationship of the polymer brush thickness to the polymerization time.
 図1から、ポリマーブラシの厚さは、約30分間のインキュベーション期間の後、約2nm/minで直線的に増加し、重合を開始してから約200分後に300nmに達していることがわかる。ポリマーブラシの厚さが直線的に増加していることから、重合が高いレベルで制御されており、成長するポリマー鎖の端末にブロモ基又はクロロ基が保持されていることが示唆される。ポリマーブラシの厚さが300nmに達した後、ポリマーブラシの厚さの増加は緩やかになった。これは、成長するポリマー鎖の末端のブロモ基又はクロロ基が減少することにより、成長するポリマー鎖の数が減少したためであると考えられる。その結果、ポリマーブラシの厚さは、重合を開始してから1380分後に、670nmに達していた。 FIG. 1 indicates that the thickness of the polymer brush increases linearly at about 2 nm / min after an incubation period of about 30 minutes and reaches 300 nm about 200 minutes after the start of polymerization. The linear increase in the thickness of the polymer brush indicates that the polymerization is controlled at a high level and that bromo or chloro groups are retained at the ends of the growing polymer chain. After the thickness of the polymer brush reached 300 nm, the increase in the thickness of the polymer brush became gradual. This is considered to be because the number of growing polymer chains is decreased by decreasing the bromo group or chloro group at the terminal of the growing polymer chain. As a result, the thickness of the polymer brush reached 670 nm after 1380 minutes from the start of polymerization.
 なお、ポリマーブラシの厚さは、エリプソメーターを用いて測定した。 The thickness of the polymer brush was measured using an ellipsometer.
 図2に、ポリマーブラシの断面のSEM写真を示す。 FIG. 2 shows an SEM photograph of the cross section of the polymer brush.
 図2から、ポリマーブラシが平滑で均質であることがわかる。 FIG. 2 shows that the polymer brush is smooth and homogeneous.
 [実施例1-2]
 塩化銅(II)、N,N,N’,N’’,N’’’-ペンタメチルジエチレントリアミン及びアスコルビン酸の1mg/mL水溶液の添加量を、それぞれ8mg、25μL及び10μLに変更した以外は、実施例1-1と同様にして、表面改質基板を得た。
[Example 1-2]
Except for changing the addition amount of 1 mg / mL aqueous solution of copper (II) chloride, N, N, N ′, N ″, N ′ ″-pentamethyldiethylenetriamine and ascorbic acid to 8 mg, 25 μL and 10 μL, respectively. A surface modified substrate was obtained in the same manner as in Example 1-1.
 図3に、実施例1-1、1-2の重合時間に対するポリマーブラシの厚さの関係を示す。 FIG. 3 shows the relationship between the polymer brush thickness and the polymerization time of Examples 1-1 and 1-2.
 図3から、塩化銅(II)、ペンタメチルジエチレントリアミン及びアスコルビン酸の添加量が実施例1-1の半量である実施例1-2では、インキュベーション期間が実施例1-1における約30分間から約80分間に増加することがわかる。これは、Cu(I)がCu(II)に酸化することにより、重合反応を阻害する酸素を重合系から除去する速度が遅くなるためであると考えられる。また、実施例1-1では、重合を開始してから約30分後にポリマーブラシが急激に成長するのに対し、実施例1-2では、重合を開始してから約160分後に、ポリマーブラシが急激に成長する。これは、ポリマーブラシの成長速度が、重合系中の[Cu(I)]/[Cu(II)]に比例することに起因するためである。実施例1-2では、重合を開始してから80分後に、重合系中のCu(I)の存在量が少ないため、ポリマーブラシの成長が遅い。一方、重合を開始してから120分後に、重合系中の[Cu(I)]/[Cu(II)]の存在量が増加するため、ポリマーブラシの成長が速くなり、重合を開始してから約160分後に、重合系からほぼ全ての酸素が除去され、重合系中の[Cu(I)]/[Cu(II)]は最大になり、一定になる。 From FIG. 3, it can be seen from Example 1-2 that the addition amounts of copper (II) chloride, pentamethyldiethylenetriamine and ascorbic acid are half the amount of Example 1-1, and the incubation period is from about 30 minutes to about 0.1 minutes in Example 1-1. It turns out that it increases in 80 minutes. This is considered to be because the rate at which oxygen that inhibits the polymerization reaction is removed from the polymerization system is slowed by the oxidation of Cu (I) to Cu (II). In Example 1-1, the polymer brush grew rapidly about 30 minutes after the start of polymerization, whereas in Example 1-2, the polymer brush was about 160 minutes after the start of polymerization. Grows rapidly. This is because the growth rate of the polymer brush is proportional to [Cu (I)] / [Cu (II)] in the polymerization system. In Example 1-2, the growth of the polymer brush is slow because the amount of Cu (I) present in the polymerization system is small 80 minutes after the start of the polymerization. On the other hand, 120 minutes after the start of the polymerization, the amount of [Cu (I)] / [Cu (II)] in the polymerization system increases, so the growth of the polymer brush becomes faster and the polymerization starts. About 160 minutes after the removal, almost all oxygen is removed from the polymerization system, and [Cu (I)] / [Cu (II)] in the polymerization system becomes maximum and becomes constant.
 [実施例2]
 ARGET ATRP法を用いて、前処理基板の表面に、ポリ(メタクリル酸2-(ジエチルアミノ)エチル)(PDEAEMA)のポリマーブラシを導入した。具体的には、メタクリル酸2-ジエチルアミノエチル(DEAEMA)8mL、水3mL、エタノール4mL、塩化銅(II)2.8mg及びN,N,N’,N’’,N’’’-ペンタメチルジエチレントリアミン5μLを20mLのガラス瓶に入れた。次に、アスコルビン酸の1mg/mL水溶液1mLを加えて、約2分間攪拌し、重合液を得た。次に、前処理基板を重合液中に浸漬して重合を開始した後、ガラス瓶をPTFE製のネジ蓋で密封した。このとき、重合液を脱気していないため、ガラス瓶には約4mLの空気が含まれていた。さらに、攪拌せずに、室温下(23~28℃)で24時間重合した後、ガラス瓶からポリマーブラシが導入されたガラス基板を取り出して、水で十分にリンスし、表面改質基板を得た。表面処理基板に導入されているポリマーブラシは、厚さが70nmであった。
[Example 2]
A polymer brush of poly (2- (diethylamino) ethyl methacrylate) (PDEAEMA) was introduced onto the surface of the pretreated substrate using the ARGET ATRP method. Specifically, 2-diethylaminoethyl methacrylate (DEAEMA) 8 mL, water 3 mL, ethanol 4 mL, copper (II) chloride 2.8 mg and N, N, N ′, N ″, N ′ ″-pentamethyldiethylenetriamine 5 μL was placed in a 20 mL glass bottle. Next, 1 mL of a 1 mg / mL aqueous solution of ascorbic acid was added and stirred for about 2 minutes to obtain a polymerization solution. Next, after prepolymerizing the substrate by immersing the pretreated substrate in the polymerization solution, the glass bottle was sealed with a screw cap made of PTFE. At this time, since the polymerization solution was not degassed, the glass bottle contained about 4 mL of air. Furthermore, after polymerization for 24 hours at room temperature (23 to 28 ° C.) without stirring, the glass substrate with the polymer brush introduced was taken out of the glass bottle and thoroughly rinsed with water to obtain a surface modified substrate. . The polymer brush introduced into the surface treatment substrate had a thickness of 70 nm.
 [比較例1]
 AGET ATRP法を用いて、前処理基板の表面に、ポリメタクリル酸ナトリウムのポリマーブラシを導入した。具体的には、メタクリル酸ナトリウム3g、水4.6mL、塩化銅(II)8mg及びN,N,N’,N’’,N’’’-ペンタメチルジエチレントリアミン25μLを20mLのガラス瓶に入れた後、アスコルビン酸の1mg/mL水溶液10μLを加えて約2分間攪拌し、重合液を得た。次に、前処理基板を重合液中に浸漬して重合を開始した後、ガラス瓶をPTFE製のネジ蓋で密封した。このとき、重合液を脱気していないため、ガラス瓶には約4mLの空気が含まれていた。さらに、攪拌せずに、室温下(23~28℃)で重合した後、ガラス瓶からポリマーブラシが導入されたガラス基板を取り出して、水で十分にリンスし、表面改質基板を得た。
[Comparative Example 1]
A polymer brush of poly (sodium methacrylate) was introduced on the surface of the pretreatment substrate using the AGET ATRP method. Specifically, 3 g of sodium methacrylate, 4.6 mL of water, 8 mg of copper (II) chloride and 25 μL of N, N, N ′, N ″, N ′ ″-pentamethyldiethylenetriamine were placed in a 20 mL glass bottle. Then, 10 μL of a 1 mg / mL aqueous solution of ascorbic acid was added and stirred for about 2 minutes to obtain a polymerization solution. Next, after prepolymerizing the substrate by immersing the pretreated substrate in the polymerization solution, the glass bottle was sealed with a screw cap made of PTFE. At this time, since the polymerization solution was not degassed, the glass bottle contained about 4 mL of air. Further, after polymerization at room temperature (23 to 28 ° C.) without stirring, the glass substrate into which the polymer brush was introduced was taken out of the glass bottle and thoroughly rinsed with water to obtain a surface modified substrate.
 図4に、重合時間に対するポリマーブラシの厚さの関係を示す。 FIG. 4 shows the relationship of the polymer brush thickness to the polymerization time.
 図4から、ポリマーブラシの厚さは、インキュベーション期間を経ずに増加するが、重合を開始してから1320分後に、150nmに達していることがわかる。 FIG. 4 shows that the thickness of the polymer brush increases without passing through the incubation period, but reaches 150 nm 1320 minutes after the start of polymerization.
 次に、実施例1-1、2、比較例1の表面改質基板の所定のpHの水に浸漬した後の撥油性を評価した。このとき、実施例1-1の表面改質基板としては、厚さが20nmのポリマーブラシが導入されている基板を用い、実施例2の表面改質基板としては、厚さが29nmのポリマーブラシが導入されている基板を用い、比較例1の表面改質基板としては、厚さが87nmのポリマーブラシが導入されている基板を用いた。 Next, the oil repellency after immersing the surface modified substrates of Examples 1-1 and 2 and Comparative Example 1 in water having a predetermined pH was evaluated. At this time, a substrate into which a polymer brush having a thickness of 20 nm was introduced was used as the surface modified substrate of Example 1-1, and a polymer brush having a thickness of 29 nm was used as the surface modified substrate of Example 2. Was used, and as the surface modified substrate of Comparative Example 1, a substrate into which a polymer brush having a thickness of 87 nm was introduced was used.
 [所定のpHの水に浸漬した後の撥油性]
 pHが2である酸水溶液又はpHが10である塩基水溶液に、表面改質基板を浸漬した後、自動接触角計DM-501Hi(協和界面科学社製)を用いて、n-ヘキサデカン3μLに対する前進接触角θ及び後退接触角θを25℃で測定した。次に、式
 θ-θ
から、接触角ヒステリシスΔθを算出した。
[Oil repellency after immersion in water at a predetermined pH]
After immersing the surface-modified substrate in an aqueous acid solution having a pH of 2 or an aqueous base solution having a pH of 10, the automatic contact angle meter DM-501Hi (manufactured by Kyowa Interface Science Co., Ltd.) is used to advance the solution to 3 μL of n-hexadecane Contact angle θ A and receding contact angle θ R were measured at 25 ° C. Next, the equation θ A −θ R
From the above, the contact angle hysteresis Δθ was calculated.
 表1に、実施例1-1、2、比較例1の表面改質基板のpHが2である酸水溶液又はpHが10である塩基水溶液に浸漬した後の撥油性の評価結果を示す。 Table 1 shows the evaluation results of the oil repellency after immersion in the acid aqueous solution having a pH of 2 or the base aqueous solution having a pH of 10 of the surface-modified substrates of Examples 1-1 and Comparative Example 1.
Figure JPOXMLDOC01-appb-T000001
なお、ΔpHは、pHの変化よるθ及びθの変化を意味する。
Figure JPOXMLDOC01-appb-T000001
ΔpH means a change in θ A and θ R due to a change in pH.
 表1から、実施例1-1、2の表面改質基板は、pHが2である酸水溶液に浸漬した後のn-ヘキサデカンに対する接触角ヒステリシスΔθが、それぞれ4°、8°であるため、5°以下の傾斜角(滑落角という)で油滴を滑落させることができ、撥油性(液滴除去能及び防汚性)に優れる。 From Table 1, since the surface modified substrates of Examples 1-1 and 2 have contact angle hysteresis Δθ with respect to n-hexadecane after immersion in an acid aqueous solution having a pH of 2, respectively, 4 ° and 8 °, Oil drops can be slid down at an inclination angle of 5 ° or less (referred to as sliding angle), and the oil repellency (droplet removal ability and antifouling property) is excellent.
 また、実施例1-1、2の表面改質基板は、pHが10である塩基水溶液に浸漬した後のn-ヘキサデカンに対する接触角ヒステリシスΔθに対する、pHが2である酸水溶液に浸漬した後のn-ヘキサデカンに対する接触角ヒステリシスΔθの比が、それぞれ0.04、0.08であるため、浸漬する水のpHの変化による撥油性の変化が大きい。 The surface-modified substrates of Examples 1-1 and 2 were immersed in an aqueous acid solution having a pH of 2 with respect to the contact angle hysteresis Δθ for n-hexadecane after being immersed in an aqueous base solution having a pH of 10. Since the ratio of the contact angle hysteresis Δθ to n-hexadecane is 0.04 and 0.08, respectively, the change in oil repellency due to the change in pH of the immersion water is large.
 これに対して、比較例1の表面改質基板は、pHが10である塩基水溶液に浸漬した後のn-ヘキサデカンに対する接触角ヒステリシスΔθに対する、pHが2である酸水溶液に浸漬した後のn-ヘキサデカンに対する接触角ヒステリシスΔθの比が9であるため、浸漬する水のpHの変化による撥油性の変化が小さい。 On the other hand, the surface-modified substrate of Comparative Example 1 is n after being immersed in an acid aqueous solution having a pH of 2 with respect to the contact angle hysteresis Δθ for n-hexadecane after being immersed in a basic aqueous solution having a pH of 10. -Since the ratio of the contact angle hysteresis Δθ to hexadecane is 9, the change in oil repellency due to the change in the pH of the water to be immersed is small.
 [実施例3-1]
 ARGET ATRP法を用いて、前処理基板の表面に、ポリ(メタクリル酸2-(ジメチルアミノ)エチル)(PDMAEMA)のポリマーブラシを導入した。具体的には、メタクリル酸2-ジメチルアミノエチル(DMAEMA)0.8mL、水15.2mL、塩化銅(II)2.8mg及びN,N,N’,N’’,N’’’-ペンタメチルジエチレントリアミン5μLを20mLのガラス瓶に入れた後、アスコルビン酸1mgを加えて、約2分間攪拌し、重合液を得た。
[Example 3-1]
A polymer brush of poly (2- (dimethylamino) ethyl methacrylate) (PDMAEMA) was introduced onto the surface of the pretreated substrate using the ARGET ATRP method. Specifically, 2-dimethylaminoethyl methacrylate (DMAEMA) 0.8 mL, water 15.2 mL, copper (II) chloride 2.8 mg and N, N, N ′, N ″, N ′ ″-penta After putting 5 μL of methyldiethylenetriamine in a 20 mL glass bottle, 1 mg of ascorbic acid was added and stirred for about 2 minutes to obtain a polymerization solution.
 スポイトを用いて、前処理基板に重合液を数滴滴下して重合を開始した後、重合液が滴下された前処理基板の表面をワットマン濾紙で被覆した。さらに、室温下(23~28℃)で90分間重合した後、ワットマン濾紙を剥離して、水で十分にリンスし、表面改質基板を得た。 Using a dropper, several drops of the polymerization solution were dropped on the pretreated substrate to start the polymerization, and then the surface of the pretreated substrate on which the polymerization solution was dropped was coated with Whatman filter paper. Furthermore, after polymerization at room temperature (23 to 28 ° C.) for 90 minutes, the Whatman filter paper was peeled off and thoroughly rinsed with water to obtain a surface modified substrate.
 表面改質基板を水に浸漬した後、n-ヘキサデカンを表面改質基板に滴下すると、n-ヘキサデカンの液滴は、表面改質基板の表面を自由に動くことができた。このことから、表面改質基板は、水に浸漬した後の撥油性に優れることがわかった。 When the surface-modified substrate was immersed in water and then n-hexadecane was dropped onto the surface-modified substrate, the n-hexadecane droplet was able to move freely on the surface of the surface-modified substrate. From this, it was found that the surface-modified substrate was excellent in oil repellency after being immersed in water.
 [実施例3-2~3-7]
 アスコルビン酸の添加量を、2mg、10mg、20mg、30mg、40mg、80mgに変更した以外は、実施例3-1と同様にして、表面改質基板を得た。
[Examples 3-2 to 3-7]
A surface-modified substrate was obtained in the same manner as in Example 3-1, except that the amount of ascorbic acid added was changed to 2 mg, 10 mg, 20 mg, 30 mg, 40 mg, and 80 mg.
 表面改質基板を水に浸漬した後、n-ヘキサデカンを表面改質基板に滴下すると、n-ヘキサデカンの液滴は、表面改質基板の表面を自由に動くことができた。このことから、表面改質基板は、水に浸漬した後の撥油性に優れることがわかった。 When the surface-modified substrate was immersed in water and then n-hexadecane was dropped onto the surface-modified substrate, the n-hexadecane droplet was able to move freely on the surface of the surface-modified substrate. From this, it was found that the surface-modified substrate was excellent in oil repellency after being immersed in water.
 図5に、重合液中のアスコルビン酸の濃度に対するポリマーブラシの厚さの関係を示す。 FIG. 5 shows the relationship between the thickness of the polymer brush and the concentration of ascorbic acid in the polymerization solution.
 なお、ポリマーブラシの厚さは、エリプソメーターを用いて測定した。 The thickness of the polymer brush was measured using an ellipsometer.
 図5から、重合液中のアスコルビン酸の最適濃度は0.2M(30mg添加)であることがわかった。ここで、重合液中のアスコルビン酸の濃度が低い場合、重合速度は遅いが、重合が制御されるため、厚さが大きいポリマーブラシが導入されると考えられる。しかしながら、重合液中のアスコルビン酸の濃度が低い場合、溶液中の酸素が再生成したCu(I)を酸化して、アスコルビン酸が短時間で消費されるため、短時間で重合が停止すると考えられる。一方、重合液中のアスコルビン酸の濃度が高い場合、重合系中のポリマーラジカルの濃度が高くなりやすいため、重合の初期に停止反応が起こりやすく、結果として、ポリマーブラシの厚さが小さくなると考えられる。 From FIG. 5, it was found that the optimum concentration of ascorbic acid in the polymerization solution was 0.2M (30 mg added). Here, when the concentration of ascorbic acid in the polymerization solution is low, the polymerization rate is slow, but since the polymerization is controlled, it is considered that a polymer brush having a large thickness is introduced. However, when the concentration of ascorbic acid in the polymerization solution is low, the oxygen in the solution oxidizes the regenerated Cu (I), and ascorbic acid is consumed in a short time. It is done. On the other hand, when the concentration of ascorbic acid in the polymerization solution is high, the concentration of polymer radicals in the polymerization system tends to be high, so a stop reaction is likely to occur early in the polymerization, resulting in a decrease in the thickness of the polymer brush. It is done.
 [実施例4]
 DMAEMA4.8mL、水7.0mL、塩化銅(II)8.0mg、N,N,N’,N’’,N’’’-ペンタメチルジエチレントリアミン50μL及びポリビニルアルコール0.50gを20mLのガラス瓶に入れた後、アスコルビン酸0.01mgを加えて、約2分間攪拌し、重合液を得た。
[Example 4]
DMAEMA 4.8 mL, water 7.0 mL, copper (II) chloride 8.0 mg, N, N, N ′, N ″, N ′ ″-pentamethyldiethylenetriamine 50 μL and polyvinyl alcohol 0.50 g are placed in a 20 mL glass bottle. Thereafter, 0.01 mg of ascorbic acid was added and stirred for about 2 minutes to obtain a polymerization solution.
 得られた重合液を用い、重合液が滴下された前処理基板の表面をワットマン濾紙で被覆しなかった以外は、実施例3-1と同様にして、表面改質基板を得た。ポリマーブラシは、厚さが4~6nmであった。 Using the obtained polymerization solution, a surface-modified substrate was obtained in the same manner as in Example 3-1, except that the surface of the pretreated substrate on which the polymerization solution was dropped was not coated with Whatman filter paper. The polymer brush had a thickness of 4-6 nm.
 表面改質基板を水に浸漬した後、n-ヘキサデカンを表面改質基板に滴下すると、n-ヘキサデカンの液滴は、表面改質基板の表面を自由に動くことができた。このことから、表面改質基板は、水に浸漬した後の撥油性に優れることがわかった。 When the surface-modified substrate was immersed in water and then n-hexadecane was dropped onto the surface-modified substrate, the n-hexadecane droplet was able to move freely on the surface of the surface-modified substrate. From this, it was found that the surface-modified substrate was excellent in oil repellency after being immersed in water.
 [実施例5]
 DMAEMA0.8mL、水15.2mL、塩化銅(II)2.8mg及びN,N,N’,N’’,N’’’-ペンタメチルジエチレントリアミン5μLを20mLのガラス瓶に入れた後、アスコルビン酸20mgを加えて、約2分間攪拌し、重合液を得た。
[Example 5]
DMAEMA 0.8 mL, water 15.2 mL, copper (II) chloride 2.8 mg and N, N, N ′, N ″, N ′ ″-pentamethyldiethylenetriamine 5 μL were placed in a 20 mL glass bottle, and then ascorbic acid 20 mg Was added and stirred for about 2 minutes to obtain a polymerization solution.
 得られた重合液を用いた以外は、実施例3-1と同様にして、表面改質基板を得た。ポリマーブラシは、厚さが10nmであった。 A surface-modified substrate was obtained in the same manner as in Example 3-1, except that the obtained polymerization solution was used. The polymer brush had a thickness of 10 nm.
 表面改質基板を水に浸漬した後、n-ヘキサデカンを表面改質基板に滴下すると、n-ヘキサデカンの液滴は、表面改質基板の表面を自由に動くことができた。このことから、表面改質基板は、水に浸漬した後の撥油性に優れることがわかった。 When the surface-modified substrate was immersed in water and then n-hexadecane was dropped onto the surface-modified substrate, the n-hexadecane droplet was able to move freely on the surface of the surface-modified substrate. From this, it was found that the surface-modified substrate was excellent in oil repellency after being immersed in water.
 本国際出願は、2014年4月25日に出願された日本国特許出願2014-091865号及び2014年5月8日に出願された日本国特許出願2014-097191号に基づく優先権を主張するものであり、日本国特許出願2014-091865号及び日本国特許出願2014-097191号の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2014-091865 filed on April 25, 2014 and Japanese Patent Application No. 2014-097191 filed on May 8, 2014 The entire contents of Japanese Patent Application No. 2014-091865 and Japanese Patent Application No. 2014-097191 are incorporated herein by reference.

Claims (13)

  1.  固体の表面に、アミノ基又はヒドロキシル基を導入する工程と、
     該表面にアミノ基又はヒドロキシル基が導入された固体と2-ブロモ-2-メチルプロピオン酸誘導体を反応させて、前記固体の表面に2-ブロモイソブチリル基を導入する工程と、
     該表面に2-ブロモイソブチリル基が導入された固体を、空気中で、水溶性モノマー、水、ATRP触媒用金属塩、ATRP触媒用配位子及び還元剤を含む重合液中に浸漬し、AGET ATRP法又はARGET ATRP法を用いて、前記水溶性モノマーを重合することにより前記固体の表面にポリマーブラシを導入する工程を有し、
     前記水溶性モノマーは、(メタ)アクリル酸、(メタ)アクリル酸2-ジメチルアミノエチル、(メタ)アクリル酸2-ジエチルアミノエチル、(メタ)アクリル酸1,2-ジヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシエチル、2-(メタ)アクリロイルオキシエチルホスホリルコリン、[2-(メタ)アクリロイルオキシエチル]ジメチル(3-スルホプロピル)アンモニウムヒドロキシド、(メタ)アクリルアミド、N-2-ジメチルアミノエチル(メタ)アクリルアミド、N-2-ジエチルアミノエチル(メタ)アクリルアミド、N-1,2-ジヒドロキシエチル(メタ)アクリルアミド又はN-2-ヒドロキシエチル(メタ)アクリルアミドであることを特徴とする表面改質方法。
    Introducing an amino group or a hydroxyl group on the surface of the solid;
    Reacting a solid having an amino group or hydroxyl group introduced on the surface with a 2-bromo-2-methylpropionic acid derivative to introduce a 2-bromoisobutyryl group on the surface of the solid;
    A solid having a 2-bromoisobutyryl group introduced on the surface is immersed in a polymerization solution containing a water-soluble monomer, water, a metal salt for ATRP catalyst, a ligand for ATRP catalyst, and a reducing agent in air. Using the AGET ATRP method or the ARGET ATRP method to polymerize the water-soluble monomer to introduce a polymer brush onto the solid surface,
    The water-soluble monomer includes (meth) acrylic acid, 2-dimethylaminoethyl (meth) acrylate, 2-diethylaminoethyl (meth) acrylate, 1,2-dihydroxyethyl (meth) acrylate, (meth) acrylic acid 2-hydroxyethyl, 2- (meth) acryloyloxyethyl phosphorylcholine, [2- (meth) acryloyloxyethyl] dimethyl (3-sulfopropyl) ammonium hydroxide, (meth) acrylamide, N-2-dimethylaminoethyl (meta ) A surface modification method characterized by being acrylamide, N-2-diethylaminoethyl (meth) acrylamide, N-1,2-dihydroxyethyl (meth) acrylamide or N-2-hydroxyethyl (meth) acrylamide.
  2.  前記重合液は、前記水溶性モノマーの濃度が1体積%以上50体積%以下であることを特徴とする請求項1に記載の表面改質方法。 2. The surface modification method according to claim 1, wherein the polymerization solution has a concentration of the water-soluble monomer of 1% by volume or more and 50% by volume or less.
  3.  前記ATRP触媒用金属塩に対する前記ATRP触媒用還元剤のモル比が0.30以上50以下であることを特徴とする請求項1に記載の表面改質方法。 2. The surface modification method according to claim 1, wherein a molar ratio of the ATRP catalyst reducing agent to the metal salt for ATRP catalyst is 0.30 or more and 50 or less.
  4.  固体の表面に、アミノ基又はヒドロキシル基を導入する工程と、
     該表面にアミノ基又はヒドロキシル基が導入された固体と2-ブロモ-2-メチルプロピオン酸誘導体を反応させて、前記固体の表面に2-ブロモイソブチリル基を導入する工程と、
     該表面に2-ブロモイソブチリル基が導入された固体に、空気中で、水溶性モノマー、水、ATRP触媒用金属塩、ATRP触媒用配位子及び還元剤を含む重合液を塗布し、AGET ATRP法又はARGET ATRP法を用いて、前記水溶性モノマーを重合することにより前記固体の表面にポリマーブラシを導入する工程を有し、
     前記水溶性モノマーは、(メタ)アクリル酸、(メタ)アクリル酸2-ジメチルアミノエチル、(メタ)アクリル酸2-ジエチルアミノエチル、(メタ)アクリル酸1,2-ジヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシエチル、2-(メタ)アクリロイルオキシエチルホスホリルコリン、[2-(メタ)アクリロイルオキシエチル]ジメチル(3-スルホプロピル)アンモニウムヒドロキシド、(メタ)アクリルアミド、N-2-ジメチルアミノエチル(メタ)アクリルアミド、N-2-ジエチルアミノエチル(メタ)アクリルアミド、N-1,2-ジヒドロキシエチル(メタ)アクリルアミド又はN-2-ヒドロキシエチル(メタ)アクリルアミドであることを特徴とする表面改質方法。
    Introducing an amino group or a hydroxyl group on the surface of the solid;
    Reacting a solid having an amino group or hydroxyl group introduced on the surface with a 2-bromo-2-methylpropionic acid derivative to introduce a 2-bromoisobutyryl group on the surface of the solid;
    Applying a polymer solution containing a water-soluble monomer, water, a metal salt for ATRP catalyst, a ligand for ATRP catalyst, and a reducing agent in air to a solid having a 2-bromoisobutyryl group introduced on the surface; Using the AGET ATRP method or the ARGET ATRP method to introduce a polymer brush on the solid surface by polymerizing the water-soluble monomer,
    The water-soluble monomer includes (meth) acrylic acid, 2-dimethylaminoethyl (meth) acrylate, 2-diethylaminoethyl (meth) acrylate, 1,2-dihydroxyethyl (meth) acrylate, (meth) acrylic acid 2-hydroxyethyl, 2- (meth) acryloyloxyethyl phosphorylcholine, [2- (meth) acryloyloxyethyl] dimethyl (3-sulfopropyl) ammonium hydroxide, (meth) acrylamide, N-2-dimethylaminoethyl (meta ) A surface modification method characterized by being acrylamide, N-2-diethylaminoethyl (meth) acrylamide, N-1,2-dihydroxyethyl (meth) acrylamide or N-2-hydroxyethyl (meth) acrylamide.
  5.  前記重合液は、前記水溶性モノマーの濃度が1体積%以上50体積%以下であることを特徴とする請求項4に記載の表面改質方法。 5. The surface modification method according to claim 4, wherein the polymerization solution has a concentration of the water-soluble monomer of 1% by volume to 50% by volume.
  6.  前記ATRP触媒用金属塩に対する前記ATRP触媒用還元剤のモル比が0.30以上50以下であることを特徴とする請求項4に記載の表面改質方法。 The surface reforming method according to claim 4, wherein a molar ratio of the reducing agent for ATRP catalyst to the metal salt for ATRP catalyst is 0.30 or more and 50 or less.
  7.  前記重合液は、増粘剤をさらに含むことを特徴とする請求項4に記載の表面改質方法。 The surface modification method according to claim 4, wherein the polymerization solution further contains a thickener.
  8.  前記重合液が塗布された固体の表面を被覆材で被覆することを特徴とする請求項4に記載の表面改質方法。 The surface modification method according to claim 4, wherein a solid surface coated with the polymerization solution is coated with a coating material.
  9.  請求項1に記載の表面改質方法により表面が改質されていることを特徴とする表面改質材料。 A surface-modified material, wherein the surface is modified by the surface-modifying method according to claim 1.
  10.  pHが10である塩基水溶液に浸漬した後のn-ヘキサデカンに対する接触角ヒステリシスに対する、pHが2である酸水溶液に浸漬した後のn-ヘキサデカンに対する接触角ヒステリシスの比が0.1以下であることを特徴とする請求項9に記載の表面改質材料。 The ratio of the contact angle hysteresis for n-hexadecane after immersion in an aqueous acid solution having a pH of 2 to the contact angle hysteresis for n-hexadecane after immersion in an aqueous base solution having a pH of 10 is 0.1 or less. The surface modifying material according to claim 9.
  11.  pHが2である酸水溶液に浸漬した後のn-ヘキサデカンに対する接触角ヒステリシスが10°以下であることを特徴とする請求項9に記載の表面改質材料。 10. The surface modifying material according to claim 9, wherein the contact angle hysteresis with respect to n-hexadecane after being immersed in an acid aqueous solution having a pH of 2 is 10 ° or less.
  12.  請求項2に記載の表面改質方法により表面が改質されていることを特徴とする表面改質材料。 A surface-modified material, wherein the surface is modified by the surface-modifying method according to claim 2.
  13.  水溶性モノマー、水、ATRP触媒用金属塩、ATRP触媒用配位子及び還元剤を含み、
     前記水溶性モノマーは、(メタ)アクリル酸、(メタ)アクリル酸2-ジメチルアミノエチル、(メタ)アクリル酸2-ジエチルアミノエチル、(メタ)アクリル酸1,2-ジヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシエチル、2-(メタ)アクリロイルオキシエチルホスホリルコリン、[2-(メタ)アクリロイルオキシエチル]ジメチル(3-スルホプロピル)アンモニウムヒドロキシド、(メタ)アクリルアミド、N-2-ジメチルアミノエチル(メタ)アクリルアミド、N-2-ジエチルアミノエチル(メタ)アクリルアミド、N-1,2-ジヒドロキシエチル(メタ)アクリルアミド又はN-2-ヒドロキシエチル(メタ)アクリルアミドであることを特徴とする重合液。
    Water soluble monomer, water, metal salt for ATRP catalyst, ligand for ATRP catalyst and reducing agent,
    The water-soluble monomer includes (meth) acrylic acid, 2-dimethylaminoethyl (meth) acrylate, 2-diethylaminoethyl (meth) acrylate, 1,2-dihydroxyethyl (meth) acrylate, (meth) acrylic acid 2-hydroxyethyl, 2- (meth) acryloyloxyethyl phosphorylcholine, [2- (meth) acryloyloxyethyl] dimethyl (3-sulfopropyl) ammonium hydroxide, (meth) acrylamide, N-2-dimethylaminoethyl (meta ) A polymerization liquid characterized by being acrylamide, N-2-diethylaminoethyl (meth) acrylamide, N-1,2-dihydroxyethyl (meth) acrylamide or N-2-hydroxyethyl (meth) acrylamide.
PCT/JP2015/062305 2014-04-25 2015-04-22 Surface modification method, surface-modified material, and polymerization liquid WO2015163383A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016515191A JP6229989B2 (en) 2014-04-25 2015-04-22 Surface modification method and surface modification material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-091865 2014-04-25
JP2014091865 2014-04-25
JP2014-097191 2014-05-08
JP2014097191 2014-05-08

Publications (1)

Publication Number Publication Date
WO2015163383A1 true WO2015163383A1 (en) 2015-10-29

Family

ID=54332546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062305 WO2015163383A1 (en) 2014-04-25 2015-04-22 Surface modification method, surface-modified material, and polymerization liquid

Country Status (2)

Country Link
JP (1) JP6229989B2 (en)
WO (1) WO2015163383A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106334537A (en) * 2016-09-18 2017-01-18 盐城工学院 Magnetic mesoporous silica surface-imprinted polymer adsorbing material and preparation method thereof
WO2018159836A1 (en) * 2017-03-03 2018-09-07 独立行政法人国立高等専門学校機構 Composite and production method thereof
WO2019131872A1 (en) 2017-12-28 2019-07-04 国立研究開発法人産業技術総合研究所 Substrate for polymer brush formation, production method for substrate for polymer brush formation, and precursor liquid for use in production method for substrate for polymer brush formation
WO2019196999A1 (en) * 2018-04-11 2019-10-17 Radisurf Aps Compositions for forming polymer brushes
WO2020045407A1 (en) * 2018-08-28 2020-03-05 国立大学法人 奈良先端科学技術大学院大学 Water repellent oil repellent agent for fibers and fiber product
CN114575153A (en) * 2022-03-08 2022-06-03 南京工业大学 Intelligent fiber material capable of rapidly adhering cells as well as preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010047452A (en) * 2008-08-22 2010-03-04 Tohoku Univ Polymer-modified hybrid nanoparticle having inorganic skeleton and method for synthesizing the same
WO2012091169A1 (en) * 2010-12-27 2012-07-05 住友ゴム工業株式会社 Surface modification method, surface-modified elastic body, syringe gasket, syringe, and tire

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602006017416D1 (en) * 2005-08-26 2010-11-18 Univ Carnegie Mellon POLYMERIZATION PROCEDURE WITH CATALYST REACTIVATION
WO2008021500A2 (en) * 2006-08-17 2008-02-21 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Modification of surfaces with polymers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010047452A (en) * 2008-08-22 2010-03-04 Tohoku Univ Polymer-modified hybrid nanoparticle having inorganic skeleton and method for synthesizing the same
WO2012091169A1 (en) * 2010-12-27 2012-07-05 住友ゴム工業株式会社 Surface modification method, surface-modified elastic body, syringe gasket, syringe, and tire

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
B.T. CHEESMAN ET AL.: "Effect of Colloidal Substrate Curvature on pH- Responsive Polyelectrolyte Brush Growth", LANGMUIR, vol. 29, 25 April 2013 (2013-04-25), pages 6131 - 6140, XP055233076 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106334537A (en) * 2016-09-18 2017-01-18 盐城工学院 Magnetic mesoporous silica surface-imprinted polymer adsorbing material and preparation method thereof
WO2018159836A1 (en) * 2017-03-03 2018-09-07 独立行政法人国立高等専門学校機構 Composite and production method thereof
US11274176B2 (en) 2017-03-03 2022-03-15 National Institute of Technology Composite and production method thereof
JP7046385B2 (en) 2017-12-28 2022-04-04 国立研究開発法人産業技術総合研究所 A substrate for forming a polymer brush, a method for producing the substrate, and a precursor liquid used in the method.
WO2019131872A1 (en) 2017-12-28 2019-07-04 国立研究開発法人産業技術総合研究所 Substrate for polymer brush formation, production method for substrate for polymer brush formation, and precursor liquid for use in production method for substrate for polymer brush formation
JPWO2019131872A1 (en) * 2017-12-28 2021-03-11 国立研究開発法人産業技術総合研究所 A substrate for forming a polymer brush, a method for producing the substrate, and a precursor liquid used in the method.
WO2019196999A1 (en) * 2018-04-11 2019-10-17 Radisurf Aps Compositions for forming polymer brushes
US11834541B2 (en) 2018-04-11 2023-12-05 Radisurf Aps Compositions for forming polymer brushes
CN111918892A (en) * 2018-04-11 2020-11-10 拉迪瑟夫私人有限责任公司 Polymer brush forming composition
CN111918892B (en) * 2018-04-11 2023-05-05 拉迪瑟夫私人有限责任公司 Composition for forming polymer brush
JPWO2020045407A1 (en) * 2018-08-28 2021-08-10 国立大学法人 奈良先端科学技術大学院大学 Water and oil repellents for textiles and textile products
JP7058021B2 (en) 2018-08-28 2022-04-21 国立大学法人 奈良先端科学技術大学院大学 Water and oil repellent for textiles and textile products
KR102444556B1 (en) 2018-08-28 2022-09-20 고쿠리츠다이가쿠호징 나라 센탄카가쿠기쥬츠 다이가쿠인 다이가쿠 Water and oil repellent for textiles and textile products
KR20210032448A (en) * 2018-08-28 2021-03-24 고쿠리츠다이가쿠호징 나라 센탄카가쿠기쥬츠 다이가쿠인 다이가쿠 Textile water and oil repellent and textile products
WO2020045407A1 (en) * 2018-08-28 2020-03-05 国立大学法人 奈良先端科学技術大学院大学 Water repellent oil repellent agent for fibers and fiber product
CN114575153A (en) * 2022-03-08 2022-06-03 南京工业大学 Intelligent fiber material capable of rapidly adhering cells as well as preparation method and application thereof
CN114575153B (en) * 2022-03-08 2024-01-19 南京工业大学 Intelligent fiber material capable of rapidly adhering cells and preparation method and application thereof

Also Published As

Publication number Publication date
JP6229989B2 (en) 2017-11-15
JPWO2015163383A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
JP6229989B2 (en) Surface modification method and surface modification material
Feng et al. Atom‐transfer radical grafting polymerization of 2‐methacryloyloxyethyl phosphorylcholine from silicon wafer surfaces
Zhao et al. Effect of surface compositional heterogeneities and microphase segregation of fluorinated amphiphilic copolymers on antifouling performance
Zhu et al. Polydopamine-melanin initiators for surface-initiated ATRP
WO2008040895A2 (en) Mesostructured skins for application in the aeronautics and aerospace industries
Urata et al. Smooth, transparent and nonperfluorinated surfaces exhibiting unusual contact angle behavior toward organic liquids
WO2012112624A2 (en) Methods and materials for functional polyionic species and deposition thereof
Sui et al. Grafting mixed responsive brushes of poly (N-isopropylacrylamide) and poly (methacrylic acid) from gold by selective initiation
US10750613B2 (en) Transparent electrode and method for manufacturing same
WO2004087872A2 (en) Thin nanometer-controlled polymer film gradient
WO2014099518A2 (en) Polyoxazoline copolymers
CN111542550B (en) Base for forming polymer brush, method for producing the base, and precursor liquid used in the method
KR101104775B1 (en) A Method for Modifying a Solid Substrate Surface Using One-Pot Process
JP2024023234A (en) Composition for forming polymer brushes
US8840965B2 (en) Silicon-containing materials with controllable microstructure
JP6560560B2 (en) Contamination resistant surface modifier and surface treatment method
EP2872606B1 (en) Article having a surface coated with an epilamization agent
van Dam et al. Self-healing antifouling polymer brushes: Effects of degree of fluorination
JP2015523236A (en) Hydrogen cyanide-based polymer surface coatings and hydrogels
CN102942816A (en) Titanium oxide spacing by SIP
EP1597069A2 (en) Nanometer-controlled polymeric thin films that resist adsorption of biological molecules and cells
EP4065616B1 (en) Polymer conetworks of poly(pyridine-(meth)-acrylamide) derivatives-crosslinked by transition metal ions- and linked by polydimethylsiloxane derivatives
JP2021187907A (en) Hydrophilic substrate and method for preparing hydrophilic substrate
JP4491037B1 (en) Tubular structure for moving aqueous solution and manufacturing method thereof
Estephan et al. Zwitterion siloxane to passivate silica against nonspecific protein adsorption

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15783660

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016515191

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15783660

Country of ref document: EP

Kind code of ref document: A1