WO2015163221A1 - Hydrogenation catalyst, method for producing same, and method for producing cyclohexanone or derivative thereof using same - Google Patents

Hydrogenation catalyst, method for producing same, and method for producing cyclohexanone or derivative thereof using same Download PDF

Info

Publication number
WO2015163221A1
WO2015163221A1 PCT/JP2015/061652 JP2015061652W WO2015163221A1 WO 2015163221 A1 WO2015163221 A1 WO 2015163221A1 JP 2015061652 W JP2015061652 W JP 2015061652W WO 2015163221 A1 WO2015163221 A1 WO 2015163221A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
phenol
precursor
amount
hydrogenation
Prior art date
Application number
PCT/JP2015/061652
Other languages
French (fr)
Japanese (ja)
Inventor
広晃 吉野
福田 行正
山本 祥史
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to JP2016514884A priority Critical patent/JP6075506B2/en
Publication of WO2015163221A1 publication Critical patent/WO2015163221A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/385Saturated compounds containing a keto group being part of a ring
    • C07C49/403Saturated compounds containing a keto group being part of a ring of a six-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a hydrogenation catalyst and a method for producing the same. More specifically, the present invention relates to a hydrogenation catalyst that suppresses sequential hydrogenation and side reactions and advances the hydrogenation reaction with high selectivity and a method for producing the same.
  • the present invention also relates to a method for producing cyclohexanone or a derivative thereof. More specifically, the present invention relates to a method for producing cyclohexanone or a derivative thereof from phenol or a derivative thereof in one step.
  • Hydrogenation reaction is widely known as a reduction reaction for synthesizing chemical products.
  • the hydrogenation reaction is a useful reaction with little generation of waste and the like.
  • synthesis of cyclohexanone by hydrogenation of phenol is known.
  • Cyclohexanone is a useful compound as a raw material for caprolactam, which is a raw material for nylon.
  • Non-patent Document 1 a catalyst in which a platinum group metal is supported on silica, alumina, silica alumina, zirconia, or activated carbon is widely used.
  • a carrier having many acid sites and base sites on the surface such as alumina and silica alumina
  • the acid sites and base sites promote sequential side reactions other than hydrogenation reaction and hydrogenation reaction, and lower the selectivity. It is the cause.
  • the side reaction is difficult to proceed with a carrier such as silica that does not have a strong acid point or base point on the surface, but the platinum group metal agglomerates during the reaction because the interaction between the platinum group metal and the carrier is small, and the catalyst life is reduced. There is a problem that it is short.
  • Patent Document 1 Patent Document 2
  • cyclohexanol In cyclohexanone production by phenol hydrogenation reaction, cyclohexanol is usually produced by sequential hydrogenation reaction. The by-produced cyclohexanol can be induced to cyclohexanone by a dehydrogenation reaction, but since the reaction is an endothermic reaction, the reaction needs to be performed at a high temperature. From the above, when there are many cyclohexanol by-products, installation cost and energy are required. In addition, 2-cyclohexylcyclohexanone produced by the aldol reaction on the catalyst support is difficult to induce to cyclohexanone, and can only be used as a fuel or the like, reducing the carbon utilization efficiency.
  • the present invention relates to the following matters.
  • a hydrogenation catalyst in which a platinum group metal is supported on a catalyst precursor containing phosphorus and an alkali metal and / or an alkaline earth metal on a carrier, A hydrogenation catalyst having an ammonia chemisorption amount of the catalyst precursor at 50 ° C. of 100 ⁇ mol / g or less.
  • a method for producing the above hydrogenation catalyst comprising: Mixing an alkali metal and / or alkaline earth metal source, water, carrier and phosphorus source; Calcination after evaporating the water to obtain a catalyst precursor; And a step of supporting a platinum group metal on the catalyst precursor.
  • the hydrogenation catalyst of the present invention By using the hydrogenation catalyst of the present invention, sequential hydrogenation and side reactions can be suppressed, and a hydrogenation reaction with a high conversion rate and a high selectivity can be advanced.
  • an industrially suitable phenol hydrogenation method capable of producing cyclohexanone useful as a raw material such as caprolactam with high selectivity can be provided.
  • cyclohexanone or a derivative thereof of the present invention cyclohexanone or a derivative thereof is produced from phenol or a derivative thereof with high conversion and high selectivity while suppressing by-products such as 2-cyclohexylcyclohexanone and cyclohexanol. can do.
  • the hydrogenation catalyst of the present invention is obtained by supporting a platinum group metal on a catalyst precursor containing phosphorus and an alkali metal and / or an alkaline earth metal in a carrier.
  • alkali metal and alkaline earth metal examples include lithium, sodium, potassium, cesium, magnesium, calcium, barium and the like, preferably calcium, lithium or magnesium, and more preferably calcium.
  • an alkali metal and alkaline-earth metal may be used independently and may be used in combination of 2 or more type.
  • the catalyst precursor is prepared by supporting an alkali metal and / or alkaline earth metal and phosphorus on a carrier.
  • a source of the alkali metal and / or alkaline earth metal for example, nitrate, carbonate of alkali metal and / or alkaline earth metal Hydroxides, oxides, chlorides, acetates, oxalates, and the like can be used.
  • phosphorus is supported on a carrier, for example, phosphoric acid (including its aqueous solution) or its alkali metal salt and / or alkaline earth metal salt (including its aqueous solution) is used as the phosphorus supply source. Can do.
  • Examples of the carrier used in the preparation of the catalyst precursor include at least one selected from the group consisting of silica, alumina, silica alumina, zirconia, zeolite, and activated carbon.
  • the amount of alkali metal and / or alkaline earth metal supported on the carrier is preferably 0.01 to 2 g, more preferably 0.02 to 0.2 g, relative to 1 g of the carrier.
  • the amount of phosphorus supported on the carrier is preferably 0.001 to 1 g, more preferably 0.005 to 0.1 g, relative to 1 g of the carrier.
  • the molar ratio of the alkali metal and / or alkaline earth metal and phosphorus supported on the carrier can be any ratio, but is preferably 1 to 10, and more preferably 1.4 to 4. Note that phosphorus and an alkali metal and / or an alkaline earth metal may be supported on a carrier in a state where a composite oxide or the like is formed.
  • the chemical adsorption amount of ammonia at 50 ° C. of the catalyst precursor is 100 ⁇ mol / g or less.
  • a hydrogenation catalyst that promotes a high conversion and high selectivity hydrogenation reaction is obtained.
  • the amount of chemisorption of ammonia at 50 ° C. by the catalyst precursor is preferably 80 ⁇ mol / g or less, and more preferably 50 ⁇ mol / g or less.
  • the ammonia chemisorption amount of the catalyst precursor at 50 ° C. can be adjusted by the type of alkali metal or alkaline earth metal used and / or the molar ratio of alkali metal or alkaline earth metal to phosphorus.
  • the reason why the hydrogenation reaction with high conversion and high selectivity can be advanced by controlling the amount of ammonia chemisorption at 50 ° C. of the catalyst precursor is considered as follows.
  • the base point generated by supporting the alkali metal and / or alkaline earth metal on the carrier is better than the conventional carrier by neutralizing it by controlling the amount of acid sites by carrying phosphorus.
  • a catalyst precursor having a desired acid point and base point is obtained.
  • side reactions other than hydrogenation of cyclohexanone or a derivative thereof are suppressed, and a hydrogenation reaction with high selectivity becomes possible.
  • the product by the side reaction poisons the active sites and causes the conversion rate to decrease, but as a result of the reduction of the product by the side reaction, the hydrogenation reaction at a high conversion rate becomes possible.
  • the chemical adsorption amount of carbon dioxide at 50 ° C. of the catalyst precursor is preferably 15 ⁇ mol / g or less.
  • the chemical adsorption amount of carbon dioxide at 50 ° C. of the catalyst precursor is more preferably 10 ⁇ mol / g or less, and further preferably 7 ⁇ mol / g or less.
  • the chemical adsorption amount of carbon dioxide at 50 ° C. of the catalyst precursor is preferably as low as possible in terms of conversion rate and selectivity.
  • the amount of carbon dioxide adsorbed at 50 ° C. by the catalyst precursor can be adjusted by the type of alkali metal or alkaline earth metal used and / or the molar ratio of alkali metal or alkaline earth metal to phosphorus.
  • the reason why the hydrogenation reaction with a higher conversion rate and a higher selectivity can be advanced by controlling the amount of carbon dioxide chemisorption at 50 ° C. of the catalyst precursor is considered as follows. That is, the introduction of the base point enhances the interaction between the platinum group metal and the support, suppresses the aggregation of the platinum group metal, and maintains the high activity of the catalyst. Furthermore, the introduction of the base point promotes the adsorption of phenol or its derivative with high acidity to the catalyst, so that the adsorption of cyclohexanone and its derivative with lower acidity to the catalyst is suppressed. As a result, the conversion rate can be improved and the sequential hydrogenation can be suppressed, and the hydrogenation reaction with a high conversion rate and a high selectivity can be advanced.
  • Measurement of the chemisorption amount of ammonia and the chemisorption amount of carbon dioxide can be performed, for example, by the following procedure. (1) Keeping the catalyst precursor at 50 ° C. with a heater, etc., gradually exposing it to ammonia or carbon dioxide from a high vacuum state, and measuring the amount of adsorption thereof, the total adsorption isotherm (chemical adsorption and physical Including both adsorption). (2) Next, the catalyst precursor is placed in a high vacuum, and after only the physically adsorbed ammonia or carbon dioxide is completely removed, it is exposed again to ammonia or carbon dioxide as it is. Corresponding to the physical adsorption isotherm).
  • a chemical adsorption isotherm is obtained by the difference between the total adsorption isotherm (first adsorption isotherm; including both chemical adsorption and physical adsorption) and physical adsorption isotherm (second adsorption isotherm).
  • first adsorption isotherm including both chemical adsorption and physical adsorption
  • second adsorption isotherm physical adsorption isotherm
  • pretreatment for desorbing water, acidic substances, and basic substances adsorbed on the catalyst precursor is preferably performed in advance in measuring the chemical adsorption amounts of ammonia and carbon dioxide.
  • the pretreatment method may be appropriately selected in consideration of the properties of the catalyst precursor, and specific examples thereof include heat treatment, vacuum exhaust treatment, treatment combining these, and the like. Processing conditions such as heating temperature, degree of vacuum and time are not particularly limited as long as the properties of the catalyst precursor are not impaired.
  • a platinum group metal is further supported on the catalyst precursor containing phosphorus and an alkali metal and / or an alkaline earth metal.
  • the platinum group metal include ruthenium, rhodium, palladium, osmium, iridium, and platinum, with palladium being preferred.
  • the amount of the platinum group metal supported on the catalyst precursor is preferably 0.001 to 0.05 g, more preferably 0.002 to 0.01 g, with respect to 1 g of the catalyst precursor.
  • the catalyst precursor is prepared by mixing an alkali metal and / or alkaline earth metal source, water, a support, and a phosphorus source, evaporating the water, and calcining.
  • the firing temperature at that time is preferably 200 to 1000 ° C., more preferably 400 to 800 ° C., and the pressure is not particularly limited. Further, although the firing atmosphere is not particularly limited, the firing is preferably performed in the presence of oxygen (for example, in air).
  • a platinum group metal is supported on the catalyst precursor and dried to obtain a hydrogenation catalyst (solid catalyst).
  • the support on the carrier and the catalyst precursor is carried out by a conventional method. For example, it is carried out by bringing the carrier or catalyst precursor into contact with an aqueous metal salt solution of the metal to be supported.
  • the shape of the hydrogenation catalyst (solid catalyst) of the present invention can be selected regardless of the form such as a cylindrical shape, an extrusion shape, a spherical shape, a granular shape, a powder shape, a honeycomb shape, etc. It is preferable that the molded body has a cylindrical shape, an extrusion shape, a spherical shape, a granular shape, a honeycomb shape, or the like.
  • ⁇ Method for producing cyclohexanone or a derivative thereof As an example of the hydrogenation reaction using the hydrogenation catalyst of the present invention, a method for producing cyclohexanone or a derivative thereof (cyclohexanone) by a hydrogenation reaction of phenol or a derivative thereof (phenol) is shown.
  • Phenols that are raw material compounds are represented by the following formula (1).
  • R 1 , R 2 , R 3 , R 4 and R 5 are each independently a hydrogen atom, a hydroxy group, a phenol group, a phenyl group, a C1-C10 alkyl group or a C1-C10 An alkoxy group; ]
  • the C1-C10 alkyl group may be a linear, branched or cyclic alkyl group, and specific examples thereof include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonanyl, decyl, cyclopentyl. , Cyclohexyl, cycloheptyl, cyclooctyl, cyclononanyl, cyclodecyl and isomers thereof.
  • the C1-C10 alkoxy group may be a linear or branched alkoxy group, and specific examples thereof include methoxy, ethoxy, propoxy, butoxy, pentyloxy, hexyloxy, heptyloxy, octyloxy, nonanyloxy, decyloxy And isomers thereof.
  • phenol group examples include 2-hydroxyphenyl group, 3-hydroxyphenyl group and 4-hydroxyphenyl group.
  • phenols include phenol, catechol, o-cresol, 2,5-xylenol, 2,6-xylenol, 2,3,6-trimethylphenol, 2-cyclohexylphenol, 2-cyclopentylphenol, 2-phenyl Examples thereof include phenol, 2-isopropylphenol, 2-t-butylphenol, 2-t-butyl-6-methylphenol, 2-sec-butylphenol, 2-isobutylphenol, 2-methoxyphenol and bisphenol.
  • Cyclohexanones obtained by the hydrogenation reaction of phenols are represented by the following formula (2).
  • cyclohexanones include cyclohexanone, 2-hydroxycyclohexanone, 2-methylcyclohexanone, 2,5-dimethylcyclohexanone, 2,6-dimethylcyclohexanone, 2,3,6-trimethylcyclohexanone, 2-cyclohexylcyclohexanone, 2- Cyclopentylcyclohexanone, 2-phenylcyclohexanone, 2-isopropylcyclohexanone, 2-t-butylcyclohexanone, 2-t-butyl-6-methylcyclohexanone, 2-sec-butylcyclohexanone, 2-isobutylcyclohexanone, 2-methoxycyclohexanone, 2, Examples include 2-bis (4-oxocyclohexyl) propane.
  • a process for producing cyclohexanones by a hydrogenation reaction of phenols will be described below by taking a process for producing cyclohexanones by a hydrogenation reaction of phenol, which is a typical phenol, as an example.
  • a method for producing cyclohexanone by a hydrogenation reaction of phenol there are generally a method using cyclohexane or water as a solvent and a method using no solvent other than phenol and main product cyclohexanone.
  • Non-patent Document 2 As a hydrogenation reaction of phenol using a solvent, a catalyst in which palladium is supported on activated carbon and hydrogenated in the presence of aluminum chloride (Non-patent Document 2), or a catalyst in which palladium is supported on carbon nitride is used. A method of hydrogenation using water as a solvent is known (Non-Patent Document 3).
  • Patent Document 1 As a hydrogenation reaction of phenol without using a solvent, a catalyst in which palladium is supported on Al 2 O 3 treated with an alkali metal or an alkaline earth metal is used, and cyclohexanone is reacted by reacting hydrogen with phenol. Methods of obtaining are known (Patent Document 1, Patent Document 2).
  • Such a hydrogenation reaction of phenol without using a solvent has a high productivity and is industrially carried out.
  • the phenol hydrogenation reaction solution without using a solvent contains cyclohexanone, cyclohexanol, other products, and unreacted phenol. Normally, unreacted phenol is separated and introduced again into the phenol hydrogenation process.
  • azeotropic composition with cyclohexanone much equipment cost and energy are required for separation and circulation of phenol.
  • the produced cyclohexanol can be induced to cyclohexanone by a dehydrogenation reaction.
  • this reaction is an endothermic reaction, it is necessary to carry out the reaction at a high temperature, which requires equipment cost and energy.
  • other by-products include 2-cyclohexylcyclohexanone produced by the aldol reaction on the catalyst support.
  • 2-cyclohexylcyclohexanone is difficult to induce to cyclohexanone and is used as a fuel or the like. No other carbon efficiency is reduced.
  • the method for producing cyclohexanone by the hydrogenation reaction of phenol using the hydrogenation catalyst of the present invention for example, as in the hydrogenation apparatus shown in FIG. This is carried out by supplying hydrogen 8 and phenol 7 (or a mixture of phenol and cyclohexanone) to the reaction tube 1 having the preheating layer 3 on the side after flowing hydrogen 8 from the preheating layer 3 side and performing pretreatment reduction. .
  • cyclohexanone can be obtained with high conversion and high selectivity.
  • reaction tube 1 a straight tube is used.
  • the material include stainless steel (SUS), glass, quartz, and the like, and stainless steel (SUS) is preferable from the viewpoint of an industrial manufacturing method.
  • the reaction tube 1 is filled with the hydrogenation catalyst of the present invention.
  • the reaction tube 1 is provided with a bottom plate 5 such as a plate, a net or a punching metal having air permeability to support the hydrogenation catalyst, and quartz wool 4 or the like is placed on this plate.
  • a bottom plate 5 such as a plate, a net or a punching metal having air permeability to support the hydrogenation catalyst, and quartz wool 4 or the like is placed on this plate.
  • the catalyst layer 2 filled with the hydrogenation catalyst is formed. This prevents the hydrogenation catalyst from coming off.
  • a preheat layer 3 is provided after spreading quartz wool 4 as necessary.
  • the preheating layer 3 is formed, for example, on the introduction side of phenol of the hydrogenation catalyst filled in the reaction tube 1 (in the case of a vertical reaction tube, on the top of the filled hydrogenation catalyst), for example, glass beads, quartz wool, fibrous It can be formed by filling with stainless steel (SUS).
  • the preheating layer 3 portion of the reaction tube 1 is thinned, or a tube having a thin outer diameter is connected to the reaction tube 1 on which the catalyst layer 2 is formed as a preheating layer 3 site, and this is connected to glass beads, quartz wool, fibrous
  • the preheating layer 3 can also be formed by a method of filling stainless steel (SUS), or a filler such as glass beads is filled if heat exchange with phenol or hydrogen flowing through the reaction tube 1 is sufficient. It can also be set as the preheating layer 3 without.
  • the particle size of the glass beads is approximately 1/10 of the diameter of the reaction tube 1 and depends on the diameter of the reaction tube 1, but for example, a spherical one having a diameter of 1 mm or 2 mm is used. be able to.
  • Preheating can be performed, for example, by installing a heater 6 outside the preheating layer 3 and external heating.
  • Cyclohexanone is produced by supplying phenol 7 from the preheating layer 3 side of the hydrogenation device, but the hydrogenation catalyst is reduced in the gas phase or liquid phase before the phenol 7 is supplied.
  • Examples of the reduction process in the vapor phase include a method using hydrogen as a reducing agent.
  • the temperature of the catalyst layer 2 is 50 to 500 ° C., preferably 100 to 200 ° C., and the reduction treatment is carried out with an amount of hydrogen and a time sufficient to sufficiently reduce the platinum group metal in the hydrogenation catalyst.
  • an inert gas such as nitrogen or argon is conducted to replace the inside of the reaction system with the inert gas.
  • an aqueous solution of 1 to 20% by mass of a reducing agent such as formic acid, an alkali metal salt of formic acid, formalin, hydrazine, or sodium borohydride is used.
  • a method of reducing the platinum group metal in the hydrogenation catalyst at a temperature of ⁇ 100 ° C. can be mentioned.
  • the raw material phenol 7 can be used regardless of its production method, and there is no problem even in the state of a mixture of phenol and cyclohexanone.
  • phenol obtained by the cumene method can be used, or a mixture of phenol and cyclohexanone obtained by oxidative decomposition of a reduced dimer of benzene described in Patent Document 3 can be used as it is without separation. You can also.
  • the ratio of phenol to cyclohexane is not particularly limited, but the phenol: cyclohexanone ratio (mol%) is preferably 100: 0 to 30:70 from the viewpoint of suppressing the production of by-product cyclohexanol and productivity.
  • Phenol 7 (or a mixture of phenol and cyclohexanone) as a raw material is heated to 120 ° C. or lower as necessary to be in a liquid state, and is supplied to the preheating layer 3 by a pump such as a plunger pump or a syringe pump.
  • the flow rate of phenol depends on the reactor, the production scale, and the amount of platinum group metal supported in the hydrogenation catalyst, but the supply rate per weight of the hydrogenation catalyst is 0.2 to 5 kg ⁇ kg-cat ⁇ 1 ⁇ h ⁇ . 1 .
  • the supplied phenol 7 (or a mixture of phenol and cyclohexanone) is heated in the preheating layer, mixed with hydrogen 8 also supplied, and supplied to the catalyst layer 2.
  • a method of passing hydrogen through liquid phenol and sending the vaporized phenol to the preheating layer 3 can be applied.
  • the amount of hydrogen 8 supplied to the catalyst layer 2 depends on the reactor, the production scale, and the amount of platinum group metal supported in the hydrogenation catalyst, but is 100 to 130,000 L ⁇ kg- cat ⁇ 1 ⁇ h ⁇ 1 and heated in the preheating layer 3.
  • a preferable temperature in the preheating layer 3 is 100 to 220 ° C.
  • the molar ratio of hydrogen to phenol is 2 to 100, preferably 4 to 50.
  • Phenol and hydrogen react at a temperature of the catalyst layer 2 of 100 to 220 ° C., preferably 140 to 160 ° C., and a pressure of 0 to 1 MPa (gauge pressure or less, G), preferably 0 to 0.3 MPa (G).
  • the desired reaction product can be obtained by cooling and collecting the resulting reaction product from the reaction tube 1 and purifying the collected liquid by, for example, distillation.
  • the amount of each component produced in the hydrogenation reaction of phenols was measured by cooling and collecting the obtained reaction solution, and then gas chromatography (manufactured by Shimadzu Corporation, trade name: “GC-2014”, GC column: Analysis was performed using TC-WAX, GC detector (FID), and calculation was performed using diethylene glycol monoethyl ether as an internal standard.
  • a calcium nitrate aqueous solution and a phosphoric acid aqueous solution were impregnated and supported so as to be 05, and dried at 110 ° C. for 12 hours or more. Thereafter, it was calcined at 600 ° C. for 3 hours in an air atmosphere to obtain a catalyst A precursor.
  • the BET specific surface area of the catalyst A precursor was 49 m 2 / g.
  • the catalyst A precursor was kept at 50 ° C. with a heater, and ammonia gas was gradually introduced from the vacuum state into the sample cell, and the adsorption amount (ie, the absolute amount from 5.3 kPa to 5.3 kPa at 106.7 kPa at a total of 20 points) Measure the total adsorption amount of the chemical adsorption amount and the physical adsorption amount (measurement temperature: 50 ° C., thermal equilibrium time: 60 minutes, pressure tolerance: 4, adsorption equilibrium time: 2 minutes), and determine the total adsorption isotherm (chemical Including both adsorption and physical adsorption).
  • the physically adsorbed ammonia is removed by exhausting in a high vacuum, and the adsorbed amount (that is, the physical adsorbed amount) is measured again at a total of 20 points from 5.3 kPa to 106.7 kPa at intervals of 5.3 kPa, A physical adsorption isotherm was created.
  • the ammonia chemisorption amount of the catalyst A precursor was 47.1 ⁇ mol / g.
  • the amount of chemical adsorption of carbon dioxide was measured by changing the adsorption gas from ammonia gas to carbon dioxide.
  • the carbon dioxide chemisorption amount of the catalyst A precursor was 6.1 ⁇ mol / g.
  • Catalyst A Production of Pd / 0.1Ca-0.05P-SiO 2
  • the catalyst A precursor was impregnated with and supported by an aqueous palladium chloride solution at 0.5 wt%, and dried at 110 ° C. for 12 hours or longer to obtain catalyst A: Pd / 0.1Ca-0.05P-SiO 2 . Obtained.
  • Catalyst A Hydrogenation reaction of phenol with Pd / 0.1Ca-0.05P-SiO 2
  • the collected liquid for 16 h was discarded from the start of the reaction, and then the collected liquid for 1 h was analyzed by gas chromatography.
  • the conversion rate of the starting phenol was> 99.9%
  • the selectivity of cyclohexanone was 98.1%
  • the selectivity of cyclohexanol as a by-product was 1.8%
  • the selectivity for cyclohexylcyclohexanone was ⁇ 0.1%.
  • Example 3 (Catalyst A: Hydrogenation reaction of phenol with Pd / 0.1Ca-0.05P-SiO 2 : life evaluation)
  • the collected liquid was cut off for 25 h from the start of the reaction, and then sampled every 2 to 5 h for 30 h, and the collected liquid was analyzed by gas chromatography.
  • the reaction results were stable, and the average value was that the phenol conversion was> 99.9%, the selectivity for cyclohexanone was 97.2%, and the selectivity for cyclohexanol as a by-product.
  • reaction temperature was lowered to 135 ° C.
  • the collected liquid for 15 h was discarded, and then sampling was performed every 2 to 5 h for 60 h, and the collected liquid was analyzed by gas chromatography.
  • the reaction results were stable, and the average value was that the phenol conversion was> 99.9%, the cyclohexanone selectivity was 98.7%, and the selectivity for the by-product cyclohexanol was Was 1.2% and the selectivity for 2-cyclohexylcyclohexanone was ⁇ 0.1%.
  • Catalyst A Hydrogenation reaction of p-cresol with Pd / 0.1Ca-0.05P-SiO 2
  • Catalyst A 1 g of Pd / 0.1Ca-0.05P-SiO 2 was filled into a 1/2 inch stainless steel (SUS) tube, and 10 g of glass beads (diameter 1 mm, spherical) were placed on the top. A preheating layer was used. The catalyst layer was heated to 200 ° C., hydrogen gas (10 cc / min) was circulated from the top and subjected to pretreatment reduction, and then a mixture (moles of p-cresol and 4-methylcyclohexanone at 135 ° C. and 0 MPa (G) The hydrogenation reaction of p-cresol was performed by supplying hydrogen gas at a ratio of 1: 1) to 1.0 cc / h and 10 cc / min.
  • the collected liquid for 14 h was discarded from the start of the reaction, and then the collected liquid for 2 h was analyzed by gas chromatography.
  • the conversion rate of p-cresol as a starting material was 99.4%
  • the selectivity of 4-methylcyclohexanone was 98.3%
  • the selectivity of 4-methylcyclohexanol as a by-product was 1 0.7%.
  • a lithium nitrate aqueous solution and a phosphoric acid aqueous solution were impregnated and supported so as to be 05, and dried at 110 ° C. for 12 hours or longer. Thereafter, it was calcined at 600 ° C. for 3 hours in an air atmosphere to obtain a catalyst B precursor.
  • the BET specific surface area of the catalyst B precursor was 53 m 2 / g.
  • the catalyst B precursor was kept at 50 ° C. with a heater, and ammonia gas was gradually introduced from the vacuum state into the sample cell, and the adsorption amount (ie, the absolute amount from 5.3 kPa to 5.3 kPa at 106.7 kPa at a total of 20 points).
  • the adsorption amount ie, the absolute amount from 5.3 kPa to 5.3 kPa at 106.7 kPa at a total of 20 points.
  • the physically adsorbed ammonia is removed by exhausting in a high vacuum, and the adsorbed amount (that is, the physical adsorbed amount) is measured again at a total of 20 points from 5.3 kPa to 106.7 kPa at intervals of 5.3 kPa, A physical adsorption isotherm was created.
  • the ammonia chemisorption amount of the catalyst B precursor was 9.8 ⁇ mol / g.
  • the amount of chemical adsorption of carbon dioxide was measured by changing the adsorption gas from ammonia gas to carbon dioxide.
  • the carbon dioxide chemical adsorption amount of the catalyst B precursor was 0.4 ⁇ mol / g.
  • Catalyst B Production of Pd / Li—P—SiO 2
  • the catalyst B precursor was impregnated with and supported by an aqueous palladium chloride solution at 0.2 wt%, and dried at 110 ° C. for 12 hours or longer to obtain catalyst B: Pd / Li—P—SiO 2 .
  • Catalyst B Hydrogenation reaction of phenol with Pd / Li—P—SiO 2
  • Catalyst B 1 g of Pd / Li—P—SiO 2 was filled into a 1/2 inch stainless steel (SUS) tube, and 10 g of glass beads (diameter 1 mm, spherical shape) were placed on the top to form a preheating layer. .
  • the catalyst layer was heated to 200 ° C., hydrogen gas (16 cc / min) was passed through the top and subjected to pretreatment reduction, and then at 140 ° C.
  • the collected liquid for 4 hours was cut off from the start of the reaction, and then the collected liquid for 1 hour was analyzed by gas chromatography.
  • the conversion rate of the starting material phenol was 99.3%
  • the cyclohexanone selectivity was 98.0%
  • the byproduct cyclohexanol selectivity was 1.9%
  • 2- The selectivity for cyclohexylcyclohexanone was 0.1%.
  • a magnesium nitrate aqueous solution and a phosphoric acid aqueous solution were impregnated and supported so as to be 05, and dried at 110 ° C. for 12 hours or more. Thereafter, it was calcined at 600 ° C. for 3 hours in an air atmosphere to obtain a catalyst C precursor.
  • the BET specific surface area of the catalyst C precursor was 59 m 2 / g.
  • the catalyst C precursor 1.5g was put into the glass sample cell, and it heated at 380 degreeC for 2 h at 4 Pa or less (pretreatment).
  • the pretreated catalyst C precursor is used as a sample cell in a high-performance, fully automatic gas adsorption amount measuring device Autosorb-1-C (trade name, Yuasa Ionics). Installed).
  • the catalyst C precursor was kept at 50 ° C. by a heater, and ammonia gas was gradually introduced from the vacuum state into the sample cell, and the adsorption amount (ie, the absolute amount from 5.3 kPa to 5.3 kPa at 106.7 kPa at 20 points in total) Measure the total adsorption amount of the chemical adsorption amount and the physical adsorption amount (measurement temperature: 50 ° C., thermal equilibrium time: 60 minutes, pressure tolerance: 4, adsorption equilibrium time: 2 minutes), and determine the total adsorption isotherm (chemical Including both adsorption and physical adsorption).
  • the physically adsorbed ammonia is removed by exhausting in a high vacuum, and the adsorbed amount (that is, the physical adsorbed amount) is measured again at a total of 20 points from 5.3 kPa to 106.7 kPa at intervals of 5.3 kPa, A physical adsorption isotherm was created.
  • the ammonia chemisorption amount of the catalyst C precursor was 40.7 ⁇ mol / g.
  • the amount of chemical adsorption of carbon dioxide was measured by changing the adsorption gas from ammonia gas to carbon dioxide.
  • the carbon dioxide chemical adsorption amount of the catalyst C precursor was 1.0 ⁇ mol / g.
  • Catalyst C Production of Pd / Mg—P—SiO 2
  • the catalyst C precursor was impregnated and supported with an aqueous palladium chloride solution at 0.5 wt%, and dried at 110 ° C. for 12 hours or longer to obtain catalyst C: Pd / Ca—P—SiO 2 .
  • Example 8 (Catalyst C: Hydrogenation reaction of phenol with Pd / Mg—P—SiO 2 )
  • Catalyst C 1 g of Pd / Mg—P—SiO 2 was filled into a 1/2 inch stainless steel (SUS) tube, and 10 g of glass beads (diameter 1 mm, spherical shape) were placed on the top to form a preheating layer. .
  • the collected liquid for 3 h was discarded from the start of the reaction, and then the collected liquid for 4 h was analyzed by gas chromatography.
  • the conversion rate of phenol as a starting material was 97.9%
  • the selectivity of cyclohexanone was 96.7%
  • the selectivity of cyclohexanol as a by-product was 1.8%
  • the selectivity for cyclohexylcyclohexanone was 0.6%.
  • a calcium nitrate aqueous solution and a phosphoric acid aqueous solution were impregnated and supported so as to be 05, and dried at 110 ° C. for 12 hours or more. Thereafter, it was calcined at 600 ° C. for 3 hours in an air atmosphere to obtain a catalyst D precursor.
  • the BET specific surface area of the catalyst D precursor was 56 m 2 / g.
  • the catalyst D precursor was kept at 50 ° C. with a heater, and ammonia gas was gradually introduced from the vacuum state into the sample cell, and the adsorption amount (ie, the absolute amount from 5.3 kPa to 5.3 kPa at 106.7 kPa at 20 points in total) Measure the total adsorption amount of the chemical adsorption amount and the physical adsorption amount (measurement temperature: 50 ° C., thermal equilibrium time: 60 minutes, pressure tolerance: 4, adsorption equilibrium time: 2 minutes), and determine the total adsorption isotherm (chemical Including both adsorption and physical adsorption).
  • the physically adsorbed ammonia is removed by exhausting in a high vacuum, and the adsorbed amount (that is, the physical adsorbed amount) is measured again at a total of 20 points from 5.3 kPa to 106.7 kPa at intervals of 5.3 kPa, A physical adsorption isotherm was created.
  • the ammonia chemisorption amount of the catalyst D precursor was 55.7 ⁇ mol / g.
  • the amount of chemical adsorption of carbon dioxide was measured by changing the adsorption gas from ammonia gas to carbon dioxide.
  • the carbon dioxide chemisorption amount of the catalyst D precursor was 4.8 ⁇ mol / g.
  • Catalyst D Production of Pd / 0.07Ca-0.05P-SiO 2
  • the catalyst D precursor was impregnated with and supported by an aqueous palladium chloride solution at 0.5 wt%, and dried at 110 ° C. for 12 hours or more, whereby catalyst D: Pd / 0.07Ca-0.05P-SiO 2 was obtained. Obtained.
  • Catalyst D Hydrogenation reaction of phenol with Pd / 0.07Ca-0.05P-SiO 2
  • the collected liquid for 27 h was discarded from the start of the reaction, and then the collected liquid for 3 h was analyzed by gas chromatography.
  • the conversion rate of phenol as a starting material was 97.7%
  • the selectivity of cyclohexanone was 98.2%
  • the selectivity of cyclohexanol as a by-product was 1.6%
  • the selectivity for cyclohexylcyclohexanone was ⁇ 0.1%.
  • a calcium nitrate aqueous solution and a phosphoric acid aqueous solution were impregnated and supported so as to be 05, and dried at 110 ° C. for 12 hours or more. Thereafter, it was calcined at 600 ° C. for 3 hours in an air atmosphere to obtain a catalyst E precursor.
  • the BET specific surface area of the catalyst E precursor was 49 m 2 / g.
  • the catalyst E precursor was kept at 50 ° C. with a heater, and ammonia gas was gradually introduced from the vacuum state into the sample cell, and the adsorption amount (ie, the absolute amount from 5.3 kPa to 5.3 kPa at 106.7 kPa at a total of 20 points) Measure the total adsorption amount of the chemical adsorption amount and the physical adsorption amount (measurement temperature: 50 ° C., thermal equilibrium time: 60 minutes, pressure tolerance: 4, adsorption equilibrium time: 2 minutes), and determine the total adsorption isotherm (chemical Including both adsorption and physical adsorption).
  • the physically adsorbed ammonia is removed by exhausting in a high vacuum, and the adsorbed amount (that is, the physical adsorbed amount) is measured again at a total of 20 points from 5.3 kPa to 106.7 kPa at intervals of 5.3 kPa, A physical adsorption isotherm was created.
  • the ammonia chemisorption amount of the catalyst E precursor was 91.7 ⁇ mol / g.
  • the amount of chemical adsorption of carbon dioxide was measured by changing the adsorption gas from ammonia gas to carbon dioxide.
  • the carbon dioxide chemisorption amount of the catalyst E precursor was 7.5 ⁇ mol / g.
  • Catalyst E Production of Pd / 0.2Ca-0.05P-SiO 2
  • the catalyst E precursor was impregnated with and supported by an aqueous palladium chloride solution at 0.2 wt%, and dried at 110 ° C. for 12 hours or longer to obtain catalyst E: Pd / 0.2Ca-0.05P-SiO 2 . Obtained.
  • Catalyst E Hydrogenation reaction of phenol with Pd / 0.2Ca-0.05P-SiO 2
  • the collected liquid for 8 hours was cut off from the start of the reaction, and then the collected liquid for 3 hours was analyzed by gas chromatography.
  • the conversion rate of phenol as a starting material was 96.7%
  • the selectivity of cyclohexanone was 98.3%
  • the selectivity of cyclohexanol as a by-product was 1.6%
  • the selectivity for cyclohexylcyclohexanone was 0.1%.
  • a calcium nitrate aqueous solution and a phosphoric acid aqueous solution were impregnated and supported so as to be 05, and dried at 110 ° C. for 12 hours or more. Thereafter, it was calcined at 600 ° C. for 3 hours in an air atmosphere to obtain a catalyst F precursor.
  • the BET specific surface area of the catalyst F precursor was 41 m 2 / g.
  • the catalyst F precursor 1.5g was put into the glass sample cell, and it heated at 380 degreeC for 2 h at 4 Pa or less (pretreatment). Next, in order to measure the amount of chemical adsorption of ammonia, the pretreated catalyst F precursor is used as a sample cell in a high-performance, fully automatic gas adsorption amount measuring device Autosorb-1-C (trade name, Yuasa Ionics). Installed).
  • the catalyst F precursor was kept at 50 ° C. by a heater, and ammonia gas was gradually introduced from the vacuum state into the sample cell, and the adsorption amount (ie, the absolute amount from 5.3 kPa to 5.3 kPa at 106.7 kPa at a total of 20 points) Measure the total adsorption amount of the chemical adsorption amount and the physical adsorption amount (measurement temperature: 50 ° C., thermal equilibrium time: 60 minutes, pressure tolerance: 4, adsorption equilibrium time: 2 minutes), and determine the total adsorption isotherm (chemical Including both adsorption and physical adsorption).
  • the physically adsorbed ammonia is removed by exhausting in a high vacuum, and the adsorbed amount (that is, the physical adsorbed amount) is measured again at a total of 20 points from 5.3 kPa to 106.7 kPa at intervals of 5.3 kPa, A physical adsorption isotherm was created.
  • the ammonia chemisorption amount of the catalyst F precursor was 89.8 ⁇ mol / g.
  • the amount of chemical adsorption of carbon dioxide was measured by changing the adsorption gas from ammonia gas to carbon dioxide.
  • the carbon dioxide chemisorption amount of the catalyst F precursor was 13.2 ⁇ mol / g.
  • Catalyst F Production of Pd / 0.3Ca-0.05P-SiO 2
  • the catalyst F precursor was impregnated with and supported by an aqueous palladium chloride solution at 0.5 wt%, and dried at 110 ° C. for 12 hours or longer, whereby catalyst F: Pd / 0.3Ca-0.05P-SiO 2 was obtained. Obtained.
  • Catalyst F Hydrogenation reaction of phenol with Pd / 0.3Ca-0.05P-SiO 2
  • the collected liquid for 70 h was discarded from the start of the reaction, and then the collected liquid for 2 h was analyzed by gas chromatography.
  • the conversion rate of phenol as a starting material was 96.5%
  • the selectivity of cyclohexanone was 95.2%
  • the selectivity of cyclohexanol as a by-product was 4.6%
  • the selectivity for cyclohexylcyclohexanone was ⁇ 0.1%.
  • a 1 / 2-inch stainless steel (SUS) tube was filled with 1.0 g of 0.05 wt% Pd-2% Na / Al 2 O 3 , and 10 g of glass beads were placed on the top to form a preheated layer.
  • the collected liquid for 8 hours was cut off from the start of the reaction, and then the collected liquid for 1 hour was analyzed by gas chromatography.
  • the conversion rate of phenol as a starting material was 99.4%
  • the selectivity of cyclohexanone was 90.3%
  • the selectivity of cyclohexanol as a by-product was 0.7%
  • the selectivity for cyclohexylcyclohexanone was 8.7%.
  • a 1/2 inch stainless steel (SUS) tube was filled with a mixture of 0.13 g of 0.1 wt% Pd-2% Na / Al 2 O 3 and 0.37 g of 2% Na / Al 2 O 3. Then, 10 g of glass beads were put on the top to form a preheated layer.
  • the collected liquid for 1 h was discarded from the start of the reaction, and then the collected liquid for 1 h was analyzed by gas chromatography.
  • the conversion of phenol as a starting material was 99.8%
  • the selectivity of cyclohexanone was 89.1%
  • the selectivity of cyclohexanol as a by-product was 10.3%
  • the selectivity for cyclohexylcyclohexanone was 0.6%.
  • a 1 / 2-inch stainless steel (SUS) tube was filled with 1.3 g of 0.05 wt% Pd-2% Na / Al 2 O 3 , and 10 g of glass beads were placed on the top to form a preheating layer.
  • the collected liquid for 1 h was discarded from the start of the reaction, and then the collected liquid for 1 h was analyzed by gas chromatography.
  • the conversion rate of the starting phenol was> 99.9%
  • the selectivity of cyclohexanone was 93.1%
  • the selectivity of the by-product cyclohexanol was 5.1%
  • the selectivity for -cyclohexylcyclohexanone was 1.8%.
  • the BET specific surface area of the catalyst G precursor was 56 m 2 / g.
  • the catalyst G precursor 1.5g was put into the glass sample cell, and it heated at 380 degreeC for 2 h at 4 Pa or less (pretreatment). Next, in order to measure the chemical adsorption amount of ammonia, the pretreated catalyst G precursor is used as a sample cell in a high-performance, fully automatic gas adsorption amount measuring device Autosorb-1-C (trade name, Yuasa Ionics). Installed).
  • the catalyst G precursor was kept at 50 ° C. with a heater, and ammonia gas was gradually introduced from the vacuum state into the sample cell, and the adsorption amount (ie, the absolute amount from 5.3 kPa to 5.3 kPa at 106.7 kPa at 20 points in total) Measure the total adsorption amount of the chemical adsorption amount and the physical adsorption amount (measurement temperature: 50 ° C., thermal equilibrium time: 60 minutes, pressure tolerance: 4, adsorption equilibrium time: 2 minutes), and determine the total adsorption isotherm (chemical Including both adsorption and physical adsorption).
  • the physically adsorbed ammonia is removed by exhausting in a high vacuum, and the adsorbed amount (that is, the physical adsorbed amount) is measured again at a total of 20 points from 5.3 kPa to 106.7 kPa at intervals of 5.3 kPa, A physical adsorption isotherm was created.
  • the ammonia chemisorption amount of the catalyst G precursor was 134 ⁇ mol / g.
  • the amount of chemical adsorption of carbon dioxide was measured by changing the adsorption gas from ammonia gas to carbon dioxide.
  • the carbon dioxide chemisorption amount of the catalyst G precursor was ⁇ 0.1 ⁇ mol / g.
  • Catalyst G Production of Pd / P—SiO 2
  • the catalyst G precursor was impregnated with and supported by an aqueous palladium chloride solution at 0.2 wt%, and dried at 110 ° C. for 12 hours or longer to obtain catalyst G: Pd / P—SiO 2 .
  • Catalyst G Hydrogenation reaction of phenol with Pd / P—SiO 2
  • Catalyst G 1 g of Pd / P—SiO 2 was filled into a 1/2 inch stainless steel (SUS) tube, and 10 g of glass beads (diameter 1 mm, spherical shape) were placed on the top to form a preheated layer.
  • the catalyst layer was heated to 200 ° C., hydrogen gas (16 cc / min) was passed through the top and subjected to pretreatment reduction, and then at 140 ° C.
  • the collected liquid for 5 h was discarded from the start of the reaction, and then the collected liquid for 1 h was analyzed by gas chromatography.
  • the conversion of phenol as a starting material was 5.2%
  • the selectivity of cyclohexanone was 83.8%
  • the by-product cyclohexanol was ⁇ 0.1%
  • 2-cyclohexylcyclohexanone was 16.1%.
  • Catalyst H Production of Pd / Ca—SiO 2
  • the catalyst H precursor was impregnated with and supported by an aqueous palladium chloride solution at 0.5 wt%, and dried at 110 ° C. for 12 hours or longer to obtain catalyst H: Pd / Ca—SiO 2 .
  • Catalyst H Hydrogenation reaction of phenol with Pd / Ca—SiO 2
  • Catalyst H 1 g of Pd / Ca—SiO 2 was filled in a 1/2 inch stainless steel (SUS) tube, and 10 g of glass beads (diameter 1 mm, spherical shape) were placed on the top to form a preheated layer.
  • the catalyst layer was heated to 200 ° C., hydrogen gas (16 cc / min) was passed through the top and subjected to pretreatment reduction, and then at 140 ° C.
  • the collected liquid for 5 h was discarded from the start of the reaction, and then the collected liquid for 1 h was analyzed by gas chromatography.
  • the conversion rate of phenol as a starting material was 99.9%
  • the selectivity of cyclohexanone was 88.0%
  • the selectivity of cyclohexanol as a by-product was 11.6%
  • the selectivity for cyclohexylcyclohexanone was 0.4%.
  • a calcium nitrate aqueous solution and a phosphoric acid aqueous solution were impregnated and supported so as to be 05, and dried at 110 ° C. for 12 hours or more. Thereafter, it was calcined at 600 ° C. for 3 hours in an air atmosphere to obtain a catalyst I precursor.
  • the BET specific surface area of the catalyst I precursor was 53 m 2 / g.
  • the catalyst I precursor was kept at 50 ° C. with a heater, and ammonia gas was gradually introduced from the vacuum state into the sample cell, and the adsorption amount (ie, the absolute amount from 5.3 kPa to 5.3 kPa at 106.7 kPa at a total of 20 points) Measure the total adsorption amount of the chemical adsorption amount and the physical adsorption amount (measurement temperature: 50 ° C., thermal equilibrium time: 60 minutes, pressure tolerance: 4, adsorption equilibrium time: 2 minutes), and determine the total adsorption isotherm (chemical Including both adsorption and physical adsorption).
  • the physically adsorbed ammonia is removed by exhausting in a high vacuum, and the adsorbed amount (that is, the physical adsorbed amount) is measured again at a total of 20 points from 5.3 kPa to 106.7 kPa at intervals of 5.3 kPa, A physical adsorption isotherm was created.
  • the ammonia chemisorption amount of the catalyst I precursor was 148 ⁇ mol / g.
  • the amount of chemical adsorption of carbon dioxide was measured by changing the adsorption gas from ammonia gas to carbon dioxide.
  • the carbon dioxide chemisorption amount of the catalyst I precursor was ⁇ 0.1 ⁇ mol / g.
  • Catalyst I Production of Pd / 0.01Ca-0.05P-SiO 2
  • the catalyst I precursor was impregnated with and supported by an aqueous palladium chloride solution at 0.5 wt%, and dried at 110 ° C. for 12 hours or longer to obtain catalyst I: Pd / 0.01Ca-0.05P-SiO 2 . Obtained.
  • Catalyst I Hydrogenation reaction of phenol with Pd / 0.01Ca-0.05P-SiO 2
  • the collected liquid for 2 hours was discarded from the start of the reaction, and then the collected liquid for 1 h was analyzed by gas chromatography.
  • the conversion rate of phenol as a starting material was 21.9%
  • the selectivity of cyclohexanone was 95.9%
  • the selectivity of cyclohexanol as a by-product was 0.1%
  • the selectivity for cyclohexyl cyclohexanone was 4.0%.
  • reaction tube 2 catalyst layer 3 preheating layer 4 quartz wool 5 bottom plate 6 heater 7 phenol 8 hydrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The present invention provides: a hydrogenation catalyst which enables a hydrogenation reaction to proceed with high conversion rate and high selectivity; and a method for producing cyclohexanone or a derivative thereof from phenol or a derivative thereof with high conversion rate and high selectivity. A hydrogenation catalyst according to the present invention is obtained by having a catalyst precursor, which is obtained by having a carrier contain phosphorus and an alkali metal and/or an alkaline earth metal, support a platinum group metal. The catalyst precursor has a chemisorption amount of ammonia of 100 μmol/g or less at 50°C. A method for producing cyclohexanone or a derivative thereof according to the present invention causes hydrogenation of phenol or a derivative thereof with use of the above-described hydrogenation catalyst.

Description

水素化触媒及びその製造方法、並びにそれを用いたシクロヘキサノン又はその誘導体の製造方法HYDROGENATION CATALYST, PROCESS FOR PRODUCING THE SAME, AND PROCESS FOR PRODUCING CYCLOHEXANONE OR ITS DERIVATIVE USING THE SAME
 本発明は、水素化触媒及びその製造方法に関する。より詳細には、逐次水素化や副反応を抑制し、高い選択性で水素化反応を進行させる水素化触媒及びその製造方法に関する。また、本発明は、シクロヘキサノン又はその誘導体の製造方法に関する。より詳細には、フェノール又はその誘導体から一工程でシクロヘキサノン又はその誘導体を製造する方法に関する。 The present invention relates to a hydrogenation catalyst and a method for producing the same. More specifically, the present invention relates to a hydrogenation catalyst that suppresses sequential hydrogenation and side reactions and advances the hydrogenation reaction with high selectivity and a method for producing the same. The present invention also relates to a method for producing cyclohexanone or a derivative thereof. More specifically, the present invention relates to a method for producing cyclohexanone or a derivative thereof from phenol or a derivative thereof in one step.
 化学品を合成するための還元反応として、水素化反応が広く知られている。水素化反応は廃棄物等の発生が少なく有用な反応である。その具体例としては、フェノールの水素化によるシクロヘキサノンの合成が知られている。シクロヘキサノンは、ナイロン原料であるカプロラクタムの原料として有用な化合物である。 Hydrogenation reaction is widely known as a reduction reaction for synthesizing chemical products. The hydrogenation reaction is a useful reaction with little generation of waste and the like. As a specific example, synthesis of cyclohexanone by hydrogenation of phenol is known. Cyclohexanone is a useful compound as a raw material for caprolactam, which is a raw material for nylon.
 水素化反応としては、シリカ、アルミナ、シリカアルミナ、ジルコニア又は活性炭上に白金族金属を担持した触媒が広く用いられている(非特許文献1)。しかし、アルミナやシリカアルミナなど表面に酸点や塩基点を多く持つ担体を用いた触媒では、酸点や塩基点が逐次水素化反応や水素化反応以外の副反応を促進し、選択性を下げる原因となっている。一方、シリカなど表面に強い酸点・塩基点を持たない担体では副反応は進行しづらいが、白金族金属と担体の相互作用が小さいため反応中に白金族金属の凝集が起こり、触媒寿命が短いという問題点がある。 As a hydrogenation reaction, a catalyst in which a platinum group metal is supported on silica, alumina, silica alumina, zirconia, or activated carbon is widely used (Non-patent Document 1). However, in the catalyst using a carrier having many acid sites and base sites on the surface such as alumina and silica alumina, the acid sites and base sites promote sequential side reactions other than hydrogenation reaction and hydrogenation reaction, and lower the selectivity. It is the cause. On the other hand, the side reaction is difficult to proceed with a carrier such as silica that does not have a strong acid point or base point on the surface, but the platinum group metal agglomerates during the reaction because the interaction between the platinum group metal and the carrier is small, and the catalyst life is reduced. There is a problem that it is short.
 触媒担体による副反応を制御する手法としては、触媒担体上の酸点をアルカリ金属やアルカリ土類金属で処理する方法が知られている。例えば、フェノールの水素化反応では、アルカリ金属又はアルカリ土類金属により処理されたAl上にパラジウムを担持した触媒を使用し、水素とフェノールを反応させることによってシクロヘキサノンを得る方法が知られている(特許文献1、特許文献2)。 As a method for controlling a side reaction by a catalyst carrier, a method of treating an acid point on the catalyst carrier with an alkali metal or an alkaline earth metal is known. For example, in the hydrogenation reaction of phenol, a method is known in which cyclohexanone is obtained by reacting hydrogen with phenol using a catalyst in which palladium is supported on Al 2 O 3 treated with an alkali metal or an alkaline earth metal. (Patent Document 1, Patent Document 2).
国際公開第2000/067902号パンフレットInternational Publication No. 2000/066792 Pamphlet 英国特許第1332211号明細書British Patent No. 1332211 国際公開第2009/134514号パンフレットInternational Publication No. 2009/134514 Pamphlet
 しかしながら、特許文献1及び2に記載された方法を追試した結果、逐次水素化や副反応の進行の抑制は不十分であることが分かった。 However, as a result of further testing the methods described in Patent Documents 1 and 2, it was found that the sequential hydrogenation and the suppression of the progress of side reactions were insufficient.
 フェノールの水素化反応によるシクロヘキサノン製造では、通常、逐次水素化反応によりシクロヘキサノールが生成する。副生したシクロヘキサノールは脱水素反応によりシクロヘキサノンへ誘導可能であるが、同反応は吸熱反応であるため反応を高温で行う必要がある。以上のことから、シクロヘキサノール副生が多いと設備コストならびにエネルギーがかかる。加えて、触媒担体上でのアルドール反応により生成する2-シクロヘキシルシクロヘキサノンはシクロヘキサノンへ誘導することが困難であり、燃料等として利用する他無く、炭素利用効率を低下させている。 In cyclohexanone production by phenol hydrogenation reaction, cyclohexanol is usually produced by sequential hydrogenation reaction. The by-produced cyclohexanol can be induced to cyclohexanone by a dehydrogenation reaction, but since the reaction is an endothermic reaction, the reaction needs to be performed at a high temperature. From the above, when there are many cyclohexanol by-products, installation cost and energy are required. In addition, 2-cyclohexylcyclohexanone produced by the aldol reaction on the catalyst support is difficult to induce to cyclohexanone, and can only be used as a fuel or the like, reducing the carbon utilization efficiency.
 水素化反応において、逐次水素化や副反応生成物の少ないプロセスを可能とする水素化触媒を見出すことができれば、設備コスト及び消費エネルギーの低減、炭素利用効率の向上につながり生産性の改善につながる。 In the hydrogenation reaction, if a hydrogenation catalyst that enables sequential hydrogenation and processes with few side reaction products can be found, equipment costs and energy consumption will be reduced, carbon utilization efficiency will be improved, and productivity will be improved. .
 そこで、本発明が解決しようとする課題の1つは、酸点や塩基点を制御することにより、逐次水素化や副反応を抑制し、高転化率かつ高選択率の水素化反応を進行させる水素化触媒を提供することである。また、本発明が解決しようとする課題の1つは、フェノール又はその誘導体から高転化率かつ高選択率でシクロヘキサノン又はその誘導体を製造する方法を提供することにある。 Therefore, one of the problems to be solved by the present invention is to control the acid sites and base sites to suppress sequential hydrogenation and side reactions and to proceed with a high conversion and high selectivity hydrogenation reaction. It is to provide a hydrogenation catalyst. Another problem to be solved by the present invention is to provide a method for producing cyclohexanone or a derivative thereof from phenol or a derivative thereof with high conversion and high selectivity.
 本発明は、以下の事項に関する。
1.担体にリンとアルカリ金属及び/又はアルカリ土類金属を含有させた触媒前駆体に、白金族金属が担持された水素化触媒であって、
前記触媒前駆体の50℃におけるアンモニアの化学吸着量が、100μmol/g以下である水素化触媒。
2.上記の水素化触媒の製造方法であって、
アルカリ金属及び/又はアルカリ土類金属供給源、水、担体及びリン供給源を混合する工程と、
前記水を蒸発させてから焼成することで、触媒前駆体を得る工程と、
前記触媒前駆体に白金族金属を担持させる工程と
を有する水素化触媒の製造方法。
3.上記の水素化触媒を用いてフェノール又はその誘導体を水素化するシクロヘキサノン又はその誘導体の製造方法。
The present invention relates to the following matters.
1. A hydrogenation catalyst in which a platinum group metal is supported on a catalyst precursor containing phosphorus and an alkali metal and / or an alkaline earth metal on a carrier,
A hydrogenation catalyst having an ammonia chemisorption amount of the catalyst precursor at 50 ° C. of 100 μmol / g or less.
2. A method for producing the above hydrogenation catalyst, comprising:
Mixing an alkali metal and / or alkaline earth metal source, water, carrier and phosphorus source;
Calcination after evaporating the water to obtain a catalyst precursor;
And a step of supporting a platinum group metal on the catalyst precursor.
3. A process for producing cyclohexanone or a derivative thereof, wherein phenol or a derivative thereof is hydrogenated using the hydrogenation catalyst.
 本発明の水素化触媒を用いることにより、逐次水素化や副反応を抑制し、高転化率かつ高選択率の水素化反応を進行させることができる。例えば、カプロラクタム等の原料として有用なシクロヘキサノンを高選択率で製造可能な、工業的に好適なフェノールの水素化方法を提供することができる。また、本発明のシクロヘキサノン又はその誘導体の製造方法によれば、2-シクロヘキシルシクロヘキサノン、シクロヘキサノールなどの副生を抑制し、フェノール又はその誘導体から高転化率かつ高選択率でシクロヘキサノン又はその誘導体を製造することができる。 By using the hydrogenation catalyst of the present invention, sequential hydrogenation and side reactions can be suppressed, and a hydrogenation reaction with a high conversion rate and a high selectivity can be advanced. For example, an industrially suitable phenol hydrogenation method capable of producing cyclohexanone useful as a raw material such as caprolactam with high selectivity can be provided. Further, according to the method for producing cyclohexanone or a derivative thereof of the present invention, cyclohexanone or a derivative thereof is produced from phenol or a derivative thereof with high conversion and high selectivity while suppressing by-products such as 2-cyclohexylcyclohexanone and cyclohexanol. can do.
水素化装置の模式図である。It is a schematic diagram of a hydrogenation apparatus.
 <水素化触媒>
 本発明の水素化触媒は、担体にリンとアルカリ金属及び/又はアルカリ土類金属を含有させた触媒前駆体に、白金族金属が担持されたものである。
<Hydrogenation catalyst>
The hydrogenation catalyst of the present invention is obtained by supporting a platinum group metal on a catalyst precursor containing phosphorus and an alkali metal and / or an alkaline earth metal in a carrier.
 アルカリ金属及びアルカリ土類金属としては、例えば、リチウム、ナトリウム、カリウム、セシウム、マグネシウム、カルシウム、バリウム等が挙げられるが、好ましくはカルシウム、リチウム又はマグネシウムであり、更に好ましくはカルシウムである。なお、アルカリ金属及びアルカリ土類金属は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the alkali metal and alkaline earth metal include lithium, sodium, potassium, cesium, magnesium, calcium, barium and the like, preferably calcium, lithium or magnesium, and more preferably calcium. In addition, an alkali metal and alkaline-earth metal may be used independently and may be used in combination of 2 or more type.
 触媒前駆体は、アルカリ金属及び/又はアルカリ土類金属とリンを担体へ担持させて調製される。アルカリ金属及び/又はアルカリ土類金属の担体への担持の際には、アルカリ金属及び/又はアルカリ土類金属の供給源として、例えば、アルカリ金属及び/又はアルカリ土類金属の、硝酸塩、炭酸塩、水酸化物、酸化物、塩化物、酢酸塩、シュウ酸塩等を使用することができる。リンの担体への担持の際には、リン供給源として、例えば、リン酸(その水溶液も含む)又はそのアルカリ金属塩及び/又はアルカリ土類金属塩(その水溶液も含む)等を使用することができる。 The catalyst precursor is prepared by supporting an alkali metal and / or alkaline earth metal and phosphorus on a carrier. When the alkali metal and / or alkaline earth metal is supported on the carrier, as a source of the alkali metal and / or alkaline earth metal, for example, nitrate, carbonate of alkali metal and / or alkaline earth metal Hydroxides, oxides, chlorides, acetates, oxalates, and the like can be used. When phosphorus is supported on a carrier, for example, phosphoric acid (including its aqueous solution) or its alkali metal salt and / or alkaline earth metal salt (including its aqueous solution) is used as the phosphorus supply source. Can do.
 触媒前駆体の調製において使用される担体としては、シリカ、アルミナ、シリカアルミナ、ジルコニア、ゼオライト及び活性炭からなる群より選ばれる少なくとも1種が挙げられる。 Examples of the carrier used in the preparation of the catalyst precursor include at least one selected from the group consisting of silica, alumina, silica alumina, zirconia, zeolite, and activated carbon.
 アルカリ金属及び/又はアルカリ土類金属の担体への担持量としては、担体1gに対して、好ましくは0.01~2gであり、更に好ましくは0.02~0.2gである。リンの担体への担持量としては、担体1gに対して、好ましくは0.001~1g、更に好ましくは0.005~0.1gである。担体に担持させたアルカリ金属及び/又はアルカリ土類金属とリンのモル比は、任意の比率とすることができるが、好ましくは1~10であり、更に好ましくは1.4~4である。なお、リンとアルカリ金属及び/又はアルカリ土類金属とが複合酸化物等を形成した状態で担体に担持されていてもよい。 The amount of alkali metal and / or alkaline earth metal supported on the carrier is preferably 0.01 to 2 g, more preferably 0.02 to 0.2 g, relative to 1 g of the carrier. The amount of phosphorus supported on the carrier is preferably 0.001 to 1 g, more preferably 0.005 to 0.1 g, relative to 1 g of the carrier. The molar ratio of the alkali metal and / or alkaline earth metal and phosphorus supported on the carrier can be any ratio, but is preferably 1 to 10, and more preferably 1.4 to 4. Note that phosphorus and an alkali metal and / or an alkaline earth metal may be supported on a carrier in a state where a composite oxide or the like is formed.
 本発明では、触媒前駆体の50℃におけるアンモニアの化学吸着量は、100μmol/g以下である。触媒前駆体のアンモニアの化学吸着量を低くすることで、高転化率かつ高選択率の水素化反応を進行させる水素化触媒となる。触媒前駆体の50℃におけるアンモニアの化学吸着量は、80μmol/g以下が好ましく、50μmol/g以下がより好ましい。触媒前駆体の50℃におけるアンモニアの化学吸着量は、転化率及び選択率の観点では低いほど好ましいが、白金族金属との相互作用の観点から、例えば9μmol/g以上とすることができる。なお、触媒前駆体の50℃におけるアンモニアの化学吸着量は、使用するアルカリ金属若しくはアルカリ土類金属の種類、又は/及びアルカリ金属若しくはアルカリ土類金属とリンのモル比によって調整することができる。 In the present invention, the chemical adsorption amount of ammonia at 50 ° C. of the catalyst precursor is 100 μmol / g or less. By reducing the amount of ammonia chemisorbed on the catalyst precursor, a hydrogenation catalyst that promotes a high conversion and high selectivity hydrogenation reaction is obtained. The amount of chemisorption of ammonia at 50 ° C. by the catalyst precursor is preferably 80 μmol / g or less, and more preferably 50 μmol / g or less. The ammonia chemisorption amount of the catalyst precursor at 50 ° C. is preferably as low as possible in terms of conversion and selectivity, but can be set to 9 μmol / g or more, for example, from the viewpoint of interaction with the platinum group metal. The ammonia chemisorption amount of the catalyst precursor at 50 ° C. can be adjusted by the type of alkali metal or alkaline earth metal used and / or the molar ratio of alkali metal or alkaline earth metal to phosphorus.
 触媒前駆体の50℃におけるアンモニアの化学吸着量を制御することで、高転化率かつ高選択率の水素化反応を進行させることが可能となる理由は、次のとおりと考えられる。すなわち、担体にアルカリ金属及び/又はアルカリ土類金属を担持させることにより生じる塩基点を、リンを担持することにより酸点の量を制御してそれを中和することで、従来の担体より優れた所望の酸点および塩基点を有する触媒前駆体となる。これによりシクロヘキサノン又はその誘導体の水素化以外の副反応が抑制され、高選択率での水素化反応が可能となる。また、副反応による生成物は活性点を被毒し転化率低下の原因となるが、副反応による生成物が減少する結果、高転化率での水素化反応が可能となる。 The reason why the hydrogenation reaction with high conversion and high selectivity can be advanced by controlling the amount of ammonia chemisorption at 50 ° C. of the catalyst precursor is considered as follows. In other words, the base point generated by supporting the alkali metal and / or alkaline earth metal on the carrier is better than the conventional carrier by neutralizing it by controlling the amount of acid sites by carrying phosphorus. Thus, a catalyst precursor having a desired acid point and base point is obtained. As a result, side reactions other than hydrogenation of cyclohexanone or a derivative thereof are suppressed, and a hydrogenation reaction with high selectivity becomes possible. In addition, the product by the side reaction poisons the active sites and causes the conversion rate to decrease, but as a result of the reduction of the product by the side reaction, the hydrogenation reaction at a high conversion rate becomes possible.
 本発明では、触媒前駆体の50℃における二酸化炭素の化学吸着量は、15μmol/g以下であることが好ましい。触媒前駆体の二酸化炭素の化学吸着量を低くすることで、より高転化率かつ高選択率の水素化反応を進行させる水素化触媒となる。触媒前駆体の50℃における二酸化炭素の化学吸着量は、10μmol/g以下がより好ましく、7μmol/g以下がさらに好ましい。触媒前駆体の50℃における二酸化炭素の化学吸着量は、転化率及び選択率の観点では低いほど好ましいが、フェノール又はその誘導体の担体への吸着による反応促進の観点から、例えば0.4μmol/g以上とすることができる。なお、触媒前駆体の50℃における二酸化炭素の吸着量は、使用するアルカリ金属若しくはアルカリ土類金属の種類、又は/及びアルカリ金属若しくはアルカリ土類金属とリンのモル比によって調整することができる。 In the present invention, the chemical adsorption amount of carbon dioxide at 50 ° C. of the catalyst precursor is preferably 15 μmol / g or less. By reducing the amount of carbon dioxide chemisorption of the catalyst precursor, it becomes a hydrogenation catalyst that promotes a hydrogenation reaction with a higher conversion rate and a higher selectivity. The chemical adsorption amount of carbon dioxide at 50 ° C. of the catalyst precursor is more preferably 10 μmol / g or less, and further preferably 7 μmol / g or less. The chemical adsorption amount of carbon dioxide at 50 ° C. of the catalyst precursor is preferably as low as possible in terms of conversion rate and selectivity. However, from the viewpoint of promoting the reaction by adsorption of phenol or a derivative thereof to the support, for example, 0.4 μmol / g. This can be done. The amount of carbon dioxide adsorbed at 50 ° C. by the catalyst precursor can be adjusted by the type of alkali metal or alkaline earth metal used and / or the molar ratio of alkali metal or alkaline earth metal to phosphorus.
 触媒前駆体の50℃における二酸化炭素の化学吸着量を制御することで、より高転化率かつ高選択率の水素化反応を進行させることが可能となる理由は、次のとおりと考えられる。すなわち、塩基点の導入により白金族金属と担体との相互作用が強まり、白金族金属の凝集が抑制され、触媒の高活性を維持することが可能となる。さらに、塩基点の導入により酸性度の高いフェノール又はその誘導体の触媒への吸着が促進されることで、より酸性度の低いシクロヘキサノンおよびその誘導体の触媒への吸着が抑制される。その結果、転化率の向上と逐次水素化の抑制が可能となり、高転化率かつ高選択率の水素化反応を進行させることが可能となる。 The reason why the hydrogenation reaction with a higher conversion rate and a higher selectivity can be advanced by controlling the amount of carbon dioxide chemisorption at 50 ° C. of the catalyst precursor is considered as follows. That is, the introduction of the base point enhances the interaction between the platinum group metal and the support, suppresses the aggregation of the platinum group metal, and maintains the high activity of the catalyst. Furthermore, the introduction of the base point promotes the adsorption of phenol or its derivative with high acidity to the catalyst, so that the adsorption of cyclohexanone and its derivative with lower acidity to the catalyst is suppressed. As a result, the conversion rate can be improved and the sequential hydrogenation can be suppressed, and the hydrogenation reaction with a high conversion rate and a high selectivity can be advanced.
 アンモニアの化学吸着量及び二酸化炭素の化学吸着量の測定は、例えば、以下の手順によって行うことができる。
(1)触媒前駆体をヒーター等により50℃で保温しておき、高真空状態から徐々にアンモニア又は二酸化炭素に晒し、これらの吸着量を測定することで、全吸着等温線(化学吸着と物理吸着の両方を含む)を得る。
(2)次に、触媒前駆体を高真空におき、物理吸着したアンモニア又は二酸化炭素だけを完全に除去した後、そのまま再度アンモニア又は二酸化炭素に晒すことで、同様に2度目の吸着等温線(物理吸着等温線に該当する)を得る。
(3)全吸着等温線(一度目の吸着等温線;化学吸着と物理吸着の両方を含む)と物理吸着等温線(二度目の吸着等温線)の差により化学吸着等温線を得る。
(4)化学吸着等温線はほぼ直線となるため、これを化学吸着等温線のP(絶対圧)=0に外挿することで、触媒前駆体に単分子層で化学吸着したアンモニア量又は二酸化炭素量(アンモニア又は二酸化炭素の化学吸着量)が定量される。
Measurement of the chemisorption amount of ammonia and the chemisorption amount of carbon dioxide can be performed, for example, by the following procedure.
(1) Keeping the catalyst precursor at 50 ° C. with a heater, etc., gradually exposing it to ammonia or carbon dioxide from a high vacuum state, and measuring the amount of adsorption thereof, the total adsorption isotherm (chemical adsorption and physical Including both adsorption).
(2) Next, the catalyst precursor is placed in a high vacuum, and after only the physically adsorbed ammonia or carbon dioxide is completely removed, it is exposed again to ammonia or carbon dioxide as it is. Corresponding to the physical adsorption isotherm).
(3) A chemical adsorption isotherm is obtained by the difference between the total adsorption isotherm (first adsorption isotherm; including both chemical adsorption and physical adsorption) and physical adsorption isotherm (second adsorption isotherm).
(4) Since the chemisorption isotherm is almost a straight line, by extrapolating this to P (absolute pressure) = 0 of the chemisorption isotherm, the amount of ammonia or CO2 chemisorbed on the catalyst precursor by a monolayer The amount of carbon (amount of chemisorption of ammonia or carbon dioxide) is quantified.
 なお、アンモニア及び二酸化炭素の化学吸着量の測定にあたっては、予め、触媒前駆体に吸着した水、酸性物質、塩基性物質を脱離させるための前処理を行うことが好ましい。この前処理の方法は、触媒前駆体の性状を考慮して適宜選択すればよく、その具体例としては、例えば、加熱処理、真空排気処理、これらを組み合わせた処理等が挙げられる。加熱温度、真空度及び時間などの処理条件は、いずれも、触媒前駆体の性状を損なわない範囲であれば特に制限されない。 It should be noted that pretreatment for desorbing water, acidic substances, and basic substances adsorbed on the catalyst precursor is preferably performed in advance in measuring the chemical adsorption amounts of ammonia and carbon dioxide. The pretreatment method may be appropriately selected in consideration of the properties of the catalyst precursor, and specific examples thereof include heat treatment, vacuum exhaust treatment, treatment combining these, and the like. Processing conditions such as heating temperature, degree of vacuum and time are not particularly limited as long as the properties of the catalyst precursor are not impaired.
 本発明では、上記のリンとアルカリ金属及び/又はアルカリ土類金属を含有する触媒前駆体に、更に白金族金属が担持される。白金族金属としては、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金が挙げられるが、好ましくはパラジウムである。白金族金属の触媒前駆体への担持量としては、触媒前駆体1gに対して、好ましくは0.001~0.05gであり、更に好ましくは0.002~0.01gである。 In the present invention, a platinum group metal is further supported on the catalyst precursor containing phosphorus and an alkali metal and / or an alkaline earth metal. Examples of the platinum group metal include ruthenium, rhodium, palladium, osmium, iridium, and platinum, with palladium being preferred. The amount of the platinum group metal supported on the catalyst precursor is preferably 0.001 to 0.05 g, more preferably 0.002 to 0.01 g, with respect to 1 g of the catalyst precursor.
 <水素化触媒の製造方法>
 触媒前駆体は、アルカリ金属及び/又はアルカリ土類金属供給源、水、担体及びリン供給源を混合し、その水を蒸発させてから焼成することで、調製される。その際の焼成温度は、好ましくは200~1000℃、更に好ましくは400~800℃であり、圧力は特に制限されない。また、焼成雰囲気も特に限定されないが、好ましくは酸素の存在下(例えば、空気中)で焼成が行われる。その後、触媒前駆体に白金族金属を担持させ、乾燥することで水素化触媒(固体触媒)を得ることができる。
<Method for producing hydrogenation catalyst>
The catalyst precursor is prepared by mixing an alkali metal and / or alkaline earth metal source, water, a support, and a phosphorus source, evaporating the water, and calcining. The firing temperature at that time is preferably 200 to 1000 ° C., more preferably 400 to 800 ° C., and the pressure is not particularly limited. Further, although the firing atmosphere is not particularly limited, the firing is preferably performed in the presence of oxygen (for example, in air). Thereafter, a platinum group metal is supported on the catalyst precursor and dried to obtain a hydrogenation catalyst (solid catalyst).
 担体及び触媒前駆体への担持は、定法で行われる。例えば、担持させる金属の金属塩水溶液に、担体又は触媒前駆体を浸漬させる等によって接触させることで行われる。 The support on the carrier and the catalyst precursor is carried out by a conventional method. For example, it is carried out by bringing the carrier or catalyst precursor into contact with an aqueous metal salt solution of the metal to be supported.
 本発明の水素化触媒(固体触媒)の形状は、円柱型、押出し型、球状、粒状、粉末状、ハニカム状等と形態を問わず選択することができるが、工業的な利用を考えた場合、円柱型、押出し型、球状、粒状、ハニカム状等の成型体とすることが好ましい。 The shape of the hydrogenation catalyst (solid catalyst) of the present invention can be selected regardless of the form such as a cylindrical shape, an extrusion shape, a spherical shape, a granular shape, a powder shape, a honeycomb shape, etc. It is preferable that the molded body has a cylindrical shape, an extrusion shape, a spherical shape, a granular shape, a honeycomb shape, or the like.
 <シクロヘキサノン又はその誘導体の製造方法>
 本発明の水素化触媒を用いた水素化反応の一例として、フェノール又はその誘導体(フェノール類)の水素化反応によるシクロヘキサノン又はその誘導体(シクロヘキサノン類)の製造方法を示す。
<Method for producing cyclohexanone or a derivative thereof>
As an example of the hydrogenation reaction using the hydrogenation catalyst of the present invention, a method for producing cyclohexanone or a derivative thereof (cyclohexanone) by a hydrogenation reaction of phenol or a derivative thereof (phenol) is shown.
 原料化合物であるフェノール類は、下記式(1)で表される。 Phenols that are raw material compounds are represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
[式(1)中、R、R、R、R及びRは、それぞれ互いに独立に、水素原子、ヒドロキシ基、フェノール基、フェニル基、C1~C10のアルキル基又はC1~C10アルコキシ基である。] [In the formula (1), R 1 , R 2 , R 3 , R 4 and R 5 are each independently a hydrogen atom, a hydroxy group, a phenol group, a phenyl group, a C1-C10 alkyl group or a C1-C10 An alkoxy group; ]
 C1~C10アルキル基は、直鎖、分枝又は環状のアルキル基であってもよく、その具体例としては、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノナニル、デシル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノナニル、シクロデシル及びこれらの異性体が挙げられる。 The C1-C10 alkyl group may be a linear, branched or cyclic alkyl group, and specific examples thereof include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonanyl, decyl, cyclopentyl. , Cyclohexyl, cycloheptyl, cyclooctyl, cyclononanyl, cyclodecyl and isomers thereof.
 C1~C10アルコキシ基は、直鎖又は分枝のアルコキシ基であってもよく、その具体例としては、メトキシ、エトキシ、プロポキシ、ブトキシ、ペンチルオキシ、ヘキシルオキシ、ヘプチルオキシ、オクチルオキシ、ノナニルオキシ、デシルオキシ及びこれらの異性体が挙げられる。 The C1-C10 alkoxy group may be a linear or branched alkoxy group, and specific examples thereof include methoxy, ethoxy, propoxy, butoxy, pentyloxy, hexyloxy, heptyloxy, octyloxy, nonanyloxy, decyloxy And isomers thereof.
 フェノール基の具体例としては、2-ヒドロキシフェニル基、3-ヒドロキシフェニル基及び4-ヒドロキシフェニル基が挙げられる。 Specific examples of the phenol group include 2-hydroxyphenyl group, 3-hydroxyphenyl group and 4-hydroxyphenyl group.
 フェノール類の具体例としては、フェノール、カテコール、o-クレゾール、2,5-キシレノール、2,6-キシレノール、2,3,6-トリメチルフェノール、2-シクロヘキシルフェノール、2-シクロペンチルフェノール、2-フェニルフェノール、2-イソプロピルフェノール、2-t-ブチルフェノール、2-t-ブチル-6-メチルフェノール、2-sec-ブチルフェノール、2-イソブチルフェノール、2-メトキシフェノール、ビスフェノール等が挙げられる。 Specific examples of phenols include phenol, catechol, o-cresol, 2,5-xylenol, 2,6-xylenol, 2,3,6-trimethylphenol, 2-cyclohexylphenol, 2-cyclopentylphenol, 2-phenyl Examples thereof include phenol, 2-isopropylphenol, 2-t-butylphenol, 2-t-butyl-6-methylphenol, 2-sec-butylphenol, 2-isobutylphenol, 2-methoxyphenol and bisphenol.
 フェノール類の水素化反応で得られるシクロヘキサノン類は、下記式(2)で表される。 Cyclohexanones obtained by the hydrogenation reaction of phenols are represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
[式(2)中、R、R、R、R及びRは、式(1)と同義である。] [In formula (2), R 1 , R 2 , R 3 , R 4 and R 5 have the same meanings as in formula (1). ]
 シクロヘキサノン類の具体例としては、シクロヘキサノン、2-ヒドロキシシクロヘキサノン、2-メチルシクロヘキサノン、2,5-ジメチルシクロヘキサノン、2,6-ジメチルシクロヘキサノン、2,3,6-トリメチルシクロヘキサノン、2-シクロヘキシルシクロヘキサノン、2-シクロペンチルシクロヘキサノン、2-フェニルシクロヘキサノン、2-イソプロピルシクロヘキサノン、2-t-ブチルシクロヘキサノン、2-t-ブチル-6-メチルシクロヘキサノン、2-sec-ブチルシクロヘキサノン、2-イソブチルシクロヘキサノン、2-メトキシシクロヘキサノン、2,2―ビス(4―オキソシクロヘキシル)プロパン等が挙げられる。 Specific examples of cyclohexanones include cyclohexanone, 2-hydroxycyclohexanone, 2-methylcyclohexanone, 2,5-dimethylcyclohexanone, 2,6-dimethylcyclohexanone, 2,3,6-trimethylcyclohexanone, 2-cyclohexylcyclohexanone, 2- Cyclopentylcyclohexanone, 2-phenylcyclohexanone, 2-isopropylcyclohexanone, 2-t-butylcyclohexanone, 2-t-butyl-6-methylcyclohexanone, 2-sec-butylcyclohexanone, 2-isobutylcyclohexanone, 2-methoxycyclohexanone, 2, Examples include 2-bis (4-oxocyclohexyl) propane.
 フェノール類の水素化反応によるシクロヘキサノン類の製造方法を、代表的なフェノール類であるフェノールの水素化反応によるシクロヘキサノンの製造方法を例にして、以下説明する。 A process for producing cyclohexanones by a hydrogenation reaction of phenols will be described below by taking a process for producing cyclohexanones by a hydrogenation reaction of phenol, which is a typical phenol, as an example.
 フェノールの水素化反応によるシクロヘキサノンの製造方法としては、一般に、溶媒としてシクロヘキサンや水を用いる方法と、フェノール及び主生成物であるシクロヘキサノン以外に溶媒を用いない方法がある。 As a method for producing cyclohexanone by a hydrogenation reaction of phenol, there are generally a method using cyclohexane or water as a solvent and a method using no solvent other than phenol and main product cyclohexanone.
 溶媒を用いるフェノールの水素化反応としては、活性炭上にパラジウムを担持した触媒を用い、塩化アルミニウムの存在下で水素化する方法(非特許文献2)や、窒化カーボン上にパラジウムを担持した触媒を用い、溶媒として水を用いて水素化する方法(非特許文献3)などが知られている。 As a hydrogenation reaction of phenol using a solvent, a catalyst in which palladium is supported on activated carbon and hydrogenated in the presence of aluminum chloride (Non-patent Document 2), or a catalyst in which palladium is supported on carbon nitride is used. A method of hydrogenation using water as a solvent is known (Non-Patent Document 3).
 前者は、塩化アルミニウムを使用しているため、その処理に伴い多量の廃棄物が発生する問題があり、後者は、触媒の調製法が煩雑であり工業的に実施するのに適していない。加えて、溶媒を用いることは反応器の増大や溶媒分離コストの増加を招き、工業的な製法としては適さない。 Since the former uses aluminum chloride, there is a problem that a large amount of waste is generated with the treatment, and the latter is not suitable for industrial implementation because the preparation method of the catalyst is complicated. In addition, the use of a solvent causes an increase in the number of reactors and an increase in solvent separation costs, and is not suitable as an industrial production method.
 一方、溶媒を用いないフェノールの水素化反応としては、アルカリ金属又はアルカリ土類金属により処理されたAl上にパラジウムを担持した触媒を使用し、水素とフェノールを反応させることによってシクロヘキサノンを得る方法が知られている(特許文献1、特許文献2)。 On the other hand, as a hydrogenation reaction of phenol without using a solvent, a catalyst in which palladium is supported on Al 2 O 3 treated with an alkali metal or an alkaline earth metal is used, and cyclohexanone is reacted by reacting hydrogen with phenol. Methods of obtaining are known (Patent Document 1, Patent Document 2).
 このような溶媒を用いないフェノールの水素化反応は、生産性が高く工業的に実施されている。しかしながら、溶媒を用いないフェノールの水素化反応液中には、シクロヘキサノン、シクロヘキサノール、その他の生成物及び未反応のフェノールが含まれる。通常、未反応のフェノールは分離され再度フェノールの水素化反応工程へ導入されるが、シクロヘキサノンと共沸組成を形成するため、フェノールの分離・循環には多くの設備コストとエネルギーが必要となる。フェノール転化率を上げることで反応液中のフェノール含有量を低減させることは可能ではあるが、同時に生成するシクロヘキサノンの副反応が進行し選択性が低下する。また、生成したシクロヘキサノールは脱水素反応によりシクロヘキサノンへ誘導可能であるが、同反応は吸熱反応であるため反応を高温で行う必要があり、設備コストならびにエネルギーがかかる。加えて、その他の副生物として、触媒担体上でのアルドール反応により生成する2-シクロヘキシルシクロヘキサノンなどが挙げられるが、2-シクロヘキシルシクロヘキサノンは、シクロヘキサノンへ誘導することが困難であり、燃料等として利用する他に無く、炭素利用効率を低下させている。 Such a hydrogenation reaction of phenol without using a solvent has a high productivity and is industrially carried out. However, the phenol hydrogenation reaction solution without using a solvent contains cyclohexanone, cyclohexanol, other products, and unreacted phenol. Normally, unreacted phenol is separated and introduced again into the phenol hydrogenation process. However, in order to form an azeotropic composition with cyclohexanone, much equipment cost and energy are required for separation and circulation of phenol. Although it is possible to reduce the phenol content in the reaction solution by increasing the phenol conversion rate, the side reaction of cyclohexanone produced at the same time proceeds and the selectivity decreases. The produced cyclohexanol can be induced to cyclohexanone by a dehydrogenation reaction. However, since this reaction is an endothermic reaction, it is necessary to carry out the reaction at a high temperature, which requires equipment cost and energy. In addition, other by-products include 2-cyclohexylcyclohexanone produced by the aldol reaction on the catalyst support. However, 2-cyclohexylcyclohexanone is difficult to induce to cyclohexanone and is used as a fuel or the like. No other carbon efficiency is reduced.
 それに対し、本発明の水素化触媒を用いたフェノールの水素化反応によるシクロヘキサノンの製造方法は、例えば図1に示す水素化装置のように、水素化触媒を充填した触媒層2と、フェノールの導入側に予熱層3を有する反応管1に、予熱層3側より水素8を流通させ前処理還元を行った後、水素8と、フェノール7(又はフェノールとシクロヘキサノンの混合物)を供給して行われる。こうすることで、高転化率かつ高選択率でシクロヘキサノンを得ることができる。 On the other hand, the method for producing cyclohexanone by the hydrogenation reaction of phenol using the hydrogenation catalyst of the present invention, for example, as in the hydrogenation apparatus shown in FIG. This is carried out by supplying hydrogen 8 and phenol 7 (or a mixture of phenol and cyclohexanone) to the reaction tube 1 having the preheating layer 3 on the side after flowing hydrogen 8 from the preheating layer 3 side and performing pretreatment reduction. . By doing so, cyclohexanone can be obtained with high conversion and high selectivity.
 反応管1としては、直管が用いられる。材質としては、ステンレス鋼(SUS)、ガラス、石英等が挙げられるが、工業的な製法の見地から、ステンレス鋼(SUS)が好ましい。 As the reaction tube 1, a straight tube is used. Examples of the material include stainless steel (SUS), glass, quartz, and the like, and stainless steel (SUS) is preferable from the viewpoint of an industrial manufacturing method.
 反応管1に本発明の水素化触媒が充填されるが、反応管1に水素化触媒を支える通気性を有する皿、網又はパンチングメタル等の底板5を設置し、これに石英ウール4等を敷き詰め、次いで水素化触媒が充填された触媒層2が形成される。これにより水素化触媒の抜けが防止される。 The reaction tube 1 is filled with the hydrogenation catalyst of the present invention. The reaction tube 1 is provided with a bottom plate 5 such as a plate, a net or a punching metal having air permeability to support the hydrogenation catalyst, and quartz wool 4 or the like is placed on this plate. Next, the catalyst layer 2 filled with the hydrogenation catalyst is formed. This prevents the hydrogenation catalyst from coming off.
 触媒層2のフェノールの導入側には、必要に応じて石英ウール4を敷き詰めた上で予熱層3を有する。予熱層3は、反応管1に充填された水素化触媒のフェノールの導入側(縦型の反応管の場合、充填された水素化触媒の上部)に、例えばガラスビーズ、石英ウール、繊維状のステンレス鋼(SUS)を充填することにより形成できる。また、反応管1の予熱層3部分を細くし、又は外径の細い管を予熱層3部位として触媒層2が形成された反応管1に接続し、これにガラスビーズ、石英ウール、繊維状のステンレス鋼(SUS)を充填する方法で予熱層3を形成することもでき、あるいは反応管1を流通するフェノールや水素との熱交換が充分であれば、ガラスビーズ等の充填材を充填することなく予熱層3とすることもできる。 On the phenol introduction side of the catalyst layer 2, a preheat layer 3 is provided after spreading quartz wool 4 as necessary. The preheating layer 3 is formed, for example, on the introduction side of phenol of the hydrogenation catalyst filled in the reaction tube 1 (in the case of a vertical reaction tube, on the top of the filled hydrogenation catalyst), for example, glass beads, quartz wool, fibrous It can be formed by filling with stainless steel (SUS). Further, the preheating layer 3 portion of the reaction tube 1 is thinned, or a tube having a thin outer diameter is connected to the reaction tube 1 on which the catalyst layer 2 is formed as a preheating layer 3 site, and this is connected to glass beads, quartz wool, fibrous The preheating layer 3 can also be formed by a method of filling stainless steel (SUS), or a filler such as glass beads is filled if heat exchange with phenol or hydrogen flowing through the reaction tube 1 is sufficient. It can also be set as the preheating layer 3 without.
 ガラスビーズを使用する場合、ガラスビーズの粒径は、反応管1の直径の1/10程度が目安であり、反応管1の直径によるが、例えば、直径1mm又は2mmの球形のものを使用することができる。 When glass beads are used, the particle size of the glass beads is approximately 1/10 of the diameter of the reaction tube 1 and depends on the diameter of the reaction tube 1, but for example, a spherical one having a diameter of 1 mm or 2 mm is used. be able to.
 予熱は、例えば、予熱層3の管外にヒーター6を設置して外部加熱によって行うことができる。 Preheating can be performed, for example, by installing a heater 6 outside the preheating layer 3 and external heating.
 上記水素化装置の予熱層3側からフェノール7を供給することでシクロヘキサノンが製造されるが、フェノール7の供給前に気相又は液相で水素化触媒の還元処理が行われる。 Cyclohexanone is produced by supplying phenol 7 from the preheating layer 3 side of the hydrogenation device, but the hydrogenation catalyst is reduced in the gas phase or liquid phase before the phenol 7 is supplied.
 気相での還元処理の方法としては、例えば、水素を還元剤として用いる方法が挙げられる。その際、触媒層2の温度は50~500℃、好ましくは100~200℃であり、水素化触媒中の白金族金属が充分還元されるだけの水素量及び時間にて還元処理が実施される。なお、水素供給前には、窒素やアルゴン等の不活性ガスが導通され反応系内が不活性ガスに置換される。 Examples of the reduction process in the vapor phase include a method using hydrogen as a reducing agent. At that time, the temperature of the catalyst layer 2 is 50 to 500 ° C., preferably 100 to 200 ° C., and the reduction treatment is carried out with an amount of hydrogen and a time sufficient to sufficiently reduce the platinum group metal in the hydrogenation catalyst. . Note that, before supplying hydrogen, an inert gas such as nitrogen or argon is conducted to replace the inside of the reaction system with the inert gas.
 液相での還元処理の方法としては、例えば、ギ酸、ギ酸のアルカリ金属塩、ホルマリン、ヒドラジン、水素化ホウ素ナトリウム等の還元剤の1~20質量%の水溶液を用いて、同溶液中、室温~100℃の温度で水素化触媒中の白金族金属を還元する方法が挙げられる。 As a method for the reduction treatment in the liquid phase, for example, an aqueous solution of 1 to 20% by mass of a reducing agent such as formic acid, an alkali metal salt of formic acid, formalin, hydrazine, or sodium borohydride is used. A method of reducing the platinum group metal in the hydrogenation catalyst at a temperature of ˜100 ° C. can be mentioned.
 原料であるフェノール7は、その製法によらず用いることができ、フェノールとシクロヘキサノンとの混合物の状態でも問題ない。例えば、クメン法により得られたフェノールを用いることもでき、あるいは特許文献3に記載されたベンゼンの還元二量体を酸化分解して得られるフェノールとシクロヘキサノンの混合物を、分離することなくそのまま用いることもできる。フェノールとシクロヘキサンの比は特に限定されないが、副生成物であるシクロヘキサノールの生成抑制及び生産性の観点から、フェノール:シクロヘキサノン比(モル%)が100:0~30:70であることが好ましい。 The raw material phenol 7 can be used regardless of its production method, and there is no problem even in the state of a mixture of phenol and cyclohexanone. For example, phenol obtained by the cumene method can be used, or a mixture of phenol and cyclohexanone obtained by oxidative decomposition of a reduced dimer of benzene described in Patent Document 3 can be used as it is without separation. You can also. The ratio of phenol to cyclohexane is not particularly limited, but the phenol: cyclohexanone ratio (mol%) is preferably 100: 0 to 30:70 from the viewpoint of suppressing the production of by-product cyclohexanol and productivity.
 原料であるフェノール7(又はフェノールとシクロヘキサノンの混合物)は、必要に応じ120℃以下で加熱して液体状態とし、プランジャーポンプ、シリンジポンプ等のポンプによって予熱層3へ供給される。 Phenol 7 (or a mixture of phenol and cyclohexanone) as a raw material is heated to 120 ° C. or lower as necessary to be in a liquid state, and is supplied to the preheating layer 3 by a pump such as a plunger pump or a syringe pump.
 フェノールの流速は、反応装置や製造規模、水素化触媒中の白金族金属の担持量にもよるが、水素化触媒重量あたりの供給速度で0.2~5kg・kg-cat-1・h-1である。 The flow rate of phenol depends on the reactor, the production scale, and the amount of platinum group metal supported in the hydrogenation catalyst, but the supply rate per weight of the hydrogenation catalyst is 0.2 to 5 kg · kg-cat −1 · h −. 1 .
 供給されたフェノール7(又はフェノールとシクロヘキサノンの混合物)は、予熱層で加熱され、同じく供給される水素8と混合し、触媒層2へ供給される。別法として、反応条件によっては液体状のフェノール中に水素を導通し、気化したフェノールを予熱層3へ送る方法も適用できる。 The supplied phenol 7 (or a mixture of phenol and cyclohexanone) is heated in the preheating layer, mixed with hydrogen 8 also supplied, and supplied to the catalyst layer 2. As another method, depending on the reaction conditions, a method of passing hydrogen through liquid phenol and sending the vaporized phenol to the preheating layer 3 can be applied.
 触媒層2へ供給される水素8の量は、反応装置や製造規模、水素化触媒中の白金族金属の担持量にもよるが、水素化触媒重量あたりの供給速度で100~130000L・kg-cat-1・h-1であり、予熱層3にて加熱される。予熱層3での好ましい温度は、100~220℃である。 The amount of hydrogen 8 supplied to the catalyst layer 2 depends on the reactor, the production scale, and the amount of platinum group metal supported in the hydrogenation catalyst, but is 100 to 130,000 L · kg- cat −1 · h −1 and heated in the preheating layer 3. A preferable temperature in the preheating layer 3 is 100 to 220 ° C.
 水素のフェノールに対するモル比は、2~100、好ましくは4~50である。 The molar ratio of hydrogen to phenol is 2 to 100, preferably 4 to 50.
 フェノールと水素は、触媒層2の温度が100~220℃、好ましくは140~160℃、圧力が0~1MPa(ゲージ圧以下、G)、好ましくは0~0.3MPa(G)で反応する。 Phenol and hydrogen react at a temperature of the catalyst layer 2 of 100 to 220 ° C., preferably 140 to 160 ° C., and a pressure of 0 to 1 MPa (gauge pressure or less, G), preferably 0 to 0.3 MPa (G).
 得られる反応生成物を反応管1から冷却捕集し、その捕集液を、例えば蒸留等により精製することで、目的のシクロヘキサノンを得ることができる。 The desired reaction product can be obtained by cooling and collecting the resulting reaction product from the reaction tube 1 and purifying the collected liquid by, for example, distillation.
 次に、本発明を実施例及び比較例に基づいて説明するが、本発明は下記の実施例に限定されるものではない。 Next, the present invention will be described based on examples and comparative examples, but the present invention is not limited to the following examples.
 フェノール類の水素化反応で生成する各成分の生成量は、得られた反応液を冷却し捕集した後、ガスクロマトグラフィー(島津製作所社製、商品名:「GC―2014」、GCカラム:TC-WAX、GC検出器:FID)を用いて分析を行い、内部標準としてジエチレングリコールモノエチルエーテルを用いて算出した。 The amount of each component produced in the hydrogenation reaction of phenols was measured by cooling and collecting the obtained reaction solution, and then gas chromatography (manufactured by Shimadzu Corporation, trade name: “GC-2014”, GC column: Analysis was performed using TC-WAX, GC detector (FID), and calculation was performed using diethylene glycol monoethyl ether as an internal standard.
 [実施例1]
 (触媒A前駆体:0.1Ca-0.05P-SiOの製造)
 SiO(富士シリシア化学製、商品名:CARiACT Q-50、球状、1.18-2.36mm)に、Ca/Si(mol比)=0.1、P/Si(mol比)=0.05となるように硝酸カルシウム水溶液及びリン酸水溶液を含浸担持させ、110℃で12h以上乾燥させた。その後、空気雰囲気下600℃で3h焼成して、触媒A前駆体を得た。触媒A前駆体のBET比表面積は49m/gであった。
[Example 1]
(Preparation of catalyst A precursor: 0.1Ca-0.05P-SiO 2 )
SiO 2 (manufactured by Fuji Silysia Chemical Co., Ltd., trade name: CARiACT Q-50, spherical, 1.18-2.36 mm), Ca / Si (mol ratio) = 0.1, P / Si (mol ratio) = 0. A calcium nitrate aqueous solution and a phosphoric acid aqueous solution were impregnated and supported so as to be 05, and dried at 110 ° C. for 12 hours or more. Thereafter, it was calcined at 600 ° C. for 3 hours in an air atmosphere to obtain a catalyst A precursor. The BET specific surface area of the catalyst A precursor was 49 m 2 / g.
 (触媒A前駆体のアンモニア及び二酸化炭素の化学吸着量測定)
 触媒A前駆体1.5gをガラス製サンプルセルに入れ、4Pa以下にて、380℃で2h加熱した(前処理)。次に、アンモニアの化学吸着量測定を行うため、前処理された触媒A前駆体を、サンプルセルのまま高性能・全自動ガス吸着量測定装置Autosorb-1-C型(商品名、ユアサアイオニクス社製)に設置した。
(Measurement of chemical adsorption amount of ammonia and carbon dioxide of catalyst A precursor)
1.5 g of the catalyst A precursor was placed in a glass sample cell and heated at 380 ° C. for 2 h at 4 Pa or less (pretreatment). Next, in order to measure the chemical adsorption amount of ammonia, the pretreated catalyst A precursor is used as a sample cell in a high-performance, fully automatic gas adsorption amount measuring device Autosorb-1-C (trade name, Yuasa Ionics). Installed).
 触媒A前駆体をヒーターにより50℃で保温し、真空状態から徐々にアンモニアガスをサンプルセルに導入し、絶対圧5.3kPaから5.3kPa間隔で106.7kPaまで合計20点で吸着量(即ち、化学吸着量と物理吸着量を合わせた全吸着量)を測定(測定温度:50℃、熱平衡時間:60分、圧力公差:4、吸着平衡時間:2分)し、全吸着等温線(化学吸着と物理吸着の両方を含む)を作成した。 The catalyst A precursor was kept at 50 ° C. with a heater, and ammonia gas was gradually introduced from the vacuum state into the sample cell, and the adsorption amount (ie, the absolute amount from 5.3 kPa to 5.3 kPa at 106.7 kPa at a total of 20 points) Measure the total adsorption amount of the chemical adsorption amount and the physical adsorption amount (measurement temperature: 50 ° C., thermal equilibrium time: 60 minutes, pressure tolerance: 4, adsorption equilibrium time: 2 minutes), and determine the total adsorption isotherm (chemical Including both adsorption and physical adsorption).
 その後、高真空で排気することにより物理吸着したアンモニアを除去し、再度絶対圧5.3kPaから5.3kPa間隔で106.7kPaまで合計20点で吸着量(即ち、物理吸着量)を測定し、物理吸着等温線を作成した。全吸着量と物理吸着量の差から化学吸着等温線を作成し、これをP=0に外挿した。その結果、触媒A前駆体のアンモニア化学吸着量は47.1μmol/gであった。 Thereafter, the physically adsorbed ammonia is removed by exhausting in a high vacuum, and the adsorbed amount (that is, the physical adsorbed amount) is measured again at a total of 20 points from 5.3 kPa to 106.7 kPa at intervals of 5.3 kPa, A physical adsorption isotherm was created. A chemical adsorption isotherm was created from the difference between the total adsorption amount and the physical adsorption amount, and extrapolated to P = 0. As a result, the ammonia chemisorption amount of the catalyst A precursor was 47.1 μmol / g.
 また、吸着ガスをアンモニアガスから二酸化炭素に変えて、二酸化炭素の化学吸着量測定を行った。その結果、触媒A前駆体の二酸化炭素化学吸着量は6.1μmol/gであった。 Also, the amount of chemical adsorption of carbon dioxide was measured by changing the adsorption gas from ammonia gas to carbon dioxide. As a result, the carbon dioxide chemisorption amount of the catalyst A precursor was 6.1 μmol / g.
 (触媒A:Pd/0.1Ca-0.05P-SiOの製造)
 上記の触媒A前駆体に、0.5wt%となるように塩化パラジウム水溶液を含浸担持させ、110℃で12h以上乾燥させることで、触媒A:Pd/0.1Ca-0.05P-SiOを得た。
(Catalyst A: Production of Pd / 0.1Ca-0.05P-SiO 2 )
The catalyst A precursor was impregnated with and supported by an aqueous palladium chloride solution at 0.5 wt%, and dried at 110 ° C. for 12 hours or longer to obtain catalyst A: Pd / 0.1Ca-0.05P-SiO 2 . Obtained.
 [実施例2]
 (触媒A:Pd/0.1Ca-0.05P-SiOによるフェノールの水素化反応)
 触媒A:Pd/0.1Ca-0.05P-SiOの1gを1/2インチのステンレス鋼(SUS)製の管に充填し、その上部にガラスビーズ(直径1mm、球形)を10g入れて予熱層とした。触媒層を200℃に加熱し、上部より水素ガス(26cc/min)を流通させ前処理還元を行った後、140℃、0MPa(G)にて、フェノールとシクロヘキサノンの混合物(モル比=1:1)を2.6cc/hで、水素ガスを26cc/minで供給することで、フェノールの水素化反応を行った。
[Example 2]
(Catalyst A: Hydrogenation reaction of phenol with Pd / 0.1Ca-0.05P-SiO 2 )
Catalyst A: 1 g of Pd / 0.1Ca-0.05P-SiO 2 was filled into a 1/2 inch stainless steel (SUS) tube, and 10 g of glass beads (diameter 1 mm, spherical) were placed on the top. A preheating layer was used. The catalyst layer was heated to 200 ° C., hydrogen gas (26 cc / min) was passed from the top and pretreatment reduction was performed, and then a mixture of phenol and cyclohexanone (molar ratio = 1: 2) at 140 ° C. and 0 MPa (G). The hydrogenation reaction of phenol was performed by supplying 1) at 2.6 cc / h and hydrogen gas at 26 cc / min.
 反応開始から16hの捕集液を切り捨て、その後1hの捕集液をガスクロマトグラフィーにて分析した。その結果、出発原料であるフェノールの転化率は>99.9%であり、シクロヘキサノンの選択率は98.1%であり、副生物であるシクロヘキサノールの選択率は1.8%であり、2-シクロヘキシルシクロヘキサノンの選択率は<0.1%であった。 The collected liquid for 16 h was discarded from the start of the reaction, and then the collected liquid for 1 h was analyzed by gas chromatography. As a result, the conversion rate of the starting phenol was> 99.9%, the selectivity of cyclohexanone was 98.1%, the selectivity of cyclohexanol as a by-product was 1.8%, The selectivity for cyclohexylcyclohexanone was <0.1%.
 [実施例3]
 (触媒A:Pd/0.1Ca-0.05P-SiOによるフェノールの水素化反応:寿命評価)
 触媒A:Pd/0.1Ca-0.05P-SiOの1gを1/2インチのステンレス鋼(SUS)製の管に充填し、その上部にガラスビーズ(直径1mm、球形)を10g入れて予熱層とした。触媒層を200℃に加熱し、上部より水素ガス(10cc/min)を流通させ前処理還元を行った後、140℃、0MPa(G)にて、フェノールとシクロヘキサノンの混合物(モル比=1:1)を1.0cc/hで、水素ガスを10cc/minで連続的に供給することで、フェノールの水素化反応を行った。
[Example 3]
(Catalyst A: Hydrogenation reaction of phenol with Pd / 0.1Ca-0.05P-SiO 2 : life evaluation)
Catalyst A: 1 g of Pd / 0.1Ca-0.05P-SiO 2 was filled into a 1/2 inch stainless steel (SUS) tube, and 10 g of glass beads (diameter 1 mm, spherical) were placed on the top. A preheating layer was used. The catalyst layer is heated to 200 ° C., hydrogen gas (10 cc / min) is circulated from above and pretreatment reduction is performed, and then a mixture of phenol and cyclohexanone (molar ratio = 1: 2) at 140 ° C. and 0 MPa (G). The hydrogenation reaction of phenol was carried out by continuously supplying 1) at 1.0 cc / h and hydrogen gas at 10 cc / min.
 反応開始から25hの捕集液を切り捨て、その後30hにわたり2~5hおきにサンプリングを行い、その捕集液をガスクロマトグラフィーにて分析した。その結果、反応成績は安定しており、その平均値は、フェノールの転化率が>99.9%であり、シクロヘキサノンの選択率が97.2%であり、副生物であるシクロヘキサノールの選択率が2.6%であり、2-シクロヘキシルシクロヘキサノンの選択率が<0.1%であった。 The collected liquid was cut off for 25 h from the start of the reaction, and then sampled every 2 to 5 h for 30 h, and the collected liquid was analyzed by gas chromatography. As a result, the reaction results were stable, and the average value was that the phenol conversion was> 99.9%, the selectivity for cyclohexanone was 97.2%, and the selectivity for cyclohexanol as a by-product. Was 2.6% and the selectivity for 2-cyclohexylcyclohexanone was <0.1%.
 続いて、反応温度を135℃に下げ、15hの捕集液を切り捨て、その後60hにわたり2~5hおきにサンプリングを行い、その捕集液をガスクロマトグラフィーにて分析した。その結果、反応成績は安定しており、その平均値は、フェノールの転化率が>99.9%であり、シクロヘキサノンの選択率が98.7%であり、副生物であるシクロヘキサノールの選択率が1.2%であり、2-シクロヘキシルシクロヘキサノンの選択率が<0.1%であった。 Subsequently, the reaction temperature was lowered to 135 ° C., the collected liquid for 15 h was discarded, and then sampling was performed every 2 to 5 h for 60 h, and the collected liquid was analyzed by gas chromatography. As a result, the reaction results were stable, and the average value was that the phenol conversion was> 99.9%, the cyclohexanone selectivity was 98.7%, and the selectivity for the by-product cyclohexanol was Was 1.2% and the selectivity for 2-cyclohexylcyclohexanone was <0.1%.
 [実施例4]
 (触媒A:Pd/0.1Ca-0.05P-SiOによるp-クレゾールの水素化反応)
 触媒A:Pd/0.1Ca-0.05P-SiOの1gを1/2インチのステンレス鋼(SUS)製の管に充填し、その上部にガラスビーズ(直径1mm、球形)を10g入れて予熱層とした。触媒層を200℃に加熱し、上部より水素ガス(10cc/min)を流通させ前処理還元を行った後、135℃、0MPa(G)にてp-クレゾールと4-メチルシクロヘキサノンの混合物(モル比=1:1)を1.0cc/hで、水素ガスを10cc/minで供給することで、p-クレゾールの水素化反応を行った。
[Example 4]
(Catalyst A: Hydrogenation reaction of p-cresol with Pd / 0.1Ca-0.05P-SiO 2 )
Catalyst A: 1 g of Pd / 0.1Ca-0.05P-SiO 2 was filled into a 1/2 inch stainless steel (SUS) tube, and 10 g of glass beads (diameter 1 mm, spherical) were placed on the top. A preheating layer was used. The catalyst layer was heated to 200 ° C., hydrogen gas (10 cc / min) was circulated from the top and subjected to pretreatment reduction, and then a mixture (moles of p-cresol and 4-methylcyclohexanone at 135 ° C. and 0 MPa (G) The hydrogenation reaction of p-cresol was performed by supplying hydrogen gas at a ratio of 1: 1) to 1.0 cc / h and 10 cc / min.
 反応開始から14hの捕集液を切り捨て、その後2hの捕集液をガスクロマトグラフィーにて分析した。その結果、出発原料であるp-クレゾールの転化率は99.4%であり、4-メチルシクロヘキサノンの選択率は98.3%であり、副生物である4-メチルシクロヘキサノールの選択率は1.7%であった。 The collected liquid for 14 h was discarded from the start of the reaction, and then the collected liquid for 2 h was analyzed by gas chromatography. As a result, the conversion rate of p-cresol as a starting material was 99.4%, the selectivity of 4-methylcyclohexanone was 98.3%, and the selectivity of 4-methylcyclohexanol as a by-product was 1 0.7%.
 [実施例5]
 (触媒B前駆体:Li-P-SiOの製造)
 SiO(富士シリシア化学製、商品名:CARiACT Q-50、球状、1.18-2.36mm)に、Li/Si(mol比)=0.2、P/Si(mol比)=0.05となるように硝酸リチウム水溶液及びリン酸水溶液を含浸担持させ、110℃で12h以上乾燥させた。その後、空気雰囲気下600℃で3h焼成して、触媒B前駆体を得た。触媒B前駆体のBET比表面積は53m/gであった。
[Example 5]
(Preparation of catalyst B precursor: Li—P—SiO 2 )
SiO 2 (manufactured by Fuji Silysia Chemical, trade name: CARiACT Q-50, spherical, 1.18-2.36 mm), Li / Si (mol ratio) = 0.2, P / Si (mol ratio) = 0. A lithium nitrate aqueous solution and a phosphoric acid aqueous solution were impregnated and supported so as to be 05, and dried at 110 ° C. for 12 hours or longer. Thereafter, it was calcined at 600 ° C. for 3 hours in an air atmosphere to obtain a catalyst B precursor. The BET specific surface area of the catalyst B precursor was 53 m 2 / g.
 (触媒B前駆体のアンモニア及び二酸化炭素の化学吸着量測定)
 触媒B前駆体1.5gをガラス製サンプルセルに入れ、4Pa以下にて、380℃で2h加熱した(前処理)。次に、アンモニアの化学吸着量測定を行うため、前処理された触媒B前駆体を、サンプルセルのまま高性能・全自動ガス吸着量測定装置Autosorb-1-C型(商品名、ユアサアイオニクス社製)に設置した。
(Measurement of chemisorption amount of ammonia and carbon dioxide of catalyst B precursor)
1.5 g of the catalyst B precursor was put into a glass sample cell and heated at 380 ° C. for 2 h at 4 Pa or less (pretreatment). Next, in order to measure the amount of chemisorption of ammonia, the pretreated catalyst B precursor is used as a sample cell in a high-performance, fully automatic gas adsorption amount measuring device Autosorb-1-C (trade name, Yuasa Ionics). Installed).
 触媒B前駆体をヒーターにより50℃で保温し、真空状態から徐々にアンモニアガスをサンプルセルに導入し、絶対圧5.3kPaから5.3kPa間隔で106.7kPaまで合計20点で吸着量(即ち、化学吸着量と物理吸着量を合わせた全吸着量)を測定(測定温度:50℃、熱平衡時間:60分、圧力公差:4、吸着平衡時間:2分)し、全吸着等温線(化学吸着と物理吸着の両方を含む)を作成した。 The catalyst B precursor was kept at 50 ° C. with a heater, and ammonia gas was gradually introduced from the vacuum state into the sample cell, and the adsorption amount (ie, the absolute amount from 5.3 kPa to 5.3 kPa at 106.7 kPa at a total of 20 points). Measure the total adsorption amount of the chemical adsorption amount and the physical adsorption amount (measurement temperature: 50 ° C., thermal equilibrium time: 60 minutes, pressure tolerance: 4, adsorption equilibrium time: 2 minutes), and determine the total adsorption isotherm (chemical Including both adsorption and physical adsorption).
 その後、高真空で排気することにより物理吸着したアンモニアを除去し、再度絶対圧5.3kPaから5.3kPa間隔で106.7kPaまで合計20点で吸着量(即ち、物理吸着量)を測定し、物理吸着等温線を作成した。全吸着量と物理吸着量の差から化学吸着等温線を作成し、これをP=0に外挿した。その結果、触媒B前駆体のアンモニア化学吸着量は9.8μmol/gであった。 Thereafter, the physically adsorbed ammonia is removed by exhausting in a high vacuum, and the adsorbed amount (that is, the physical adsorbed amount) is measured again at a total of 20 points from 5.3 kPa to 106.7 kPa at intervals of 5.3 kPa, A physical adsorption isotherm was created. A chemical adsorption isotherm was created from the difference between the total adsorption amount and the physical adsorption amount, and extrapolated to P = 0. As a result, the ammonia chemisorption amount of the catalyst B precursor was 9.8 μmol / g.
 また、吸着ガスをアンモニアガスから二酸化炭素に変えて、二酸化炭素の化学吸着量測定を行った。その結果、触媒B前駆体の二酸化炭素化学吸着量は0.4μmol/gであった。 Also, the amount of chemical adsorption of carbon dioxide was measured by changing the adsorption gas from ammonia gas to carbon dioxide. As a result, the carbon dioxide chemical adsorption amount of the catalyst B precursor was 0.4 μmol / g.
 (触媒B:Pd/Li-P-SiOの製造)
 上記の触媒B前駆体に、0.2wt%となるように塩化パラジウム水溶液を含浸担持させ、110℃で12h以上乾燥させることで、触媒B:Pd/Li-P-SiOを得た。
(Catalyst B: Production of Pd / Li—P—SiO 2 )
The catalyst B precursor was impregnated with and supported by an aqueous palladium chloride solution at 0.2 wt%, and dried at 110 ° C. for 12 hours or longer to obtain catalyst B: Pd / Li—P—SiO 2 .
 [実施例6]
 (触媒B:Pd/Li-P-SiOによるフェノールの水素化反応)
 触媒B:Pd/Li-P-SiOの1gを1/2インチのステンレス鋼(SUS)製の管に充填し、その上部にガラスビーズ(直径1mm、球形)を10g入れて予熱層とした。触媒層を200℃に加熱し、上部より水素ガス(16cc/min)を流通させ前処理還元を行った後、140℃、0MPa(G)にて、フェノールとシクロヘキサノンの混合物(モル比=1:1)を1.6cc/hで、水素ガスを16cc/minで供給することで、フェノールの水素化反応を行った。
[Example 6]
(Catalyst B: Hydrogenation reaction of phenol with Pd / Li—P—SiO 2 )
Catalyst B: 1 g of Pd / Li—P—SiO 2 was filled into a 1/2 inch stainless steel (SUS) tube, and 10 g of glass beads (diameter 1 mm, spherical shape) were placed on the top to form a preheating layer. . The catalyst layer was heated to 200 ° C., hydrogen gas (16 cc / min) was passed through the top and subjected to pretreatment reduction, and then at 140 ° C. and 0 MPa (G), a mixture of phenol and cyclohexanone (molar ratio = 1: 1) was supplied at 1.6 cc / h and hydrogen gas was supplied at 16 cc / min to carry out a hydrogenation reaction of phenol.
 反応開始から4hの捕集液を切り捨て、その後1hの捕集液をガスクロマトグラフィーにて分析した。その結果、出発原料であるフェノールの転化率は99.3%であり、シクロヘキサノンの選択率は98.0%であり、副生物であるシクロヘキサノールの選択率は1.9%であり、2-シクロヘキシルシクロヘキサノンの選択率は0.1%であった。 The collected liquid for 4 hours was cut off from the start of the reaction, and then the collected liquid for 1 hour was analyzed by gas chromatography. As a result, the conversion rate of the starting material phenol was 99.3%, the cyclohexanone selectivity was 98.0%, the byproduct cyclohexanol selectivity was 1.9%, and 2- The selectivity for cyclohexylcyclohexanone was 0.1%.
 [実施例7]
 (触媒C前駆体:Mg-P-SiOの製造)
 SiO(富士シリシア化学製、商品名:CARiACT Q-50、球状、1.18-2.36mm)に、Mg/Si(mol比)=0.2、P/Si(mol比)=0.05となるように硝酸マグネシウム水溶液及びリン酸水溶液を含浸担持させ、110℃で12h以上乾燥させた。その後、空気雰囲気下600℃で3h焼成して、触媒C前駆体を得た。触媒C前駆体のBET比表面積は59m/gであった。
[Example 7]
(Catalyst C precursor: production of Mg—P—SiO 2 )
SiO 2 (manufactured by Fuji Silysia Chemical Co., Ltd., trade name: CARiACT Q-50, spherical, 1.18-2.36 mm), Mg / Si (mol ratio) = 0.2, P / Si (mol ratio) = 0. A magnesium nitrate aqueous solution and a phosphoric acid aqueous solution were impregnated and supported so as to be 05, and dried at 110 ° C. for 12 hours or more. Thereafter, it was calcined at 600 ° C. for 3 hours in an air atmosphere to obtain a catalyst C precursor. The BET specific surface area of the catalyst C precursor was 59 m 2 / g.
 (触媒C前駆体のアンモニア及び二酸化炭素の化学吸着量測定)
 触媒C前駆体1.5gをガラス製サンプルセルに入れ、4Pa以下にて、380℃で2h加熱した(前処理)。次に、アンモニアの化学吸着量測定を行うため、前処理された触媒C前駆体を、サンプルセルのまま高性能・全自動ガス吸着量測定装置Autosorb-1-C型(商品名、ユアサアイオニクス社製)に設置した。
(Measurement of chemisorption amount of ammonia and carbon dioxide of catalyst C precursor)
The catalyst C precursor 1.5g was put into the glass sample cell, and it heated at 380 degreeC for 2 h at 4 Pa or less (pretreatment). Next, in order to measure the chemical adsorption amount of ammonia, the pretreated catalyst C precursor is used as a sample cell in a high-performance, fully automatic gas adsorption amount measuring device Autosorb-1-C (trade name, Yuasa Ionics). Installed).
 触媒C前駆体をヒーターにより50℃で保温し、真空状態から徐々にアンモニアガスをサンプルセルに導入し、絶対圧5.3kPaから5.3kPa間隔で106.7kPaまで合計20点で吸着量(即ち、化学吸着量と物理吸着量を合わせた全吸着量)を測定(測定温度:50℃、熱平衡時間:60分、圧力公差:4、吸着平衡時間:2分)し、全吸着等温線(化学吸着と物理吸着の両方を含む)を作成した。 The catalyst C precursor was kept at 50 ° C. by a heater, and ammonia gas was gradually introduced from the vacuum state into the sample cell, and the adsorption amount (ie, the absolute amount from 5.3 kPa to 5.3 kPa at 106.7 kPa at 20 points in total) Measure the total adsorption amount of the chemical adsorption amount and the physical adsorption amount (measurement temperature: 50 ° C., thermal equilibrium time: 60 minutes, pressure tolerance: 4, adsorption equilibrium time: 2 minutes), and determine the total adsorption isotherm (chemical Including both adsorption and physical adsorption).
 その後、高真空で排気することにより物理吸着したアンモニアを除去し、再度絶対圧5.3kPaから5.3kPa間隔で106.7kPaまで合計20点で吸着量(即ち、物理吸着量)を測定し、物理吸着等温線を作成した。全吸着量と物理吸着量の差から化学吸着等温線を作成し、これをP=0に外挿した。その結果、触媒C前駆体のアンモニア化学吸着量は40.7μmol/gであった。 Thereafter, the physically adsorbed ammonia is removed by exhausting in a high vacuum, and the adsorbed amount (that is, the physical adsorbed amount) is measured again at a total of 20 points from 5.3 kPa to 106.7 kPa at intervals of 5.3 kPa, A physical adsorption isotherm was created. A chemical adsorption isotherm was created from the difference between the total adsorption amount and the physical adsorption amount, and extrapolated to P = 0. As a result, the ammonia chemisorption amount of the catalyst C precursor was 40.7 μmol / g.
 また、吸着ガスをアンモニアガスから二酸化炭素に変えて、二酸化炭素の化学吸着量測定を行った。その結果、触媒C前駆体の二酸化炭素化学吸着量は1.0μmol/gであった。 Also, the amount of chemical adsorption of carbon dioxide was measured by changing the adsorption gas from ammonia gas to carbon dioxide. As a result, the carbon dioxide chemical adsorption amount of the catalyst C precursor was 1.0 μmol / g.
 (触媒C:Pd/Mg-P-SiOの製造)
 上記の触媒C前駆体に、0.5wt%となるように塩化パラジウム水溶液を含浸担持させ、110℃で12h以上乾燥させることで、触媒C:Pd/Ca-P-SiOを得た。
(Catalyst C: Production of Pd / Mg—P—SiO 2 )
The catalyst C precursor was impregnated and supported with an aqueous palladium chloride solution at 0.5 wt%, and dried at 110 ° C. for 12 hours or longer to obtain catalyst C: Pd / Ca—P—SiO 2 .
 [実施例8]
 (触媒C:Pd/Mg-P-SiOによるフェノールの水素化反応)
 触媒C:Pd/Mg-P-SiOの1gを1/2インチのステンレス鋼(SUS)製の管に充填し、その上部にガラスビーズ(直径1mm、球形)を10g入れて予熱層とした。触媒層を200℃に加熱し上部より水素ガス(26cc/min)を流通させ前処理還元を行った後、140℃、0MPa(G)にて、フェノールとシクロヘキサノンの混合物(モル比=1:1)を1.0cc/hで、水素ガスを10cc/minで供給することで、フェノールの水素化反応を行った。
[Example 8]
(Catalyst C: Hydrogenation reaction of phenol with Pd / Mg—P—SiO 2 )
Catalyst C: 1 g of Pd / Mg—P—SiO 2 was filled into a 1/2 inch stainless steel (SUS) tube, and 10 g of glass beads (diameter 1 mm, spherical shape) were placed on the top to form a preheating layer. . The catalyst layer was heated to 200 ° C., hydrogen gas (26 cc / min) was passed from the top and pretreatment reduction was performed, and then a mixture of phenol and cyclohexanone (molar ratio = 1: 1) at 140 ° C. and 0 MPa (G). ) At 1.0 cc / h and hydrogen gas at 10 cc / min to carry out a hydrogenation reaction of phenol.
 反応開始から3hの捕集液を切り捨て、その後4hの捕集液をガスクロマトグラフィーにて分析した。その結果、出発原料であるフェノールの転化率は97.9%であり、シクロヘキサノンの選択率は96.7%であり、副生物であるシクロヘキサノールの選択率は1.8%であり、2-シクロヘキシルシクロヘキサノンの選択率は0.6%であった。 The collected liquid for 3 h was discarded from the start of the reaction, and then the collected liquid for 4 h was analyzed by gas chromatography. As a result, the conversion rate of phenol as a starting material was 97.9%, the selectivity of cyclohexanone was 96.7%, the selectivity of cyclohexanol as a by-product was 1.8%, The selectivity for cyclohexylcyclohexanone was 0.6%.
 [実施例9]
 (触媒D前駆体:0.07Ca-0.05P-SiOの製造)
 SiO(富士シリシア化学製、商品名:CARiACT Q-50、球状、1.18-2.36mm)に、Ca/Si(mol比)=0.07、P/Si(mol比)=0.05となるように硝酸カルシウム水溶液及びリン酸水溶液を含浸担持させ、110℃で12h以上乾燥させた。その後、空気雰囲気下600℃で3h焼成して、触媒D前駆体を得た。触媒D前駆体のBET比表面積は56m/gであった。
[Example 9]
(Preparation of catalyst D precursor: 0.07Ca-0.05P-SiO 2 )
SiO 2 (manufactured by Fuji Silysia Chemical Co., Ltd., trade name: CARiACT Q-50, spherical, 1.18-2.36 mm), Ca / Si (mol ratio) = 0.07, P / Si (mol ratio) = 0. A calcium nitrate aqueous solution and a phosphoric acid aqueous solution were impregnated and supported so as to be 05, and dried at 110 ° C. for 12 hours or more. Thereafter, it was calcined at 600 ° C. for 3 hours in an air atmosphere to obtain a catalyst D precursor. The BET specific surface area of the catalyst D precursor was 56 m 2 / g.
 (触媒D前駆体のアンモニア及び二酸化炭素の化学吸着量測定)
 触媒D前駆体1.5gをガラス製サンプルセルに入れ、4Pa以下にて、380℃で2h加熱した(前処理)。次に、アンモニアの化学吸着量測定を行うため、前処理された触媒D前駆体を、サンプルセルのまま高性能・全自動ガス吸着量測定装置Autosorb-1-C型(商品名、ユアサアイオニクス社製)に設置した。
(Measurement of chemisorption amount of ammonia and carbon dioxide of catalyst D precursor)
1.5 g of catalyst D precursor was placed in a glass sample cell and heated at 380 ° C. for 2 h at 4 Pa or less (pretreatment). Next, in order to measure the chemical adsorption amount of ammonia, the pretreated catalyst D precursor is used as a sample cell in a high-performance, fully automatic gas adsorption amount measuring device Autosorb-1-C type (trade name, Yuasa Ionics). Installed).
 触媒D前駆体をヒーターにより50℃で保温し、真空状態から徐々にアンモニアガスをサンプルセルに導入し、絶対圧5.3kPaから5.3kPa間隔で106.7kPaまで合計20点で吸着量(即ち、化学吸着量と物理吸着量を合わせた全吸着量)を測定(測定温度:50℃、熱平衡時間:60分、圧力公差:4、吸着平衡時間:2分)し、全吸着等温線(化学吸着と物理吸着の両方を含む)を作成した。 The catalyst D precursor was kept at 50 ° C. with a heater, and ammonia gas was gradually introduced from the vacuum state into the sample cell, and the adsorption amount (ie, the absolute amount from 5.3 kPa to 5.3 kPa at 106.7 kPa at 20 points in total) Measure the total adsorption amount of the chemical adsorption amount and the physical adsorption amount (measurement temperature: 50 ° C., thermal equilibrium time: 60 minutes, pressure tolerance: 4, adsorption equilibrium time: 2 minutes), and determine the total adsorption isotherm (chemical Including both adsorption and physical adsorption).
 その後、高真空で排気することにより物理吸着したアンモニアを除去し、再度絶対圧5.3kPaから5.3kPa間隔で106.7kPaまで合計20点で吸着量(即ち、物理吸着量)を測定し、物理吸着等温線を作成した。全吸着量と物理吸着量の差から化学吸着等温線を作成し、これをP=0に外挿した。その結果、触媒D前駆体のアンモニア化学吸着量は55.7μmol/gであった。 Thereafter, the physically adsorbed ammonia is removed by exhausting in a high vacuum, and the adsorbed amount (that is, the physical adsorbed amount) is measured again at a total of 20 points from 5.3 kPa to 106.7 kPa at intervals of 5.3 kPa, A physical adsorption isotherm was created. A chemical adsorption isotherm was created from the difference between the total adsorption amount and the physical adsorption amount, and extrapolated to P = 0. As a result, the ammonia chemisorption amount of the catalyst D precursor was 55.7 μmol / g.
 また、吸着ガスをアンモニアガスから二酸化炭素に変えて、二酸化炭素の化学吸着量測定を行った。その結果、触媒D前駆体の二酸化炭素化学吸着量は4.8μmol/gであった。 Also, the amount of chemical adsorption of carbon dioxide was measured by changing the adsorption gas from ammonia gas to carbon dioxide. As a result, the carbon dioxide chemisorption amount of the catalyst D precursor was 4.8 μmol / g.
 (触媒D:Pd/0.07Ca-0.05P-SiOの製造)
 上記の触媒D前駆体に、0.5wt%となるように塩化パラジウム水溶液を含浸担持させ、110℃で12h以上乾燥させることで、触媒D:Pd/0.07Ca-0.05P-SiOを得た。
(Catalyst D: Production of Pd / 0.07Ca-0.05P-SiO 2 )
The catalyst D precursor was impregnated with and supported by an aqueous palladium chloride solution at 0.5 wt%, and dried at 110 ° C. for 12 hours or more, whereby catalyst D: Pd / 0.07Ca-0.05P-SiO 2 was obtained. Obtained.
 [実施例10]
 (触媒D:Pd/0.07Ca-0.05P-SiOによるフェノールの水素化反応)
 触媒D:Pd/0.07Ca-0.05P-SiOの1gを1/2インチのステンレス鋼(SUS)製の管に充填し、その上部にガラスビーズ(直径1mm、球形)を10g入れて予熱層とした。触媒層を200℃に加熱し、上部より水素ガス(26cc/min)を流通させ前処理還元を行った後、140℃、0MPa(G)にて、フェノールとシクロヘキサノンの混合物(モル比=1:1)を1.0cc/hで、水素ガスを10cc/minで供給することで、フェノールの水素化反応を行った。
[Example 10]
(Catalyst D: Hydrogenation reaction of phenol with Pd / 0.07Ca-0.05P-SiO 2 )
Catalyst D: 1 g of Pd / 0.07Ca-0.05P-SiO 2 was filled into a 1/2 inch stainless steel (SUS) tube, and 10 g of glass beads (diameter 1 mm, spherical) were placed on the top. A preheating layer was used. The catalyst layer was heated to 200 ° C., hydrogen gas (26 cc / min) was passed from the top and pretreatment reduction was performed, and then a mixture of phenol and cyclohexanone (molar ratio = 1: 2) at 140 ° C. and 0 MPa (G). 1) was supplied at 1.0 cc / h and hydrogen gas was supplied at 10 cc / min to carry out a hydrogenation reaction of phenol.
 反応開始から27hの捕集液を切り捨て、その後3hの捕集液をガスクロマトグラフィーにて分析した。その結果、出発原料であるフェノールの転化率は97.7%であり、シクロヘキサノンの選択率は98.2%であり、副生物であるシクロヘキサノールの選択率は1.6%であり、2-シクロヘキシルシクロヘキサノンの選択率は<0.1%であった。 The collected liquid for 27 h was discarded from the start of the reaction, and then the collected liquid for 3 h was analyzed by gas chromatography. As a result, the conversion rate of phenol as a starting material was 97.7%, the selectivity of cyclohexanone was 98.2%, the selectivity of cyclohexanol as a by-product was 1.6%, The selectivity for cyclohexylcyclohexanone was <0.1%.
 [実施例11]
 (触媒E前駆体:0.2Ca-0.05P-SiOの製造)
 SiO(富士シリシア化学製、商品名:CARiACT Q-50、球状、1.18-2.36mm)に、Ca/Si(mol比)=0.2、P/Si(mol比)=0.05となるように硝酸カルシウム水溶液及びリン酸水溶液を含浸担持させ、110℃で12h以上乾燥させた。その後、空気雰囲気下600℃で3h焼成して、触媒E前駆体を得た。触媒E前駆体のBET比表面積は49m/gであった。
[Example 11]
(Catalyst E precursor: production of 0.2Ca-0.05P-SiO 2 )
SiO 2 (manufactured by Fuji Silysia Chemical, trade name: CARiACT Q-50, spherical, 1.18-2.36 mm), Ca / Si (mol ratio) = 0.2, P / Si (mol ratio) = 0. A calcium nitrate aqueous solution and a phosphoric acid aqueous solution were impregnated and supported so as to be 05, and dried at 110 ° C. for 12 hours or more. Thereafter, it was calcined at 600 ° C. for 3 hours in an air atmosphere to obtain a catalyst E precursor. The BET specific surface area of the catalyst E precursor was 49 m 2 / g.
 (触媒E前駆体のアンモニア及び二酸化炭素の化学吸着量測定)
 触媒E前駆体1.5gをガラス製サンプルセルに入れ、4Pa以下にて、380℃で2h加熱した(前処理)。次に、アンモニアの化学吸着量測定を行うため、前処理された触媒E前駆体を、サンプルセルのまま高性能・全自動ガス吸着量測定装置Autosorb-1-C型(商品名、ユアサアイオニクス社製)に設置した。
(Measurement of chemisorption amount of ammonia and carbon dioxide of catalyst E precursor)
1.5 g of the catalyst E precursor was placed in a glass sample cell and heated at 380 ° C. for 2 h at 4 Pa or less (pretreatment). Next, in order to measure the amount of chemical adsorption of ammonia, the pre-processed catalyst E precursor is used as a sample cell in a high-performance, fully automatic gas adsorption amount measuring device Autosorb-1-C (trade name, Yuasa Ionics). Installed).
 触媒E前駆体をヒーターにより50℃で保温し、真空状態から徐々にアンモニアガスをサンプルセルに導入し、絶対圧5.3kPaから5.3kPa間隔で106.7kPaまで合計20点で吸着量(即ち、化学吸着量と物理吸着量を合わせた全吸着量)を測定(測定温度:50℃、熱平衡時間:60分、圧力公差:4、吸着平衡時間:2分)し、全吸着等温線(化学吸着と物理吸着の両方を含む)を作成した。 The catalyst E precursor was kept at 50 ° C. with a heater, and ammonia gas was gradually introduced from the vacuum state into the sample cell, and the adsorption amount (ie, the absolute amount from 5.3 kPa to 5.3 kPa at 106.7 kPa at a total of 20 points) Measure the total adsorption amount of the chemical adsorption amount and the physical adsorption amount (measurement temperature: 50 ° C., thermal equilibrium time: 60 minutes, pressure tolerance: 4, adsorption equilibrium time: 2 minutes), and determine the total adsorption isotherm (chemical Including both adsorption and physical adsorption).
 その後、高真空で排気することにより物理吸着したアンモニアを除去し、再度絶対圧5.3kPaから5.3kPa間隔で106.7kPaまで合計20点で吸着量(即ち、物理吸着量)を測定し、物理吸着等温線を作成した。全吸着量と物理吸着量の差から化学吸着等温線を作成し、これをP=0に外挿した。その結果、触媒E前駆体のアンモニア化学吸着量は91.7μmol/gであった。 Thereafter, the physically adsorbed ammonia is removed by exhausting in a high vacuum, and the adsorbed amount (that is, the physical adsorbed amount) is measured again at a total of 20 points from 5.3 kPa to 106.7 kPa at intervals of 5.3 kPa, A physical adsorption isotherm was created. A chemical adsorption isotherm was created from the difference between the total adsorption amount and the physical adsorption amount, and extrapolated to P = 0. As a result, the ammonia chemisorption amount of the catalyst E precursor was 91.7 μmol / g.
 また、吸着ガスをアンモニアガスから二酸化炭素に変えて、二酸化炭素の化学吸着量測定を行った。その結果、触媒E前駆体の二酸化炭素化学吸着量は7.5μmol/gであった。 Also, the amount of chemical adsorption of carbon dioxide was measured by changing the adsorption gas from ammonia gas to carbon dioxide. As a result, the carbon dioxide chemisorption amount of the catalyst E precursor was 7.5 μmol / g.
 (触媒E:Pd/0.2Ca-0.05P-SiOの製造)
 上記の触媒E前駆体に、0.2wt%となるように塩化パラジウム水溶液を含浸担持させ、110℃で12h以上乾燥させることで、触媒E:Pd/0.2Ca-0.05P-SiOを得た。
(Catalyst E: Production of Pd / 0.2Ca-0.05P-SiO 2 )
The catalyst E precursor was impregnated with and supported by an aqueous palladium chloride solution at 0.2 wt%, and dried at 110 ° C. for 12 hours or longer to obtain catalyst E: Pd / 0.2Ca-0.05P-SiO 2 . Obtained.
 [実施例12]
 (触媒E:Pd/0.2Ca-0.05P-SiOによるフェノールの水素化反応)
 触媒E:Pd/0.2Ca-0.05P-SiOの1gを1/2インチのステンレス鋼(SUS)製の管に充填し、その上部にガラスビーズ(直径1mm、球形)を10g入れて予熱層とした。触媒層を200℃に加熱し、上部より水素ガス(26cc/min)を流通させ前処理還元を行った後、140℃、0MPa(G)にて、フェノールとシクロヘキサノンの混合物(モル比=1:1)を1.0cc/hで、水素ガスを10cc/minで供給することで、フェノールの水素化反応を行った。
[Example 12]
(Catalyst E: Hydrogenation reaction of phenol with Pd / 0.2Ca-0.05P-SiO 2 )
Catalyst E: 1 g of Pd / 0.2Ca-0.05P-SiO 2 was filled into a 1/2 inch stainless steel (SUS) tube, and 10 g of glass beads (diameter 1 mm, spherical) were placed on the top. A preheating layer was used. The catalyst layer was heated to 200 ° C., hydrogen gas (26 cc / min) was passed from the top and pretreatment reduction was performed, and then a mixture of phenol and cyclohexanone (molar ratio = 1: 2) at 140 ° C. and 0 MPa (G). 1) was supplied at 1.0 cc / h and hydrogen gas was supplied at 10 cc / min to carry out a hydrogenation reaction of phenol.
 反応開始から8hの捕集液を切り捨て、その後3hの捕集液をガスクロマトグラフィーにて分析した。その結果、出発原料であるフェノールの転化率は96.7%であり、シクロヘキサノンの選択率は98.3%であり、副生物であるシクロヘキサノールの選択率は1.6%であり、2-シクロヘキシルシクロヘキサノンの選択率は0.1%であった。 The collected liquid for 8 hours was cut off from the start of the reaction, and then the collected liquid for 3 hours was analyzed by gas chromatography. As a result, the conversion rate of phenol as a starting material was 96.7%, the selectivity of cyclohexanone was 98.3%, the selectivity of cyclohexanol as a by-product was 1.6%, The selectivity for cyclohexylcyclohexanone was 0.1%.
 [実施例13]
 (触媒F前駆体:0.3Ca-0.05P-SiOの製造)
 SiO(富士シリシア化学製、商品名:CARiACT Q-50、球状、1.18-2.36mm)に、Ca/Si(mol比)=0.3、P/Si(mol比)=0.05となるように硝酸カルシウム水溶液及びリン酸水溶液を含浸担持させ、110℃で12h以上乾燥させた。その後、空気雰囲気下600℃で3h焼成して、触媒F前駆体を得た。触媒F前駆体のBET比表面積は41m/gであった。
[Example 13]
(Preparation of catalyst F precursor: 0.3Ca-0.05P-SiO 2 )
SiO 2 (manufactured by Fuji Silysia Chemical Co., Ltd., trade name: CARiACT Q-50, spherical, 1.18-2.36 mm), Ca / Si (mol ratio) = 0.3, P / Si (mol ratio) = 0. A calcium nitrate aqueous solution and a phosphoric acid aqueous solution were impregnated and supported so as to be 05, and dried at 110 ° C. for 12 hours or more. Thereafter, it was calcined at 600 ° C. for 3 hours in an air atmosphere to obtain a catalyst F precursor. The BET specific surface area of the catalyst F precursor was 41 m 2 / g.
 (触媒F前駆体のアンモニア及び二酸化炭素の化学吸着量測定)
 触媒F前駆体1.5gをガラス製サンプルセルに入れ、4Pa以下にて、380℃で2h加熱した(前処理)。次に、アンモニアの化学吸着量測定を行うため、前処理された触媒F前駆体を、サンプルセルのまま高性能・全自動ガス吸着量測定装置Autosorb-1-C型(商品名、ユアサアイオニクス社製)に設置した。
(Measurement of chemisorption amount of ammonia and carbon dioxide of catalyst F precursor)
The catalyst F precursor 1.5g was put into the glass sample cell, and it heated at 380 degreeC for 2 h at 4 Pa or less (pretreatment). Next, in order to measure the amount of chemical adsorption of ammonia, the pretreated catalyst F precursor is used as a sample cell in a high-performance, fully automatic gas adsorption amount measuring device Autosorb-1-C (trade name, Yuasa Ionics). Installed).
 触媒F前駆体をヒーターにより50℃で保温し、真空状態から徐々にアンモニアガスをサンプルセルに導入し、絶対圧5.3kPaから5.3kPa間隔で106.7kPaまで合計20点で吸着量(即ち、化学吸着量と物理吸着量を合わせた全吸着量)を測定(測定温度:50℃、熱平衡時間:60分、圧力公差:4、吸着平衡時間:2分)し、全吸着等温線(化学吸着と物理吸着の両方を含む)を作成した。 The catalyst F precursor was kept at 50 ° C. by a heater, and ammonia gas was gradually introduced from the vacuum state into the sample cell, and the adsorption amount (ie, the absolute amount from 5.3 kPa to 5.3 kPa at 106.7 kPa at a total of 20 points) Measure the total adsorption amount of the chemical adsorption amount and the physical adsorption amount (measurement temperature: 50 ° C., thermal equilibrium time: 60 minutes, pressure tolerance: 4, adsorption equilibrium time: 2 minutes), and determine the total adsorption isotherm (chemical Including both adsorption and physical adsorption).
 その後、高真空で排気することにより物理吸着したアンモニアを除去し、再度絶対圧5.3kPaから5.3kPa間隔で106.7kPaまで合計20点で吸着量(即ち、物理吸着量)を測定し、物理吸着等温線を作成した。全吸着量と物理吸着量の差から化学吸着等温線を作成し、これをP=0に外挿した。その結果、触媒F前駆体のアンモニア化学吸着量は89.8μmol/gであった。 Thereafter, the physically adsorbed ammonia is removed by exhausting in a high vacuum, and the adsorbed amount (that is, the physical adsorbed amount) is measured again at a total of 20 points from 5.3 kPa to 106.7 kPa at intervals of 5.3 kPa, A physical adsorption isotherm was created. A chemical adsorption isotherm was created from the difference between the total adsorption amount and the physical adsorption amount, and extrapolated to P = 0. As a result, the ammonia chemisorption amount of the catalyst F precursor was 89.8 μmol / g.
 また、吸着ガスをアンモニアガスから二酸化炭素に変えて、二酸化炭素の化学吸着量測定を行った。その結果、触媒F前駆体の二酸化炭素化学吸着量は13.2μmol/gであった。 Also, the amount of chemical adsorption of carbon dioxide was measured by changing the adsorption gas from ammonia gas to carbon dioxide. As a result, the carbon dioxide chemisorption amount of the catalyst F precursor was 13.2 μmol / g.
 (触媒F:Pd/0.3Ca-0.05P-SiOの製造)
 上記の触媒F前駆体に、0.5wt%となるように塩化パラジウム水溶液を含浸担持させ、110℃で12h以上乾燥させることで、触媒F:Pd/0.3Ca-0.05P-SiOを得た。
(Catalyst F: Production of Pd / 0.3Ca-0.05P-SiO 2 )
The catalyst F precursor was impregnated with and supported by an aqueous palladium chloride solution at 0.5 wt%, and dried at 110 ° C. for 12 hours or longer, whereby catalyst F: Pd / 0.3Ca-0.05P-SiO 2 was obtained. Obtained.
 [実施例14]
 (触媒F:Pd/0.3Ca-0.05P-SiOによるフェノールの水素化反応)
 触媒F:Pd/0.3Ca-0.05P-SiOの1gを1/2インチのステンレス鋼(SUS)製の管に充填し、その上部にガラスビーズ(直径1mm、球形)を10g入れて予熱層とした。触媒層を200℃に加熱し、上部より水素ガス(26cc/min)を流通させ前処理還元を行った後、135℃、0MPa(G)にて、フェノールとシクロヘキサノンの混合物(モル比=1:1)を1.0cc/hで、水素ガスを10cc/minで供給することで、フェノールの水素化反応を行った。
[Example 14]
(Catalyst F: Hydrogenation reaction of phenol with Pd / 0.3Ca-0.05P-SiO 2 )
Catalyst F: 1 g of Pd / 0.3Ca-0.05P-SiO 2 was filled into a 1/2 inch stainless steel (SUS) tube, and 10 g of glass beads (diameter 1 mm, spherical) were placed on the top. A preheating layer was used. The catalyst layer was heated to 200 ° C., hydrogen gas (26 cc / min) was passed from the top and pretreatment reduction was performed, and then a mixture of phenol and cyclohexanone (molar ratio = 1: 3) at 135 ° C. and 0 MPa (G). 1) was supplied at 1.0 cc / h and hydrogen gas was supplied at 10 cc / min to carry out a hydrogenation reaction of phenol.
 反応開始から70hの捕集液を切り捨て、その後2hの捕集液をガスクロマトグラフィーにて分析した。その結果、出発原料であるフェノールの転化率は96.5%であり、シクロヘキサノンの選択率は95.2%であり、副生物であるシクロヘキサノールの選択率は4.6%であり、2-シクロヘキシルシクロヘキサノンの選択率は<0.1%であった。 The collected liquid for 70 h was discarded from the start of the reaction, and then the collected liquid for 2 h was analyzed by gas chromatography. As a result, the conversion rate of phenol as a starting material was 96.5%, the selectivity of cyclohexanone was 95.2%, the selectivity of cyclohexanol as a by-product was 4.6%, The selectivity for cyclohexylcyclohexanone was <0.1%.
 [比較例1]
 (Pd-Na/Alによるフェノールの水素化反応1)
 酸化アルミニウム(Al:住友化学製、球状)に、2wt%となるように酢酸ナトリウムを含浸担持させ、110℃で乾燥させた後、500℃で3h焼成して、2%Na/Alを得た。その後、2%Na/Alに、0.05wt%となるように硝酸パラジウム水溶液を含浸担持させ、110℃で12h以上乾燥させた後、450℃で3h焼成して、0.05wt%Pd-2%Na/Alを得た。
[Comparative Example 1]
(Hydrogenation reaction of phenol with Pd—Na / Al 2 O 3 1)
Aluminum oxide (Al 2 O 3 : manufactured by Sumitomo Chemical Co., Ltd., spherical) was impregnated and supported with sodium acetate so as to be 2 wt%, dried at 110 ° C., and then calcined at 500 ° C. for 3 h, and 2% Na / Al 2 O 3 was obtained. Thereafter, a palladium nitrate aqueous solution was impregnated and supported on 2% Na / Al 2 O 3 so as to be 0.05 wt%, dried at 110 ° C. for 12 hours or more, then fired at 450 ° C. for 3 h, and 0.05 wt%. Pd-2% Na / Al 2 O 3 was obtained.
 1/2インチのステンレス鋼(SUS)製の管に0.05wt%Pd-2%Na/Alの1.0gを充填し、その上部にガラスビーズ10g入れて予熱層とした。触媒層を200℃に加熱し、上部より水素ガス(13cc/min)を流通させ前処理還元を行った後、140℃、0MPa(G)にて、フェノールとシクロヘキサノンの混合物(モル比=1:1)を0.5cc/hで、水素ガスを13cc/minで供給することで、フェノールの水素化反応を行った。 A 1 / 2-inch stainless steel (SUS) tube was filled with 1.0 g of 0.05 wt% Pd-2% Na / Al 2 O 3 , and 10 g of glass beads were placed on the top to form a preheated layer. The catalyst layer is heated to 200 ° C., hydrogen gas (13 cc / min) is circulated from the upper portion and pretreatment reduction is performed, and then a mixture of phenol and cyclohexanone (molar ratio = 1: 2) at 140 ° C. and 0 MPa (G). 1) was supplied at 0.5 cc / h and hydrogen gas was supplied at 13 cc / min to carry out a hydrogenation reaction of phenol.
 反応開始から8hの捕集液を切り捨て、その後1hの捕集液をガスクロマトグラフィーにて分析した。その結果、出発原料であるフェノールの転化率は99.4%であり、シクロヘキサノンの選択率は90.3%であり、副生物であるシクロヘキサノールの選択率は0.7%であり、2-シクロヘキシルシクロヘキサノンの選択率は8.7%であった。 The collected liquid for 8 hours was cut off from the start of the reaction, and then the collected liquid for 1 hour was analyzed by gas chromatography. As a result, the conversion rate of phenol as a starting material was 99.4%, the selectivity of cyclohexanone was 90.3%, the selectivity of cyclohexanol as a by-product was 0.7%, The selectivity for cyclohexylcyclohexanone was 8.7%.
 [比較例2]
 (Pd-Na/Alによるフェノール水素化反応2)
 酸化アルミニウム(Al:エヌ・イーケムキャット製、円柱状)を破砕し粉体としたものに、2wt%となるように酢酸ナトリウムを含浸担持させ、110℃で12h以上乾燥した後、500℃で3h焼成して、2%Na/Alを得た。その後、2%Na/Alに、0.1wt%となるように硝酸パラジウム水溶液を含浸担持させ、110℃で12h以上乾燥させた後、450℃で3h焼成して、0.1wt%Pd-2%Na/Alを得た。
[Comparative Example 2]
(Phenol hydrogenation reaction 2 with Pd—Na / Al 2 O 3 )
Aluminum oxide (Al 2 O 3 : made by N.E. Chemcat, cylindrical shape) was crushed and powdered, impregnated with sodium acetate so as to be 2 wt%, dried at 110 ° C. for 12 hours or more, and then 500 Firing at 3 ° C. for 3 h gave 2% Na / Al 2 O 3 . Thereafter, a palladium nitrate aqueous solution is impregnated and supported on 2% Na / Al 2 O 3 so as to be 0.1 wt%, dried at 110 ° C. for 12 hours or more, and then calcined at 450 ° C. for 3 h. Pd-2% Na / Al 2 O 3 was obtained.
 1/2インチのステンレス鋼(SUS)製の管に0.1wt%Pd-2%Na/Alの0.13gと2%Na/Alの0.37gの混合物を充填し、その上部にガラスビーズを10g入れて予熱層とした。触媒層を200℃に加熱し、上部より水素ガス(25cc/min)を流通させ前処理還元を行った後、160℃、0MPa(G)にて、フェノールとシクロヘキサノンの混合物(モル比=1:1)を1.0cc/hで、水素ガスを25cc/minで供給することで、フェノールの水素化反応を行った。 A 1/2 inch stainless steel (SUS) tube was filled with a mixture of 0.13 g of 0.1 wt% Pd-2% Na / Al 2 O 3 and 0.37 g of 2% Na / Al 2 O 3. Then, 10 g of glass beads were put on the top to form a preheated layer. The catalyst layer was heated to 200 ° C., hydrogen gas (25 cc / min) was passed from the top to perform pretreatment reduction, and then a mixture of phenol and cyclohexanone (molar ratio = 1: 160 ° C., 0 MPa (G)). 1) was supplied at 1.0 cc / h and hydrogen gas was supplied at 25 cc / min to carry out a hydrogenation reaction of phenol.
 反応開始から1hの捕集液を切り捨て、その後1hの捕集液をガスクロマトグラフィーにて分析した。その結果、出発原料であるフェノールの転化率は99.8%であり、シクロヘキサノンの選択率は89.1%であり、副生物であるシクロヘキサノールの選択率は10.3%であり、2-シクロヘキシルシクロヘキサノンの選択率は0.6%であった。 The collected liquid for 1 h was discarded from the start of the reaction, and then the collected liquid for 1 h was analyzed by gas chromatography. As a result, the conversion of phenol as a starting material was 99.8%, the selectivity of cyclohexanone was 89.1%, the selectivity of cyclohexanol as a by-product was 10.3%, The selectivity for cyclohexylcyclohexanone was 0.6%.
 [比較例3]
 (Pd-Na/Alによるフェノール水素化反応3)
 酸化アルミニウム(Al:エヌ・イーケムキャット製、円柱状)を破砕し粉体としたものに、2wt%となるように酢酸ナトリウムを含浸担持させ、110℃で12h以上乾燥した後、500℃で3h焼成して、2%Na/Alを得た。その後、2%Na/Alに、0.05wt%となるように硝酸パラジウム水溶液を含浸担持させ、110℃で12h以上乾燥させた後、450℃で3h焼成して、0.05wt%Pd-2%Na/Alを得た。
[Comparative Example 3]
(Pd-Na / Al 2 O 3 phenol hydrogenation reaction 3 by)
Aluminum oxide (Al 2 O 3 : made by N.E. Chemcat, cylindrical shape) was crushed and powdered, impregnated with sodium acetate so as to be 2 wt%, dried at 110 ° C. for 12 hours or more, and then 500 Firing at 3 ° C. for 3 h gave 2% Na / Al 2 O 3 . Thereafter, a palladium nitrate aqueous solution was impregnated and supported on 2% Na / Al 2 O 3 so as to be 0.05 wt%, dried at 110 ° C. for 12 hours or more, then fired at 450 ° C. for 3 h, and 0.05 wt%. Pd-2% Na / Al 2 O 3 was obtained.
 1/2インチのステンレス鋼(SUS)製の管に0.05wt%Pd-2%Na/Alの1.3gを充填し、その上部にガラスビーズを10g入れて予熱層とした。触媒層を200℃に加熱し、上部より水素ガス(25cc/min)を流通させ前処理還元を行った後、160℃、0MPa(G)にて、フェノールとシクロヘキサノンの混合物(モル比=1:1)を1.0cc/hで、水素ガスを25cc/minで供給することで、フェノールの水素化反応を行った。 A 1 / 2-inch stainless steel (SUS) tube was filled with 1.3 g of 0.05 wt% Pd-2% Na / Al 2 O 3 , and 10 g of glass beads were placed on the top to form a preheating layer. The catalyst layer was heated to 200 ° C., hydrogen gas (25 cc / min) was passed from the top to perform pretreatment reduction, and then a mixture of phenol and cyclohexanone (molar ratio = 1: 160 ° C., 0 MPa (G)). 1) was supplied at 1.0 cc / h and hydrogen gas was supplied at 25 cc / min to carry out a hydrogenation reaction of phenol.
 反応開始から1hの捕集液を切り捨て、その後1hの捕集液をガスクロマトグラフィーにて分析した。その結果、出発原料であるフェノールの転化率は>99.9%であり、シクロヘキサノンの選択率は93.1%であり、副生物であるシクロヘキサノールの選択率は5.1%であり、2-シクロヘキシルシクロヘキサノンの選択率は1.8%であった。 The collected liquid for 1 h was discarded from the start of the reaction, and then the collected liquid for 1 h was analyzed by gas chromatography. As a result, the conversion rate of the starting phenol was> 99.9%, the selectivity of cyclohexanone was 93.1%, the selectivity of the by-product cyclohexanol was 5.1%, 2 The selectivity for -cyclohexylcyclohexanone was 1.8%.
 [比較例4]
 (触媒G前駆体:P-SiOの製法)
 SiO(富士シリシア化学製、商品名:CARiACT Q-50、球状、1.18-2.36mm)に、P/Si(mol比)=0.05となるようにリン酸水溶液を含浸担持させ、110℃で12h以上乾燥させた。その後、空気雰囲気下600℃で3h焼成して、触媒G前駆体を得た。触媒G前駆体のBET比表面積は56m/gであった。
[Comparative Example 4]
(Catalyst G precursor: production method of P-SiO 2 )
SiO 2 (manufactured by Fuji Silysia Chemical Co., Ltd., trade name: CARiACT Q-50, spherical, 1.18-2.36 mm) is impregnated and supported with an aqueous phosphoric acid solution so that P / Si (mol ratio) = 0.05. , And dried at 110 ° C. for 12 hours or longer. Thereafter, it was calcined at 600 ° C. for 3 hours in an air atmosphere to obtain a catalyst G precursor. The BET specific surface area of the catalyst G precursor was 56 m 2 / g.
 (触媒G前駆体のアンモニア及び二酸化炭素の化学吸着量測定)
 触媒G前駆体1.5gをガラス製サンプルセルに入れ、4Pa以下にて、380℃で2h加熱した(前処理)。次に、アンモニアの化学吸着量測定を行うため、前処理された触媒G前駆体を、サンプルセルのまま高性能・全自動ガス吸着量測定装置Autosorb-1-C型(商品名、ユアサアイオニクス社製)に設置した。
(Measurement of chemisorption amount of ammonia and carbon dioxide of catalyst G precursor)
The catalyst G precursor 1.5g was put into the glass sample cell, and it heated at 380 degreeC for 2 h at 4 Pa or less (pretreatment). Next, in order to measure the chemical adsorption amount of ammonia, the pretreated catalyst G precursor is used as a sample cell in a high-performance, fully automatic gas adsorption amount measuring device Autosorb-1-C (trade name, Yuasa Ionics). Installed).
 触媒G前駆体をヒーターにより50℃で保温し、真空状態から徐々にアンモニアガスをサンプルセルに導入し、絶対圧5.3kPaから5.3kPa間隔で106.7kPaまで合計20点で吸着量(即ち、化学吸着量と物理吸着量を合わせた全吸着量)を測定(測定温度:50℃、熱平衡時間:60分、圧力公差:4、吸着平衡時間:2分)し、全吸着等温線(化学吸着と物理吸着の両方を含む)を作成した。 The catalyst G precursor was kept at 50 ° C. with a heater, and ammonia gas was gradually introduced from the vacuum state into the sample cell, and the adsorption amount (ie, the absolute amount from 5.3 kPa to 5.3 kPa at 106.7 kPa at 20 points in total) Measure the total adsorption amount of the chemical adsorption amount and the physical adsorption amount (measurement temperature: 50 ° C., thermal equilibrium time: 60 minutes, pressure tolerance: 4, adsorption equilibrium time: 2 minutes), and determine the total adsorption isotherm (chemical Including both adsorption and physical adsorption).
 その後、高真空で排気することにより物理吸着したアンモニアを除去し、再度絶対圧5.3kPaから5.3kPa間隔で106.7kPaまで合計20点で吸着量(即ち、物理吸着量)を測定し、物理吸着等温線を作成した。全吸着量と物理吸着量の差から化学吸着等温線を作成し、これをP=0に外挿した。その結果、触媒G前駆体のアンモニア化学吸着量は134μmol/gであった。 Thereafter, the physically adsorbed ammonia is removed by exhausting in a high vacuum, and the adsorbed amount (that is, the physical adsorbed amount) is measured again at a total of 20 points from 5.3 kPa to 106.7 kPa at intervals of 5.3 kPa, A physical adsorption isotherm was created. A chemical adsorption isotherm was created from the difference between the total adsorption amount and the physical adsorption amount, and extrapolated to P = 0. As a result, the ammonia chemisorption amount of the catalyst G precursor was 134 μmol / g.
 また、吸着ガスをアンモニアガスから二酸化炭素に変えて、二酸化炭素の化学吸着量測定を行った。その結果、触媒G前駆体の二酸化炭素化学吸着量は<0.1μmol/gであった。 Also, the amount of chemical adsorption of carbon dioxide was measured by changing the adsorption gas from ammonia gas to carbon dioxide. As a result, the carbon dioxide chemisorption amount of the catalyst G precursor was <0.1 μmol / g.
 (触媒G:Pd/P-SiOの製造)
 上記の触媒G前駆体に、0.2wt%となるように塩化パラジウム水溶液を含浸担持させ、110℃で12h以上乾燥させることで、触媒G:Pd/P-SiOを得た。
(Catalyst G: Production of Pd / P—SiO 2 )
The catalyst G precursor was impregnated with and supported by an aqueous palladium chloride solution at 0.2 wt%, and dried at 110 ° C. for 12 hours or longer to obtain catalyst G: Pd / P—SiO 2 .
 [比較例5]
 (触媒G:Pd/P-SiOによるフェノールの水素化反応)
 触媒G:Pd/P-SiOの1gを1/2インチのステンレス鋼(SUS)製の管に充填し、その上部にガラスビーズ(直径1mm、球形)を10g入れて予熱層とした。触媒層を200℃に加熱し、上部より水素ガス(16cc/min)を流通させ前処理還元を行った後、140℃、0MPa(G)にて、フェノールとシクロヘキサノンの混合物(モル比=1:1)を1.0cc/hで、水素ガスを10cc/minで供給することで、フェノールの水素化反応を行った。
[Comparative Example 5]
(Catalyst G: Hydrogenation reaction of phenol with Pd / P—SiO 2 )
Catalyst G: 1 g of Pd / P—SiO 2 was filled into a 1/2 inch stainless steel (SUS) tube, and 10 g of glass beads (diameter 1 mm, spherical shape) were placed on the top to form a preheated layer. The catalyst layer was heated to 200 ° C., hydrogen gas (16 cc / min) was passed through the top and subjected to pretreatment reduction, and then at 140 ° C. and 0 MPa (G), a mixture of phenol and cyclohexanone (molar ratio = 1: 1) was supplied at 1.0 cc / h and hydrogen gas was supplied at 10 cc / min to carry out a hydrogenation reaction of phenol.
 反応開始から5hの捕集液を切り捨て、その後1hの捕集液をガスクロマトグラフィーにて分析した。その結果、出発原料であるフェノールの転化率は5.2%であり、シクロヘキサノンの選択率は83.8%であり、副生物であるシクロヘキサノールは<0.1%であり、2-シクロヘキシルシクロヘキサノンの選択率は16.1%であった。 The collected liquid for 5 h was discarded from the start of the reaction, and then the collected liquid for 1 h was analyzed by gas chromatography. As a result, the conversion of phenol as a starting material was 5.2%, the selectivity of cyclohexanone was 83.8%, the by-product cyclohexanol was <0.1%, and 2-cyclohexylcyclohexanone. The selectivity of was 16.1%.
 [比較例6]
 (触媒H前駆体:Ca-SiOの製法)
 SiO(富士シリシア化学製、商品名:CARiACT Q-50、球状、1.18-2.36mm)に、Ca/Si(mol比)=0.1となるように硝酸カルシウム水溶液を含浸担持させ、110℃で12h以上乾燥させた。その後、空気雰囲気下600℃で3h焼成して、触媒H前駆体を得た。
[Comparative Example 6]
(Catalyst H precursor: process for producing Ca-SiO 2 )
SiO 2 (manufactured by Fuji Silysia Chemical Co., Ltd., trade name: CARiACT Q-50, spherical, 1.18-2.36 mm) is impregnated and supported with an aqueous calcium nitrate solution so that Ca / Si (mol ratio) = 0.1. , And dried at 110 ° C. for 12 hours or longer. Thereafter, it was calcined at 600 ° C. for 3 hours in an air atmosphere to obtain a catalyst H precursor.
 (触媒H:Pd/Ca-SiOの製造)
 上記の触媒H前駆体に、0.5wt%となるように塩化パラジウム水溶液を含浸担持させ、110℃で12h以上乾燥させることで、触媒H:Pd/Ca-SiOを得た。
(Catalyst H: Production of Pd / Ca—SiO 2 )
The catalyst H precursor was impregnated with and supported by an aqueous palladium chloride solution at 0.5 wt%, and dried at 110 ° C. for 12 hours or longer to obtain catalyst H: Pd / Ca—SiO 2 .
 [比較例7]
 (触媒H:Pd/Ca-SiOによるフェノールの水素化反応)
 触媒H:Pd/Ca-SiOの1gを1/2インチのステンレス鋼(SUS)製の管に充填し、その上部にガラスビーズ(直径1mm、球形)を10g入れて予熱層とした。触媒層を200℃に加熱し、上部より水素ガス(16cc/min)を流通させ前処理還元を行った後、140℃、0MPa(G)にて、フェノールとシクロヘキサノンの混合物(モル比=1:1)を1.0cc/hで、水素ガスを10cc/minで供給することで、フェノールの水素化反応を行った。
[Comparative Example 7]
(Catalyst H: Hydrogenation reaction of phenol with Pd / Ca—SiO 2 )
Catalyst H: 1 g of Pd / Ca—SiO 2 was filled in a 1/2 inch stainless steel (SUS) tube, and 10 g of glass beads (diameter 1 mm, spherical shape) were placed on the top to form a preheated layer. The catalyst layer was heated to 200 ° C., hydrogen gas (16 cc / min) was passed through the top and subjected to pretreatment reduction, and then at 140 ° C. and 0 MPa (G), a mixture of phenol and cyclohexanone (molar ratio = 1: 1) was supplied at 1.0 cc / h and hydrogen gas was supplied at 10 cc / min to carry out a hydrogenation reaction of phenol.
 反応開始から5hの捕集液を切り捨て、その後1hの捕集液をガスクロマトグラフィーにて分析した。その結果、出発原料であるフェノールの転化率は99.9%であり、シクロヘキサノンの選択率は88.0%であり、副生物であるシクロヘキサノールの選択率は11.6%であり、2-シクロヘキシルシクロヘキサノンの選択率は0.4%であった。 The collected liquid for 5 h was discarded from the start of the reaction, and then the collected liquid for 1 h was analyzed by gas chromatography. As a result, the conversion rate of phenol as a starting material was 99.9%, the selectivity of cyclohexanone was 88.0%, the selectivity of cyclohexanol as a by-product was 11.6%, The selectivity for cyclohexylcyclohexanone was 0.4%.
 [比較例8]
 (触媒I前駆体:0.01Ca-0.05P-SiOの製造)
 SiO(富士シリシア化学製、商品名:CARiACT Q-50、球状、1.18-2.36mm)に、Ca/Si(mol比)=0.01、P/Si(mol比)=0.05となるように硝酸カルシウム水溶液及びリン酸水溶液を含浸担持させ、110℃で12h以上乾燥させた。その後、空気雰囲気下600℃で3h焼成して、触媒I前駆体を得た。触媒I前駆体のBET比表面積は53m/gであった。
[Comparative Example 8]
(Catalyst I precursor: production of 0.01Ca-0.05P-SiO 2 )
SiO 2 (manufactured by Fuji Silysia Chemical Co., Ltd., trade name: CARiACT Q-50, spherical, 1.18-2.36 mm), Ca / Si (mol ratio) = 0.01, P / Si (mol ratio) = 0. A calcium nitrate aqueous solution and a phosphoric acid aqueous solution were impregnated and supported so as to be 05, and dried at 110 ° C. for 12 hours or more. Thereafter, it was calcined at 600 ° C. for 3 hours in an air atmosphere to obtain a catalyst I precursor. The BET specific surface area of the catalyst I precursor was 53 m 2 / g.
 (触媒I前駆体のアンモニア及び二酸化炭素の化学吸着量測定)
 触媒I前駆体1.5gをガラス製サンプルセルに入れ、4Pa以下にて、380℃で2h加熱した(前処理)。次に、アンモニアの化学吸着量測定を行うため、前処理された触媒I前駆体を、サンプルセルのまま高性能・全自動ガス吸着量測定装置Autosorb-1-C型(商品名、ユアサアイオニクス社製)に設置した。
(Measurement of chemisorption amount of ammonia and carbon dioxide of catalyst I precursor)
1.5 g of the catalyst I precursor was placed in a glass sample cell and heated at 380 ° C. for 2 h at 4 Pa or less (pretreatment). Next, in order to measure the amount of chemical adsorption of ammonia, the pretreated catalyst I precursor is used as a sample cell in a high-performance, fully automatic gas adsorption amount measurement device Autosorb-1-C (trade name, Yuasa Ionics). Installed).
 触媒I前駆体をヒーターにより50℃で保温し、真空状態から徐々にアンモニアガスをサンプルセルに導入し、絶対圧5.3kPaから5.3kPa間隔で106.7kPaまで合計20点で吸着量(即ち、化学吸着量と物理吸着量を合わせた全吸着量)を測定(測定温度:50℃、熱平衡時間:60分、圧力公差:4、吸着平衡時間:2分)し、全吸着等温線(化学吸着と物理吸着の両方を含む)を作成した。 The catalyst I precursor was kept at 50 ° C. with a heater, and ammonia gas was gradually introduced from the vacuum state into the sample cell, and the adsorption amount (ie, the absolute amount from 5.3 kPa to 5.3 kPa at 106.7 kPa at a total of 20 points) Measure the total adsorption amount of the chemical adsorption amount and the physical adsorption amount (measurement temperature: 50 ° C., thermal equilibrium time: 60 minutes, pressure tolerance: 4, adsorption equilibrium time: 2 minutes), and determine the total adsorption isotherm (chemical Including both adsorption and physical adsorption).
 その後、高真空で排気することにより物理吸着したアンモニアを除去し、再度絶対圧5.3kPaから5.3kPa間隔で106.7kPaまで合計20点で吸着量(即ち、物理吸着量)を測定し、物理吸着等温線を作成した。全吸着量と物理吸着量の差から化学吸着等温線を作成し、これをP=0に外挿した。その結果、触媒I前駆体のアンモニア化学吸着量は148μmol/gであった。 Thereafter, the physically adsorbed ammonia is removed by exhausting in a high vacuum, and the adsorbed amount (that is, the physical adsorbed amount) is measured again at a total of 20 points from 5.3 kPa to 106.7 kPa at intervals of 5.3 kPa, A physical adsorption isotherm was created. A chemical adsorption isotherm was created from the difference between the total adsorption amount and the physical adsorption amount, and extrapolated to P = 0. As a result, the ammonia chemisorption amount of the catalyst I precursor was 148 μmol / g.
 また、吸着ガスをアンモニアガスから二酸化炭素に変えて、二酸化炭素の化学吸着量測定を行った。その結果、触媒I前駆体の二酸化炭素化学吸着量は<0.1μmol/gであった。 Also, the amount of chemical adsorption of carbon dioxide was measured by changing the adsorption gas from ammonia gas to carbon dioxide. As a result, the carbon dioxide chemisorption amount of the catalyst I precursor was <0.1 μmol / g.
 (触媒I:Pd/0.01Ca-0.05P-SiOの製造)
 上記の触媒I前駆体に、0.5wt%となるように塩化パラジウム水溶液を含浸担持させ、110℃で12h以上乾燥させることで、触媒I:Pd/0.01Ca-0.05P-SiOを得た。
(Catalyst I: Production of Pd / 0.01Ca-0.05P-SiO 2 )
The catalyst I precursor was impregnated with and supported by an aqueous palladium chloride solution at 0.5 wt%, and dried at 110 ° C. for 12 hours or longer to obtain catalyst I: Pd / 0.01Ca-0.05P-SiO 2 . Obtained.
 [比較例9]
 (触媒I:Pd/0.01Ca-0.05P-SiOによるフェノールの水素化反応)
 触媒I:Pd/0.01Ca-0.05P-SiOの1gを1/2インチのステンレス鋼(SUS)製の管に充填し、その上部にガラスビーズ(直径1mm、球形)を10g入れて予熱層とした。触媒層を200℃に加熱し、上部より水素ガス(26cc/min)を流通させ前処理還元を行った後、140℃、0MPa(G)にて、フェノールとシクロヘキサノンの混合物(モル比=1:1)を1.0cc/hで、水素ガスを10cc/minで供給することで、フェノールの水素化反応を行った。
[Comparative Example 9]
(Catalyst I: Hydrogenation reaction of phenol with Pd / 0.01Ca-0.05P-SiO 2 )
Catalyst I: 1 g of Pd / 0.01Ca-0.05P-SiO 2 was filled into a 1/2 inch stainless steel (SUS) tube, and 10 g of glass beads (diameter 1 mm, spherical) were placed on the top. A preheating layer was used. The catalyst layer was heated to 200 ° C., hydrogen gas (26 cc / min) was passed from the top and pretreatment reduction was performed, and then a mixture of phenol and cyclohexanone (molar ratio = 1: 2) at 140 ° C. and 0 MPa (G). 1) was supplied at 1.0 cc / h and hydrogen gas was supplied at 10 cc / min to carry out a hydrogenation reaction of phenol.
 反応開始から2hの捕集液を切り捨て、その後1hの捕集液をガスクロマトグラフィーにて分析した。その結果、出発原料であるフェノールの転化率は21.9%であり、シクロヘキサノンの選択率は95.9%であり、副生物であるシクロヘキサノールの選択率は0.1%であり、2-クロヘキシルシクロヘキサノンの選択率は4.0%であった。 The collected liquid for 2 hours was discarded from the start of the reaction, and then the collected liquid for 1 h was analyzed by gas chromatography. As a result, the conversion rate of phenol as a starting material was 21.9%, the selectivity of cyclohexanone was 95.9%, the selectivity of cyclohexanol as a by-product was 0.1%, The selectivity for cyclohexyl cyclohexanone was 4.0%.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
1  反応管
2  触媒層
3  予熱層
4  石英ウール
5  底板
6  ヒーター
7  フェノール
8  水素
1 reaction tube 2 catalyst layer 3 preheating layer 4 quartz wool 5 bottom plate 6 heater 7 phenol 8 hydrogen

Claims (7)

  1.  担体にリンとアルカリ金属及び/又はアルカリ土類金属を含有させた触媒前駆体に、白金族金属が担持された水素化触媒であって、
    前記触媒前駆体の50℃におけるアンモニアの化学吸着量が、100μmol/g以下である水素化触媒。
    A hydrogenation catalyst in which a platinum group metal is supported on a catalyst precursor containing phosphorus and an alkali metal and / or an alkaline earth metal on a carrier,
    A hydrogenation catalyst having an ammonia chemisorption amount of the catalyst precursor at 50 ° C. of 100 μmol / g or less.
  2.  前記触媒前駆体の50℃における二酸化炭素の化学吸着量が、15μmol/g以下である請求項1に記載の水素化触媒。 2. The hydrogenation catalyst according to claim 1, wherein a chemical adsorption amount of carbon dioxide at 50 ° C. of the catalyst precursor is 15 μmol / g or less.
  3.  前記担体が、シリカ、アルミナ、シリカアルミナ、ジルコニア及び活性炭からなる少なくとも1種である請求項1又は2に記載の水素化触媒。 The hydrogenation catalyst according to claim 1 or 2, wherein the carrier is at least one of silica, alumina, silica alumina, zirconia and activated carbon.
  4.  フェノール又はその誘導体の水素化触媒である請求項1~3のいずれか1項に記載の水素化触媒。 The hydrogenation catalyst according to any one of claims 1 to 3, which is a hydrogenation catalyst of phenol or a derivative thereof.
  5.  前記フェノール又はその誘導体が、下記式(1)で表される請求項4に記載の水素化触媒。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、R、R、R、R及びRは、それぞれ互いに独立に、水素原子、ヒドロキシ基、フェノール基、フェニル基、C1~C10のアルキル基又はC1~C10アルコキシ基である。]
    The hydrogenation catalyst according to claim 4, wherein the phenol or a derivative thereof is represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    [In the formula (1), R 1 , R 2 , R 3 , R 4 and R 5 are each independently a hydrogen atom, a hydroxy group, a phenol group, a phenyl group, a C1-C10 alkyl group or a C1-C10 An alkoxy group; ]
  6.  請求項1~5のいずれか1項に記載の水素化触媒の製造方法であって、
    アルカリ金属及び/又はアルカリ土類金属供給源、水、担体及びリン供給源を混合する工程と、
    前記水を蒸発させてから焼成することで、触媒前駆体を得る工程と、
    前記触媒前駆体に白金族金属を担持させる工程と
    を有する水素化触媒の製造方法。
    A method for producing a hydrogenation catalyst according to any one of claims 1 to 5,
    Mixing an alkali metal and / or alkaline earth metal source, water, carrier and phosphorus source;
    Calcination after evaporating the water to obtain a catalyst precursor;
    And a step of supporting a platinum group metal on the catalyst precursor.
  7.  請求項4又は5に記載の水素化触媒を用いてフェノール又はその誘導体を水素化するシクロヘキサノン又はその誘導体の製造方法。 A process for producing cyclohexanone or a derivative thereof, in which phenol or a derivative thereof is hydrogenated using the hydrogenation catalyst according to claim 4 or 5.
PCT/JP2015/061652 2014-04-22 2015-04-16 Hydrogenation catalyst, method for producing same, and method for producing cyclohexanone or derivative thereof using same WO2015163221A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016514884A JP6075506B2 (en) 2014-04-22 2015-04-16 HYDROGENATION CATALYST, PROCESS FOR PRODUCING THE SAME, AND PROCESS FOR PRODUCING CYCLOHEXANONE OR ITS DERIVATIVE USING THE SAME

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2014087993 2014-04-22
JP2014-087993 2014-04-22
JP2014088001 2014-04-22
JP2014-088001 2014-04-22
JP2014169235 2014-08-22
JP2014169224 2014-08-22
JP2014-169235 2014-08-22
JP2014-169224 2014-08-22

Publications (1)

Publication Number Publication Date
WO2015163221A1 true WO2015163221A1 (en) 2015-10-29

Family

ID=54332388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061652 WO2015163221A1 (en) 2014-04-22 2015-04-16 Hydrogenation catalyst, method for producing same, and method for producing cyclohexanone or derivative thereof using same

Country Status (2)

Country Link
JP (1) JP6075506B2 (en)
WO (1) WO2015163221A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018057289A1 (en) 2016-09-20 2018-03-29 Rohm And Haas Company Method of hydrogenation of phenol
CN111514888A (en) * 2020-04-29 2020-08-11 青岛科技大学 Synthesis method of core-shell type double-active-site catalyst and method for preparing cyclohexanone by catalyzing phenol by using core-shell type double-active-site catalyst

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1332211A (en) * 1971-02-05 1973-10-03 Leuna Werke Veb Process for the production of cyclohexanone by catalytic hydro genation of phenol
WO2000067902A1 (en) * 1999-05-07 2000-11-16 Dsm N.V. Stable catalysts and processes for making and using the same
JP2007269885A (en) * 2006-03-30 2007-10-18 Nippon Oil Corp Method for hydrogenation refining of fuel base
JP2012519582A (en) * 2009-03-04 2012-08-30 シェブロン フィリップス ケミカル カンパニー エルピー Selective hydrogenation catalyst and method for producing and using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003128615A (en) * 2001-10-26 2003-05-08 Mitsubishi Chemicals Corp Production method of cyclohexanone and/or its ketal
JP2008518001A (en) * 2004-10-27 2008-05-29 ディーエスエム アイピー アセッツ ビー.ブイ. Process for producing cyclohexanol and cyclohexanone

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1332211A (en) * 1971-02-05 1973-10-03 Leuna Werke Veb Process for the production of cyclohexanone by catalytic hydro genation of phenol
WO2000067902A1 (en) * 1999-05-07 2000-11-16 Dsm N.V. Stable catalysts and processes for making and using the same
JP2007269885A (en) * 2006-03-30 2007-10-18 Nippon Oil Corp Method for hydrogenation refining of fuel base
JP2012519582A (en) * 2009-03-04 2012-08-30 シェブロン フィリップス ケミカル カンパニー エルピー Selective hydrogenation catalyst and method for producing and using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YONG WANG E ET AL.: "Highly Selective Hydrogenation of Phenol and Derivatives over a Pd@Carbon Nitride Catalyst in Aqueous Media", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 133, no. 8, pages 2362 - 2365, XP055232929 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018057289A1 (en) 2016-09-20 2018-03-29 Rohm And Haas Company Method of hydrogenation of phenol
CN111514888A (en) * 2020-04-29 2020-08-11 青岛科技大学 Synthesis method of core-shell type double-active-site catalyst and method for preparing cyclohexanone by catalyzing phenol by using core-shell type double-active-site catalyst
CN111514888B (en) * 2020-04-29 2024-02-09 青岛科技大学 Synthesis method of core-shell double-active-site catalyst and method for preparing cyclohexanone by catalyzing phenol by using same

Also Published As

Publication number Publication date
JP6075506B2 (en) 2017-02-08
JPWO2015163221A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
Cheng et al. Highly selective hydrogenation of phenol and derivatives over Pd catalysts supported on SiO2 and γ-Al2O3 in aqueous media
TWI520779B (en) Cyclohexanone dehydrogenation catalyst and process
JP6075506B2 (en) HYDROGENATION CATALYST, PROCESS FOR PRODUCING THE SAME, AND PROCESS FOR PRODUCING CYCLOHEXANONE OR ITS DERIVATIVE USING THE SAME
Bastiani et al. Influence of thermal treatments on the basic and catalytic properties of Mg, Al-mixed oxides derived from hydrotalcites
KR20150126044A (en) Method for producing cyclohexanone compound
EP2531480B1 (en) Dehydrogenation process
Ruiz et al. Meerwein–Ponndorf–Verley reaction of acetophenones with 2-propanol over MgAl mixed oxide: The substituent effect
Patankar et al. Cascade engineered synthesis of ethyl benzyl acetoacetate and methyl isobutyl ketone (MIBK) on novel multifunctional catalyst
WO2013146370A1 (en) Method for producing 3-alkoxy-3-methyl-1-butanol
Stolle et al. Liquid phase hydrogenation of benzalacetophenone: Effect of solvent, catalyst support, catalytic metal and reaction conditions
EP3263212A1 (en) Catalyst for 1, 3-butadiene synthesis, method for producing catalyst for 1, 3-butadiene synthesis, apparatus for producing 1, 3-butadiene, and method for producing 1, 3-butadiene
Pérez et al. Influence of basic properties of Mg, Al-mixed oxides on their catalytic activity in knoevenagel condensation between benzaldehyde and phenylsulfonylacetonitrile
JP5928460B2 (en) Method for preparing pseudoionone
Vinu et al. ortho-Selective ethylation of phenol with ethanol catalyzed by bimetallic mesoporous catalyst, CoAl-MCM-41
JP5738439B2 (en) Olefin production method
JP6379865B2 (en) Hydrogenation method, pretreatment method for hydrogenation catalyst, and hydrogenation catalyst using the same
JP6350122B2 (en) Method for producing cyclohexanone and catalyst thereof
Fujitsuka et al. Optimization of allyl alcohol production from glycerol over iron oxide catalyst
JP6462498B2 (en) Process for producing unsaturated alcohol and catalyst
KR102110743B1 (en) Method for producing saturated aldehyde from 1,2-alkanediol
Jiang et al. The catalytic performance of gas-phase amination over Pd–La catalysts supported on Al2O3 and MgAl2O4 spinel
KR101178940B1 (en) Catalyst For Manufacturing Alkylamine And Its Preparing Method
JP7175915B2 (en) Method for producing cyclic ether
JP6094428B2 (en) Method and apparatus for producing cyclohexanone
JP5776872B2 (en) Process for producing hydroxyketone from polyhydric alcohol

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15782329

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016514884

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15782329

Country of ref document: EP

Kind code of ref document: A1