WO2015163351A1 - Pneumatic tire manufacturing method and manufacturing apparatus - Google Patents

Pneumatic tire manufacturing method and manufacturing apparatus Download PDF

Info

Publication number
WO2015163351A1
WO2015163351A1 PCT/JP2015/062203 JP2015062203W WO2015163351A1 WO 2015163351 A1 WO2015163351 A1 WO 2015163351A1 JP 2015062203 W JP2015062203 W JP 2015062203W WO 2015163351 A1 WO2015163351 A1 WO 2015163351A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
mold
tread portion
rigid inner
base tire
Prior art date
Application number
PCT/JP2015/062203
Other languages
French (fr)
Japanese (ja)
Inventor
智行 酒井
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014089070A external-priority patent/JP5910662B2/en
Priority claimed from JP2014253224A external-priority patent/JP5910718B1/en
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to EP15783408.6A priority Critical patent/EP3135469A4/en
Priority to US15/305,084 priority patent/US20170050399A1/en
Priority to CN201580018914.3A priority patent/CN106163783A/en
Publication of WO2015163351A1 publication Critical patent/WO2015163351A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/52Unvulcanised treads, e.g. on used tyres; Retreading
    • B29D30/58Applying bands of rubber treads, i.e. applying camel backs
    • B29D30/62Applying bands of rubber treads, i.e. applying camel backs by extrusion or injection of the tread on carcass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/52Unvulcanised treads, e.g. on used tyres; Retreading
    • B29D30/54Retreading
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/02Replaceable treads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/24Condition, form or state of moulded material or of the material to be shaped crosslinked or vulcanised
    • B29K2105/246Uncured, e.g. green

Definitions

  • the present invention relates to a method and apparatus for manufacturing a pneumatic tire, and more particularly, to a method and apparatus for manufacturing a pneumatic tire capable of forming a tread portion with high dimensional accuracy while suppressing thermal deterioration of a base tire. Is.
  • Patent Document 1 Various so-called retreaded tire manufacturing methods have been proposed in which a new tread portion is formed on a base tire obtained by cutting the rubber of a tread portion of an existing pneumatic tire (see, for example, Patent Document 1).
  • an existing manufacturing facility is used, and an internal pressure is applied in a state where a vulcanization bladder disposed inside a base tire is inflated.
  • unvulcanized rubber is injected into a space formed between a tire mold disposed on the outer side in the circumferential direction of the base tire and the outer surface in the circumferential direction of the base tire.
  • the injected unvulcanized rubber is vulcanized to form a tread portion and to be integrated with the outer circumferential surface of the base tire.
  • the base tire is heated from the inside.
  • the vulcanized rubber forming the base tire is heated by the vulcanization bladder from the inside of the tire, so that there is a problem that it is thermally deteriorated.
  • the injection pressure of the unvulcanized rubber to be injected is generally significantly higher than the internal pressure (about several MPa) of the expanding vulcanized bladder. Therefore, even if the inside of the base tire is pressed by the expanded vulcanized bladder, the base tire is deformed so as to be recessed inward by the injection pressure of the unvulcanized rubber. Due to the influence of this deformation, there is a problem that the dimensional accuracy of the formed tread portion is lowered.
  • the pressure P1 of the unvulcanized rubber in the tread molding space is set slightly higher than the internal pressure P2 applied to the base tire (see paragraph 0040).
  • the object of the present invention relates to a pneumatic tire manufacturing method and manufacturing apparatus, and more specifically, a pneumatic tire manufacturing method and a manufacturing method capable of forming a tread portion with high dimensional accuracy while suppressing thermal deterioration of a base tire. To provide an apparatus.
  • the pneumatic tire manufacturing method of the present invention has a metal rigid inner mold that can be expanded and contracted arranged inside a base tire, and is within the range of the tire inner surface corresponding to the tread portion of the base tire.
  • the rigid inner mold With the rigid inner mold in contact, the outer peripheral surface of the base tire corresponding to the tread portion is covered with a tread mold, and then unvulcanized rubber is injected into the cavity of the tread mold, By vulcanizing the unvulcanized rubber, a tread portion is formed on the outer peripheral surface of the base tire, and the tread portion is integrated with the outer peripheral surface.
  • Another method of manufacturing a pneumatic tire according to the present invention is such that a cylindrical metal rigid inner mold that can be divided into a plurality of parts in the circumferential direction is arranged inside a base tire, and the tire inner surface corresponding to the tread portion of the base tire The rigid inner mold is brought into contact with the above range, the base tire is disposed in a vulcanizing mold together with the rigid inner mold, and the outer peripheral surface of the base tire corresponding to the tread portion is Cover with a vulcanizing mold, and then inject unvulcanized rubber into a cavity formed between the inner peripheral surface of the vulcanizing mold and the outer peripheral surface of the base tire, and this unvulcanized rubber.
  • the pneumatic tire manufacturing apparatus includes an expandable / reducible metal rigid inner mold disposed inside a base tire, and a tread metal disposed so as to cover the outer peripheral surface of the base tire corresponding to the tread portion.
  • Another pneumatic tire manufacturing apparatus includes a cylindrical metal rigid inner mold that can be divided into a plurality of pieces in a circumferential direction, which is disposed inside the base tire, and the base tire including the rigid inner mold. And a cavity formed between the inner peripheral surface of the vulcanization mold and the outer peripheral surface of the base tire, and a vulcanizing mold that covers the outer peripheral surface of the base tire corresponding to the tread portion.
  • the rigidity disposed inside the pneumatic tire is set.
  • the inner mold is the manufactured pneumatic tie. Wherein is taken out of the vulcanizing mold together, characterized in that the structure to be removed from the inside of the pneumatic tire in the outer of said vulcanizing mold.
  • the base tire is fastened from the inside with the metal rigid inner mold in contact with the inner surface of the tire corresponding to the tread portion of the base tire. It is supported by a rigid inner mold.
  • unvulcanized rubber is injected into the cavity of the tread mold that covers the outer peripheral surface of the base tire corresponding to the tread portion, so that the problem of the base tire being recessed inside due to the injection pressure of the unvulcanized rubber is avoided. it can.
  • the rigid inner mold that is in contact with the tire inner surface of the base tire is made of metal, it functions as a cooling fin that releases the heat of the base tire. Therefore, the temperature rise of the base tire injected with the unvulcanized rubber can be suppressed, which is advantageous for suppressing the thermal deterioration of the base tire.
  • the rigid inner mold is constituted by a plurality of segments divided in the circumferential direction, and these segments are arranged at positions where the diameters have been expanded, so that the tread portion of the base tire is provided. It can also be made to contact the range of the tire inner surface corresponding to. Thereby, it is easy to arrange the rigid inner mold inside the base tire, and it is easy to take out the rigid inner mold outside the manufactured pneumatic tire.
  • the base tire is fastened from the inside with the metal rigid inner mold in contact with the inner surface of the tire corresponding to the tread portion of the base tire. It is supported by a rigid inner mold.
  • unvulcanized rubber is injected into the cavity formed between the inner peripheral surface of the vulcanizing mold that covers the outer peripheral surface of the base tire corresponding to the tread portion and the outer peripheral surface of the base tire. It is possible to avoid the problem that the tire is recessed inward due to the injection pressure of the vulcanized rubber.
  • the rigid inner mold that is in contact with the tire inner surface of the base tire is made of metal, it functions as a cooling fin that releases the heat of the base tire. Therefore, the temperature rise of the base tire injected with the unvulcanized rubber can be suppressed, which is advantageous for suppressing the thermal deterioration of the base tire.
  • the operation of placing the rigid inner mold inside the base tire and the operation of removing the rigid inner mold from the inside of the manufactured pneumatic tire can be performed outside the vulcanization mold. Therefore, it is not necessary to provide a mechanism for performing these operations in the manufacturing apparatus, which is advantageous for simplifying the manufacturing apparatus.
  • the injected unvulcanized rubber is injected into the plan of the injection machine. It is also possible to fill the cylinder in which the jar is installed. This makes it possible to quickly inject unvulcanized rubber into the cavity, making it difficult for the unvulcanized rubber to receive an unnecessary heat history.
  • the unvulcanized rubber can be injected and vulcanized while cooling the inside of the base tire through the rigid inner mold.
  • a cooling means for cooling the rigid inner mold may be provided.
  • the base tire for example, a tire formed by cutting rubber on a tread portion of an existing pneumatic tire is used.
  • a studless tire can be manufactured using a rubber compound for a studless tire.
  • the existing pneumatic tire is a studless tire, and a rubber compound of a type different from the rubber compound used in the tread portion of the existing studless tire can be used as the unvulcanized rubber.
  • the rubber compound used in the tread portion of the existing studless tire and the rubber compound of the tread portion formed on the outer peripheral surface of the base tire have at least one characteristic of hardness, specific gravity, and friction characteristics under the same conditions. It can be different.
  • FIG. 1 is an overall schematic diagram illustrating a pneumatic tire manufacturing apparatus according to the present invention, partially in a sectional view.
  • FIG. 2 is an explanatory view illustrating the rigid inner mold and the tread mold of FIG. 1 in plan view.
  • FIG. 3 is an explanatory view illustrating the rigid inner mold of FIG. 2 in plan view.
  • FIG. 4 is an explanatory view illustrating the rigid inner mold in a state in which the short segment is moved to the reduced diameter position in plan view.
  • FIG. 5 is an explanatory diagram illustrating, in plan view, a rigid inner mold in which a long segment is also moved to a reduced diameter position and reduced in diameter.
  • FIG. 6 is an explanatory view showing a modification of the segment in cross-sectional view.
  • FIG. 1 is an overall schematic diagram illustrating a pneumatic tire manufacturing apparatus according to the present invention, partially in a sectional view.
  • FIG. 2 is an explanatory view illustrating the rigid inner mold and the tread mold of FIG. 1 in plan view.
  • FIG. 7 is an explanatory view illustrating a state in which unvulcanized rubber is injected into the cavity of FIG. 1 in a cross-sectional view.
  • FIG. 8 is an explanatory view illustrating another rigid inner mold in plan view.
  • 9 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 10 is a left half vertical cross-sectional view illustrating the step of removing the rigid inner mold from the manufactured pneumatic tire.
  • FIG. 11 is a left half longitudinal sectional view of a rigid inner mold illustrating the next step of FIG.
  • FIG. 12 is an overall schematic diagram illustrating a part of another embodiment of the pneumatic tire manufacturing apparatus of the present invention in a tire width direction sectional view.
  • FIG. 13 is an explanatory view illustrating the manufacturing apparatus of FIG. 12 in plan view.
  • FIG. 14 is an explanatory view illustrating the rigid inner mold of FIG. 13 in plan view.
  • FIG. 15 is an explanatory view illustrating a state where the rigid inner mold of FIG. 14 is separated and divided in a plan view.
  • FIG. 16 is an explanatory view illustrating the state in which unvulcanized rubber is injected into the cavity of FIG. 12 in a tire width direction sectional view.
  • FIG. 17 is an explanatory view illustrating the step of arranging another rigid inner mold inside the base tire in a sectional view in the tire width direction.
  • FIG. 18 is an explanatory view illustrating the state in which the rigid inner mold of FIG. 17 is disposed inside the base tire in a tire width direction sectional view.
  • FIG. 19 is an explanatory view illustrating a base tire in which the rigid inner mold of FIG.
  • FIG. 20 is an explanatory view illustrating a step of arranging another rigid inner mold inside the base tire in a tire width direction sectional view.
  • FIG. 21 is an explanatory view illustrating the step of FIG. 20 in a tire side view.
  • FIG. 22 is an explanatory view illustrating a state in which the rigid inner mold of FIG. 20 is arranged inside the base tire in a tire width direction sectional view.
  • the pneumatic tire manufacturing apparatus 1 of the present invention illustrated in FIGS. 1 to 3 includes a base metal BT 2 corresponding to a tread portion TR, and a rigid inner mold 2 that can be expanded and contracted, which is disposed inside the base tire BT.
  • a tread mold 10 disposed so as to cover the outer peripheral surface of the tread mold, and an injection machine 13 for injecting the unvulcanized rubber R into the cavity 11 of the tread mold 10.
  • the manufacturing apparatus 1 of this embodiment further includes cooling means 8 and 9 for cooling the rigid inner mold 2.
  • the base tire BT refers to a tire without a tread portion TR in a normal pneumatic tire.
  • the base tire BT is formed by cutting rubber of a tread portion TR of an existing pneumatic tire that has been used. The surface is buffed after rubber cutting.
  • only the tread portion TR can be omitted for manufacturing. That is, a new base tire BT that is not used can be manufactured.
  • the present invention can use a base tire BT and a new base tire BT formed by cutting rubber of a tread portion TR of an existing pneumatic tire.
  • the rigid inner mold 2 is composed of a plurality of segments 3 (3A, 3B) divided in the circumferential direction.
  • Examples of the material of the rigid inner mold 2 include metals such as carbon steel, aluminum, and aluminum alloys.
  • the long segments 3A and the short segments 3B are alternately arranged in the circumferential direction.
  • Each segment 3A, 3B is attached to a cylinder 5a extending radially from the central axis 5.
  • the segment 3 (3A, 3B) arranged annularly around the central axis 5 moves the short segment 3B radially inward (reduced diameter position) by retracting the rod of the cylinder 5a as illustrated in FIG. Then, as shown in FIG. 5, the rigid inner mold 2 is reduced in diameter by retracting the rod of the cylinder 5a and moving the long segment 3A inward in the radial direction (diameter reduction position). For example, the short segment 3B is moved to the reduced diameter position and then removed from the cylinder 5a, and then the long segment 3A is moved to the reduced diameter position.
  • the rod of the cylinder 5a is moved forward to move the long segment 3A to the outside in the radial direction (expanded position), and then the rod of the cylinder 5a is moved forward to move the short segment 3B to the radial direction.
  • the diameter is expanded by moving to the outside (diameter expansion position).
  • the outer surfaces of the segments 3A and 3B are continuously annularly abutted on the range of the tire inner surface corresponding to the tread portion TR of the base tire BT.
  • All the short segments 3B can be moved simultaneously or separately.
  • Each of the long segments 3A can be moved simultaneously or separately.
  • each segment 3A, 3B is set slightly smaller than the interval between the bead portions Tb facing the base tire BT. Therefore, each segment 3A, 3B can be smoothly expanded and contracted by passing between the pair of bead portions Tb.
  • auxiliary plates 3 a can be rotatably provided at both ends of the segment 3.
  • the auxiliary plate 3a is expanded and contracted between the pair of bead portions Tb in a state in which the auxiliary plate 3a is folded (a state in which the auxiliary plate 3a is not substantially projected vertically).
  • the auxiliary plate 3a is developed and brought into contact with the tire inner surface of the base tire BT.
  • the auxiliary plate 3a is locked at the deployed position and maintains the developed state. Thereby, a much wider range of the tire inner surface can be supported by the rigid inner mold 2.
  • the cooling means is composed of, for example, a cooler 9 and a cooling path 8.
  • the cooling path 8 is provided in the rigid inner mold 2 (segment 3).
  • the cooler 9 supplies a cooling medium such as water to the cooling path 8.
  • the temperature of the rigid inner mold 2 (segment 3) is maintained at 40 ° C. or higher and 120 ° C. or lower, for example.
  • the tread mold 10 is composed of a plurality of divided molds 10a divided in the circumferential direction. In this embodiment, four divided molds 10a are assembled in a ring shape. Each split mold 10 a is formed with a cavity 11 and an injection path 12 connected to the cavity 11. The surface of the cavity 11 has a shape that forms a tread pattern of the pneumatic tire T to be manufactured. One end of the injection path 12 is connected to the injection port of the injection machine 13.
  • the other end of the injection path 12 is connected to the position of the cavity 11 corresponding to, for example, a tread land portion or a circumferential groove of the pneumatic tire T to be manufactured.
  • the injection path 12 is preferably branched into a plurality of paths on the way and connected to the cavity 11.
  • a heating path 14 connected to the heater 15 is further formed in each split mold 10a.
  • the heater 15 supplies a heating medium such as steam, and the supplied heating medium flows through the heating path 14 to heat the split mold 10a.
  • the injection machine 13 includes a cylinder 13a that accommodates the unvulcanized rubber R while being heated at a predetermined temperature, and a plunger 13b that extrudes the unvulcanized rubber R that is accommodated in the cylinder 13a.
  • the unvulcanized rubber R is injected at a predetermined injection pressure by moving the plunger 13b forward.
  • This injection pressure is, for example, 10 MPa or more and 50 MPa or less.
  • the unvulcanized rubber R has flow characteristics that can be injected and may be any specification that can be vulcanized.
  • natural rubber diene rubbers such as IR, SBR, BR, butyl rubber, halogenated butyl rubber, EPDM, etc.
  • compounding materials such as non-diene rubber, carbon black, oil, anti-aging agent, processing aid, softener, plasticizer, vulcanizing agent, vulcanization accelerator and vulcanization retarder are appropriately blended.
  • each segment 3 is in contact with the range of the tire inner surface corresponding to the tread portion TR of the base tire BT. That is, the tire inner surface corresponding to the tread portion TR of the base tire BT is firmly supported by the segments 3 arranged in an annular shape.
  • a tread mold 10 (divided mold 10a) is arranged on the outer peripheral side of the base tire BT, and the outer peripheral surface of the base tire BT corresponding to the tread portion TR is covered with the tread mold 10. As a result, the cavity 11 of the tread mold 10 is closed by the outer peripheral surface of the base tire BT to form a closed space.
  • the unvulcanized rubber R is injected from the injection machine 13 into the cavity 11 of the tread mold 10, and the cavity 11 is filled with the unvulcanized rubber R through the injection path 12.
  • the unvulcanized rubber R filled in the cavity 11 is formed into a predetermined shape by the cavity 11.
  • the unvulcanized rubber R is vulcanized while the tread mold 10 is heated by the heating medium flowing through the heating path 14.
  • a tread portion TR made of the vulcanized rubber is formed on the outer peripheral surface of the base tire BT, and this tread portion TR is vulcanized and bonded to the outer peripheral surface of the base tire BT. And unite. Thereby, the pneumatic tire T is completed.
  • the rigid inner mold 2 whose diameter has been expanded is reduced in diameter, and is taken out from the inside to the outside of the base tire BT (manufactured pneumatic tire T).
  • the base tire BT is supported from the inside by the solid rigid inner mold 2 in a state where the metal rigid inner mold 2 is in contact with the inner surface of the tire. Since the unvulcanized rubber R is injected into the cavity 11 of the tread mold 10 in this state, it is possible to avoid the problem that the base tire BT is recessed inward due to the injection pressure of the unvulcanized rubber R.
  • the rigid inner mold 2 in contact with the tire inner surface of the base tire BT is made of metal, it functions as an air-cooled cooling fin that releases heat from the base tire BT. Therefore, the temperature rise of the base tire BT can be suppressed, which is advantageous for suppressing thermal deterioration of the vulcanized rubber forming the base tire BT.
  • the unvulcanized rubber R can be injected and vulcanized while cooling the inside of the base tire BT through the rigid inner mold 2 by the cooling means 8 and 9. Therefore, since the temperature rise of the base tire BT can be positively suppressed, it becomes more and more advantageous for suppressing thermal deterioration of the base tire BT.
  • the injection pressure of the unvulcanized rubber R can be set higher than when the inside of the base tire BT is supported by the vulcanizing bladder. Along with this, there is an advantage that the injection time can be shortened, which contributes to improvement of tire productivity. Further, there is an advantage that the unvulcanized rubber R can be easily spread over the entire range of the cavity 11. Therefore, even a complicated tread pattern is advantageous for molding. These advantages are also advantageous for improving dimensional accuracy.
  • the rigid inner mold 2 illustrated in FIGS. 8 and 9 can also be used.
  • the cylindrical rigid inner mold 2 is composed of segments 3 (long segment 3A, short segment 3B) divided into a plurality in the circumferential direction. Each segment 3 is configured to further divide the cylindrical circumferential surface into two in the width direction.
  • segments 3 are formed in a cylindrical shape by being fixed to the peripheral portions of the opposing disk-shaped support plates 6a and 6b via a rotation mechanism 4. That is, the segment 3 on one side obtained by dividing the cylindrical peripheral surface into two in the width direction is annularly disposed along the peripheral edge of the support plate 6a on one side of the opposing support plates 6a and 6b. The other segment 3 that is divided into two in the width direction is annularly arranged along the peripheral edge of the other support plate 6b.
  • the central axis 5 is fixed so as to penetrate through the circular center positions of the opposing support plates 6a and 6b.
  • the center shaft 5 and the pair of support plates 6 a and 6 b are fixed via support ribs 7 fixed to the outer peripheral surface of the center shaft 5.
  • the rigid inner mold 2 composed of a plurality of segments 3 formed in a cylindrical shape is configured so that each segment 3 expands and contracts with the rotation mechanism 4 as a rotation center, as will be described later. Moving.
  • the rigid inner mold 2 is attached to the holding base of the manufacturing apparatus 1 with the central shaft 5 being pivotally supported.
  • the segment 3 on one side in the width direction (upper side in FIG. 11) is rotated inside the tire so as to reduce the diameter of the rigid inner mold 2 around the rotation mechanism 4.
  • the segment 3 on the other side in the width direction (the lower side in FIG. 11) is rotated inward of the tire so as to reduce the diameter of the rigid inner mold 2 around the rotation mechanism 4.
  • the segment 3 is turned to the inside of the tire and then moved to the outside of the pneumatic tire T to be removed.
  • a procedure reverse to the procedure of dividing the rigid inner mold 2 illustrated in FIGS. 10 and 11 may be performed. In this way, the rigid inner mold 2 can be easily disposed inside the base tire BT, and the rigid inner mold 2 can be easily taken out of the manufactured pneumatic tire T.
  • Studless tires can also be manufactured by using rubber compounds for studless tires as the unvulcanized rubber R. Studless tires tend to wear out in the tread portion TR as compared with ordinary pneumatic tires.
  • a user can purchase a studless tire with a new tread portion TR without purchasing a new studless tire. Can be obtained.
  • not only the rubber of the tread portion TR of the existing studless tire but also the rubber of the tread portion TR of a normal existing pneumatic tire can be used as the base tire BT. Since a new studless tire is manufactured using the base tire BT, it contributes to resource saving and energy saving. Moreover, since heat deterioration can be suppressed compared with the conventional retread technology, it can be used for a long time.
  • the rubber used for the tread portion TR of the existing studless tire is used as the unvulcanized rubber R. It is also possible to use a different type of rubber compound than the compound.
  • the rubber compound of the tread part TR of the studless tire has been improved year by year, and new versions and new rubber types have been developed. Therefore, by applying the present invention, even if the user does not purchase a new studless tire having an improved rubber compound in the tread portion TR, the user can obtain a studless tire having an improved rubber compound in the tread portion TR. Obtainable. That is, the user can obtain a studless tire having the latest developed rubber compound in the tread portion TR without purchasing a new studless tire every year.
  • the rubber compound of the tread part TR of the studless tire is improved year by year, for example, the hardness, specific gravity and friction characteristics under the same conditions are improved. Therefore, when the tire formed by cutting the rubber of the tread portion TR of the existing studless tire is used as the base tire BT, the rubber compound and the base tire BT used in the tread portion TR of the existing studless tire are used. For example, at least one characteristic of hardness, specific gravity, and friction characteristics under the same conditions is different from that of the rubber compound of the tread portion TR formed on the outer peripheral surface. That is, these characteristics are varied to improve the performance of the studless tire. It should be noted that a plurality of or all of these characteristics may be varied.
  • FIGS. 12 to 13 Another embodiment of the pneumatic tire manufacturing apparatus 1 illustrated in FIGS. 12 to 13 includes a cylindrical metal rigid inner mold 2 disposed inside the base tire BT, and a base together with the rigid inner mold 2.
  • a vulcanizing mold 10A in which a tire BT is disposed and an injection machine 13 are provided.
  • the manufacturing apparatus 1 of this embodiment further includes cooling means 8 and 9 for cooling the rigid inner mold 2 disposed inside the vulcanizing mold 10A.
  • the rigid inner mold 2 can be divided into a plurality of parts in the circumferential direction, and a plurality of segments 3 (3A, 3B) divided in the circumferential direction are assembled in a cylindrical shape. It has a structure.
  • the material of the rigid inner mold 2 include metals such as carbon steel, aluminum, and aluminum alloys.
  • the long segments 3A and the short segments 3B are alternately arranged in the circumferential direction.
  • Each segment 3A, 3B is attached to a support arm 7a extending radially from the central axis 5.
  • Each segment 3A, 3B, central axis 5, and support arm 7a can be separated separately. That is, the rigid inner mold 2 is not a structure that expands and contracts, but is a structure that is separated and divided into respective segments 3 and subdivided. If necessary, the segments 3A and 3B adjacent in the circumferential direction are connected by an appropriate connecting member on the inner peripheral side thereof.
  • the rigid inner mold 2 is formed by assembling the segments 3A and 3B separated from each other into a cylindrical shape and connecting the central shaft 5 and the support arm 7a.
  • the outer surfaces of the respective segments 3A and 3B are continuously annularly contacted with the range of the tire inner surface corresponding to the tread portion TR of the base tire BT.
  • the vulcanizing mold 10A is composed of a plurality of divided molds 10a divided in the circumferential direction. In this embodiment, four split molds 10a are assembled in a ring shape. Each split mold 10a moves in the radial direction, the vulcanizing mold 10A is closed by moving to the radially inner peripheral side, and the vulcanizing mold 10A is moved by moving to the radially outer peripheral side. Open the mold.
  • the closed mold 10A for vulcanization covers the outer peripheral surface of the base tire BT corresponding to the tread portion TR of the base tire BT in which the rigid inner mold 2 is disposed.
  • a cavity 11 is formed between the inner peripheral surface of the vulcanizing mold 10A and the outer peripheral surface of the base tire BT.
  • Each split mold 10 a is formed with an inner peripheral surface that forms the cavity 11 and an injection path 12 that is connected to the formed cavity 11.
  • the inner peripheral surface of the split mold 10a forming the cavity 11 has a shape for forming a tread pattern of the pneumatic tire T to be manufactured.
  • One end of the injection path 12 is connected to the injection port of the injection machine 13.
  • the other end portion of the injection path 12 is connected to, for example, the position of the inner peripheral surface of the split mold 10a corresponding to the tread land portion or the circumferential groove of the pneumatic tire T to be manufactured.
  • the injection path 12 is preferably branched into a plurality of paths on the way and connected to the cavity 11.
  • a heating path 14 connected to the heater 15 is formed in each split mold 10a similarly to the above-described embodiment, and the split mold 10a is similarly heated.
  • the injection machine 13 has the same specifications as those of the above-described embodiment, and similarly injects the unvulcanized rubber R at a predetermined injection pressure.
  • the unvulcanized rubber R has the same specifications as the above-described embodiment.
  • the cooling means has the same specifications as those of the above-described embodiment, and the temperature of the rigid inner mold 2 (segment 3) is similarly maintained within a predetermined temperature range by the cooling means.
  • the segment 3 is inserted inside the base tire BT and assembled into a cylindrical shape, and the rigid inner mold 2 is arranged inside.
  • each segment 3 comes into contact with the range of the tire inner surface corresponding to the tread portion TR of the base tire BT. That is, the tire inner surface corresponding to the tread portion TR of the base tire BT is firmly supported by the segments 3 arranged in a cylindrical shape.
  • the base tire BT is placed together with the rigid inner mold 2 in the opened vulcanization mold 10A.
  • the outer peripheral surface of the base tire BT corresponding to the tread portion TR is covered with the vulcanizing mold 10A.
  • a cavity 11 is formed between the inner peripheral surface of the vulcanizing mold 10A and the outer peripheral surface of the base tire BT.
  • unvulcanized rubber R is injected from the injector 13 into the cavity 11 and filled into the cavity 11 through the injection path 12.
  • the cylinder 13 a of the injection machine 13 is filled with the unvulcanized rubber R to be injected.
  • the unvulcanized rubber R can be quickly injected into the cavity 11, so that the unvulcanized rubber R is unlikely to receive an unnecessary heat history.
  • the unvulcanized rubber R can be injected in a state where the fluidity of the unvulcanized rubber R is not lowered, so that it becomes more and more advantageous to sufficiently spread the unvulcanized rubber R over the entire range of the cavity 11.
  • the unvulcanized rubber R filled in the cavity 11 is molded into a predetermined shape by the cavity 11. Then, the injected unvulcanized rubber R is vulcanized by the vulcanizing mold 10A heated by the heating medium flowing through the heating path.
  • a tread portion TR made of the vulcanized rubber is formed on the outer peripheral surface of the base tire BT, and this tread portion TR is vulcanized and bonded to the outer peripheral surface of the base tire BT. And unite. Thereby, the pneumatic tire T is completed.
  • the pneumatic tire T is taken out of the vulcanizing mold 10A together with the rigid inner mold 2 disposed inside the pneumatic tire T. Thereafter, the rigid inner mold 2 inside the pneumatic tire T outside the vulcanizing mold 10 ⁇ / b> A is separated into segments 3 and divided, and removed from the inside of the pneumatic tire T.
  • the base tire BT is supported from the inside by the solid rigid inner mold 2 in a state where the metal rigid inner mold 2 is in contact with the inner surface of the tire. Since the unvulcanized rubber R is injected into the cavity 11 in this state, it is possible to avoid the problem that the base tire BT is recessed inward due to the injection pressure of the unvulcanized rubber R.
  • the rigid inner mold 2 in contact with the tire inner surface of the base tire BT is made of metal, it functions as an air-cooled cooling fin that releases heat from the base tire BT. Therefore, the temperature rise of the base tire BT can be suppressed, which is advantageous for suppressing thermal deterioration of the vulcanized rubber forming the base tire BT.
  • the unvulcanized rubber R can be injected and vulcanized while cooling the inside of the base tire BT through the rigid inner mold 2 by the cooling means 8 and 9. Therefore, since the temperature rise of the base tire BT can be positively suppressed, it becomes more and more advantageous for suppressing thermal deterioration of the base tire BT.
  • the injection pressure of the unvulcanized rubber R can be set higher than when the inside of the base tire BT is supported by the vulcanizing bladder. Along with this, there is an advantage that the injection time can be shortened, which contributes to improvement of tire productivity. Further, there is an advantage that the unvulcanized rubber R can be easily spread over the entire range of the cavity 11. Therefore, even a complicated tread pattern is advantageous for molding. These advantages are also advantageous for improving dimensional accuracy.
  • the work of placing the rigid inner mold 2 inside the base tire BT and the work of removing the rigid inner mold 2 from the inside of the manufactured pneumatic tire T can be performed outside the vulcanizing mold 10A. Therefore, it is not necessary to provide the manufacturing apparatus 1 with a mechanism for performing these operations, which is advantageous for simplifying the manufacturing apparatus 1.
  • a studless tire can be manufactured by using a rubber compound for a studless tire as in the embodiment described above. Moreover, what deleted the rubber
  • the rigid inner mold 2 used in this embodiment is not a structure that expands and contracts, but is a structure that is separately separated, divided, and subdivided into segments 3.
  • the structure is not limited to this embodiment, and various structures are possible. Can be adopted.
  • the rigid inner mold 2 shown in FIGS. 17 to 19 can be used.
  • This rigid inner mold 2 has a cylindrical shape and is composed of segments 3 divided into a plurality in the circumferential direction. Each segment 3 is configured to further divide the cylindrical circumferential surface into two in the width direction.
  • Connecting portions 3c are formed on the inner peripheral surfaces of the opposite ends of the segments 3 divided in the width direction. These connecting portions 3c are formed with insertion holes into which connecting members 7d such as bolts and pins are inserted. These insertion holes can be both through holes, or one can be a through hole and the other can be a hole with one end closed.
  • the segment 3 that has been separated and divided is inserted into the base tire BT.
  • the connecting portions 3c are brought into contact with each other in a state where the outer peripheral surface of the segment 3 divided in the width direction is in contact with the inner peripheral surface of the base tire BT.
  • the connecting member 7d is inserted from one connecting portion 3c toward the other connecting portion 3c, and the segment 3 is set at a predetermined position with respect to the base tire BT.
  • the inner peripheral edge 3b of the segment 3 is disposed on the inner peripheral side of the bead portion Tb in contact with the bead portion Tb of the base tire BT.
  • a support arm 7a extending in the tire radial direction is inserted into the base tire BT, and a fitting portion 7b at the tip of the support arm 7a is connected to a connecting portion 3c in communication with a connecting member 7d. 3c.
  • the shaft portion 7c at the rear end of the support arm 7a extends in the tire width direction, and both end portions thereof are positioned at the bead portions Tb of the base tire BT.
  • An annular holding ring 4a that engages with the edge 3b of the segment 3 is engaged with both ends of the shaft portion 7c, and the segment 3 is fixed to the inside of the base tire BT.
  • Each bead portion Tb of the base tire BT is sandwiched between the rigid inner mold 2 and the holding ring 4a.
  • the segment 3 is fixed so as to be adjacent to the inner side of the base tire BT in the circumferential direction, so that the cylindrical rigid inner mold 2 is arranged inside the base tire BT as illustrated in FIG. If necessary, the segments 3 adjacent to each other in the circumferential direction are connected by an appropriate connecting member on the inner peripheral side thereof.
  • a procedure reverse to the above-described procedure of arranging the rigid inner mold 2 inside the base tire BT may be performed. Therefore, the operation of disposing the rigid inner mold 2 inside the base tire BT and the operation of removing the rigid inner mold 2 from the inside of the manufactured pneumatic tire T can be performed outside the vulcanizing mold 10A.
  • the rigid inner mold 2 can also be provided with the cooling path 8 described above to supply a cooling medium from the cooler 9.
  • Another rigid inner mold 2 illustrated in FIGS. 20 to 22 has a cylindrical shape and is composed of segments 3 divided into a plurality in the circumferential direction.
  • the circumferential length of each segment 3 is generally shorter than the distance between the pair of bead portions Tb of the base tire BT.
  • the segment 3 is separated and divided, with the circumferential direction of the base tire BT facing the width direction of the base tire BT. Insert inside BT. Next, the circumferential direction of the segment 3 is rotated toward the circumferential direction of the base tire BT so that the outer peripheral surface of the segment 3 is in contact with the inner peripheral surface of the base tire BT. To set in place. In this set state, the inner peripheral edge 3b of the segment 3 is disposed on the inner peripheral side of the bead portion Tb in contact with the bead portion Tb of the base tire BT.
  • An annular retaining ring 4a disposed in the vicinity of the bead portion Tb of the base tire BT is engaged with each edge portion 3b, and the segment 3 is fixed to the inside of the base tire BT.
  • Each bead portion Tb of the base tire BT is sandwiched between the rigid inner mold 2 and the holding ring 4a.
  • the segment 3 is fixed in the circumferential direction adjacent to the inside of the base tire BT, so that the cylindrical rigid inner mold 2 is arranged inside the base tire BT as illustrated in FIG. If necessary, the segments 3 adjacent to each other in the circumferential direction are connected by an appropriate connecting member on the inner peripheral side thereof.
  • a procedure reverse to the above-described procedure of arranging the rigid inner mold 2 inside the base tire BT may be performed.
  • the operation of disposing the rigid inner die 2 inside the base tire BT and the operation of removing the rigid inner die 2 from the inside of the manufactured pneumatic tire T can be performed outside the vulcanizing mold 10A.
  • the rigid inner mold 2 can also be provided with the cooling path 8 described above to supply a cooling medium from the cooler 9.

Abstract

 Provided are a manufacturing method and a manufacturing apparatus for a pneumatic tire, with which a tread portion can be formed with good dimensional accuracy, while minimizing thermal degradation of the base tire. A rigid inner mold (2) made from metal is abutted against the tire inner surface in an area corresponding to the tread portion (TR) of the base tire (BT), and in this state, the base tire (BT) is supported from the inner side by the tough, rigid inner mold (2). In this state, unvulcanized rubber (R) is injected into the cavity (11) of a tread mold (10) that covers the base tire (BT) outside peripheral surface corresponding to the tread portion (TR), and the unvulcanized rubber (R) is vulcanized to form the tread portion (TR) on the outside peripheral surface of the base tire (BT), as well as to unify the tread portion (TR) with the outside peripheral surface.

Description

空気入りタイヤの製造方法および製造装置Pneumatic tire manufacturing method and manufacturing apparatus
 本発明は、空気入りタイヤの製造方法および製造装置に関し、さらに詳しくは、台タイヤの熱劣化を抑制しつつ、寸法精度よくトレッド部を形成することができる空気入りタイヤの製造方法および製造装置に関するものである。 The present invention relates to a method and apparatus for manufacturing a pneumatic tire, and more particularly, to a method and apparatus for manufacturing a pneumatic tire capable of forming a tread portion with high dimensional accuracy while suppressing thermal deterioration of a base tire. Is.
 既存の空気入りタイヤのトレッド部のゴムを切削した台タイヤに、新たなトレッド部を形成する、いわゆる更生タイヤの製造方法が種々提案されている(例えば、特許文献1参照)。特許文献1で提案されている方法では既設の製造設備を使用し、台タイヤの内側に配置された加硫ブラダを膨張させた状態にして内圧を印加する。この状態で、台タイヤの周方向外側に配置されたタイヤモールドと台タイヤの周方向外側表面との間に形成された空間に未加硫ゴムを注入する。この注入した未加硫ゴムを加硫することによってトレッド部を形成しつつ、台タイヤの周方向外側表面に一体化させる。 Various so-called retreaded tire manufacturing methods have been proposed in which a new tread portion is formed on a base tire obtained by cutting the rubber of a tread portion of an existing pneumatic tire (see, for example, Patent Document 1). In the method proposed in Patent Document 1, an existing manufacturing facility is used, and an internal pressure is applied in a state where a vulcanization bladder disposed inside a base tire is inflated. In this state, unvulcanized rubber is injected into a space formed between a tire mold disposed on the outer side in the circumferential direction of the base tire and the outer surface in the circumferential direction of the base tire. The injected unvulcanized rubber is vulcanized to form a tread portion and to be integrated with the outer circumferential surface of the base tire.
 この方法では、加硫ブラダに熱流体を供給して膨張させるので台タイヤは内側から加熱されることになる。即ち、台タイヤを形成している加硫ゴムはタイヤ内側から加硫ブラダによって加熱されるので熱劣化するという不具合がある。 In this method, since the thermal fluid is supplied to the vulcanizing bladder and expanded, the base tire is heated from the inside. In other words, the vulcanized rubber forming the base tire is heated by the vulcanization bladder from the inside of the tire, so that there is a problem that it is thermally deteriorated.
 また、射出される未加硫ゴムの射出圧力は、膨張している加硫ブラダの内圧(数MPa程度)比して大幅に高くなるのが一般的である。そのため、膨張させた加硫ブラダによって台タイヤの内側を押圧していても、未加硫ゴムの射出圧力によって台タイヤが内側に凹むように変形する。この変形の影響によって、形成されるトレッド部の寸法精度が低下するという問題がある。引用文献1では、トレッド成型空間内における未加硫ゴムの圧力P1が台タイヤに印加される内圧P2よりも僅かに高く設定される(段落0040参照)。即ち、引用文献1に記載の発明では、未加硫ゴムの射出圧力を高く設定できないため、射出時間が長くなるデメリットや、未加硫ゴムをトレッド成型空間内に十分に行き渡らせ難いというデメリットが生じる。 Also, the injection pressure of the unvulcanized rubber to be injected is generally significantly higher than the internal pressure (about several MPa) of the expanding vulcanized bladder. Therefore, even if the inside of the base tire is pressed by the expanded vulcanized bladder, the base tire is deformed so as to be recessed inward by the injection pressure of the unvulcanized rubber. Due to the influence of this deformation, there is a problem that the dimensional accuracy of the formed tread portion is lowered. In the cited document 1, the pressure P1 of the unvulcanized rubber in the tread molding space is set slightly higher than the internal pressure P2 applied to the base tire (see paragraph 0040). That is, in the invention described in the cited document 1, since the injection pressure of the unvulcanized rubber cannot be set high, there are a disadvantage that the injection time becomes long and a disadvantage that it is difficult to sufficiently spread the unvulcanized rubber in the tread molding space. Arise.
日本国特開2011-31452号公報Japanese Unexamined Patent Publication No. 2011-31452
 本発明の目的は、空気入りタイヤの製造方法および製造装置に関し、さらに詳しくは、台タイヤの熱劣化を抑制しつつ、寸法精度よくトレッド部を形成することができる空気入りタイヤの製造方法および製造装置を提供することにある。 The object of the present invention relates to a pneumatic tire manufacturing method and manufacturing apparatus, and more specifically, a pneumatic tire manufacturing method and a manufacturing method capable of forming a tread portion with high dimensional accuracy while suppressing thermal deterioration of a base tire. To provide an apparatus.
 上記目的を達成するため本発明の空気入りタイヤの製造方法は、拡縮可能な金属製の剛性内型を台タイヤの内側に配置し、この台タイヤのトレッド部に対応するタイヤ内面の範囲に前記剛性内型を当接させた状態にし、前記トレッド部に相当する前記台タイヤの外周面をトレッド用金型で覆い、次いで、このトレッド用金型のキャビティに未加硫ゴムを射出して、この未加硫ゴムを加硫させることにより前記台タイヤの外周面にトレッド部を形成するとともにこのトレッド部を前記外周面に一体化させることを特徴とする。 In order to achieve the above object, the pneumatic tire manufacturing method of the present invention has a metal rigid inner mold that can be expanded and contracted arranged inside a base tire, and is within the range of the tire inner surface corresponding to the tread portion of the base tire. With the rigid inner mold in contact, the outer peripheral surface of the base tire corresponding to the tread portion is covered with a tread mold, and then unvulcanized rubber is injected into the cavity of the tread mold, By vulcanizing the unvulcanized rubber, a tread portion is formed on the outer peripheral surface of the base tire, and the tread portion is integrated with the outer peripheral surface.
 本発明の別の空気入りタイヤの製造方法は、周方向に複数に分割可能な円筒状の金属製の剛性内型を台タイヤの内側に配置し、この台タイヤのトレッド部に対応するタイヤ内面の範囲に前記剛性内型を当接させた状態にし、前記台タイヤを前記剛性内型とともに加硫用金型の中に配置して、前記トレッド部に相当する前記台タイヤの外周面を前記加硫用金型で覆い、次いで、前記加硫用金型の内周面と前記台タイヤの外周面との間に形成されたキャビティに未加硫ゴムを射出して、この未加硫ゴムを加硫させることにより前記台タイヤの外周面にトレッド部を形成するとともにこのトレッド部を前記外周面に一体化させて空気入りタイヤを製造し、この空気入りタイヤを、この空気入りタイヤの内側に配置されている前記剛性内型とともに前記加硫用金型の外に取り出し、前記加硫用金型の外において前記空気入りタイヤの内側から前記剛性内型を取り外すことを特徴とする。 Another method of manufacturing a pneumatic tire according to the present invention is such that a cylindrical metal rigid inner mold that can be divided into a plurality of parts in the circumferential direction is arranged inside a base tire, and the tire inner surface corresponding to the tread portion of the base tire The rigid inner mold is brought into contact with the above range, the base tire is disposed in a vulcanizing mold together with the rigid inner mold, and the outer peripheral surface of the base tire corresponding to the tread portion is Cover with a vulcanizing mold, and then inject unvulcanized rubber into a cavity formed between the inner peripheral surface of the vulcanizing mold and the outer peripheral surface of the base tire, and this unvulcanized rubber. To form a tread portion on the outer peripheral surface of the base tire and to integrate the tread portion with the outer peripheral surface to manufacture a pneumatic tire, and to connect the pneumatic tire to the inner side of the pneumatic tire. Together with the rigid inner mold placed in Extraction out of the serial vulcanizing mold, characterized in that removing the rigid inner mold in the outer of said vulcanizing mold from the inside of the pneumatic tire.
 本発明の空気入りタイヤの製造装置は、台タイヤの内側に配置される拡縮可能な金属製の剛性内型と、トレッド部に相当する前記台タイヤの外周面を覆って配置されるトレッド用金型と、このトレッド用金型のキャビティに未加硫ゴムを射出する射出機とを備え、前記台タイヤのトレッド部に対応するタイヤ内面の範囲に前記剛性内型を当接させた状態にして前記未加硫ゴムを射出する構成にしたことを特徴とする。 The pneumatic tire manufacturing apparatus according to the present invention includes an expandable / reducible metal rigid inner mold disposed inside a base tire, and a tread metal disposed so as to cover the outer peripheral surface of the base tire corresponding to the tread portion. A mold and an injection machine that injects unvulcanized rubber into the cavity of the tread mold, and the rigid inner mold is brought into contact with the inner surface of the tire corresponding to the tread portion of the base tire. The unvulcanized rubber is injected.
 本発明の別の空気入りタイヤの製造装置は、台タイヤの内側に配置される周方向に複数に分割可能な円筒状の金属製の剛性内型と、前記剛性内型とともに前記台タイヤが中に配置されてトレッド部に相当する前記台タイヤの外周面を覆う加硫用金型と、この加硫用金型の内周面と前記台タイヤの外周面との間に形成されたキャビティに未加硫ゴムを射出する射出機とを備え、前記台タイヤのトレッド部に対応するタイヤ内面の範囲に前記剛性内型を当接させた状態にして前記未加硫ゴムを前記キャビティに射出することにより、この未加硫ゴムを加硫させて形成したトレッド部を前記台タイヤの外周面に一体化させて空気入りタイヤを製造した後に、この空気入りタイヤの内側に配置されている前記剛性内型が、前記製造した空気入りタイヤとともに前記加硫用金型の外に取り出されて、前記加硫用金型の外においてこの空気入りタイヤの内側から取り外される構成にしたことを特徴とする。 Another pneumatic tire manufacturing apparatus according to the present invention includes a cylindrical metal rigid inner mold that can be divided into a plurality of pieces in a circumferential direction, which is disposed inside the base tire, and the base tire including the rigid inner mold. And a cavity formed between the inner peripheral surface of the vulcanization mold and the outer peripheral surface of the base tire, and a vulcanizing mold that covers the outer peripheral surface of the base tire corresponding to the tread portion. An injection machine for injecting unvulcanized rubber, and injecting the unvulcanized rubber into the cavity in a state where the rigid inner mold is in contact with the inner surface of the tire corresponding to the tread portion of the base tire Thus, after the tread portion formed by vulcanizing the unvulcanized rubber is integrated with the outer peripheral surface of the base tire to manufacture a pneumatic tire, the rigidity disposed inside the pneumatic tire is set. The inner mold is the manufactured pneumatic tie. Wherein is taken out of the vulcanizing mold together, characterized in that the structure to be removed from the inside of the pneumatic tire in the outer of said vulcanizing mold.
 本発明の前者の空気入りタイヤの製造方法および装置によれば、台タイヤのトレッド部に対応するタイヤ内面の範囲に金属製の剛性内型を当接させた状態にして台タイヤを内側から堅牢な剛性内型によって支える。この状態で、トレッド部に相当する台タイヤの外周面を覆うトレッド用金型のキャビティに未加硫ゴムを射出するので、未加硫ゴムの射出圧力によって台タイヤが内側に凹むという不具合を回避できる。また、台タイヤのタイヤ内面に当接させた剛性内型は金属製なので、台タイヤの熱を放出する冷却フィンとして機能する。そのため、未加硫ゴムが射出された台タイヤの温度上昇を抑えることができ、台タイヤの熱劣化を抑制するには有利になる。 According to the former method and apparatus for manufacturing a pneumatic tire of the present invention, the base tire is fastened from the inside with the metal rigid inner mold in contact with the inner surface of the tire corresponding to the tread portion of the base tire. It is supported by a rigid inner mold. In this state, unvulcanized rubber is injected into the cavity of the tread mold that covers the outer peripheral surface of the base tire corresponding to the tread portion, so that the problem of the base tire being recessed inside due to the injection pressure of the unvulcanized rubber is avoided. it can. Further, since the rigid inner mold that is in contact with the tire inner surface of the base tire is made of metal, it functions as a cooling fin that releases the heat of the base tire. Therefore, the temperature rise of the base tire injected with the unvulcanized rubber can be suppressed, which is advantageous for suppressing the thermal deterioration of the base tire.
 台タイヤを内側から剛性内型によって支えるので、未加硫ゴムの射出圧力を高く設定することが可能になり、これに伴って、射出時間を短縮できるという利点、未加硫ゴムをキャビティに十分に行き渡らせ易くなるという利点もある。これら利点は寸法精度を向上させるにも有利である。 Since the base tire is supported from the inside by a rigid inner mold, it becomes possible to set the injection pressure of unvulcanized rubber high, and this has the advantage that the injection time can be shortened. There is also an advantage that it is easy to spread. These advantages are also advantageous for improving dimensional accuracy.
 本発明の前者の空気入りタイヤの製造方法および装置では、前記剛性内型を周方向に分割された複数のセグメントにより構成し、これらセグメントを拡径した位置に配置して前記台タイヤのトレッド部に対応するタイヤ内面の範囲に当接させることもできる。これにより、台タイヤの内側に剛性内型を配置し易く、製造した空気入タイヤの外側に剛性内型を取り出し易くなる。 In the former method and apparatus for producing a pneumatic tire according to the present invention, the rigid inner mold is constituted by a plurality of segments divided in the circumferential direction, and these segments are arranged at positions where the diameters have been expanded, so that the tread portion of the base tire is provided. It can also be made to contact the range of the tire inner surface corresponding to. Thereby, it is easy to arrange the rigid inner mold inside the base tire, and it is easy to take out the rigid inner mold outside the manufactured pneumatic tire.
 本発明の後者の空気入りタイヤの製造方法および装置によれば、台タイヤのトレッド部に対応するタイヤ内面の範囲に金属製の剛性内型を当接させた状態にして台タイヤを内側から堅牢な剛性内型によって支える。この状態で、トレッド部に相当する台タイヤの外周面を覆う加硫用金型の内周面と台タイヤの外周面の間に形成されたキャビティに未加硫ゴムを射出するので、未加硫ゴムの射出圧力によって台タイヤが内側に凹むという不具合を回避できる。また、台タイヤのタイヤ内面に当接させた剛性内型は金属製なので、台タイヤの熱を放出する冷却フィンとして機能する。そのため、未加硫ゴムが射出された台タイヤの温度上昇を抑えることができ、台タイヤの熱劣化を抑制するには有利になる。 According to the latter method and apparatus for manufacturing a pneumatic tire of the present invention, the base tire is fastened from the inside with the metal rigid inner mold in contact with the inner surface of the tire corresponding to the tread portion of the base tire. It is supported by a rigid inner mold. In this state, unvulcanized rubber is injected into the cavity formed between the inner peripheral surface of the vulcanizing mold that covers the outer peripheral surface of the base tire corresponding to the tread portion and the outer peripheral surface of the base tire. It is possible to avoid the problem that the tire is recessed inward due to the injection pressure of the vulcanized rubber. Further, since the rigid inner mold that is in contact with the tire inner surface of the base tire is made of metal, it functions as a cooling fin that releases the heat of the base tire. Therefore, the temperature rise of the base tire injected with the unvulcanized rubber can be suppressed, which is advantageous for suppressing the thermal deterioration of the base tire.
 台タイヤを内側から剛性内型によって支えるので、未加硫ゴムの射出圧力を高く設定することが可能になり、これに伴って、射出時間を短縮できるという利点、未加硫ゴムをキャビティに十分に行き渡らせ易くなるという利点もある。これら利点は寸法精度を向上させるにも有利である。 Since the base tire is supported from the inside by a rigid inner mold, it becomes possible to set the injection pressure of unvulcanized rubber high, and this has the advantage that the injection time can be shortened. There is also an advantage that it is easy to spread. These advantages are also advantageous for improving dimensional accuracy.
 さらには、剛性内型を台タイヤの内側に配置する作業、製造した空気入りタイヤの内側から剛性内型を取り外す作業を加硫用金型の外部にて行なうことができる。そのため、これら作業を行なうための機構を製造装置に設ける必要がなく、製造装置の簡素化には有利になる。 Furthermore, the operation of placing the rigid inner mold inside the base tire and the operation of removing the rigid inner mold from the inside of the manufactured pneumatic tire can be performed outside the vulcanization mold. Therefore, it is not necessary to provide a mechanism for performing these operations in the manufacturing apparatus, which is advantageous for simplifying the manufacturing apparatus.
 本発明の後者の空気入りタイヤの製造方法および装置では、前記台タイヤを前記剛性内型とともに前記加硫用金型の中に配置する際に、前記射出する未加硫ゴムを射出機のプランジャーが内設されるシリンダに充填することもできる。これにより、未加硫ゴムを迅速にキャビティに射出することが可能になるので、未加硫ゴムが不要な熱履歴を受け難くなる。 In the latter method and apparatus for producing a pneumatic tire according to the present invention, when the base tire is placed in the vulcanizing mold together with the rigid inner mold, the injected unvulcanized rubber is injected into the plan of the injection machine. It is also possible to fill the cylinder in which the jar is installed. This makes it possible to quickly inject unvulcanized rubber into the cavity, making it difficult for the unvulcanized rubber to receive an unnecessary heat history.
 本発明の前者および後者の空気入りタイヤの製造方法では、前記剛性内型を通じて前記台タイヤの内側を冷却しながら前記未加硫のゴムを射出し、加硫させることもできる。また、本発明の前者および後者の空気入りタイヤの製造装置では、前記剛性内型を冷却する冷却手段を備えることもできる。これにより、台タイヤの温度上昇を積極的に抑えることができるので、台タイヤの熱劣化を抑制するには益々有利になる。 In the former and latter pneumatic tire manufacturing methods of the present invention, the unvulcanized rubber can be injected and vulcanized while cooling the inside of the base tire through the rigid inner mold. In the former and the latter pneumatic tire manufacturing apparatuses of the present invention, a cooling means for cooling the rigid inner mold may be provided. Thereby, since the temperature rise of a base tire can be suppressed positively, it becomes more and more advantageous in suppressing the thermal deterioration of a base tire.
 前記台タイヤとしては、例えば、既存の空気入りタイヤのトレッド部のゴムを切削して形成されたものを使用する。前記未加硫ゴムとして、スタッドレスタイヤ用のゴムコンパウンドを使用してスタッドレスタイヤを製造することもできる。前記既存の空気入タイヤがスタッドレスタイヤであり、前記未加硫ゴムとして、この既存のスタッドレスタイヤのトレッド部に使用されているゴムコンパウンドとは異なる種類のゴムコンパウンドを使用することもできる。前記既存のスタッドレスタイヤのトレッド部に使用されているゴムコンパウンドと前記台タイヤの外周面に形成されたトレッド部のゴムコンパウンドとは、同条件での硬度、比重、摩擦特性の少なくとも1つの特性が異なるようにすることもできる。 As the base tire, for example, a tire formed by cutting rubber on a tread portion of an existing pneumatic tire is used. As the unvulcanized rubber, a studless tire can be manufactured using a rubber compound for a studless tire. The existing pneumatic tire is a studless tire, and a rubber compound of a type different from the rubber compound used in the tread portion of the existing studless tire can be used as the unvulcanized rubber. The rubber compound used in the tread portion of the existing studless tire and the rubber compound of the tread portion formed on the outer peripheral surface of the base tire have at least one characteristic of hardness, specific gravity, and friction characteristics under the same conditions. It can be different.
図1は本発明の空気入りタイヤの製造装置を一部を断面視にして例示する全体概要図である。FIG. 1 is an overall schematic diagram illustrating a pneumatic tire manufacturing apparatus according to the present invention, partially in a sectional view. 図2は図1の剛性内型およびトレッド用金型を平面視で例示する説明図である。FIG. 2 is an explanatory view illustrating the rigid inner mold and the tread mold of FIG. 1 in plan view. 図3は図2の剛性内型を平面視で例示する説明図である。FIG. 3 is an explanatory view illustrating the rigid inner mold of FIG. 2 in plan view. 図4は短セグメントを縮径位置に移動させた状態の剛性内型を平面視で例示する説明図である。FIG. 4 is an explanatory view illustrating the rigid inner mold in a state in which the short segment is moved to the reduced diameter position in plan view. 図5は長セグメントも縮径位置に移動させて縮径した剛性内型を平面視で例示する説明図である。FIG. 5 is an explanatory diagram illustrating, in plan view, a rigid inner mold in which a long segment is also moved to a reduced diameter position and reduced in diameter. 図6はセグメントの変形例を断面視で示す説明図である。FIG. 6 is an explanatory view showing a modification of the segment in cross-sectional view. 図7は図1のキャビティに未加硫ゴムを射出した状態を断面視で例示する説明図である。FIG. 7 is an explanatory view illustrating a state in which unvulcanized rubber is injected into the cavity of FIG. 1 in a cross-sectional view. 図8は別の剛性内型を平面視で例示する説明図である。FIG. 8 is an explanatory view illustrating another rigid inner mold in plan view. 図9は図8のA-A断面図である。9 is a cross-sectional view taken along the line AA in FIG. 図10は製造した空気入りタイヤから剛性内型を取り外す工程を例示する左半分縦断面図である。FIG. 10 is a left half vertical cross-sectional view illustrating the step of removing the rigid inner mold from the manufactured pneumatic tire. 図11は図10の次の工程を例示する剛性内型の左半分縦断面図である。FIG. 11 is a left half longitudinal sectional view of a rigid inner mold illustrating the next step of FIG. 図12は本発明の空気入りタイヤの製造装置の別の実施形態を一部をタイヤ幅方向断面視で例示する全体概要図である。FIG. 12 is an overall schematic diagram illustrating a part of another embodiment of the pneumatic tire manufacturing apparatus of the present invention in a tire width direction sectional view. 図13は図12の製造装置を平面視で例示する説明図である。FIG. 13 is an explanatory view illustrating the manufacturing apparatus of FIG. 12 in plan view. 図14は図13の剛性内型を平面視で例示する説明図である。FIG. 14 is an explanatory view illustrating the rigid inner mold of FIG. 13 in plan view. 図15は図14の剛性内型を分離、分割した状態を平面視で例示する説明図である。FIG. 15 is an explanatory view illustrating a state where the rigid inner mold of FIG. 14 is separated and divided in a plan view. 図16は図12のキャビティに未加硫ゴムを射出した状態をタイヤ幅方向断面視で例示する説明図である。FIG. 16 is an explanatory view illustrating the state in which unvulcanized rubber is injected into the cavity of FIG. 12 in a tire width direction sectional view. 図17は別の剛性内型を台タイヤの内側に配置する工程をタイヤ幅方向断面視で例示する説明図である。FIG. 17 is an explanatory view illustrating the step of arranging another rigid inner mold inside the base tire in a sectional view in the tire width direction. 図18は図17の剛性内型を台タイヤの内側に配置した状態をタイヤ幅方向断面視で例示する説明図である。FIG. 18 is an explanatory view illustrating the state in which the rigid inner mold of FIG. 17 is disposed inside the base tire in a tire width direction sectional view. 図19は図17の剛性内型を内側に配置した台タイヤを側面視で例示する説明図である。FIG. 19 is an explanatory view illustrating a base tire in which the rigid inner mold of FIG. 図20はさらに別の剛性内型を台タイヤの内側に配置する工程をタイヤ幅方向断面視で例示する説明図である。FIG. 20 is an explanatory view illustrating a step of arranging another rigid inner mold inside the base tire in a tire width direction sectional view. 図21は図20の工程をタイヤ側面視で例示する説明図である。FIG. 21 is an explanatory view illustrating the step of FIG. 20 in a tire side view. 図22は図20の剛性内型を台タイヤの内側に配置した状態をタイヤ幅方向断面視で例示する説明図である。FIG. 22 is an explanatory view illustrating a state in which the rigid inner mold of FIG. 20 is arranged inside the base tire in a tire width direction sectional view.
 以下、本発明の空気入りタイヤの製造方法および加硫装置を図に示した実施形態に基づいて説明する。 Hereinafter, a method for producing a pneumatic tire and a vulcanizing apparatus of the present invention will be described based on the embodiments shown in the drawings.
 図1~図3に例示する本発明の空気入りタイヤの製造装置1は、台タイヤBTの内側に配置される拡縮可能な金属製の剛性内型2と、トレッド部TRに相当する台タイヤBTの外周面を覆って配置されるトレッド用金型10と、トレッド用金型10のキャビティ11に未加硫ゴムRを射出する射出機13とを備えている。この実施形態の製造装置1は、さらに、剛性内型2を冷却する冷却手段8、9を備えている。 The pneumatic tire manufacturing apparatus 1 of the present invention illustrated in FIGS. 1 to 3 includes a base metal BT 2 corresponding to a tread portion TR, and a rigid inner mold 2 that can be expanded and contracted, which is disposed inside the base tire BT. A tread mold 10 disposed so as to cover the outer peripheral surface of the tread mold, and an injection machine 13 for injecting the unvulcanized rubber R into the cavity 11 of the tread mold 10. The manufacturing apparatus 1 of this embodiment further includes cooling means 8 and 9 for cooling the rigid inner mold 2.
 台タイヤBTとは、通常の空気入りタイヤにおいてトレッド部TRがない状態のタイヤをいう。台タイヤBTは、使用された既存の空気入りタイヤのトレッド部TRのゴムを切削して形成される。ゴム切削後にその表面はバフ処理される。或いは、通常の空気入りタイヤの製造工程において、トレッド部TRだけを省略して製造することもできる。即ち、使用されていない新品の台タイヤBTを製造することもできる。本発明は、既存の空気入りタイヤのトレッド部TRのゴムを切削して形成された台タイヤBTおよび新品の台タイヤBTを用いることができる。 The base tire BT refers to a tire without a tread portion TR in a normal pneumatic tire. The base tire BT is formed by cutting rubber of a tread portion TR of an existing pneumatic tire that has been used. The surface is buffed after rubber cutting. Alternatively, in a normal pneumatic tire manufacturing process, only the tread portion TR can be omitted for manufacturing. That is, a new base tire BT that is not used can be manufactured. The present invention can use a base tire BT and a new base tire BT formed by cutting rubber of a tread portion TR of an existing pneumatic tire.
 剛性内型2は周方向に分割された複数のセグメント3(3A、3B)により構成されている。剛性内型2の材質としては、炭素鋼、アルミニウム、アルミニウム合金等の金属を例示できる。この実施形態では、周方向長さが相対的に大きい4つの長セグメント3Aと、相対的に小さい4つの短セグメント3Bの2種類で構成されている。短セグメントの周方向両端面は拡縮方向と平行になっている。長セグメント3Aと短セグメント3Bとは周方向に交互に配置されている。それぞれのセグメント3A、3Bは中心軸5から放射状に延設されたシリンダ5aに取り付けられている。 The rigid inner mold 2 is composed of a plurality of segments 3 (3A, 3B) divided in the circumferential direction. Examples of the material of the rigid inner mold 2 include metals such as carbon steel, aluminum, and aluminum alloys. In this embodiment, there are two types of four long segments 3A having a relatively large circumferential length and four short segments 3B having a relatively small circumferential length. Both end surfaces of the short segment in the circumferential direction are parallel to the expansion / contraction direction. The long segments 3A and the short segments 3B are alternately arranged in the circumferential direction. Each segment 3A, 3B is attached to a cylinder 5a extending radially from the central axis 5.
 中心軸5を中心にして環状に配置されたセグメント3(3A、3B)は、図4に例示するようにシリンダ5aのロッドを後退させて短セグメント3Bを半径方向内側(縮径位置)に移動させた後に、図5に例示するようにシリンダ5aのロッドを後退させて長セグメント3Aを半径方向内側(縮径位置)に移動させることにより、剛性内型2が縮径することになる。例えば、短セグメント3Bを縮径位置に移動させた後にシリンダ5aから取り外し、その後、長セグメント3Aを縮径位置に移動させる。 The segment 3 (3A, 3B) arranged annularly around the central axis 5 moves the short segment 3B radially inward (reduced diameter position) by retracting the rod of the cylinder 5a as illustrated in FIG. Then, as shown in FIG. 5, the rigid inner mold 2 is reduced in diameter by retracting the rod of the cylinder 5a and moving the long segment 3A inward in the radial direction (diameter reduction position). For example, the short segment 3B is moved to the reduced diameter position and then removed from the cylinder 5a, and then the long segment 3A is moved to the reduced diameter position.
 縮径状態の剛性内型2は、シリンダ5aのロッドを前進させて長セグメント3Aを半径方向外側(拡径位置)に移動させた後に、シリンダ5aのロッドを前進させて短セグメント3Bを半径方向外側(拡径位置)に移動させることにより、拡径することになる。拡径した剛性内型2では、それぞれのセグメント3A、3Bの外側表面は環状に連続して台タイヤBTのトレッド部TRに対応するタイヤ内面の範囲に当接する。 In the reduced-diameter rigid inner mold 2, the rod of the cylinder 5a is moved forward to move the long segment 3A to the outside in the radial direction (expanded position), and then the rod of the cylinder 5a is moved forward to move the short segment 3B to the radial direction. The diameter is expanded by moving to the outside (diameter expansion position). In the rigid inner mold 2 with the expanded diameter, the outer surfaces of the segments 3A and 3B are continuously annularly abutted on the range of the tire inner surface corresponding to the tread portion TR of the base tire BT.
 それぞれの短セグメント3Bはすべて同時に移動させることも、別々に移動させることもできる。それぞれの長セグメント3Aもすべて同時に移動させることも、別々に移動させることもできる。 All the short segments 3B can be moved simultaneously or separately. Each of the long segments 3A can be moved simultaneously or separately.
 それぞれのセグメント3A、3Bの幅寸法(図1では上下方向寸法)は、台タイヤBTの対向するビード部Tbの間隔よりも僅かに小さく設定されている。そのため、それぞれのセグメント3A、3Bを一対のビード部Tbの間を通過させて円滑に拡縮移動させることができる。 The width dimension (the vertical dimension in FIG. 1) of each segment 3A, 3B is set slightly smaller than the interval between the bead portions Tb facing the base tire BT. Therefore, each segment 3A, 3B can be smoothly expanded and contracted by passing between the pair of bead portions Tb.
 図6に例示するように、セグメント3の両端部に補助プレート3aを回動可能に設けることもできる。このセグメント3では、補助プレート3aを折り畳んだ状態(セグメント3から実質的に上下に突出させない状態)で一対のビード部Tbの間を拡縮移動させる。セグメント3が半径方向内側から外側に移動して、一対のビード部Tbの間を通過した後に補助プレート3aを展開させて台タイヤBTのタイヤ内面に当接させる。補助プレート3aは展開させた位置でロックされて展開した状態を維持する。これにより、タイヤ内面の一段と広い範囲を剛性内型2により支えることができる。 As illustrated in FIG. 6, auxiliary plates 3 a can be rotatably provided at both ends of the segment 3. In this segment 3, the auxiliary plate 3a is expanded and contracted between the pair of bead portions Tb in a state in which the auxiliary plate 3a is folded (a state in which the auxiliary plate 3a is not substantially projected vertically). After the segment 3 moves from the inner side in the radial direction to the outer side and passes between the pair of bead portions Tb, the auxiliary plate 3a is developed and brought into contact with the tire inner surface of the base tire BT. The auxiliary plate 3a is locked at the deployed position and maintains the developed state. Thereby, a much wider range of the tire inner surface can be supported by the rigid inner mold 2.
 冷却手段は例えば、冷却機9と冷却路8とで構成される。冷却路8は剛性内型2(セグメント3)に設けられる。冷却機9は水等の冷却媒体を冷却路8に供給する。この冷却手段によって剛性内型2(セグメント3)の温度は例えば、40℃以上120℃以下に維持される。 The cooling means is composed of, for example, a cooler 9 and a cooling path 8. The cooling path 8 is provided in the rigid inner mold 2 (segment 3). The cooler 9 supplies a cooling medium such as water to the cooling path 8. By this cooling means, the temperature of the rigid inner mold 2 (segment 3) is maintained at 40 ° C. or higher and 120 ° C. or lower, for example.
 トレッド用金型10は、周方向に分割された複数の分割型10aで構成されているこの実施形態では、4つの分割型10aが環状に組み付けられている。それぞれの分割型10aには、キャビティ11と、キャビティ11に接続する注入路12とが形成されている。キャビティ11の表面は、製造する空気入りタイヤTのトレッドパターンを形成する形状になっている。注入路12の一端部は、射出機13の射出口に接続される。 The tread mold 10 is composed of a plurality of divided molds 10a divided in the circumferential direction. In this embodiment, four divided molds 10a are assembled in a ring shape. Each split mold 10 a is formed with a cavity 11 and an injection path 12 connected to the cavity 11. The surface of the cavity 11 has a shape that forms a tread pattern of the pneumatic tire T to be manufactured. One end of the injection path 12 is connected to the injection port of the injection machine 13.
 注入路12の他端部は、例えば、製造する空気入りタイヤTのトレッド陸部または周方向溝に相当するキャビティ11の位置に接続される。注入路12は、途中で複数本に分岐してキャビティ11に接続されることが好ましい。 The other end of the injection path 12 is connected to the position of the cavity 11 corresponding to, for example, a tread land portion or a circumferential groove of the pneumatic tire T to be manufactured. The injection path 12 is preferably branched into a plurality of paths on the way and connected to the cavity 11.
 それぞれの分割型10aにはさらに、加熱機15に接続される加熱路14が形成されている。加熱機15はスチーム等の加熱媒体を供給し、供給された加熱媒体が加熱路14を流れて分割型10aが加熱される。 A heating path 14 connected to the heater 15 is further formed in each split mold 10a. The heater 15 supplies a heating medium such as steam, and the supplied heating medium flows through the heating path 14 to heat the split mold 10a.
 射出機13は、未加硫ゴムRを所定温度で加温しつつ収容するシリンダ13aと、シリンダ13aに収容されている未加硫ゴムRを押出すプランジャ13bと備えている。プランジャ13bを前進させることにより、未加硫ゴムRを所定の射出圧力で射出する。この射出圧力は例えば10MPa以上50MPa以下である。 The injection machine 13 includes a cylinder 13a that accommodates the unvulcanized rubber R while being heated at a predetermined temperature, and a plunger 13b that extrudes the unvulcanized rubber R that is accommodated in the cylinder 13a. The unvulcanized rubber R is injected at a predetermined injection pressure by moving the plunger 13b forward. This injection pressure is, for example, 10 MPa or more and 50 MPa or less.
 未加硫ゴムRは射出できる流動特性を有し、加硫が可能な仕様であればよく、例えば、天然ゴム、IR、SBR、BRなどのジエン系ゴム、ブチルゴム、ハロゲン化ブチルゴム、EPDMなどの非ジエン系ゴム、カーボンブラック、オイル、老化防止剤、加工助剤、軟化剤、可塑剤、加硫剤、加硫促進剤、加硫遅延剤等の各種配合材料が適宜配合されている。 The unvulcanized rubber R has flow characteristics that can be injected and may be any specification that can be vulcanized. For example, natural rubber, diene rubbers such as IR, SBR, BR, butyl rubber, halogenated butyl rubber, EPDM, etc. Various compounding materials such as non-diene rubber, carbon black, oil, anti-aging agent, processing aid, softener, plasticizer, vulcanizing agent, vulcanization accelerator and vulcanization retarder are appropriately blended.
 この製造装置1を用いた本発明の空気入りタイヤの製造方法の手順の一例を説明する。 An example of the procedure of the method for manufacturing a pneumatic tire according to the present invention using the manufacturing apparatus 1 will be described.
 台タイヤBTの内側に、順次、長セグメント3A、短セグメント3Bを拡径位置に移動させて挿入する。挿入後に図3に例示するように剛性内型2を拡径した状態でロックして拡径状態を維持する。拡径した剛性内型2ではそれぞれのセグメント3が台タイヤBTのトレッド部TRに対応するタイヤ内面の範囲に当接した状態になる。即ち、台タイヤBTのトレッド部TRに対応するタイヤ内面は、環状に配置されたセグメント3によって強固に支えられることになる。 The long segment 3A and the short segment 3B are sequentially moved to the enlarged diameter position and inserted inside the base tire BT. After the insertion, as shown in FIG. 3, the rigid inner mold 2 is locked in the expanded state to maintain the expanded state. In the rigid inner mold 2 whose diameter has been expanded, each segment 3 is in contact with the range of the tire inner surface corresponding to the tread portion TR of the base tire BT. That is, the tire inner surface corresponding to the tread portion TR of the base tire BT is firmly supported by the segments 3 arranged in an annular shape.
 台タイヤBTの外周側にはトレッド用金型10(分割型10a)を配置して、トレッド部TRに相当する台タイヤBTの外周面をトレッド用金型10によって覆う。これにより、トレッド用金型10のキャビティ11が台タイヤBTの外周面に塞がれて閉空間となる。 A tread mold 10 (divided mold 10a) is arranged on the outer peripheral side of the base tire BT, and the outer peripheral surface of the base tire BT corresponding to the tread portion TR is covered with the tread mold 10. As a result, the cavity 11 of the tread mold 10 is closed by the outer peripheral surface of the base tire BT to form a closed space.
 次いで、図7に例示するようにトレッド用金型10のキャビティ11に射出機13から未加硫ゴムRを射出して、注入路12を通じてキャビティ11に未加硫ゴムRを充填する。キャビティ11に充填された未加硫ゴムRはキャビティ11によって所定形状に形成される。そして、加熱路14を流れる加熱媒体によってトレッド用金型10を加熱した状態にして未加硫ゴムRを加硫させる。未加硫ゴムRが加硫されると、台タイヤBTの外周面に、この加硫したゴムからなるトレッド部TRが形成されるとともにこのトレッド部TRが台タイヤBTの外周面に加硫接着して一体化する。これにより、空気入りタイヤTが完成する。 Next, as illustrated in FIG. 7, the unvulcanized rubber R is injected from the injection machine 13 into the cavity 11 of the tread mold 10, and the cavity 11 is filled with the unvulcanized rubber R through the injection path 12. The unvulcanized rubber R filled in the cavity 11 is formed into a predetermined shape by the cavity 11. Then, the unvulcanized rubber R is vulcanized while the tread mold 10 is heated by the heating medium flowing through the heating path 14. When the unvulcanized rubber R is vulcanized, a tread portion TR made of the vulcanized rubber is formed on the outer peripheral surface of the base tire BT, and this tread portion TR is vulcanized and bonded to the outer peripheral surface of the base tire BT. And unite. Thereby, the pneumatic tire T is completed.
 その後、拡径している剛性内型2を縮径した状態にして、台タイヤBT(製造した空気入りタイヤT)の内側から外側に取り出す。 Then, the rigid inner mold 2 whose diameter has been expanded is reduced in diameter, and is taken out from the inside to the outside of the base tire BT (manufactured pneumatic tire T).
 上述したように本発明では、タイヤ内面に金属製の剛性内型2を当接させた状態にして台タイヤBTを内側から堅牢な剛性内型2によって支える。この状態でトレッド用金型10のキャビティ11に未加硫ゴムRを射出するので、未加硫ゴムRの射出圧力によって台タイヤBTが内側に凹むという不具合を回避できる。 As described above, in the present invention, the base tire BT is supported from the inside by the solid rigid inner mold 2 in a state where the metal rigid inner mold 2 is in contact with the inner surface of the tire. Since the unvulcanized rubber R is injected into the cavity 11 of the tread mold 10 in this state, it is possible to avoid the problem that the base tire BT is recessed inward due to the injection pressure of the unvulcanized rubber R.
 また、台タイヤBTのタイヤ内面に当接させた剛性内型2は金属製なので、台タイヤBTの熱を放出する空冷の冷却フィンとして機能する。そのため、台タイヤBTの温度上昇を抑えることができ、台タイヤBTを形成している加硫ゴムの熱劣化を抑制するには有利になる。 In addition, since the rigid inner mold 2 in contact with the tire inner surface of the base tire BT is made of metal, it functions as an air-cooled cooling fin that releases heat from the base tire BT. Therefore, the temperature rise of the base tire BT can be suppressed, which is advantageous for suppressing thermal deterioration of the vulcanized rubber forming the base tire BT.
 この実施形態では、冷却手段8、9によって剛性内型2を通じて台タイヤBTの内側を冷却しながら未加硫ゴムRを射出し、加硫させることができる。そのため、台タイヤBTの温度上昇を積極的に抑えることができるので、台タイヤBTの熱劣化を抑制するには益々有利になる。 In this embodiment, the unvulcanized rubber R can be injected and vulcanized while cooling the inside of the base tire BT through the rigid inner mold 2 by the cooling means 8 and 9. Therefore, since the temperature rise of the base tire BT can be positively suppressed, it becomes more and more advantageous for suppressing thermal deterioration of the base tire BT.
 台タイヤBTを内側から剛性内型2によって支えるので、加硫用ブラダによって台タイヤBTの内側を支える場合に比して、未加硫ゴムRの射出圧力を高く設定することが可能になる。これに伴って、射出時間を短縮できるという利点があり、タイヤ生産性の向上に寄与する。また、未加硫ゴムRをキャビティ11の全範囲に十分に行き渡らせ易くなるという利点もある。したがって、複雑なトレッドパターンであっても成形するには有利になる。これら利点は寸法精度を向上させるにも有利である。 Since the base tire BT is supported by the rigid inner mold 2 from the inside, the injection pressure of the unvulcanized rubber R can be set higher than when the inside of the base tire BT is supported by the vulcanizing bladder. Along with this, there is an advantage that the injection time can be shortened, which contributes to improvement of tire productivity. Further, there is an advantage that the unvulcanized rubber R can be easily spread over the entire range of the cavity 11. Therefore, even a complicated tread pattern is advantageous for molding. These advantages are also advantageous for improving dimensional accuracy.
 図8、図9に例示する剛性内型2を用いることもできる。この円筒状の剛性内型2は、周方向に複数に分割されたセグメント3(長セグメント3A、短セグメント3B)から構成されている。それぞれのセグメント3は、更に円筒周面を幅方向に二分割するように構成されている。 The rigid inner mold 2 illustrated in FIGS. 8 and 9 can also be used. The cylindrical rigid inner mold 2 is composed of segments 3 (long segment 3A, short segment 3B) divided into a plurality in the circumferential direction. Each segment 3 is configured to further divide the cylindrical circumferential surface into two in the width direction.
 これらセグメント3は、対向する円盤状の支持プレート6a、6bの周縁部に回転機構4を介して固定されて円筒状に形成されている。即ち、円筒周面を幅方向に二分割された一方側のセグメント3は、対向する支持プレート6a、6bのうち、一方側の支持プレート6aの周縁部に沿って環状に配置され、円筒周面を幅方向に二分割された他方側のセグメント3は、他方の支持プレート6bの周縁部に沿って環状に配置されている。 These segments 3 are formed in a cylindrical shape by being fixed to the peripheral portions of the opposing disk-shaped support plates 6a and 6b via a rotation mechanism 4. That is, the segment 3 on one side obtained by dividing the cylindrical peripheral surface into two in the width direction is annularly disposed along the peripheral edge of the support plate 6a on one side of the opposing support plates 6a and 6b. The other segment 3 that is divided into two in the width direction is annularly arranged along the peripheral edge of the other support plate 6b.
 対向する支持プレート6a、6bの円中心位置には中心軸5が貫通するように固定されている。中心軸5と一対の支持プレート6a、6bとは、中心軸5の外周面に固定された支持リブ7を介して固定されている。 The central axis 5 is fixed so as to penetrate through the circular center positions of the opposing support plates 6a and 6b. The center shaft 5 and the pair of support plates 6 a and 6 b are fixed via support ribs 7 fixed to the outer peripheral surface of the center shaft 5.
 このように、円筒状に形成されている複数のセグメント3からなる剛性内型2は、後述するように、それぞれのセグメント3が回転機構4を回動中心として、拡径および縮径するように移動する。この剛性内型2は、中心軸5を軸支されて製造装置1の保持ベースに取付けられる。 In this way, the rigid inner mold 2 composed of a plurality of segments 3 formed in a cylindrical shape is configured so that each segment 3 expands and contracts with the rotation mechanism 4 as a rotation center, as will be described later. Moving. The rigid inner mold 2 is attached to the holding base of the manufacturing apparatus 1 with the central shaft 5 being pivotally supported.
 製造した空気入りタイヤTから剛性内型2を取り外すには、まず、図10に例示するように、それぞれの回転機構4と支持プレート6a、6bとの係合を解除する。この状態で、一方の支持プレート6aを中心軸5から取り外し、この一方の支持プレート6aと、回転軸5を固定した他方の支持プレート6bとを、製造した空気入りタイヤTの外側に移動させる。 In order to remove the rigid inner mold 2 from the manufactured pneumatic tire T, first, as illustrated in FIG. 10, the engagement between the respective rotation mechanisms 4 and the support plates 6a and 6b is released. In this state, one support plate 6a is removed from the central shaft 5, and the one support plate 6a and the other support plate 6b to which the rotary shaft 5 is fixed are moved to the outside of the manufactured pneumatic tire T.
 次いで、図11に例示するように、幅方向一方側(図11では上側)のセグメント3を、回転機構4を中心にして剛性内型2を縮径するようにタイヤ内側に回動させる。その後、幅方向他方側(図11では下側)のセグメント3を、回転機構4を中心にして剛性内型2縮径するようにタイヤ内側に回動させる。このようにセグメント3をタイヤ内側に回動させてから空気入りタイヤTの外側に移動させて取り外す。剛性内型2を拡径して台タイヤBTの内側で円筒状に組み付けるには、図10、図11で例示した剛性内型2を分割する手順と逆の手順を行えばよい。このようにして、台タイヤBTの内側に剛性内型2を容易に配置でき、製造した空気入りタイヤTの外側に剛性内型2を容易に取り出すことができる。 Next, as illustrated in FIG. 11, the segment 3 on one side in the width direction (upper side in FIG. 11) is rotated inside the tire so as to reduce the diameter of the rigid inner mold 2 around the rotation mechanism 4. Thereafter, the segment 3 on the other side in the width direction (the lower side in FIG. 11) is rotated inward of the tire so as to reduce the diameter of the rigid inner mold 2 around the rotation mechanism 4. In this way, the segment 3 is turned to the inside of the tire and then moved to the outside of the pneumatic tire T to be removed. In order to expand the diameter of the rigid inner mold 2 and assemble it into a cylindrical shape inside the base tire BT, a procedure reverse to the procedure of dividing the rigid inner mold 2 illustrated in FIGS. 10 and 11 may be performed. In this way, the rigid inner mold 2 can be easily disposed inside the base tire BT, and the rigid inner mold 2 can be easily taken out of the manufactured pneumatic tire T.
 未加硫ゴムRとして、スタッドレスタイヤ用のゴムコンパウンドを使用してスタッドレスタイヤを製造することもできる。スタッドレスタイヤは通常の空気入りタイヤに比してトレッド部TRが摩耗し易いが、本発明を適用することにより、ユーザは新品のスタッドレスタイヤを購入することなく、新しいトレッド部TRを備えたスタッドレスタイヤを得ることができる。この場合、台タイヤBTとして既存のスタッドレスタイヤのトレッド部TRのゴムを削除したものだけでなく、通常の既存の空気入りタイヤのトレッド部TRのゴムを削除したものを用いることもできる。台タイヤBTを使用して新たなスタッドレスタイヤを製造するので、省資源、省エネルギーにも寄与する。また、従来のリトレッド技術よりも熱劣化を抑えられるので、長く使用可能である。 Studless tires can also be manufactured by using rubber compounds for studless tires as the unvulcanized rubber R. Studless tires tend to wear out in the tread portion TR as compared with ordinary pneumatic tires. However, by applying the present invention, a user can purchase a studless tire with a new tread portion TR without purchasing a new studless tire. Can be obtained. In this case, not only the rubber of the tread portion TR of the existing studless tire but also the rubber of the tread portion TR of a normal existing pneumatic tire can be used as the base tire BT. Since a new studless tire is manufactured using the base tire BT, it contributes to resource saving and energy saving. Moreover, since heat deterioration can be suppressed compared with the conventional retread technology, it can be used for a long time.
 台タイヤBTとして、既存のスタッドレスタイヤのトレッド部TRのゴムを切削して形成されたものを使用する場合、未加硫ゴムRとして、この既存のスタッドレスタイヤのトレッド部TRに使用されているゴムコンパウンドとは異なる種類のゴムコンパウンドを使用することもできる。スタッドレスタイヤのトレッド部TRのゴムコンパウンドは年々改良されて新たなバージョンや新たなゴム種が開発されている。それ故、本発明を適用することにより、ユーザは、トレッド部TRのゴムコンパウンドが改良された新品のスタッドレスタイヤを購入しなくても、トレッド部TRに改良されたゴムコンパウンドを備えたスタッドレスタイヤを得ることができる。即ち、ユーザは毎年新品のスタッドレスタイヤを購入することなく、トレッド部TRに最新開発のゴムコンパウンドを備えたスタッドレスタイヤを得ることができる。 When the tire formed by cutting the rubber of the tread portion TR of the existing studless tire is used as the base tire BT, the rubber used for the tread portion TR of the existing studless tire is used as the unvulcanized rubber R. It is also possible to use a different type of rubber compound than the compound. The rubber compound of the tread part TR of the studless tire has been improved year by year, and new versions and new rubber types have been developed. Therefore, by applying the present invention, even if the user does not purchase a new studless tire having an improved rubber compound in the tread portion TR, the user can obtain a studless tire having an improved rubber compound in the tread portion TR. Obtainable. That is, the user can obtain a studless tire having the latest developed rubber compound in the tread portion TR without purchasing a new studless tire every year.
 スタッドレスタイヤのトレッド部TRのゴムコンパウンドは年々改良されて、例えば、同条件での硬度、比重、摩擦特性が改良される。そこで、台タイヤBTとして、既存のスタッドレスタイヤのトレッド部TRのゴムを切削して形成されたものを使用する場合、既存のスタッドレスタイヤのトレッド部TRに使用されているゴムコンパウンドと台タイヤBTの外周面に形成されたトレッド部TRのゴムコンパウンドとは、例えば、同条件での硬度、比重、摩擦特性の少なくとも1つの特性が異なるようにする。即ち、これら特性をスタッドレスタイヤの性能を改善させるように異ならせる。尚、これらの特性の複数、或いはすべてを異ならせるようにしてもよい。 The rubber compound of the tread part TR of the studless tire is improved year by year, for example, the hardness, specific gravity and friction characteristics under the same conditions are improved. Therefore, when the tire formed by cutting the rubber of the tread portion TR of the existing studless tire is used as the base tire BT, the rubber compound and the base tire BT used in the tread portion TR of the existing studless tire are used. For example, at least one characteristic of hardness, specific gravity, and friction characteristics under the same conditions is different from that of the rubber compound of the tread portion TR formed on the outer peripheral surface. That is, these characteristics are varied to improve the performance of the studless tire. It should be noted that a plurality of or all of these characteristics may be varied.
 図12~図13に例示する空気入りタイヤの製造装置1の別の実施形態は、台タイヤBTの内側に配置される円筒状の金属製の剛性内型2と、この剛性内型2とともに台タイヤBTが中に配置される加硫用金型10Aと、射出機13とを備えている。この実施形態の製造装置1は、さらに、加硫用金型10Aの内側に配置された剛性内型2を冷却する冷却手段8、9を備えている。 Another embodiment of the pneumatic tire manufacturing apparatus 1 illustrated in FIGS. 12 to 13 includes a cylindrical metal rigid inner mold 2 disposed inside the base tire BT, and a base together with the rigid inner mold 2. A vulcanizing mold 10A in which a tire BT is disposed and an injection machine 13 are provided. The manufacturing apparatus 1 of this embodiment further includes cooling means 8 and 9 for cooling the rigid inner mold 2 disposed inside the vulcanizing mold 10A.
 図14~図15に例示するように、剛性内型2は周方向に複数に分割可能になっていて、周方向に分割された複数のセグメント3(3A、3B)が、円筒状に組み付けられる構造になっている。剛性内型2の材質としては、炭素鋼、アルミニウム、アルミニウム合金等の金属を例示できる。この実施形態では、周方向長さが相対的に大きい4つの長セグメント3Aと、相対的に小さい4つの短セグメント3Bの2種類で構成されている。短セグメント3Bの周方向両端面は平面視で平行になっている。長セグメント3Aと短セグメント3Bとは周方向に交互に配置されている。 As illustrated in FIGS. 14 to 15, the rigid inner mold 2 can be divided into a plurality of parts in the circumferential direction, and a plurality of segments 3 (3A, 3B) divided in the circumferential direction are assembled in a cylindrical shape. It has a structure. Examples of the material of the rigid inner mold 2 include metals such as carbon steel, aluminum, and aluminum alloys. In this embodiment, there are two types of four long segments 3A having a relatively large circumferential length and four short segments 3B having a relatively small circumferential length. Both end surfaces in the circumferential direction of the short segment 3B are parallel in a plan view. The long segments 3A and the short segments 3B are alternately arranged in the circumferential direction.
 それぞれのセグメント3A、3Bは中心軸5から放射状に延設された支持アーム7aに取り付けられている。それぞれのセグメント3A、3B、中心軸5、支持アーム7aは別々に分離可能になっている。即ち、剛性内型2は拡縮する構造ではなく、それぞれのセグメント3に別々に分離、分割されて細分化される構造になっている。周方向に隣り合うセグメント3A、3Bどうしは必要であれば、その内周側で適宜の連結部材によって連結される。 Each segment 3A, 3B is attached to a support arm 7a extending radially from the central axis 5. Each segment 3A, 3B, central axis 5, and support arm 7a can be separated separately. That is, the rigid inner mold 2 is not a structure that expands and contracts, but is a structure that is separated and divided into respective segments 3 and subdivided. If necessary, the segments 3A and 3B adjacent in the circumferential direction are connected by an appropriate connecting member on the inner peripheral side thereof.
 互いが分離して分割状態のセグメント3A、3Bを円筒状に組み付けるとともに、中心軸5および支持アーム7aを連結することにより剛性内型2が形成される。形成した剛性内型2では、それぞれのセグメント3A、3Bの外側表面は円環状に連続して台タイヤBTのトレッド部TRに対応するタイヤ内面の範囲に当接する。 The rigid inner mold 2 is formed by assembling the segments 3A and 3B separated from each other into a cylindrical shape and connecting the central shaft 5 and the support arm 7a. In the formed rigid inner mold 2, the outer surfaces of the respective segments 3A and 3B are continuously annularly contacted with the range of the tire inner surface corresponding to the tread portion TR of the base tire BT.
 加硫用金型10Aは、周方向に分割された複数の分割型10aで構成されている。この実施形態では、4つの分割型10aが環状に組み付けられている。それぞれの分割型10aが半径方向に移動し、半径方向内周側に移動することにより加硫用金型10Aが閉型して、半径方向外周側に移動することにより加硫用金型10Aが開型する。 The vulcanizing mold 10A is composed of a plurality of divided molds 10a divided in the circumferential direction. In this embodiment, four split molds 10a are assembled in a ring shape. Each split mold 10a moves in the radial direction, the vulcanizing mold 10A is closed by moving to the radially inner peripheral side, and the vulcanizing mold 10A is moved by moving to the radially outer peripheral side. Open the mold.
 閉型した加硫用金型10Aは、剛性内型2が内側に配置されている台タイヤBTのトレッド部TRに相当する台タイヤBTの外周面を覆う。この加硫用金型10Aの内周面と台タイヤBTの外周面との間にはキャビティ11が形成される。 The closed mold 10A for vulcanization covers the outer peripheral surface of the base tire BT corresponding to the tread portion TR of the base tire BT in which the rigid inner mold 2 is disposed. A cavity 11 is formed between the inner peripheral surface of the vulcanizing mold 10A and the outer peripheral surface of the base tire BT.
 それぞれの分割型10aには、キャビティ11を形成する内周面と、形成されたキャビティ11に接続する注入路12とが形成されている。キャビティ11を形成する分割型10aの内周面は、製造する空気入りタイヤTのトレッドパターンを成形する形状になっている。注入路12の一端部は、射出機13の射出口に接続される。 Each split mold 10 a is formed with an inner peripheral surface that forms the cavity 11 and an injection path 12 that is connected to the formed cavity 11. The inner peripheral surface of the split mold 10a forming the cavity 11 has a shape for forming a tread pattern of the pneumatic tire T to be manufactured. One end of the injection path 12 is connected to the injection port of the injection machine 13.
 注入路12の他端部は、例えば、製造する空気入りタイヤTのトレッド陸部または周方向溝に相当する分割型10aの内周面の位置に接続される。注入路12は、途中で複数本に分岐してキャビティ11に接続されることが好ましい。 The other end portion of the injection path 12 is connected to, for example, the position of the inner peripheral surface of the split mold 10a corresponding to the tread land portion or the circumferential groove of the pneumatic tire T to be manufactured. The injection path 12 is preferably branched into a plurality of paths on the way and connected to the cavity 11.
 それぞれの分割型10aにはさらに、既述した実施形態と同様に加熱機15に接続される加熱路14が形成されていて、同様に分割型10aが加熱される。射出機13は既述した実施形態と同様の仕様であり、同様に未加硫ゴムRを所定の射出圧力で射出する。未加硫ゴムRも既述した実施形態と同様の仕様である。冷却手段も既述した実施形態と同様の仕様であり、冷却手段によって同様に剛性内型2(セグメント3)の温度が所定温度範囲に維持される。 Further, a heating path 14 connected to the heater 15 is formed in each split mold 10a similarly to the above-described embodiment, and the split mold 10a is similarly heated. The injection machine 13 has the same specifications as those of the above-described embodiment, and similarly injects the unvulcanized rubber R at a predetermined injection pressure. The unvulcanized rubber R has the same specifications as the above-described embodiment. The cooling means has the same specifications as those of the above-described embodiment, and the temperature of the rigid inner mold 2 (segment 3) is similarly maintained within a predetermined temperature range by the cooling means.
 この製造装置1を用いて空気入りタイヤを製造する方法の手順の一例を説明する。 An example of a procedure of a method for manufacturing a pneumatic tire using the manufacturing apparatus 1 will be described.
 加硫用金型10Aの外で、台タイヤBTの内側にセグメント3を挿入して円筒状に組み付けて剛性内型2を内側に配置する。これにより、それぞれのセグメント3が台タイヤBTのトレッド部TRに対応するタイヤ内面の範囲に当接した状態になる。即ち、台タイヤBTのトレッド部TRに対応するタイヤ内面は、円筒状に配置されたセグメント3によって強固に支えられることになる。 Outside the vulcanizing mold 10A, the segment 3 is inserted inside the base tire BT and assembled into a cylindrical shape, and the rigid inner mold 2 is arranged inside. As a result, each segment 3 comes into contact with the range of the tire inner surface corresponding to the tread portion TR of the base tire BT. That is, the tire inner surface corresponding to the tread portion TR of the base tire BT is firmly supported by the segments 3 arranged in a cylindrical shape.
 次いで、台タイヤBTを剛性内型2とともに、開型した加硫用金型10Aの中に配置する。次いで、加硫用金型10Aを閉型することにより、トレッド部TRに相当する台タイヤBTの外周面を加硫用金型10Aで覆う。これにより、図12に例示するように加硫用金型10Aの内周面と台タイヤBTの外周面との間にはキャビティ11が形成される。 Next, the base tire BT is placed together with the rigid inner mold 2 in the opened vulcanization mold 10A. Next, by closing the vulcanizing mold 10A, the outer peripheral surface of the base tire BT corresponding to the tread portion TR is covered with the vulcanizing mold 10A. Thus, as illustrated in FIG. 12, a cavity 11 is formed between the inner peripheral surface of the vulcanizing mold 10A and the outer peripheral surface of the base tire BT.
 次いで、図16に例示するように射出機13からキャビティ11に未加硫ゴムRを射出して、注入路12を通じてキャビティ11に充填する。例えば、台タイヤBTを剛性内型2とともに加硫用金型10Aの中に配置する際に、射出する未加硫ゴムRを射出機13のシリンダ13aに充填する。このようにすれば、未加硫ゴムRを迅速にキャビティ11に射出することが可能になるので、未加硫ゴムRが不要な熱履歴を受け難くなる。これに伴い、未加硫ゴムRの流動性が低下しない状態で射出できるので、未加硫ゴムRをキャビティ11の全範囲に十分に行き渡らせるには益々有利になる易くなる。 Next, as illustrated in FIG. 16, unvulcanized rubber R is injected from the injector 13 into the cavity 11 and filled into the cavity 11 through the injection path 12. For example, when the base tire BT is disposed in the vulcanizing mold 10 </ b> A together with the rigid inner mold 2, the cylinder 13 a of the injection machine 13 is filled with the unvulcanized rubber R to be injected. In this way, the unvulcanized rubber R can be quickly injected into the cavity 11, so that the unvulcanized rubber R is unlikely to receive an unnecessary heat history. Accordingly, the unvulcanized rubber R can be injected in a state where the fluidity of the unvulcanized rubber R is not lowered, so that it becomes more and more advantageous to sufficiently spread the unvulcanized rubber R over the entire range of the cavity 11.
 キャビティ11に充填された未加硫ゴムRは、キャビティ11によって所定形状に成形される。そして、加熱路14を流れる加熱媒体によって加熱された加硫用金型10Aにより、射出した未加硫ゴムRを加硫させる。 The unvulcanized rubber R filled in the cavity 11 is molded into a predetermined shape by the cavity 11. Then, the injected unvulcanized rubber R is vulcanized by the vulcanizing mold 10A heated by the heating medium flowing through the heating path.
 未加硫ゴムRが加硫されると、台タイヤBTの外周面に、この加硫したゴムからなるトレッド部TRが形成されるとともにこのトレッド部TRが台タイヤBTの外周面に加硫接着して一体化する。これにより、空気入りタイヤTが完成する。 When the unvulcanized rubber R is vulcanized, a tread portion TR made of the vulcanized rubber is formed on the outer peripheral surface of the base tire BT, and this tread portion TR is vulcanized and bonded to the outer peripheral surface of the base tire BT. And unite. Thereby, the pneumatic tire T is completed.
 次いで、この空気入りタイヤTを、この空気入りタイヤTの内側に配置されている剛性内型2とともに加硫用金型10Aの外に取り出す。その後、加硫用金型10Aの外において空気入りタイヤTの内側の剛性内型2をセグメント3に分離、分割して空気入りタイヤTの内側から取り外す。 Next, the pneumatic tire T is taken out of the vulcanizing mold 10A together with the rigid inner mold 2 disposed inside the pneumatic tire T. Thereafter, the rigid inner mold 2 inside the pneumatic tire T outside the vulcanizing mold 10 </ b> A is separated into segments 3 and divided, and removed from the inside of the pneumatic tire T.
 上述したように本発明では、タイヤ内面に金属製の剛性内型2を当接させた状態にして台タイヤBTを内側から堅牢な剛性内型2によって支える。この状態でキャビティ11に未加硫ゴムRを射出するので、未加硫ゴムRの射出圧力によって台タイヤBTが内側に凹むという不具合を回避できる。 As described above, in the present invention, the base tire BT is supported from the inside by the solid rigid inner mold 2 in a state where the metal rigid inner mold 2 is in contact with the inner surface of the tire. Since the unvulcanized rubber R is injected into the cavity 11 in this state, it is possible to avoid the problem that the base tire BT is recessed inward due to the injection pressure of the unvulcanized rubber R.
 また、台タイヤBTのタイヤ内面に当接させた剛性内型2は金属製なので、台タイヤBTの熱を放出する空冷の冷却フィンとして機能する。そのため、台タイヤBTの温度上昇を抑えることができ、台タイヤBTを形成している加硫ゴムの熱劣化を抑制するには有利になる。 In addition, since the rigid inner mold 2 in contact with the tire inner surface of the base tire BT is made of metal, it functions as an air-cooled cooling fin that releases heat from the base tire BT. Therefore, the temperature rise of the base tire BT can be suppressed, which is advantageous for suppressing thermal deterioration of the vulcanized rubber forming the base tire BT.
 この実施形態では、冷却手段8、9によって剛性内型2を通じて台タイヤBTの内側を冷却しながら未加硫ゴムRを射出し、加硫させることができる。そのため、台タイヤBTの温度上昇を積極的に抑えることができるので、台タイヤBTの熱劣化を抑制するには益々有利になる。 In this embodiment, the unvulcanized rubber R can be injected and vulcanized while cooling the inside of the base tire BT through the rigid inner mold 2 by the cooling means 8 and 9. Therefore, since the temperature rise of the base tire BT can be positively suppressed, it becomes more and more advantageous for suppressing thermal deterioration of the base tire BT.
 台タイヤBTを内側から剛性内型2によって支えるので、加硫用ブラダによって台タイヤBTの内側を支える場合に比して、未加硫ゴムRの射出圧力を高く設定することが可能になる。これに伴って、射出時間を短縮できるという利点があり、タイヤ生産性の向上に寄与する。また、未加硫ゴムRをキャビティ11の全範囲に十分に行き渡らせ易くなるという利点もある。したがって、複雑なトレッドパターンであっても成形するには有利になる。これら利点は寸法精度を向上させるにも有利である。 Since the base tire BT is supported by the rigid inner mold 2 from the inside, the injection pressure of the unvulcanized rubber R can be set higher than when the inside of the base tire BT is supported by the vulcanizing bladder. Along with this, there is an advantage that the injection time can be shortened, which contributes to improvement of tire productivity. Further, there is an advantage that the unvulcanized rubber R can be easily spread over the entire range of the cavity 11. Therefore, even a complicated tread pattern is advantageous for molding. These advantages are also advantageous for improving dimensional accuracy.
 さらには、剛性内型2を台タイヤBTの内側に配置する作業、製造した空気入りタイヤTの内側から剛性内型2を取り外す作業を加硫用金型10Aの外部にて行なうことができる。そのため、これら作業を行なうための機構を製造装置1に設ける必要がなくなり、製造装置1の簡素化には有利になる。 Furthermore, the work of placing the rigid inner mold 2 inside the base tire BT and the work of removing the rigid inner mold 2 from the inside of the manufactured pneumatic tire T can be performed outside the vulcanizing mold 10A. Therefore, it is not necessary to provide the manufacturing apparatus 1 with a mechanism for performing these operations, which is advantageous for simplifying the manufacturing apparatus 1.
 未加硫ゴムRとして、既述した実施形態と同様にスタッドレスタイヤ用のゴムコンパウンドを使用してスタッドレスタイヤを製造することもできる。また、既述した実施形態と同様に通常の既存の空気入りタイヤのトレッド部TRのゴムを削除したものを用いることもできる。 As the unvulcanized rubber R, a studless tire can be manufactured by using a rubber compound for a studless tire as in the embodiment described above. Moreover, what deleted the rubber | gum of the tread part TR of a normal existing pneumatic tire can also be used like the embodiment mentioned above.
 この実施形態で用いる剛性内型2は拡縮する構造ではなく、それぞれのセグメント3に別々に分離、分割されて細分化される構造であるが、その構造はこの実施形態に限らず、種々の構造を採用することができる。例えば、図17~図19に示す剛性内型2を用いることもできる。 The rigid inner mold 2 used in this embodiment is not a structure that expands and contracts, but is a structure that is separately separated, divided, and subdivided into segments 3. However, the structure is not limited to this embodiment, and various structures are possible. Can be adopted. For example, the rigid inner mold 2 shown in FIGS. 17 to 19 can be used.
 この剛性内型2は円筒状であり、周方向に複数に分割されたセグメント3から構成されている。それぞれのセグメント3が更に円筒周面を幅方向に二分割するように構成されている。 This rigid inner mold 2 has a cylindrical shape and is composed of segments 3 divided into a plurality in the circumferential direction. Each segment 3 is configured to further divide the cylindrical circumferential surface into two in the width direction.
 幅方向に分割されたセグメント3の互いに対向する端部の内周面にはそれぞれ連結部3cが形成されている。これら連結部3cには、ボルトやピン等の連結部材7dが挿入される挿入孔が形成されている。これら挿入孔は両方を貫通穴にすることも、一方を貫通穴にして他方を一端部を閉じた穴にすることもできる。 Connecting portions 3c are formed on the inner peripheral surfaces of the opposite ends of the segments 3 divided in the width direction. These connecting portions 3c are formed with insertion holes into which connecting members 7d such as bolts and pins are inserted. These insertion holes can be both through holes, or one can be a through hole and the other can be a hole with one end closed.
 台タイヤBTの内側に剛性内型2を配置するには図17に例示するように、分離、分割されたセグメント3を台タイヤBTの内部に挿入する。次いで、幅方向に分割されたセグメント3の外周面を台タイヤBTの内周面に当接させた状態で、それぞれの連結部3cどうしを付き合わせる。次いで、一方の連結部3cから他方の連結部3cに向けて連結部材7dを挿入してセグメント3を台タイヤBTに対して所定位置にセットする。このセット状態では、セグメント3の内周の縁部3bが、台タイヤBTのビード部Tbに当接してビード部Tbの内周側に配置されている。 To arrange the rigid inner mold 2 inside the base tire BT, as shown in FIG. 17, the segment 3 that has been separated and divided is inserted into the base tire BT. Next, the connecting portions 3c are brought into contact with each other in a state where the outer peripheral surface of the segment 3 divided in the width direction is in contact with the inner peripheral surface of the base tire BT. Next, the connecting member 7d is inserted from one connecting portion 3c toward the other connecting portion 3c, and the segment 3 is set at a predetermined position with respect to the base tire BT. In this set state, the inner peripheral edge 3b of the segment 3 is disposed on the inner peripheral side of the bead portion Tb in contact with the bead portion Tb of the base tire BT.
 次いで、図18に例示するようにタイヤ半径方向に延びる支持アーム7aを台タイヤBTの内部に挿入し、支持アーム7aの先端の嵌合部7bを、連結部材7dが連通している連結部3c、3cに嵌合させる。この支持アーム7aの後端のシャフト部7cはタイヤ幅方向に延在して、その両端部がそれぞれ台タイヤBTのビード部Tbに位置する。シャフト部7cの両端部には、セグメント3の縁部3bに係合する円環状の保持リング4aを係合させて、これらセグメント3を台タイヤBTの内側に固定する。台タイヤBTのそれぞれのビード部Tbは剛性内型2と保持リング4aとによって挟まれた状態になる。 Next, as illustrated in FIG. 18, a support arm 7a extending in the tire radial direction is inserted into the base tire BT, and a fitting portion 7b at the tip of the support arm 7a is connected to a connecting portion 3c in communication with a connecting member 7d. 3c. The shaft portion 7c at the rear end of the support arm 7a extends in the tire width direction, and both end portions thereof are positioned at the bead portions Tb of the base tire BT. An annular holding ring 4a that engages with the edge 3b of the segment 3 is engaged with both ends of the shaft portion 7c, and the segment 3 is fixed to the inside of the base tire BT. Each bead portion Tb of the base tire BT is sandwiched between the rigid inner mold 2 and the holding ring 4a.
 順次、同様にセグメント3を台タイヤBTの内側に周方向に隣接させて固定することにより、図19に例示するように、円筒状の剛性内型2が台タイヤBTの内側に配置される。周方向に隣り合うセグメント3どうしは必要であれば、その内周側で適宜の連結部材によって連結される。製造した空気入りタイヤTから剛性内型2を取り外す際には、台タイヤBTの内側に剛性内型2を配置する上述した手順と逆の手順を行えばよい。したがって、剛性内型2を台タイヤBTの内側に配置する作業、製造した空気入りタイヤTの内側から剛性内型2を取り外す作業を加硫用金型10Aの外部にて行なうことができる。尚、この剛性内型2にも上述した冷却路8を設けて、冷却機9から冷却媒体を供給する構成にすることもできる。 Sequentially, similarly, the segment 3 is fixed so as to be adjacent to the inner side of the base tire BT in the circumferential direction, so that the cylindrical rigid inner mold 2 is arranged inside the base tire BT as illustrated in FIG. If necessary, the segments 3 adjacent to each other in the circumferential direction are connected by an appropriate connecting member on the inner peripheral side thereof. When removing the rigid inner mold 2 from the manufactured pneumatic tire T, a procedure reverse to the above-described procedure of arranging the rigid inner mold 2 inside the base tire BT may be performed. Therefore, the operation of disposing the rigid inner mold 2 inside the base tire BT and the operation of removing the rigid inner mold 2 from the inside of the manufactured pneumatic tire T can be performed outside the vulcanizing mold 10A. The rigid inner mold 2 can also be provided with the cooling path 8 described above to supply a cooling medium from the cooler 9.
 図20~図22に例示する別の剛性内型2は円筒状であり、周方向に複数に分割されたセグメント3から構成されている。それぞれのセグメント3の周方向長さは、概ね、台タイヤBTの一対のビード部Tbの間隔よりも短くなっている。 Another rigid inner mold 2 illustrated in FIGS. 20 to 22 has a cylindrical shape and is composed of segments 3 divided into a plurality in the circumferential direction. The circumferential length of each segment 3 is generally shorter than the distance between the pair of bead portions Tb of the base tire BT.
 台タイヤBTの内側に剛性内型2を配置するには図20、図21に例示するように、分離、分割されたセグメント3を、その周方向を台タイヤBTの幅方向に向けて台タイヤBTの内部に挿入する。次いで、セグメント3の周方向を台タイヤBTの周方向に向けて回転させて、セグメント3の外周面を台タイヤBTの内周面に当接させた状態にしてセグメント3を台タイヤBTに対して所定位置にセットする。このセット状態では、セグメント3の内周の縁部3bが、台タイヤBTのビード部Tbに当接してビード部Tbの内周側に配置されている。それぞれの縁部3bには、台タイヤBTのビード部Tbの近傍に配置される円環状の保持リング4aを係合させて、セグメント3を台タイヤBTの内側に固定する。台タイヤBTのそれぞれのビード部Tbは剛性内型2と保持リング4aとによって挟まれた状態になる。 In order to arrange the rigid inner mold 2 inside the base tire BT, as shown in FIGS. 20 and 21, the segment 3 is separated and divided, with the circumferential direction of the base tire BT facing the width direction of the base tire BT. Insert inside BT. Next, the circumferential direction of the segment 3 is rotated toward the circumferential direction of the base tire BT so that the outer peripheral surface of the segment 3 is in contact with the inner peripheral surface of the base tire BT. To set in place. In this set state, the inner peripheral edge 3b of the segment 3 is disposed on the inner peripheral side of the bead portion Tb in contact with the bead portion Tb of the base tire BT. An annular retaining ring 4a disposed in the vicinity of the bead portion Tb of the base tire BT is engaged with each edge portion 3b, and the segment 3 is fixed to the inside of the base tire BT. Each bead portion Tb of the base tire BT is sandwiched between the rigid inner mold 2 and the holding ring 4a.
 順次、同様にセグメント3を台タイヤBTの内側に周方向に隣接させて固定することにより、図22に例示するように、円筒状の剛性内型2が台タイヤBTの内側に配置される。周方向に隣り合うセグメント3どうしは必要であれば、その内周側で適宜の連結部材によって連結される。製造した空気入りタイヤTから剛性内型2を取り外す際には、台タイヤBTの内側に剛性内型2を配置する上述した手順と逆の手順を行えばよい。剛性内型2を台タイヤBTの内側に配置する作業、製造した空気入りタイヤTの内側から剛性内型2を取り外す作業を加硫用金型10Aの外部にて行なうことができる。尚、この剛性内型2にも上述した冷却路8を設けて、冷却機9から冷却媒体を供給する構成にすることもできる。 Sequentially, similarly, the segment 3 is fixed in the circumferential direction adjacent to the inside of the base tire BT, so that the cylindrical rigid inner mold 2 is arranged inside the base tire BT as illustrated in FIG. If necessary, the segments 3 adjacent to each other in the circumferential direction are connected by an appropriate connecting member on the inner peripheral side thereof. When removing the rigid inner mold 2 from the manufactured pneumatic tire T, a procedure reverse to the above-described procedure of arranging the rigid inner mold 2 inside the base tire BT may be performed. The operation of disposing the rigid inner die 2 inside the base tire BT and the operation of removing the rigid inner die 2 from the inside of the manufactured pneumatic tire T can be performed outside the vulcanizing mold 10A. The rigid inner mold 2 can also be provided with the cooling path 8 described above to supply a cooling medium from the cooler 9.
1 製造装置
2 剛性内型
3 セグメント
3A 長セグメント
3B 短セグメント
3a 補助プレート
3b 縁部
3c 連結部
4 回動機構
4a 保持リング
5 中心軸
5a シリンダ
6a、6b 支持プレート
7 支持リブ
7a 支持アーム
7b 嵌合部
7c シャフト部
7d 連結部材
8 冷却路
9 冷却機
10 トレッド用金型
10A 加硫用金型
10a 分割型
11 キャビティ
12 注入路
13 射出機
13a シリンダ
13b プランジャ
14 加熱路
15 加熱機
BT 台タイヤ
T 空気入りタイヤ
Tb ビード部
TR トレッド部
R 未加硫ゴム
DESCRIPTION OF SYMBOLS 1 Manufacturing apparatus 2 Rigid inner type | mold 3 Segment 3A Long segment 3B Short segment 3a Auxiliary plate 3b Edge part 3c Connection part 4 Rotating mechanism 4a Holding ring 5 Center axis 5a Cylinder 6a, 6b Support plate 7 Support rib 7a Support arm 7b Fitting Part 7c Shaft part 7d Connecting member 8 Cooling path 9 Cooling machine 10 Tread mold 10A Vulcanization mold 10a Split mold 11 Cavity 12 Injection path 13 Injection machine 13a Cylinder 13b Plunger 14 Heating path 15 Heater BT Base tire T Air Enter tire Tb Bead part TR Tread part R Unvulcanized rubber

Claims (13)

  1.  拡縮可能な金属製の剛性内型を台タイヤの内側に配置し、この台タイヤのトレッド部に対応するタイヤ内面の範囲に前記剛性内型を当接させた状態にし、前記トレッド部に相当する前記台タイヤの外周面をトレッド用金型で覆い、次いで、このトレッド用金型のキャビティに未加硫ゴムを射出して、この未加硫ゴムを加硫させることにより前記台タイヤの外周面にトレッド部を形成するとともにこのトレッド部を前記外周面に一体化させることを特徴とする空気入りタイヤの製造方法。 An expandable / reducible metal rigid inner mold is arranged inside the base tire, and the rigid inner mold is brought into contact with the inner surface of the tire corresponding to the tread portion of the base tire, which corresponds to the tread portion. The outer peripheral surface of the base tire is covered with a tread mold, and then the unvulcanized rubber is injected into the cavity of the tread mold to vulcanize the unvulcanized rubber. A method for manufacturing a pneumatic tire, comprising forming a tread portion on the outer peripheral surface and integrating the tread portion with the outer peripheral surface.
  2.  前記剛性内型を周方向に分割された複数のセグメントにより構成し、これらセグメントを拡径した位置に配置して前記台タイヤのトレッド部に対応するタイヤ内面の範囲に当接させる請求項1に記載の空気入りタイヤの製造方法。 The rigid inner mold is constituted by a plurality of segments divided in the circumferential direction, and the segments are arranged at a diameter-expanded position so as to contact a range of the tire inner surface corresponding to the tread portion of the base tire. The manufacturing method of the pneumatic tire of description.
  3.  周方向に複数に分割可能な円筒状の金属製の剛性内型を台タイヤの内側に配置し、この台タイヤのトレッド部に対応するタイヤ内面の範囲に前記剛性内型を当接させた状態にし、前記台タイヤを前記剛性内型とともに加硫用金型の中に配置して、前記トレッド部に相当する前記台タイヤの外周面を前記加硫用金型で覆い、次いで、前記加硫用金型の内周面と前記台タイヤの外周面との間に形成されたキャビティに未加硫ゴムを射出して、この未加硫ゴムを加硫させることにより前記台タイヤの外周面にトレッド部を形成するとともにこのトレッド部を前記外周面に一体化させて空気入りタイヤを製造し、この空気入りタイヤを、この空気入りタイヤの内側に配置されている前記剛性内型とともに前記加硫用金型の外に取り出し、前記加硫用金型の外において前記空気入りタイヤの内側から前記剛性内型を取り外すことを特徴とする空気入りタイヤの製造方法。 A cylindrical metal rigid inner mold that can be divided into a plurality of parts in the circumferential direction is arranged inside the tire, and the rigid inner mold is in contact with the inner surface of the tire corresponding to the tread portion of the tire. The base tire is placed in the vulcanization mold together with the rigid inner mold, and the outer peripheral surface of the base tire corresponding to the tread portion is covered with the vulcanization mold, and then the vulcanization is performed. The unvulcanized rubber is injected into a cavity formed between the inner peripheral surface of the mold for use and the outer peripheral surface of the base tire, and this unvulcanized rubber is vulcanized to form the outer peripheral surface of the base tire. A pneumatic tire is manufactured by forming a tread portion and integrating the tread portion with the outer peripheral surface. The pneumatic tire is vulcanized together with the rigid inner mold disposed inside the pneumatic tire. Take out from the mold for vulcanization The pneumatic tire manufacturing method which is characterized in that the outer mold removing the rigid inner die from the inside of the pneumatic tire.
  4.  前記台タイヤを前記剛性内型とともに前記加硫用金型の中に配置する際に、前記射出する未加硫ゴムを射出機のプランジャーが内設されるシリンダに充填する請求項3記載の空気入りタイヤの製造方法。 4. The cylinder according to claim 3, wherein when the base tire is placed in the vulcanizing mold together with the rigid inner mold, the unvulcanized rubber to be injected is filled into a cylinder in which a plunger of an injection machine is installed. A method of manufacturing a pneumatic tire.
  5.  前記剛性内型を通じて前記台タイヤの内側を冷却しながら前記未加硫のゴムを射出し、加硫させる請求項1~4のいずれかに記載の空気入りタイヤの製造方法。 The method for manufacturing a pneumatic tire according to any one of claims 1 to 4, wherein the unvulcanized rubber is injected and vulcanized while cooling the inside of the base tire through the rigid inner mold.
  6.  前記台タイヤが既存の空気入りタイヤのトレッド部のゴムを切削して形成されたものである請求項1~5のいずれかに記載の空気入りタイヤの製造方法。 The method for manufacturing a pneumatic tire according to any one of claims 1 to 5, wherein the base tire is formed by cutting rubber in a tread portion of an existing pneumatic tire.
  7.  前記未加硫ゴムとして、スタッドレスタイヤ用のゴムコンパウンドを使用してスタッドレスタイヤを製造する請求項1~6のいずれかに記載の空気入りタイヤの製造方法。 The method for manufacturing a pneumatic tire according to any one of claims 1 to 6, wherein a studless tire is manufactured using a rubber compound for a studless tire as the unvulcanized rubber.
  8.  前記既存の空気入タイヤがスタッドレスタイヤであり、前記未加硫ゴムとして、この既存のスタッドレスタイヤのトレッド部に使用されているゴムコンパウンドとは異なる種類のゴムコンパウンドを使用する請求項6を引用する請求項7に記載の空気入りタイヤの製造方法。 The existing pneumatic tire is a studless tire, and a rubber compound of a type different from a rubber compound used for a tread portion of the existing studless tire is used as the unvulcanized rubber. The manufacturing method of the pneumatic tire of Claim 7.
  9.  前記既存のスタッドレスタイヤのトレッド部に使用されているゴムコンパウンドと前記台タイヤの外周面に形成されたトレッド部のゴムコンパウンドとは、同条件での硬度、比重、摩擦特性の少なくとも1つの特性が異なる請求項8に記載の空気入りタイヤの製造方法。 The rubber compound used in the tread portion of the existing studless tire and the rubber compound of the tread portion formed on the outer peripheral surface of the base tire have at least one characteristic of hardness, specific gravity, and friction characteristics under the same conditions. The manufacturing method of the pneumatic tire according to claim 8 which is different.
  10.  台タイヤの内側に配置される拡縮可能な金属製の剛性内型と、トレッド部に相当する前記台タイヤの外周面を覆って配置されるトレッド用金型と、このトレッド用金型のキャビティに未加硫ゴムを射出する射出機とを備え、前記台タイヤのトレッド部に対応するタイヤ内面の範囲に前記剛性内型を当接させた状態にして前記未加硫ゴムを射出する構成にしたことを特徴とする空気入りタイヤの製造装置。 A metal inner rigid mold that can be expanded and contracted disposed inside the base tire, a tread mold that covers the outer peripheral surface of the base tire corresponding to the tread portion, and a cavity of the tread mold An injection machine for injecting unvulcanized rubber, and configured to inject the unvulcanized rubber in a state in which the rigid inner mold is in contact with the inner surface of the tire corresponding to the tread portion of the base tire. A pneumatic tire manufacturing apparatus.
  11.  前記剛性内型が周方向に分割された複数のセグメントにより構成される請求項10に記載の空気入りタイヤの製造装置。 The pneumatic tire manufacturing apparatus according to claim 10, wherein the rigid inner mold is configured by a plurality of segments divided in a circumferential direction.
  12.  台タイヤの内側に配置される周方向に複数に分割可能な円筒状の金属製の剛性内型と、前記剛性内型とともに前記台タイヤが中に配置されてトレッド部に相当する前記台タイヤの外周面を覆う加硫用金型と、この加硫用金型の内周面と前記台タイヤの外周面との間に形成されたキャビティに未加硫ゴムを射出する射出機とを備え、前記台タイヤのトレッド部に対応するタイヤ内面の範囲に前記剛性内型を当接させた状態にして前記未加硫ゴムを前記キャビティに射出することにより、この未加硫ゴムを加硫させて形成したトレッド部を前記台タイヤの外周面に一体化させて空気入りタイヤを製造した後に、この空気入りタイヤの内側に配置されている前記剛性内型が、前記製造した空気入りタイヤとともに前記加硫用金型の外に取り出されて、前記加硫用金型の外においてこの空気入りタイヤの内側から取り外される構成にしたことを特徴とする空気入りタイヤの製造装置。 A cylindrical metallic rigid inner mold that can be divided into a plurality of circumferentially arranged parts inside the base tire, and the base tire corresponding to the tread portion, wherein the base tire is disposed inside together with the rigid inner mold A vulcanizing mold that covers the outer peripheral surface, and an injection machine that injects unvulcanized rubber into a cavity formed between the inner peripheral surface of the vulcanizing mold and the outer peripheral surface of the base tire, The unvulcanized rubber is vulcanized by injecting the unvulcanized rubber into the cavity with the rigid inner mold in contact with the inner surface of the tire corresponding to the tread portion of the base tire. After the formed tread portion is integrated with the outer peripheral surface of the base tire to manufacture a pneumatic tire, the rigid inner mold disposed inside the pneumatic tire is combined with the manufactured pneumatic tire and the added tire. Removed from the mold The vulcanizing mold manufacturing apparatus of a pneumatic tire is characterized in that the structure to be removed from the inside of the pneumatic tire in outside.
  13.  前記剛性内型を冷却する冷却手段を備えた請求項10~12のいずれかに記載の空気入りタイヤの製造装置。 The pneumatic tire manufacturing apparatus according to any one of claims 10 to 12, further comprising cooling means for cooling the rigid inner mold.
PCT/JP2015/062203 2014-04-23 2015-04-22 Pneumatic tire manufacturing method and manufacturing apparatus WO2015163351A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15783408.6A EP3135469A4 (en) 2014-04-23 2015-04-22 Pneumatic tire manufacturing method and manufacturing apparatus
US15/305,084 US20170050399A1 (en) 2014-04-23 2015-04-22 Method of Manufacturing Pneumatic Tire and Manufacturing Device for Pneumatic Tire
CN201580018914.3A CN106163783A (en) 2014-04-23 2015-04-22 Airtyred manufacture method and manufacture device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014089070A JP5910662B2 (en) 2014-04-23 2014-04-23 Pneumatic tire manufacturing method and manufacturing apparatus
JP2014-089070 2014-04-23
JP2014253224A JP5910718B1 (en) 2014-12-15 2014-12-15 Pneumatic tire manufacturing method and manufacturing apparatus
JP2014-253224 2014-12-15

Publications (1)

Publication Number Publication Date
WO2015163351A1 true WO2015163351A1 (en) 2015-10-29

Family

ID=54332514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062203 WO2015163351A1 (en) 2014-04-23 2015-04-22 Pneumatic tire manufacturing method and manufacturing apparatus

Country Status (4)

Country Link
US (1) US20170050399A1 (en)
EP (1) EP3135469A4 (en)
CN (1) CN106163783A (en)
WO (1) WO2015163351A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51151778A (en) * 1975-06-13 1976-12-27 Pirelli Method and apparatus for handling tire mold
JPS5388074A (en) * 1976-12-30 1978-08-03 Pirelli Injection molding method and apparatus of tire tread
JPS5593438A (en) * 1979-01-09 1980-07-15 Bayer Ag Method and device of demounting tire from mold in core segmented
JPH1058915A (en) * 1996-08-12 1998-03-03 Ohtsu Tire & Rubber Co Ltd :The Studless tire
JPH11165320A (en) * 1997-12-03 1999-06-22 Bridgestone Corp Tire vulcanizing apparatus
JP2000043048A (en) * 1998-08-03 2000-02-15 Sumitomo Rubber Ind Ltd Method and apparatus for vulcanizing tire
JP2000084937A (en) * 1998-09-16 2000-03-28 Bridgestone Corp Method for vulcanizing/molding tires and heating device for vulcanization mold
JP2007216634A (en) * 2006-02-20 2007-08-30 Bridgestone Corp Reclaimed tire and manufacturing method of the same
JP2010269554A (en) * 2009-05-25 2010-12-02 Sumitomo Rubber Ind Ltd Manufacturing method for pneumatic tire
JP2011031452A (en) * 2009-07-31 2011-02-17 Bridgestone Corp Method for manufacturing retreaded tire, mold for manufacturing retreaded tire and vulcanizer
JP5231673B1 (en) * 2012-09-05 2013-07-10 株式会社ブリヂストン Tread selection method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51151778A (en) * 1975-06-13 1976-12-27 Pirelli Method and apparatus for handling tire mold
JPS5388074A (en) * 1976-12-30 1978-08-03 Pirelli Injection molding method and apparatus of tire tread
JPS5593438A (en) * 1979-01-09 1980-07-15 Bayer Ag Method and device of demounting tire from mold in core segmented
JPH1058915A (en) * 1996-08-12 1998-03-03 Ohtsu Tire & Rubber Co Ltd :The Studless tire
JPH11165320A (en) * 1997-12-03 1999-06-22 Bridgestone Corp Tire vulcanizing apparatus
JP2000043048A (en) * 1998-08-03 2000-02-15 Sumitomo Rubber Ind Ltd Method and apparatus for vulcanizing tire
JP2000084937A (en) * 1998-09-16 2000-03-28 Bridgestone Corp Method for vulcanizing/molding tires and heating device for vulcanization mold
JP2007216634A (en) * 2006-02-20 2007-08-30 Bridgestone Corp Reclaimed tire and manufacturing method of the same
JP2010269554A (en) * 2009-05-25 2010-12-02 Sumitomo Rubber Ind Ltd Manufacturing method for pneumatic tire
JP2011031452A (en) * 2009-07-31 2011-02-17 Bridgestone Corp Method for manufacturing retreaded tire, mold for manufacturing retreaded tire and vulcanizer
JP5231673B1 (en) * 2012-09-05 2013-07-10 株式会社ブリヂストン Tread selection method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3135469A4 *

Also Published As

Publication number Publication date
US20170050399A1 (en) 2017-02-23
EP3135469A4 (en) 2017-12-27
EP3135469A1 (en) 2017-03-01
CN106163783A (en) 2016-11-23

Similar Documents

Publication Publication Date Title
JP4056290B2 (en) Pneumatic tire manufacturing method and apparatus
JP2011031452A (en) Method for manufacturing retreaded tire, mold for manufacturing retreaded tire and vulcanizer
JP5910662B2 (en) Pneumatic tire manufacturing method and manufacturing apparatus
JP6605738B2 (en) Tire vulcanizing apparatus and method for assembling tire vulcanizing apparatus
CN109689321B (en) Tire vulcanizing device
US7740462B2 (en) Tire vulcanizer
JP4998987B2 (en) Tire vulcanization molding apparatus and vulcanization molding method
WO2015163351A1 (en) Pneumatic tire manufacturing method and manufacturing apparatus
CN103648756A (en) Rigid core and manufacturing method for tire using same
JP4626334B2 (en) Tire vulcanizing bladder and manufacturing method thereof
JP6617437B2 (en) Method and apparatus for manufacturing tire vulcanizing bladder
JP5910718B1 (en) Pneumatic tire manufacturing method and manufacturing apparatus
CN109689323B (en) Tire vulcanizing mold, tire vulcanizing device, and tire manufacturing method
CN109689328B (en) Tire vulcanizing device and tire manufacturing method
JP2015205493A (en) Method and device for repairing pneumatic tire
JP4952925B2 (en) Pneumatic tire vulcanization molding method and apparatus
JP2017007133A (en) Method for production of pneumatic tire
JP2016112777A (en) Method and device for producing pneumatic tire
JP4951525B2 (en) Method and apparatus for manufacturing a pneumatic tire
JP2006321080A (en) Method and apparatus for producing pneumatic tire
JP6122686B2 (en) Tire manufacturing method for agricultural machinery
JP6331764B2 (en) Pneumatic tire manufacturing method and forming drum
JP2017217830A (en) Manufacturing method and device for pneumatic tire
JP2019077122A (en) Method and apparatus for manufacturing bead member
JP2012000814A (en) Method for manufacturing tire case and tire tread and their manufacturing devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15783408

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15305084

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015783408

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015783408

Country of ref document: EP