WO2015163355A1 - Curable resin composition, cured product thereof, glycoluril derivative, and method for producing same - Google Patents

Curable resin composition, cured product thereof, glycoluril derivative, and method for producing same Download PDF

Info

Publication number
WO2015163355A1
WO2015163355A1 PCT/JP2015/062210 JP2015062210W WO2015163355A1 WO 2015163355 A1 WO2015163355 A1 WO 2015163355A1 JP 2015062210 W JP2015062210 W JP 2015062210W WO 2015163355 A1 WO2015163355 A1 WO 2015163355A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
represented
same
resin composition
Prior art date
Application number
PCT/JP2015/062210
Other languages
French (fr)
Japanese (ja)
Inventor
禿恵明
宝来晃
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Publication of WO2015163355A1 publication Critical patent/WO2015163355A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/10Compounds having one or more C—Si linkages containing nitrogen having a Si-N linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • C08K5/5455Silicon-containing compounds containing nitrogen containing at least one group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/14Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Definitions

  • the present invention is obtained by sealing a curable resin composition and a cured product thereof, a sealing agent using the curable resin composition, and a semiconductor element (particularly an optical semiconductor element) using the sealing agent.
  • the present invention relates to a semiconductor device (especially an optical semiconductor device).
  • the present invention also relates to a glycoluril derivative particularly useful as a constituent of the curable resin composition and a method for producing the same.
  • sealing materials in optical semiconductor devices include barrier properties against corrosive gases such as SOx gas and thermal shock resistance (such as cracking or peeling of the sealing material even when a thermal shock such as a cold cycle is applied). (Characteristics that are less likely to cause malfunctions such as non-lighting of the semiconductor device) and reflow resistance (cracking or peeling of the sealing material even when extremely high temperature heat is applied during the reflow process) It is demanded that all of the above characteristics are satisfied at a high level at the same time.
  • phenylsilicone phenylsilicone-based encapsulant
  • phenylsilicone-based encapsulant which has a relatively good balance of barrier property against corrosive gas, thermal shock resistance, and reflow resistance
  • optical semiconductor devices for example, refer to Patent Document 1.
  • the phenyl silicone-based encapsulant has a higher barrier property against corrosive gas than the conventionally used methyl silicone-based encapsulant, its properties are still insufficient. Actually, even when a phenyl silicone-based sealing material is used, there has been a problem that the corrosion of the electrode by the corrosive gas progresses with time in the optical semiconductor device, and the energization characteristics deteriorate.
  • an object of the present invention is to provide a curable resin composition capable of forming a cured product (sealing material) excellent in all the characteristics of thermal shock resistance, reflow resistance, and barrier properties against corrosive gas (for example, SOx gas).
  • a material (cured product) excellent in all the characteristics of thermal shock resistance, reflow resistance, and barrier property against corrosive gas for example, SOx gas.
  • another object of the present invention is a quality obtained by sealing a sealing element using the curable resin composition, and sealing a semiconductor element (particularly an optical semiconductor element) using the sealing agent.
  • Another object of the present invention is to provide a semiconductor device (particularly an optical semiconductor device) having excellent durability.
  • the present inventors include a specific component having two or more alkenyl groups in the molecule, a specific component having two or more hydrosilyl groups in the molecule, and a glycoluril derivative having a specific structure as essential components. As a result, it was found that a cured product having excellent thermal shock resistance, reflow resistance, and barrier properties against corrosive gas (for example, SOx gas) can be formed. I let you.
  • corrosive gas for example, SOx gas
  • the present invention is selected from the group consisting of a polyorganosiloxane (A1) having two or more alkenyl groups in the molecule and a polyorganosiloxysilalkylene (A2) having two or more alkenyl groups in the molecule.
  • R e and R f are the same or different and each represents a hydrogen atom or an alkyl group.
  • s is the same or different and represents 0 or an integer of 1 or more.
  • R g is the same or different and represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group.
  • R h and R i are the same or different and each represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group, and t represents 0 or an integer of 1 or more.
  • the curable resin composition characterized by including the glycoluril derivative (C) represented by these.
  • the polyorganosiloxane (A1) has the following average unit formula: (R 1 SiO 3/2) a1 ( R 1 2 SiO 2/2) a2 (R 1 3 SiO 1/2) a3 (SiO 4/2) a4 (XO 1/2) a5
  • R 1 is the same or different and is a monovalent substituted or unsubstituted hydrocarbon group, provided that a part of R 1 is an alkenyl group (particularly a vinyl group), , Controlled within the range of two or more in the molecule
  • X is a hydrogen atom or an alkyl group
  • a1 is 0 or a positive number
  • a2 is 0 or a positive number
  • a3 is 0 or a positive number
  • a4 is 0 or a positive number
  • a5 is 0 or a positive number
  • (a1 + a2 + a3) is a positive number.
  • the said curable resin composition which is polyorganos
  • the present invention also provides the curable resin composition, wherein the polyorganosiloxane (A1) is a linear polyorganosiloxane represented by the following formula (I-1).
  • the polyorganosiloxane (A1) is a linear polyorganosiloxane represented by the following formula (I-1).
  • R 11 are the same or different and each represents a monovalent substituted or unsubstituted hydrocarbon group. However, at least two of R 11 are alkenyl groups.
  • m1 is an integer of 5 to 1000.
  • this invention provides the said curable resin composition whose polyorganosiloxane (A1) is the following ladder type polyorgano silsesquioxane (a) or (b).
  • R 19 represents an alkenyl group
  • R 20 are the same or different and each represents a monovalent substituted or unsubstituted hydrocarbon group.
  • the ladder-type polyorganosilsesquioxane (a) is represented by the following formula (I-2) and has two or more alkenyl groups in the molecule, and is determined by gel permeation chromatography.
  • the above curable resin composition which is a ladder type polyorganosilsesquioxane having a standard polystyrene equivalent number average molecular weight (Mn) of 500 to 1500 and a molecular weight dispersity (Mw / Mn) of 1.00 to 1.40. I will provide a.
  • R 12 is the same or different and is a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group
  • R 13 is the same or different and represents a hydrogen atom, an alkyl
  • R 14 is the same or different and is a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group
  • R 15 is the same or different and is a monovalent It is a substituted or unsubstituted hydrocarbon group
  • n1 represents an integer of 0 or more
  • R 14 is the same or different and is a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group
  • R 15 is the same or different and is a monovalent It is a substituted or unsubstituted hydrocarbon group
  • n2 represents an integer of 0 or more.
  • R 14 is the same or different and is a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group
  • R 17 is the same or different and is a monovalent It is a saturated aliphatic hydrocarbon group
  • n3 represents an integer of 0 or more.
  • the present invention also provides the curable resin composition, wherein the polyorganosilsesquioxane having a ladder structure in the ladder-type polyorganosilsesquioxane (b) is represented by the following formula (I-3): To do.
  • p represents an integer of 1 or more
  • R 18 is the same or different and represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group
  • T represents a terminal group. Indicates.
  • the present invention also provides the curable resin composition, wherein the ladder-type polyorganosilsesquioxane (b) is a ladder-type polyorganosilsesquioxane represented by the following formula (I-3 ′): To do.
  • p represents an integer of 1 or more
  • R 18 is the same or different and represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group
  • A represents A polyorganosilsesquioxane residue (a), or a hydroxy group, a halogen atom, an alkoxy group, or an acyloxy group, provided that a part or all of A is a polyorganosilsesquioxane residue (a) is there.
  • p represents an integer of 1 or more
  • R 18 is the same or different and represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group
  • A represents A polyorganosilsesquioxane residue (a), or a
  • the polyorganosiloxane (A1) has the following average unit formula: (R 1a 2 R 1b SiO 1/2 ) a6 (R 1a 3 SiO 1/2 ) a7 (SiO 4/2 ) a8 (HO 1/2 ) a9
  • R 1a is the same or different and represents an alkyl group having 1 to 10 carbon atoms
  • R 1b is the same or different and represents an alkenyl group
  • the said curable resin composition which is polyorganosiloxane represented by these is provided.
  • the polyorganosiloxysilalkylene (A2) has the following average unit formula: (R 2 2 SiO 2/2) b1 (R 2 3 SiO 1/2) b2 (R 2 SiO 3/2) b3 (SiO 4/2) b4 (R A) b5
  • R 2 is the same or different and is a monovalent substituted or unsubstituted hydrocarbon group, provided that a part of R 2 is an alkenyl group (particularly a vinyl group), , Controlled within the range of two or more in the molecule
  • R A is an alkylene group; b1 is a positive number, b2 is a positive number, b3 is 0 or a positive number, b4 is 0 or a positive number, and b5 is a positive number.
  • the curable resin composition is a polyorganosiloxysilalkylene represented.
  • the present invention also provides the curable resin composition, wherein the polyorganosiloxysilalkylene (A2) is a polyorganosiloxysilalkylene having a structure represented by the following formula (II-1).
  • R 21 is the same or different and is a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group, provided that at least two of R 21 are alkenyl groups;
  • R A represents an alkylene group, r1 represents an integer of 1 or more, and when r1 is an integer of 2 or more, the structures in parentheses to which r1 is attached may be the same or different, r2 represents an integer of 1 or more, and when r2 is an integer of 2 or more, the structures in parentheses to which r2 is attached may be the same or different, r3 represents 0 or an integer of 1 or more, and when r3 is an integer of 2 or more, the structures in parentheses to which r3 is attached may be the same or
  • the content (blending amount) (total amount) of the polysiloxane (A) is 50% by weight or more and less than 100% by weight with respect to the total amount (100% by weight) of the curable resin composition.
  • a curable resin composition is provided.
  • the present invention also provides the curable resin composition, wherein the ratio of the polyorganosiloxane (A1) to the total amount (100% by weight) of the polysiloxane (A) contained in the curable resin composition is 50 to 100% by weight. Offer things.
  • the present invention also relates to the curable resin composition, wherein the ratio of the polyorganosiloxysilalkylene (A2) to the total amount (100% by weight) of the polysiloxane (A) contained in the curable resin composition is 0 to 60% by weight.
  • a resin composition is provided.
  • the polyorganosiloxane (B1) has the following average unit formula: (R 3 SiO 3/2 ) c 1 (R 3 2 SiO 2/2 ) c 2 (R 3 3 SiO 1/2 ) c 3 (SiO 4/2 ) c 4 (XO 1/2 ) c 5 [In the above average unit formula, R 3 is the same or different and is a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group, provided that a part of R 3 is a hydrogen atom (constituting a hydrosilyl group).
  • the hydrogen atom), and the ratio thereof is controlled in a range where two or more hydrosilyl groups are present in the molecule,
  • X is a hydrogen atom or an alkyl group, c1 is 0 or a positive number, c2 is 0 or a positive number, c3 is 0 or a positive number, c4 is 0 or a positive number, c5 is 0 or a positive number, and (c1 + c2 + c3) is a positive number.
  • the said curable resin composition which is polyorganosiloxane represented by these is provided.
  • the present invention also provides the curable resin composition, wherein the polyorganosiloxane (B1) is a linear polyorganosiloxane represented by the following formula (III-1).
  • the polyorganosiloxane (B1) is a linear polyorganosiloxane represented by the following formula (III-1).
  • R 31 are the same or different and each represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group. However, at least two of R 31 are hydrogen atoms.
  • m2 is an integer of 5 to 1000.
  • the polyorganosiloxysilalkylene (B2) has the following average unit formula: (R 4 2 SiO 2/2 ) d1 (R 4 3 SiO 1/2 ) d2 (R 4 SiO 3/2 ) d3 (SiO 4/2 ) d4 (R A ) d5
  • R 4 is the same or different and is a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group, provided that a part of R 4 is a hydrogen atom, Controlled within the range of 2 or more in the molecule
  • R A is an alkylene group
  • d1 is a positive number
  • d2 is a positive number
  • d3 is 0 or a positive number
  • d4 is 0 or a positive number
  • d5 is a positive number.
  • the curable resin composition is a polyorganosiloxysilalkylene represented by the formula:
  • the present invention also provides the curable resin composition, wherein the polyorganosiloxysilalkylene (B2) is a polyorganosiloxysilalkylene having a structure represented by the following formula (IV-1).
  • R 41 is the same or different and is a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group, provided that at least two of R 41 are hydrogen atoms;
  • R A represents an alkylene group, q1 represents an integer of 1 or more, and when q1 is an integer of 2 or more, the structures in parentheses to which q1 is attached may be the same or different, q2 represents an integer of 1 or more.
  • q2 is an integer of 2 or more
  • the structures in parentheses to which q2 is attached may be the same or different
  • q3 represents 0 or an integer of 1 or more
  • q4 represents 0 or an integer of 1 or more
  • q5 represents 0 or an integer of 1 or more.
  • q5 is an integer of 2 or more
  • the structures in parentheses to which q5 is attached may be the same or different.
  • the present invention also provides the curable resin composition, wherein the content (blending amount) of the polysiloxane (B) is 1 to 200 parts by weight with respect to 100 parts by weight of the total amount of the polysiloxane (A). To do.
  • this invention is the said sclerosis
  • a resin composition is provided.
  • the present invention relates to the ratio of polyorganosiloxysilalkylene (A2) and polyorganosiloxysilalkylene (B2) to the total content (100% by weight) of polysiloxane (A) and polysiloxane (B) (total ratio). ) Is 3% by weight or more.
  • the curable resin composition is provided.
  • the content (blending amount) of the compound (C) in the curable resin composition exceeds 0 part by weight with respect to 100 parts by weight of the total amount of the polysiloxane (A) and the polysiloxane (B).
  • the curable resin composition is 20 parts by weight or less.
  • the curable resin composition containing a hydrosilylation catalyst is provided.
  • the present invention also provides a cured product obtained by curing the curable resin composition.
  • the curable resin composition as a sealing agent is provided.
  • the present invention also provides a semiconductor device obtained by sealing a semiconductor element using the curable resin composition.
  • the semiconductor device which is an optical semiconductor device is provided.
  • R a to R d are the same or different and are represented by the group represented by the following formula (1a), the group represented by the following formula (1b), or the following formula (1c).
  • at least one of R a to R d is a group selected from the group consisting of a group represented by the formula (1b) and a group represented by the formula (1c).
  • R e and R f are the same or different and each represents a hydrogen atom or an alkyl group.
  • s is the same or different and represents 0 or an integer of 1 or more.
  • R g is the same or different and represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group.
  • R h and R i are the same or different and each represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group, and t represents 0 or an integer of 1 or more.
  • R a to R d are the same or different and are represented by the group represented by the following formula (1a), the group represented by the following formula (1b), or the following formula (1c).
  • at least one of R a to R d is a group selected from the group consisting of a group represented by the formula (1b) and a group represented by the formula (1c).
  • R e and R f are the same or different and each represents a hydrogen atom or an alkyl group.
  • s is the same or different and represents 0 or an integer of 1 or more.
  • R g is the same or different and represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group.
  • R h and R i are the same or different and each represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group, and t represents 0 or an integer of 1 or more.
  • the cured product is excellent in all properties of thermal shock resistance, reflow resistance, and barrier property against corrosive gas (for example, SOx gas) by curing. Can be formed.
  • thermal shock such as a thermal cycle or high-temperature heat in a reflow process is applied to such an optical semiconductor device.
  • the sealing material is unlikely to crack or peel off, and it is difficult to cause problems such as non-lighting of the optical semiconductor device.
  • the cured product is particularly excellent in barrier properties against corrosive gas (especially SOx gas), when used as a sealing material for an optical semiconductor device, corrosion of the electrode of the device can be highly suppressed.
  • the durability of the optical semiconductor device can be significantly increased.
  • the curable resin composition of the present invention can be particularly preferably used as a sealant for an optical semiconductor element (LED element).
  • the curable resin composition (encapsulant) of the present invention can be used as an optical semiconductor element.
  • the optical semiconductor device obtained by encapsulating has excellent quality and durability.
  • FIG. 1 It is the schematic which shows one Embodiment of the optical semiconductor device by which the optical semiconductor element was sealed with the hardened
  • the left figure (a) is a perspective view
  • the right figure (b) is a sectional view.
  • the curable resin composition of the present invention comprises a group consisting of a polyorganosiloxane (A1) having two or more alkenyl groups in the molecule and a polyorganosiloxysilalkylene (A2) having two or more alkenyl groups in the molecule.
  • Polysiloxane (A) which is at least one selected from polysiloxane, polyorganosiloxane (B1) having two or more hydrosilyl groups in the molecule, and polyorganosiloxysilalkylene having two or more hydrosilyl groups in the molecule
  • a polysiloxane (B) which is at least one selected from the group consisting of (B2) and a glycoluril derivative (C) represented by the following formula (1) (simply “glycoluril derivative (C)" or “component (C) "may be included) as an essential component.
  • the curable resin composition of the present invention may contain other components such as a hydrosilylation catalyst described later in addition to the above-described essential components.
  • the polysiloxane (A) which is an essential component of the curable resin composition of the present invention, is a polyorganosiloxane (A1) having two or more alkenyl groups in the molecule (simply referred to as “polyorganosiloxane (A1). ) ”And polyorganosiloxysilalkylene (A2) having two or more alkenyl groups in the molecule (sometimes simply referred to as“ polyorganosiloxysilalkylene (A2) ”). At least one selected.
  • the polysiloxane (A) is a polysiloxane having an alkenyl group, and a component that causes a hydrosilylation reaction with a component having a hydrosilyl group (for example, polysiloxane (B) described later).
  • the polyorganosiloxysilalkylene (A2) in this specification has two or more alkenyl groups in the molecule, and in addition to —Si—O—Si— (siloxane bond) as a main chain, —Si—R A polyorganosiloxane containing A 2 —Si— (silalkylene bond: R A represents an alkylene group).
  • polyorganosiloxane (A1) in this specification is a polyorganosiloxane which has two or more alkenyl groups in a molecule
  • polyorganosiloxane (A1) examples include those having a linear, partially branched linear, branched, or network molecular structure.
  • polyorganosiloxane (A1) can also be used individually by 1 type, and can also be used in combination of 2 or more type.
  • two or more polyorganosiloxanes (A1) having different molecular structures can be used in combination, for example, a linear polyorganosiloxane (A1) and a branched polyorganosiloxane (A1) are used in combination. You can also.
  • alkenyl group that the polyorganosiloxane (A1) has in the molecule examples include substituted or unsubstituted alkenyl groups such as vinyl group, allyl group, butenyl group, pentenyl group, and hexenyl group.
  • substituent examples include a halogen atom, a hydroxy group, and a carboxy group. Among these, a vinyl group is preferable.
  • the polyorganosiloxane (A1) may have only one alkenyl group or may have two or more alkenyl groups. Although the alkenyl group which polyorganosiloxane (A1) has is not specifically limited, It is preferable that it is a thing couple
  • bonded with silicon atoms other than the alkenyl group which polyorganosiloxane (A1) has is not specifically limited,
  • a hydrogen atom, an organic group, etc. are mentioned.
  • the organic group include alkyl groups [eg, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, etc.], cycloalkyl groups [eg, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, etc.
  • Cyclododecyl group, etc. aryl group [eg, phenyl group, tolyl group, xylyl group, naphthyl group, etc.], cycloalkyl-alkyl group [eg, cyclohexylmethyl group, methylcyclohexyl group, etc.], aralkyl group [eg, Benzyl group, phenethyl group, etc.], halogenated hydrocarbon groups in which one or more hydrogen atoms in the hydrocarbon group are replaced by halogen atoms [eg, chloromethyl group, 3-chloropropyl group, 3,3,3-trifluoro Monovalent substituted or unsubstituted hydrocarbon groups such as halogenated alkyl groups such as propyl groups] And the like.
  • the “group bonded to a silicon atom” usually means a group not containing a silicon atom.
  • the group bonded to the silicon atom may have a hydroxy group or an alkoxy group.
  • the properties of the polyorganosiloxane (A1) are not particularly limited, and may be liquid or solid.
  • R 1 is the same or different and is a monovalent substituted or unsubstituted hydrocarbon group, and the above specific examples (for example, alkyl group, alkenyl group, aryl group, aralkyl group, halogenated carbonization) Hydrogen group, etc.).
  • R 1 is an alkenyl group (especially vinyl), the ratio is controlled to the range of 2 or more in the molecule.
  • the ratio of the alkenyl group to the total amount of R 1 (100 mol%) is preferably 0.1 to 40 mol%.
  • R 1 other than the alkenyl group an alkyl group (particularly a methyl group) and an aryl group (particularly a phenyl group) are preferable.
  • X is a hydrogen atom or an alkyl group.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group, and a methyl group is particularly preferable.
  • a1 is 0 or positive number
  • a2 is 0 or positive number
  • a3 is 0 or positive number
  • a4 is 0 or positive number
  • a5 is 0 or positive number
  • (a1 + a2 + a3) is positive Is a number.
  • polyorganosiloxane (A1) is a linear polyorganosiloxane having two or more alkenyl groups in the molecule.
  • alkenyl group of the linear polyorganosiloxane include the above-described specific examples. Among them, a vinyl group is preferable.
  • examples of the group bonded to the silicon atom other than the alkenyl group in the linear polyorganosiloxane include the monovalent substituted or unsubstituted hydrocarbon group described above, among which an alkyl group (particularly a methyl group). ) Or an aryl group (particularly a phenyl group).
  • the ratio of the alkenyl group to the total amount (100 mol%) of groups bonded to silicon atoms in the linear polyorganosiloxane is not particularly limited, but is preferably 0.1 to 40 mol%. Further, the ratio of the alkyl group (especially methyl group) to the total amount (100 mol%) of the groups bonded to the silicon atom is not particularly limited, but is preferably 1 to 20 mol%. Further, the ratio of aryl groups (particularly phenyl groups) to the total amount of groups bonded to silicon atoms (100 mol%) is not particularly limited, but is preferably 30 to 90 mol%.
  • the ratio of aryl groups (particularly phenyl groups) to the total amount (100 mol%) of groups bonded to silicon atoms is 40 mol% or more (for example, 45 to 80 mol%).
  • cured material to improve more.
  • the ratio of alkyl groups (particularly methyl groups) to 90 mol% or more (for example, 95 to 99 mol%) relative to the total amount (100 mol%) of groups bonded to silicon atoms is used, There is a tendency that the thermal shock resistance of is improved.
  • the linear polyorganosiloxane is represented, for example, by the following formula (I-1).
  • R 11 are the same or different and each represents a monovalent substituted or unsubstituted hydrocarbon group. However, at least two of R 11 are alkenyl groups.
  • m1 is an integer of 5 to 1000.
  • polyorganosiloxane (A1) is a branched polyorganosiloxane having two or more alkenyl groups in the molecule and having a siloxane unit (T unit) represented by RSiO 3/2. It is done.
  • R is a monovalent substituted or unsubstituted hydrocarbon group.
  • alkenyl group of the branched polyorganosiloxane include the specific examples described above, and among them, a vinyl group is preferable. In addition, you may have only 1 type of alkenyl group, and you may have 2 or more types of alkenyl groups.
  • Examples of the group bonded to the silicon atom other than the alkenyl group in the branched polyorganosiloxane include the above-mentioned monovalent substituted or unsubstituted hydrocarbon group, and among them, an alkyl group (particularly a methyl group). ) Or an aryl group (particularly a phenyl group). Furthermore, as R in the T unit, an alkyl group (particularly a methyl group) and an aryl group (particularly a phenyl group) are preferable.
  • the ratio of the alkenyl group to the total amount (100 mol%) of the groups bonded to the silicon atom is not particularly limited, but from the viewpoint of curability of the curable resin composition, 0.1 to 40 mol% is preferred. Further, the ratio of the alkyl group (especially methyl group) to the total amount (100 mol%) of groups bonded to the silicon atom is not particularly limited, but is preferably 10 to 40 mol%. Further, the ratio of aryl groups (particularly phenyl groups) to the total amount (100 mol%) of groups bonded to silicon atoms is not particularly limited, but is preferably 5 to 70 mol%.
  • the ratio of aryl groups (particularly phenyl groups) to the total amount (100 mol%) of groups bonded to silicon atoms is 40 mol% or more (for example, 45 to 60 mol%).
  • cured material to improve more.
  • a cured product can be obtained by using a compound in which the ratio of alkyl groups (particularly methyl groups) is 50 mol% or more (for example, 60 to 99 mol%) with respect to the total amount (100 mol%) of groups bonded to silicon atoms.
  • the thermal shock resistance of is improved.
  • the branched polyorganosiloxane can be represented by the above average unit formula in which a1 is a positive number.
  • a2 / a1 is a number from 0 to 10
  • a3 / a1 is a number from 0 to 0.5
  • a4 / (a1 + a2 + a3 + a4) is a number from 0 to 0.3
  • a5 / (a1 + a2 + a3 + a4) is A number of 0 to 0.4 is preferred.
  • the molecular weight of the branched polyorganosiloxane is not particularly limited, but the weight average molecular weight in terms of standard polystyrene is preferably 500 to 10,000, more preferably 700 to 3000.
  • the following ladder type polyorganosilsesquioxane (a) or (b) is used, particularly in that the barrier property against the corrosive gas of the cured product can be remarkably improved. It is preferable.
  • ladder-type polyorganosilsesquioxane While ladder-type polyorganosilsesquioxane (a) has a ladder structure, this near 1050 cm -1 in the FT-IR spectrum (e.g., 1000 ⁇ 1100 cm -1) and 1150cm around -1 (e.g., 1100 cm - 1 to 1200 cm ⁇ 1 or less), each having an intrinsic absorption peak (that is, having at least two absorption peaks at 1000 to 1200 cm ⁇ 1 ) [reference: R.R. H. Raney, M.M. Itoh, A.D. Sakakibara and T. Suzuki, Chem. Rev. 95, 1409 (1995)].
  • the FT-IR spectrum can be measured by, for example, the following apparatus and conditions.
  • Measuring device Trade name “FT-720” (manufactured by Horiba, Ltd.) Measurement method: Transmission method Resolution: 4 cm -1 Measurement wavenumber range: 400-4000cm -1 Integration count: 16 times
  • the ladder-type polyorganosilsesquioxane (a) may have other silsesquioxane structures such as a cage structure and a random structure in addition to the ladder structure.
  • the ladder-type polyorganosilsesquioxane (a) has a number average molecular weight (Mn) in terms of standard polystyrene by gel permeation chromatography of 500 to 1500, preferably 550 to 1450, more preferably 600 to 1400. .
  • Mn number average molecular weight
  • the physical properties (heat resistance, gas barrier properties, etc.) of the cured product tend to be lowered.
  • Mn exceeds 1500, it tends to be a solid at room temperature, and the handleability tends to decrease.
  • compatibility with other components may deteriorate.
  • the ladder type polyorganosilsesquioxane (a) has a molecular weight dispersity (Mw / Mn) in terms of standard polystyrene by gel permeation chromatography of 1.00 to 1.40, preferably 1.35 or less (for example, 1.05 to 1.35), more preferably 1.30 or less (for example, 1.10 to 1.30).
  • Mw / Mn molecular weight dispersity
  • the molecular weight dispersity exceeds 1.40 for example, low-molecular siloxane increases, and the adhesiveness and gas barrier properties of the cured product tend to decrease.
  • the molecular weight dispersity for example, by setting the molecular weight dispersity to 1.05 or more, it tends to be liquid at room temperature, and the handleability may be improved.
  • the number average molecular weight and molecular weight dispersion degree of ladder type polyorgano silsesquioxane (a) can be measured with the following apparatus and conditions.
  • Measuring device Product name “LC-20AD” (manufactured by Shimadzu Corporation)
  • Eluent THF, sample concentration 0.1-0.2% by weight
  • Flow rate 1 mL / min
  • Detector UV-VIS detector (trade name “SPD-20A”, manufactured by Shimadzu Corporation)
  • Molecular weight Standard polystyrene conversion
  • the 5% weight loss temperature (T d5 ) of the ladder-type polyorganosilsesquioxane (a) in a nitrogen atmosphere is not particularly limited, but is preferably 150 ° C. or higher, more preferably 240 ° C. or higher, and still more preferably 260 to 500 ° C., particularly preferably 262 ° C. or higher, most preferably 265 ° C. or higher. If the 5% weight loss temperature is less than 150 ° C. (particularly less than 240 ° C.), the required heat resistance may not be satisfied depending on the application.
  • the 5% weight reduction temperature is a temperature at the time when 5% of the weight before heating is reduced when heated at a constant rate of temperature increase, and serves as an index of heat resistance.
  • the 5% weight loss temperature can be measured by TGA (thermogravimetric analysis) under a nitrogen atmosphere under a temperature increase rate of 20 ° C./min.
  • the ladder-type polyorganosilsesquioxane (a) is not particularly limited, but is preferably liquid at room temperature (25 ° C.).
  • the viscosity at 25 ° C. is not particularly limited, but is preferably 30000 Pa ⁇ s or less (eg, 1 to 30000 Pa ⁇ s), more preferably 25000 Pa ⁇ s or less, and further preferably 10000 Pa ⁇ s or less.
  • the viscosity can be measured using a viscometer (trade name “MCR301”, manufactured by Anton Paar) under the conditions of a swing angle of 5%, a frequency of 0.1 to 100 (1 / s), and a temperature of 25 ° C. it can.
  • the ladder-type polyorganosilsesquioxane (a) is, for example, represented by the following formula (I-2), having two or more alkenyl groups in the molecule, and converted to standard polystyrene by gel permeation chromatography And ladder type polyorganosilsesquioxane having a number average molecular weight (Mn) of 500 to 1500 and a molecular weight dispersity (Mw / Mn) of 1.00 to 1.40.
  • Mn number average molecular weight
  • Mw / Mn molecular weight dispersity
  • R 12 are the same or different and each represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group.
  • R 12 include the above-mentioned monovalent substituted or unsubstituted hydrocarbon groups (including alkenyl groups).
  • the ladder type polyorganosilsesquioxane (a) may or may not have an alkenyl group as R 12 .
  • the ladder type polyorganosilsesquioxane (a) has at least one group selected from the group consisting of an alkyl group and an aryl group as R 12 other than the alkenyl group in the formula (I-2). It is more preferable to have at least one group selected from the group consisting of a phenyl group and a methyl group.
  • the ratio (total content) of phenyl groups, vinyl groups, and methyl groups in the total amount (100% by weight) of R 12 in the above formula (I-2) of the ladder type polyorganosilsesquioxane (a) is as follows: Although not particularly limited, it is preferably 50 to 100% by weight, more preferably 70 to 100% by weight, and still more preferably 80 to 100% by weight.
  • the ratio (content) of the phenyl group in the total amount (100% by weight) of R 12 in the above formula (I-2) of the ladder-type polyorganosilsesquioxane (a) is not particularly limited, but is 0 to 100 % By weight is preferable, more preferably 1 to 100% by weight, still more preferably 5 to 100% by weight.
  • the ratio (content) of the vinyl group in the total amount (100 wt%) of R 12 in the above formula (I-2) of the ladder type polyorganosilsesquioxane (a) is not particularly limited, but is 0 to 100 % By weight is preferable, more preferably 1 to 100% by weight, still more preferably 5 to 90% by weight, and particularly preferably 10 to 80% by weight.
  • the ratio (content) of the methyl group in the total amount (100 wt%) of R 12 in the above formula (I-2) of the ladder type polyorganosilsesquioxane (a) is not particularly limited, but is 0 to 100 % By weight is preferable, more preferably 1 to 100% by weight, still more preferably 5 to 100% by weight.
  • composition of R 12 in the above formula (I-2) of the ladder-type polyorganosilsesquioxane (a) is, for example, an NMR spectrum (for example, 1 H-NMR spectrum) and the like.
  • R 13 is the same or different and is a hydrogen atom, an alkyl group, a monovalent group represented by the following formula (I-2-1), the following formula (I-2-2) ) Or a monovalent group represented by the following formula (I-2-3).
  • R 14 s are the same or different and each represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group.
  • R 14 include the above-mentioned monovalent substituted or unsubstituted hydrocarbon groups (including alkenyl groups), and among them, alkyl groups are preferable.
  • R 15 are the same or different and each represents a monovalent substituted or unsubstituted hydrocarbon group.
  • R 15 are the aforementioned monovalent substituted or unsubstituted hydrocarbon group (alkenyl group include). Among them, alkyl groups are preferred.
  • n1 represents an integer of 0 or more. n1 is preferably 0 to 5, more preferably 0 to 3, and still more preferably 0.
  • R 14 is, like the R 14 in the formula (I-2-1), the same or different and each represents a hydrogen atom, or, a monovalent substituted or unsubstituted hydrocarbon group is there.
  • R 14 is particularly preferably an alkyl group.
  • R 15 is, like the R 15 in the formula (I-2-1), the same or different, is a monovalent substituted or unsubstituted hydrocarbon group.
  • R 15 is particularly preferably an alkyl group.
  • R 16 is an alkenyl group, and among them, a vinyl group is preferable.
  • n2 represents an integer of 0 or more. n2 is preferably 0 to 5, more preferably 0 to 3, and still more preferably 0.
  • R 14 is, like the R 14 in the formula (I-2-1), the same or different and each represents a hydrogen atom, or, a monovalent substituted or unsubstituted hydrocarbon group is there.
  • R 14 is particularly preferably an alkyl group.
  • R 17 is the same or different and is a monovalent saturated aliphatic hydrocarbon group, and examples thereof include an alkyl group and a cycloalkyl group. Groups (especially methyl groups) are preferred.
  • n3 represents an integer of 0 or more. n3 is preferably 0 to 5, more preferably 0 to 3, and still more preferably 0.
  • n represents an integer of 0 or more.
  • the n is usually an even number of 0 or more (for example, an even number of 2 or more).
  • the n is not particularly limited as long as the number average molecular weight of the ladder type polyorganosilsesquioxane (a) is controlled to 500 to 1500 and the molecular weight dispersity is controlled to 1.00 to 1.40.
  • the ladder-type polyorganosilsesquioxane (a) is generally represented by the formula (I-2)
  • the ladder-type polyorganosilsesquioxane (a) preferably contains a component having n of 1 or more (particularly 2 or more) as an essential component.
  • the ladder type polyorganosilsesquioxane (a) has two or more alkenyl groups in the molecule.
  • a vinyl group is particularly preferable.
  • the ladder type polyorganosilsesquioxane (a) is represented by the formula (I-2), for example, one in which any one of R 12 in the formula (I-2) is an alkenyl group, R 14 and R 15 Having a monovalent group represented by the formula (I-2-1) in which any one of them is an alkenyl group, having a monovalent group represented by the formula (I-2-2), R 14 And those having a monovalent group represented by the formula (I-2-3) in which any one of them is an alkenyl group.
  • the ladder-type polyorganosilsesquioxane (a) can be produced by a known and commonly used method, and is not particularly limited.
  • Ladder type polyorganosilsesquioxane (b)
  • the polyorganosilsesquioxane having a ladder structure in the ladder-type polyorganosilsesquioxane (b) is represented, for example, by the following formula (I-3).
  • p represents an integer of 1 or more (for example, 1 to 5000), preferably an integer of 1 to 2000, and more preferably an integer of 1 to 1000.
  • T represents a terminal group.
  • the group directly bonded to the silicon atom in the polyorganosilsesquioxane (for example, R 18 in formula (I-3)) in the ladder-type polyorganosilsesquioxane (b) is not particularly limited, but the group The ratio of monovalent substituted or unsubstituted hydrocarbon groups to the total amount (100 mol%) is preferably 50 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more.
  • a substituted or unsubstituted C 1-10 alkyl group (especially a C 1-4 alkyl group such as a methyl group or an ethyl group), a substituted or unsubstituted C 6-
  • the total amount of 10 aryl groups (particularly phenyl groups) and substituted or unsubstituted C 7-10 aralkyl groups (particularly benzyl groups) is preferably 50 mol% or more, more preferably 80 mol% or more, More preferably, it is 90 mol% or more.
  • the ladder-type polyorganosilsesquioxane (b) has a polyorganosilsesquioxane residue (a) at part or all of the molecular chain terminals of the polyorganosilsesquioxane having the ladder structure.
  • the ladder-type polyorganosilsesquioxane (b) has a part or all of T in the formula (I-3) It is substituted with a polyorganosilsesquioxane residue (a).
  • the polyorganosilsesquioxane residue (a) includes at least a structural unit represented by the formula (I-3-1) and a structural unit represented by the formula (I-3-2). It is a residue to contain.
  • R 19 in the above formula (I-3-1) represents an alkenyl group.
  • the alkenyl group include the specific examples described above. Among them, a C 2-10 alkenyl group is preferable, a C 2-4 alkenyl group is more preferable, and a vinyl group is more preferable.
  • R 20 in the above formula (I-3-2) is the same or different and represents a monovalent substituted or unsubstituted hydrocarbon group.
  • substituted or unsubstituted hydrocarbon group the above-mentioned monovalent substituted or unsubstituted hydrocarbon group (an alkenyl group is also included) etc. are mentioned.
  • the R 20, among them an alkyl group, more preferably C 1-20 alkyl group, more preferably a C 1-10 alkyl group, particularly preferably a C 1-4 alkyl group, and most preferably a methyl group.
  • it is preferable that all of R 20 in the formula (I-3-2) are a methyl group.
  • the polyorganosilsesquioxane residue (a) is, for example, And a structural unit represented by the following formula (I-3-1 ′).
  • 'R 19 in the formula (I-3-1)' represents a monovalent group excluding alkenyl groups.
  • a monovalent organic group excluding a hydrogen atom, a halogen atom, and an alkenyl group, a monovalent oxygen atom-containing group, a monovalent nitrogen atom-containing group, or a monovalent sulfur atom-containing group can be mentioned. It is done.
  • the amount of silicon atoms bonded to the three oxygen atoms represented by the formula (I-3-1) in the polyorganosilsesquioxane residue (a) is not particularly limited, but the polyorganosilsesquioxane residue is not limited.
  • the amount is preferably 20 to 80 mol%, more preferably 25 to 60 mol%, based on the total amount (100 mol%) of the silicon atoms constituting the group (a). If the content is less than 20 mol%, the amount of alkenyl groups contained in the ladder-type polyorganosilsesquioxane (b) becomes insufficient, and the hardness of the cured product may not be sufficiently obtained.
  • the ladder type polyorganosilsesquioxane (b) since many silanol groups and hydrolyzable silyl groups remain in the ladder type polyorganosilsesquioxane (b), the ladder type polyorganosilsesquioxane (b). May not be obtained in liquid form. Furthermore, since the condensation reaction proceeds in the product and the molecular weight changes, the storage stability may deteriorate.
  • the amount of silicon atoms bonded to one oxygen atom represented by formula (I-3-2) in the polyorganosilsesquioxane residue (a) is not particularly limited, but the polyorganosilsesquioxane residue is not limited.
  • the amount is preferably 20 to 85 mol%, more preferably 30 to 75 mol%, based on the total amount (100 mol%) of the silicon atoms constituting the group (a).
  • silanol groups and hydrolyzable silyl groups tend to remain in the ladder-type polyorganosilsesquioxane (b), and the ladder-type polyorganosilsesquioxane (b) is liquid. May not be available.
  • the condensation reaction proceeds in the product and the molecular weight changes, the storage stability may deteriorate.
  • the content exceeds 85 mol%, the amount of alkenyl groups contained in the ladder type polyorganosilsesquioxane (b) becomes insufficient, and the hardness of the cured product may not be sufficiently obtained.
  • the Si—O—Si structure (skeleton) of the polyorganosilsesquioxane residue (a) is not particularly limited, and examples thereof include a ladder structure, a cage structure, and a random structure.
  • the ladder type polyorganosilsesquioxane (b) can be represented by, for example, the following formula (I-3 ′).
  • Examples of p and R 18 in the formula (I-3 ′) are the same as those in the above formula (I-3).
  • a in the formula (I-3 ′) represents a polyorganosilsesquioxane residue (a), or a hydroxy group, a halogen atom, an alkoxy group, or an acyloxy group, and a part or all of A is a polyorgano It is a silsesquioxane residue (a).
  • the four A's may be the same or different.
  • each A is one or more Si—O—Si bonds. It may be connected via.
  • the number of alkenyl groups in the molecule may be two or more, and is not particularly limited, but is preferably 2 to 50, more preferably 2 to 30. .
  • an alkenyl group within the above-mentioned range, there is a tendency that a cured product excellent in various physical properties such as heat resistance, crack resistance, and barrier properties against corrosive gas tends to be obtained.
  • the number of alkenyl groups can be calculated by, for example, 1 H-NMR spectrum measurement.
  • the content of the alkenyl group in the ladder-type polyorganosilsesquioxane (b) is not particularly limited, but is preferably 0.7 to 5.5 mmol / g, more preferably 1.1 to 4.4 mmol / g. is there. Further, the ratio (weight basis) of the alkenyl group contained in the ladder type polyorganosilsesquioxane (b) is not particularly limited, but is preferably 2.0 to 15.0% by weight in terms of vinyl group, more preferably. Is 3.0 to 12.0% by weight.
  • the weight average molecular weight (Mw) of the ladder type polyorganosilsesquioxane (b) is not particularly limited, but is preferably from 100 to 800,000, more preferably from 200 to 100,000, still more preferably from 300 to 10,000, particularly preferably. Is from 500 to 8000, most preferably from 1700 to 7000. If the Mw is less than 100, the heat resistance of the cured product may decrease. On the other hand, if Mw exceeds 800,000, the compatibility with other components may decrease.
  • the Mw can be calculated from the molecular weight in terms of standard polystyrene by gel permeation chromatography, for example.
  • the number average molecular weight (Mn) of the ladder type polyorganosilsesquioxane (b) is not particularly limited, but is preferably from 800 to 800,000, more preferably from 150 to 100,000, still more preferably from 250 to 10,000, particularly preferably. Is from 400 to 8000, most preferably from 1500 to 7000. When Mn is less than 80, the heat resistance of the cured product may be lowered. On the other hand, if Mn exceeds 800,000, the compatibility with other components may decrease.
  • the Mn can be calculated from, for example, a molecular weight in terms of standard polystyrene by gel permeation chromatography.
  • the ladder type polyorganosilsesquioxane (b) is preferably liquid at normal temperature (about 25 ° C.). More specifically, the viscosity at 23 ° C. is preferably 100 to 100,000 mPa ⁇ s, more preferably 500 to 10,000 mPa ⁇ s, and still more preferably 1000 to 8000 mPa ⁇ s. If the viscosity is less than 100 mPa ⁇ s, the heat resistance of the cured product may decrease. On the other hand, when the viscosity exceeds 100,000 mPa ⁇ s, it may be difficult to prepare and handle the curable resin composition. The viscosity at 23 ° C.
  • the number of rotations can be measured under the condition of 20 rpm.
  • the method for producing the ladder-type polyorganosilsesquioxane (b) is not particularly limited.
  • the ladder-type polyorganosilsesquioxane (b) has a ladder structure and has a silanol group and / or a hydrolyzable silyl group (silanol group and hydrolyzable at the molecular chain terminal).
  • the method of forming the said silsesquioxane residue (a) with respect to the molecular chain terminal of the polyorgano silsesquioxane which has a silyl group (one or both) is mentioned. Specifically, it can be produced by a method disclosed in a document such as International Publication No. 2013/176238.
  • a1 and a2 are 0, and X is a hydrogen atom.
  • R 1a 2 R 1b SiO 1/2 a6
  • R 1a 3 SiO 1/2 a7
  • SiO 4/2 a8
  • HO 1/2 a9
  • R 1a is the same or different and represents an alkyl group having 1 to 10 carbon atoms.
  • R 1b is the same or different and represents an alkenyl group, and among them, a vinyl group is preferable.
  • A7 may be 0.
  • a6 / (a6 + a7) is preferably 0.2 to 0.3.
  • a8 / (a6 + a7 + a8) is preferably 0.55 to 0.60.
  • a9 / (a6 + a7 + a8) is preferably 0.01 to 0.025 from the viewpoint of the adhesiveness and mechanical strength of the cured product.
  • polyorganosiloxanes examples include polyorganosiloxanes composed of SiO 4/2 units and (CH 3 ) 2 (CH 2 ⁇ CH) SiO 1/2 units, SiO 4/2 units and (CH 3 ) Polyorganosiloxane composed of 2 (CH 2 ⁇ CH) SiO 1/2 units and (CH 3 ) 3 SiO 1/2 units.
  • the polyorganosiloxane (A1) may have two or more alkenyl groups in the molecule, and may further have a hydrosilyl group.
  • the polyorganosiloxane (A1) may be a polyorganosiloxane (B1) described later.
  • polyorganosiloxysil alkylene (A2) As described above, the polyorganosiloxysilalkylene (A2) is a polyorganosiloxane having two or more alkenyl groups in the molecule and containing a silalkylene bond as a main chain in addition to the siloxane bond.
  • the alkylene group in the silalkylene bond is preferably a C 2-4 alkylene group (particularly an ethylene group).
  • the polyorganosiloxysilalkylene (A2) is less likely to produce a low molecular weight ring in the production process than the polyorganosiloxane (A1), and is not easily decomposed by heating or the like to produce a silanol group (—SiOH).
  • the surface tackiness (tackiness) of the cured product of the curable resin composition tends to be low, and it tends to be more difficult to yellow.
  • polyorganosiloxysilalkylene (A2) examples include those having a linear, partially branched linear, branched, or network molecular structure.
  • polyorganosiloxysil alkylene (A2) can also be used individually by 1 type, and can also be used in combination of 2 or more type.
  • two or more kinds of polyorganosiloxysilalkylene (A2) having different molecular structures can be used in combination, for example, linear polyorganosiloxysilalkylene (A2) and branched polyorganosiloxysilalkylene (A2).
  • A2) can also be used in combination.
  • alkenyl group that the polyorganosiloxysilalkylene (A2) has in the molecule include the specific examples described above, and among them, a vinyl group is preferable.
  • the polyorganosiloxysilalkylene (A2) may have only one alkenyl group or may have two or more alkenyl groups.
  • the alkenyl group of the polyorganosiloxysilalkylene (A2) is not particularly limited, but is preferably bonded to a silicon atom.
  • bonded with silicon atoms other than the alkenyl group which polyorganosiloxysil alkylene (A2) has is not specifically limited, For example, a hydrogen atom, an organic group, etc. are mentioned.
  • the organic group include the monovalent substituted or unsubstituted hydrocarbon group described above. Of these, an alkyl group (particularly a methyl group) and an aryl group (particularly a phenyl group) are preferable.
  • the group bonded to the silicon atom may have a hydroxy group or an alkoxy group.
  • the properties of the polyorganosiloxysilalkylene (A2) are not particularly limited, and may be liquid or solid.
  • polyorganosiloxysilalkylene (A2) As polyorganosiloxysilalkylene (A2), the following average unit formula: (R 2 2 SiO 2/2) b1 (R 2 3 SiO 1/2) b2 (R 2 SiO 3/2) b3 (SiO 4/2) b4 (R A) b5
  • R 2 is the same or different and is a monovalent substituted or unsubstituted hydrocarbon group, and the specific examples described above (for example, alkyl group, alkenyl group, aryl group, aralkyl group, alkyl halide) Group).
  • a part of R 2 is an alkenyl group (particularly a vinyl group), and the ratio thereof is controlled within a range of 2 or more in the molecule.
  • the ratio of the alkenyl group to the total amount of R 2 (100 mol%) is preferably 0.1 to 40 mol%.
  • R 2 other than the alkenyl group is preferably an alkyl group (particularly a methyl group) or an aryl group (particularly a phenyl group).
  • R A is an alkylene group as described above.
  • An ethylene group is particularly preferable.
  • b1 is a positive number
  • b2 is a positive number
  • b3 is 0 or a positive number
  • b4 is 0 or a positive number
  • b5 is a positive number.
  • b1 is preferably 1 to 200
  • b2 is preferably 1 to 200
  • b3 is preferably 0 to 10
  • b4 is preferably 0 to 5
  • b5 is preferably 1 to 100.
  • (b3 + b4) is a positive number, the mechanical strength of the cured product tends to be further improved.
  • examples of the polyorganosiloxysilalkylene (A2) include polyorganosiloxysilalkylene having a structure represented by the following formula (II-1).
  • R 21 are the same or different and each represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group.
  • the R 21, specific examples of the above e.g., an alkyl group, an alkenyl group, an aryl group, an aralkyl group, a halogenated hydrocarbon group).
  • at least two of R 21 are alkenyl groups (particularly vinyl groups).
  • R 21 other than the alkenyl group is preferably an alkyl group (particularly a methyl group) or an aryl group (particularly a phenyl group).
  • R A represents an alkylene group as described above, and among them, a C 2-4 alkylene group (particularly an ethylene group) is preferable.
  • RA alkylene group
  • these may be the same and may differ.
  • r1 represents an integer of 1 or more (for example, 1 to 100).
  • r1 is an integer greater than or equal to 2
  • subjected to r1 may be the same respectively, and may differ.
  • r2 represents an integer of 1 or more (for example, 1 to 400).
  • r2 is an integer greater than or equal to 2
  • subjected r2 may be respectively the same, and may differ.
  • r3 represents 0 or an integer of 1 or more (for example, 0 to 50).
  • r3 is an integer of 2 or more, the structures in parentheses to which r3 is attached may be the same or different.
  • r4 represents 0 or an integer of 1 or more (for example, 0 to 50).
  • r4 is an integer of 2 or more, the structures in parentheses to which r4 is attached may be the same or different.
  • r5 represents 0 or an integer of 1 or more (for example, 0 to 50).
  • r5 is an integer of 2 or more, the structures in parentheses to which r5 is attached may be the same or different.
  • each structural unit in the formula (II-1) is not particularly limited, and may be a random type or a block type.
  • the terminal structure of the polyorganosiloxysilalkylene having the structure represented by the formula (II-1) is not particularly limited.
  • a silanol group for example, a silanol group, an alkoxysilyl group, a trialkylsilyl group (for example, a structure to which r5 is attached) , Trimethylsilyl group, etc.).
  • Various groups such as an alkenyl group and a hydrosilyl group may be introduced at the terminal of the polyorganosiloxysilalkylene.
  • Polyorganosiloxysilalkylene (A2) can be produced by a known or commonly used method, and the production method is not particularly limited, but can be produced by, for example, the method described in JP2012-140617A. Moreover, as a product containing polyorganosiloxysilalkylene (A2), for example, trade names “ETERLED GD1130”, “ETERLED GD1125” (both manufactured by Changxing Chemical Industry) and the like are available.
  • the curable resin composition of the present invention preferably contains at least the above-mentioned branched polyorganosiloxane as the polyorganosiloxane (A1), more preferably from the viewpoint of the barrier property and strength (resin strength) of the cured product.
  • the ladder-type polyorganosilsesquioxane (a) or (b) is included, and it is particularly preferable that a polyorganosiloxysilalkylene (A2) is further included in addition to these.
  • the content (blending amount) (total amount) of the polysiloxane (A) in the curable resin composition of the present invention is not particularly limited, but is 50% by weight with respect to the total amount (100% by weight) of the curable resin composition.
  • the amount is preferably less than 100% by weight, more preferably 60 to 99% by weight, still more preferably 70 to 95% by weight.
  • the ratio of the polyorganosiloxane (A1) to the total amount (100% by weight) of the polysiloxane (A) contained in the curable resin composition of the present invention is not particularly limited, but is preferably 50 to 100% by weight, more preferably 60 to 87% by weight, more preferably 50 to 85% by weight. If the ratio is less than 50% by weight, the resin strength and the barrier property against SOx gas may be lowered.
  • the ratio of the polyorganosiloxysilalkylene (A2) to the total amount (100% by weight) of the polysiloxane (A) contained in the curable resin composition of the present invention is not particularly limited, but is preferably 0 to 60% by weight.
  • the amount is preferably 10 to 40% by weight, more preferably 15 to 30% by weight. When the ratio exceeds 60% by weight, the barrier property against the SOx gas of the cured product may be lowered.
  • the polysiloxane (B) which is an essential component of the curable resin composition of the present invention, has a polyorganosiloxane (B1) having two or more hydrosilyl groups (Si—H) in the molecule (simply “ Polyorganosiloxane (B1) ”and polyorganosiloxysilalkylene (B2) having two or more hydrosilyl groups in the molecule (sometimes simply referred to as“ polyorganosiloxysilalkylene (B2) ”) At least one selected from the group consisting of: That is, the polysiloxane (B) is a polysiloxane having a hydrosilyl group, and is a component that causes a hydrosilylation reaction with a component having an alkenyl group (for example, polysiloxane (A)).
  • the polyorganosiloxysilalkylene (B2) in the present specification has two or more hydrosilyl groups in the molecule, and in addition to —Si—O—Si— (siloxane bond) as a main chain, —Si—R A polyorganosiloxane containing A 2 —Si— (silalkylene bond: R A represents an alkylene group).
  • polyorganosiloxane (B1) in this specification is a polyorganosiloxane which has two or more hydrosilyl groups in a molecule
  • R A (alkylene group) as described above, for example, a linear or branched C 1-12 alkylene group may be mentioned, and preferably a linear or branched C 2-4 alkylene group ( In particular, ethylene group).
  • polyorganosiloxane (B1) examples include those having a linear, partially branched linear, branched, and network molecular structure.
  • polyorganosiloxane (B1) can also be used individually by 1 type, and can also be used in combination of 2 or more type.
  • two or more polyorganosiloxanes (B1) having different molecular structures can be used in combination, for example, a linear polyorganosiloxane (B1) and a branched polyorganosiloxane (B1) are used in combination. You can also
  • a group other than a hydrogen atom is not particularly limited.
  • the monovalent substituted or unsubstituted hydrocarbon group described above more specifically, an alkyl group, An aryl group, an aralkyl group, a halogenated hydrocarbon group, etc. are mentioned.
  • an alkyl group (particularly a methyl group) and an aryl group (particularly a phenyl group) are preferable.
  • the polyorganosiloxane (B1) may have an alkenyl group (for example, a vinyl group) as a group bonded to a silicon atom other than a hydrogen atom.
  • the properties of the polyorganosiloxane (B1) are not particularly limited, and may be liquid or solid. In particular, it is preferably a liquid, and more preferably a liquid having a viscosity at 25 ° C. of 0.1 to 1,000,000 mPa ⁇ s.
  • R 3 is the same or different and is a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group, and a hydrogen atom, the above-mentioned specific examples (for example, alkyl group, alkenyl group, aryl Group, aralkyl group, halogenated alkyl group and the like).
  • a part of R 3 is a hydrogen atom (hydrogen atom constituting a hydrosilyl group), and the ratio thereof is controlled in a range where two or more hydrosilyl groups are present in the molecule.
  • the ratio of hydrogen atoms to the total amount of R 3 (100 mol%) is preferably 0.1 to 40 mol%.
  • R 3 other than a hydrogen atom is preferably an alkyl group (particularly a methyl group) or an aryl group (particularly a phenyl group).
  • X is a hydrogen atom or an alkyl group as described above.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group, and a methyl group is particularly preferable.
  • c1 is 0 or positive number
  • c2 is 0 or positive number
  • c3 is 0 or positive number
  • c4 is 0 or positive number
  • c5 is 0 or positive number
  • (c1 + c2 + c3) is positive Is a number.
  • polyorganosiloxane (B1) includes a linear polyorganosiloxane having two or more hydrosilyl groups in the molecule.
  • group bonded to a silicon atom other than a hydrogen atom in the linear polyorganosiloxane include the monovalent substituted or unsubstituted hydrocarbon group described above, among which an alkyl group (particularly a methyl group), Aryl groups (particularly phenyl groups) are preferred.
  • the ratio of hydrogen atoms (hydrogen atoms bonded to silicon atoms) to the total amount of groups bonded to silicon atoms (100 mol%) in the linear polyorganosiloxane is not particularly limited, but is 0.1 to 40 mol%. Is preferred. Further, the ratio of the alkyl group (especially methyl group) to the total amount (100 mol%) of the groups bonded to the silicon atom is not particularly limited, but is preferably 20 to 99 mol%. Furthermore, the ratio of aryl groups (particularly phenyl groups) to the total amount (100 mol%) of groups bonded to silicon atoms is not particularly limited, but is preferably 40 to 80 mol%.
  • the ratio of aryl groups (particularly phenyl groups) to the total amount (100 mol%) of groups bonded to silicon atoms is 40 mol% or more (for example, 45 to 70 mol%).
  • cured material to improve more.
  • the ratio of alkyl groups (particularly methyl groups) to 90 mol% or more (for example, 95 to 99 mol%) relative to the total amount (100 mol%) of groups bonded to silicon atoms is used, There is a tendency that the thermal shock resistance of is improved.
  • the linear polyorganosiloxane is represented, for example, by the following formula (III-1).
  • R 31 are the same or different and each represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group. However, at least two of R 31 are hydrogen atoms.
  • m2 is an integer of 5 to 1000.
  • polyorganosiloxane (B1) is a branched polyorganosiloxane having two or more hydrosilyl groups in the molecule and having a siloxane unit (T unit) represented by RSiO 3/2. It is done.
  • R is a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group.
  • Examples of the group bonded to a silicon atom other than a hydrogen atom in the branched polyorganosiloxane include the monovalent substituted or unsubstituted hydrocarbon group described above, among which an alkyl group (particularly a methyl group), Aryl groups (particularly phenyl groups) are preferred.
  • examples of R in the T unit include a hydrogen atom and the above-mentioned monovalent substituted or unsubstituted hydrocarbon group.
  • an alkyl group (particularly a methyl group) and an aryl group (particularly a phenyl group) are preferable.
  • the ratio of the aryl group (particularly phenyl group) to the total amount of R in the T unit (100 mol%) is not particularly limited, but is preferably 30 mol% or more from the viewpoint of the barrier property against the corrosive gas of the cured product.
  • the ratio of alkyl groups (particularly methyl groups) to the total amount of groups bonded to silicon atoms (100 mol%) in the branched polyorganosiloxane is not particularly limited, but is preferably 70 to 95 mol%. Further, the ratio of aryl groups (particularly phenyl groups) to the total amount of groups bonded to silicon atoms (100 mol%) is not particularly limited, but is preferably 10 to 70 mol%. In particular, in the branched polyorganosiloxane, the ratio of aryl groups (particularly phenyl groups) to the total amount (100 mol%) of groups bonded to silicon atoms is 10 mol% or more (for example, 10 to 70 mol%).
  • a cured product can be obtained by using a compound in which the ratio of alkyl groups (particularly methyl groups) is 50 mol% or more (for example, 50 to 90 mol%) with respect to the total amount (100 mol%) of groups bonded to silicon atoms. There is a tendency that the thermal shock resistance of is improved.
  • the branched polyorganosiloxane can be represented, for example, by the above average unit formula in which c1 is a positive number.
  • c2 / c1 is a number from 0 to 10
  • c3 / c1 is a number from 0 to 0.5
  • c4 / (c1 + c2 + c3 + c4) is a number from 0 to 0.3
  • c5 / (c1 + c2 + c3 + c4) is A number of 0 to 0.4 is preferred.
  • the molecular weight of the branched polyorganosiloxane is not particularly limited, but the weight average molecular weight in terms of standard polystyrene is preferably 300 to 10,000, and more preferably 500 to 3000.
  • polyorganosiloxysilalkylene (B2) As described above, the polyorganosiloxysilalkylene (B2) is a polyorganosiloxane having two or more hydrosilyl groups in the molecule and containing a silalkylene bond as a main chain in addition to a siloxane bond.
  • a silalkylene bond As an alkylene group in the said silalkylene bond, a C2-4 alkylene group (especially ethylene group) is preferable, for example.
  • the polyorganosiloxysilalkylene (B2) is less likely to form a low molecular weight ring in the production process than the polyorganosiloxane (B1), and is not easily decomposed by heating or the like to produce a silanol group (—SiOH).
  • silanol group —SiOH.
  • polyorganosiloxysilalkylene (B2) examples include those having a linear, partially branched linear, branched, or network molecular structure.
  • polyorgano siloxysil alkylene (B2) can also be used individually by 1 type, and can also be used in combination of 2 or more type.
  • two or more kinds of polyorganosiloxysilalkylene (B2) having different molecular structures can be used in combination, for example, linear polyorganosiloxysilalkylene (B2) and branched polyorganosiloxysilalkylene (B2). B2) can also be used in combination.
  • bonded with silicon atoms other than the hydrogen atom which polyorganosiloxysil alkylene (B2) has is not specifically limited,
  • an organic group etc. are mentioned.
  • the organic group include the monovalent substituted or unsubstituted hydrocarbon group described above. Of these, an alkyl group (particularly a methyl group) and an aryl group (particularly a phenyl group) are preferable.
  • the properties of the polyorganosiloxysilalkylene (B2) are not particularly limited, and may be liquid or solid.
  • R 4 2 SiO 2/2 As polyorganosiloxysilalkylene (B2), the following average unit formula: (R 4 2 SiO 2/2 ) d1 (R 4 3 SiO 1/2 ) d2 (R 4 SiO 3/2 ) d3 (SiO 4/2 ) d4 (R A ) d5
  • R 4 s are the same or different and each represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group. Aralkyl group, halogenated alkyl group, etc.). However, a part of R 4 is a hydrogen atom, and the ratio thereof is controlled within a range of 2 or more in the molecule.
  • the ratio of hydrogen atoms to the total amount of R 4 (100 mol%) is preferably 0.1 to 50 mol%, more preferably 5 to 35 mol%.
  • R 4 other than a hydrogen atom is preferably an alkyl group (particularly a methyl group) or an aryl group (particularly a phenyl group).
  • the ratio of aryl groups (particularly phenyl groups) to the total amount of R 4 (100 mol%) is preferably 5 mol% or more (eg, 5 to 80 mol%), more preferably 10 mol% or more.
  • R A is an alkylene group as described above.
  • An ethylene group is particularly preferable.
  • d1 is a positive number
  • d2 is a positive number
  • d3 is 0 or a positive number
  • d4 is 0 or a positive number
  • d5 is a positive number.
  • d1 is preferably 1 to 50
  • d2 is preferably 1 to 50
  • d3 is preferably 0 to 10
  • d4 is preferably 0 to 5
  • d5 is preferably 1 to 30.
  • examples of the polyorganosiloxysilalkylene (B2) include polyorganosiloxysilalkylene having a structure represented by the following formula (IV-1).
  • R 41 are the same or different and each represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group.
  • R 41 include the above-described specific examples (eg, alkyl group, alkenyl group, aryl group, aralkyl group, halogenated hydrocarbon group, etc.).
  • at least two of R 41 are hydrogen atoms.
  • R 41 other than a hydrogen atom is preferably an alkyl group (particularly a methyl group) or an aryl group (particularly a phenyl group).
  • R A like R A in formula (II-1), an alkylene group, among them, C 2-4 alkylene group (in particular, an ethylene group) is preferable.
  • C 2-4 alkylene group in particular, an ethylene group
  • RA when several RA exists, these may be the same and may differ.
  • q1 represents an integer of 1 or more (for example, 1 to 100).
  • q1 is an integer greater than or equal to 2
  • subjected q1 may each be the same, and may differ.
  • q2 represents an integer of 1 or more (for example, 1 to 400).
  • q2 is an integer greater than or equal to 2
  • subjected q2 may each be the same, and may differ.
  • q3 represents 0 or an integer of 1 or more (for example, 0 to 50).
  • q3 is an integer greater than or equal to 2
  • subjected q3 may be respectively the same, and may differ.
  • q4 represents 0 or an integer of 1 or more (for example, 0 to 50).
  • q4 is an integer greater than or equal to 2
  • subjected q4 may be the same respectively, and may differ.
  • q5 represents 0 or an integer of 1 or more (for example, 0 to 50).
  • q5 is an integer greater than or equal to 2
  • subjected q5 may each be the same, and may differ.
  • each structural unit in the above formula (IV-1) is not particularly limited, and may be a random type or a block type.
  • the terminal structure of the polyorganosiloxysilalkylene having the structure represented by the formula (IV-1) is not particularly limited.
  • a silanol group for example, a silanol group, an alkoxysilyl group, a trialkylsilyl group (for example, a structure to which q5 is attached) , Trimethylsilyl group, etc.).
  • Various groups such as an alkenyl group and a hydrosilyl group may be introduced at the terminal of the polyorganosiloxysilalkylene.
  • Polyorganosiloxysilalkylene (B2) can be produced by a known or commonly used method, and the production method is not particularly limited, but can be produced, for example, by the method described in JP2012-140617A.
  • the content (blending amount) of the polysiloxane (B) in the curable resin composition of the present invention is not particularly limited, but is preferably 1 to 200 parts by weight with respect to 100 parts by weight of the total amount of the polysiloxane (A).
  • the content of polysiloxane (B) is not particularly limited, but is preferably 1 to 200 parts by weight with respect to 100 parts by weight of the total amount of the polysiloxane (A).
  • polysiloxane (B) in the curable resin composition of the present invention only polyorganosiloxane (B1) can be used, or only polyorganosiloxysilalkylene (B2) can be used.
  • Polyorganosiloxane (B1) and polyorganosiloxysilalkylene (B2) can also be used in combination.
  • these ratios are not particularly limited and can be appropriately set.
  • the total content (total content) of the polysiloxane (A) and the polysiloxane (B) in the curable resin composition (100% by weight) of the present invention is not particularly limited, but is 70% by weight or more (for example, 70%). % By weight or more and less than 100% by weight), more preferably 80% by weight or more, and still more preferably 90% by weight or more. When the total content is 70% by weight or more, the heat resistance and transparency of the cured product tend to be further improved.
  • the ratio (total ratio) is not particularly limited, but is preferably 3% by weight or more (for example, 60 to 100% by weight), more preferably 10% by weight or more, and further preferably 15 to 50% by weight. When the ratio is 3% by weight or more, the surface tackiness of the cured product tends to be lower and the thermal shock resistance tends to be good.
  • glycoluril derivative (C) which is an essential component of the curable resin composition of the present invention, is a compound (glycoluril derivative) represented by the above formula (1).
  • R a to R d are the same or different and are represented by the group represented by the following formula (1a), the group represented by the following formula (1b), or the following formula (1c). It is a group.
  • s is the same or different and represents 0 or an integer of 1 or more.
  • s is preferably an integer of 1 to 10, more preferably an integer of 1 to 5, and still more preferably an integer of 1 to 3, from the viewpoint of the barrier property against the corrosive gas of the cured product. Note that the total of four s present in the above formula (1) may be the same or different.
  • Examples of the group represented by the above formula (1a) include a vinyl group and an allyl group.
  • examples of the group represented by the above formula (1a) include a vinyl group and an allyl group.
  • two or more groups represented by the formula (1a) are present in the formula (1), these may be the same or different.
  • R g is the same or different and represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group.
  • the monovalent substituted or unsubstituted hydrocarbon group include the above-mentioned monovalent substituted or unsubstituted hydrocarbon groups (including alkenyl groups).
  • monovalent aliphatic carbonization Hydrogen group eg, alkyl group, alkenyl group, etc.
  • monovalent alicyclic hydrocarbon group eg, cycloalkyl group, etc.
  • monovalent aromatic hydrocarbon group eg, aryl group, etc.
  • monovalent A heterocyclic group a monovalent group formed by combining two or more of an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group (for example, an alkyl and / or alkenyl-substituted cycloalkyl group) Cycloalkyl-alkyl group, alkyl and / or alkenyl-substituted aryl group, aryl-alkyl group); groups in which one or more hydrogen atoms in these groups are substituted with a substituent (for example, a halogen atom), and the like
  • R g is preferably a monovalent aliphatic hydrocarbon group, more preferably
  • R h and R i are the same or different and each represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group.
  • the monovalent substituted or unsubstituted hydrocarbon group include the above-mentioned monovalent substituted or unsubstituted hydrocarbon groups (including alkenyl groups).
  • monovalent aliphatic hydrocarbons Group for example, alkyl group, alkenyl group, etc.
  • monovalent alicyclic hydrocarbon group for example, cycloalkyl group, etc.
  • monovalent aromatic hydrocarbon group for example, aryl group, etc.
  • monovalent complex A cyclic group a monovalent group formed by combining two or more of an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group (for example, an alkyl and / or alkenyl-substituted cycloalkyl group, A cycloalkyl-alkyl group, an alkyl and / or alkenyl-substituted aryl group, an aryl-alkyl group); a group in which one or more hydrogen atoms in these groups are substituted with a substituent (for example, a halogen atom), and the like.
  • a substituent for example, a halogen atom
  • R h and R i are preferably a monovalent aliphatic hydrocarbon group or a monovalent aromatic hydrocarbon group, more preferably an alkyl group (particularly a methyl group), an alkenyl group (particularly a vinyl group), an aryl group. A group (particularly a phenyl group).
  • the plurality of R h and the plurality of R i may be the same or different.
  • t represents 0 or an integer of 1 or more.
  • t is preferably an integer of 1 to 100, more preferably an integer of 1 to 50, and still more preferably an integer of 1 to 30 from the viewpoint of the barrier property against the corrosive gas of the cured product.
  • two or more groups represented by the formula (1c) are present in the formula (1), these may be the same or different.
  • At least one of R a to R d is a group selected from the group consisting of a group represented by formula (1b) and a group represented by formula (1c). That is, the glycoluril derivative (C) contains, in the molecule, a Si—OR g group (particularly an alkoxysilyl group) and a group represented by the formula (1c) present in the group represented by the formula (1b).
  • the barrier property against the corrosive gas of the cured product can be remarkably improved.
  • the component having an alkoxysilyl group or silanol group in the composition for example, polysiloxane (A), ( B) and the like, and a component having an alkenyl group (for example, polysiloxane (A)
  • the barrier property against the corrosive gas of the cured product can be remarkably improved.
  • it also reacts with a component having a hydrosilyl group (for example, polysiloxane (B)) in the curable resin composition Therefore, the barrier property against the corrosive gas of the cured product can be remarkably improved.
  • the ratio of the groups represented by the formulas (1a) to (1c) in the glycoluril derivative (C) is not particularly limited.
  • R e and R f are the same or different and each represents a hydrogen atom or an alkyl group.
  • the alkyl group include C 1-20 alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, hexyl group, octyl group, isooctyl group, decyl group, and dodecyl group.
  • R e and R f a hydrogen atom or a C 1-4 alkyl group is preferable, and a hydrogen atom or a methyl group is more preferable.
  • cured material of the said curable resin composition can exhibit the outstanding barrier property with respect to corrosive gas because the curable resin composition of this invention contains a glycoluril derivative (C). It is presumed that the glycoluril skeleton in the glycoluril derivative (C) traps corrosive gases such as SOx gas.
  • the glycoluril derivative (C) can be produced by, for example, a known or conventional method using glycoluril or a derivative thereof as a starting material, and the production method is not particularly limited.
  • the glycoluril derivative (C) is represented by the following formula (i):
  • the method of including is illustrated as an efficient manufacturing method of a glycoluril derivative (C).
  • [In the formula (i), s, R e and R f are the same as above. ]
  • [In formula (ii), R g is the same as defined above. ]
  • [In the formula (iii), R h , R i and t are the same as above. ]
  • the hydrosilylation reaction can be carried out by known or commonly used methods, conditions, etc., and is not particularly limited. Moreover, hydrosilylation reaction can be advanced in presence of a hydrosilylation catalyst, for example, the hydrosilylation catalyst mentioned later etc. can be used. In the case where two or more compounds (compound represented by formula (ii) and compound represented by formula (iii)) are reacted with the compound represented by formula (i), the above hydrosilylation reaction Can be performed simultaneously or sequentially. In addition, when the compound represented by the formula (iii) is reacted with the compound represented by the formula (i), the compound represented by the formula (i) is used in order to prevent gelation due to a crosslinking reaction.
  • the glycoluril derivative (C) obtained by the hydrosilylation reaction can be used as it is without being purified (for example, used as a constituent of the curable resin composition of the present invention). It can also be used after being purified by conventional purification means.
  • the glycoluril derivative (C) can be used alone or in combination of two or more.
  • the content (blending amount) of the glycoluril derivative (C) in the curable resin composition of the present invention is not particularly limited, but is 0 with respect to 100 parts by weight of the total amount of the polysiloxane (A) and the polysiloxane (B).
  • the amount is preferably more than 20 parts by weight and less than 20 parts by weight, more preferably 0.01 to 18 parts by weight, still more preferably 0.1 to 15 parts by weight, and particularly preferably 0.1 to 10 parts by weight.
  • the barrier property and durability thermal shock resistance, reflow resistance, etc.
  • the transparency and durability (thermal shock resistance, reflow resistance, etc.) of the cured product tend to be further improved.
  • the curable resin composition of the present invention may further contain a hydrosilylation catalyst.
  • a hydrosilylation catalyst When the curable resin composition of the present invention contains a hydrosilylation catalyst, the hydrosilylation reaction between the alkenyl group and the hydrosilyl group in the curable resin composition can proceed more efficiently by heating. Tend.
  • hydrosilylation catalyst examples include known hydrosilylation reaction catalysts such as platinum-based catalysts, rhodium-based catalysts, and palladium-based catalysts. Specifically, platinum fine powder, platinum black, platinum-supported silica fine powder, platinum Supported activated carbon, chloroplatinic acid, complexes of chloroplatinic acid with alcohols, aldehydes, ketones, platinum olefin complexes, platinum carbonyl complexes such as platinum-carbonylvinylmethyl complexes, platinum-divinyltetramethyldisiloxane complexes and platinum- Platinum-based catalysts such as platinum-vinylmethylsiloxane complexes such as cyclovinylmethylsiloxane complexes, platinum-phosphine complexes, platinum-phosphite complexes, etc., and palladium-based catalysts containing palladium atoms or rhodium atoms in place of platinum atoms in the above-ment
  • a platinum vinylmethylsiloxane complex a platinum-carbonylvinylmethyl complex, or a complex of chloroplatinic acid and an alcohol or aldehyde is preferable because the reaction rate is good.
  • the hydrosilylation catalyst can be used alone or in combination of two or more.
  • the content (blending amount) of the hydrosilylation catalyst in the curable resin composition of the present invention is not particularly limited, but is 1 ⁇ 10 ⁇ 8 to 1 mol of the total amount of alkenyl groups contained in the curable resin composition.
  • 1 ⁇ 10 ⁇ 2 mol is preferable, and 1.0 ⁇ 10 ⁇ 6 to 1.0 ⁇ 10 ⁇ 3 mol is more preferable.
  • the content is 1 ⁇ 10 ⁇ 8 mol or more, there is a tendency that a cured product can be formed more efficiently.
  • the content is 1 ⁇ 10 ⁇ 2 mol or less, there is a tendency that a cured product having a more excellent hue (less coloring) can be obtained.
  • the content (blending amount) of the hydrosilylation catalyst in the curable resin composition of the present invention is not particularly limited.
  • platinum, palladium, or rhodium in the hydrosilylation catalyst is 0.01 to An amount that falls within the range of 1000 ppm is preferred, and an amount that falls within the range of 0.1 to 500 ppm is more preferred.
  • the content of the hydrosilylation catalyst is in such a range, a cured product can be formed more efficiently, and a cured product having a more excellent hue tends to be obtained.
  • the curable resin composition of the present invention may contain components other than the above-described components (sometimes referred to as “other components”).
  • other components include, but are not limited to, siloxane compounds other than polysiloxanes (A) and (B) (for example, cyclic siloxane compounds, low molecular weight linear or branched siloxane compounds, etc.), silane coupling agents. , Hydrosilylation reaction inhibitors, solvents, various additives, and the like.
  • the additive examples include precipitated silica, wet silica, fumed silica, calcined silica, titanium oxide, alumina, glass, quartz, aluminosilicate, iron oxide, zinc oxide, calcium carbonate, carbon black, silicon carbide, silicon nitride, Inorganic fillers such as boron nitride, inorganic fillers obtained by treating these fillers with organosilicon compounds such as organohalosilanes, organoalkoxysilanes, organosilazanes; organic resins such as silicone resins, epoxy resins, and fluororesins other than those described above Fine powder: Filler such as conductive metal powder such as silver and copper, solvent, stabilizer (antioxidant, ultraviolet absorber, light stabilizer, heat stabilizer, etc.), flame retardant (phosphorous flame retardant, Halogen flame retardants, inorganic flame retardants, etc.), flame retardant aids, reinforcing materials (other fillers, etc.), nucleating agents, coupling agents, lub
  • the curable resin composition of the present invention is not particularly limited, but is a composition (composition composition) in which the alkenyl group is 0.2 to 4 mol per 1 mol of hydrosilyl group present in the curable resin composition.
  • the amount is preferably 0.5 to 1.5 mol, more preferably 0.8 to 1.2 mol.
  • the curable resin composition of the present invention is not particularly limited, but can be prepared by stirring and mixing each of the above components at room temperature.
  • the curable resin composition of the present invention can be used as a one-component composition in which each component is mixed in advance, for example, two or more stored separately. It can also be used as a multi-component (for example, two-component) composition in which the components are mixed at a predetermined ratio before use.
  • the curable resin composition of the present invention is not particularly limited, but is preferably liquid at room temperature (about 25 ° C.). More specifically, the curable resin composition of the present invention has a viscosity at 23 ° C. of preferably 300 to 20000 mPa ⁇ s, more preferably 500 to 10000 mPa ⁇ s, and still more preferably 1000 to 8000 mPa ⁇ s. There exists a tendency for the heat resistance of hardened
  • the viscosity of curable resin composition can be measured by the method similar to the viscosity of the above-mentioned ladder type polyorgano silsesquioxane (a), for example.
  • a cured product (sometimes referred to as “cured product of the present invention”) is obtained.
  • Conditions for curing are not particularly limited and can be appropriately selected from conventionally known conditions.
  • the temperature (curing temperature) is 25 to 25%. 180 ° C. (more preferably 60 to 150 ° C.) is preferable, and the time (curing time) is preferably 5 to 720 minutes.
  • the cured product of the present invention has not only high heat resistance and transparency specific to polysiloxane materials, but also excellent thermal shock resistance and reflow resistance, and particularly barrier properties against corrosive gases (for example, SOx gas). Excellent.
  • the curable resin composition of the present invention can be preferably used as a resin composition (encapsulant) for encapsulating semiconductor elements in a semiconductor device (sometimes referred to as “encapsulant of the present invention”). . Specifically, the encapsulant of the present invention can be particularly preferably used for a resin composition (encapsulant) for encapsulating an optical semiconductor element (LED element) in an optical semiconductor device.
  • the sealing material (cured product) obtained by curing the sealing agent of the present invention has not only high heat resistance and transparency specific to polysiloxane materials, but also excellent thermal shock resistance and reflow resistance. In particular, it has excellent barrier properties against corrosive gas (for example, SOx gas).
  • the sealing agent of this invention can be preferably used especially as a sealing agent etc. of a high-intensity, short wavelength optical semiconductor element.
  • An optical semiconductor device can be obtained by sealing an optical semiconductor element using the sealing agent of the present invention.
  • the sealing of the optical semiconductor element can be performed by a known or conventional method, and is not particularly limited.
  • the sealing agent of the present invention can be injected into a predetermined mold and cured by heating under predetermined conditions. .
  • the curing temperature and the curing time are not particularly limited, but can be set in the same range as in the preparation of the cured product.
  • An example of the optical semiconductor device of the present invention is shown in FIG. In FIG. 1, 100 is a reflector (light reflecting resin composition), 101 is a metal wiring (electrode), 102 is an optical semiconductor element, 103 is a bonding wire, and 104 is a cured product (sealing material).
  • the curable resin composition of the present invention is a sealing material that covers an optical semiconductor element in a high-brightness, short-wavelength optical semiconductor device, which has been difficult to handle with conventional resin materials, and has high heat resistance and high resistance.
  • a withstand voltage semiconductor device such as a power semiconductor
  • it can be preferably used for applications such as a sealing material covering a semiconductor element.
  • the curable resin composition of the present invention is not limited to the above-described encapsulant application (particularly, an encapsulant application for optical semiconductor elements).
  • a functional coating agent for example, a functional coating agent, a heat-resistant plastic lens, a transparent device, an adhesive ( Heat-resistant transparent adhesives, etc.), electrical insulating materials (insulating films, etc.), laminates, coatings, inks, paints, sealants, resists, composite materials, transparent substrates, transparent sheets, transparent films, optical elements, optical lenses, optical members , Optical modeling, electronic paper, touch panel, solar cell substrate, optical waveguide, light guide plate, holographic memory, and other optical and semiconductor applications.
  • Production Example 1 [Production of ladder-type polyorganosilsesquioxane] A 100 ml flask (reaction vessel) equipped with a thermometer, a stirrer, a reflux condenser, and a nitrogen inlet tube was charged with 65 mmol (9.64 g) vinyltrimethoxysilane and 195 mmol phenyltrimethoxysilane (38 mmol) under a nitrogen stream. .67 g) and 8.31 g of methyl isobutyl ketone (MIBK) were charged and the mixture was cooled to 10 ° C.
  • MIBK methyl isobutyl ketone
  • reaction solution 360 mmol (6.48 g) of water and 0.24 g of 5N hydrochloric acid (1.2 mmol as hydrogen chloride) were simultaneously added dropwise over 1 hour. After the dropwise addition, the mixture (reaction solution) was kept at 10 ° C. for 1 hour to allow hydrolysis condensation reaction to proceed. Thereafter, 40 g of MIBK was added to dilute the reaction solution. Next, the temperature of the reaction vessel was adjusted with a water bath, and the temperature of the reaction solution was raised to 70 ° C. in 30 minutes. When the temperature reached 70 ° C., 520 mmol (9.36 g) of water was added, and the polycondensation reaction was performed at the same temperature under a nitrogen stream for 6 hours.
  • ladder-type polyorganosilsesquioxane obtained in Production Example 1 corresponds to the ladder-type polyorganosilsesquioxane (a) described above.
  • the product (the product after the silylation reaction) had a number average molecular weight of 1280 and a molecular weight dispersity of 1.13.
  • the ladder type polyorganosilsesquioxane having a vinyl group and a TMS group at the terminal has a weight average molecular weight (Mw) of 3000, and a vinyl group content (average content) per molecule of 4.00% by weight. Yes, and the phenyl group / methyl group / vinyl group (molar ratio) was 5/80/15.
  • the ladder-type polyorganosilsesquioxane obtained in Production Example 2 corresponds to the ladder-type polyorganosilsesquioxane (b) described above.
  • polysiloxane (A) and (B) the following products were used in addition to the ladder-type polyorganosilsesquioxane obtained in Production Example 1 and Production Example 2.
  • ETERLED GD1130A manufactured by Changxing Chemical Industry, vinyl group content 4.32% by weight, phenyl group content 44.18% by weight, number average molecular weight 1107, weight average molecular weight 6099, and hydrosilylation catalyst.
  • ETERLED GD1130B manufactured by Changxing Chemical Industry, vinyl group content 3.45% by weight, phenyl group content 50.96% by weight, hydrosilyl group (Si—H) content (hydride conversion) 0.17% by weight, number average molecular weight 631, weight average molecular weight 1305 OE6630A: manufactured by Toray Dow Corning Co., Ltd., vinyl group content 2.17 wt%, phenyl group content 51.94 wt%, hydrosilyl group content (hydride conversion) 0 wt%, number average molecular weight 2532, weight average Molecular weight 4490, including hydrosilylation catalyst.
  • OE6630B manufactured by Toray Dow Corning Co., Ltd., vinyl group content 3.87% by weight, phenyl group content 50.11% by weight, hydrosilyl group content (in terms of hydride) 0.17% by weight, number average molecular weight 783, Weight average molecular weight 1330 KER-2500A: manufactured by Shin-Etsu Chemical Co., Ltd., vinyl group content 1.53% by weight, phenyl group content 0% by weight, hydrosilyl group content (hydride conversion) 0.03% by weight, number average molecular weight 4453, weight Average molecular weight 19355, including hydrosilylation catalyst.
  • KER-2500B manufactured by Shin-Etsu Chemical Co., Ltd., vinyl group content 1.08% by weight, phenyl group content 0% by weight, hydrosilyl group content (hydride conversion) 0.13% by weight, number average molecular weight 4636, weight Average molecular weight 18814
  • ETERLED GD1012A manufactured by Changxing Chemical Industry Co., Ltd., vinyl group content 1.33% by weight, phenyl group content 0% by weight, hydrosilyl group content (hydride conversion) 0% by weight, number average molecular weight 5108, weight average molecular weight 23385, hydrosilylation Contains catalyst.
  • ETERLED GD1012B manufactured by Changxing Chemical Industry, vinyl group content 1.65% by weight, phenyl group content 0% by weight, hydrosilyl group content (hydride conversion) 0.19% by weight, number average molecular weight 4563, weight average molecular weight 21873
  • glycoluril derivative (C) As the glycoluril derivative (C), the compounds obtained in Synthesis Examples 1 to 3 below were used.
  • Synthesis example 1 [Synthesis of glycoluril compound (glycoluril derivative) having two allyl groups and two trimethoxysilyl groups on average in one molecule] Glycoluril tetraallyl compound TA-G (40.00 g, manufactured by Shikoku Kasei Kogyo Co., Ltd.) in a 200 ml flask (reaction vessel) equipped with a thermometer, a stirrer, a reflux condenser, and a nitrogen introduction tube , S is 1, and R e and R f are hydrogen atoms, a compound represented by formula (i)), methyl isobutyl ketone (40.00 g, manufactured by Kanto Chemical Co., Inc.), and platinum-1,4 -1,3-divinyl-1,1,3,3-tetramethyldisiloxane solution of divinyl-1,1,4,4-tetramethyldisiloxane complex (0.244 mg, manufactured by Sigma-Aldrich, platinum content 3.
  • Synthesis example 2 [Synthesis of glycoluril compound (glycoluril derivative) having two hydrosilyl groups and two trimethoxysilyl groups on average in one molecule]
  • a 1,1,3,3-tetramethyldisiloxane 14.70 g, Tokyo Chemical Industry Co., Ltd.
  • Toluene (20.00 g, manufactured by Kanto Chemical Co., Inc.)
  • 1,3-divinyl-1 of platinum-1,4-divinyl-1,1,4,4-tetramethyldisiloxane complex 1,3,3-tetramethyldisiloxane solution (0.074 mg, Sigma-Aldrich, platinum content 3.0 wt%) was charged and heated to 80 ° C.
  • Synthesis example 3 [Synthesis of a glycoluril compound (glycoluril derivative) having four hydrosilyl groups in one molecule]
  • a 1,1,3,3-tetramethyldisiloxane 22.21 g, Tokyo Chemical Industry Co., Ltd.
  • Toluene (20.00 g, manufactured by Kanto Chemical Co., Inc.)
  • 1,3-divinyl-1 of platinum-1,4-divinyl-1,1,4,4-tetramethyldisiloxane complex 1,3,3-tetramethyldisiloxane solution (0.12 mg, Sigma-Aldrich, platinum content 0.3 wt%) was charged and heated to 70 ° C.
  • Example 1 [Production of curable resin composition] First, as shown in Table 1, ETERLED GD1130A (20 parts by weight) and the compound obtained in Synthesis Example 1 (0.2 parts by weight) were mixed and stirred at room temperature for 1 hour to prepare agent A. . Next, ETERLED GD1130B (80 parts by weight) as a B agent was mixed with the A agent (20.2 parts by weight) obtained above and stirred at room temperature for 1 hour. The compatibility of each component was good. There was obtained a curable resin composition which was a transparent and uniform liquid.
  • the LED package (InGaN element, 3.5 mm ⁇ 2.8 mm) of the embodiment shown in FIG. 1 is injected with the curable resin composition obtained above, at 60 ° C. for 1 hour, and then at 80 ° C. for 1 hour. Furthermore, the optical semiconductor device by which the optical semiconductor element was sealed with the hardened
  • the total luminous flux was measured in the same manner as described above, and this was designated as “total luminous flux after test”. From the value of the total luminous flux measured above, the luminous intensity maintenance factor was calculated according to the following formula.
  • Luminance maintenance rate (%) (total luminous flux after test / total luminous flux before test) ⁇ 100 It shows that hardened
  • Thermal shock test The optical semiconductor device manufactured above was used as a sample. Ten samples were used for each curable resin composition. The sample was used after confirming that it was turned on when a current of 20 mA was applied before the test. One cycle of the above sample was exposed to ⁇ 40 ° C. for 5 minutes and then at 100 ° C. for 5 minutes using a thermal shock tester (manufactured by Espec Corp., model number “TSB-21”). Application of thermal shock was performed in 1000 cycles for Examples 1 to 9 and Comparative Examples 1 to 3 (phenyl silicone type), and 3000 cycles for Examples 10 to 12 and Comparative Examples 4 and 5 (methyl silicone type).
  • thermal shock resistance The durability against thermal shock (thermal shock resistance) was evaluated according to the following criteria. ⁇ (Excellent durability): 0 samples that did not light X (Inferior in durability): The number of samples that did not light up was 1 or more
  • the curable resin composition of the present invention is useful for applications such as adhesives, coating agents and sealants that require heat resistance, transparency, thermal shock resistance, reflow resistance, and barrier properties against corrosive gases.
  • the curable resin composition of the present invention can be preferably used as a sealant for an optical semiconductor element (LED element).
  • Reflector resin composition for light reflection
  • Metal wiring electrode
  • Optical semiconductor element 103
  • Bonding wire 104: Cured material (sealing material)

Abstract

The present invention pertains to a curable resin composition characterized in containing a polysiloxane (A) having two or more alkenyl groups per molecule that is at least one selected from the group consisting of polyorganosiloxanes (A1) and polyorganosiloxysilalkylenes (A2), a polysiloxane (B) having two or more hydrosilyl groups per molecule that is at least one selected from the group consisting of polyorganosiloxanes (B1) and polyorganosiloxysilalkylenes (B2), and a compound (C) represented by formula (1). The present invention provides a curable resin composition that makes it possible to form a cured product (sealing material) that is exceptional in terms of all of the following characteristics: thermal shock resistance, reflow resistance, and barrier properties with respect to corrosive gases (e.g., SOx gas). (In formula (1), at least one among Ra-Rd is a group selected from the group consisting of groups represented by formula (1b) and groups represented by formula (1c).)

Description

硬化性樹脂組成物及びその硬化物、グリコールウリル誘導体及びその製造方法Curable resin composition and cured product thereof, glycoluril derivative and method for producing the same
 本発明は、硬化性樹脂組成物及びその硬化物、上記硬化性樹脂組成物を使用した封止剤、並びに上記封止剤を使用して半導体素子(特に光半導体素子)を封止して得られる半導体装置(特に光半導体装置)に関する。また、上記硬化性樹脂組成物の構成成分として特に有用なグリコールウリル誘導体及びその製造方法に関する。本願は、2014年4月23日に日本に出願した、特願2014-089554号の優先権を主張し、その内容をここに援用する。 The present invention is obtained by sealing a curable resin composition and a cured product thereof, a sealing agent using the curable resin composition, and a semiconductor element (particularly an optical semiconductor element) using the sealing agent. The present invention relates to a semiconductor device (especially an optical semiconductor device). The present invention also relates to a glycoluril derivative particularly useful as a constituent of the curable resin composition and a method for producing the same. This application claims the priority of Japanese Patent Application No. 2014-089554 for which it applied to Japan on April 23, 2014, and uses the content here.
 半導体装置における半導体素子を被覆して保護するための封止材としては、各種の樹脂材料が使用されている。特に、光半導体装置における封止材には、SOxガス等の腐食性ガスに対するバリア性と、耐熱衝撃性(冷熱サイクル等の熱衝撃が加えられた場合にも封止材のクラックや剥離、光半導体装置の不点灯等の不具合を生じにくい特性)と、耐リフロー性(リフロー工程で極めて高温の熱が加えられた場合にも封止材のクラックや剥離、光半導体装置の不点灯等の不具合を生じにくい特性)との全てが同時に高いレベルで満たされることが求められる。 Various resin materials are used as a sealing material for covering and protecting a semiconductor element in a semiconductor device. In particular, sealing materials in optical semiconductor devices include barrier properties against corrosive gases such as SOx gas and thermal shock resistance (such as cracking or peeling of the sealing material even when a thermal shock such as a cold cycle is applied). (Characteristics that are less likely to cause malfunctions such as non-lighting of the semiconductor device) and reflow resistance (cracking or peeling of the sealing material even when extremely high temperature heat is applied during the reflow process) It is demanded that all of the above characteristics are satisfied at a high level at the same time.
 しかしながら、これらの特性を全て同時に満たすことは困難であるのが現状である。これは、一般には、上述のバリア性を向上させるためには封止材の硬度を高める手段が採られるが、この場合、封止材の柔軟性が低下するために耐熱衝撃性及び耐リフローが損なわれ、一方、耐熱衝撃性及び耐リフロー性を向上させると上述のバリア性が低下する傾向があり、これらの特性はトレードオフの関係にあるためである。 However, it is currently difficult to satisfy all of these characteristics at the same time. In general, in order to improve the above-described barrier property, means for increasing the hardness of the sealing material is taken, but in this case, since the flexibility of the sealing material is reduced, the thermal shock resistance and the reflow resistance are reduced. On the other hand, when the thermal shock resistance and the reflow resistance are improved, the above-mentioned barrier property tends to be lowered, and these characteristics are in a trade-off relationship.
 現在、光半導体装置における封止材としては、腐食性ガスに対するバリア性、耐熱衝撃性、及び耐リフロー性のバランスが比較的良好なフェニルシリコーン(フェニルシリコーン系封止材)が広く使用されている(例えば、特許文献1参照)。 Currently, phenylsilicone (phenylsilicone-based encapsulant), which has a relatively good balance of barrier property against corrosive gas, thermal shock resistance, and reflow resistance, is widely used as an encapsulant in optical semiconductor devices. (For example, refer to Patent Document 1).
特許第4409160号Patent No. 4409160
 しかしながら、フェニルシリコーン系封止材は、従来使用されていたメチルシリコーン系封止材に比べると腐食性ガスに対するバリア性は高いものの、その特性は未だ不十分である。実際に、フェニルシリコーン系封止材を使用した場合であっても、光半導体装置において腐食性ガスによる電極の腐食が経時で進行し、通電特性が悪化するという問題が生じていた。 However, although the phenyl silicone-based encapsulant has a higher barrier property against corrosive gas than the conventionally used methyl silicone-based encapsulant, its properties are still insufficient. Actually, even when a phenyl silicone-based sealing material is used, there has been a problem that the corrosion of the electrode by the corrosive gas progresses with time in the optical semiconductor device, and the energization characteristics deteriorate.
 従って、本発明の目的は、耐熱衝撃性、耐リフロー性、及び腐食性ガス(例えば、SOxガス)に対するバリア性の全ての特性に優れた硬化物(封止材)を形成できる硬化性樹脂組成物を提供することにある。
 また、本発明の他の目的は、耐熱衝撃性、耐リフロー性、及び腐食性ガスに対するバリア性の全ての特性に優れた材料(硬化物)を提供することにある。
 さらに、本発明の他の目的は、上記硬化性樹脂組成物を使用した封止剤、及び該封止剤を使用して半導体素子(特に光半導体素子)を封止することにより得られる、品質と耐久性に優れた半導体装置(特に光半導体装置)を提供することにある。
Accordingly, an object of the present invention is to provide a curable resin composition capable of forming a cured product (sealing material) excellent in all the characteristics of thermal shock resistance, reflow resistance, and barrier properties against corrosive gas (for example, SOx gas). To provide things.
Another object of the present invention is to provide a material (cured product) excellent in all the characteristics of thermal shock resistance, reflow resistance, and barrier property against corrosive gas.
Furthermore, another object of the present invention is a quality obtained by sealing a sealing element using the curable resin composition, and sealing a semiconductor element (particularly an optical semiconductor element) using the sealing agent. Another object of the present invention is to provide a semiconductor device (particularly an optical semiconductor device) having excellent durability.
 本発明者らは、分子内に2個以上のアルケニル基を有する特定の成分と、分子内に2個以上のヒドロシリル基を有する特定の成分と、特定の構造を有するグリコールウリル誘導体とを必須成分として含む硬化性樹脂組成物によると、耐熱衝撃性、耐リフロー性、及び腐食性ガス(例えば、SOxガス)に対するバリア性の全ての特性に優れた硬化物を形成できることを見出し、本発明を完成させた。 The present inventors include a specific component having two or more alkenyl groups in the molecule, a specific component having two or more hydrosilyl groups in the molecule, and a glycoluril derivative having a specific structure as essential components. As a result, it was found that a cured product having excellent thermal shock resistance, reflow resistance, and barrier properties against corrosive gas (for example, SOx gas) can be formed. I let you.
 すなわち、本発明は、分子内に2個以上のアルケニル基を有するポリオルガノシロキサン(A1)及び分子内に2個以上のアルケニル基を有するポリオルガノシロキシシルアルキレン(A2)からなる群より選択される少なくとも1種であるポリシロキサン(A)と、分子内に2個以上のヒドロシリル基を有するポリオルガノシロキサン(B1)及び分子内に2個以上のヒドロシリル基を有するポリオルガノシロキシシルアルキレン(B2)からなる群より選択される少なくとも1種であるポリシロキサン(B)と、下記式(1)
Figure JPOXMLDOC01-appb-C000010
[式(1)中、Ra~Rdは、同一又は異なって、下記式(1a)で表される基、下記式(1b)で表される基、又は、下記式(1c)で表される基である。但し、Ra~Rdのうち、少なくとも1つは、式(1b)で表される基及び式(1c)で表される基からなる群より選択される基である。Re及びRfは、同一又は異なって、水素原子又はアルキル基を示す。
Figure JPOXMLDOC01-appb-C000011
[式(1a)~(1c)中、sは、同一又は異なって、0又は1以上の整数を示す。式(1b)中、Rgは、同一又は異なって、水素原子、又は一価の置換若しくは無置換炭化水素基を示す。式(1c)中、Rh及びRiは、同一又は異なって、水素原子、又は一価の置換若しくは無置換炭化水素基を示し、tは0又は1以上の整数を示す。]]
で表されるグリコールウリル誘導体(C)とを含むことを特徴とする硬化性樹脂組成物を提供する。
That is, the present invention is selected from the group consisting of a polyorganosiloxane (A1) having two or more alkenyl groups in the molecule and a polyorganosiloxysilalkylene (A2) having two or more alkenyl groups in the molecule. From at least one polysiloxane (A), a polyorganosiloxane (B1) having two or more hydrosilyl groups in the molecule, and a polyorganosiloxysilalkylene (B2) having two or more hydrosilyl groups in the molecule A polysiloxane (B) which is at least one selected from the group consisting of:
Figure JPOXMLDOC01-appb-C000010
[In formula (1), R a to R d are the same or different and are represented by the group represented by the following formula (1a), the group represented by the following formula (1b), or the following formula (1c). Group. However, at least one of R a to R d is a group selected from the group consisting of a group represented by the formula (1b) and a group represented by the formula (1c). R e and R f are the same or different and each represents a hydrogen atom or an alkyl group.
Figure JPOXMLDOC01-appb-C000011
[In the formulas (1a) to (1c), s is the same or different and represents 0 or an integer of 1 or more. In formula (1b), R g is the same or different and represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group. In formula (1c), R h and R i are the same or different and each represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group, and t represents 0 or an integer of 1 or more. ]]
The curable resin composition characterized by including the glycoluril derivative (C) represented by these.
 また、本発明は、ポリオルガノシロキサン(A1)が、下記平均単位式:
(R1SiO3/2a1(R1 2SiO2/2a2(R1 3SiO1/2a3(SiO4/2a4(XO1/2a5
[上記平均単位式中、R1は、同一又は異なって、一価の置換又は無置換炭化水素基であり、但し、R1の一部はアルケニル基(特にビニル基)であり、その割合は、分子内に2個以上となる範囲に制御され、
Xは、水素原子又はアルキル基であり、
a1は0又は正数、a2は0又は正数、a3は0又は正数、a4は0又は正数、a5は0又は正数であり、かつ、(a1+a2+a3)は正数である。]
で表されるポリオルガノシロキサンである前記の硬化性樹脂組成物を提供する。
In the present invention, the polyorganosiloxane (A1) has the following average unit formula:
(R 1 SiO 3/2) a1 ( R 1 2 SiO 2/2) a2 (R 1 3 SiO 1/2) a3 (SiO 4/2) a4 (XO 1/2) a5
[In the above average unit formula, R 1 is the same or different and is a monovalent substituted or unsubstituted hydrocarbon group, provided that a part of R 1 is an alkenyl group (particularly a vinyl group), , Controlled within the range of two or more in the molecule,
X is a hydrogen atom or an alkyl group,
a1 is 0 or a positive number, a2 is 0 or a positive number, a3 is 0 or a positive number, a4 is 0 or a positive number, a5 is 0 or a positive number, and (a1 + a2 + a3) is a positive number. ]
The said curable resin composition which is polyorganosiloxane represented by these is provided.
 また、本発明は、ポリオルガノシロキサン(A1)が、下記式(I-1)で表される直鎖状ポリオルガノシロキサンである前記の硬化性樹脂組成物を提供する。
Figure JPOXMLDOC01-appb-C000012
[式中、R11は、同一又は異なって、一価の置換又は無置換炭化水素基である。但し、R11の少なくとも2個はアルケニル基である。m1は、5~1000の整数である。]
The present invention also provides the curable resin composition, wherein the polyorganosiloxane (A1) is a linear polyorganosiloxane represented by the following formula (I-1).
Figure JPOXMLDOC01-appb-C000012
[Wherein, R 11 are the same or different and each represents a monovalent substituted or unsubstituted hydrocarbon group. However, at least two of R 11 are alkenyl groups. m1 is an integer of 5 to 1000. ]
 また、本発明は、ポリオルガノシロキサン(A1)が、下記のラダー型ポリオルガノシルセスキオキサン(a)又は(b)である前記の硬化性樹脂組成物を提供する。
・ラダー型ポリオルガノシルセスキオキサン(a):分子内に2個以上のアルケニル基を有し、ゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算の数平均分子量が500~1500、分子量分散度(Mw/Mn)が1.00~1.40であるラダー型ポリオルガノシルセスキオキサン。
・ラダー型ポリオルガノシルセスキオキサン(b):ラダー構造を有するポリオルガノシルセスキオキサンの分子鎖末端の一部又は全部に、式(I-3-1)で表される構成単位(T単位)及び式(I-3-2)で表される構成単位(M単位)を含むポリオルガノシルセスキオキサン残基(「ポリオルガノシルセスキオキサン残基(a)」と称する場合がある)を有するラダー型ポリオルガノシルセスキオキサン。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
[上記式(I-3-1)中、R19は、アルケニル基を示し、
上記式(I-3-2)中、R20は、同一又は異なって、一価の置換若しくは無置換炭化水素基を示す。]
Moreover, this invention provides the said curable resin composition whose polyorganosiloxane (A1) is the following ladder type polyorgano silsesquioxane (a) or (b).
Ladder type polyorganosilsesquioxane (a): having two or more alkenyl groups in the molecule, a number average molecular weight of 500 to 1500 in terms of standard polystyrene by gel permeation chromatography, molecular weight dispersity (Mw / Ladder type polyorganosilsesquioxane having a Mn) of 1.00 to 1.40.
Ladder-type polyorganosilsesquioxane (b): A structural unit (T) represented by the formula (I-3-1) at part or all of the molecular chain ends of a polyorganosilsesquioxane having a ladder structure Unit) and a polyorganosilsesquioxane residue (“polyorganosilsesquioxane residue (a)”) containing a structural unit (M unit) represented by formula (I-3-2) A ladder-type polyorganosilsesquioxane.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
[In the above formula (I-3-1), R 19 represents an alkenyl group;
In the above formula (I-3-2), R 20 are the same or different and each represents a monovalent substituted or unsubstituted hydrocarbon group. ]
 また、本発明は、ラダー型ポリオルガノシルセスキオキサン(a)が、下記式(I-2)で表され、かつ分子内に2個以上のアルケニル基を有し、ゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算の数平均分子量(Mn)が500~1500、分子量分散度(Mw/Mn)が1.00~1.40であるラダー型ポリオルガノシルセスキオキサンである前記の硬化性樹脂組成物を提供する。
Figure JPOXMLDOC01-appb-C000015
[上記式(I-2)中、R12は、同一又は異なって、水素原子、又は、一価の置換若しくは無置換炭化水素基であり、R13は、同一又は異なって、水素原子、アルキル基、下記式(I-2-1)で表される一価の基、下記式(I-2-2)で表される一価の基、又は、下記式(I-2-3)で表される一価の基を示し、nは0以上の整数を示す。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Further, according to the present invention, the ladder-type polyorganosilsesquioxane (a) is represented by the following formula (I-2) and has two or more alkenyl groups in the molecule, and is determined by gel permeation chromatography. The above curable resin composition, which is a ladder type polyorganosilsesquioxane having a standard polystyrene equivalent number average molecular weight (Mn) of 500 to 1500 and a molecular weight dispersity (Mw / Mn) of 1.00 to 1.40. I will provide a.
Figure JPOXMLDOC01-appb-C000015
[In the above formula (I-2), R 12 is the same or different and is a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group, and R 13 is the same or different and represents a hydrogen atom, an alkyl A monovalent group represented by the following formula (I-2-1), a monovalent group represented by the following formula (I-2-2), or a following formula (I-2-3): Represents a monovalent group represented, and n represents an integer of 0 or more.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
上記式(I-2-1)中、R14は、同一又は異なって、水素原子、又は、一価の置換若しくは無置換炭化水素基であり、R15は、同一又は異なって、一価の置換又は無置換の炭化水素基であり、n1は、0以上の整数を示す。
上記式(I-2-2)中、R14は、同一又は異なって、水素原子、又は、一価の置換若しくは無置換炭化水素基であり、R15は、同一又は異なって、一価の置換又は無置換の炭化水素基であり、n2は、0以上の整数を示す。
上記式(I-2-3)中、R14は、同一又は異なって、水素原子、又は、一価の置換若しくは無置換炭化水素基であり、R17は、同一又は異なって、一価の飽和脂肪族炭化水素基であり、n3は、0以上の整数を示す。]
In the above formula (I-2-1), R 14 is the same or different and is a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group, and R 15 is the same or different and is a monovalent It is a substituted or unsubstituted hydrocarbon group, and n1 represents an integer of 0 or more.
In the above formula (I-2-2), R 14 is the same or different and is a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group, and R 15 is the same or different and is a monovalent It is a substituted or unsubstituted hydrocarbon group, and n2 represents an integer of 0 or more.
In the above formula (I-2-3), R 14 is the same or different and is a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group, and R 17 is the same or different and is a monovalent It is a saturated aliphatic hydrocarbon group, and n3 represents an integer of 0 or more. ]
 また、本発明は、ラダー型ポリオルガノシルセスキオキサン(b)におけるラダー構造を有するポリオルガノシルセスキオキサンが、下記式(I-3)で表される前記の硬化性樹脂組成物を提供する。
Figure JPOXMLDOC01-appb-C000019
[上記式(I-3)中、pは1以上の整数を示し、R18は、同一又は異なって、水素原子、又は、一価の置換若しくは無置換炭化水素基を示し、Tは末端基を示す。]
The present invention also provides the curable resin composition, wherein the polyorganosilsesquioxane having a ladder structure in the ladder-type polyorganosilsesquioxane (b) is represented by the following formula (I-3): To do.
Figure JPOXMLDOC01-appb-C000019
[In the above formula (I-3), p represents an integer of 1 or more, R 18 is the same or different and represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group, and T represents a terminal group. Indicates. ]
 また、本発明は、ラダー型ポリオルガノシルセスキオキサン(b)が、下記式(I-3')で表されるラダー型ポリオルガノシルセスキオキサンである前記の硬化性樹脂組成物を提供する。
Figure JPOXMLDOC01-appb-C000020
[上記式(I-3')中、pは1以上の整数を示し、R18は、同一又は異なって、水素原子、又は、一価の置換若しくは無置換炭化水素基を示し、Aは、ポリオルガノシルセスキオキサン残基(a)、又は、ヒドロキシ基、ハロゲン原子、アルコキシ基、若しくはアシルオキシ基を示し、但し、Aの一部又は全部はポリオルガノシルセスキオキサン残基(a)である。]
The present invention also provides the curable resin composition, wherein the ladder-type polyorganosilsesquioxane (b) is a ladder-type polyorganosilsesquioxane represented by the following formula (I-3 ′): To do.
Figure JPOXMLDOC01-appb-C000020
[In the above formula (I-3 ′), p represents an integer of 1 or more, R 18 is the same or different and represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group, and A represents A polyorganosilsesquioxane residue (a), or a hydroxy group, a halogen atom, an alkoxy group, or an acyloxy group, provided that a part or all of A is a polyorganosilsesquioxane residue (a) is there. ]
 また、本発明は、ポリオルガノシロキサン(A1)が、下記平均単位式:
(R1a 21bSiO1/2a6(R1a 3SiO1/2a7(SiO4/2a8(HO1/2a9
[上記平均単位式中、R1aは、同一又は異なって、炭素数1~10のアルキル基を示し、
1bは、同一又は異なって、アルケニル基を示し、
a6、a7、a8及びa9はいずれも、a6+a7+a8=1、a6/(a6+a7)=0.15~0.35、a8/(a6+a7+a8)=0.53~0.62、a9/(a6+a7+a8)=0.005~0.03を満たす正数である。]
で表されるポリオルガノシロキサンである前記の硬化性樹脂組成物を提供する。
In the present invention, the polyorganosiloxane (A1) has the following average unit formula:
(R 1a 2 R 1b SiO 1/2 ) a6 (R 1a 3 SiO 1/2 ) a7 (SiO 4/2 ) a8 (HO 1/2 ) a9
[In the above average unit formula, R 1a is the same or different and represents an alkyl group having 1 to 10 carbon atoms;
R 1b is the same or different and represents an alkenyl group;
All of a6, a7, a8 and a9 are a6 + a7 + a8 = 1, a6 / (a6 + a7) = 0.15 to 0.35, a8 / (a6 + a7 + a8) = 0.53 to 0.62, a9 / (a6 + a7 + a8) = 0 A positive number satisfying .005 to 0.03. ]
The said curable resin composition which is polyorganosiloxane represented by these is provided.
 また、本発明は、ポリオルガノシロキシシルアルキレン(A2)が、下記平均単位式:
(R2 2SiO2/2b1(R2 3SiO1/2b2(R2SiO3/2b3(SiO4/2b4(RAb5
[上記平均単位式中、R2は、同一又は異なって、一価の置換又は無置換炭化水素基であり、但し、R2の一部はアルケニル基(特にビニル基)であり、その割合は、分子内に2個以上となる範囲に制御され、
Aは、アルキレン基であり、
b1は正数、b2は正数、b3は0又は正数、b4は0又は正数、b5は正数である。]
表されるポリオルガノシロキシシルアルキレンである前記の硬化性樹脂組成物を提供する。
In the present invention, the polyorganosiloxysilalkylene (A2) has the following average unit formula:
(R 2 2 SiO 2/2) b1 (R 2 3 SiO 1/2) b2 (R 2 SiO 3/2) b3 (SiO 4/2) b4 (R A) b5
[In the above average unit formula, R 2 is the same or different and is a monovalent substituted or unsubstituted hydrocarbon group, provided that a part of R 2 is an alkenyl group (particularly a vinyl group), , Controlled within the range of two or more in the molecule,
R A is an alkylene group;
b1 is a positive number, b2 is a positive number, b3 is 0 or a positive number, b4 is 0 or a positive number, and b5 is a positive number. ]
The curable resin composition is a polyorganosiloxysilalkylene represented.
 また、本発明は、ポリオルガノシロキシシルアルキレン(A2)が、下記式(II-1)で表される構造を有するポリオルガノシロキシシルアルキレンである前記の硬化性樹脂組成物を提供する。
Figure JPOXMLDOC01-appb-C000021
[上記式(II-1)中、R21は、同一又は異なって、水素原子、又は一価の置換若しくは無置換炭化水素基であり、但し、R21の少なくとも2個はアルケニル基であり、
Aは、アルキレン基を示し、
r1は1以上の整数を示し、r1が2以上の整数の場合、r1が付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよく、
r2は1以上の整数を示し、r2が2以上の整数の場合、r2が付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよく、
r3は0又は1以上の整数を示し、r3が2以上の整数の場合、r3が付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよく、
r4は0又は1以上の整数を示し、r4が2以上の整数の場合、r4が付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよく、
r5は0又は1以上の整数を示し、r5が2以上の整数の場合、r5が付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよい。]
The present invention also provides the curable resin composition, wherein the polyorganosiloxysilalkylene (A2) is a polyorganosiloxysilalkylene having a structure represented by the following formula (II-1).
Figure JPOXMLDOC01-appb-C000021
[In the above formula (II-1), R 21 is the same or different and is a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group, provided that at least two of R 21 are alkenyl groups;
R A represents an alkylene group,
r1 represents an integer of 1 or more, and when r1 is an integer of 2 or more, the structures in parentheses to which r1 is attached may be the same or different,
r2 represents an integer of 1 or more, and when r2 is an integer of 2 or more, the structures in parentheses to which r2 is attached may be the same or different,
r3 represents 0 or an integer of 1 or more, and when r3 is an integer of 2 or more, the structures in parentheses to which r3 is attached may be the same or different,
r4 represents 0 or an integer of 1 or more, and when r4 is an integer of 2 or more, the structures in parentheses to which r4 is attached may be the same or different,
r5 represents 0 or an integer of 1 or more, and when r5 is an integer of 2 or more, the structures in parentheses to which r5 is attached may be the same or different. ]
 また、本発明は、ポリシロキサン(A)の含有量(配合量)(総量)が、硬化性樹脂組成物の全量(100重量%)に対して、50重量%以上100重量%未満である前記の硬化性樹脂組成物を提供する。 In the present invention, the content (blending amount) (total amount) of the polysiloxane (A) is 50% by weight or more and less than 100% by weight with respect to the total amount (100% by weight) of the curable resin composition. A curable resin composition is provided.
 また、本発明は、硬化性樹脂組成物に含まれるポリシロキサン(A)の全量(100重量%)に対するポリオルガノシロキサン(A1)の割合が、50~100重量%である前記の硬化性樹脂組成物を提供する。 The present invention also provides the curable resin composition, wherein the ratio of the polyorganosiloxane (A1) to the total amount (100% by weight) of the polysiloxane (A) contained in the curable resin composition is 50 to 100% by weight. Offer things.
 また、本発明は、硬化性樹脂組成物に含まれるポリシロキサン(A)の全量(100重量%)に対するポリオルガノシロキシシルアルキレン(A2)の割合が、0~60重量%である前記の硬化性樹脂組成物を提供する。 The present invention also relates to the curable resin composition, wherein the ratio of the polyorganosiloxysilalkylene (A2) to the total amount (100% by weight) of the polysiloxane (A) contained in the curable resin composition is 0 to 60% by weight. A resin composition is provided.
 また、本発明は、ポリオルガノシロキサン(B1)が、下記平均単位式:
(R3SiO3/2c1(R3 2SiO2/2c2(R3 3SiO1/2c3(SiO4/2c4(XO1/2c5
[上記平均単位式中、R3は、同一又は異なって、水素原子、又は、一価の置換若しくは無置換炭化水素基であり、但し、R3の一部は水素原子(ヒドロシリル基を構成する水素原子)であり、その割合は、ヒドロシリル基が分子内に2個以上となる範囲に制御され、
Xは、水素原子又はアルキル基であり、
c1は0又は正数、c2は0又は正数、c3は0又は正数、c4は0又は正数、c5は0又は正数であり、かつ、(c1+c2+c3)は正数である。]
で表されるポリオルガノシロキサンである前記の硬化性樹脂組成物を提供する。
In the present invention, the polyorganosiloxane (B1) has the following average unit formula:
(R 3 SiO 3/2 ) c 1 (R 3 2 SiO 2/2 ) c 2 (R 3 3 SiO 1/2 ) c 3 (SiO 4/2 ) c 4 (XO 1/2 ) c 5
[In the above average unit formula, R 3 is the same or different and is a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group, provided that a part of R 3 is a hydrogen atom (constituting a hydrosilyl group). The hydrogen atom), and the ratio thereof is controlled in a range where two or more hydrosilyl groups are present in the molecule,
X is a hydrogen atom or an alkyl group,
c1 is 0 or a positive number, c2 is 0 or a positive number, c3 is 0 or a positive number, c4 is 0 or a positive number, c5 is 0 or a positive number, and (c1 + c2 + c3) is a positive number. ]
The said curable resin composition which is polyorganosiloxane represented by these is provided.
 また、本発明は、ポリオルガノシロキサン(B1)が、下記式(III-1)で表される直鎖状ポリオルガノシロキサンである前記の硬化性樹脂組成物を提供する。
Figure JPOXMLDOC01-appb-C000022
[上記式中、R31は、同一又は異なって、水素原子、又は、一価の置換若しくは無置換炭化水素基である。但し、R31の少なくとも2個は水素原子である。m2は、5~1000の整数である。]
The present invention also provides the curable resin composition, wherein the polyorganosiloxane (B1) is a linear polyorganosiloxane represented by the following formula (III-1).
Figure JPOXMLDOC01-appb-C000022
[In the above formula, R 31 are the same or different and each represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group. However, at least two of R 31 are hydrogen atoms. m2 is an integer of 5 to 1000. ]
 また、本発明は、ポリオルガノシロキシシルアルキレン(B2)が、下記平均単位式:
(R4 2SiO2/2d1(R4 3SiO1/2d2(R4SiO3/2d3(SiO4/2d4(RAd5
[上記平均単位式中、R4は、同一又は異なって、水素原子、又は一価の置換若しくは無置換炭化水素基であり、但し、R4の一部は水素原子であり、その割合は、分子内に2個以上となる範囲に制御され、
Aは、アルキレン基であり、
d1は正数、d2は正数、d3は0又は正数、d4は0又は正数、d5は正数である。]
で表されるポリオルガノシロキシシルアルキレンである前記の硬化性樹脂組成物を提供する。
In the present invention, the polyorganosiloxysilalkylene (B2) has the following average unit formula:
(R 4 2 SiO 2/2 ) d1 (R 4 3 SiO 1/2 ) d2 (R 4 SiO 3/2 ) d3 (SiO 4/2 ) d4 (R A ) d5
[In the above average unit formula, R 4 is the same or different and is a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group, provided that a part of R 4 is a hydrogen atom, Controlled within the range of 2 or more in the molecule,
R A is an alkylene group;
d1 is a positive number, d2 is a positive number, d3 is 0 or a positive number, d4 is 0 or a positive number, and d5 is a positive number. ]
The curable resin composition is a polyorganosiloxysilalkylene represented by the formula:
 また、本発明は、ポリオルガノシロキシシルアルキレン(B2)が、下記式(IV-1)で表される構造を有するポリオルガノシロキシシルアルキレンである前記の硬化性樹脂組成物を提供する。
Figure JPOXMLDOC01-appb-C000023
[上記式(IV-1)中、R41は、同一又は異なって、水素原子、又は一価の置換若しくは無置換炭化水素基であり、但し、R41の少なくとも2個は水素原子であり、
Aは、アルキレン基を示し、
q1は1以上の整数を示し、q1が2以上の整数の場合、q1が付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよく、
q2は1以上の整数を示し、q2が2以上の整数の場合、q2が付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよく、
q3は0又は1以上の整数を示し、q3が2以上の整数の場合、q3が付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよく、
q4は0又は1以上の整数を示し、q4が2以上の整数の場合、q4が付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよく、
q5は0又は1以上の整数を示し、q5が2以上の整数の場合、q5が付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよい。]
The present invention also provides the curable resin composition, wherein the polyorganosiloxysilalkylene (B2) is a polyorganosiloxysilalkylene having a structure represented by the following formula (IV-1).
Figure JPOXMLDOC01-appb-C000023
[In the above formula (IV-1), R 41 is the same or different and is a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group, provided that at least two of R 41 are hydrogen atoms;
R A represents an alkylene group,
q1 represents an integer of 1 or more, and when q1 is an integer of 2 or more, the structures in parentheses to which q1 is attached may be the same or different,
q2 represents an integer of 1 or more. When q2 is an integer of 2 or more, the structures in parentheses to which q2 is attached may be the same or different,
q3 represents 0 or an integer of 1 or more, and when q3 is an integer of 2 or more, the structures in parentheses to which q3 is attached may be the same or different,
q4 represents 0 or an integer of 1 or more. When q4 is an integer of 2 or more, the structures in parentheses to which q4 is attached may be the same or different,
q5 represents 0 or an integer of 1 or more. When q5 is an integer of 2 or more, the structures in parentheses to which q5 is attached may be the same or different. ]
 また、本発明は、ポリシロキサン(B)の含有量(配合量)が、ポリシロキサン(A)の全量100重量部に対して、1~200重量部である前記の硬化性樹脂組成物を提供する。 The present invention also provides the curable resin composition, wherein the content (blending amount) of the polysiloxane (B) is 1 to 200 parts by weight with respect to 100 parts by weight of the total amount of the polysiloxane (A). To do.
 また、本発明は、硬化性樹脂組成物(100重量%)におけるポリシロキサン(A)とポリシロキサン(B)の含有量の合計(合計含有量)が、70重量%以上である前記の硬化性樹脂組成物を提供する。 Moreover, this invention is the said sclerosis | hardenability whose sum total (total content) of content of polysiloxane (A) and polysiloxane (B) in curable resin composition (100 weight%) is 70 weight% or more. A resin composition is provided.
 また、本発明は、ポリシロキサン(A)とポリシロキサン(B)の合計含有量(100重量%)に対する、ポリオルガノシロキシシルアルキレン(A2)とポリオルガノシロキシシルアルキレン(B2)の割合(合計割合)が、3重量%以上である前記の硬化性樹脂組成物を提供する。 Further, the present invention relates to the ratio of polyorganosiloxysilalkylene (A2) and polyorganosiloxysilalkylene (B2) to the total content (100% by weight) of polysiloxane (A) and polysiloxane (B) (total ratio). ) Is 3% by weight or more. The curable resin composition is provided.
 また、本発明は、硬化性樹脂組成物における化合物(C)の含有量(配合量)が、ポリシロキサン(A)及びポリシロキサン(B)の総量100重量部に対して、0重量部を超えて20重量部以下である前記の硬化性樹脂組成物を提供する。 In the present invention, the content (blending amount) of the compound (C) in the curable resin composition exceeds 0 part by weight with respect to 100 parts by weight of the total amount of the polysiloxane (A) and the polysiloxane (B). The curable resin composition is 20 parts by weight or less.
 さらに、ヒドロシリル化触媒を含む前記の硬化性樹脂組成物を提供する。 Furthermore, the curable resin composition containing a hydrosilylation catalyst is provided.
 また、本発明は、前記の硬化性樹脂組成物を硬化させて得られる硬化物を提供する。 The present invention also provides a cured product obtained by curing the curable resin composition.
 さらに、封止剤である前記の硬化性樹脂組成物を提供する。 Furthermore, the curable resin composition as a sealing agent is provided.
 また、本発明は、前記の硬化性樹脂組成物を用いて半導体素子を封止して得られる半導体装置を提供する。 The present invention also provides a semiconductor device obtained by sealing a semiconductor element using the curable resin composition.
 さらに、光半導体装置である前記の半導体装置を提供する。 Furthermore, the semiconductor device which is an optical semiconductor device is provided.
 また、本発明は、下記式(1)
Figure JPOXMLDOC01-appb-C000024
[式(1)中、Ra~Rdは、同一又は異なって、下記式(1a)で表される基、下記式(1b)で表される基、又は、下記式(1c)で表される基である。但し、Ra~Rdのうち、少なくとも1つは、式(1b)で表される基及び式(1c)で表される基からなる群より選択される基である。Re及びRfは、同一又は異なって、水素原子又はアルキル基を示す。
Figure JPOXMLDOC01-appb-C000025
[式(1a)~(1c)中、sは、同一又は異なって、0又は1以上の整数を示す。式(1b)中、Rgは、同一又は異なって、水素原子、又は一価の置換若しくは無置換炭化水素基を示す。式(1c)中、Rh及びRiは、同一又は異なって、水素原子、又は一価の置換若しくは無置換炭化水素基を示し、tは0又は1以上の整数を示す。]]
で表されるグリコールウリル誘導体を提供する。
Further, the present invention provides the following formula (1):
Figure JPOXMLDOC01-appb-C000024
[In formula (1), R a to R d are the same or different and are represented by the group represented by the following formula (1a), the group represented by the following formula (1b), or the following formula (1c). Group. However, at least one of R a to R d is a group selected from the group consisting of a group represented by the formula (1b) and a group represented by the formula (1c). R e and R f are the same or different and each represents a hydrogen atom or an alkyl group.
Figure JPOXMLDOC01-appb-C000025
[In the formulas (1a) to (1c), s is the same or different and represents 0 or an integer of 1 or more. In formula (1b), R g is the same or different and represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group. In formula (1c), R h and R i are the same or different and each represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group, and t represents 0 or an integer of 1 or more. ]]
A glycoluril derivative represented by the formula:
 また、本発明は、下記式(1)
Figure JPOXMLDOC01-appb-C000026
[式(1)中、Ra~Rdは、同一又は異なって、下記式(1a)で表される基、下記式(1b)で表される基、又は、下記式(1c)で表される基である。但し、Ra~Rdのうち、少なくとも1つは、式(1b)で表される基及び式(1c)で表される基からなる群より選択される基である。Re及びRfは、同一又は異なって、水素原子又はアルキル基を示す。
Figure JPOXMLDOC01-appb-C000027
[式(1a)~(1c)中、sは、同一又は異なって、0又は1以上の整数を示す。式(1b)中、Rgは、同一又は異なって、水素原子、又は一価の置換若しくは無置換炭化水素基を示す。式(1c)中、Rh及びRiは、同一又は異なって、水素原子、又は一価の置換若しくは無置換炭化水素基を示し、tは0又は1以上の整数を示す。]]
で表されるグリコールウリル誘導体の製造方法であって、
 下記式(i)
Figure JPOXMLDOC01-appb-C000028
[式(i)中、s、Re、及びRfは、前記に同じ。]
で表される化合物と、下記式(ii)
Figure JPOXMLDOC01-appb-C000029
[式(ii)中、Rgは、前記に同じ。]
で表される化合物及び下記式(iii)
Figure JPOXMLDOC01-appb-C000030
[式(iii)中、Rh、Ri、及びtは、前記に同じ。]
で表される化合物からなる群より選択される少なくとも1種の化合物とをヒドロシリル化反応させる工程を含むことを特徴とするグリコールウリル誘導体の製造方法を提供する。
Further, the present invention provides the following formula (1):
Figure JPOXMLDOC01-appb-C000026
[In formula (1), R a to R d are the same or different and are represented by the group represented by the following formula (1a), the group represented by the following formula (1b), or the following formula (1c). Group. However, at least one of R a to R d is a group selected from the group consisting of a group represented by the formula (1b) and a group represented by the formula (1c). R e and R f are the same or different and each represents a hydrogen atom or an alkyl group.
Figure JPOXMLDOC01-appb-C000027
[In the formulas (1a) to (1c), s is the same or different and represents 0 or an integer of 1 or more. In formula (1b), R g is the same or different and represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group. In formula (1c), R h and R i are the same or different and each represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group, and t represents 0 or an integer of 1 or more. ]]
A process for producing a glycoluril derivative represented by:
The following formula (i)
Figure JPOXMLDOC01-appb-C000028
[In the formula (i), s, R e and R f are the same as above. ]
And a compound represented by the following formula (ii)
Figure JPOXMLDOC01-appb-C000029
[In formula (ii), R g is the same as defined above. ]
And a compound represented by the following formula (iii)
Figure JPOXMLDOC01-appb-C000030
[In the formula (iii), R h , R i and t are the same as above. ]
And a method for producing a glycoluril derivative, comprising a step of hydrosilylating at least one compound selected from the group consisting of compounds represented by formula (1):
 本発明の硬化性樹脂組成物は上記構成を有するため、硬化させることによって、耐熱衝撃性、耐リフロー性、及び腐食性ガス(例えば、SOxガス)に対するバリア性の全ての特性に優れた硬化物を形成できる。詳しくは、上記硬化物は、光半導体装置における封止材として使用した場合、このような光半導体装置に対して冷熱サイクル等の熱衝撃やリフロー工程における高温の熱が加えられた場合であっても、封止材にはクラックや剥離が生じにくく、光半導体装置の不点灯といった不具合を生じさせにくい。また、上記硬化物は、特に、腐食性ガス(特に、SOxガス)に対するバリア性に優れているため、光半導体装置の封止材として使用した場合、該装置の電極の腐食を高度に抑制でき、光半導体装置の耐久性を著しく高めることができる。このため、本発明の硬化性樹脂組成物は、光半導体素子(LED素子)の封止剤として特に好ましく使用することができ、本発明の硬化性樹脂組成物(封止剤)により光半導体素子を封止して得られる光半導体装置は、優れた品質と耐久性を備える。 Since the curable resin composition of the present invention has the above-described configuration, the cured product is excellent in all properties of thermal shock resistance, reflow resistance, and barrier property against corrosive gas (for example, SOx gas) by curing. Can be formed. Specifically, when the cured product is used as a sealing material in an optical semiconductor device, thermal shock such as a thermal cycle or high-temperature heat in a reflow process is applied to such an optical semiconductor device. However, the sealing material is unlikely to crack or peel off, and it is difficult to cause problems such as non-lighting of the optical semiconductor device. In addition, since the cured product is particularly excellent in barrier properties against corrosive gas (especially SOx gas), when used as a sealing material for an optical semiconductor device, corrosion of the electrode of the device can be highly suppressed. The durability of the optical semiconductor device can be significantly increased. For this reason, the curable resin composition of the present invention can be particularly preferably used as a sealant for an optical semiconductor element (LED element). The curable resin composition (encapsulant) of the present invention can be used as an optical semiconductor element. The optical semiconductor device obtained by encapsulating has excellent quality and durability.
本発明の硬化性樹脂組成物の硬化物により光半導体素子が封止された光半導体装置の一実施形態を示す概略図である。左側の図(a)は斜視図であり、右側の図(b)は断面図である。It is the schematic which shows one Embodiment of the optical semiconductor device by which the optical semiconductor element was sealed with the hardened | cured material of the curable resin composition of this invention. The left figure (a) is a perspective view, and the right figure (b) is a sectional view.
<硬化性樹脂組成物>
 本発明の硬化性樹脂組成物は、分子内に2個以上のアルケニル基を有するポリオルガノシロキサン(A1)及び分子内に2個以上のアルケニル基を有するポリオルガノシロキシシルアルキレン(A2)からなる群より選択される少なくとも1種であるポリシロキサン(A)と、分子内に2個以上のヒドロシリル基を有するポリオルガノシロキサン(B1)及び分子内に2個以上のヒドロシリル基を有するポリオルガノシロキシシルアルキレン(B2)からなる群より選択される少なくとも1種であるポリシロキサン(B)と、下記式(1)で表されるグリコールウリル誘導体(C)(単に「グリコールウリル誘導体(C)」や「成分(C)」と称する場合がある)とを必須成分として含むことを特徴とする組成物である。本発明の硬化性樹脂組成物は、上述の必須成分以外にも、例えば、後述のヒドロシリル化触媒等のその他の成分を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000031
<Curable resin composition>
The curable resin composition of the present invention comprises a group consisting of a polyorganosiloxane (A1) having two or more alkenyl groups in the molecule and a polyorganosiloxysilalkylene (A2) having two or more alkenyl groups in the molecule. Polysiloxane (A) which is at least one selected from polysiloxane, polyorganosiloxane (B1) having two or more hydrosilyl groups in the molecule, and polyorganosiloxysilalkylene having two or more hydrosilyl groups in the molecule A polysiloxane (B) which is at least one selected from the group consisting of (B2) and a glycoluril derivative (C) represented by the following formula (1) (simply "glycoluril derivative (C)" or "component (C) "may be included) as an essential component. The curable resin composition of the present invention may contain other components such as a hydrosilylation catalyst described later in addition to the above-described essential components.
Figure JPOXMLDOC01-appb-C000031
[ポリシロキサン(A)]
 本発明の硬化性樹脂組成物の必須成分であるポリシロキサン(A)は、上述のように、分子内に2個以上のアルケニル基を有するポリオルガノシロキサン(A1)(単に「ポリオルガノシロキサン(A1)」と称する場合がある)及び分子内に2個以上のアルケニル基を有するポリオルガノシロキシシルアルキレン(A2)(単に「ポリオルガノシロキシシルアルキレン(A2)」と称する場合がある)からなる群より選択される少なくとも1種である。即ち、ポリシロキサン(A)は、アルケニル基を有するポリシロキサンであり、ヒドロシリル基を有する成分(例えば、後述のポリシロキサン(B)等)とヒドロシリル化反応を生じる成分である。
[Polysiloxane (A)]
As described above, the polysiloxane (A), which is an essential component of the curable resin composition of the present invention, is a polyorganosiloxane (A1) having two or more alkenyl groups in the molecule (simply referred to as “polyorganosiloxane (A1). ) ”And polyorganosiloxysilalkylene (A2) having two or more alkenyl groups in the molecule (sometimes simply referred to as“ polyorganosiloxysilalkylene (A2) ”). At least one selected. That is, the polysiloxane (A) is a polysiloxane having an alkenyl group, and a component that causes a hydrosilylation reaction with a component having a hydrosilyl group (for example, polysiloxane (B) described later).
 本明細書におけるポリオルガノシロキシシルアルキレン(A2)とは、分子内に2個以上のアルケニル基を有し、主鎖として-Si-O-Si-(シロキサン結合)に加えて、-Si-RA-Si-(シルアルキレン結合:RAはアルキレン基を示す)を含むポリオルガノシロキサンである。そして、本明細書におけるポリオルガノシロキサン(A1)は、分子内に2個以上のアルケニル基を有し、主鎖として上記シルアルキレン結合を含まないポリオルガノシロキサンである。 The polyorganosiloxysilalkylene (A2) in this specification has two or more alkenyl groups in the molecule, and in addition to —Si—O—Si— (siloxane bond) as a main chain, —Si—R A polyorganosiloxane containing A 2 —Si— (silalkylene bond: R A represents an alkylene group). And polyorganosiloxane (A1) in this specification is a polyorganosiloxane which has two or more alkenyl groups in a molecule | numerator, and does not contain the said silalkylene bond as a principal chain.
1.ポリオルガノシロキサン(A1)
 ポリオルガノシロキサン(A1)としては、直鎖状、一部分岐を有する直鎖状、分岐鎖状、網目状の分子構造を有するものが挙げられる。なお、ポリオルガノシロキサン(A1)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。例えば、分子構造が異なるポリオルガノシロキサン(A1)の2種以上を併用することができ、例えば、直鎖状のポリオルガノシロキサン(A1)と分岐鎖状のポリオルガノシロキサン(A1)とを併用することもできる。
1. Polyorganosiloxane (A1)
Examples of the polyorganosiloxane (A1) include those having a linear, partially branched linear, branched, or network molecular structure. In addition, polyorganosiloxane (A1) can also be used individually by 1 type, and can also be used in combination of 2 or more type. For example, two or more polyorganosiloxanes (A1) having different molecular structures can be used in combination, for example, a linear polyorganosiloxane (A1) and a branched polyorganosiloxane (A1) are used in combination. You can also.
 ポリオルガノシロキサン(A1)が分子内に有するアルケニル基としては、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基等の置換又は無置換アルケニル基が挙げられる。置換基としては、ハロゲン原子、ヒドロキシ基、カルボキシ基等が挙げられる。中でも、ビニル基が好ましい。また、ポリオルガノシロキサン(A1)は、1種のみのアルケニル基を有するものであってもよいし、2種以上のアルケニル基を有するものであってもよい。ポリオルガノシロキサン(A1)が有するアルケニル基は、特に限定されないが、ケイ素原子に結合したものであることが好ましい。 Examples of the alkenyl group that the polyorganosiloxane (A1) has in the molecule include substituted or unsubstituted alkenyl groups such as vinyl group, allyl group, butenyl group, pentenyl group, and hexenyl group. Examples of the substituent include a halogen atom, a hydroxy group, and a carboxy group. Among these, a vinyl group is preferable. The polyorganosiloxane (A1) may have only one alkenyl group or may have two or more alkenyl groups. Although the alkenyl group which polyorganosiloxane (A1) has is not specifically limited, It is preferable that it is a thing couple | bonded with the silicon atom.
 ポリオルガノシロキサン(A1)が有するアルケニル基以外のケイ素原子に結合した基は、特に限定されないが、例えば、水素原子、有機基等が挙げられる。有機基としては、例えば、アルキル基[例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等]、シクロアルキル基[例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロドデシル基等]、アリール基[例えば、フェニル基、トリル基、キシリル基、ナフチル基等]、シクロアルキル-アルキル基[例えば、シクロへキシルメチル基、メチルシクロヘキシル基等]、アラルキル基[例えば、ベンジル基、フェネチル基等]、炭化水素基における1以上の水素原子がハロゲン原子で置換されたハロゲン化炭化水素基[例えば、クロロメチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基等のハロゲン化アルキル基等]等の一価の置換又は無置換炭化水素基等が挙げられる。なお、本明細書において「ケイ素原子に結合した基」とは、通常、ケイ素原子を含まない基を指すものとする。 Although the group couple | bonded with silicon atoms other than the alkenyl group which polyorganosiloxane (A1) has is not specifically limited, For example, a hydrogen atom, an organic group, etc. are mentioned. Examples of the organic group include alkyl groups [eg, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, etc.], cycloalkyl groups [eg, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, etc. , Cyclododecyl group, etc.], aryl group [eg, phenyl group, tolyl group, xylyl group, naphthyl group, etc.], cycloalkyl-alkyl group [eg, cyclohexylmethyl group, methylcyclohexyl group, etc.], aralkyl group [eg, Benzyl group, phenethyl group, etc.], halogenated hydrocarbon groups in which one or more hydrogen atoms in the hydrocarbon group are replaced by halogen atoms [eg, chloromethyl group, 3-chloropropyl group, 3,3,3-trifluoro Monovalent substituted or unsubstituted hydrocarbon groups such as halogenated alkyl groups such as propyl groups] And the like. In the present specification, the “group bonded to a silicon atom” usually means a group not containing a silicon atom.
 また、ケイ素原子に結合した基として、ヒドロキシ基、アルコキシ基を有していてもよい。 In addition, the group bonded to the silicon atom may have a hydroxy group or an alkoxy group.
 ポリオルガノシロキサン(A1)の性状は、特に限定されず、液状であってもよいし、固体状であってもよい。 The properties of the polyorganosiloxane (A1) are not particularly limited, and may be liquid or solid.
 ポリオルガノシロキサン(A1)としては、下記平均単位式:
(R1SiO3/2a1(R1 2SiO2/2a2(R1 3SiO1/2a3(SiO4/2a4(XO1/2a5
で表されるポリオルガノシロキサンが好ましい。上記平均単位式中、R1は、同一又は異なって、一価の置換又は無置換炭化水素基であり、上述の具体例(例えば、アルキル基、アルケニル基、アリール基、アラルキル基、ハロゲン化炭化水素基等)が挙げられる。但し、R1の一部はアルケニル基(特にビニル基)であり、その割合は、分子内に2個以上となる範囲に制御される。例えば、R1の全量(100モル%)に対するアルケニル基の割合は、0.1~40モル%が好ましい。アルケニル基の割合を上記範囲に制御することにより、硬化性樹脂組成物の硬化性がより向上する傾向がある。また、アルケニル基以外のR1としては、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。
As polyorganosiloxane (A1), the following average unit formula:
(R 1 SiO 3/2) a1 ( R 1 2 SiO 2/2) a2 (R 1 3 SiO 1/2) a3 (SiO 4/2) a4 (XO 1/2) a5
The polyorganosiloxane represented by these is preferable. In the above average unit formula, R 1 is the same or different and is a monovalent substituted or unsubstituted hydrocarbon group, and the above specific examples (for example, alkyl group, alkenyl group, aryl group, aralkyl group, halogenated carbonization) Hydrogen group, etc.). However, some of the R 1 is an alkenyl group (especially vinyl), the ratio is controlled to the range of 2 or more in the molecule. For example, the ratio of the alkenyl group to the total amount of R 1 (100 mol%) is preferably 0.1 to 40 mol%. By controlling the ratio of the alkenyl group to the above range, the curability of the curable resin composition tends to be further improved. As R 1 other than the alkenyl group, an alkyl group (particularly a methyl group) and an aryl group (particularly a phenyl group) are preferable.
 上記平均単位式中、Xは、水素原子又はアルキル基である。アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられ、特にメチル基であることが好ましい。 In the above average unit formula, X is a hydrogen atom or an alkyl group. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group, and a methyl group is particularly preferable.
 上記平均単位式中、a1は0又は正数、a2は0又は正数、a3は0又は正数、a4は0又は正数、a5は0又は正数であり、かつ、(a1+a2+a3)は正数である。 In the above average unit formula, a1 is 0 or positive number, a2 is 0 or positive number, a3 is 0 or positive number, a4 is 0 or positive number, a5 is 0 or positive number, and (a1 + a2 + a3) is positive Is a number.
 ポリオルガノシロキサン(A1)の一例としては、例えば、分子内に2個以上のアルケニル基を有する直鎖状ポリオルガノシロキサンが挙げられる。この直鎖状ポリオルガノシロキサンが有するアルケニル基としては、上述の具体例が挙げられるが、中でもビニル基が好ましい。なお、1種のみのアルケニル基を有するものであってもよいし、2種以上のアルケニル基を有するものであってもよい。また、上記直鎖状ポリオルガノシロキサンにおけるアルケニル基以外のケイ素原子に結合した基としては、例えば、上述の一価の置換又は無置換炭化水素基が挙げられるが、中でも、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。 An example of the polyorganosiloxane (A1) is a linear polyorganosiloxane having two or more alkenyl groups in the molecule. Specific examples of the alkenyl group of the linear polyorganosiloxane include the above-described specific examples. Among them, a vinyl group is preferable. In addition, you may have only 1 type of alkenyl group, and you may have 2 or more types of alkenyl groups. In addition, examples of the group bonded to the silicon atom other than the alkenyl group in the linear polyorganosiloxane include the monovalent substituted or unsubstituted hydrocarbon group described above, among which an alkyl group (particularly a methyl group). ) Or an aryl group (particularly a phenyl group).
 上記直鎖状ポリオルガノシロキサンにおける、ケイ素原子に結合した基の全量(100モル%)に対するアルケニル基の割合は、特に限定されないが、0.1~40モル%が好ましい。また、ケイ素原子に結合した基の全量(100モル%)に対するアルキル基(特にメチル基)の割合は、特に限定されないが、1~20モル%が好ましい。さらに、ケイ素原子に結合した基の全量(100モル%)に対するアリール基(特にフェニル基)の割合は、特に限定されないが、30~90モル%が好ましい。特に、上記直鎖状ポリオルガノシロキサンとして、ケイ素原子に結合した基の全量(100モル%)に対するアリール基(特にフェニル基)の割合が40モル%以上(例えば、45~80モル%)であるものを使用することにより、硬化物の腐食性ガスに対するバリア性がより向上する傾向がある。また、ケイ素原子に結合した基の全量(100モル%)に対するアルキル基(特にメチル基)の割合が90モル%以上(例えば、95~99モル%)であるものを使用することにより、硬化物の耐熱衝撃性がより向上する傾向がある。 The ratio of the alkenyl group to the total amount (100 mol%) of groups bonded to silicon atoms in the linear polyorganosiloxane is not particularly limited, but is preferably 0.1 to 40 mol%. Further, the ratio of the alkyl group (especially methyl group) to the total amount (100 mol%) of the groups bonded to the silicon atom is not particularly limited, but is preferably 1 to 20 mol%. Further, the ratio of aryl groups (particularly phenyl groups) to the total amount of groups bonded to silicon atoms (100 mol%) is not particularly limited, but is preferably 30 to 90 mol%. In particular, in the linear polyorganosiloxane, the ratio of aryl groups (particularly phenyl groups) to the total amount (100 mol%) of groups bonded to silicon atoms is 40 mol% or more (for example, 45 to 80 mol%). By using a thing, there exists a tendency for the barrier property with respect to the corrosive gas of hardened | cured material to improve more. Further, by using a material in which the ratio of alkyl groups (particularly methyl groups) to 90 mol% or more (for example, 95 to 99 mol%) relative to the total amount (100 mol%) of groups bonded to silicon atoms is used, There is a tendency that the thermal shock resistance of is improved.
 上記直鎖状ポリオルガノシロキサンは、例えば、下記式(I-1)で表される。
Figure JPOXMLDOC01-appb-C000032
[上記式中、R11は、同一又は異なって、一価の置換又は無置換炭化水素基である。但し、R11の少なくとも2個はアルケニル基である。m1は、5~1000の整数である。]
The linear polyorganosiloxane is represented, for example, by the following formula (I-1).
Figure JPOXMLDOC01-appb-C000032
[In the above formula, R 11 are the same or different and each represents a monovalent substituted or unsubstituted hydrocarbon group. However, at least two of R 11 are alkenyl groups. m1 is an integer of 5 to 1000. ]
 ポリオルガノシロキサン(A1)の他の例としては、分子内に2個以上のアルケニル基を有し、RSiO3/2で表されるシロキサン単位(T単位)を有する分岐鎖状ポリオルガノシロキサンが挙げられる。なお、Rは、一価の置換又は無置換炭化水素基である。この分岐鎖状ポリオルガノシロキサンが有するアルケニル基としては、上述の具体例が挙げられるが、中でもビニル基が好ましい。なお、1種のみのアルケニル基を有するものであってもよいし、2種以上のアルケニル基を有するものであってもよい。また、上記分岐鎖状ポリオルガノシロキサンにおけるアルケニル基以外のケイ素原子に結合した基としては、例えば、上述の一価の置換又は無置換炭化水素基が挙げられるが、中でも、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。さらに、上記T単位中のRとしては、中でも、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。 Another example of the polyorganosiloxane (A1) is a branched polyorganosiloxane having two or more alkenyl groups in the molecule and having a siloxane unit (T unit) represented by RSiO 3/2. It is done. R is a monovalent substituted or unsubstituted hydrocarbon group. Examples of the alkenyl group of the branched polyorganosiloxane include the specific examples described above, and among them, a vinyl group is preferable. In addition, you may have only 1 type of alkenyl group, and you may have 2 or more types of alkenyl groups. Examples of the group bonded to the silicon atom other than the alkenyl group in the branched polyorganosiloxane include the above-mentioned monovalent substituted or unsubstituted hydrocarbon group, and among them, an alkyl group (particularly a methyl group). ) Or an aryl group (particularly a phenyl group). Furthermore, as R in the T unit, an alkyl group (particularly a methyl group) and an aryl group (particularly a phenyl group) are preferable.
 上記分岐鎖状ポリオルガノシロキサンにおける、ケイ素原子に結合した基の全量(100モル%)に対するアルケニル基の割合は、特に限定されないが、硬化性樹脂組成物の硬化性の観点で、0.1~40モル%が好ましい。また、ケイ素原子に結合した基の全量(100モル%)に対するアルキル基(特にメチル基)の割合は、特に限定されないが、10~40モル%が好ましい。さらに、ケイ素原子に結合した基の全量(100モル%)に対するアリール基(特にフェニル基)の割合は、特に限定されないが、5~70モル%が好ましい。特に、上記分岐鎖状ポリオルガノシロキサンとして、ケイ素原子に結合した基の全量(100モル%)に対するアリール基(特にフェニル基)の割合が40モル%以上(例えば、45~60モル%)であるものを使用することにより、硬化物の腐食性ガスに対するバリア性がより向上する傾向がある。また、ケイ素原子に結合した基の全量(100モル%)に対するアルキル基(特にメチル基)の割合が50モル%以上(例えば、60~99モル%)であるものを使用することにより、硬化物の耐熱衝撃性がより向上する傾向がある。 In the branched polyorganosiloxane, the ratio of the alkenyl group to the total amount (100 mol%) of the groups bonded to the silicon atom is not particularly limited, but from the viewpoint of curability of the curable resin composition, 0.1 to 40 mol% is preferred. Further, the ratio of the alkyl group (especially methyl group) to the total amount (100 mol%) of groups bonded to the silicon atom is not particularly limited, but is preferably 10 to 40 mol%. Further, the ratio of aryl groups (particularly phenyl groups) to the total amount (100 mol%) of groups bonded to silicon atoms is not particularly limited, but is preferably 5 to 70 mol%. In particular, in the branched polyorganosiloxane, the ratio of aryl groups (particularly phenyl groups) to the total amount (100 mol%) of groups bonded to silicon atoms is 40 mol% or more (for example, 45 to 60 mol%). By using a thing, there exists a tendency for the barrier property with respect to the corrosive gas of hardened | cured material to improve more. Moreover, a cured product can be obtained by using a compound in which the ratio of alkyl groups (particularly methyl groups) is 50 mol% or more (for example, 60 to 99 mol%) with respect to the total amount (100 mol%) of groups bonded to silicon atoms. There is a tendency that the thermal shock resistance of is improved.
 上記分岐鎖状ポリオルガノシロキサンは、a1が正数である上記平均単位式で表すことができる。この場合、特に限定されないが、a2/a1は0~10の数、a3/a1は0~0.5の数、a4/(a1+a2+a3+a4)は0~0.3の数、a5/(a1+a2+a3+a4)は0~0.4の数であることが好ましい。また、上記分岐鎖状ポリオルガノシロキサンの分子量は特に限定されないが、標準ポリスチレン換算の重量平均分子量が500~10000であることが好ましく、より好ましくは700~3000である。 The branched polyorganosiloxane can be represented by the above average unit formula in which a1 is a positive number. In this case, although not particularly limited, a2 / a1 is a number from 0 to 10, a3 / a1 is a number from 0 to 0.5, a4 / (a1 + a2 + a3 + a4) is a number from 0 to 0.3, and a5 / (a1 + a2 + a3 + a4) is A number of 0 to 0.4 is preferred. The molecular weight of the branched polyorganosiloxane is not particularly limited, but the weight average molecular weight in terms of standard polystyrene is preferably 500 to 10,000, more preferably 700 to 3000.
 上記分岐鎖状ポリオルガノシロキサンとしては、特に、硬化物の腐食性ガスに対するバリア性を著しく向上させることができる点で、下記のラダー型ポリオルガノシルセスキオキサン(a)又は(b)を用いることが好ましい。
・ラダー型ポリオルガノシルセスキオキサン(a):分子内に2個以上のアルケニル基を有し、ゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算の数平均分子量が500~1500、分子量分散度(Mw/Mn)が1.00~1.40であるラダー型ポリオルガノシルセスキオキサン。
・ラダー型ポリオルガノシルセスキオキサン(b):ラダー構造を有するポリオルガノシルセスキオキサンの分子鎖末端の一部又は全部に、式(I-3-1)で表される構成単位(T単位)及び式(I-3-2)で表される構成単位(M単位)を含むポリオルガノシルセスキオキサン残基(「ポリオルガノシルセスキオキサン残基(a)」と称する場合がある)を有するラダー型ポリオルガノシルセスキオキサン。
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
As the branched polyorganosiloxane, the following ladder type polyorganosilsesquioxane (a) or (b) is used, particularly in that the barrier property against the corrosive gas of the cured product can be remarkably improved. It is preferable.
Ladder type polyorganosilsesquioxane (a): having two or more alkenyl groups in the molecule, a number average molecular weight of 500 to 1500 in terms of standard polystyrene by gel permeation chromatography, molecular weight dispersity (Mw / Ladder type polyorganosilsesquioxane having a Mn) of 1.00 to 1.40.
Ladder-type polyorganosilsesquioxane (b): A structural unit (T) represented by the formula (I-3-1) at part or all of the molecular chain ends of a polyorganosilsesquioxane having a ladder structure Unit) and a polyorganosilsesquioxane residue (“polyorganosilsesquioxane residue (a)”) containing a structural unit (M unit) represented by formula (I-3-2) A ladder-type polyorganosilsesquioxane.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
・ラダー型ポリオルガノシルセスキオキサン(a)
 ラダー型ポリオルガノシルセスキオキサン(a)はラダー構造を有するが、このことは、FT-IRスペクトルにおいて1050cm-1付近(例えば、1000~1100cm-1)と1150cm-1付近(例えば、1100cm-1を超え1200cm-1以下)にそれぞれ固有吸収ピークを有する(即ち、1000~1200cm-1に少なくとも2本の吸収ピークを有する)ことから確認される[参考文献:R.H.Raney, M.Itoh, A.Sakakibara and T.Suzuki, Chem. Rev. 95, 1409(1995)]。なお、FT-IRスペクトルは、例えば、下記の装置及び条件により測定することができる。
 測定装置:商品名「FT-720」((株)堀場製作所製)
 測定方法:透過法
 分解能:4cm-1
 測定波数域:400~4000cm-1
 積算回数:16回
・ Ladder type polyorganosilsesquioxane (a)
While ladder-type polyorganosilsesquioxane (a) has a ladder structure, this near 1050 cm -1 in the FT-IR spectrum (e.g., 1000 ~ 1100 cm -1) and 1150cm around -1 (e.g., 1100 cm - 1 to 1200 cm −1 or less), each having an intrinsic absorption peak (that is, having at least two absorption peaks at 1000 to 1200 cm −1 ) [reference: R.R. H. Raney, M.M. Itoh, A.D. Sakakibara and T. Suzuki, Chem. Rev. 95, 1409 (1995)]. The FT-IR spectrum can be measured by, for example, the following apparatus and conditions.
Measuring device: Trade name “FT-720” (manufactured by Horiba, Ltd.)
Measurement method: Transmission method Resolution: 4 cm -1
Measurement wavenumber range: 400-4000cm -1
Integration count: 16 times
 但し、ラダー型ポリオルガノシルセスキオキサン(a)は、ラダー構造に加えて、さらにカゴ構造やランダム構造等のその他のシルセスキオキサン構造を有するものであってもよい。 However, the ladder-type polyorganosilsesquioxane (a) may have other silsesquioxane structures such as a cage structure and a random structure in addition to the ladder structure.
 ラダー型ポリオルガノシルセスキオキサン(a)の、ゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算の数平均分子量(Mn)は500~1500であり、好ましくは550~1450、より好ましくは600~1400である。Mnが500未満であると、例えば、硬化物の物性(耐熱性、ガスバリア性等)が低下する傾向がある。一方、Mnが1500を超えると、室温で固体となりやすく、取り扱い性が低下する傾向がある。また、他の成分との相溶性が悪化する場合もある。 The ladder-type polyorganosilsesquioxane (a) has a number average molecular weight (Mn) in terms of standard polystyrene by gel permeation chromatography of 500 to 1500, preferably 550 to 1450, more preferably 600 to 1400. . When Mn is less than 500, for example, the physical properties (heat resistance, gas barrier properties, etc.) of the cured product tend to be lowered. On the other hand, when Mn exceeds 1500, it tends to be a solid at room temperature, and the handleability tends to decrease. Moreover, compatibility with other components may deteriorate.
 ラダー型ポリオルガノシルセスキオキサン(a)の、ゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算の分子量分散度(Mw/Mn)は1.00~1.40であり、好ましくは1.35以下(例えば、1.05~1.35)、より好ましくは1.30以下(例えば、1.10~1.30)である。分子量分散度が1.40を超えると、例えば、低分子シロキサンが増加し、硬化物の密着性やガスバリア性等が低下する傾向がある。一方、例えば、分子量分散度を1.05以上とすることにより、室温で液体(液状)となりやすく、取り扱い性が向上する場合がある。 The ladder type polyorganosilsesquioxane (a) has a molecular weight dispersity (Mw / Mn) in terms of standard polystyrene by gel permeation chromatography of 1.00 to 1.40, preferably 1.35 or less (for example, 1.05 to 1.35), more preferably 1.30 or less (for example, 1.10 to 1.30). When the molecular weight dispersity exceeds 1.40, for example, low-molecular siloxane increases, and the adhesiveness and gas barrier properties of the cured product tend to decrease. On the other hand, for example, by setting the molecular weight dispersity to 1.05 or more, it tends to be liquid at room temperature, and the handleability may be improved.
 なお、ラダー型ポリオルガノシルセスキオキサン(a)の数平均分子量、分子量分散度は、下記の装置及び条件により測定することができる。
 測定装置:商品名「LC-20AD」((株)島津製作所製)
 カラム:Shodex KF-801×2本、KF-802、及びKF-803(昭和電工(株)製)
 測定温度:40℃
 溶離液:THF、試料濃度0.1~0.2重量%
 流量:1mL/分
 検出器:UV-VIS検出器(商品名「SPD-20A」、(株)島津製作所製)
 分子量:標準ポリスチレン換算
In addition, the number average molecular weight and molecular weight dispersion degree of ladder type polyorgano silsesquioxane (a) can be measured with the following apparatus and conditions.
Measuring device: Product name “LC-20AD” (manufactured by Shimadzu Corporation)
Column: Shodex KF-801 × 2, KF-802, and KF-803 (manufactured by Showa Denko KK)
Measurement temperature: 40 ° C
Eluent: THF, sample concentration 0.1-0.2% by weight
Flow rate: 1 mL / min Detector: UV-VIS detector (trade name “SPD-20A”, manufactured by Shimadzu Corporation)
Molecular weight: Standard polystyrene conversion
 ラダー型ポリオルガノシルセスキオキサン(a)の窒素雰囲気下における5%重量減少温度(Td5)は、特に限定されないが、150℃以上が好ましく、より好ましくは240℃以上、さらに好ましくは260~500℃、特に好ましくは262℃以上、最も好ましくは265℃以上である。5%重量減少温度が150℃未満(特に、240℃未満)であると、用途によっては要求される耐熱性を満たすことができない場合がある。なお、5%重量減少温度は、一定の昇温速度で加熱した時に加熱前の重量の5%が減少した時点での温度であり、耐熱性の指標となる。上記5%重量減少温度は、TGA(熱重量分析)により、窒素雰囲気下、昇温速度20℃/分の条件で測定することができる。 The 5% weight loss temperature (T d5 ) of the ladder-type polyorganosilsesquioxane (a) in a nitrogen atmosphere is not particularly limited, but is preferably 150 ° C. or higher, more preferably 240 ° C. or higher, and still more preferably 260 to 500 ° C., particularly preferably 262 ° C. or higher, most preferably 265 ° C. or higher. If the 5% weight loss temperature is less than 150 ° C. (particularly less than 240 ° C.), the required heat resistance may not be satisfied depending on the application. The 5% weight reduction temperature is a temperature at the time when 5% of the weight before heating is reduced when heated at a constant rate of temperature increase, and serves as an index of heat resistance. The 5% weight loss temperature can be measured by TGA (thermogravimetric analysis) under a nitrogen atmosphere under a temperature increase rate of 20 ° C./min.
 ラダー型ポリオルガノシルセスキオキサン(a)は、特に限定されないが、室温(25℃)で液体であることが好ましい。具体的には、その25℃における粘度は、特に限定されないが、30000Pa・s以下(例えば、1~30000Pa・s)が好ましく、より好ましくは25000Pa・s以下、さらに好ましくは10000Pa・s以下である。上記粘度は、粘度計(商品名「MCR301」、アントンパール社製)を用いて、振り角5%、周波数0.1~100(1/s)、温度:25℃の条件で測定することができる。 The ladder-type polyorganosilsesquioxane (a) is not particularly limited, but is preferably liquid at room temperature (25 ° C.). Specifically, the viscosity at 25 ° C. is not particularly limited, but is preferably 30000 Pa · s or less (eg, 1 to 30000 Pa · s), more preferably 25000 Pa · s or less, and further preferably 10000 Pa · s or less. . The viscosity can be measured using a viscometer (trade name “MCR301”, manufactured by Anton Paar) under the conditions of a swing angle of 5%, a frequency of 0.1 to 100 (1 / s), and a temperature of 25 ° C. it can.
 ラダー型ポリオルガノシルセスキオキサン(a)としては、例えば、下記式(I-2)で表され、かつ分子内に2個以上のアルケニル基を有し、ゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算の数平均分子量(Mn)が500~1500、分子量分散度(Mw/Mn)が1.00~1.40であるラダー型ポリオルガノシルセスキオキサンが挙げられる。
Figure JPOXMLDOC01-appb-C000035
The ladder-type polyorganosilsesquioxane (a) is, for example, represented by the following formula (I-2), having two or more alkenyl groups in the molecule, and converted to standard polystyrene by gel permeation chromatography And ladder type polyorganosilsesquioxane having a number average molecular weight (Mn) of 500 to 1500 and a molecular weight dispersity (Mw / Mn) of 1.00 to 1.40.
Figure JPOXMLDOC01-appb-C000035
 上記式(I-2)中、R12は、同一又は異なって、水素原子、又は、一価の置換若しくは無置換炭化水素基である。R12の具体例としては、上述の一価の置換又は無置換炭化水素基(アルケニル基も含まれる)が挙げられる。 In the above formula (I-2), R 12 are the same or different and each represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group. Specific examples of R 12 include the above-mentioned monovalent substituted or unsubstituted hydrocarbon groups (including alkenyl groups).
 ラダー型ポリオルガノシルセスキオキサン(a)は、R12としてアルケニル基を有していてもよいし、有していなくてもよい。ラダー型ポリオルガノシルセスキオキサン(a)は、上記式(I-2)中のアルケニル基以外のR12として、アルキル基及びアリール基からなる群より選択された少なくとも1種の基を有することが好ましく、フェニル基及びメチル基からなる群より選択された少なくとも1種の基を有することがより好ましい。 The ladder type polyorganosilsesquioxane (a) may or may not have an alkenyl group as R 12 . The ladder type polyorganosilsesquioxane (a) has at least one group selected from the group consisting of an alkyl group and an aryl group as R 12 other than the alkenyl group in the formula (I-2). It is more preferable to have at least one group selected from the group consisting of a phenyl group and a methyl group.
 ラダー型ポリオルガノシルセスキオキサン(a)の上記式(I-2)におけるR12の全量(100重量%)中の、フェニル基、ビニル基、及びメチル基の割合(合計含有量)は、特に限定されないが、50~100重量%が好ましく、より好ましくは70~100重量%、さらに好ましくは80~100重量%である。 The ratio (total content) of phenyl groups, vinyl groups, and methyl groups in the total amount (100% by weight) of R 12 in the above formula (I-2) of the ladder type polyorganosilsesquioxane (a) is as follows: Although not particularly limited, it is preferably 50 to 100% by weight, more preferably 70 to 100% by weight, and still more preferably 80 to 100% by weight.
 ラダー型ポリオルガノシルセスキオキサン(a)の上記式(I-2)におけるR12の全量(100重量%)中の、フェニル基の割合(含有量)は、特に限定されないが、0~100重量%が好ましく、より好ましくは1~100重量%、さらに好ましくは5~100重量%である。ラダー型ポリオルガノシルセスキオキサン(a)の上記式(I-2)におけるR12の全量(100重量%)中の、ビニル基の割合(含有量)は、特に限定されないが、0~100重量%が好ましく、より好ましくは1~100重量%、さらに好ましくは5~90重量%、特に好ましくは10~80重量%である。ラダー型ポリオルガノシルセスキオキサン(a)の上記式(I-2)におけるR12の全量(100重量%)中の、メチル基の割合(含有量)は、特に限定されないが、0~100重量%が好ましく、より好ましくは1~100重量%、さらに好ましくは5~100重量%である。 The ratio (content) of the phenyl group in the total amount (100% by weight) of R 12 in the above formula (I-2) of the ladder-type polyorganosilsesquioxane (a) is not particularly limited, but is 0 to 100 % By weight is preferable, more preferably 1 to 100% by weight, still more preferably 5 to 100% by weight. The ratio (content) of the vinyl group in the total amount (100 wt%) of R 12 in the above formula (I-2) of the ladder type polyorganosilsesquioxane (a) is not particularly limited, but is 0 to 100 % By weight is preferable, more preferably 1 to 100% by weight, still more preferably 5 to 90% by weight, and particularly preferably 10 to 80% by weight. The ratio (content) of the methyl group in the total amount (100 wt%) of R 12 in the above formula (I-2) of the ladder type polyorganosilsesquioxane (a) is not particularly limited, but is 0 to 100 % By weight is preferable, more preferably 1 to 100% by weight, still more preferably 5 to 100% by weight.
 なお、ラダー型ポリオルガノシルセスキオキサン(a)の上記式(I-2)におけるR12の組成(例えば、フェニル基、ビニル基、メチル基の割合等)は、例えば、NMRスペクトル(例えば、1H-NMRスペクトル)測定等により算出することができる。 The composition of R 12 in the above formula (I-2) of the ladder-type polyorganosilsesquioxane (a) (for example, the ratio of phenyl group, vinyl group, methyl group, etc.) is, for example, an NMR spectrum (for example, 1 H-NMR spectrum) and the like.
 上記式(I-2)中、R13は、同一又は異なって、水素原子、アルキル基、下記式(I-2-1)で表される一価の基、下記式(I-2-2)で表される一価の基、又は、下記式(I-2-3)で表される一価の基を示す。
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
In the above formula (I-2), R 13 is the same or different and is a hydrogen atom, an alkyl group, a monovalent group represented by the following formula (I-2-1), the following formula (I-2-2) ) Or a monovalent group represented by the following formula (I-2-3).
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
 上記式(I-2-1)中、R14は、同一又は異なって、水素原子、又は、一価の置換若しくは無置換炭化水素基である。R14の具体例としては、上述の一価の置換又は無置換炭化水素基(アルケニル基も含まれる)が挙げられ、中でもアルキル基が好ましい。また、上記式(I-2-1)中、R15は、同一又は異なって、一価の置換又は無置換の炭化水素基である。R15の具体例としては、上述の一価の置換又は無置換炭化水素基(アルケニル基も含まれる)が挙げられ、中でもアルキル基が好ましい。上記式(I-2-1)中、n1は、0以上の整数を示す。n1としては、0~5が好ましく、より好ましくは0~3、さらに好ましくは0である。 In the above formula (I-2-1), R 14 s are the same or different and each represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group. Specific examples of R 14 include the above-mentioned monovalent substituted or unsubstituted hydrocarbon groups (including alkenyl groups), and among them, alkyl groups are preferable. In the above formula (I-2-1), R 15 are the same or different and each represents a monovalent substituted or unsubstituted hydrocarbon group. Specific examples of R 15 are the aforementioned monovalent substituted or unsubstituted hydrocarbon group (alkenyl group include). Among them, alkyl groups are preferred. In the above formula (I-2-1), n1 represents an integer of 0 or more. n1 is preferably 0 to 5, more preferably 0 to 3, and still more preferably 0.
 上記式(I-2-2)中、R14は、式(I-2-1)におけるR14と同じく、同一又は異なって、水素原子、又は、一価の置換若しくは無置換炭化水素基である。R14としては、中でもアルキル基が好ましい。また、上記式(I-2-2)中、R15は、式(I-2-1)におけるR15と同じく、同一又は異なって、一価の置換又は無置換の炭化水素基である。R15としては、中でもアルキル基が好ましい。上記式(I-2-2)中、R16は、アルケニル基であり、中でもビニル基が好ましい。また、上記式(I-2-2)中、n2は、0以上の整数を示す。n2としては、0~5が好ましく、より好ましくは0~3、さらに好ましくは0である。 In the formula (I-2-2), R 14 is, like the R 14 in the formula (I-2-1), the same or different and each represents a hydrogen atom, or, a monovalent substituted or unsubstituted hydrocarbon group is there. R 14 is particularly preferably an alkyl group. Further, the above formula (I-2-2) in, R 15 is, like the R 15 in the formula (I-2-1), the same or different, is a monovalent substituted or unsubstituted hydrocarbon group. R 15 is particularly preferably an alkyl group. In the above formula (I-2-2), R 16 is an alkenyl group, and among them, a vinyl group is preferable. In the above formula (I-2-2), n2 represents an integer of 0 or more. n2 is preferably 0 to 5, more preferably 0 to 3, and still more preferably 0.
 上記式(I-2-3)中、R14は、式(I-2-1)におけるR14と同じく、同一又は異なって、水素原子、又は、一価の置換若しくは無置換炭化水素基である。R14としては、中でもアルキル基が好ましい。また、上記式(I-2-3)中、R17は、同一又は異なって、一価の飽和脂肪族炭化水素基であり、例えば、アルキル基、シクロアルキル基等が挙げられるが、中でもアルキル基(特にメチル基)が好ましい。上記式(I-2-3)中、n3は、0以上の整数を示す。n3としては、0~5が好ましく、より好ましくは0~3、さらに好ましくは0である。 In the formula (I-2-3), R 14 is, like the R 14 in the formula (I-2-1), the same or different and each represents a hydrogen atom, or, a monovalent substituted or unsubstituted hydrocarbon group is there. R 14 is particularly preferably an alkyl group. In the formula (I-2-3), R 17 is the same or different and is a monovalent saturated aliphatic hydrocarbon group, and examples thereof include an alkyl group and a cycloalkyl group. Groups (especially methyl groups) are preferred. In the above formula (I-2-3), n3 represents an integer of 0 or more. n3 is preferably 0 to 5, more preferably 0 to 3, and still more preferably 0.
 上記式(I-2)中、nは0以上の整数を示す。上記nは、通常、0以上の偶数(例えば、2以上の偶数)である。上記nは、ラダー型ポリオルガノシルセスキオキサン(a)の数平均分子量が500~1500、分子量分散度が1.00~1.40に制御される限り、特に限定されない。ラダー型ポリオルガノシルセスキオキサン(a)の分子量分散度が1.00を超える場合、該ラダー型ポリオルガノシルセスキオキサン(a)は、一般に、式(I-2)で表されるポリオルガノシルセスキオキサンであってnが異なる2種以上の混合物である。特に、ラダー型ポリオルガノシルセスキオキサン(a)は、nが1以上(特に2以上)の成分を必須成分として含有することが好ましい。 In the above formula (I-2), n represents an integer of 0 or more. The n is usually an even number of 0 or more (for example, an even number of 2 or more). The n is not particularly limited as long as the number average molecular weight of the ladder type polyorganosilsesquioxane (a) is controlled to 500 to 1500 and the molecular weight dispersity is controlled to 1.00 to 1.40. When the molecular weight dispersity of the ladder-type polyorganosilsesquioxane (a) exceeds 1.00, the ladder-type polyorganosilsesquioxane (a) is generally represented by the formula (I-2) A mixture of two or more organosilsesquioxanes with different n. In particular, the ladder-type polyorganosilsesquioxane (a) preferably contains a component having n of 1 or more (particularly 2 or more) as an essential component.
 ラダー型ポリオルガノシルセスキオキサン(a)は、分子内に2個以上のアルケニル基を有する。ラダー型ポリオルガノシルセスキオキサン(a)が有するアルケニル基としては、特にビニル基が好ましい。ラダー型ポリオルガノシルセスキオキサン(a)が式(I-2)で表される場合、例えば、式(I-2)におけるR12のいずれかがアルケニル基であるもの、R14及びR15のいずれかがアルケニル基である式(I-2-1)で表される一価の基を有するもの、式(I-2-2)で表される一価の基を有するもの、R14のいずれかがアルケニル基である式(I-2-3)で表される一価の基を有するもの等が挙げられる。 The ladder type polyorganosilsesquioxane (a) has two or more alkenyl groups in the molecule. As the alkenyl group of the ladder type polyorganosilsesquioxane (a), a vinyl group is particularly preferable. When the ladder type polyorganosilsesquioxane (a) is represented by the formula (I-2), for example, one in which any one of R 12 in the formula (I-2) is an alkenyl group, R 14 and R 15 Having a monovalent group represented by the formula (I-2-1) in which any one of them is an alkenyl group, having a monovalent group represented by the formula (I-2-2), R 14 And those having a monovalent group represented by the formula (I-2-3) in which any one of them is an alkenyl group.
 ラダー型ポリオルガノシルセスキオキサン(a)は、周知慣用の方法により製造でき、特に限定されないが、例えば、特開平4-28722号公報、特開2010-518182号公報、特開平5-39357号公報、特開2004-99872号公報、国際公開第1997/007156号、特開平11-246662号公報、特開平9-20826号公報、国際公開第2006/033147号、特開2005-239829号公報、国際公開第2013/176238号等の文献に開示された方法等により製造できる。 The ladder-type polyorganosilsesquioxane (a) can be produced by a known and commonly used method, and is not particularly limited. For example, JP-A-4-28722, JP-A-2010-518182, and JP-A-5-39357. Gazette, JP-A No. 2004-99872, WO 1997/007156, JP-A No. 11-246661, JP-A No. 9-20826, WO 2006/033147, JP-A No. 2005-239829, It can be produced by a method disclosed in a document such as International Publication No. 2013/176238.
・ラダー型ポリオルガノシルセスキオキサン(b)
 ラダー型ポリオルガノシルセスキオキサン(b)におけるラダー構造を有するポリオルガノシルセスキオキサンは、例えば、下記式(I-3)で表される。
Figure JPOXMLDOC01-appb-C000039
・ Ladder type polyorganosilsesquioxane (b)
The polyorganosilsesquioxane having a ladder structure in the ladder-type polyorganosilsesquioxane (b) is represented, for example, by the following formula (I-3).
Figure JPOXMLDOC01-appb-C000039
 上記式(I-3)において、pは1以上の整数(例えば、1~5000)を示し、好ましくは1~2000の整数、さらに好ましくは1~1000の整数である。式(I-3)中のR18は、同一又は異なって、水素原子、又は、一価の置換若しくは無置換炭化水素基である。Tは末端基を示す。 In the above formula (I-3), p represents an integer of 1 or more (for example, 1 to 5000), preferably an integer of 1 to 2000, and more preferably an integer of 1 to 1000. R 18 in the formula (I-3), the same or different and each represents a hydrogen atom, or a substituted or unsubstituted monovalent hydrocarbon group. T represents a terminal group.
 ラダー型ポリオルガノシルセスキオキサン(b)における上記ポリオルガノシルセスキオキサン中のケイ素原子に直接結合した基(例えば、式(I-3)におけるR18)は、特に限定されないが、上記基の全量(100モル%)に対する一価の置換若しくは無置換炭化水素基の占める割合が50モル%以上であることが好ましく、より好ましくは80モル%以上、さらに好ましくは90モル%以上である。特に、上記基の全量(100モル%)に対する、置換又は無置換のC1-10アルキル基(特に、メチル基、エチル基等のC1-4アルキル基)、置換又は無置換のC6-10アリール基(特に、フェニル基)、置換又は無置換のC7-10アラルキル基(特に、ベンジル基)の合計量が、50モル%以上であることが好ましく、より好ましくは80モル%以上、さらに好ましくは90モル%以上である。 The group directly bonded to the silicon atom in the polyorganosilsesquioxane (for example, R 18 in formula (I-3)) in the ladder-type polyorganosilsesquioxane (b) is not particularly limited, but the group The ratio of monovalent substituted or unsubstituted hydrocarbon groups to the total amount (100 mol%) is preferably 50 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more. In particular, a substituted or unsubstituted C 1-10 alkyl group (especially a C 1-4 alkyl group such as a methyl group or an ethyl group), a substituted or unsubstituted C 6- The total amount of 10 aryl groups (particularly phenyl groups) and substituted or unsubstituted C 7-10 aralkyl groups (particularly benzyl groups) is preferably 50 mol% or more, more preferably 80 mol% or more, More preferably, it is 90 mol% or more.
 ラダー型ポリオルガノシルセスキオキサン(b)は、上記ラダー構造を有するポリオルガノシルセスキオキサンの分子鎖末端の一部又は全部に、ポリオルガノシルセスキオキサン残基(a)を有する。上記ポリオルガノシルセスキオキサンが上記式(I-3)で表される場合、ラダー型ポリオルガノシルセスキオキサン(b)は、式(I-3)中のTの一部又は全部が上記ポリオルガノシルセスキオキサン残基(a)で置換されたものである。 The ladder-type polyorganosilsesquioxane (b) has a polyorganosilsesquioxane residue (a) at part or all of the molecular chain terminals of the polyorganosilsesquioxane having the ladder structure. When the polyorganosilsesquioxane is represented by the above formula (I-3), the ladder-type polyorganosilsesquioxane (b) has a part or all of T in the formula (I-3) It is substituted with a polyorganosilsesquioxane residue (a).
 上記ポリオルガノシルセスキオキサン残基(a)は、上述のように、式(I-3-1)で表される構成単位及び式(I-3-2)で表される構成単位を少なくとも含む残基である。 As described above, the polyorganosilsesquioxane residue (a) includes at least a structural unit represented by the formula (I-3-1) and a structural unit represented by the formula (I-3-2). It is a residue to contain.
 上記式(I-3-1)におけるR19は、アルケニル基を示す。上記アルケニル基としては、上述の具体例が挙げられ、中でも、C2-10アルケニル基が好ましく、より好ましくはC2-4アルケニル基、さらに好ましくはビニル基である。 R 19 in the above formula (I-3-1) represents an alkenyl group. Examples of the alkenyl group include the specific examples described above. Among them, a C 2-10 alkenyl group is preferable, a C 2-4 alkenyl group is more preferable, and a vinyl group is more preferable.
 上記式(I-3-2)中のR20は、同一又は異なって、一価の置換若しくは無置換炭化水素基を示す。上記置換又は無置換の炭化水素基としては、上述の一価の置換又は無置換炭化水素基(アルケニル基も含まれる)等が挙げられる。R20としては、中でもアルキル基が好ましく、より好ましくはC1-20アルキル基、さらに好ましくはC1-10アルキル基、特に好ましくはC1-4アルキル基、最も好ましくはメチル基である。特に、式(I-3-2)中のR20がいずれもメチル基であることが好ましい。 R 20 in the above formula (I-3-2) is the same or different and represents a monovalent substituted or unsubstituted hydrocarbon group. As said substituted or unsubstituted hydrocarbon group, the above-mentioned monovalent substituted or unsubstituted hydrocarbon group (an alkenyl group is also included) etc. are mentioned. The R 20, among them an alkyl group, more preferably C 1-20 alkyl group, more preferably a C 1-10 alkyl group, particularly preferably a C 1-4 alkyl group, and most preferably a methyl group. In particular, it is preferable that all of R 20 in the formula (I-3-2) are a methyl group.
 上記ポリオルガノシルセスキオキサン残基(a)は、上記式(I-3-1)で表される構成単位と上記式(I-3-2)で表される構成単位以外にも、例えば、下記式(I-3-1')で表される構成単位を有していてもよい。
Figure JPOXMLDOC01-appb-C000040
In addition to the structural unit represented by the above formula (I-3-1) and the structural unit represented by the above formula (I-3-2), the polyorganosilsesquioxane residue (a) is, for example, And a structural unit represented by the following formula (I-3-1 ′).
Figure JPOXMLDOC01-appb-C000040
 上記式(I-3-1')中のR19'は、アルケニル基を除く一価の基を示す。具体的には、例えば、水素原子、ハロゲン原子、アルケニル基を除く一価の有機基、一価の酸素原子含有基、一価の窒素原子含有基、又は一価の硫黄原子含有基等が挙げられる。 'R 19 in the formula (I-3-1)' represents a monovalent group excluding alkenyl groups. Specifically, for example, a monovalent organic group excluding a hydrogen atom, a halogen atom, and an alkenyl group, a monovalent oxygen atom-containing group, a monovalent nitrogen atom-containing group, or a monovalent sulfur atom-containing group can be mentioned. It is done.
 上記ポリオルガノシルセスキオキサン残基(a)における式(I-3-1)に表された3つの酸素原子が結合したケイ素原子の量は、特に限定されないが、ポリオルガノシルセスキオキサン残基(a)を構成するケイ素原子の全量(100モル%)に対して、20~80モル%が好ましく、より好ましくは25~60モル%である。含有量が20モル%未満であると、ラダー型ポリオルガノシルセスキオキサン(b)が有するアルケニル基の量が不十分となって、硬化物の硬度が十分得られない場合がある。一方、含有量が80モル%を超えると、ラダー型ポリオルガノシルセスキオキサン(b)中にシラノール基や加水分解性シリル基が多く残存するため、ラダー型ポリオルガノシルセスキオキサン(b)が液状で得られない場合がある。さらに生成物中で縮合反応が進行して分子量が変化するため、保存安定性が悪化する場合がある。 The amount of silicon atoms bonded to the three oxygen atoms represented by the formula (I-3-1) in the polyorganosilsesquioxane residue (a) is not particularly limited, but the polyorganosilsesquioxane residue is not limited. The amount is preferably 20 to 80 mol%, more preferably 25 to 60 mol%, based on the total amount (100 mol%) of the silicon atoms constituting the group (a). If the content is less than 20 mol%, the amount of alkenyl groups contained in the ladder-type polyorganosilsesquioxane (b) becomes insufficient, and the hardness of the cured product may not be sufficiently obtained. On the other hand, when the content exceeds 80 mol%, since many silanol groups and hydrolyzable silyl groups remain in the ladder type polyorganosilsesquioxane (b), the ladder type polyorganosilsesquioxane (b). May not be obtained in liquid form. Furthermore, since the condensation reaction proceeds in the product and the molecular weight changes, the storage stability may deteriorate.
 上記ポリオルガノシルセスキオキサン残基(a)における式(I-3-2)に表された1つの酸素原子が結合したケイ素原子の量は、特に限定されないが、ポリオルガノシルセスキオキサン残基(a)を構成するケイ素原子の全量(100モル%)に対して、20~85モル%が好ましく、より好ましくは30~75モル%である。含有量が20モル%未満であると、ラダー型ポリオルガノシルセスキオキサン(b)中にシラノール基や加水分解性シリル基が残存しやすく、ラダー型ポリオルガノシルセスキオキサン(b)が液状で得られない場合がある。さらに生成物中で縮合反応が進行して分子量が変化するため、保存安定性が悪化する場合がある。一方、含有量が85モル%を超えると、ラダー型ポリオルガノシルセスキオキサン(b)が有するアルケニル基の量が不十分となって、硬化物の硬度が十分得られない場合がある。 The amount of silicon atoms bonded to one oxygen atom represented by formula (I-3-2) in the polyorganosilsesquioxane residue (a) is not particularly limited, but the polyorganosilsesquioxane residue is not limited. The amount is preferably 20 to 85 mol%, more preferably 30 to 75 mol%, based on the total amount (100 mol%) of the silicon atoms constituting the group (a). When the content is less than 20 mol%, silanol groups and hydrolyzable silyl groups tend to remain in the ladder-type polyorganosilsesquioxane (b), and the ladder-type polyorganosilsesquioxane (b) is liquid. May not be available. Furthermore, since the condensation reaction proceeds in the product and the molecular weight changes, the storage stability may deteriorate. On the other hand, if the content exceeds 85 mol%, the amount of alkenyl groups contained in the ladder type polyorganosilsesquioxane (b) becomes insufficient, and the hardness of the cured product may not be sufficiently obtained.
 上記ポリオルガノシルセスキオキサン残基(a)が有するSi-O-Si構造(骨格)としては、特に限定されず、例えば、ラダー構造、カゴ構造、ランダム構造等が挙げられる。 The Si—O—Si structure (skeleton) of the polyorganosilsesquioxane residue (a) is not particularly limited, and examples thereof include a ladder structure, a cage structure, and a random structure.
 ラダー型ポリオルガノシルセスキオキサン(b)は、例えば、下記式(I-3')で表すことができる。式(I-3')中のp、R18としては、上記式(I-3)と同様のものが例示される。式(I-3')中のAは、ポリオルガノシルセスキオキサン残基(a)、又は、ヒドロキシ基、ハロゲン原子、アルコキシ基、若しくはアシルオキシ基を示し、Aの一部又は全部はポリオルガノシルセスキオキサン残基(a)である。4つのAは、それぞれ同一であってもよいし、異なっていてもよい。なお、式(I-3')中の複数(2~4個)のAがポリオルガノシルセスキオキサン残基(a)である場合、それぞれのAは互いに1以上のSi-O-Si結合を介して結合していてもよい。
Figure JPOXMLDOC01-appb-C000041
The ladder type polyorganosilsesquioxane (b) can be represented by, for example, the following formula (I-3 ′). Examples of p and R 18 in the formula (I-3 ′) are the same as those in the above formula (I-3). A in the formula (I-3 ′) represents a polyorganosilsesquioxane residue (a), or a hydroxy group, a halogen atom, an alkoxy group, or an acyloxy group, and a part or all of A is a polyorgano It is a silsesquioxane residue (a). The four A's may be the same or different. When a plurality (2 to 4) of A in the formula (I-3 ′) are polyorganosilsesquioxane residues (a), each A is one or more Si—O—Si bonds. It may be connected via.
Figure JPOXMLDOC01-appb-C000041
 ラダー型ポリオルガノシルセスキオキサン(b)における、分子内のアルケニル基の数は2個以上であればよく、特に限定されないが、2~50個が好ましく、より好ましくは2~30個である。上述の範囲でアルケニル基を有することにより、耐熱性等の各種物性、耐クラック性、腐食性ガスに対するバリア性に優れた硬化物が得られやすい傾向がある。なお、アルケニル基の数は、例えば、1H-NMRスペクトル測定等により算出できる。 In the ladder type polyorganosilsesquioxane (b), the number of alkenyl groups in the molecule may be two or more, and is not particularly limited, but is preferably 2 to 50, more preferably 2 to 30. . By having an alkenyl group within the above-mentioned range, there is a tendency that a cured product excellent in various physical properties such as heat resistance, crack resistance, and barrier properties against corrosive gas tends to be obtained. The number of alkenyl groups can be calculated by, for example, 1 H-NMR spectrum measurement.
 ラダー型ポリオルガノシルセスキオキサン(b)中のアルケニル基の含有量は、特に限定されないが、0.7~5.5mmol/gが好ましく、より好ましくは1.1~4.4mmol/gである。また、ラダー型ポリオルガノシルセスキオキサン(b)に含まれるアルケニル基の割合(重量基準)は、特に限定されないが、ビニル基換算で、2.0~15.0重量%が好ましく、より好ましくは3.0~12.0重量%である。 The content of the alkenyl group in the ladder-type polyorganosilsesquioxane (b) is not particularly limited, but is preferably 0.7 to 5.5 mmol / g, more preferably 1.1 to 4.4 mmol / g. is there. Further, the ratio (weight basis) of the alkenyl group contained in the ladder type polyorganosilsesquioxane (b) is not particularly limited, but is preferably 2.0 to 15.0% by weight in terms of vinyl group, more preferably. Is 3.0 to 12.0% by weight.
 ラダー型ポリオルガノシルセスキオキサン(b)の重量平均分子量(Mw)は、特に限定されないが、100~80万が好ましく、より好ましくは200~10万、さらに好ましくは300~1万、特に好ましくは500~8000、最も好ましくは1700~7000である。Mwが100未満であると、硬化物の耐熱性が低下する場合がある。一方、Mwが80万を超えると、他の成分との相溶性が低下する場合がある。なお、上記Mwは、例えば、ゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算の分子量より算出することができる。 The weight average molecular weight (Mw) of the ladder type polyorganosilsesquioxane (b) is not particularly limited, but is preferably from 100 to 800,000, more preferably from 200 to 100,000, still more preferably from 300 to 10,000, particularly preferably. Is from 500 to 8000, most preferably from 1700 to 7000. If the Mw is less than 100, the heat resistance of the cured product may decrease. On the other hand, if Mw exceeds 800,000, the compatibility with other components may decrease. The Mw can be calculated from the molecular weight in terms of standard polystyrene by gel permeation chromatography, for example.
 ラダー型ポリオルガノシルセスキオキサン(b)の数平均分子量(Mn)は、特に限定されないが、80~80万が好ましく、より好ましくは150~10万、さらに好ましくは250~1万、特に好ましくは400~8000、最も好ましくは1500~7000である。Mnが80未満であると、硬化物の耐熱性が低下する場合がある。一方、Mnが80万を超えると、他の成分との相溶性が低下する場合がある。なお、上記Mnは、例えば、ゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算の分子量より算出することができる。 The number average molecular weight (Mn) of the ladder type polyorganosilsesquioxane (b) is not particularly limited, but is preferably from 800 to 800,000, more preferably from 150 to 100,000, still more preferably from 250 to 10,000, particularly preferably. Is from 400 to 8000, most preferably from 1500 to 7000. When Mn is less than 80, the heat resistance of the cured product may be lowered. On the other hand, if Mn exceeds 800,000, the compatibility with other components may decrease. The Mn can be calculated from, for example, a molecular weight in terms of standard polystyrene by gel permeation chromatography.
 ラダー型ポリオルガノシルセスキオキサン(b)は、常温(約25℃)で液体であることが好ましい。より具体的には、その23℃における粘度は、100~100000mPa・sが好ましく、より好ましくは500~10000mPa・s、さらに好ましくは1000~8000mPa・sである。粘度が100mPa・s未満であると、硬化物の耐熱性が低下する場合がある。一方、粘度が100000mPa・sを超えると、硬化性樹脂組成物の調製や取り扱いが困難となる場合がある。なお、23℃における粘度は、例えば、レオーメーター(商品名「Physica UDS-200」、Anton Paar社製)とコーンプレート(円錐直径:16mm、テーパ角度=0°)を用いて、温度:23℃、回転数:20rpmの条件で測定することができる。 The ladder type polyorganosilsesquioxane (b) is preferably liquid at normal temperature (about 25 ° C.). More specifically, the viscosity at 23 ° C. is preferably 100 to 100,000 mPa · s, more preferably 500 to 10,000 mPa · s, and still more preferably 1000 to 8000 mPa · s. If the viscosity is less than 100 mPa · s, the heat resistance of the cured product may decrease. On the other hand, when the viscosity exceeds 100,000 mPa · s, it may be difficult to prepare and handle the curable resin composition. The viscosity at 23 ° C. is, for example, using a rheometer (trade name “Physica UDS-200”, manufactured by Anton Paar) and a cone plate (cone diameter: 16 mm, taper angle = 0 °), temperature: 23 ° C. The number of rotations can be measured under the condition of 20 rpm.
 ラダー型ポリオルガノシルセスキオキサン(b)の製造方法は、特に限定されないが、例えば、ラダー構造を有し、分子鎖末端にシラノール基及び/又は加水分解性シリル基(シラノール基及び加水分解性シリル基のいずれか一方又は両方)を有するポリオルガノシルセスキオキサンの分子鎖末端に対して、上記シルセスキオキサン残基(a)を形成する方法が挙げられる。具体的には、国際公開第2013/176238号等の文献に開示された方法等により製造できる。 The method for producing the ladder-type polyorganosilsesquioxane (b) is not particularly limited. For example, the ladder-type polyorganosilsesquioxane (b) has a ladder structure and has a silanol group and / or a hydrolyzable silyl group (silanol group and hydrolyzable at the molecular chain terminal). The method of forming the said silsesquioxane residue (a) with respect to the molecular chain terminal of the polyorgano silsesquioxane which has a silyl group (one or both) is mentioned. Specifically, it can be produced by a method disclosed in a document such as International Publication No. 2013/176238.
 ポリオルガノシロキサン(A1)のさらに他の例としては、例えば、上記平均単位式中、a1及びa2が0であり、Xが水素原子である下記平均単位式:
(R1a 21bSiO1/2a6(R1a 3SiO1/2a7(SiO4/2a8(HO1/2a9
で表されるポリオルガノシロキサンが挙げられる。上記平均単位式中、R1aは、同一又は異なって、炭素数1~10のアルキル基を示し、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロペンチル基、シクロヘキシル基が挙げられ、中でもメチル基が好ましい。また、R1bは、同一又は異なって、アルケニル基を示し、中でもビニル基が好ましい。さらに、a6、a7、a8及びa9はいずれも、a6+a7+a8=1、a6/(a6+a7)=0.15~0.35、a8/(a6+a7+a8)=0.53~0.62、a9/(a6+a7+a8)=0.005~0.03を満たす正数である。なお、a7は0であってもよい。硬化性樹脂組成物の硬化性の観点で、a6/(a6+a7)は0.2~0.3であることが好ましい。また、硬化物の硬度や機械強度の観点で、a8/(a6+a7+a8)は0.55~0.60であることが好ましい。さらに、硬化物の接着性や機械強度の観点で、a9/(a6+a7+a8)は0.01~0.025であることが好ましい。このようなポリオルガノシロキサンとしては、例えば、SiO4/2単位と(CH32(CH2=CH)SiO1/2単位とで構成されるポリオルガノシロキサン、SiO4/2単位と(CH32(CH2=CH)SiO1/2単位と(CH33SiO1/2単位とで構成されるポリオルガノシロキサン等が挙げられる。
As still another example of the polyorganosiloxane (A1), for example, in the above average unit formula, a1 and a2 are 0, and X is a hydrogen atom.
(R 1a 2 R 1b SiO 1/2 ) a6 (R 1a 3 SiO 1/2 ) a7 (SiO 4/2 ) a8 (HO 1/2 ) a9
The polyorganosiloxane represented by these is mentioned. In the above average unit formula, R 1a is the same or different and represents an alkyl group having 1 to 10 carbon atoms. For example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, cyclopentyl group, cyclohexyl A methyl group is preferable. R 1b is the same or different and represents an alkenyl group, and among them, a vinyl group is preferable. Further, a6, a7, a8 and a9 are all a6 + a7 + a8 = 1, a6 / (a6 + a7) = 0.15 to 0.35, a8 / (a6 + a7 + a8) = 0.53 to 0.62, a9 / (a6 + a7 + a8) = A positive number satisfying 0.005 to 0.03. A7 may be 0. From the viewpoint of curability of the curable resin composition, a6 / (a6 + a7) is preferably 0.2 to 0.3. From the viewpoint of the hardness and mechanical strength of the cured product, a8 / (a6 + a7 + a8) is preferably 0.55 to 0.60. Furthermore, a9 / (a6 + a7 + a8) is preferably 0.01 to 0.025 from the viewpoint of the adhesiveness and mechanical strength of the cured product. Examples of such polyorganosiloxanes include polyorganosiloxanes composed of SiO 4/2 units and (CH 3 ) 2 (CH 2 ═CH) SiO 1/2 units, SiO 4/2 units and (CH 3 ) Polyorganosiloxane composed of 2 (CH 2 ═CH) SiO 1/2 units and (CH 3 ) 3 SiO 1/2 units.
 なお、ポリオルガノシロキサン(A1)は、分子内に2個以上のアルケニル基を有していればよく、さらにヒドロシリル基を有していてもよい。この場合、ポリオルガノシロキサン(A1)は、後述のポリオルガノシロキサン(B1)でもあり得る。 The polyorganosiloxane (A1) may have two or more alkenyl groups in the molecule, and may further have a hydrosilyl group. In this case, the polyorganosiloxane (A1) may be a polyorganosiloxane (B1) described later.
2.ポリオルガノシロキシシルアルキレン(A2)
 ポリオルガノシロキシシルアルキレン(A2)は、上述のように、分子内に2個以上のアルケニル基を有し、主鎖としてシロキサン結合に加えて、シルアルキレン結合を含むポリオルガノシロキサンである。なお、上記シルアルキレン結合におけるアルキレン基としては、C2-4アルキレン基(特に、エチレン基)が好ましい。上記ポリオルガノシロキシシルアルキレン(A2)は、ポリオルガノシロキサン(A1)と比較して製造工程において低分子量の環を生じ難く、また、加熱等により分解してシラノール基(-SiOH)を生じ難いため、ポリオルガノシロキシシルアルキレン(A2)を使用した場合、硬化性樹脂組成物の硬化物の表面粘着性(タック性)が低くなり、より黄変し難い傾向がある。
2. Polyorganosiloxysil alkylene (A2)
As described above, the polyorganosiloxysilalkylene (A2) is a polyorganosiloxane having two or more alkenyl groups in the molecule and containing a silalkylene bond as a main chain in addition to the siloxane bond. The alkylene group in the silalkylene bond is preferably a C 2-4 alkylene group (particularly an ethylene group). The polyorganosiloxysilalkylene (A2) is less likely to produce a low molecular weight ring in the production process than the polyorganosiloxane (A1), and is not easily decomposed by heating or the like to produce a silanol group (—SiOH). When polyorganosiloxysilalkylene (A2) is used, the surface tackiness (tackiness) of the cured product of the curable resin composition tends to be low, and it tends to be more difficult to yellow.
 ポリオルガノシロキシシルアルキレン(A2)としては、直鎖状、一部分岐を有する直鎖状、分岐鎖状、網目状の分子構造を有するものが挙げられる。なお、ポリオルガノシロキシシルアルキレン(A2)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。例えば、分子構造が異なるポリオルガノシロキシシルアルキレン(A2)の2種以上を併用することができ、例えば、直鎖状のポリオルガノシロキシシルアルキレン(A2)と分岐鎖状のポリオルガノシロキシシルアルキレン(A2)とを併用することもできる。 Examples of the polyorganosiloxysilalkylene (A2) include those having a linear, partially branched linear, branched, or network molecular structure. In addition, polyorganosiloxysil alkylene (A2) can also be used individually by 1 type, and can also be used in combination of 2 or more type. For example, two or more kinds of polyorganosiloxysilalkylene (A2) having different molecular structures can be used in combination, for example, linear polyorganosiloxysilalkylene (A2) and branched polyorganosiloxysilalkylene (A2). A2) can also be used in combination.
 ポリオルガノシロキシシルアルキレン(A2)が分子内に有するアルケニル基としては、上述の具体例が挙げられるが、中でもビニル基が好ましい。また、ポリオルガノシロキシシルアルキレン(A2)は、1種のみのアルケニル基を有するものであってもよいし、2種以上のアルケニル基を有するものであってもよい。ポリオルガノシロキシシルアルキレン(A2)が有するアルケニル基は、特に限定されないが、ケイ素原子に結合したものであることが好ましい。 Specific examples of the alkenyl group that the polyorganosiloxysilalkylene (A2) has in the molecule include the specific examples described above, and among them, a vinyl group is preferable. The polyorganosiloxysilalkylene (A2) may have only one alkenyl group or may have two or more alkenyl groups. The alkenyl group of the polyorganosiloxysilalkylene (A2) is not particularly limited, but is preferably bonded to a silicon atom.
 ポリオルガノシロキシシルアルキレン(A2)が有するアルケニル基以外のケイ素原子に結合した基は、特に限定されないが、例えば、水素原子、有機基等が挙げられる。有機基としては、例えば、上述の一価の置換又は無置換炭化水素基等が挙げられる。中でも、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。 Although the group couple | bonded with silicon atoms other than the alkenyl group which polyorganosiloxysil alkylene (A2) has is not specifically limited, For example, a hydrogen atom, an organic group, etc. are mentioned. Examples of the organic group include the monovalent substituted or unsubstituted hydrocarbon group described above. Of these, an alkyl group (particularly a methyl group) and an aryl group (particularly a phenyl group) are preferable.
 また、ケイ素原子に結合した基として、ヒドロキシ基、アルコキシ基を有していてもよい。 In addition, the group bonded to the silicon atom may have a hydroxy group or an alkoxy group.
 ポリオルガノシロキシシルアルキレン(A2)の性状は、特に限定されず、液状であってもよいし、固体状であってもよい。 The properties of the polyorganosiloxysilalkylene (A2) are not particularly limited, and may be liquid or solid.
 ポリオルガノシロキシシルアルキレン(A2)としては、下記平均単位式:
(R2 2SiO2/2b1(R2 3SiO1/2b2(R2SiO3/2b3(SiO4/2b4(RAb5
で表されるポリオルガノシロキシシルアルキレンが好ましい。上記平均単位式中、R2は、同一又は異なって、一価の置換又は無置換炭化水素基であり、上述の具体例(例えば、アルキル基、アルケニル基、アリール基、アラルキル基、ハロゲン化アルキル基等)が挙げられる。但し、R2の一部はアルケニル基(特にビニル基)であり、その割合は、分子内に2個以上となる範囲に制御される。例えば、R2の全量(100モル%)に対するアルケニル基の割合は、0.1~40モル%が好ましい。アルケニル基の割合を上記範囲に制御することにより、硬化性樹脂組成物の硬化性がより向上する傾向がある。また、アルケニル基以外のR2としては、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。
As polyorganosiloxysilalkylene (A2), the following average unit formula:
(R 2 2 SiO 2/2) b1 (R 2 3 SiO 1/2) b2 (R 2 SiO 3/2) b3 (SiO 4/2) b4 (R A) b5
A polyorganosiloxysilalkylene represented by the formula is preferred. In the above average unit formula, R 2 is the same or different and is a monovalent substituted or unsubstituted hydrocarbon group, and the specific examples described above (for example, alkyl group, alkenyl group, aryl group, aralkyl group, alkyl halide) Group). However, a part of R 2 is an alkenyl group (particularly a vinyl group), and the ratio thereof is controlled within a range of 2 or more in the molecule. For example, the ratio of the alkenyl group to the total amount of R 2 (100 mol%) is preferably 0.1 to 40 mol%. By controlling the ratio of the alkenyl group to the above range, the curability of the curable resin composition tends to be further improved. R 2 other than the alkenyl group is preferably an alkyl group (particularly a methyl group) or an aryl group (particularly a phenyl group).
 上記平均単位式中、RAは、上述のようにアルキレン基である。特にエチレン基が好ましい。 In the average unit formula, R A is an alkylene group as described above. An ethylene group is particularly preferable.
 上記平均単位式中、b1は正数、b2は正数、b3は0又は正数、b4は0又は正数、b5は正数である。中でも、b1は1~200が好ましく、b2は1~200が好ましく、b3は0~10が好ましく、b4は0~5が好ましく、b5は1~100が好ましい。特に、(b3+b4)が正数の場合には、硬化物の機械強度がより向上する傾向がある。 In the above average unit formula, b1 is a positive number, b2 is a positive number, b3 is 0 or a positive number, b4 is 0 or a positive number, and b5 is a positive number. Among them, b1 is preferably 1 to 200, b2 is preferably 1 to 200, b3 is preferably 0 to 10, b4 is preferably 0 to 5, and b5 is preferably 1 to 100. In particular, when (b3 + b4) is a positive number, the mechanical strength of the cured product tends to be further improved.
 ポリオルガノシロキシシルアルキレン(A2)としては、より具体的には、例えば、下記式(II-1)で表される構造を有するポリオルガノシロキシシルアルキレンが挙げられる。
Figure JPOXMLDOC01-appb-C000042
More specifically, examples of the polyorganosiloxysilalkylene (A2) include polyorganosiloxysilalkylene having a structure represented by the following formula (II-1).
Figure JPOXMLDOC01-appb-C000042
 上記式(II-1)中、R21は、同一又は異なって、水素原子、又は一価の置換若しくは無置換炭化水素基である。R21としては、上述の具体例(例えば、アルキル基、アルケニル基、アリール基、アラルキル基、ハロゲン化炭化水素基等)が挙げられる。但し、R21の少なくとも2個はアルケニル基(特にビニル基)である。また、アルケニル基以外のR21としては、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。 In the above formula (II-1), R 21 are the same or different and each represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group. The R 21, specific examples of the above (e.g., an alkyl group, an alkenyl group, an aryl group, an aralkyl group, a halogenated hydrocarbon group). However, at least two of R 21 are alkenyl groups (particularly vinyl groups). R 21 other than the alkenyl group is preferably an alkyl group (particularly a methyl group) or an aryl group (particularly a phenyl group).
 上記式(II-1)中、RAは、上記と同じく、アルキレン基を示し、中でも、C2-4アルキレン基(特に、エチレン基)が好ましい。なお、複数のRAが存在する場合、これらは同一であってもよいし、異なっていてもよい。 In the above formula (II-1), R A represents an alkylene group as described above, and among them, a C 2-4 alkylene group (particularly an ethylene group) is preferable. In addition, when several RA exists, these may be the same and may differ.
 上記式(II-1)中、r1は1以上の整数(例えば、1~100)を示す。なお、r1が2以上の整数の場合、r1が付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよい。 In the above formula (II-1), r1 represents an integer of 1 or more (for example, 1 to 100). In addition, when r1 is an integer greater than or equal to 2, the structure in the parenthesis attached | subjected to r1 may be the same respectively, and may differ.
 上記式(II-1)中、r2は1以上の整数(例えば、1~400)を示す。なお、r2が2以上の整数の場合、r2が付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよい。 In the above formula (II-1), r2 represents an integer of 1 or more (for example, 1 to 400). In addition, when r2 is an integer greater than or equal to 2, the structure in the bracket | parenthesis which attached | subjected r2 may be respectively the same, and may differ.
 上記式(II-1)中、r3は0又は1以上の整数(例えば、0~50)を示す。なお、r3が2以上の整数の場合、r3が付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよい。 In the above formula (II-1), r3 represents 0 or an integer of 1 or more (for example, 0 to 50). When r3 is an integer of 2 or more, the structures in parentheses to which r3 is attached may be the same or different.
 上記式(II-1)中、r4は0又は1以上の整数(例えば、0~50)を示す。なお、r4が2以上の整数の場合、r4が付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよい。 In the above formula (II-1), r4 represents 0 or an integer of 1 or more (for example, 0 to 50). When r4 is an integer of 2 or more, the structures in parentheses to which r4 is attached may be the same or different.
 上記式(II-1)中、r5は0又は1以上の整数(例えば、0~50)を示す。なお、r5が2以上の整数の場合、r5が付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよい。 In the above formula (II-1), r5 represents 0 or an integer of 1 or more (for example, 0 to 50). When r5 is an integer of 2 or more, the structures in parentheses to which r5 is attached may be the same or different.
 また、上記式(II-1)における各構造単位の付加形態は特に限定されず、ランダム型であってもよいし、ブロック型であってもよい。 Further, the addition form of each structural unit in the formula (II-1) is not particularly limited, and may be a random type or a block type.
 式(II-1)で表される構造を有するポリオルガノシロキシシルアルキレンの末端構造は、特に限定されないが、例えば、シラノール基、アルコキシシリル基、トリアルキルシリル基(例えば、r5が付された構造、トリメチルシリル基等)等が挙げられる。上記ポリオルガノシロキシシルアルキレンの末端には、アルケニル基やヒドロシリル基等の各種の基が導入されていてもよい。 The terminal structure of the polyorganosiloxysilalkylene having the structure represented by the formula (II-1) is not particularly limited. For example, a silanol group, an alkoxysilyl group, a trialkylsilyl group (for example, a structure to which r5 is attached) , Trimethylsilyl group, etc.). Various groups such as an alkenyl group and a hydrosilyl group may be introduced at the terminal of the polyorganosiloxysilalkylene.
 ポリオルガノシロキシシルアルキレン(A2)は公知乃至慣用の方法により製造することができ、その製造方法は特に限定されないが、例えば、特開2012-140617号公報に記載の方法により製造できる。また、ポリオルガノシロキシシルアルキレン(A2)を含む製品として、例えば、商品名「ETERLED GD1130」、「ETERLED GD1125」(いずれも長興化学工業製)等が入手可能である。 Polyorganosiloxysilalkylene (A2) can be produced by a known or commonly used method, and the production method is not particularly limited, but can be produced by, for example, the method described in JP2012-140617A. Moreover, as a product containing polyorganosiloxysilalkylene (A2), for example, trade names “ETERLED GD1130”, “ETERLED GD1125” (both manufactured by Changxing Chemical Industry) and the like are available.
 本発明の硬化性樹脂組成物は、硬化物のバリア性と強度(樹脂強度)の観点で、ポリオルガノシロキサン(A1)として少なくとも上述の分岐鎖状ポリオルガノシロキサンを含むことが好ましく、より好ましくはラダー型ポリオルガノシルセスキオキサン(a)又は(b)を含むことであり、これらに加えてさらにポリオルガノシロキシシルアルキレン(A2)を含むことが特に好ましい。 The curable resin composition of the present invention preferably contains at least the above-mentioned branched polyorganosiloxane as the polyorganosiloxane (A1), more preferably from the viewpoint of the barrier property and strength (resin strength) of the cured product. The ladder-type polyorganosilsesquioxane (a) or (b) is included, and it is particularly preferable that a polyorganosiloxysilalkylene (A2) is further included in addition to these.
 本発明の硬化性樹脂組成物におけるポリシロキサン(A)の含有量(配合量)(総量)は、特に限定されないが、硬化性樹脂組成物の全量(100重量%)に対して、50重量%以上100重量%未満が好ましく、より好ましくは60~99重量%、さらに好ましくは70~95重量%である。含有量を50重量%以上とすることにより、硬化物の耐久性、透明性がより向上する傾向がある。 The content (blending amount) (total amount) of the polysiloxane (A) in the curable resin composition of the present invention is not particularly limited, but is 50% by weight with respect to the total amount (100% by weight) of the curable resin composition. The amount is preferably less than 100% by weight, more preferably 60 to 99% by weight, still more preferably 70 to 95% by weight. By setting the content to 50% by weight or more, durability and transparency of the cured product tend to be further improved.
 本発明の硬化性樹脂組成物に含まれるポリシロキサン(A)の全量(100重量%)に対するポリオルガノシロキサン(A1)の割合は、特に限定されないが、50~100重量%が好ましく、より好ましくは60~87重量%、さらに好ましくは50~85重量%である。割合が50重量%未満であると、樹脂強度とSOxガスに対するバリア性が低下する場合がある。 The ratio of the polyorganosiloxane (A1) to the total amount (100% by weight) of the polysiloxane (A) contained in the curable resin composition of the present invention is not particularly limited, but is preferably 50 to 100% by weight, more preferably 60 to 87% by weight, more preferably 50 to 85% by weight. If the ratio is less than 50% by weight, the resin strength and the barrier property against SOx gas may be lowered.
 本発明の硬化性樹脂組成物に含まれるポリシロキサン(A)の全量(100重量%)に対するポリオルガノシロキシシルアルキレン(A2)の割合は、特に限定されないが、0~60重量%が好ましく、より好ましくは10~40重量%、さらに好ましくは15~30重量%である。割合が60重量%を超えると、硬化物のSOxガスに対するバリア性が低下する場合がある。 The ratio of the polyorganosiloxysilalkylene (A2) to the total amount (100% by weight) of the polysiloxane (A) contained in the curable resin composition of the present invention is not particularly limited, but is preferably 0 to 60% by weight. The amount is preferably 10 to 40% by weight, more preferably 15 to 30% by weight. When the ratio exceeds 60% by weight, the barrier property against the SOx gas of the cured product may be lowered.
[ポリシロキサン(B)]
 本発明の硬化性樹脂組成物の必須成分であるポリシロキサン(B)は、上述のように、分子内に2個以上のヒドロシリル基(Si-H)を有するポリオルガノシロキサン(B1)(単に「ポリオルガノシロキサン(B1)」と称する場合がある)及び分子内に2個以上のヒドロシリル基を有するポリオルガノシロキシシルアルキレン(B2)(単に「ポリオルガノシロキシシルアルキレン(B2)」と称する場合がある)からなる群より選択される少なくとも1種である。即ち、ポリシロキサン(B)は、ヒドロシリル基を有するポリシロキサンであり、アルケニル基を有する成分(例えば、ポリシロキサン(A)等)とヒドロシリル化反応を生じる成分である。
[Polysiloxane (B)]
As described above, the polysiloxane (B), which is an essential component of the curable resin composition of the present invention, has a polyorganosiloxane (B1) having two or more hydrosilyl groups (Si—H) in the molecule (simply “ Polyorganosiloxane (B1) ”and polyorganosiloxysilalkylene (B2) having two or more hydrosilyl groups in the molecule (sometimes simply referred to as“ polyorganosiloxysilalkylene (B2) ”) At least one selected from the group consisting of: That is, the polysiloxane (B) is a polysiloxane having a hydrosilyl group, and is a component that causes a hydrosilylation reaction with a component having an alkenyl group (for example, polysiloxane (A)).
 本明細書におけるポリオルガノシロキシシルアルキレン(B2)とは、分子内に2個以上のヒドロシリル基を有し、主鎖として-Si-O-Si-(シロキサン結合)に加えて、-Si-RA-Si-(シルアルキレン結合:RAはアルキレン基を示す)を含むポリオルガノシロキサンである。そして、本明細書におけるポリオルガノシロキサン(B1)は、分子内に2個以上のヒドロシリル基を有し、主鎖として上記シルアルキレン結合を含まないポリオルガノシロキサンである。なお、RA(アルキレン基)としては、上記と同じく、例えば、直鎖又は分岐鎖状のC1-12アルキレン基が挙げられ、好ましくは直鎖又は分岐鎖状のC2-4アルキレン基(特に、エチレン基)である。 The polyorganosiloxysilalkylene (B2) in the present specification has two or more hydrosilyl groups in the molecule, and in addition to —Si—O—Si— (siloxane bond) as a main chain, —Si—R A polyorganosiloxane containing A 2 —Si— (silalkylene bond: R A represents an alkylene group). And polyorganosiloxane (B1) in this specification is a polyorganosiloxane which has two or more hydrosilyl groups in a molecule | numerator, and does not contain the said silalkylene bond as a principal chain. As R A (alkylene group), as described above, for example, a linear or branched C 1-12 alkylene group may be mentioned, and preferably a linear or branched C 2-4 alkylene group ( In particular, ethylene group).
1.ポリオルガノシロキサン(B1)
 ポリオルガノシロキサン(B1)としては、直鎖状、一部分岐を有する直鎖状、分岐鎖状、網目状の分子構造を有するものが挙げられる。なお、ポリオルガノシロキサン(B1)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。例えば、分子構造が異なるポリオルガノシロキサン(B1)の2種以上を併用することができ、例えば、直鎖状のポリオルガノシロキサン(B1)と分岐鎖状のポリオルガノシロキサン(B1)とを併用することもできる。
1. Polyorganosiloxane (B1)
Examples of the polyorganosiloxane (B1) include those having a linear, partially branched linear, branched, and network molecular structure. In addition, polyorganosiloxane (B1) can also be used individually by 1 type, and can also be used in combination of 2 or more type. For example, two or more polyorganosiloxanes (B1) having different molecular structures can be used in combination, for example, a linear polyorganosiloxane (B1) and a branched polyorganosiloxane (B1) are used in combination. You can also
 ポリオルガノシロキサン(B1)が有するケイ素原子に結合した基の中でも水素原子以外の基は、特に限定されないが、例えば、上述の一価の置換又は無置換炭化水素基、より詳しくは、アルキル基、アリール基、アラルキル基、ハロゲン化炭化水素基等が挙げられる。中でも、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。また、ポリオルガノシロキサン(B1)は、水素原子以外のケイ素原子に結合した基として、アルケニル基(例えばビニル基)を有していてもよい。 Among the groups bonded to the silicon atom of the polyorganosiloxane (B1), a group other than a hydrogen atom is not particularly limited. For example, the monovalent substituted or unsubstituted hydrocarbon group described above, more specifically, an alkyl group, An aryl group, an aralkyl group, a halogenated hydrocarbon group, etc. are mentioned. Of these, an alkyl group (particularly a methyl group) and an aryl group (particularly a phenyl group) are preferable. Further, the polyorganosiloxane (B1) may have an alkenyl group (for example, a vinyl group) as a group bonded to a silicon atom other than a hydrogen atom.
 ポリオルガノシロキサン(B1)の性状は、特に限定されず、液状であってもよいし、固体状であってもよい。中でも液状であることが好ましく、25℃における粘度が0.1~1000000000mPa・sの液状であることがより好ましい。 The properties of the polyorganosiloxane (B1) are not particularly limited, and may be liquid or solid. In particular, it is preferably a liquid, and more preferably a liquid having a viscosity at 25 ° C. of 0.1 to 1,000,000 mPa · s.
 ポリオルガノシロキサン(B1)としては、下記平均単位式:
(R3SiO3/2c1(R3 2SiO2/2c2(R3 3SiO1/2c3(SiO4/2c4(XO1/2c5
で表されるポリオルガノシロキサンが好ましい。上記平均単位式中、R3は、同一又は異なって、水素原子、又は、一価の置換若しくは無置換炭化水素基であり、水素原子、上述の具体例(例えば、アルキル基、アルケニル基、アリール基、アラルキル基、ハロゲン化アルキル基等)が挙げられる。但し、R3の一部は水素原子(ヒドロシリル基を構成する水素原子)であり、その割合は、ヒドロシリル基が分子内に2個以上となる範囲に制御される。例えば、R3の全量(100モル%)に対する水素原子の割合は、0.1~40モル%が好ましい。水素原子の割合を上記範囲に制御することにより、硬化性樹脂組成物の硬化性がより向上する傾向がある。また、水素原子以外のR3としては、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。
As polyorganosiloxane (B1), the following average unit formula:
(R 3 SiO 3/2 ) c 1 (R 3 2 SiO 2/2 ) c 2 (R 3 3 SiO 1/2 ) c 3 (SiO 4/2 ) c 4 (XO 1/2 ) c 5
The polyorganosiloxane represented by these is preferable. In the above average unit formula, R 3 is the same or different and is a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group, and a hydrogen atom, the above-mentioned specific examples (for example, alkyl group, alkenyl group, aryl Group, aralkyl group, halogenated alkyl group and the like). However, a part of R 3 is a hydrogen atom (hydrogen atom constituting a hydrosilyl group), and the ratio thereof is controlled in a range where two or more hydrosilyl groups are present in the molecule. For example, the ratio of hydrogen atoms to the total amount of R 3 (100 mol%) is preferably 0.1 to 40 mol%. By controlling the proportion of hydrogen atoms within the above range, the curability of the curable resin composition tends to be further improved. R 3 other than a hydrogen atom is preferably an alkyl group (particularly a methyl group) or an aryl group (particularly a phenyl group).
 上記平均単位式中、Xは、上記と同じく、水素原子又はアルキル基である。アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられ、特にメチル基であることが好ましい。 In the above average unit formula, X is a hydrogen atom or an alkyl group as described above. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group, and a methyl group is particularly preferable.
 上記平均単位式中、c1は0又は正数、c2は0又は正数、c3は0又は正数、c4は0又は正数、c5は0又は正数であり、かつ、(c1+c2+c3)は正数である。 In the above average unit formula, c1 is 0 or positive number, c2 is 0 or positive number, c3 is 0 or positive number, c4 is 0 or positive number, c5 is 0 or positive number, and (c1 + c2 + c3) is positive Is a number.
 ポリオルガノシロキサン(B1)の一例としては、例えば、分子内に2個以上のヒドロシリル基を有する直鎖状ポリオルガノシロキサンが挙げられる。上記直鎖状ポリオルガノシロキサンにおける水素原子以外のケイ素原子に結合した基としては、例えば、上述の一価の置換又は無置換炭化水素基が挙げられるが、中でも、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。 An example of the polyorganosiloxane (B1) includes a linear polyorganosiloxane having two or more hydrosilyl groups in the molecule. Examples of the group bonded to a silicon atom other than a hydrogen atom in the linear polyorganosiloxane include the monovalent substituted or unsubstituted hydrocarbon group described above, among which an alkyl group (particularly a methyl group), Aryl groups (particularly phenyl groups) are preferred.
 上記直鎖状ポリオルガノシロキサンにおける、ケイ素原子に結合した基の全量(100モル%)に対する水素原子(ケイ素原子に結合した水素原子)の割合は、特に限定されないが、0.1~40モル%が好ましい。また、ケイ素原子に結合した基の全量(100モル%)に対するアルキル基(特にメチル基)の割合は、特に限定されないが、20~99モル%が好ましい。さらに、ケイ素原子に結合した基の全量(100モル%)に対するアリール基(特にフェニル基)の割合は、特に限定されないが、40~80モル%が好ましい。特に、上記直鎖状ポリオルガノシロキサンとして、ケイ素原子に結合した基の全量(100モル%)に対するアリール基(特にフェニル基)の割合が40モル%以上(例えば、45~70モル%)であるものを使用することにより、硬化物の腐食性ガスに対するバリア性がより向上する傾向がある。また、ケイ素原子に結合した基の全量(100モル%)に対するアルキル基(特にメチル基)の割合が90モル%以上(例えば、95~99モル%)であるものを使用することにより、硬化物の耐熱衝撃性がより向上する傾向がある。 The ratio of hydrogen atoms (hydrogen atoms bonded to silicon atoms) to the total amount of groups bonded to silicon atoms (100 mol%) in the linear polyorganosiloxane is not particularly limited, but is 0.1 to 40 mol%. Is preferred. Further, the ratio of the alkyl group (especially methyl group) to the total amount (100 mol%) of the groups bonded to the silicon atom is not particularly limited, but is preferably 20 to 99 mol%. Furthermore, the ratio of aryl groups (particularly phenyl groups) to the total amount (100 mol%) of groups bonded to silicon atoms is not particularly limited, but is preferably 40 to 80 mol%. In particular, as the linear polyorganosiloxane, the ratio of aryl groups (particularly phenyl groups) to the total amount (100 mol%) of groups bonded to silicon atoms is 40 mol% or more (for example, 45 to 70 mol%). By using a thing, there exists a tendency for the barrier property with respect to the corrosive gas of hardened | cured material to improve more. Further, by using a material in which the ratio of alkyl groups (particularly methyl groups) to 90 mol% or more (for example, 95 to 99 mol%) relative to the total amount (100 mol%) of groups bonded to silicon atoms is used, There is a tendency that the thermal shock resistance of is improved.
 上記直鎖状ポリオルガノシロキサンは、例えば、下記式(III-1)で表される。
Figure JPOXMLDOC01-appb-C000043
[上記式中、R31は、同一又は異なって、水素原子、又は、一価の置換若しくは無置換炭化水素基である。但し、R31の少なくとも2個は水素原子である。m2は、5~1000の整数である。]
The linear polyorganosiloxane is represented, for example, by the following formula (III-1).
Figure JPOXMLDOC01-appb-C000043
[In the above formula, R 31 are the same or different and each represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group. However, at least two of R 31 are hydrogen atoms. m2 is an integer of 5 to 1000. ]
 ポリオルガノシロキサン(B1)の他の例としては、分子内に2個以上のヒドロシリル基を有し、RSiO3/2で表されるシロキサン単位(T単位)を有する分岐鎖状ポリオルガノシロキサンが挙げられる。なお、Rは、水素原子、又は、一価の置換若しくは無置換炭化水素基である。上記分岐鎖状ポリオルガノシロキサンにおける水素原子以外のケイ素原子に結合した基としては、例えば、上述の一価の置換又は無置換炭化水素基が挙げられるが、中でも、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。さらに、上記T単位中のRとしては、水素原子、上述の一価の置換又は無置換炭化水素基が挙げられるが、中でも、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。上記T単位中のRの全量(100モル%)に対するアリール基(特にフェニル基)の割合は、特に限定されないが、硬化物の腐食性ガスに対するバリア性の観点で、30モル%以上が好ましい。 Another example of the polyorganosiloxane (B1) is a branched polyorganosiloxane having two or more hydrosilyl groups in the molecule and having a siloxane unit (T unit) represented by RSiO 3/2. It is done. R is a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group. Examples of the group bonded to a silicon atom other than a hydrogen atom in the branched polyorganosiloxane include the monovalent substituted or unsubstituted hydrocarbon group described above, among which an alkyl group (particularly a methyl group), Aryl groups (particularly phenyl groups) are preferred. Furthermore, examples of R in the T unit include a hydrogen atom and the above-mentioned monovalent substituted or unsubstituted hydrocarbon group. Among them, an alkyl group (particularly a methyl group) and an aryl group (particularly a phenyl group) are preferable. . The ratio of the aryl group (particularly phenyl group) to the total amount of R in the T unit (100 mol%) is not particularly limited, but is preferably 30 mol% or more from the viewpoint of the barrier property against the corrosive gas of the cured product.
 上記分岐鎖状ポリオルガノシロキサンにおける、ケイ素原子に結合した基の全量(100モル%)に対するアルキル基(特にメチル基)の割合は、特に限定されないが、70~95モル%が好ましい。さらに、ケイ素原子に結合した基の全量(100モル%)に対するアリール基(特にフェニル基)の割合は、特に限定されないが、10~70モル%が好ましい。特に、上記分岐鎖状ポリオルガノシロキサンとして、ケイ素原子に結合した基の全量(100モル%)に対するアリール基(特にフェニル基)の割合が10モル%以上(例えば、10~70モル%)であるものを使用することにより、硬化物の腐食性ガスに対するバリア性がより向上する傾向がある。また、ケイ素原子に結合した基の全量(100モル%)に対するアルキル基(特にメチル基)の割合が50モル%以上(例えば、50~90モル%)であるものを使用することにより、硬化物の耐熱衝撃性がより向上する傾向がある。 The ratio of alkyl groups (particularly methyl groups) to the total amount of groups bonded to silicon atoms (100 mol%) in the branched polyorganosiloxane is not particularly limited, but is preferably 70 to 95 mol%. Further, the ratio of aryl groups (particularly phenyl groups) to the total amount of groups bonded to silicon atoms (100 mol%) is not particularly limited, but is preferably 10 to 70 mol%. In particular, in the branched polyorganosiloxane, the ratio of aryl groups (particularly phenyl groups) to the total amount (100 mol%) of groups bonded to silicon atoms is 10 mol% or more (for example, 10 to 70 mol%). By using a thing, there exists a tendency for the barrier property with respect to the corrosive gas of hardened | cured material to improve more. Moreover, a cured product can be obtained by using a compound in which the ratio of alkyl groups (particularly methyl groups) is 50 mol% or more (for example, 50 to 90 mol%) with respect to the total amount (100 mol%) of groups bonded to silicon atoms. There is a tendency that the thermal shock resistance of is improved.
 上記分岐鎖状ポリオルガノシロキサンは、例えば、c1が正数である上記平均単位式で表すことができる。この場合、特に限定されないが、c2/c1は0~10の数、c3/c1は0~0.5の数、c4/(c1+c2+c3+c4)は0~0.3の数、c5/(c1+c2+c3+c4)は0~0.4の数であることが好ましい。また、上記分岐鎖状ポリオルガノシロキサンの分子量は特に限定されないが、標準ポリスチレン換算の重量平均分子量が300~10000であることが好ましく、より好ましくは500~3000である。 The branched polyorganosiloxane can be represented, for example, by the above average unit formula in which c1 is a positive number. In this case, although not particularly limited, c2 / c1 is a number from 0 to 10, c3 / c1 is a number from 0 to 0.5, c4 / (c1 + c2 + c3 + c4) is a number from 0 to 0.3, and c5 / (c1 + c2 + c3 + c4) is A number of 0 to 0.4 is preferred. The molecular weight of the branched polyorganosiloxane is not particularly limited, but the weight average molecular weight in terms of standard polystyrene is preferably 300 to 10,000, and more preferably 500 to 3000.
2.ポリオルガノシロキシシルアルキレン(B2)
 ポリオルガノシロキシシルアルキレン(B2)は、上述のように、分子内に2個以上のヒドロシリル基を有し、主鎖としてシロキサン結合に加えて、シルアルキレン結合を含むポリオルガノシロキサンである。なお、上記シルアルキレン結合におけるアルキレン基としては、例えば、C2-4アルキレン基(特に、エチレン基)が好ましい。上記ポリオルガノシロキシシルアルキレン(B2)は、ポリオルガノシロキサン(B1)と比較して製造工程において低分子量の環を生じ難く、また、加熱等により分解してシラノール基(-SiOH)を生じ難いため、ポリオルガノシロキシシルアルキレン(B2)を使用した場合、硬化性樹脂組成物の硬化物の表面粘着性が低くなり、より黄変し難い傾向がある。
2. Polyorganosiloxysilalkylene (B2)
As described above, the polyorganosiloxysilalkylene (B2) is a polyorganosiloxane having two or more hydrosilyl groups in the molecule and containing a silalkylene bond as a main chain in addition to a siloxane bond. In addition, as an alkylene group in the said silalkylene bond, a C2-4 alkylene group (especially ethylene group) is preferable, for example. The polyorganosiloxysilalkylene (B2) is less likely to form a low molecular weight ring in the production process than the polyorganosiloxane (B1), and is not easily decomposed by heating or the like to produce a silanol group (—SiOH). When polyorganosiloxysilalkylene (B2) is used, the surface adhesiveness of the cured product of the curable resin composition tends to be low, and it tends to be more difficult to yellow.
 ポリオルガノシロキシシルアルキレン(B2)としては、直鎖状、一部分岐を有する直鎖状、分岐鎖状、網目状の分子構造を有するものが挙げられる。なお、ポリオルガノシロキシシルアルキレン(B2)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。例えば、分子構造が異なるポリオルガノシロキシシルアルキレン(B2)の2種以上を併用することができ、例えば、直鎖状のポリオルガノシロキシシルアルキレン(B2)と分岐鎖状のポリオルガノシロキシシルアルキレン(B2)とを併用することもできる。 Examples of the polyorganosiloxysilalkylene (B2) include those having a linear, partially branched linear, branched, or network molecular structure. In addition, polyorgano siloxysil alkylene (B2) can also be used individually by 1 type, and can also be used in combination of 2 or more type. For example, two or more kinds of polyorganosiloxysilalkylene (B2) having different molecular structures can be used in combination, for example, linear polyorganosiloxysilalkylene (B2) and branched polyorganosiloxysilalkylene (B2). B2) can also be used in combination.
 ポリオルガノシロキシシルアルキレン(B2)が有する水素原子以外のケイ素原子に結合した基は、特に限定されないが、例えば、有機基等が挙げられる。有機基としては、例えば、上述の一価の置換又は無置換炭化水素基等が挙げられる。中でも、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。 Although the group couple | bonded with silicon atoms other than the hydrogen atom which polyorganosiloxysil alkylene (B2) has is not specifically limited, For example, an organic group etc. are mentioned. Examples of the organic group include the monovalent substituted or unsubstituted hydrocarbon group described above. Of these, an alkyl group (particularly a methyl group) and an aryl group (particularly a phenyl group) are preferable.
 ポリオルガノシロキシシルアルキレン(B2)の性状は、特に限定されず、液状であってもよいし、固体状であってもよい。 The properties of the polyorganosiloxysilalkylene (B2) are not particularly limited, and may be liquid or solid.
 ポリオルガノシロキシシルアルキレン(B2)としては、下記平均単位式:
(R4 2SiO2/2d1(R4 3SiO1/2d2(R4SiO3/2d3(SiO4/2d4(RAd5
で表されるポリオルガノシロキシシルアルキレンが好ましい。上記平均単位式中、R4は、同一又は異なって、水素原子、又は一価の置換若しくは無置換炭化水素基であり、水素原子及び上述の具体例(例えば、アルキル基、アルケニル基、アリール基、アラルキル基、ハロゲン化アルキル基等)が挙げられる。但し、R4の一部は水素原子であり、その割合は、分子内に2個以上となる範囲に制御される。例えば、R4の全量(100モル%)に対する水素原子の割合は、0.1~50モル%が好ましく、より好ましくは5~35モル%である。水素原子の割合を上記範囲に制御することにより、硬化性樹脂組成物の硬化性がより向上する傾向がある。また、水素原子以外のR4としては、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。特に、R4の全量(100モル%)に対するアリール基(特にフェニル基)の割合は、5モル%以上(例えば、5~80モル%)が好ましく、より好ましくは10モル%以上である。
As polyorganosiloxysilalkylene (B2), the following average unit formula:
(R 4 2 SiO 2/2 ) d1 (R 4 3 SiO 1/2 ) d2 (R 4 SiO 3/2 ) d3 (SiO 4/2 ) d4 (R A ) d5
A polyorganosiloxysilalkylene represented by the formula is preferred. In the above average unit formula, R 4 s are the same or different and each represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group. Aralkyl group, halogenated alkyl group, etc.). However, a part of R 4 is a hydrogen atom, and the ratio thereof is controlled within a range of 2 or more in the molecule. For example, the ratio of hydrogen atoms to the total amount of R 4 (100 mol%) is preferably 0.1 to 50 mol%, more preferably 5 to 35 mol%. By controlling the proportion of hydrogen atoms within the above range, the curability of the curable resin composition tends to be further improved. R 4 other than a hydrogen atom is preferably an alkyl group (particularly a methyl group) or an aryl group (particularly a phenyl group). In particular, the ratio of aryl groups (particularly phenyl groups) to the total amount of R 4 (100 mol%) is preferably 5 mol% or more (eg, 5 to 80 mol%), more preferably 10 mol% or more.
 上記平均単位式中、RAは、上述のようにアルキレン基である。特にエチレン基が好ましい。 In the average unit formula, R A is an alkylene group as described above. An ethylene group is particularly preferable.
 上記平均単位式中、d1は正数、d2は正数、d3は0又は正数、d4は0又は正数、d5は正数である。中でも、d1は1~50が好ましく、d2は1~50が好ましく、d3は0~10が好ましく、d4は0~5が好ましく、d5は1~30が好ましい。 In the above average unit formula, d1 is a positive number, d2 is a positive number, d3 is 0 or a positive number, d4 is 0 or a positive number, and d5 is a positive number. Among them, d1 is preferably 1 to 50, d2 is preferably 1 to 50, d3 is preferably 0 to 10, d4 is preferably 0 to 5, and d5 is preferably 1 to 30.
 ポリオルガノシロキシシルアルキレン(B2)としては、より具体的には、例えば、下記式(IV-1)で表される構造を有するポリオルガノシロキシシルアルキレンが挙げられる。
Figure JPOXMLDOC01-appb-C000044
More specifically, examples of the polyorganosiloxysilalkylene (B2) include polyorganosiloxysilalkylene having a structure represented by the following formula (IV-1).
Figure JPOXMLDOC01-appb-C000044
 上記式(IV-1)中、R41は、同一又は異なって、水素原子、又は一価の置換若しくは無置換炭化水素基である。R41としては、上述の具体例(例えば、アルキル基、アルケニル基、アリール基、アラルキル基、ハロゲン化炭化水素基等)が挙げられる。但し、R41の少なくとも2個は水素原子である。また、水素原子以外のR41としては、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。 In the above formula (IV-1), R 41 are the same or different and each represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group. Examples of R 41 include the above-described specific examples (eg, alkyl group, alkenyl group, aryl group, aralkyl group, halogenated hydrocarbon group, etc.). However, at least two of R 41 are hydrogen atoms. Further, R 41 other than a hydrogen atom is preferably an alkyl group (particularly a methyl group) or an aryl group (particularly a phenyl group).
 上記式(IV-1)中、RAは、式(II-1)におけるRAと同じく、アルキレン基を示し、中でも、C2-4アルキレン基(特に、エチレン基)が好ましい。なお、複数のRAが存在する場合、これらは同一であってもよいし、異なっていてもよい。 In the formula (IV-1), R A, like R A in formula (II-1), an alkylene group, among them, C 2-4 alkylene group (in particular, an ethylene group) is preferable. In addition, when several RA exists, these may be the same and may differ.
 上記式(IV-1)中、q1は1以上の整数(例えば、1~100)を示す。なお、q1が2以上の整数の場合、q1が付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよい。 In the above formula (IV-1), q1 represents an integer of 1 or more (for example, 1 to 100). In addition, when q1 is an integer greater than or equal to 2, the structure in the bracket | parenthesis which attached | subjected q1 may each be the same, and may differ.
 上記式(IV-1)中、q2は1以上の整数(例えば、1~400)を示す。なお、q2が2以上の整数の場合、q2が付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよい。 In the above formula (IV-1), q2 represents an integer of 1 or more (for example, 1 to 400). In addition, when q2 is an integer greater than or equal to 2, the structure in the bracket | parenthesis which attached | subjected q2 may each be the same, and may differ.
 上記式(IV-1)中、q3は0又は1以上の整数(例えば、0~50)を示す。なお、q3が2以上の整数の場合、q3が付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよい。 In the above formula (IV-1), q3 represents 0 or an integer of 1 or more (for example, 0 to 50). In addition, when q3 is an integer greater than or equal to 2, the structure in the bracket | parenthesis which attached | subjected q3 may be respectively the same, and may differ.
 上記式(IV-1)中、q4は0又は1以上の整数(例えば、0~50)を示す。なお、q4が2以上の整数の場合、q4が付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよい。 In the above formula (IV-1), q4 represents 0 or an integer of 1 or more (for example, 0 to 50). In addition, when q4 is an integer greater than or equal to 2, the structure in the parenthesis which attached | subjected q4 may be the same respectively, and may differ.
 上記式(IV-1)中、q5は0又は1以上の整数(例えば、0~50)を示す。なお、q5が2以上の整数の場合、q5が付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよい。 In the above formula (IV-1), q5 represents 0 or an integer of 1 or more (for example, 0 to 50). In addition, when q5 is an integer greater than or equal to 2, the structure in the bracket | parenthesis which attached | subjected q5 may each be the same, and may differ.
 また、上記式(IV-1)における各構造単位の付加形態は特に限定されず、ランダム型であってもよいし、ブロック型であってもよい。 Further, the addition form of each structural unit in the above formula (IV-1) is not particularly limited, and may be a random type or a block type.
 式(IV-1)で表される構造を有するポリオルガノシロキシシルアルキレンの末端構造は、特に限定されないが、例えば、シラノール基、アルコキシシリル基、トリアルキルシリル基(例えば、q5が付された構造、トリメチルシリル基等)等が挙げられる。上記ポリオルガノシロキシシルアルキレンの末端には、アルケニル基やヒドロシリル基等の各種の基が導入されていてもよい。 The terminal structure of the polyorganosiloxysilalkylene having the structure represented by the formula (IV-1) is not particularly limited. For example, a silanol group, an alkoxysilyl group, a trialkylsilyl group (for example, a structure to which q5 is attached) , Trimethylsilyl group, etc.). Various groups such as an alkenyl group and a hydrosilyl group may be introduced at the terminal of the polyorganosiloxysilalkylene.
 ポリオルガノシロキシシルアルキレン(B2)は公知乃至慣用の方法により製造することができ、その製造方法は特に限定されないが、例えば、特開2012-140617号公報に記載の方法により製造できる。 Polyorganosiloxysilalkylene (B2) can be produced by a known or commonly used method, and the production method is not particularly limited, but can be produced, for example, by the method described in JP2012-140617A.
 本発明の硬化性樹脂組成物におけるポリシロキサン(B)の含有量(配合量)は、特に限定されないが、ポリシロキサン(A)の全量100重量部に対して、1~200重量部が好ましい。ポリシロキサン(B)の含有量を上記範囲に制御することにより、硬化性樹脂組成物の硬化性がより向上し、効率的に硬化物を形成することができる傾向がある。ポリシロキサン(B)の含有量が上記範囲を外れると、硬化反応が十分に進行しない等の理由により、硬化物の耐熱性、耐熱衝撃性、耐リフロー性等の特性が低下する傾向がある。 The content (blending amount) of the polysiloxane (B) in the curable resin composition of the present invention is not particularly limited, but is preferably 1 to 200 parts by weight with respect to 100 parts by weight of the total amount of the polysiloxane (A). By controlling the content of polysiloxane (B) within the above range, the curability of the curable resin composition tends to be further improved and a cured product can be efficiently formed. When the content of the polysiloxane (B) is out of the above range, characteristics such as heat resistance, thermal shock resistance, and reflow resistance of the cured product tend to be deteriorated due to the reason that the curing reaction does not proceed sufficiently.
 本発明の硬化性樹脂組成物におけるポリシロキサン(B)としては、ポリオルガノシロキサン(B1)のみを使用することもできるし、ポリオルガノシロキシシルアルキレン(B2)のみを使用することもできるし、また、ポリオルガノシロキサン(B1)とポリオルガノシロキシシルアルキレン(B2)とを併用することもできる。ポリオルガノシロキサン(B1)とポリオルガノシロキシシルアルキレン(B2)とを併用する場合、これらの割合は特に限定されず、適宜設定可能である。 As polysiloxane (B) in the curable resin composition of the present invention, only polyorganosiloxane (B1) can be used, or only polyorganosiloxysilalkylene (B2) can be used. Polyorganosiloxane (B1) and polyorganosiloxysilalkylene (B2) can also be used in combination. In the case where the polyorganosiloxane (B1) and the polyorganosiloxysilalkylene (B2) are used in combination, these ratios are not particularly limited and can be appropriately set.
 本発明の硬化性樹脂組成物(100重量%)におけるポリシロキサン(A)とポリシロキサン(B)の含有量の合計(合計含有量)は、特に限定されないが、70重量%以上(例えば、70重量%以上、100重量%未満)が好ましく、より好ましくは80重量%以上、さらに好ましくは90重量%以上である。合計含有量を70重量%以上とすることにより、硬化物の耐熱性、透明性がより向上する傾向がある。 The total content (total content) of the polysiloxane (A) and the polysiloxane (B) in the curable resin composition (100% by weight) of the present invention is not particularly limited, but is 70% by weight or more (for example, 70%). % By weight or more and less than 100% by weight), more preferably 80% by weight or more, and still more preferably 90% by weight or more. When the total content is 70% by weight or more, the heat resistance and transparency of the cured product tend to be further improved.
 本発明の硬化性樹脂組成物に含まれるポリシロキサン(A)とポリシロキサン(B)の合計含有量(100重量%)に対する、ポリオルガノシロキシシルアルキレン(A2)とポリオルガノシロキシシルアルキレン(B2)の割合(合計割合)は、特に限定されないが、3重量%以上(例えば、60~100重量%)が好ましく、より好ましくは10重量%以上、さらに好ましくは15~50重量%である。上記割合を3重量%以上とすることにより、硬化物の表面粘着性がより低く、耐熱衝撃性能が良好となる傾向がある。 Polyorganosiloxysilalkylene (A2) and polyorganosiloxysilalkylene (B2) with respect to the total content (100% by weight) of polysiloxane (A) and polysiloxane (B) contained in the curable resin composition of the present invention The ratio (total ratio) is not particularly limited, but is preferably 3% by weight or more (for example, 60 to 100% by weight), more preferably 10% by weight or more, and further preferably 15 to 50% by weight. When the ratio is 3% by weight or more, the surface tackiness of the cured product tends to be lower and the thermal shock resistance tends to be good.
[グリコールウリル誘導体(C)]
 本発明の硬化性樹脂組成物の必須成分であるグリコールウリル誘導体(C)は、上記式(1)で表される化合物(グリコールウリル誘導体)である。式(1)中、Ra~Rdは、同一又は異なって、下記式(1a)で表される基、下記式(1b)で表される基、又は、下記式(1c)で表される基である。
Figure JPOXMLDOC01-appb-C000045
[Glycoluril derivative (C)]
The glycoluril derivative (C), which is an essential component of the curable resin composition of the present invention, is a compound (glycoluril derivative) represented by the above formula (1). In formula (1), R a to R d are the same or different and are represented by the group represented by the following formula (1a), the group represented by the following formula (1b), or the following formula (1c). It is a group.
Figure JPOXMLDOC01-appb-C000045
 上記式(1a)~(1c)(式(1a)、式(1b)、及び式(1c))中、sは、同一又は異なって、0又は1以上の整数を示す。sとしては、硬化物の腐食性ガスに対するバリア性の観点で、1~10の整数が好ましく、より好ましくは1~5の整数、さらに好ましくは1~3の整数である。なお、上記式(1)中に存在する合計4つのsは、それぞれ同一であってもよいし、異なっていてもよい。 In the above formulas (1a) to (1c) (formula (1a), formula (1b), and formula (1c)), s is the same or different and represents 0 or an integer of 1 or more. s is preferably an integer of 1 to 10, more preferably an integer of 1 to 5, and still more preferably an integer of 1 to 3, from the viewpoint of the barrier property against the corrosive gas of the cured product. Note that the total of four s present in the above formula (1) may be the same or different.
 上記式(1a)で表される基としては、例えば、ビニル基、アリル基等が挙げられる。なお、式(1)中に2以上の式(1a)で表される基が存在する場合、これらは同一であってもよいし、異なっていてもよい。 Examples of the group represented by the above formula (1a) include a vinyl group and an allyl group. In addition, when two or more groups represented by the formula (1a) are present in the formula (1), these may be the same or different.
 上記式(1b)中、Rgは、同一又は異なって、水素原子、又は、一価の置換若しくは無置換炭化水素基を示す。一価の置換若しくは無置換の炭化水素基としては、上述の一価の置換又は無置換炭化水素基(アルケニル基も含まれる)が挙げられ、具体的には、例えば、一価の脂肪族炭化水素基(例えば、アルキル基、アルケニル基等);一価の脂環式炭化水素基(例えば、シクロアルキル基等);一価の芳香族炭化水素基(例えば、アリール基等);一価の複素環式基;脂肪族炭化水素基、脂環式炭化水素基、及び芳香族炭化水素基の2以上が結合して形成された一価の基(例えば、アルキル及び/又はアルケニル置換シクロアルキル基、シクロアルキル-アルキル基、アルキル及び/又はアルケニル置換アリール基、アリール-アルキル基);これらの基における1つ以上の水素原子が置換基(例えば、ハロゲン原子)で置換された基等が挙げられる。中でも、Rgとしては、一価の脂肪族炭化水素基が好ましく、より好ましくはアルキル基(特にC1-4アルキル基)である。なお、式(1b)中の3つのRgは、同一であってもよいし、異なっていてもよい。また、式(1)中に2以上の式(1b)で表される基が存在する場合、これらは同一であってもよいし、異なっていてもよい。 In the above formula (1b), R g is the same or different and represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group. Examples of the monovalent substituted or unsubstituted hydrocarbon group include the above-mentioned monovalent substituted or unsubstituted hydrocarbon groups (including alkenyl groups). Specifically, for example, monovalent aliphatic carbonization Hydrogen group (eg, alkyl group, alkenyl group, etc.); monovalent alicyclic hydrocarbon group (eg, cycloalkyl group, etc.); monovalent aromatic hydrocarbon group (eg, aryl group, etc.); monovalent A heterocyclic group; a monovalent group formed by combining two or more of an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group (for example, an alkyl and / or alkenyl-substituted cycloalkyl group) Cycloalkyl-alkyl group, alkyl and / or alkenyl-substituted aryl group, aryl-alkyl group); groups in which one or more hydrogen atoms in these groups are substituted with a substituent (for example, a halogen atom), and the like Among them, R g is preferably a monovalent aliphatic hydrocarbon group, more preferably an alkyl group (particularly a C 1-4 alkyl group). Incidentally, the three R g in the formula (1b) may be the same or different. In addition, when two or more groups represented by the formula (1b) are present in the formula (1), these may be the same or different.
 上記式(1c)中、Rh及びRiは、同一又は異なって、水素原子、又は、一価の置換若しくは無置換炭化水素基を示す。一価の置換若しくは無置換炭化水素基としては、上述の一価の置換又は無置換炭化水素基(アルケニル基も含まれる)が挙げられ、具体的には、例えば、一価の脂肪族炭化水素基(例えば、アルキル基、アルケニル基等);一価の脂環式炭化水素基(例えば、シクロアルキル基等);一価の芳香族炭化水素基(例えば、アリール基等);一価の複素環式基;脂肪族炭化水素基、脂環式炭化水素基、及び芳香族炭化水素基の2以上が結合して形成された一価の基(例えば、アルキル及び/又はアルケニル置換シクロアルキル基、シクロアルキル-アルキル基、アルキル及び/又はアルケニル置換アリール基、アリール-アルキル基);これらの基における1つ以上の水素原子が置換基(例えば、ハロゲン原子)で置換された基等が挙げられる。中でも、Rh及びRiとしては、一価の脂肪族炭化水素基又は一価の芳香族炭化水素基が好ましく、より好ましくはアルキル基(特にメチル基)、アルケニル基(特にビニル基)、アリール基(特にフェニル基)である。なお、式(1c)中の複数のRh、複数のRiは、それぞれ同一であってもよいし、異なっていてもよい。 In the above formula (1c), R h and R i are the same or different and each represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group. Examples of the monovalent substituted or unsubstituted hydrocarbon group include the above-mentioned monovalent substituted or unsubstituted hydrocarbon groups (including alkenyl groups). Specifically, for example, monovalent aliphatic hydrocarbons Group (for example, alkyl group, alkenyl group, etc.); monovalent alicyclic hydrocarbon group (for example, cycloalkyl group, etc.); monovalent aromatic hydrocarbon group (for example, aryl group, etc.); monovalent complex A cyclic group; a monovalent group formed by combining two or more of an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group (for example, an alkyl and / or alkenyl-substituted cycloalkyl group, A cycloalkyl-alkyl group, an alkyl and / or alkenyl-substituted aryl group, an aryl-alkyl group); a group in which one or more hydrogen atoms in these groups are substituted with a substituent (for example, a halogen atom), and the like. Among them, R h and R i are preferably a monovalent aliphatic hydrocarbon group or a monovalent aromatic hydrocarbon group, more preferably an alkyl group (particularly a methyl group), an alkenyl group (particularly a vinyl group), an aryl group. A group (particularly a phenyl group). In the formula (1c), the plurality of R h and the plurality of R i may be the same or different.
 また、上記式(1c)中、tは、0又は1以上の整数を示す。tとしては、硬化物の腐食性ガスに対するバリア性の観点で、1~100の整数が好ましく、より好ましくは1~50の整数、さらに好ましくは1~30の整数である。なお、式(1)中に2以上の式(1c)で表される基が存在する場合、これらは同一であってもよいし、異なっていてもよい。 In the above formula (1c), t represents 0 or an integer of 1 or more. t is preferably an integer of 1 to 100, more preferably an integer of 1 to 50, and still more preferably an integer of 1 to 30 from the viewpoint of the barrier property against the corrosive gas of the cured product. In addition, when two or more groups represented by the formula (1c) are present in the formula (1), these may be the same or different.
 式(1)中、Ra~Rdのうち少なくとも1つは、式(1b)で表される基及び式(1c)で表される基からなる群より選択される基である。即ち、グリコールウリル誘導体(C)は、分子内に、式(1b)で表される基中に存在するSi-ORg基(特にアルコキシシリル基)及び式(1c)で表される基中に存在するヒドロシリル基のいずれか一方又は両方を有するため、硬化性樹脂組成物の硬化の際には、該組成物中のアルコキシシリル基やシラノール基を有する成分(例えば、ポリシロキサン(A)、(B)等)や、アルケニル基を有する成分(例えば、ポリシロキサン(A))と反応することができ、硬化物の腐食性ガスに対するバリア性を著しく向上させることができる。さらに、Ra~Rdとして式(1a)で表される基を有する場合には、例えば、硬化性樹脂組成物中のヒドロシリル基を有する成分(例えば、ポリシロキサン(B))とも反応することができるため、硬化物の腐食性ガスに対するバリア性を著しく向上させることができる。 In formula (1), at least one of R a to R d is a group selected from the group consisting of a group represented by formula (1b) and a group represented by formula (1c). That is, the glycoluril derivative (C) contains, in the molecule, a Si—OR g group (particularly an alkoxysilyl group) and a group represented by the formula (1c) present in the group represented by the formula (1b). Since one or both of the existing hydrosilyl groups are present, when the curable resin composition is cured, the component having an alkoxysilyl group or silanol group in the composition (for example, polysiloxane (A), ( B) and the like, and a component having an alkenyl group (for example, polysiloxane (A)), the barrier property against the corrosive gas of the cured product can be remarkably improved. Furthermore, when having a group represented by the formula (1a) as R a to R d , for example, it also reacts with a component having a hydrosilyl group (for example, polysiloxane (B)) in the curable resin composition. Therefore, the barrier property against the corrosive gas of the cured product can be remarkably improved.
 中でも、グリコールウリル誘導体(C)における式(1a)~(1c)で表される基の割合は、特に限定されない。例えば、Ra~Rdの全てが式(1b)で表される基である化合物;Ra~Rdの全てが式(1c)で表される基である化合物;Ra~Rdのうち1~3個が式(1b)で表される基であって残りが式(1a)で表される基である化合物;Ra~Rdのうち1~3個が式(1b)で表される基であって残りが式(1c)で表される基である化合物;Ra~Rdのうち1~3個が式(1c)で表される基であって残りが式(1a)で表される基である化合物;Ra~Rdとして、式(1a)で表される基、式(1b)で表される基、及び式(1c)で表される基の全てを有する化合物等が挙げられる。 In particular, the ratio of the groups represented by the formulas (1a) to (1c) in the glycoluril derivative (C) is not particularly limited. For example, a compound in which all the R a ~ R d is a group represented by the formula (1b); a compound in which all the R a ~ R d is a group represented by the formula (1c); a R a ~ R d 1 to 3 of these are compounds represented by the formula (1b) and the rest are groups represented by the formula (1a); 1 to 3 of R a to R d are represented by the formula (1b) compound remainder is a group represented by formula (1c) a group represented; R a ~ R remaining 1-3 is a group represented by formula (1c) of the d is the formula ( Compounds represented by the group represented by 1a): R a to R d are all groups represented by the formula (1a), the group represented by the formula (1b), and the group represented by the formula (1c). And the like.
 式(1)中、Re及びRfは、同一又は異なって、水素原子又はアルキル基を示す。上記アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ヘキシル基、オクチル基、イソオクチル基、デシル基、ドデシル基等のC1-20アルキル基等が挙げられる。中でも、Re及びRfとしては、水素原子又はC1-4アルキル基が好ましく、より好ましくは水素原子又はメチル基である。 In formula (1), R e and R f are the same or different and each represents a hydrogen atom or an alkyl group. Examples of the alkyl group include C 1-20 alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, hexyl group, octyl group, isooctyl group, decyl group, and dodecyl group. Among these, as R e and R f , a hydrogen atom or a C 1-4 alkyl group is preferable, and a hydrogen atom or a methyl group is more preferable.
 なお、本発明の硬化性樹脂組成物がグリコールウリル誘導体(C)を含むことにより、上記硬化性樹脂組成物の硬化物が腐食性ガスに対する優れたバリア性を発揮できるのは、硬化物中でグリコールウリル誘導体(C)におけるグリコールウリル骨格がSOxガス等の腐食性ガスをトラップするためであると推測される。 In addition, in the hardened | cured material, the hardened | cured material of the said curable resin composition can exhibit the outstanding barrier property with respect to corrosive gas because the curable resin composition of this invention contains a glycoluril derivative (C). It is presumed that the glycoluril skeleton in the glycoluril derivative (C) traps corrosive gases such as SOx gas.
 グリコールウリル誘導体(C)は、例えば、グリコールウリル又はその誘導体を出発原料とする公知乃至慣用の方法により製造することができ、その製造方法は特に限定されないが、例えば、下記式(i)で表される化合物と、下記式(ii)で表される化合物及び下記式(iii)で表される化合物からなる群より選択される少なくとも1種の化合物とをヒドロシリル化反応させる工程を必須の工程として含む方法が、グリコールウリル誘導体(C)の効率的な製造方法として例示される。
Figure JPOXMLDOC01-appb-C000046
[式(i)中、s、Re、及びRfは、前記に同じ。]
Figure JPOXMLDOC01-appb-C000047
[式(ii)中、Rgは、前記に同じ。]
Figure JPOXMLDOC01-appb-C000048
[式(iii)中、Rh、Ri、及びtは、前記に同じ。]
The glycoluril derivative (C) can be produced by, for example, a known or conventional method using glycoluril or a derivative thereof as a starting material, and the production method is not particularly limited. For example, the glycoluril derivative (C) is represented by the following formula (i): And a step of hydrosilylating the compound represented by the following formula (ii) and at least one compound selected from the group consisting of the compound represented by the following formula (iii) as an essential step The method of including is illustrated as an efficient manufacturing method of a glycoluril derivative (C).
Figure JPOXMLDOC01-appb-C000046
[In the formula (i), s, R e and R f are the same as above. ]
Figure JPOXMLDOC01-appb-C000047
[In formula (ii), R g is the same as defined above. ]
Figure JPOXMLDOC01-appb-C000048
[In the formula (iii), R h , R i and t are the same as above. ]
 上記ヒドロシリル化反応は、公知乃至慣用の方法、条件等により進行させることができ、特に限定されない。また、ヒドロシリル化反応は、ヒドロシリル化触媒の存在下で進行させることができ、例えば、後述のヒドロシリル化触媒等が使用できる。なお、式(i)で表される化合物に対して、2種以上の化合物(式(ii)で表される化合物、式(iii)で表される化合物)を反応させる場合、上記ヒドロシリル化反応は同時に行うこともできるし、逐次行うこともできる。また、式(i)で表される化合物に対して、式(iii)で表される化合物を反応させる際には、架橋反応によるゲル化を防ぐために、式(i)で表される化合物が有する炭素-炭素二重結合に対して、式(iii)で表される化合物のヒドロシリル基が過剰量となるような量論で反応させることが好ましい。また、上記ヒドロシリル化反応により得られたグリコールウリル誘導体(C)は、精製することなくそのまま使用する(例えば、本発明の硬化性樹脂組成物の構成成分として使用する)こともできるし、公知乃至慣用の精製手段により精製した上で使用することもできる。 The hydrosilylation reaction can be carried out by known or commonly used methods, conditions, etc., and is not particularly limited. Moreover, hydrosilylation reaction can be advanced in presence of a hydrosilylation catalyst, for example, the hydrosilylation catalyst mentioned later etc. can be used. In the case where two or more compounds (compound represented by formula (ii) and compound represented by formula (iii)) are reacted with the compound represented by formula (i), the above hydrosilylation reaction Can be performed simultaneously or sequentially. In addition, when the compound represented by the formula (iii) is reacted with the compound represented by the formula (i), the compound represented by the formula (i) is used in order to prevent gelation due to a crosslinking reaction. It is preferable to react with the carbon-carbon double bond having a stoichiometry so that the hydrosilyl group of the compound represented by the formula (iii) becomes an excessive amount. In addition, the glycoluril derivative (C) obtained by the hydrosilylation reaction can be used as it is without being purified (for example, used as a constituent of the curable resin composition of the present invention). It can also be used after being purified by conventional purification means.
 本発明の硬化性樹脂組成物においてグリコールウリル誘導体(C)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。 In the curable resin composition of the present invention, the glycoluril derivative (C) can be used alone or in combination of two or more.
 本発明の硬化性樹脂組成物におけるグリコールウリル誘導体(C)の含有量(配合量)は、特に限定されないが、ポリシロキサン(A)及びポリシロキサン(B)の総量100重量部に対して、0重量部を超えて20重量部以下が好ましく、より好ましくは0.01~18重量部、さらに好ましくは0.1~15重量部、特に好ましくは0.1~10重量部である。特に含有量を0.01重量部以上とすることにより、硬化物の腐食性ガスに対するバリア性と耐久性(耐熱衝撃性、耐リフロー性等)とが著しく向上する傾向がある。一方、含有量を20重量部以下とすることにより、硬化物の透明性や耐久性(耐熱衝撃性、耐リフロー性等)がより向上する傾向がある。 The content (blending amount) of the glycoluril derivative (C) in the curable resin composition of the present invention is not particularly limited, but is 0 with respect to 100 parts by weight of the total amount of the polysiloxane (A) and the polysiloxane (B). The amount is preferably more than 20 parts by weight and less than 20 parts by weight, more preferably 0.01 to 18 parts by weight, still more preferably 0.1 to 15 parts by weight, and particularly preferably 0.1 to 10 parts by weight. In particular, when the content is 0.01 parts by weight or more, there is a tendency that the barrier property and durability (thermal shock resistance, reflow resistance, etc.) against the corrosive gas of the cured product are remarkably improved. On the other hand, by setting the content to 20 parts by weight or less, the transparency and durability (thermal shock resistance, reflow resistance, etc.) of the cured product tend to be further improved.
[ヒドロシリル化触媒]
 本発明の硬化性樹脂組成物は、さらに、ヒドロシリル化触媒を含んでいてもよい。本発明の硬化性樹脂組成物がヒドロシリル化触媒を含むことにより、加熱することで、硬化性樹脂組成物中のアルケニル基とヒドロシリル基の間のヒドロシリル化反応をより効率的に進行させることができる傾向がある。
[Hydrosilylation catalyst]
The curable resin composition of the present invention may further contain a hydrosilylation catalyst. When the curable resin composition of the present invention contains a hydrosilylation catalyst, the hydrosilylation reaction between the alkenyl group and the hydrosilyl group in the curable resin composition can proceed more efficiently by heating. Tend.
 上記ヒドロシリル化触媒としては、白金系触媒、ロジウム系触媒、パラジウム系触媒等の周知のヒドロシリル化反応用触媒が例示され、具体的には、白金微粉末、白金黒、白金担持シリカ微粉末、白金担持活性炭、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトン等との錯体、白金のオレフィン錯体、白金-カルボニルビニルメチル錯体等の白金のカルボニル錯体、白金-ジビニルテトラメチルジシロキサン錯体や白金-シクロビニルメチルシロキサン錯体等の白金ビニルメチルシロキサン錯体、白金-ホスフィン錯体、白金-ホスファイト錯体等の白金系触媒、並びに上記白金系触媒において白金原子の代わりにパラジウム原子又はロジウム原子を含有するパラジウム系触媒又はロジウム系触媒が挙げられる。中でも、ヒドロシリル化触媒としては、白金ビニルメチルシロキサン錯体や白金-カルボニルビニルメチル錯体や塩化白金酸とアルコール、アルデヒドとの錯体が、反応速度が良好であるため好ましい。 Examples of the hydrosilylation catalyst include known hydrosilylation reaction catalysts such as platinum-based catalysts, rhodium-based catalysts, and palladium-based catalysts. Specifically, platinum fine powder, platinum black, platinum-supported silica fine powder, platinum Supported activated carbon, chloroplatinic acid, complexes of chloroplatinic acid with alcohols, aldehydes, ketones, platinum olefin complexes, platinum carbonyl complexes such as platinum-carbonylvinylmethyl complexes, platinum-divinyltetramethyldisiloxane complexes and platinum- Platinum-based catalysts such as platinum-vinylmethylsiloxane complexes such as cyclovinylmethylsiloxane complexes, platinum-phosphine complexes, platinum-phosphite complexes, etc., and palladium-based catalysts containing palladium atoms or rhodium atoms in place of platinum atoms in the above-mentioned platinum-based catalysts A catalyst or a rhodium-type catalyst is mentioned. Among these, as the hydrosilylation catalyst, a platinum vinylmethylsiloxane complex, a platinum-carbonylvinylmethyl complex, or a complex of chloroplatinic acid and an alcohol or aldehyde is preferable because the reaction rate is good.
 なお、本発明の硬化性樹脂組成物においてヒドロシリル化触媒は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。 In the curable resin composition of the present invention, the hydrosilylation catalyst can be used alone or in combination of two or more.
 本発明の硬化性樹脂組成物におけるヒドロシリル化触媒の含有量(配合量)は、特に限定されないが、硬化性樹脂組成物に含まれるアルケニル基の全量1モルに対して、1×10-8~1×10-2モルが好ましく、より好ましくは1.0×10-6~1.0×10-3モルである。含有量を1×10-8モル以上とすることにより、より効率的に硬化物を形成させることができる傾向がある。一方、含有量を1×10-2モル以下とすることにより、より色相に優れた(着色の少ない)硬化物を得ることができる傾向がある。 The content (blending amount) of the hydrosilylation catalyst in the curable resin composition of the present invention is not particularly limited, but is 1 × 10 −8 to 1 mol of the total amount of alkenyl groups contained in the curable resin composition. 1 × 10 −2 mol is preferable, and 1.0 × 10 −6 to 1.0 × 10 −3 mol is more preferable. By setting the content to 1 × 10 −8 mol or more, there is a tendency that a cured product can be formed more efficiently. On the other hand, when the content is 1 × 10 −2 mol or less, there is a tendency that a cured product having a more excellent hue (less coloring) can be obtained.
 また、本発明の硬化性樹脂組成物におけるヒドロシリル化触媒の含有量(配合量)は、特に限定されないが、例えば、ヒドロシリル化触媒中の白金、パラジウム、又はロジウムが重量単位で、0.01~1000ppmの範囲内となる量が好ましく、0.1~500ppmの範囲内となる量がさらに好ましい。ヒドロシリル化触媒の含有量がこのような範囲にあると、より効率的に硬化物を形成させることができ、また、より色相に優れた硬化物を得ることができる傾向がある。 Further, the content (blending amount) of the hydrosilylation catalyst in the curable resin composition of the present invention is not particularly limited. For example, platinum, palladium, or rhodium in the hydrosilylation catalyst is 0.01 to An amount that falls within the range of 1000 ppm is preferred, and an amount that falls within the range of 0.1 to 500 ppm is more preferred. When the content of the hydrosilylation catalyst is in such a range, a cured product can be formed more efficiently, and a cured product having a more excellent hue tends to be obtained.
 さらに、本発明の硬化性樹脂組成物は、上述の成分以外の成分(「その他の成分」と称する場合がある)を含んでいてもよい。その他の成分としては、特に限定されないが、例えば、ポリシロキサン(A)及び(B)以外のシロキサン化合物(例えば、環状シロキサン化合物、低分子量直鎖又は分岐鎖状シロキサン化合物等)、シランカップリング剤、ヒドロシリル化反応抑制剤、溶媒、各種添加剤等が挙げられる。添加剤としては、例えば、沈降シリカ、湿式シリカ、ヒュームドシリカ、焼成シリカ、酸化チタン、アルミナ、ガラス、石英、アルミノケイ酸、酸化鉄、酸化亜鉛、炭酸カルシウム、カーボンブラック、炭化ケイ素、窒化ケイ素、窒化ホウ素等の無機質充填剤、これらの充填剤をオルガノハロシラン、オルガノアルコキシシラン、オルガノシラザン等の有機ケイ素化合物により処理した無機質充填剤;上述以外のシリコーン樹脂、エポキシ樹脂、フッ素樹脂等の有機樹脂微粉末;銀、銅等の導電性金属粉末等の充填剤、溶剤、安定化剤(酸化防止剤、紫外線吸収剤、耐光安定剤、熱安定化剤等)、難燃剤(リン系難燃剤、ハロゲン系難燃剤、無機系難燃剤等)、難燃助剤、補強材(他の充填剤等)、核剤、カップリング剤、滑剤、ワックス、可塑剤、離型剤、耐衝撃性改良剤、色相改良剤、流動性改良剤、着色剤(染料、顔料等)、分散剤、消泡剤、脱泡剤、抗菌剤、防腐剤、粘度調整剤、増粘剤、蛍光体等が挙げられる。これらのその他の成分は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。なお、その他の成分の含有量(配合量)は、本発明の効果を損なわない範囲で適宜選択することが可能である。 Furthermore, the curable resin composition of the present invention may contain components other than the above-described components (sometimes referred to as “other components”). Examples of other components include, but are not limited to, siloxane compounds other than polysiloxanes (A) and (B) (for example, cyclic siloxane compounds, low molecular weight linear or branched siloxane compounds, etc.), silane coupling agents. , Hydrosilylation reaction inhibitors, solvents, various additives, and the like. Examples of the additive include precipitated silica, wet silica, fumed silica, calcined silica, titanium oxide, alumina, glass, quartz, aluminosilicate, iron oxide, zinc oxide, calcium carbonate, carbon black, silicon carbide, silicon nitride, Inorganic fillers such as boron nitride, inorganic fillers obtained by treating these fillers with organosilicon compounds such as organohalosilanes, organoalkoxysilanes, organosilazanes; organic resins such as silicone resins, epoxy resins, and fluororesins other than those described above Fine powder: Filler such as conductive metal powder such as silver and copper, solvent, stabilizer (antioxidant, ultraviolet absorber, light stabilizer, heat stabilizer, etc.), flame retardant (phosphorous flame retardant, Halogen flame retardants, inorganic flame retardants, etc.), flame retardant aids, reinforcing materials (other fillers, etc.), nucleating agents, coupling agents, lubricants, waxes, Plasticizer, mold release agent, impact resistance improver, hue improver, fluidity improver, colorant (dye, pigment, etc.), dispersant, antifoaming agent, defoaming agent, antibacterial agent, preservative, viscosity adjustment Agents, thickeners, phosphors and the like. These other components can also be used individually by 1 type, and can also be used in combination of 2 or more type. In addition, it is possible to select suitably content (blending amount) of another component in the range which does not impair the effect of this invention.
 本発明の硬化性樹脂組成物は、特に限定されないが、硬化性樹脂組成物中に存在するヒドロシリル基1モルに対して、アルケニル基が0.2~4モルとなるような組成(配合組成)であることが好ましく、より好ましくは0.5~1.5モル、さらに好ましくは0.8~1.2モルである。ヒドロシリル基とアルケニル基との割合を上記範囲に制御することにより、硬化物の耐熱性、透明性、耐熱衝撃性及び耐リフロー性、並びに腐食性ガス(例えば、SOxガス等)に対するバリア性がより向上する傾向がある。 The curable resin composition of the present invention is not particularly limited, but is a composition (composition composition) in which the alkenyl group is 0.2 to 4 mol per 1 mol of hydrosilyl group present in the curable resin composition. The amount is preferably 0.5 to 1.5 mol, more preferably 0.8 to 1.2 mol. By controlling the ratio of hydrosilyl group and alkenyl group within the above range, the cured product has more heat resistance, transparency, thermal shock resistance, reflow resistance, and barrier property against corrosive gas (for example, SOx gas). There is a tendency to improve.
 本発明の硬化性樹脂組成物は、特に限定されないが、上記の各成分を室温で攪拌・混合することにより調製することができる。なお、本発明の硬化性樹脂組成物は、各成分があらかじめ混合されたものをそのまま使用する1液系の組成物として使用することもできるし、例えば、別々に保管しておいた2以上の成分を使用前に所定の割合で混合して使用する多液系(例えば、2液系)の組成物として使用することもできる。 The curable resin composition of the present invention is not particularly limited, but can be prepared by stirring and mixing each of the above components at room temperature. In addition, the curable resin composition of the present invention can be used as a one-component composition in which each component is mixed in advance, for example, two or more stored separately. It can also be used as a multi-component (for example, two-component) composition in which the components are mixed at a predetermined ratio before use.
 本発明の硬化性樹脂組成物は、特に限定されないが、常温(約25℃)で液体であることが好ましい。より具体的には、本発明の硬化性樹脂組成物は、23℃における粘度として、300~20000mPa・sが好ましく、より好ましくは500~10000mPa・s、さらに好ましくは1000~8000mPa・sである。上記粘度を300mPa・s以上とすることにより、硬化物の耐熱性がより向上する傾向がある。一方、上記粘度を20000mPa・s以下とすることにより、硬化性樹脂組成物の調製がしやすく、その生産性や取り扱い性がより向上し、また、硬化物に気泡が残存しにくくなるため、硬化物(特に、封止材)の生産性や品質がより向上する傾向がある。なお、硬化性樹脂組成物の粘度は、例えば、上述のラダー型ポリオルガノシルセスキオキサン(a)の粘度と同様の方法で測定できる。 The curable resin composition of the present invention is not particularly limited, but is preferably liquid at room temperature (about 25 ° C.). More specifically, the curable resin composition of the present invention has a viscosity at 23 ° C. of preferably 300 to 20000 mPa · s, more preferably 500 to 10000 mPa · s, and still more preferably 1000 to 8000 mPa · s. There exists a tendency for the heat resistance of hardened | cured material to improve more by making the said viscosity into 300 mPa * s or more. On the other hand, by setting the viscosity to 20000 mPa · s or less, the curable resin composition can be easily prepared, the productivity and handleability are further improved, and bubbles are less likely to remain in the cured product. There exists a tendency for the productivity and quality of a thing (especially sealing material) to improve more. In addition, the viscosity of curable resin composition can be measured by the method similar to the viscosity of the above-mentioned ladder type polyorgano silsesquioxane (a), for example.
<硬化物>
 本発明の硬化性樹脂組成物を硬化(特に、ヒドロシリル化反応により硬化)させることによって、硬化物(「本発明の硬化物」と称する場合がある)が得られる。硬化(特に、ヒドロシリル化反応による硬化)の際の条件は、特に限定されず、従来公知の条件より適宜選択することができるが、例えば、反応速度の点から、温度(硬化温度)は25~180℃(より好ましくは60~150℃)が好ましく、時間(硬化時間)は5~720分が好ましい。本発明の硬化物は、ポリシロキサン系材料特有の高い耐熱性及び透明性を有するのみならず、耐熱衝撃性及び耐リフロー性に優れ、特に、腐食性ガス(例えば、SOxガス等)に対するバリア性に優れる。
<Hardened product>
By curing the curable resin composition of the present invention (particularly, curing by hydrosilylation reaction), a cured product (sometimes referred to as “cured product of the present invention”) is obtained. Conditions for curing (particularly curing by hydrosilylation reaction) are not particularly limited and can be appropriately selected from conventionally known conditions. For example, from the viewpoint of reaction rate, the temperature (curing temperature) is 25 to 25%. 180 ° C. (more preferably 60 to 150 ° C.) is preferable, and the time (curing time) is preferably 5 to 720 minutes. The cured product of the present invention has not only high heat resistance and transparency specific to polysiloxane materials, but also excellent thermal shock resistance and reflow resistance, and particularly barrier properties against corrosive gases (for example, SOx gas). Excellent.
<封止剤、光半導体装置>
 本発明の硬化性樹脂組成物は、半導体装置における半導体素子の封止用の樹脂組成物(封止剤)(「本発明の封止剤」と称する場合がある)として好ましく使用することができる。具体的には、本発明の封止剤は、光半導体装置における光半導体素子(LED素子)の封止用の樹脂組成物(封止剤)用途に特に好ましく使用できる。本発明の封止剤を硬化させることにより得られる封止材(硬化物)は、ポリシロキサン系材料特有の高い耐熱性及び透明性を有するのみならず、耐熱衝撃性及び耐リフロー性に優れ、特に、腐食性ガス(例えば、SOxガス等)に対するバリア性に優れる。このため、本発明の封止剤は、特に、高輝度、短波長の光半導体素子の封止剤等として好ましく使用できる。本発明の封止剤を使用して光半導体素子を封止することにより、光半導体装置を得ることができる。光半導体素子の封止は、公知乃至慣用の方法により実施でき、特に限定されないが、例えば、本発明の封止剤を所定の成形型内に注入し、所定の条件で加熱硬化して実施できる。硬化温度と硬化時間は、特に限定されないが、硬化物の調製時と同様の範囲で設定することができる。本発明の光半導体装置の一例を図1に示す。図1において、100はリフレクター(光反射用樹脂組成物)、101は金属配線(電極)、102は光半導体素子、103はボンディングワイヤ、104は硬化物(封止材)を示す。
<Sealant, optical semiconductor device>
The curable resin composition of the present invention can be preferably used as a resin composition (encapsulant) for encapsulating semiconductor elements in a semiconductor device (sometimes referred to as “encapsulant of the present invention”). . Specifically, the encapsulant of the present invention can be particularly preferably used for a resin composition (encapsulant) for encapsulating an optical semiconductor element (LED element) in an optical semiconductor device. The sealing material (cured product) obtained by curing the sealing agent of the present invention has not only high heat resistance and transparency specific to polysiloxane materials, but also excellent thermal shock resistance and reflow resistance. In particular, it has excellent barrier properties against corrosive gas (for example, SOx gas). For this reason, the sealing agent of this invention can be preferably used especially as a sealing agent etc. of a high-intensity, short wavelength optical semiconductor element. An optical semiconductor device can be obtained by sealing an optical semiconductor element using the sealing agent of the present invention. The sealing of the optical semiconductor element can be performed by a known or conventional method, and is not particularly limited. For example, the sealing agent of the present invention can be injected into a predetermined mold and cured by heating under predetermined conditions. . The curing temperature and the curing time are not particularly limited, but can be set in the same range as in the preparation of the cured product. An example of the optical semiconductor device of the present invention is shown in FIG. In FIG. 1, 100 is a reflector (light reflecting resin composition), 101 is a metal wiring (electrode), 102 is an optical semiconductor element, 103 is a bonding wire, and 104 is a cured product (sealing material).
 特に、本発明の硬化性樹脂組成物は、従来の樹脂材料では対応することが困難であった、高輝度・短波長の光半導体装置において光半導体素子を被覆する封止材、高耐熱・高耐電圧の半導体装置(パワー半導体等)において半導体素子を被覆する封止材等の用途に好ましく使用できる。 In particular, the curable resin composition of the present invention is a sealing material that covers an optical semiconductor element in a high-brightness, short-wavelength optical semiconductor device, which has been difficult to handle with conventional resin materials, and has high heat resistance and high resistance. In a withstand voltage semiconductor device (such as a power semiconductor), it can be preferably used for applications such as a sealing material covering a semiconductor element.
 本発明の硬化性樹脂組成物は、上述の封止剤用途(特に、光半導体素子の封止剤用途)に限定されず、例えば、機能性コーティング剤、耐熱プラスチックレンズ、透明機器、接着剤(耐熱透明接着剤等)、電気絶縁材(絶縁膜等)、積層板、コーティング、インク、塗料、シーラント、レジスト、複合材料、透明基材、透明シート、透明フィルム、光学素子、光学レンズ、光学部材、光造形、電子ペーパー、タッチパネル、太陽電池基板、光導波路、導光板、ホログラフィックメモリ等の光学関連や半導体関連の用途に好ましく使用できる。 The curable resin composition of the present invention is not limited to the above-described encapsulant application (particularly, an encapsulant application for optical semiconductor elements). For example, a functional coating agent, a heat-resistant plastic lens, a transparent device, an adhesive ( Heat-resistant transparent adhesives, etc.), electrical insulating materials (insulating films, etc.), laminates, coatings, inks, paints, sealants, resists, composite materials, transparent substrates, transparent sheets, transparent films, optical elements, optical lenses, optical members , Optical modeling, electronic paper, touch panel, solar cell substrate, optical waveguide, light guide plate, holographic memory, and other optical and semiconductor applications.
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
 反応生成物及び製品の1H-NMR分析は、JEOL ECA500(500MHz)により行った。また、反応生成物及び製品の数平均分子量及び重量平均分子量の測定は、Alliance HPLCシステム 2695(Waters製)、Refractive Index Detector 2414(Waters製)、カラム:Tskgel GMHHR-M×2(東ソー(株)製)、ガードカラム:Tskgel guard column HHRL(東ソー(株)製)、カラムオーブン:COLUMN HEATER U-620(Sugai製)、溶媒:THF、測定条件:40℃、により行った。 1 H-NMR analysis of the reaction product and product was performed by JEOL ECA500 (500 MHz). In addition, the number average molecular weight and the weight average molecular weight of the reaction product and the product are measured by Alliance HPLC system 2695 (manufactured by Waters), Refractive Index Detector 2414 (manufactured by Waters), column: Tskel GMH HR -M × 2 (Tosoh Corporation) )), Guard column: Tskel guard column H HR L (manufactured by Tosoh Corporation), column oven: COLUMN HEATER U-620 (manufactured by Sugai), solvent: THF, measurement conditions: 40 ° C.
製造例1
[ラダー型ポリオルガノシルセスキオキサンの製造]
 温度計、攪拌装置、還流冷却器、及び窒素導入管を取り付けた100mlのフラスコ(反応容器)に、窒素気流下でビニルトリメトキシシラン65ミリモル(9.64g)、フェニルトリメトキシシラン195ミリモル(38.67g)、及びメチルイソブチルケトン(MIBK)8.31gを仕込み、混合物を10℃まで冷却した。上記混合物に、水360ミリモル(6.48g)及び5Nの塩酸0.24g(塩化水素として1.2ミリモル)を1時間かけて同時に滴下した。滴下後、混合物(反応溶液)を10℃で1時間保持し、加水分解縮合反応を進行させた。その後、MIBKを40g添加して、反応溶液を希釈した。
 次に、反応容器の温度を水浴で調節して、反応溶液の温度を30分間で70℃まで昇温した。70℃になった時点で、水520ミリモル(9.36g)を添加し、重縮合反応を同温度、窒素気流下で6時間行った。続いて、重縮合反応後の反応溶液にヘキサメチルジシロキサン130ミリモル(21.11g)を添加して、シリル化反応を70℃で3時間行った。その後、冷却し、下層液が中性になるまで水洗を行い、上層液を分取した後、1mmHg、40℃の条件で上層液から溶媒を留去し、無色透明の液状の生成物(38.6g;ビニル基を有するラダー型ポリオルガノシルセスキオキサン)を得た。なお、製造例1で得られたラダー型ポリオルガノシルセスキオキサンは、上述のラダー型ポリオルガノシルセスキオキサン(a)にあたる。
 上記生成物(シリル化反応後の生成物)の数平均分子量は1280であり、分子量分散度は1.13であった。
Production Example 1
[Production of ladder-type polyorganosilsesquioxane]
A 100 ml flask (reaction vessel) equipped with a thermometer, a stirrer, a reflux condenser, and a nitrogen inlet tube was charged with 65 mmol (9.64 g) vinyltrimethoxysilane and 195 mmol phenyltrimethoxysilane (38 mmol) under a nitrogen stream. .67 g) and 8.31 g of methyl isobutyl ketone (MIBK) were charged and the mixture was cooled to 10 ° C. To the above mixture, 360 mmol (6.48 g) of water and 0.24 g of 5N hydrochloric acid (1.2 mmol as hydrogen chloride) were simultaneously added dropwise over 1 hour. After the dropwise addition, the mixture (reaction solution) was kept at 10 ° C. for 1 hour to allow hydrolysis condensation reaction to proceed. Thereafter, 40 g of MIBK was added to dilute the reaction solution.
Next, the temperature of the reaction vessel was adjusted with a water bath, and the temperature of the reaction solution was raised to 70 ° C. in 30 minutes. When the temperature reached 70 ° C., 520 mmol (9.36 g) of water was added, and the polycondensation reaction was performed at the same temperature under a nitrogen stream for 6 hours. Subsequently, 130 mmol (21.11 g) of hexamethyldisiloxane was added to the reaction solution after the polycondensation reaction, and the silylation reaction was performed at 70 ° C. for 3 hours. Thereafter, the mixture is cooled, washed with water until the lower layer solution becomes neutral, and after the upper layer solution is collected, the solvent is distilled off from the upper layer solution under the conditions of 1 mmHg and 40 ° C. to obtain a colorless and transparent liquid product (38 0.6 g; a ladder-type polyorganosilsesquioxane having a vinyl group) was obtained. Note that the ladder-type polyorganosilsesquioxane obtained in Production Example 1 corresponds to the ladder-type polyorganosilsesquioxane (a) described above.
The product (the product after the silylation reaction) had a number average molecular weight of 1280 and a molecular weight dispersity of 1.13.
製造例2
[末端にビニル基とトリメチルシリル基(TMS基)とを有するラダー型ポリオルガノシルセスキオキサンの合成]
 200ml四つ口フラスコに、メチルトリエトキシシラン(信越化学工業(株)製)40.10g、フェニルトリエトキシシラン(信越化学工業(株)製)3.38g、及びメチルイソブチルケトン(MIBK)17.69gを仕込み、これらの混合物を10℃まで冷却した。上記混合物に水240ミリモル(4.33g)及び5Nの塩酸0.48g(塩化水素として2.4ミリモル)を1時間かけて同時滴下した。滴下後、これらの混合物を10℃で1時間保持した。その後、MIBKを80.0g添加して、反応溶液を希釈した。
 次に、反応容器の温度を70℃まで昇温し、70℃になった時点で水606ミリモル(10.91g)を添加し、重縮合反応を窒素下で9時間行った。さらに、ビニルトリエトキシシラン6.25gを添加し、3時間反応(熟成)を行った。
 続いて、上記反応溶液にヘキサメチルジシロキサン15.0gを添加して、シリル化反応を70℃で3時間行った。その後、反応溶液を冷却し、下層液が中性になるまで水洗を行い、その後、上層液を分取した。次に、当該上層液から、1mmHg、60℃の条件で溶媒を留去し、末端にビニル基とTMS基とを有するラダー型ポリオルガノシルセスキオキサンを無色透明の液状の生成物として19.0g得た。
 上記末端にビニル基とTMS基とを有するラダー型ポリオルガノシルセスキオキサンの重量平均分子量(Mw)は3000、1分子当たりのビニル基の含有量(平均含有量)は4.00重量%であり、フェニル基/メチル基/ビニル基(モル比)は5/80/15であった。なお、製造例2で得られたラダー型ポリオルガノシルセスキオキサンは、上述のラダー型ポリオルガノシルセスキオキサン(b)にあたる。
(末端にビニル基とTMS基とを有するラダー型ポリオルガノシルセスキオキサンの1H-NMRスペクトル)
 1H-NMR(JEOL ECA500(500MHz、CDCl3)):δ-0.3-0.3ppm(br)、5.7-6.2ppm(br)、7.1-7.7ppm(br)
Production Example 2
[Synthesis of Ladder Type Polyorganosilsesquioxane Having Vinyl Group and Trimethylsilyl Group (TMS Group) at Terminal]
In a 200 ml four-necked flask, 40.10 g of methyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.), 3.38 g of phenyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.), and 17.17 g of methyl isobutyl ketone (MIBK). 69 g was charged and the mixture was cooled to 10 ° C. To the above mixture, 240 mmol (4.33 g) of water and 0.48 g of 5N hydrochloric acid (2.4 mmol as hydrogen chloride) were simultaneously added dropwise over 1 hour. After the addition, these mixtures were kept at 10 ° C. for 1 hour. Thereafter, 80.0 g of MIBK was added to dilute the reaction solution.
Next, the temperature of the reaction vessel was raised to 70 ° C., and when the temperature reached 70 ° C., 606 mmol (10.91 g) of water was added, and the polycondensation reaction was performed under nitrogen for 9 hours. Furthermore, 6.25 g of vinyltriethoxysilane was added and the reaction (aging) was performed for 3 hours.
Subsequently, 15.0 g of hexamethyldisiloxane was added to the reaction solution, and a silylation reaction was performed at 70 ° C. for 3 hours. Thereafter, the reaction solution was cooled, washed with water until the lower layer solution became neutral, and then the upper layer solution was collected. Next, the solvent is distilled off from the upper layer liquid under the conditions of 1 mmHg and 60 ° C., and a ladder-type polyorganosilsesquioxane having a vinyl group and a TMS group at the end is used as a colorless and transparent liquid product. 0 g was obtained.
The ladder type polyorganosilsesquioxane having a vinyl group and a TMS group at the terminal has a weight average molecular weight (Mw) of 3000, and a vinyl group content (average content) per molecule of 4.00% by weight. Yes, and the phenyl group / methyl group / vinyl group (molar ratio) was 5/80/15. The ladder-type polyorganosilsesquioxane obtained in Production Example 2 corresponds to the ladder-type polyorganosilsesquioxane (b) described above.
( 1 H-NMR spectrum of ladder-type polyorganosilsesquioxane having a vinyl group and a TMS group at the end)
1 H-NMR (JEOL ECA500 (500 MHz, CDCl 3 )): δ-0.3-0.3 ppm (br), 5.7-6.2 ppm (br), 7.1-7.7 ppm (br)
 ポリシロキサン(A)、(B)としては、製造例1及び製造例2で得られたラダー型ポリオルガノシルセスキオキサンの他、次の製品を使用した。
 ETERLED GD1130A:長興化学工業製、ビニル基含有量4.32重量%、フェニル基含有量44.18重量%、数平均分子量1107、重量平均分子量6099、ヒドロシリル化触媒を含む。
 ETERLED GD1130B:長興化学工業製、ビニル基含有量3.45重量%、フェニル基含有量50.96重量%、ヒドロシリル基(Si-H)含有量(ヒドリド換算)0.17重量%、数平均分子量631、重量平均分子量1305
 OE6630A:東レ・ダウコーニング(株)製、ビニル基含有量2.17重量%、フェニル基含有量51.94重量%、ヒドロシリル基含有量(ヒドリド換算)0重量%、数平均分子量2532、重量平均分子量4490、ヒドロシリル化触媒を含む。
 OE6630B:東レ・ダウコーニング(株)製、ビニル基含有量3.87重量%、フェニル基含有量50.11重量%、ヒドロシリル基含有量(ヒドリド換算)0.17重量%、数平均分子量783、重量平均分子量1330
 KER-2500A:信越化学工業(株)製、ビニル基含有量1.53重量%、フェニル基含有量0重量%、ヒドロシリル基含有量(ヒドリド換算)0.03重量%、数平均分子量4453、重量平均分子量19355、ヒドロシリル化触媒を含む。
 KER-2500B:信越化学工業(株)製、ビニル基含有量1.08重量%、フェニル基含有量0重量%、ヒドロシリル基含有量(ヒドリド換算)0.13重量%、数平均分子量4636、重量平均分子量18814
 ETERLED GD1012A:長興化学工業製、ビニル基含有量1.33重量%、フェニル基含有量0重量%、ヒドロシリル基含有量(ヒドリド換算)0重量%、数平均分子量5108、重量平均分子量23385、ヒドロシリル化触媒を含む。
 ETERLED GD1012B:長興化学工業製、ビニル基含有量1.65重量%、フェニル基含有量0重量%、ヒドロシリル基含有量(ヒドリド換算)0.19重量%、数平均分子量4563、重量平均分子量21873
As polysiloxane (A) and (B), the following products were used in addition to the ladder-type polyorganosilsesquioxane obtained in Production Example 1 and Production Example 2.
ETERLED GD1130A: manufactured by Changxing Chemical Industry, vinyl group content 4.32% by weight, phenyl group content 44.18% by weight, number average molecular weight 1107, weight average molecular weight 6099, and hydrosilylation catalyst.
ETERLED GD1130B: manufactured by Changxing Chemical Industry, vinyl group content 3.45% by weight, phenyl group content 50.96% by weight, hydrosilyl group (Si—H) content (hydride conversion) 0.17% by weight, number average molecular weight 631, weight average molecular weight 1305
OE6630A: manufactured by Toray Dow Corning Co., Ltd., vinyl group content 2.17 wt%, phenyl group content 51.94 wt%, hydrosilyl group content (hydride conversion) 0 wt%, number average molecular weight 2532, weight average Molecular weight 4490, including hydrosilylation catalyst.
OE6630B: manufactured by Toray Dow Corning Co., Ltd., vinyl group content 3.87% by weight, phenyl group content 50.11% by weight, hydrosilyl group content (in terms of hydride) 0.17% by weight, number average molecular weight 783, Weight average molecular weight 1330
KER-2500A: manufactured by Shin-Etsu Chemical Co., Ltd., vinyl group content 1.53% by weight, phenyl group content 0% by weight, hydrosilyl group content (hydride conversion) 0.03% by weight, number average molecular weight 4453, weight Average molecular weight 19355, including hydrosilylation catalyst.
KER-2500B: manufactured by Shin-Etsu Chemical Co., Ltd., vinyl group content 1.08% by weight, phenyl group content 0% by weight, hydrosilyl group content (hydride conversion) 0.13% by weight, number average molecular weight 4636, weight Average molecular weight 18814
ETERLED GD1012A: manufactured by Changxing Chemical Industry Co., Ltd., vinyl group content 1.33% by weight, phenyl group content 0% by weight, hydrosilyl group content (hydride conversion) 0% by weight, number average molecular weight 5108, weight average molecular weight 23385, hydrosilylation Contains catalyst.
ETERLED GD1012B: manufactured by Changxing Chemical Industry, vinyl group content 1.65% by weight, phenyl group content 0% by weight, hydrosilyl group content (hydride conversion) 0.19% by weight, number average molecular weight 4563, weight average molecular weight 21873
 グリコールウリル誘導体(C)としては、以下の合成例1~3で得られた化合物を使用した。 As the glycoluril derivative (C), the compounds obtained in Synthesis Examples 1 to 3 below were used.
合成例1
[1分子中に平均でアリル基を2つとトリメトキシシリル基を2つ有するグリコールウリル化合物(グリコールウリル誘導体)の合成]
 温度計、攪拌装置、還流冷却器、及び窒素導入管を取り付けた200mlのフラスコ(反応容器)に、窒素気流下でグリコールウリルテトラアリル化合物TA-G(40.00g、四国化成工業(株)製、sが1であり、Re及びRfが水素原子である式(i)で表される化合物)、メチルイソブチルケトン(40.00g、関東化学(株)製)、及び白金-1,4-ジビニル-1,1,4,4-テトラメチルジシロキサン錯体の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン溶液(0.244mg、シグマアルドリッチ社製、白金含量3.0wt%)を仕込み、80℃まで加熱した。その後、滴下漏斗でトリメトキシシラン(32.33g、東京化成工業(株)製)をメチルイソブチルケトン10gに溶解させた液を4時間かけて滴下した。さらに4時間熟成を行い、反応を終了とした。反応液冷却後、1mmHg、60℃の条件で溶媒と過剰量加えたトリメトキシシランを留去し、無色透明の液状の生成物(57.80g;1分子中に平均でアリル基を2つとトリメトキシシリル基を2つ有するグリコールウリル化合物)を得た。
 FAB-MASS:545(H+)
Synthesis example 1
[Synthesis of glycoluril compound (glycoluril derivative) having two allyl groups and two trimethoxysilyl groups on average in one molecule]
Glycoluril tetraallyl compound TA-G (40.00 g, manufactured by Shikoku Kasei Kogyo Co., Ltd.) in a 200 ml flask (reaction vessel) equipped with a thermometer, a stirrer, a reflux condenser, and a nitrogen introduction tube , S is 1, and R e and R f are hydrogen atoms, a compound represented by formula (i)), methyl isobutyl ketone (40.00 g, manufactured by Kanto Chemical Co., Inc.), and platinum-1,4 -1,3-divinyl-1,1,3,3-tetramethyldisiloxane solution of divinyl-1,1,4,4-tetramethyldisiloxane complex (0.244 mg, manufactured by Sigma-Aldrich, platinum content 3. 0 wt%) and heated to 80 ° C. Thereafter, a solution obtained by dissolving trimethoxysilane (32.33 g, manufactured by Tokyo Chemical Industry Co., Ltd.) in 10 g of methyl isobutyl ketone was added dropwise over 4 hours with a dropping funnel. Further, aging was performed for 4 hours to complete the reaction. After cooling the reaction solution, the trimethoxysilane added in excess with a solvent under the conditions of 1 mmHg and 60 ° C. was distilled off to obtain a colorless and transparent liquid product (57.80 g; two allyl groups on average per molecule and trimethylsilane). A glycoluril compound having two methoxysilyl groups) was obtained.
FAB-MASS: 545 (H +)
合成例2
[1分子中に平均でヒドロシリル基を2つとトリメトキシシリル基を2つ有するグリコールウリル化合物(グリコールウリル誘導体)の合成]
 温度計、攪拌装置、還流冷却器、及び窒素導入管を取り付けた100mlのフラスコ(反応容器)に、窒素気流下で1,1,3,3-テトラメチルジシロキサン(14.70g、東京化成工業(株)製)、トルエン(20.00g、関東化学(株)製)、及び白金-1,4-ジビニル-1,1,4,4-テトラメチルジシロキサン錯体の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン溶液(0.074mg、シグマアルドリッチ社製、白金含量3.0wt%)を仕込み、80℃まで加熱した。その後、滴下漏斗で、合成例1で得られた生成物 (20.00g)をトルエン20.00gに溶解させた液を4時間かけて滴下した。さらに4時間熟成を行い、反応を終了とした。反応液冷却後、1mmHg、60℃の条件で溶媒と過剰量加えた1,1,3,3-テトラメチルジシロキサンを留去し、無色透明の液状の生成物(26.84g;1分子中に平均でヒドロシリル基を2つとトリメトキシシリル基を2つ有するグリコールウリル化合物)を得た。
 FAB-MASS:814(H+)
Synthesis example 2
[Synthesis of glycoluril compound (glycoluril derivative) having two hydrosilyl groups and two trimethoxysilyl groups on average in one molecule]
A 1,1,3,3-tetramethyldisiloxane (14.70 g, Tokyo Chemical Industry Co., Ltd.) under a nitrogen stream in a 100 ml flask (reaction vessel) equipped with a thermometer, a stirrer, a reflux condenser, and a nitrogen inlet tube ), Toluene (20.00 g, manufactured by Kanto Chemical Co., Inc.), and 1,3-divinyl-1 of platinum-1,4-divinyl-1,1,4,4-tetramethyldisiloxane complex , 1,3,3-tetramethyldisiloxane solution (0.074 mg, Sigma-Aldrich, platinum content 3.0 wt%) was charged and heated to 80 ° C. Thereafter, a solution obtained by dissolving the product (20.00 g) obtained in Synthesis Example 1 in 20.00 g of toluene was dropped with a dropping funnel over 4 hours. Further, aging was performed for 4 hours to complete the reaction. After cooling the reaction solution, 1,1,3,3-tetramethyldisiloxane added in excess with a solvent under the conditions of 1 mmHg and 60 ° C. was distilled off to obtain a colorless and transparent liquid product (26.84 g; The glycoluril compound having two hydrosilyl groups and two trimethoxysilyl groups on average.
FAB-MASS: 814 (H +)
合成例3
[1分子中にヒドロシリル基を4つ有するグリコールウリル化合物(グリコールウリル誘導体)の合成]
 温度計、攪拌装置、還流冷却器、及び窒素導入管を取り付けた100mlのフラスコ(反応容器)に、窒素気流下で1,1,3,3-テトラメチルジシロキサン(22.21g、東京化成工業(株)製)、トルエン(20.00g、関東化学(株)製)、及び白金-1,4-ジビニル-1,1,4,4-テトラメチルジシロキサン錯体の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン溶液(0.12mg、シグマアルドリッチ社製、白金含量0.3wt%)を仕込み、70℃まで加熱した。その後、滴下漏斗でグリコールウリルテトラアリル化合物TA-G(10.00g、四国化成工業(株)製)をトルエン10.00gに溶解させた液を4時間かけて滴下した。さらに4時間熟成を行い、反応を終了とした。反応液冷却後、1mmHg、60℃の条件で溶媒と過剰量加えた1,1,3,3-テトラメチルジシロキサンを留去し、無色透明の液状の生成物(23.20g;4つのヒドロシリル基を有するグリコールウリルシロキサン化合物)を得た。
 FAB-MASS:838(H+)
Synthesis example 3
[Synthesis of a glycoluril compound (glycoluril derivative) having four hydrosilyl groups in one molecule]
A 1,1,3,3-tetramethyldisiloxane (22.21 g, Tokyo Chemical Industry Co., Ltd.) under a nitrogen stream in a 100 ml flask (reaction vessel) equipped with a thermometer, a stirrer, a reflux condenser, and a nitrogen inlet tube ), Toluene (20.00 g, manufactured by Kanto Chemical Co., Inc.), and 1,3-divinyl-1 of platinum-1,4-divinyl-1,1,4,4-tetramethyldisiloxane complex 1,3,3-tetramethyldisiloxane solution (0.12 mg, Sigma-Aldrich, platinum content 0.3 wt%) was charged and heated to 70 ° C. Thereafter, a solution obtained by dissolving glycoluril tetraallyl compound TA-G (10.00 g, manufactured by Shikoku Kasei Kogyo Co., Ltd.) in 10.00 g of toluene was added dropwise over 4 hours with a dropping funnel. Further, aging was performed for 4 hours to complete the reaction. After cooling the reaction solution, 1,1,3,3-tetramethyldisiloxane added in excess with a solvent under the conditions of 1 mmHg and 60 ° C. was distilled off to obtain a colorless and transparent liquid product (23.20 g; four hydrosilyl compounds). Glycolurilsiloxane compound having a group) was obtained.
FAB-MASS: 838 (H +)
実施例1
[硬化性樹脂組成物の製造]
 まず、表1に示すように、ETERLED GD1130A(20重量部)、及び合成例1で得られた化合物(0.2重量部)を混合し、室温で1時間撹拌して、A剤を調製した。
 次に、上記で得たA剤(20.2重量部)に対して、B剤としてETERLED GD1130B(80重量部)を混合し、室温で1時間攪拌したところ、各成分の相溶性は良好であり、透明で均一な液体である硬化性樹脂組成物が得られた。
Example 1
[Production of curable resin composition]
First, as shown in Table 1, ETERLED GD1130A (20 parts by weight) and the compound obtained in Synthesis Example 1 (0.2 parts by weight) were mixed and stirred at room temperature for 1 hour to prepare agent A. .
Next, ETERLED GD1130B (80 parts by weight) as a B agent was mixed with the A agent (20.2 parts by weight) obtained above and stirred at room temperature for 1 hour. The compatibility of each component was good. There was obtained a curable resin composition which was a transparent and uniform liquid.
[光半導体装置の製造]
 図1に示す態様のLEDパッケージ(InGaN素子、3.5mm×2.8mm)に、上記で得られた硬化性樹脂組成物を注入し、60℃で1時間、続いて80℃で1時間、さらに150℃で4時間加熱することで、上記硬化性樹脂組成物の硬化物により光半導体素子が封止された光半導体装置を製造した。
[Manufacture of optical semiconductor devices]
The LED package (InGaN element, 3.5 mm × 2.8 mm) of the embodiment shown in FIG. 1 is injected with the curable resin composition obtained above, at 60 ° C. for 1 hour, and then at 80 ° C. for 1 hour. Furthermore, the optical semiconductor device by which the optical semiconductor element was sealed with the hardened | cured material of the said curable resin composition was manufactured by heating at 150 degreeC for 4 hours.
実施例2~12、比較例1~5
 表1、2に示すように硬化性樹脂組成物の配合組成を変更したこと以外は実施例1と同様にして、硬化性樹脂組成物を製造した。
 また、上記で得られた硬化性樹脂組成物を用いて、実施例1と同様にして光半導体装置を製造した。
Examples 2 to 12, Comparative Examples 1 to 5
As shown in Tables 1 and 2, a curable resin composition was produced in the same manner as in Example 1 except that the composition of the curable resin composition was changed.
Moreover, the optical semiconductor device was manufactured like Example 1 using the curable resin composition obtained above.
(評価)
 上記で得られた光半導体装置について、下記の評価を行った。評価結果を表1、2に示す。
(Evaluation)
The following evaluation was performed about the optical semiconductor device obtained above. The evaluation results are shown in Tables 1 and 2.
[硫黄腐食試験]
 上記で製造した光半導体装置を試料として用いた。
 まず、上記試料について、全光束測定機(オプトロニックラボラトリーズ社製、マルチ分光放射測定システム「OL771」)を用いて、20mAの電流を流した際の全光束(単位:lm)を測定し、これを「試験前の全光束」とした。
 次に、上記試料と硫黄粉末(キシダ化学(株)製)0.3gとを450mlのガラス瓶に入れ、さらに上記ガラス瓶をアルミ製の箱の中に入れた。続いて、上記アルミ製の箱を80℃のオーブン(ヤマト科学(株)製、型番「DN-64」)に入れ、4時間後(実施例10~12、比較例4、5;メチルシリコーン系)又は24時間後(実施例1~9、比較例1~3;フェニルシリコーン系)に取り出した。このようにして得られた試料について、上記と同様に全光束を測定し、これを「試験後の全光束」とした。
 上記で測定した全光束の値から、次式に従って光度維持率を算出した。
  光度維持率(%)=(試験後の全光束/試験前の全光束)×100
 光度維持率が高いほど、硬化物(封止材)が腐食性ガスに対するバリア性に優れることを示す。
 なお、硬化性樹脂組成物ごとに(各実施例・比較例ごとに)10個の光半導体装置について光度維持率を測定・算出し、表1、2にはこれらの光度維持率の平均値(N=10)を示した。
[Sulfur corrosion test]
The optical semiconductor device manufactured above was used as a sample.
First, with respect to the above sample, the total luminous flux (unit: lm) when a current of 20 mA was passed was measured using a total luminous flux measuring machine (manufactured by Optronic Laboratories, Inc., multispectral radiation measurement system “OL771”). Was defined as “total luminous flux before test”.
Next, the sample and 0.3 g of sulfur powder (manufactured by Kishida Chemical Co., Ltd.) were placed in a 450 ml glass bottle, and the glass bottle was further placed in an aluminum box. Subsequently, the aluminum box was placed in an oven at 80 ° C. (model number “DN-64”, manufactured by Yamato Scientific Co., Ltd.), and after 4 hours (Examples 10 to 12, Comparative Examples 4 and 5; methyl silicone type) ) Or after 24 hours (Examples 1 to 9, Comparative Examples 1 to 3; phenyl silicone type). With respect to the sample thus obtained, the total luminous flux was measured in the same manner as described above, and this was designated as “total luminous flux after test”.
From the value of the total luminous flux measured above, the luminous intensity maintenance factor was calculated according to the following formula.
Luminance maintenance rate (%) = (total luminous flux after test / total luminous flux before test) × 100
It shows that hardened | cured material (sealing material) is excellent in the barrier property with respect to corrosive gas, so that a luminous intensity maintenance factor is high.
For each curable resin composition (each example / comparative example), the light intensity maintenance rate was measured and calculated for 10 optical semiconductor devices, and Tables 1 and 2 show the average values of these light intensity maintenance rates ( N = 10).
[熱衝撃試験]
 上記で製造した光半導体装置を試料として用いた。試料は、硬化性樹脂組成物ごとに10個ずつ用いた。なお、試料は、試験前に20mAの電流を通電した時に点灯するものであることを確認した上で用いた。
 上記試料に対して、熱衝撃試験機(エスペック(株)製、型番「TSB-21」)を用いて、-40℃で5分間、続いて100℃で5分間曝露することを1サイクルとした熱衝撃の付与を、実施例1~9、比較例1~3(フェニルシリコーン系)は1000サイクル、実施例10~12、比較例4、5(メチルシリコーン系)は3000サイクル実施した。その後、1000サイクル又は3000サイクルの熱衝撃を付与した後の試料について、20mAの電流を通電し、点灯しなかった試料の数を計測した。そして、下記基準で、熱衝撃に対する耐久性(耐熱衝撃性)を評価した。
 ○(耐久性に優れる):点灯しなかった試料の数が0個 
 ×(耐久性に劣る):点灯しなかった試料の数が1個以上
[Thermal shock test]
The optical semiconductor device manufactured above was used as a sample. Ten samples were used for each curable resin composition. The sample was used after confirming that it was turned on when a current of 20 mA was applied before the test.
One cycle of the above sample was exposed to −40 ° C. for 5 minutes and then at 100 ° C. for 5 minutes using a thermal shock tester (manufactured by Espec Corp., model number “TSB-21”). Application of thermal shock was performed in 1000 cycles for Examples 1 to 9 and Comparative Examples 1 to 3 (phenyl silicone type), and 3000 cycles for Examples 10 to 12 and Comparative Examples 4 and 5 (methyl silicone type). Then, about the sample after giving the thermal shock of 1000 cycles or 3000 cycles, the electric current of 20 mA was supplied and the number of the samples which did not light was measured. The durability against thermal shock (thermal shock resistance) was evaluated according to the following criteria.
○ (Excellent durability): 0 samples that did not light
X (Inferior in durability): The number of samples that did not light up was 1 or more
[吸湿リフロー試験]
 上記で製造した光半導体装置を試料として用いた。試料は、硬化性樹脂組成物ごとに10個ずつ用いた。なお、試料は、試験前に20mAの電流を通電した時に点灯するものであることを確認した上で用いた。
 上記試料を30℃、60%RHに調整した恒温恒湿槽(エスペック(株)製、型番「SH-641」)に入れ、192時間後に取り出した。続いて、上記試料について、リフロー炉(ANTOM(株)製、型番「UNI-5016F」)を用いて、260℃で10秒間の加熱処理を2回施した。その後、リフロー炉による2回の加熱処理を施した後の試料について、20mAの電流を通電し、点灯しなかった試料の数を計測した。そして、下記基準で、吸湿リフローに対する耐久性(吸湿処理後の耐リフロー性)を評価した。
 ○(耐久性に優れる):点灯しなかった試料の数が0個 
 ×(耐久性に劣る):点灯しなかった試料の数が1個以上
[Hygroscopic reflow test]
The optical semiconductor device manufactured above was used as a sample. Ten samples were used for each curable resin composition. The sample was used after confirming that it was turned on when a current of 20 mA was applied before the test.
The sample was placed in a constant temperature and humidity chamber (manufactured by ESPEC Corporation, model number “SH-641”) adjusted to 30 ° C. and 60% RH, and taken out after 192 hours. Subsequently, the sample was heat-treated twice at 260 ° C. for 10 seconds using a reflow furnace (manufactured by ANTOM Co., Ltd., model number “UNI-5016F”). Then, about the sample after performing the heat processing 2 times by a reflow furnace, the electric current of 20 mA was supplied and the number of the samples which did not light was measured. And the durability with respect to moisture absorption reflow (reflow resistance after moisture absorption treatment) was evaluated according to the following criteria.
○ (Excellent durability): 0 samples that did not light
X (Inferior in durability): The number of samples that did not light up was 1 or more
[総合判定]
 以下の基準で総合判定を行った。
 硫黄腐食試験において測定された光度維持率が80%以上であり、なおかつ熱衝撃試験と吸湿リフロー試験の結果がともに○であった場合を総合判定○(優れている)とし、それ以外の場合を総合判定×(劣っている)と判定した。
[Comprehensive judgment]
Comprehensive judgment was performed according to the following criteria.
When the luminous intensity maintenance rate measured in the sulfur corrosion test is 80% or more and both the results of the thermal shock test and the moisture absorption reflow test are ○, the overall judgment is ○ (excellent). It was determined that the overall judgment x (inferior).
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000050
 本発明の硬化性樹脂組成物は、耐熱性、透明性、耐熱衝撃性、耐リフロー性、腐食性ガスに対するバリア性が求められる接着剤、コーティング剤、封止剤等の用途に有用である。特に、本発明の硬化性樹脂組成物は、光半導体素子(LED素子)の封止剤として好ましく使用できる。 The curable resin composition of the present invention is useful for applications such as adhesives, coating agents and sealants that require heat resistance, transparency, thermal shock resistance, reflow resistance, and barrier properties against corrosive gases. In particular, the curable resin composition of the present invention can be preferably used as a sealant for an optical semiconductor element (LED element).
 100:リフレクター(光反射用樹脂組成物)
 101:金属配線(電極)
 102:光半導体素子
 103:ボンディングワイヤ
 104:硬化物(封止材)
100: Reflector (resin composition for light reflection)
101: Metal wiring (electrode)
102: Optical semiconductor element 103: Bonding wire 104: Cured material (sealing material)

Claims (8)

  1.  分子内に2個以上のアルケニル基を有するポリオルガノシロキサン(A1)及び分子内に2個以上のアルケニル基を有するポリオルガノシロキシシルアルキレン(A2)からなる群より選択される少なくとも1種であるポリシロキサン(A)と、分子内に2個以上のヒドロシリル基を有するポリオルガノシロキサン(B1)及び分子内に2個以上のヒドロシリル基を有するポリオルガノシロキシシルアルキレン(B2)からなる群より選択される少なくとも1種であるポリシロキサン(B)と、下記式(1)
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、Ra~Rdは、同一又は異なって、下記式(1a)で表される基、下記式(1b)で表される基、又は、下記式(1c)で表される基である。但し、Ra~Rdのうち、少なくとも1つは、式(1b)で表される基及び式(1c)で表される基からなる群より選択される基である。Re及びRfは、同一又は異なって、水素原子又はアルキル基を示す。
    Figure JPOXMLDOC01-appb-C000002
    [式(1a)~(1c)中、sは、同一又は異なって、0又は1以上の整数を示す。式(1b)中、Rgは、同一又は異なって、水素原子、又は一価の置換若しくは無置換炭化水素基を示す。式(1c)中、Rh及びRiは、同一又は異なって、水素原子、又は一価の置換若しくは無置換炭化水素基を示し、tは0又は1以上の整数を示す。]]
    で表されるグリコールウリル誘導体(C)とを含むことを特徴とする硬化性樹脂組成物。
    A poly at least one selected from the group consisting of a polyorganosiloxane (A1) having two or more alkenyl groups in the molecule and a polyorganosiloxysilalkylene (A2) having two or more alkenyl groups in the molecule Selected from the group consisting of siloxane (A), polyorganosiloxane (B1) having two or more hydrosilyl groups in the molecule, and polyorganosiloxysilalkylene (B2) having two or more hydrosilyl groups in the molecule At least one polysiloxane (B) and the following formula (1)
    Figure JPOXMLDOC01-appb-C000001
    [In formula (1), R a to R d are the same or different and are represented by the group represented by the following formula (1a), the group represented by the following formula (1b), or the following formula (1c). Group. However, at least one of R a to R d is a group selected from the group consisting of a group represented by the formula (1b) and a group represented by the formula (1c). R e and R f are the same or different and each represents a hydrogen atom or an alkyl group.
    Figure JPOXMLDOC01-appb-C000002
    [In the formulas (1a) to (1c), s is the same or different and represents 0 or an integer of 1 or more. In formula (1b), R g is the same or different and represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group. In formula (1c), R h and R i are the same or different and each represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group, and t represents 0 or an integer of 1 or more. ]]
    And a glycoluril derivative (C) represented by the formula:
  2.  さらに、ヒドロシリル化触媒を含む請求項1に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, further comprising a hydrosilylation catalyst.
  3.  請求項1又は2に記載の硬化性樹脂組成物を硬化させて得られる硬化物。 A cured product obtained by curing the curable resin composition according to claim 1.
  4.  封止剤である請求項1又は2に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, which is a sealing agent.
  5.  請求項4に記載の硬化性樹脂組成物を用いて半導体素子を封止して得られる半導体装置。 A semiconductor device obtained by sealing a semiconductor element using the curable resin composition according to claim 4.
  6.  光半導体装置である請求項5に記載の半導体装置。 The semiconductor device according to claim 5, wherein the semiconductor device is an optical semiconductor device.
  7.  下記式(1)
    Figure JPOXMLDOC01-appb-C000003
    [式(1)中、Ra~Rdは、同一又は異なって、下記式(1a)で表される基、下記式(1b)で表される基、又は、下記式(1c)で表される基である。但し、Ra~Rdのうち、少なくとも1つは、式(1b)で表される基及び式(1c)で表される基からなる群より選択される基である。Re及びRfは、同一又は異なって、水素原子又はアルキル基を示す。
    Figure JPOXMLDOC01-appb-C000004
    [式(1a)~(1c)中、sは、同一又は異なって、0又は1以上の整数を示す。式(1b)中、Rgは、同一又は異なって、水素原子、又は一価の置換若しくは無置換炭化水素基を示す。式(1c)中、Rh及びRiは、同一又は異なって、水素原子、又は一価の置換若しくは無置換炭化水素基を示し、tは0又は1以上の整数を示す。]]
    で表されるグリコールウリル誘導体。
    Following formula (1)
    Figure JPOXMLDOC01-appb-C000003
    [In formula (1), R a to R d are the same or different and are represented by the group represented by the following formula (1a), the group represented by the following formula (1b), or the following formula (1c). Group. However, at least one of R a to R d is a group selected from the group consisting of a group represented by the formula (1b) and a group represented by the formula (1c). R e and R f are the same or different and each represents a hydrogen atom or an alkyl group.
    Figure JPOXMLDOC01-appb-C000004
    [In the formulas (1a) to (1c), s is the same or different and represents 0 or an integer of 1 or more. In formula (1b), R g is the same or different and represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group. In formula (1c), R h and R i are the same or different and each represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group, and t represents 0 or an integer of 1 or more. ]]
    A glycoluril derivative represented by:
  8.  下記式(1)
    Figure JPOXMLDOC01-appb-C000005
    [式(1)中、Ra~Rdは、同一又は異なって、下記式(1a)で表される基、下記式(1b)で表される基、又は、下記式(1c)で表される基である。但し、Ra~Rdのうち、少なくとも1つは、式(1b)で表される基及び式(1c)で表される基からなる群より選択される基である。Re及びRfは、同一又は異なって、水素原子又はアルキル基を示す。
    Figure JPOXMLDOC01-appb-C000006
    [式(1a)~(1c)中、sは、同一又は異なって、0又は1以上の整数を示す。式(1b)中、Rgは、同一又は異なって、水素原子、又は一価の置換若しくは無置換炭化水素基を示す。式(1c)中、Rh及びRiは、同一又は異なって、水素原子、又は一価の置換若しくは無置換炭化水素基を示し、tは0又は1以上の整数を示す。]]
    で表されるグリコールウリル誘導体の製造方法であって、
     下記式(i)
    Figure JPOXMLDOC01-appb-C000007
    [式(i)中、s、Re、及びRfは、前記に同じ。]
    で表される化合物と、下記式(ii)
    Figure JPOXMLDOC01-appb-C000008
    [式(ii)中、Rgは、前記に同じ。]
    で表される化合物及び下記式(iii)
    Figure JPOXMLDOC01-appb-C000009
    [式(iii)中、Rh、Ri、及びtは、前記に同じ。]
    で表される化合物からなる群より選択される少なくとも1種の化合物とをヒドロシリル化反応させる工程を含むことを特徴とするグリコールウリル誘導体の製造方法。
    Following formula (1)
    Figure JPOXMLDOC01-appb-C000005
    [In formula (1), R a to R d are the same or different and are represented by the group represented by the following formula (1a), the group represented by the following formula (1b), or the following formula (1c). Group. However, at least one of R a to R d is a group selected from the group consisting of a group represented by the formula (1b) and a group represented by the formula (1c). R e and R f are the same or different and each represents a hydrogen atom or an alkyl group.
    Figure JPOXMLDOC01-appb-C000006
    [In the formulas (1a) to (1c), s is the same or different and represents 0 or an integer of 1 or more. In formula (1b), R g is the same or different and represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group. In formula (1c), R h and R i are the same or different and each represents a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group, and t represents 0 or an integer of 1 or more. ]]
    A process for producing a glycoluril derivative represented by:
    The following formula (i)
    Figure JPOXMLDOC01-appb-C000007
    [In the formula (i), s, R e and R f are the same as above. ]
    And a compound represented by the following formula (ii)
    Figure JPOXMLDOC01-appb-C000008
    [In formula (ii), R g is the same as defined above. ]
    And a compound represented by the following formula (iii)
    Figure JPOXMLDOC01-appb-C000009
    [In the formula (iii), R h , R i and t are the same as above. ]
    A process for producing a glycoluril derivative, comprising a step of hydrosilylating at least one compound selected from the group consisting of compounds represented by:
PCT/JP2015/062210 2014-04-23 2015-04-22 Curable resin composition, cured product thereof, glycoluril derivative, and method for producing same WO2015163355A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-089554 2014-04-23
JP2014089554 2014-04-23

Publications (1)

Publication Number Publication Date
WO2015163355A1 true WO2015163355A1 (en) 2015-10-29

Family

ID=54332518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062210 WO2015163355A1 (en) 2014-04-23 2015-04-22 Curable resin composition, cured product thereof, glycoluril derivative, and method for producing same

Country Status (2)

Country Link
TW (1) TW201546189A (en)
WO (1) WO2015163355A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235811A1 (en) * 2017-06-20 2018-12-27 株式会社ダイセル Curable silicone resin composition and cured product thereof
EP3553066A1 (en) * 2018-04-12 2019-10-16 Shin-Etsu Chemical Co., Ltd. Glycoluril ring-containing organosilicon compound and making method
CN114008140A (en) * 2019-05-31 2022-02-01 陶氏东丽株式会社 Curable polyorganosiloxane composition and optical member formed from cured product of the curable polyorganosiloxane composition
WO2022080316A1 (en) * 2020-10-15 2022-04-21 キヤノン株式会社 Photocurable resin composition for three-dimensional shaping, and method for manufacturing three-dimensional object

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD108085A1 (en) * 1973-11-02 1974-09-05
WO2015033574A1 (en) * 2013-09-06 2015-03-12 京セラケミカル株式会社 Die bond material for optical semiconductor element, and optical semiconductor device
JP2015059101A (en) * 2013-09-19 2015-03-30 四国化成工業株式会社 Glycoluril ring-containing organosilane, glycoluril ring-containing organosiloxane, and methods for producing them
WO2015076399A1 (en) * 2013-11-25 2015-05-28 四国化成工業株式会社 Glycolurils having functional group and use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD108085A1 (en) * 1973-11-02 1974-09-05
WO2015033574A1 (en) * 2013-09-06 2015-03-12 京セラケミカル株式会社 Die bond material for optical semiconductor element, and optical semiconductor device
JP2015059101A (en) * 2013-09-19 2015-03-30 四国化成工業株式会社 Glycoluril ring-containing organosilane, glycoluril ring-containing organosiloxane, and methods for producing them
WO2015076399A1 (en) * 2013-11-25 2015-05-28 四国化成工業株式会社 Glycolurils having functional group and use thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235811A1 (en) * 2017-06-20 2018-12-27 株式会社ダイセル Curable silicone resin composition and cured product thereof
EP3553066A1 (en) * 2018-04-12 2019-10-16 Shin-Etsu Chemical Co., Ltd. Glycoluril ring-containing organosilicon compound and making method
KR20190119525A (en) * 2018-04-12 2019-10-22 신에쓰 가가꾸 고교 가부시끼가이샤 Glycoluril ring-containing organosilicon compound and making method
JP2019182794A (en) * 2018-04-12 2019-10-24 信越化学工業株式会社 Organosilicon compound having glycoluril ring and method for producing the same
CN110372741A (en) * 2018-04-12 2019-10-25 信越化学工业株式会社 The organo-silicon compound and preparation method of the ring containing glycoluril
US10683312B2 (en) 2018-04-12 2020-06-16 Shin-Etsu Chemical Co., Ltd. Glycoluril ring-containing organosilicon compound and making method
KR102486677B1 (en) * 2018-04-12 2023-01-11 신에쓰 가가꾸 고교 가부시끼가이샤 Glycoluril ring-containing organosilicon compound and making method
CN114008140A (en) * 2019-05-31 2022-02-01 陶氏东丽株式会社 Curable polyorganosiloxane composition and optical member formed from cured product of the curable polyorganosiloxane composition
CN114008140B (en) * 2019-05-31 2023-11-07 陶氏东丽株式会社 Curable polyorganosiloxane composition and optical member formed from cured product of the curable polyorganosiloxane composition
WO2022080316A1 (en) * 2020-10-15 2022-04-21 キヤノン株式会社 Photocurable resin composition for three-dimensional shaping, and method for manufacturing three-dimensional object

Also Published As

Publication number Publication date
TW201546189A (en) 2015-12-16

Similar Documents

Publication Publication Date Title
JP5778875B2 (en) Curable resin composition and cured product thereof
JP5667326B2 (en) Curable resin composition, cured product thereof, sealant, and optical semiconductor device
WO2013094625A1 (en) Curable resin composition and curable product thereof
WO2015163352A1 (en) Curable resin composition and cured product of same
TWI546339B (en) A hardened resin composition, and a semiconductor device using the same
WO2016043082A1 (en) Curable silicone resin composition, and cured product thereof
JP6502658B2 (en) Curable silicone resin composition and cured product thereof
WO2014125964A1 (en) Curable resin composition, cured product, sealing member semiconductor device
WO2015016000A1 (en) Curable resin composition and semiconductor device obtained using same
JP6533387B2 (en) Curable resin composition, cured product thereof, and semiconductor device
WO2015163355A1 (en) Curable resin composition, cured product thereof, glycoluril derivative, and method for producing same
JP6474801B2 (en) Curable resin composition, cured product, sealing material, and semiconductor device
WO2018047633A1 (en) Curable resin composition, cured product thereof, and semiconductor device
WO2017164265A1 (en) Curable resin composition, cured product thereof, and semiconductor device
WO2017122712A1 (en) Curable resin composition, cured object, encapsulation material, and semiconductor device
JP6944119B2 (en) Curable resin composition, cured product thereof, and semiconductor device
WO2015178475A1 (en) Branched-chain polyorganosiloxycyl alkylene, method for producing same, curable resin composition, and semiconductor device
JP6496185B2 (en) Curable silicone resin composition and cured product thereof
JPWO2017146004A1 (en) Curable resin composition, cured product thereof, and semiconductor device
JP6452545B2 (en) Curable silicone resin composition and cured product thereof
JP6460714B2 (en) Curable resin composition, cured product thereof, and semiconductor device
JP2017002172A (en) Curable resin composition providing high hardness polysiloxane cured article and cured article thereof
WO2017126538A1 (en) Novel polyorganosiloxysilalkylene, curable resin composition, and cured product thereof
JP2017145358A (en) Curable silicone resin composition and cured product of the same
WO2018235811A1 (en) Curable silicone resin composition and cured product thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15783306

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15783306

Country of ref document: EP

Kind code of ref document: A1