WO2015163052A1 - Cooling device for internal combustion engine - Google Patents

Cooling device for internal combustion engine Download PDF

Info

Publication number
WO2015163052A1
WO2015163052A1 PCT/JP2015/058294 JP2015058294W WO2015163052A1 WO 2015163052 A1 WO2015163052 A1 WO 2015163052A1 JP 2015058294 W JP2015058294 W JP 2015058294W WO 2015163052 A1 WO2015163052 A1 WO 2015163052A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling device
container
exhaust
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2015/058294
Other languages
French (fr)
Japanese (ja)
Inventor
正和 田畑
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2016514814A priority Critical patent/JPWO2015163052A1/en
Publication of WO2015163052A1 publication Critical patent/WO2015163052A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a cooling device for an internal combustion engine, and more particularly to a cooling device that cools exhaust gas that becomes high temperature under high load.
  • Patent Document 2 discloses that a bypass passage that bypasses the heat exchanger disposed in the exhaust passage is provided, and the exhaust gas path is switched between the heat exchanger and the bypass passage by a valve.
  • a valve that is exposed to high-temperature exhaust gas is required to have high heat resistance, but high cost is required to satisfy such a requirement.
  • the effect of lowering the temperature of the exhaust gas is increased as the load is higher, the cooling effect when the exhaust gas is passed through the heat exchanger becomes lower as the flow rate of the exhaust gas increases.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a cooling device having a self-adjusting function that automatically increases the cooling capacity in accordance with an increase in the load of the internal combustion engine. .
  • the cooling device includes a container having one gas inlet / outlet, a cooler core disposed inside the container, a branch from the exhaust passage in a section from the exhaust valve to the catalyst, and the exhaust passage and the inlet / outlet of the container. And a connecting pipe to be connected.
  • the shape of the container may be cylindrical, bag-like, or more complicated as long as there is only one gas inlet / outlet.
  • the cooler core is preferably a heat exchanger that cools the internal gas by heat exchange with other fluids.
  • the connecting pipe preferably branches from the exhaust passage in a section from the exhaust valve to the turbocharger turbine.
  • the container and the connecting pipe are configured to satisfy the following relationship.
  • the following relationship is a condition in which exhaust gas flows into the cooling space in the container through the connecting pipe due to pressure pulsation in the exhaust passage, and the replacement efficiency of the gas in the cooling space increases as the load increases.
  • the container and the connecting pipe are preferably such that the resonance frequency of the internal gas is greater than 0.5 times and less than 1.5 times the frequency of the pressure pulsation generated in the exhaust passage when the internal combustion engine outputs the maximum torque. Configured. This is a condition in which the resonance pressure in the container and the connecting pipe is synchronized with the pressure pulsation in the exhaust passage, and the inflow of exhaust gas into the cooling space and the exhaust of exhaust gas from the cooling space are efficiently repeated.
  • a marginal space is provided between the rear end surface of the cooler core and the container.
  • V3 the volume of the cooler core
  • V4 the volume of the extra space provided between the rear end face of the cooler core and the container
  • V4 the container and the connecting pipe are configured to satisfy the following relationship as well. Is more preferable.
  • the following relationship is a condition for exhaust gas to reach the interior of the container through the cooling space at a high load, that is, a condition that can further improve the efficiency of replacing the gas in the cooling space.
  • the exhaust gas flows into the container through the connecting pipe by the pressure pulsation in the exhaust passage, and the exhaust gas is cooled by the cooler core in the container.
  • the efficiency of gas replacement in the cooling space is low during low-load operation where the ratio between the minimum and maximum exhaust pressure is small, and increases as the ratio between the minimum and maximum exhaust pressure increases as the load increases. Go. That is, according to the cooling device according to the present invention, a self-adjusting function is realized in which the cooling capacity automatically increases as the load of the internal combustion engine increases.
  • FIG. 1 is a diagram showing an internal combustion engine 2 with a turbocharger provided with a cooling device 101 according to Embodiment 1 of the present invention.
  • the internal combustion engine 2 is a four-stroke one-cycle engine and is an in-line four-cylinder engine in which four cylinders are provided in series.
  • the internal combustion engine 2 may be configured as a spark ignition engine, or may be configured as a compression self-ignition engine.
  • the cylinder head 4 of the internal combustion engine 2 is formed with an intake port 8 and an exhaust port 10 leading to the combustion chamber 6.
  • An intake valve 12 is provided between the combustion chamber 6 and the intake port 8, and an exhaust valve 14 is provided between the combustion chamber 6 and the exhaust port 10.
  • An intake pipe 16 is connected to the intake port 8, and an exhaust pipe 24 is connected to the exhaust port 10.
  • the intake port 8 and the intake pipe 16 are combined to form an intake passage, and the exhaust port 10 and the exhaust pipe 24 are combined to form an exhaust passage.
  • a compressor 32 of a turbocharger 30 is attached to the intake pipe 16, and a turbine 34 of the turbocharger 30 is attached to the exhaust pipe 24.
  • An intercooler 20 is provided downstream of the compressor 32 in the intake pipe 16, and a throttle valve 18 is provided downstream of the intercooler 20.
  • a catalyst 26 for purifying the exhaust gas is provided downstream of the turbine 34 in the exhaust pipe 24.
  • the internal combustion engine 2 includes an actuator such as a fuel injection device, a variable valve timing mechanism, and an ignition device, and
  • the cooling device 101 of Embodiment 1 is attached upstream of the turbine 34 in the exhaust pipe 24.
  • the cooling device 101 includes a water-cooled cooler core (hereinafter, water-cooled cooler) 120.
  • FIG. 2 is a diagram showing in detail the mounting position of the cooling device 101 in the exhaust pipe 24.
  • the exhaust pipe 24 is attached to the cylinder head 4 and includes an exhaust manifold connected to the exhaust ports of the cylinders # 1, # 2, # 3, and # 4.
  • a hole 40 is formed in the junction where the four branch pipes of the exhaust manifold merge, and the cooling device 101 is attached to the hole 40.
  • FIG. 3 is a graph showing changes in the exhaust pipe pressure acting on the position of the hole 40 depending on the crank angle.
  • the exhaust pipe pressure shown in the graph is an absolute pressure.
  • changes in the exhaust pipe pressure under various intake pipe pressures pressures downstream of the throttle valve) are drawn with different line types.
  • the exhaust pipe pressure periodically increases and decreases. Since the internal combustion engine 2 is an in-line four-cylinder engine, the pulsation cycle of the exhaust pipe pressure is 180 degrees.
  • the exhaust pipe pressure changes from the lowest pressure to the highest pressure the exhaust gas flows into the cooling device 101 from the hole 40, and when the exhaust pipe pressure changes from the highest pressure to the lowest pressure, the cooling device 101 enters the hole 40. Exhaust gas is discharged.
  • the inflow amount and the exhaust amount of exhaust gas per cycle increase as the amplitude of the exhaust pipe pressure pulsation increases.
  • the minimum and maximum exhaust pipe pressures both increase as the intake pipe pressure increases, and the pulsation amplitude increases as the intake pipe pressure increases. Therefore, when the intake pipe pressure is the highest, the inflow amount and the exhaust amount per cycle of the exhaust gas are maximized, and the inflow amount and the exhaust amount decrease as the intake pipe pressure decreases.
  • FIG. 4 is a graph showing the change of the exhaust pipe pressure acting on the position of the hole 40 when the intake pipe pressure is the highest, depending on the crank angle. Since the intake pipe pressure is proportional to the air flow rate, this graph shows a change in the exhaust pipe pressure at the maximum load, that is, when the internal combustion engine 2 outputs the maximum torque. The magnitude of the torque output from the internal combustion engine 2 depends on the rotational speed of the internal combustion engine 2, but the maximum torque in this specification means the maximum torque at all the rotational speeds.
  • the maximum exhaust pipe pressure at the maximum torque is defined as “B”
  • the minimum exhaust pipe pressure at the maximum torque is defined as “C”.
  • the values of B and C are not obtained on-board, but are values obtained in advance in a test.
  • the ratio of C to B is defined as “A”.
  • a defined as above is the minimum value of the ratio of the minimum pressure to the maximum pressure of the exhaust pipe pressure.
  • the cooling device 101 according to the first embodiment is designed based on the value A.
  • FIG. 5 is a diagram showing details of the cooling device 101 of the first embodiment.
  • the cooling device 101 includes a container 112 including a water-cooled cooler 120 and a connection pipe 110 that branches from the exhaust pipe 24 at the hole 40 and connects the container 112 to the exhaust pipe 24.
  • the water cooling cooler 120 is a heat exchanger that cools the exhaust gas in the container 112 by heat exchange with cooling water.
  • the structure of the water-cooled cooler 120 is not limited, and for example, a structure used in an EGR cooler can be used.
  • a water supply pipe that supplies cooling water to the water-cooled cooler 120 and a drain pipe that discharges cooling water from the water-cooled cooler 120 are connected to the container 112, but these are not shown.
  • a margin space is provided between the cooling space cooled by the water-cooled cooler 120 and the container 112, but this margin space may not be provided.
  • the exhaust gas flowing through the exhaust pipe 24 is pushed into the connection pipe 110 by the pulsation of the pressure of the exhaust pipe 24 and further pushed into the container 112.
  • whether or not the exhaust gas reaches the cooling space cooled by the water-cooled cooler 120 depends on the relationship between the magnitude of the pulsation of the exhaust pipe pressure and the structure of the cooling device 101.
  • the volume from the position of the hole 40 that is the branch point of the connecting pipe 110 to the front end surface 122 of the water-cooled cooler 120 is “V1”
  • the volume of the container 112 on the back side from the front end surface 122 of the water-cooled cooler 120 is “V2”.
  • V2 includes the volume of the space in which the exhaust gas in the water-cooled cooler 120 flows (effective cooling volume), but does not include the volume of the portion of the water-cooled cooler 120 through which the cooling water flows.
  • V1 and V2 defined here and A defined earlier are used, the condition for the exhaust gas to reach the water-cooled cooler 120 is expressed by the following relational expression (1).
  • Equation (1) is a condition under which the exhaust gas can reach the water-cooled cooler 120 when the internal combustion engine 2 outputs the maximum torque. As the value on the left side is smaller than the value on the right side, the exhaust gas can reach deeper in the water-cooled cooler 120. The value on the right side is determined by the specifications of the internal combustion engine 2, and the value on the left side is determined by the structure of the cooling device 101. The cooling device 101 is configured so that the relationship of the expression (1) is satisfied.
  • FIG. 6 is a graph showing the effect obtained by configuring the cooling device 101 as described above.
  • the horizontal axis of the graph is the torque of the internal combustion engine 2, and the vertical axis is the outlet temperature of the turbine 34.
  • the temperature described as having a cooler in the graph is a temperature when the cooling device 101 is provided.
  • the temperature indicated as “no cooler” is a temperature when the cooling device 101 is not provided.
  • the exhaust gas does not reach the water-cooled cooler 120 or does not enter the water-cooled cooler 120 even if it reaches.
  • the exhaust gas enters into the water-cooled cooler 120.
  • the temperature fall of exhaust gas by cooling with the water cooling cooler 120 becomes large, so that the reach distance of the exhaust gas in the water cooling cooler 120 becomes long.
  • a cooling effect corresponding to the load as shown in the graph can be obtained.
  • the cooling device 101 of the first embodiment is provided with a self-adjusting function that automatically increases the cooling capacity when the load of the internal combustion engine 2 increases.
  • the exhaust gas temperature can be reduced to protect the exhaust system components.
  • the exhaust gas temperature is not unnecessarily lowered during low load operation, it is possible to prevent the acceleration response of the turbocharger 30 from deteriorating and the activation delay of the catalyst 26 at the start.
  • FIG. FIG. 7 is a diagram showing the turbocharged internal combustion engine 2 provided with the cooling device 102 according to the second embodiment of the present invention.
  • the cooling device 102 according to the second embodiment is configured by adding an expansion pipe 130 to the cooling device 101 according to the first embodiment.
  • FIG. 8 is a diagram showing details of the cooling device 102 according to the second embodiment.
  • the cooling device 102 according to the second embodiment includes a connection pipe 110, a container 112, and an expansion pipe 130.
  • the expansion tube 130 is attached to the side of the container 112 opposite to the side to which the connection tube 110 is connected.
  • the distal end (that is, the end opposite to the side attached to the container 112) 132 of the expansion tube 130 is closed.
  • one structure including the container 112 and the expansion tube 130 corresponds to the “container” in the present invention.
  • valves may be provided in the connecting pipe 110 and the extension pipe 130 to restrict the inflow of exhaust gas to these and the exhaust gas from them.
  • the volume of the margin space behind the water-cooled cooler 120 viewed from the hole 40 is increased. If the marginal space behind the water-cooled cooler 120 is large, the exhaust gas easily reaches the back of the water-cooled cooler 120 correspondingly. As the exhaust gas reaches deeper in the water-cooled cooler 120, the efficiency of replacing the gas in the water-cooled cooler 120 increases, and the cooling effect of the exhaust gas by the water-cooled cooler 120 increases.
  • the effective cooling volume of the water-cooled cooler 120 (the volume of the space in which the exhaust gas in the water-cooled cooler 120 circulates) is “V3”, and the volume of the marginal space from the rear end surface 124 of the water-cooled cooler 120 to the tip 132 of the expansion pipe 130. Is defined as “V4”.
  • V3 and V4 corresponds to V2 defined above.
  • V3 and V4 defined here and A and V1 defined above are used, the condition for the exhaust gas to reach the margin space behind the water-cooled cooler 120 is expressed by the following relational expression (2). (V1 + V3) / (V1 + V3 + V4) ⁇ 1-A (2)
  • Equation (2) is a condition that allows the exhaust gas to reach the marginal space behind the water-cooled cooler 120 when the internal combustion engine 2 outputs the maximum torque.
  • the exhaust gas can reach the back of the marginal space, that is, near the tip 132 of the expansion tube 130.
  • the value on the right side is determined by the specifications of the internal combustion engine 2
  • the value on the left side is determined by the structure of the cooling device 102.
  • the cooling device 102 is configured so that the relationship of the expression (2) is satisfied.
  • FIG. 9 is a diagram showing the pulsation of the pressure generated in the exhaust pipe 24 and the resonance of the air column in the cooling device 102 side by side.
  • the lower graph in FIG. 9 shows the change in turbine inlet pressure (exhaust pipe pressure) depending on the crank angle.
  • the resonance frequency is smaller than the frequency of the exhaust pipe pressure pulsation, that is, when one cycle of the exhaust pulsation is shorter than one wavelength of the vibrating air column (case 2), the exhaust pulsation peak and the resonance peak However, the resonance valley shifts to the retard side with respect to the exhaust pulsation valley.
  • the resonance valley overlaps the exhaust pulsation peak as in the case 2, the exhaust gas is hardly discharged from the cooling device 102 to the exhaust pipe 24. Therefore, in order for the exhaust gas to be discharged from the cooling device 102, it is necessary that a resonance valley has arrived before the exhaust pulsation peak arrives.
  • the resonance frequency needs to be larger than 1 ⁇ 2 times the pulsation frequency of the exhaust pipe pressure.
  • the resonance frequency is higher than the frequency of the exhaust pipe pressure pulsation, that is, when one cycle of the exhaust pulsation is longer than one wavelength of the vibrating air column (case 3), the exhaust pulsation peak and the resonance peak However, the resonance valley shifts to the advance side with respect to the exhaust pulsation valley. Even when the resonance valley overlaps the exhaust pulsation peak as in the case 3, the exhaust gas is hardly discharged from the cooling device 102 to the exhaust pipe 24. Therefore, in order for the exhaust gas to be discharged from the inside of the cooling device 102, it is necessary that the resonance valley arrive after the exhaust pulsation peak arrives. For this purpose, the resonance frequency needs to be smaller than 3/2 times the pulsation frequency of the exhaust pipe pressure.
  • the resonance frequency of the gas inside the cooling device 102 is greater than 0.5 times and less than 1.5 times the frequency of the pulsation of the exhaust pipe pressure when the internal combustion engine 2 outputs the maximum torque. desirable. This also applies to the cooling device 101 of the first embodiment. It is desirable that the shapes of the connecting pipe 110 and the container 112 are adjusted so that the above-described condition regarding the resonance frequency is satisfied.
  • the resonance frequency of the internal gas can be adjusted by the length of the expansion pipe 130.
  • FIG. 10 is a graph showing the relationship between the length of the expansion pipe 130, the temperature of the exhaust gas, and the resonance frequency of the gas inside the cooling device 102.
  • the temperature of the exhaust gas inside the cooling device 102 is cooled to about 100 ° C. by the cooling by the water cooling cooler 120. Therefore, assuming that the temperature of the exhaust gas is 100 ° C., the length of the expansion pipe 130 is determined so that the resonance frequency falls within the range of 0.5 to 1.5 times the pulsation frequency of the exhaust pipe pressure. Good. More preferably, the length of the expansion pipe 130 is set to the pulsation frequency of the exhaust pipe pressure as much as possible so that the resonance frequency is within the above-described desired range at the same time that the relationship of the expression (2) is satisfied. Adjusted to match.
  • FIG. 11 is a graph showing the relationship between the length of the expansion tube 130 and the cooling effect.
  • the cooling effect of the cooling device 102 that is, the amount of decrease in the temperature of the exhaust gas by the cooling device 102 becomes maximum when the length of the expansion pipe 130 is about 830 mm, and even if longer than that, Moreover, even if it is shorter than that, the cooling effect of the cooling device 102 is reduced. Therefore, in the example shown in this graph, it can be seen that 830 mm is the most desirable length of the expansion tube 130.
  • the length of 830 mm is a length that satisfies the relationship of the expression (2) and at the same time the resonance frequency falls within the range of 0.5 to 1.5 times the pulsation frequency of the exhaust pipe pressure.
  • the cooling device 102 of the second embodiment not only a self-adjusting function that automatically increases the cooling capacity when the load of the internal combustion engine 2 increases but also the cooling capacity of the water cooling cooler 120 is provided. Can be used more effectively.
  • FIG. FIG. 12 is a diagram showing the turbocharged internal combustion engine 2 provided with the cooling device 103 according to the third embodiment of the present invention.
  • the cooling device 103 according to the third embodiment includes an expansion container 140 having a throttle instead of the cylindrical expansion tube 130 provided in the cooling device 102 according to the second embodiment.
  • one structure including the container 112 and the expansion container 140 corresponds to the “container” in the present invention. If it is bowl-shaped like this expansion container 140, the volume of the extra space behind the water-cooled cooler 120, that is, V4 in equation (2) can be increased.
  • the resonance frequency of the gas inside the cooling device 103 can be adjusted by the volume of the expansion container 140 and the diameter of the throttle. Therefore, in the cooling device 103 of the third embodiment, the volume and throttle diameter of the expansion container 140 are adjusted so that the resonance frequency falls within the range of 0.5 to 1.5 times the pulsation frequency of the exhaust pipe pressure.
  • FIG. FIG. 13 is a diagram showing the turbocharged internal combustion engine 2 including the cooling device 104 according to the fourth embodiment of the present invention.
  • the cooling device 104 of the fourth embodiment has the same structure as the cooling device 103 of the third embodiment. However, while the cooling device 103 according to the third embodiment is connected to the exhaust pipe (more specifically, the collection portion of the exhaust manifold), the cooling device 104 according to the fourth embodiment is provided for each cylinder. Connected to the exhaust port 10. More specifically, a passage branched from the exhaust port 10 is formed in the cylinder head 4, and the cooling device 104 is attached to the passage. For this reason, only the pulsation of the pressure of the exhaust gas discharged from one cylinder acts on the cooling device 104.
  • the period of pressure pulsation is one cycle, that is, 720 degrees.
  • the resonance frequency of the gas inside the cooling device 104 falls within the range of 0.5 to 1.5 times the frequency of the pressure pulsation with respect to the pressure pulsation having a period of 720 degrees. In this way, the volume and the diameter of the expansion container 140 are adjusted. According to the cooling device 104 of the fourth embodiment, the temperature of the exhaust gas in the exhaust port 10 can be lowered to cool the exhaust valve 14 in a thermally severe environment.
  • FIG. FIG. 14 is a diagram showing the turbocharged internal combustion engine 2 including the cooling device 105 according to the fifth embodiment of the present invention.
  • the cooling device 105 of the fifth embodiment has the same structure as the cooling device 103 of the third embodiment. However, the cooling device 105 of the fifth embodiment is attached upstream of the wastegate valve 38 in the bypass passage 36 that bypasses the turbine 34.
  • the cooling device 105 according to the fifth embodiment is particularly provided for cooling the waste gate valve 38.
  • the bypass passage 36 to which the cooling device 105 is attached has the same pressure pulsation as that of the upstream exhaust pipe 24, but the exhaust gas flow rate is small. For this reason, according to the cooling device 105 of the fifth embodiment, a high cooling effect can be obtained for the exhaust gas flowing through the bypass passage 36.
  • FIG. FIG. 15 is a diagram showing the turbocharged internal combustion engine 2 provided with the cooling device 106 according to the sixth embodiment of the present invention.
  • the entire cooling device 106 according to the sixth embodiment is built in the cylinder head 4. Specifically, a passage branched from the exhaust port 10 is formed in the cylinder head 4, and the water-cooled cooler 120 is accommodated in the passage. Also in the sixth embodiment, the cooling device 106 is configured to satisfy at least the relationship of the expression (1). Further, a marginal space may be provided behind the water-cooled cooler 120 as in the embodiment 2-5.
  • the cooling device 106 according to the sixth embodiment can effectively cool the exhaust valve 14 as the cooling device 104 according to the fourth embodiment.
  • FIG. 16 is a diagram showing a naturally aspirated internal combustion engine 202 including the cooling device 107 according to the seventh embodiment of the present invention.
  • the mounting position of the cooling device 107 according to the seventh embodiment is the upstream of the catalyst 26 in the exhaust pipe 24, more specifically, the section from the exhaust manifold assembly to the catalyst 26.
  • the self-adjusting function of the cooling capacity of the cooling device 107 is also effective for the naturally aspirated internal combustion engine 202.
  • the cooling device 107 has the same structure as the cooling device 103 of the third embodiment, but has the same structure as the cooling device 101 of the first embodiment and the cooling device 102 of the second embodiment. It can also be taken. Further, as in the fourth and sixth embodiments, the cooling device 107 can be attached to the exhaust port for each cylinder.
  • FIG. 17 is a diagram illustrating a modification of the cooling device 103 according to the third embodiment.
  • a branch pipe 136 that branches from the expansion pipe 130 is provided.
  • the tip of the branch pipe 136 is closed.
  • the marginal space behind the water-cooled cooler 120 may have a complicated shape.
  • the EGR cooler of the EGR device can also be used as a cooling device. By closing the EGR valve, the EGR pipe can function like the expansion pipe of the third embodiment.
  • the cooling medium used in the cooling mechanism is not limited to cooling water.
  • a heat exchanger using air as a cooling medium can also be used as the cooler core.
  • forced cooling from the outside of the container by wind generated by a fan may be used, or natural cooling may be performed by diffusion of heat by a radiator.
  • condensed water may be generated as the exhaust gas is cooled. Therefore, although not shown in Embodiment 1-7, it is desirable that the cooling device is provided with a drainage facility (for example, a drainage pipe and a valve) that discharges condensed water to the outside.
  • a drainage facility for example, a drainage pipe and a valve
  • a drainage facility can be attached to the bottom of the container 112.
  • a drainage facility can be attached to the tip 132 of the expansion pipe 130.
  • a drainage facility can be attached to the bottom of the expansion container 140.
  • the cooling device according to the present invention can be applied not only to an in-line engine but also to other multi-cylinder engines such as a V-type engine and a horizontally opposed engine. Moreover, the cooling device according to the present invention can be applied to an engine that performs explosion at unequal intervals or a single cylinder engine. The cooling device according to the present invention can also be applied to a two-stroke one-cycle engine.

Abstract

A cooling device according to the present invention is equipped with: a container (112) having one gas inlet/outlet port; a cooler core (120) disposed inside the container (112); and a connection pipe (110) branching from an exhaust pipe (24) in an area between an exhaust valve and a catalyst and connecting the exhaust pipe (24) to the inlet/outlet port of the container (112). When V1 is the volume of the space between the branching point of the connection pipe (110) and a front end surface (122) of the cooler core (120) in the container (112), V2 is the volume of the container (112) past the front end surface (122) of the cooler core (120) as V2, and A is the ratio of the minimum pressure and maximum pressure indicated by the exhaust gas pressure when an internal combustion engine outputs its maximum torque, the container (112) and the connection pipe (110) are formed so as to satisfy the following relationship. V1/(V1 + V2) < 1 - A

Description

内燃機関の冷却装置Cooling device for internal combustion engine
 本発明は、内燃機関の冷却装置に関し、より詳しくは、高負荷時に高温になる排気ガスを冷却する冷却装置に関する。 The present invention relates to a cooling device for an internal combustion engine, and more particularly to a cooling device that cools exhaust gas that becomes high temperature under high load.
 内燃機関の高負荷運転時、排気ガスは高温になり、排気系の部品、例えば触媒や過給機のタービン及びウエストゲートバルブ等に悪影響を与える。高温の排気ガスによるこれらの部品の劣化や破損を防止するため、以前から様々な対策が提案され、また、実用化されている。その1つが、下記の特許文献1に開示されているように、高負荷運転時には燃料噴射量を増量させることである。この方法によれば、燃料が気化する際の気化熱によって排気ガスを冷却することができる。ただし、この方法では、排気ガスの温度を低下させるためだけに燃料が使用されるため、燃費の悪化は避ける事ができない。 During high-load operation of an internal combustion engine, the exhaust gas becomes hot, and adversely affects exhaust system components such as the catalyst and turbocharger turbine and wastegate valve. In order to prevent the deterioration and breakage of these parts due to high-temperature exhaust gas, various countermeasures have been proposed and put into practical use. One of them is to increase the fuel injection amount during high-load operation, as disclosed in Patent Document 1 below. According to this method, the exhaust gas can be cooled by the heat of vaporization when the fuel is vaporized. However, in this method, since fuel is used only for lowering the temperature of exhaust gas, deterioration of fuel consumption cannot be avoided.
 また、排気系への冷却水の供給によって排気ガスの温度を低減させることも検討されている。しかし、この方法では、高負荷運転よりもむしろ低負荷運転において排気ガスの温度が低下する。このため、始動時における触媒の活性化を悪化させるという問題や、ターボ過給機付き内燃機関の加速レスポンスを低下させるという問題が生じる。よって、単に排気通路に熱交換器を配置するだけでは、高負荷運転時に得られるメリットよりも低負荷運転時のデメリットの方が大きいと言える。 Also, it has been studied to reduce the temperature of the exhaust gas by supplying cooling water to the exhaust system. However, in this method, the temperature of the exhaust gas is lowered in the low load operation rather than the high load operation. For this reason, the problem of deteriorating the activation of the catalyst at the time of starting, and the problem of reducing the acceleration response of the internal combustion engine with a turbocharger arise. Therefore, it can be said that the demerit during low-load operation is greater than the advantage obtained during high-load operation simply by arranging a heat exchanger in the exhaust passage.
 下記の特許文献2には、排気通路に配置された熱交換器をバイパスするバイパス通路を設け、バルブによって排気ガスの経路を熱交換器とバイパス通路とで切り替えることが開示されている。この技術によれば、内燃機関の運転状態に応じてバルブを制御することにより、低負荷運転時には熱交換器に排気ガスを通さず、高負荷運転時にのみ熱交換器に排気ガスを通すようにすることができる。ただし、この場合、高温の排気ガスにさらされることになるバルブには高い耐熱性が要求されるが、そのような要求を満たすためには高いコストがかかってしまう。さらに、負荷が高いほど排気ガスの温度を低下させる効果を高めたいにも関わらず、排気ガスを熱交換器に通しているときの冷却効果は、排気ガスの流量が増えるほど低くなってしまう。 The following Patent Document 2 discloses that a bypass passage that bypasses the heat exchanger disposed in the exhaust passage is provided, and the exhaust gas path is switched between the heat exchanger and the bypass passage by a valve. According to this technology, by controlling the valve according to the operating state of the internal combustion engine, exhaust gas is not passed through the heat exchanger during low load operation, but exhaust gas is passed through the heat exchanger only during high load operation. can do. However, in this case, a valve that is exposed to high-temperature exhaust gas is required to have high heat resistance, but high cost is required to satisfy such a requirement. Further, although the effect of lowering the temperature of the exhaust gas is increased as the load is higher, the cooling effect when the exhaust gas is passed through the heat exchanger becomes lower as the flow rate of the exhaust gas increases.
日本特開平10-205375号公報Japanese Unexamined Patent Publication No. 10-205375 日本特開2009-091918号公報Japanese Unexamined Patent Publication No. 2009-091918
 排気ガスの温度を低下させる手段として熱交換器を用いることは、燃料噴射量を増量させる場合のような極端な燃費の悪化を招かない点において好ましい。しかし、従来提案されている何れの技術も、内燃機関の負荷が高くなるほど冷却能力を高めたいという要求には応えられていない。 It is preferable to use a heat exchanger as a means for lowering the temperature of the exhaust gas because it does not cause an extreme deterioration in fuel consumption as in the case of increasing the fuel injection amount. However, none of the techniques proposed in the prior art meet the requirement to increase the cooling capacity as the load on the internal combustion engine increases.
 本発明は、このような課題に鑑みてなされたものであり、内燃機関の負荷の増大に応じて冷却能力が自動的に増加する自己調整機能を備えた冷却装置を提供することを目的とする。 The present invention has been made in view of such problems, and an object of the present invention is to provide a cooling device having a self-adjusting function that automatically increases the cooling capacity in accordance with an increase in the load of the internal combustion engine. .
 本発明に係る冷却装置は、ガスの出入口を1つ有する容器と、容器の内部に配置されたクーラコアと、排気バルブから触媒までの区間において排気通路から分岐し、排気通路と容器の出入口とを接続する接続管とを備える。容器の形状は、ガスの出入口が1つであるならば、筒状でも、袋状でも、より複雑な形状でもよい。クーラコアは、好ましくは、他の流体との間の熱交換により内部のガスを冷却する熱交換器である。冷却装置が適用される内燃機関がターボ過給機を備える場合、好ましくは、接続管は、排気バルブからターボ過給機のタービンまでの区間において排気通路から分岐する。 The cooling device according to the present invention includes a container having one gas inlet / outlet, a cooler core disposed inside the container, a branch from the exhaust passage in a section from the exhaust valve to the catalyst, and the exhaust passage and the inlet / outlet of the container. And a connecting pipe to be connected. The shape of the container may be cylindrical, bag-like, or more complicated as long as there is only one gas inlet / outlet. The cooler core is preferably a heat exchanger that cools the internal gas by heat exchange with other fluids. When the internal combustion engine to which the cooling device is applied includes a turbocharger, the connecting pipe preferably branches from the exhaust passage in a section from the exhaust valve to the turbocharger turbine.
 本発明に係る冷却装置においては、接続管の分岐点からクーラコアの前端面までの空間の容積をV1、クーラコアの前端面より奥側の容器の容積をV2、内燃機関が最大トルクを出力するときに排気圧力が示す最低圧力と最高圧力との比をAと定義したとき、容器及び接続管は、以下の関係を満たすように構成される。以下の関係は、排気通路内の圧力脈動によって排気ガスが接続管を通って容器内の冷却空間に流入し、かつ、高負荷になるほど冷却空間内のガスの入れ替え効率が高まる条件である。
V1/(V1+V2)<1-A
In the cooling device according to the present invention, when the volume of the space from the branch point of the connecting pipe to the front end surface of the cooler core is V1, the volume of the container on the back side from the front end surface of the cooler core is V2, and the internal combustion engine outputs the maximum torque When the ratio between the lowest pressure and the highest pressure indicated by the exhaust pressure is defined as A, the container and the connecting pipe are configured to satisfy the following relationship. The following relationship is a condition in which exhaust gas flows into the cooling space in the container through the connecting pipe due to pressure pulsation in the exhaust passage, and the replacement efficiency of the gas in the cooling space increases as the load increases.
V1 / (V1 + V2) <1-A
 容器及び接続管は、好ましくは、内部のガスの共振周波数が、内燃機関が最大トルクを出力するときに排気通路に生じる圧力脈動の周波数の0.5倍より大きく1.5倍より小さくなるように構成される。これは、容器及び接続管内の共振圧力が排気通路内の圧力脈動に同期し、排気ガスの冷却空間への流入と排気ガスの冷却空間からの排出とが効率的に繰り返される条件である。 The container and the connecting pipe are preferably such that the resonance frequency of the internal gas is greater than 0.5 times and less than 1.5 times the frequency of the pressure pulsation generated in the exhaust passage when the internal combustion engine outputs the maximum torque. Configured. This is a condition in which the resonance pressure in the container and the connecting pipe is synchronized with the pressure pulsation in the exhaust passage, and the inflow of exhaust gas into the cooling space and the exhaust of exhaust gas from the cooling space are efficiently repeated.
 クーラコアの後端面と容器との間には、余裕空間が設けられていることが好ましい。このような空間がクーラコアを挟んで容器のガス出入口と反対側に設けられることで、排気ガスはクーラコアの奥部まで到達するようになり、クーラコアによる排気ガスのより効率的な冷却が可能になる。ここで、クーラコアの容積をV3、クーラコアの後端面と容器との間に設けられた余裕空間の容積をV4と定義したとき、容器及び接続管は、以下の関係も満たすように構成されることがより好ましい。以下の関係は、高負荷時に排気ガスが冷却空間を通って容器の奥まで到達する条件、すなわち、冷却空間のガスの入れ替え効率をより高めることができる条件である。
(V1+V3)/(V1+V3+V4)<1-A
It is preferable that a marginal space is provided between the rear end surface of the cooler core and the container. By providing such a space on the opposite side of the gas inlet / outlet of the container across the cooler core, the exhaust gas reaches the inner part of the cooler core, and more efficient cooling of the exhaust gas by the cooler core becomes possible. . Here, when the volume of the cooler core is defined as V3, and the volume of the extra space provided between the rear end face of the cooler core and the container is defined as V4, the container and the connecting pipe are configured to satisfy the following relationship as well. Is more preferable. The following relationship is a condition for exhaust gas to reach the interior of the container through the cooling space at a high load, that is, a condition that can further improve the efficiency of replacing the gas in the cooling space.
(V1 + V3) / (V1 + V3 + V4) <1-A
 本発明に係る冷却装置によれば、排気通路内の圧力脈動によって排気ガスが接続管を通って容器内に流入し、容器内のクーラコアで排気ガスの冷却が行われる。冷却空間におけるガスの入れ替え効率は、排気圧力の最低圧力と最高圧力との比が小さい低負荷運転時には低く、負荷の増大により排気圧力の最低圧力と最高圧力との比が大きくなるにつれて高くなっていく。つまり、本発明に係る冷却装置によれば、内燃機関の負荷の増大に応じて冷却能力が自動的に増加する自己調整機能が実現される。 According to the cooling device of the present invention, the exhaust gas flows into the container through the connecting pipe by the pressure pulsation in the exhaust passage, and the exhaust gas is cooled by the cooler core in the container. The efficiency of gas replacement in the cooling space is low during low-load operation where the ratio between the minimum and maximum exhaust pressure is small, and increases as the ratio between the minimum and maximum exhaust pressure increases as the load increases. Go. That is, according to the cooling device according to the present invention, a self-adjusting function is realized in which the cooling capacity automatically increases as the load of the internal combustion engine increases.
本発明の実施の形態1の冷却装置を備えたターボ過給機付き内燃機関を示す図である。It is a figure which shows the internal combustion engine with a turbocharger provided with the cooling device of Embodiment 1 of this invention. 冷却装置の取り付け位置を示す図である。It is a figure which shows the attachment position of a cooling device. 排気管に生じる圧力の脈動を示すグラフである。It is a graph which shows the pulsation of the pressure which arises in an exhaust pipe. 排気圧力の最高圧力と最低圧力とを示すグラフである。It is a graph which shows the highest pressure and the lowest pressure of exhaust pressure. 本発明の実施の形態1の冷却装置の詳細を示す図である。It is a figure which shows the detail of the cooling device of Embodiment 1 of this invention. 本発明の実施の形態1の冷却装置の効果を示すグラフである。It is a graph which shows the effect of the cooling device of Embodiment 1 of the present invention. 本発明の実施の形態2の冷却装置を備えたターボ過給機付き内燃機関を示す図である。It is a figure which shows the internal combustion engine with a turbocharger provided with the cooling device of Embodiment 2 of this invention. 本発明の実施の形態2の冷却装置の詳細を示す図である。It is a figure which shows the detail of the cooling device of Embodiment 2 of this invention. 排気管に生じる圧力の脈動と冷却装置内の気柱の共振とを並べて示す図である。It is a figure which shows side by side the pulsation of the pressure which arises in an exhaust pipe, and the resonance of the air column in a cooling device. 拡張管の長さと排気ガス温度と冷却装置内部のガスの共振周波数との関係を示す図である。It is a figure which shows the relationship between the length of an expansion pipe, exhaust gas temperature, and the resonant frequency of the gas inside a cooling device. 拡張管の長さと冷却効果との関係を示す図である。It is a figure which shows the relationship between the length of an expansion pipe, and a cooling effect. 本発明の実施の形態3の冷却装置を備えたターボ過給機付き内燃機関を示す図である。It is a figure which shows the internal combustion engine with a turbocharger provided with the cooling device of Embodiment 3 of this invention. 本発明の実施の形態4の冷却装置を備えたターボ過給機付き内燃機関を示す図である。It is a figure which shows the internal combustion engine with a turbocharger provided with the cooling device of Embodiment 4 of this invention. 本発明の実施の形態5の冷却装置を備えたターボ過給機付き内燃機関を示す図である。It is a figure which shows the internal combustion engine with a turbocharger provided with the cooling device of Embodiment 5 of this invention. 本発明の実施の形態6の冷却装置を備えたターボ過給機付き内燃機関を示す図である。It is a figure which shows the internal combustion engine with a turbocharger provided with the cooling device of Embodiment 6 of this invention. 本発明の実施の形態7の冷却装置を備えた自然吸気内燃機関を示す図である。It is a figure which shows the natural intake internal combustion engine provided with the cooling device of Embodiment 7 of this invention. 本発明のその他の実施の形態を示す図である。It is a figure which shows other embodiment of this invention.
 以下、図面を参照して本発明の実施の形態について説明する。ただし、以下に示す実施の形態において各要素の個数、数量、量、範囲等の数に言及した場合、特に明示した場合や原理的に明らかにその数に特定される場合を除いて、その言及した数にこの発明が限定されるものではない。また、以下に示す実施の形態において説明する構成は、特に明示した場合や明らかに原理的にそれに特定される場合を除いて、この発明に必ずしも必須のものではない。なお、各図面において、同一又は類似の部分には同一又は類似の符号を付している。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, in the embodiment shown below, when referring to the number of each element, quantity, quantity, range, etc., unless otherwise specified or clearly specified in principle, the reference However, the present invention is not limited to this number. The configurations described in the following embodiments are not necessarily essential to the present invention unless otherwise specified or clearly specified in principle. In the drawings, the same or similar parts are denoted by the same or similar reference numerals.
実施の形態1.
 図1は、本発明の実施の形態1の冷却装置101を備えたターボ過給機付き内燃機関2を示す図である。この内燃機関2は4ストローク1サイクルエンジンであり、また、4つの気筒が直列に設けられた直列4気筒エンジンである。ただし、内燃機関2は、火花点火式エンジンとして構成されていてもよいし、圧縮自着火式エンジンとして構成されていてもよい。
Embodiment 1 FIG.
FIG. 1 is a diagram showing an internal combustion engine 2 with a turbocharger provided with a cooling device 101 according to Embodiment 1 of the present invention. The internal combustion engine 2 is a four-stroke one-cycle engine and is an in-line four-cylinder engine in which four cylinders are provided in series. However, the internal combustion engine 2 may be configured as a spark ignition engine, or may be configured as a compression self-ignition engine.
 内燃機関2のシリンダヘッド4には、燃焼室6に通じる吸気ポート8と排気ポート10が形成されている。燃焼室6と吸気ポート8との間には吸気バルブ12が設けられ、燃焼室6と排気ポート10との間には排気バルブ14が設けられている。吸気ポート8には吸気管16が接続され、排気ポート10には排気管24が接続されている。吸気ポート8と吸気管16とを合わせて吸気通路が形成され、排気ポート10と排気管24とを合わせて排気通路が形成されている。吸気管16にはターボ過給機30のコンプレッサ32が取り付けられ、排気管24にはターボ過給機30のタービン34が取り付けられている。吸気管16におけるコンプレッサ32の下流にはインタークーラ20が設けられ、インタークーラ20の下流にはスロットルバルブ18が設けられている。排気管24においてタービン34の下流には排気ガスを浄化するための触媒26が設けられている。なお、内燃機関2は、燃料噴射装置や可変バルブタイミング機構や点火装置などのアクチュエータや種々のセンサを備えるが、図1ではそれらは省略されている。 The cylinder head 4 of the internal combustion engine 2 is formed with an intake port 8 and an exhaust port 10 leading to the combustion chamber 6. An intake valve 12 is provided between the combustion chamber 6 and the intake port 8, and an exhaust valve 14 is provided between the combustion chamber 6 and the exhaust port 10. An intake pipe 16 is connected to the intake port 8, and an exhaust pipe 24 is connected to the exhaust port 10. The intake port 8 and the intake pipe 16 are combined to form an intake passage, and the exhaust port 10 and the exhaust pipe 24 are combined to form an exhaust passage. A compressor 32 of a turbocharger 30 is attached to the intake pipe 16, and a turbine 34 of the turbocharger 30 is attached to the exhaust pipe 24. An intercooler 20 is provided downstream of the compressor 32 in the intake pipe 16, and a throttle valve 18 is provided downstream of the intercooler 20. A catalyst 26 for purifying the exhaust gas is provided downstream of the turbine 34 in the exhaust pipe 24. The internal combustion engine 2 includes an actuator such as a fuel injection device, a variable valve timing mechanism, and an ignition device, and various sensors, which are omitted in FIG.
 実施の形態1の冷却装置101は、排気管24におけるタービン34の上流に取り付けられている。冷却装置101は水冷式のクーラコア(以下、水冷クーラ)120を備える。図2は、排気管24における冷却装置101の取り付け位置を詳しく示す図である。排気管24は、シリンダヘッド4に取り付けられ、各気筒#1、#2、#3、#4の排気ポートに接続される排気マニホールドを含む。排気マニホールドの4つの枝管が合流する合流部に孔40が開けられ、この孔40に冷却装置101が取り付けられる。 The cooling device 101 of Embodiment 1 is attached upstream of the turbine 34 in the exhaust pipe 24. The cooling device 101 includes a water-cooled cooler core (hereinafter, water-cooled cooler) 120. FIG. 2 is a diagram showing in detail the mounting position of the cooling device 101 in the exhaust pipe 24. The exhaust pipe 24 is attached to the cylinder head 4 and includes an exhaust manifold connected to the exhaust ports of the cylinders # 1, # 2, # 3, and # 4. A hole 40 is formed in the junction where the four branch pipes of the exhaust manifold merge, and the cooling device 101 is attached to the hole 40.
 図3は、孔40の位置に作用する排気管圧力のクランク角度による変化を示すグラフである。なお、グラフに示す排気管圧力は絶対圧である。グラフには、様々な吸気管圧力(スロットルバルブの下流における圧力)のもとでの排気管圧力の変化が線種を変えて描かれている。このグラフに示すように、排気管圧力は上昇と減少を周期的に繰り返す。内燃機関2は直列4気筒エンジンであるので、排気管圧力の脈動の周期は180度である。排気管圧力が最低圧力から最高圧力に変化するときに、孔40から冷却装置101に排気ガスが流入し、排気管圧力が最高圧力から最低圧力に変化するときに、冷却装置101から孔40に排気ガスが排出される。このときの排気ガスの1サイクルあたりの流入量及び排出量は、排気管圧力の脈動の振幅が大きいほど大きくなる。排気管圧力の最低圧力と最高圧力は、いずれも吸気管圧力が高いほど高くなり、また、脈動の振幅も吸気管圧力が高いほど高くなる。よって、吸気管圧力が最高のとき、排気ガスの1サイクルあたりの流入量及び排出量は最大となり、吸気管圧力が低くなるにつれて流入量及び排出量は減少する。 FIG. 3 is a graph showing changes in the exhaust pipe pressure acting on the position of the hole 40 depending on the crank angle. The exhaust pipe pressure shown in the graph is an absolute pressure. In the graph, changes in the exhaust pipe pressure under various intake pipe pressures (pressures downstream of the throttle valve) are drawn with different line types. As shown in this graph, the exhaust pipe pressure periodically increases and decreases. Since the internal combustion engine 2 is an in-line four-cylinder engine, the pulsation cycle of the exhaust pipe pressure is 180 degrees. When the exhaust pipe pressure changes from the lowest pressure to the highest pressure, the exhaust gas flows into the cooling device 101 from the hole 40, and when the exhaust pipe pressure changes from the highest pressure to the lowest pressure, the cooling device 101 enters the hole 40. Exhaust gas is discharged. At this time, the inflow amount and the exhaust amount of exhaust gas per cycle increase as the amplitude of the exhaust pipe pressure pulsation increases. The minimum and maximum exhaust pipe pressures both increase as the intake pipe pressure increases, and the pulsation amplitude increases as the intake pipe pressure increases. Therefore, when the intake pipe pressure is the highest, the inflow amount and the exhaust amount per cycle of the exhaust gas are maximized, and the inflow amount and the exhaust amount decrease as the intake pipe pressure decreases.
 図4は、吸気管圧力が最高のときに孔40の位置に作用する排気管圧力のクランク角度による変化を示すグラフである。吸気管圧力は空気の流量に比例するので、このグラフは最大負荷のとき、つまり、内燃機関2が最大トルクを出力しているときの排気管圧力の変化を示していることになる。なお、内燃機関2が出力するトルクの大きさは内燃機関2の回転数にも依存するが、本明細書における最大トルクとは、全ての回転数における最大トルクを意味するものとする。ここで、グラフに示すように、最大トルクにおける排気管圧力の最高圧力を“B”と定義し、最大トルクにおける排気管圧力の最低圧力を“C”と定義する。ただし、BとCの値はオンボードで取得するものではなく、予め試験において得られた値である。本発明においては、Bに対するCの比を“A”と定義する。図3のグラフから分かるように、排気管圧力の最高圧力に対する最低圧力の比は、吸気管圧力が低い時には1に近く、吸気管圧力が高くなるほど小さくなる。よって、上記のように定義されるAは、排気管圧力の最高圧力に対する最低圧力の比の最小値である。実施の形態1の冷却装置101は、このAの値に基づいて設計されている。 FIG. 4 is a graph showing the change of the exhaust pipe pressure acting on the position of the hole 40 when the intake pipe pressure is the highest, depending on the crank angle. Since the intake pipe pressure is proportional to the air flow rate, this graph shows a change in the exhaust pipe pressure at the maximum load, that is, when the internal combustion engine 2 outputs the maximum torque. The magnitude of the torque output from the internal combustion engine 2 depends on the rotational speed of the internal combustion engine 2, but the maximum torque in this specification means the maximum torque at all the rotational speeds. Here, as shown in the graph, the maximum exhaust pipe pressure at the maximum torque is defined as “B”, and the minimum exhaust pipe pressure at the maximum torque is defined as “C”. However, the values of B and C are not obtained on-board, but are values obtained in advance in a test. In the present invention, the ratio of C to B is defined as “A”. As can be seen from the graph of FIG. 3, the ratio of the minimum pressure to the maximum pressure of the exhaust pipe pressure is close to 1 when the intake pipe pressure is low, and decreases as the intake pipe pressure increases. Therefore, A defined as above is the minimum value of the ratio of the minimum pressure to the maximum pressure of the exhaust pipe pressure. The cooling device 101 according to the first embodiment is designed based on the value A.
 図5は、実施の形態1の冷却装置101の詳細を示す図である。冷却装置101は、水冷クーラ120を備える容器112と、孔40において排気管24から分岐して容器112を排気管24に接続する接続管110とを備える。水冷クーラ120は、容器112内の排気ガスを冷却水との熱交換によって冷却する熱交換器である。水冷クーラ120の構造には限定はなく、例えば、EGRクーラに用いられている構造を用いることもできる。容器112には、水冷クーラ120に冷却水を供給する給水管と、水冷クーラ120から冷却水を排出する排水管とが接続されているが、これらの図示は省略されている。また、図5では水冷クーラ120により冷却される冷却空間と容器112との間に余裕空間が設けられているが、この余裕空間はなくてもよい。 FIG. 5 is a diagram showing details of the cooling device 101 of the first embodiment. The cooling device 101 includes a container 112 including a water-cooled cooler 120 and a connection pipe 110 that branches from the exhaust pipe 24 at the hole 40 and connects the container 112 to the exhaust pipe 24. The water cooling cooler 120 is a heat exchanger that cools the exhaust gas in the container 112 by heat exchange with cooling water. The structure of the water-cooled cooler 120 is not limited, and for example, a structure used in an EGR cooler can be used. A water supply pipe that supplies cooling water to the water-cooled cooler 120 and a drain pipe that discharges cooling water from the water-cooled cooler 120 are connected to the container 112, but these are not shown. In FIG. 5, a margin space is provided between the cooling space cooled by the water-cooled cooler 120 and the container 112, but this margin space may not be provided.
 図5に示す構成によれば、排気管24を流れる排気ガスは、排気管24の圧力の脈動によって接続管110に押し込まれ、さらに、容器112の中に押し込まれる。このとき、排気ガスが水冷クーラ120により冷却される冷却空間まで到達するかどうかは、排気管圧力の脈動の大きさと、冷却装置101の構造との関係に依存する。ここで、接続管110の分岐点である孔40の位置から水冷クーラ120の前端面122までの容積を“V1”、水冷クーラ120の前端面122より奥側の容器112の容積を“V2”と定義する。ただし、V2には水冷クーラ120内の排気ガスが流通する空間の容積(有効冷却容積)は含まれているが、水冷クーラ120の冷却水が流れている部分の容積は含まれていない。ここで定義したV1及びV2と先に定義したAを用いると、排気ガスが水冷クーラ120に到達する条件は次の関係式(1)によって表される。
 V1/(V1+V2)<1-A ・・・式(1)
According to the configuration shown in FIG. 5, the exhaust gas flowing through the exhaust pipe 24 is pushed into the connection pipe 110 by the pulsation of the pressure of the exhaust pipe 24 and further pushed into the container 112. At this time, whether or not the exhaust gas reaches the cooling space cooled by the water-cooled cooler 120 depends on the relationship between the magnitude of the pulsation of the exhaust pipe pressure and the structure of the cooling device 101. Here, the volume from the position of the hole 40 that is the branch point of the connecting pipe 110 to the front end surface 122 of the water-cooled cooler 120 is “V1”, and the volume of the container 112 on the back side from the front end surface 122 of the water-cooled cooler 120 is “V2”. It is defined as However, V2 includes the volume of the space in which the exhaust gas in the water-cooled cooler 120 flows (effective cooling volume), but does not include the volume of the portion of the water-cooled cooler 120 through which the cooling water flows. When V1 and V2 defined here and A defined earlier are used, the condition for the exhaust gas to reach the water-cooled cooler 120 is expressed by the following relational expression (1).
V1 / (V1 + V2) <1-A Formula (1)
 式(1)は、内燃機関2が最大トルクを出力しているときにおいて、排気ガスが水冷クーラ120に到達できる条件である。右辺の値に対して左辺の値が小さいほど、排気ガスは水冷クーラ120の奥深くまで到達できるようになる。右辺の値は内燃機関2のスペックにより決まり、左辺の値は冷却装置101の構造によって決まる。冷却装置101は、式(1)の関係が満たされるように構成されている。 Equation (1) is a condition under which the exhaust gas can reach the water-cooled cooler 120 when the internal combustion engine 2 outputs the maximum torque. As the value on the left side is smaller than the value on the right side, the exhaust gas can reach deeper in the water-cooled cooler 120. The value on the right side is determined by the specifications of the internal combustion engine 2, and the value on the left side is determined by the structure of the cooling device 101. The cooling device 101 is configured so that the relationship of the expression (1) is satisfied.
 図6は、冷却装置101を上記のように構成したことによる効果を示すグラフである。グラフの横軸は内燃機関2のトルクで、縦軸はタービン34の出口温度である。グラフにおいてクーラ有と表記される温度は、冷却装置101を備える場合の温度である。一方、クーラ無と表記される温度は、冷却装置101を備えない場合の温度である。このグラフから分かるように、冷却装置101を備えたことによるタービン出口温度の低下量は、低負荷域ではほとんどゼロであるが、負荷が高くなるにつれて大きくなる。これは次の作用による。まず、排気管圧力の脈動が小さい低負荷域では、排気ガスが水冷クーラ120に到達しないか、到達したとしても水冷クーラ120の奥までは入っていかない。しかし、負荷が高くなって排気管圧力の脈動が大きくなると、排気ガスは水冷クーラ120の奥まで入っていくようになる。そして、水冷クーラ120内での排気ガスの到達距離が長くなるほど、水冷クーラ120により冷却されることによる排気ガスの温度低下は大きくなる。この結果、グラフに示すような負荷に応じた冷却効果が得られるようになる。 FIG. 6 is a graph showing the effect obtained by configuring the cooling device 101 as described above. The horizontal axis of the graph is the torque of the internal combustion engine 2, and the vertical axis is the outlet temperature of the turbine 34. The temperature described as having a cooler in the graph is a temperature when the cooling device 101 is provided. On the other hand, the temperature indicated as “no cooler” is a temperature when the cooling device 101 is not provided. As can be seen from this graph, the decrease in the turbine outlet temperature due to the provision of the cooling device 101 is almost zero in the low load region, but increases as the load increases. This is due to the following effects. First, in a low load region where the pulsation of the exhaust pipe pressure is small, the exhaust gas does not reach the water-cooled cooler 120 or does not enter the water-cooled cooler 120 even if it reaches. However, when the load increases and the pulsation of the exhaust pipe pressure increases, the exhaust gas enters into the water-cooled cooler 120. And the temperature fall of exhaust gas by cooling with the water cooling cooler 120 becomes large, so that the reach distance of the exhaust gas in the water cooling cooler 120 becomes long. As a result, a cooling effect corresponding to the load as shown in the graph can be obtained.
 以上述べたように、実施の形態1の冷却装置101には、内燃機関2の負荷が高くなると冷却能力が自動的に増加する自己調整機能が備えられる。これにより、高負荷運転時には、排気ガス温度を低減させて排気系部品の保護を図ることができる。そして、低負荷運転時には、排気ガス温度を不要に低下させることがないので、ターボ過給機30の加速レスポンスの悪化や始動時における触媒26の活性化の遅れを防ぐことができる。 As described above, the cooling device 101 of the first embodiment is provided with a self-adjusting function that automatically increases the cooling capacity when the load of the internal combustion engine 2 increases. Thus, during high load operation, the exhaust gas temperature can be reduced to protect the exhaust system components. Further, since the exhaust gas temperature is not unnecessarily lowered during low load operation, it is possible to prevent the acceleration response of the turbocharger 30 from deteriorating and the activation delay of the catalyst 26 at the start.
実施の形態2.
 図7は、本発明の実施の形態2の冷却装置102を備えたターボ過給機付き内燃機関2を示す図である。実施の形態2の冷却装置102は、実施の形態1の冷却装置101に拡張管130を追加することによって構成されている。
Embodiment 2. FIG.
FIG. 7 is a diagram showing the turbocharged internal combustion engine 2 provided with the cooling device 102 according to the second embodiment of the present invention. The cooling device 102 according to the second embodiment is configured by adding an expansion pipe 130 to the cooling device 101 according to the first embodiment.
 図8は、実施の形態2の冷却装置102の詳細を示す図である。実施の形態2の冷却装置102は、接続管110、容器112及び拡張管130を備える。拡張管130は、容器112の接続管110が接続される側とは反対側に取り付けられている。拡張管130の先端(すなわち、容器112に取り付けられる側とは反対側の端部)132は閉じている。実施の形態2では、容器112と拡張管130とからなる1つの構造体が本発明における「容器」に相当する。なお、図示はしないが、接続管110や拡張管130にバルブを設けて、これらへの排気ガスの流入やこれらからの排気ガスの排出を制限してもよい。 FIG. 8 is a diagram showing details of the cooling device 102 according to the second embodiment. The cooling device 102 according to the second embodiment includes a connection pipe 110, a container 112, and an expansion pipe 130. The expansion tube 130 is attached to the side of the container 112 opposite to the side to which the connection tube 110 is connected. The distal end (that is, the end opposite to the side attached to the container 112) 132 of the expansion tube 130 is closed. In the second embodiment, one structure including the container 112 and the expansion tube 130 corresponds to the “container” in the present invention. Although not shown, valves may be provided in the connecting pipe 110 and the extension pipe 130 to restrict the inflow of exhaust gas to these and the exhaust gas from them.
 容器112に拡張管130が設けられたことで、孔40から見た水冷クーラ120の後方の余裕空間の容積は拡大している。水冷クーラ120の後方の余裕空間が大きければ、その分、排気ガスは水冷クーラ120の奥部まで到達しやすくなる。排気ガスが水冷クーラ120の奥深くまで到達するほど、水冷クーラ120内のガスの入れ替え効率が高まり、水冷クーラ120による排気ガスの冷却効果は高くなる。ここで、水冷クーラ120の有効冷却容積(水冷クーラ120内の排気ガスが流通する空間の容積)を“V3”、水冷クーラ120の後端面124から拡張管130の先端132までの余裕空間の容積を“V4”と定義する。V3とV4との合計が先に定義したV2に相当する。ここで定義したV3及びV4と先に定義したA及びV1を用いると、排気ガスが水冷クーラ120の後方の余裕空間に到達する条件は次の関係式(2)によって表される。
 (V1+V3)/(V1+V3+V4)<1-A ・・・式(2)
By providing the expansion pipe 130 in the container 112, the volume of the margin space behind the water-cooled cooler 120 viewed from the hole 40 is increased. If the marginal space behind the water-cooled cooler 120 is large, the exhaust gas easily reaches the back of the water-cooled cooler 120 correspondingly. As the exhaust gas reaches deeper in the water-cooled cooler 120, the efficiency of replacing the gas in the water-cooled cooler 120 increases, and the cooling effect of the exhaust gas by the water-cooled cooler 120 increases. Here, the effective cooling volume of the water-cooled cooler 120 (the volume of the space in which the exhaust gas in the water-cooled cooler 120 circulates) is “V3”, and the volume of the marginal space from the rear end surface 124 of the water-cooled cooler 120 to the tip 132 of the expansion pipe 130. Is defined as “V4”. The sum of V3 and V4 corresponds to V2 defined above. When V3 and V4 defined here and A and V1 defined above are used, the condition for the exhaust gas to reach the margin space behind the water-cooled cooler 120 is expressed by the following relational expression (2).
(V1 + V3) / (V1 + V3 + V4) <1-A (2)
 式(2)は、内燃機関2が最大トルクを出力しているときにおいて、排気ガスが水冷クーラ120の後方の余裕空間に到達できる条件である。右辺の値に対して左辺の値が小さいほど、排気ガスは余裕空間の奥まで、すなわち、拡張管130の先端132の近くまで到達できるようになる。右辺の値は内燃機関2のスペックにより決まり、左辺の値は冷却装置102の構造によって決まる。冷却装置102は、式(2)の関係が満たされるように構成されている。 Equation (2) is a condition that allows the exhaust gas to reach the marginal space behind the water-cooled cooler 120 when the internal combustion engine 2 outputs the maximum torque. As the value on the left side is smaller than the value on the right side, the exhaust gas can reach the back of the marginal space, that is, near the tip 132 of the expansion tube 130. The value on the right side is determined by the specifications of the internal combustion engine 2, and the value on the left side is determined by the structure of the cooling device 102. The cooling device 102 is configured so that the relationship of the expression (2) is satisfied.
 ところで、冷却装置102のような管状(或いは袋状)の構造物では、その形状と温度とにより決まる共振周波数(固有振動数)で内部のガスが振動する。図9は、排気管24に生じる圧力の脈動と冷却装置102内の気柱の共振とを並べて示す図である。図9の下段のグラフはタービン入口圧力(排気管圧力)のクランク角度による変化を示している。グラフに描かれている排気管圧力の脈動の周波数は、4サイクル1ストロークエンジンでは、“周波数=出力回転数×気筒数/2”で計算することができる。例えば、出力回転数が3400rpmであるなら、内燃機関2は直列4気筒エンジンであるので、周波数は約113Hzと算出される。 Incidentally, in a tubular (or bag-like) structure such as the cooling device 102, the internal gas vibrates at a resonance frequency (natural frequency) determined by its shape and temperature. FIG. 9 is a diagram showing the pulsation of the pressure generated in the exhaust pipe 24 and the resonance of the air column in the cooling device 102 side by side. The lower graph in FIG. 9 shows the change in turbine inlet pressure (exhaust pipe pressure) depending on the crank angle. The frequency of the pulsation of the exhaust pipe pressure drawn in the graph can be calculated by “frequency = output rotational speed × number of cylinders / 2” in a 4-cycle 1-stroke engine. For example, if the output rotational speed is 3400 rpm, the internal combustion engine 2 is an in-line four-cylinder engine, so the frequency is calculated to be about 113 Hz.
 図9の上段には、共振周波数が排気管圧力の脈動の周波数に一致する場合と、共振周波数が排気管圧力の脈動の周波数より大きい場合と、共振周波数が排気管圧力の脈動の周波数より小さい場合のそれぞれについて、冷却装置102内の気柱の共振による圧力の波形を示している。共振周波数が排気管圧力の脈動の周波数に一致する場合、つまり、排気脈動の1周期が振動する気柱の1波長に一致する場合(ケース1)、排気脈動の山と共振の山とが一致し、排気脈動の谷と共振の谷とが一致する。よって、この場合、排気ガスの冷却装置102への流入と排気ガスの冷却装置102からの排出とが最も効率的に繰り返されることになる。 In the upper part of FIG. 9, when the resonance frequency matches the pulsation frequency of the exhaust pipe pressure, when the resonance frequency is higher than the pulsation frequency of the exhaust pipe pressure, and when the resonance frequency is lower than the pulsation frequency of the exhaust pipe pressure. For each case, the waveform of the pressure due to resonance of the air column in the cooling device 102 is shown. When the resonance frequency matches the pulsation frequency of the exhaust pipe pressure, that is, when one cycle of the exhaust pulsation matches one wavelength of the oscillating air column (case 1), the exhaust pulsation peak coincides with the resonance peak. The exhaust pulsation trough coincides with the resonance trough. Therefore, in this case, inflow of the exhaust gas into the cooling device 102 and discharge of the exhaust gas from the cooling device 102 are repeated most efficiently.
 しかし、共振周波数が排気管圧力の脈動の周波数より小さい場合、つまり、排気脈動の1周期が振動する気柱の1波長よりも短い場合(ケース2)は、排気脈動の山と共振の山とが一致したとしても、共振の谷は排気脈動の谷に対して遅角側にずれることになる。ケース2のように共振の谷が排気脈動の山に重なってしまった場合には、冷却装置102内から排気管24に排気ガスが排出され難くなる。よって、冷却装置102内からの排気ガスの排出が行われるためには、排気脈動の山が到来するまでに共振の谷が到来している必要がある。このためには、共振周波数は、排気管圧力の脈動の周波数の1/2倍よりも大きい必要がある。 However, when the resonance frequency is smaller than the frequency of the exhaust pipe pressure pulsation, that is, when one cycle of the exhaust pulsation is shorter than one wavelength of the vibrating air column (case 2), the exhaust pulsation peak and the resonance peak However, the resonance valley shifts to the retard side with respect to the exhaust pulsation valley. When the resonance valley overlaps the exhaust pulsation peak as in the case 2, the exhaust gas is hardly discharged from the cooling device 102 to the exhaust pipe 24. Therefore, in order for the exhaust gas to be discharged from the cooling device 102, it is necessary that a resonance valley has arrived before the exhaust pulsation peak arrives. For this purpose, the resonance frequency needs to be larger than ½ times the pulsation frequency of the exhaust pipe pressure.
 また、共振周波数が排気管圧力の脈動の周波数より大きい場合、つまり、排気脈動の1周期が振動する気柱の1波長よりも長い場合(ケース3)は、排気脈動の山と共振の山とが一致したとしても、共振の谷は排気脈動の谷に対して進角側にずれることになる。ケース3のように共振の谷が排気脈動の山に重なってしまった場合にも、冷却装置102内から排気管24に排気ガスが排出され難くなる。よって、冷却装置102内からの排気ガスの排出が行われるためには、排気脈動の山が到来後に共振の谷が到来する必要がある。このためには、共振周波数は、排気管圧力の脈動の周波数の3/2倍よりも小さい必要がある。 When the resonance frequency is higher than the frequency of the exhaust pipe pressure pulsation, that is, when one cycle of the exhaust pulsation is longer than one wavelength of the vibrating air column (case 3), the exhaust pulsation peak and the resonance peak However, the resonance valley shifts to the advance side with respect to the exhaust pulsation valley. Even when the resonance valley overlaps the exhaust pulsation peak as in the case 3, the exhaust gas is hardly discharged from the cooling device 102 to the exhaust pipe 24. Therefore, in order for the exhaust gas to be discharged from the inside of the cooling device 102, it is necessary that the resonance valley arrive after the exhaust pulsation peak arrives. For this purpose, the resonance frequency needs to be smaller than 3/2 times the pulsation frequency of the exhaust pipe pressure.
 以上のように、冷却装置102の内部のガスの共振周波数は、内燃機関2が最大トルクを出力するときの排気管圧力の脈動の周波数の0.5倍より大きく1.5倍より小さいことが望ましい。このことは、実施の形態1の冷却装置101にもあてはまることである。共振周波数に関する上記条件が満たされるように、接続管110と容器112の形状が調整されていることが望ましい。一方、冷却装置102が有する構造によれば、拡張管130の長さによって内部のガスの共振周波数を調整することができる。図10は、拡張管130の長さと排気ガスの温度と冷却装置102の内部のガスの共振周波数との関係を示すグラフである。冷却装置102の内部の排気ガスの温度は、水冷クーラ120による冷却によって100℃ぐらいまで冷やされている。よって、排気ガスの温度が100℃であるとして、共振周波数が排気管圧力の脈動の周波数の0.5倍から1.5倍までの範囲に入るように拡張管130の長さを決定すればよい。拡張管130の長さは、式(2)の関係が満たされると同時に、共振周波数が上記の望ましい範囲になるように、より好ましくは、共振周波数を可能な限り排気管圧力の脈動の周波数に一致させるように調整される。 As described above, the resonance frequency of the gas inside the cooling device 102 is greater than 0.5 times and less than 1.5 times the frequency of the pulsation of the exhaust pipe pressure when the internal combustion engine 2 outputs the maximum torque. desirable. This also applies to the cooling device 101 of the first embodiment. It is desirable that the shapes of the connecting pipe 110 and the container 112 are adjusted so that the above-described condition regarding the resonance frequency is satisfied. On the other hand, according to the structure of the cooling device 102, the resonance frequency of the internal gas can be adjusted by the length of the expansion pipe 130. FIG. 10 is a graph showing the relationship between the length of the expansion pipe 130, the temperature of the exhaust gas, and the resonance frequency of the gas inside the cooling device 102. The temperature of the exhaust gas inside the cooling device 102 is cooled to about 100 ° C. by the cooling by the water cooling cooler 120. Therefore, assuming that the temperature of the exhaust gas is 100 ° C., the length of the expansion pipe 130 is determined so that the resonance frequency falls within the range of 0.5 to 1.5 times the pulsation frequency of the exhaust pipe pressure. Good. More preferably, the length of the expansion pipe 130 is set to the pulsation frequency of the exhaust pipe pressure as much as possible so that the resonance frequency is within the above-described desired range at the same time that the relationship of the expression (2) is satisfied. Adjusted to match.
 図11は、拡張管130の長さと冷却効果との関係を示すグラフである。このグラフに示す例では、冷却装置102の冷却効果、すなわち、冷却装置102による排気ガスの温度の低下量は、拡張管130の長さが830mm程度のときに最大となり、それよりも長くても、また、それよりも短くても、冷却装置102の冷却効果は低下している。よって、このグラフに示す例では、830mmが拡張管130の最も望ましい長さであることが分かる。830mmという長さは、式(2)の関係を満たすと同時に、共振周波数が排気管圧力の脈動の周波数の0.5倍から1.5倍までの範囲に入る長さである。 FIG. 11 is a graph showing the relationship between the length of the expansion tube 130 and the cooling effect. In the example shown in this graph, the cooling effect of the cooling device 102, that is, the amount of decrease in the temperature of the exhaust gas by the cooling device 102 becomes maximum when the length of the expansion pipe 130 is about 830 mm, and even if longer than that, Moreover, even if it is shorter than that, the cooling effect of the cooling device 102 is reduced. Therefore, in the example shown in this graph, it can be seen that 830 mm is the most desirable length of the expansion tube 130. The length of 830 mm is a length that satisfies the relationship of the expression (2) and at the same time the resonance frequency falls within the range of 0.5 to 1.5 times the pulsation frequency of the exhaust pipe pressure.
 以上述べたように、実施の形態2の冷却装置102によれば、内燃機関2の負荷が高くなると冷却能力が自動的に増加する自己調整機能が備えられるだけでなく、水冷クーラ120の冷却能力をより有効に活用することができる。 As described above, according to the cooling device 102 of the second embodiment, not only a self-adjusting function that automatically increases the cooling capacity when the load of the internal combustion engine 2 increases but also the cooling capacity of the water cooling cooler 120 is provided. Can be used more effectively.
実施の形態3.
 図12は、本発明の実施の形態3の冷却装置103を備えたターボ過給機付き内燃機関2を示す図である。実施の形態3の冷却装置103は、実施の形態2の冷却装置102が備える筒状の拡張管130に代えて、絞りのある拡張容器140を備える。実施の形態2では、容器112と拡張容器140とからなる1つの構造体が本発明における「容器」に相当する。この拡張容器140のように壺状であれば、水冷クーラ120の後ろの余裕空間の容積、すなわち、式(2)におけるV4を大きくとることができる。なお、絞りのある拡張容器140を備える構成の場合、冷却装置103の内部のガスの共振周波数は拡張容器140の容積と絞り径により調整することができる。よって、実施の形態3の冷却装置103では、共振周波数が排気管圧力の脈動の周波数の0.5倍から1.5倍までの範囲に入るように拡張容器140の容積と絞り径が調整される。
Embodiment 3 FIG.
FIG. 12 is a diagram showing the turbocharged internal combustion engine 2 provided with the cooling device 103 according to the third embodiment of the present invention. The cooling device 103 according to the third embodiment includes an expansion container 140 having a throttle instead of the cylindrical expansion tube 130 provided in the cooling device 102 according to the second embodiment. In the second embodiment, one structure including the container 112 and the expansion container 140 corresponds to the “container” in the present invention. If it is bowl-shaped like this expansion container 140, the volume of the extra space behind the water-cooled cooler 120, that is, V4 in equation (2) can be increased. In the case of a configuration including the expansion container 140 with a throttle, the resonance frequency of the gas inside the cooling device 103 can be adjusted by the volume of the expansion container 140 and the diameter of the throttle. Therefore, in the cooling device 103 of the third embodiment, the volume and throttle diameter of the expansion container 140 are adjusted so that the resonance frequency falls within the range of 0.5 to 1.5 times the pulsation frequency of the exhaust pipe pressure. The
実施の形態4.
 図13は、本発明の実施の形態4の冷却装置104を備えたターボ過給機付き内燃機関2を示す図である。実施の形態4の冷却装置104は、実施の形態3の冷却装置103と同じ構造を有している。しかし、実施の形態3の冷却装置103が排気管(より詳しくは、排気マニホールドの集合部)に接続されるのに対し、実施の形態4の冷却装置104は気筒ごとに備えられ、各気筒の排気ポート10に接続される。より詳しくは、排気ポート10から分岐する通路がシリンダヘッド4に形成され、その通路に冷却装置104が取り付けられる。このため、冷却装置104には、1つの気筒から排出される排気ガスの圧力の脈動のみが作用する。圧力脈動の周期は1サイクル、すなわち、720度である。実施の形態4の冷却装置104では、この720度周期の圧力脈動に対し、冷却装置104の内部のガスの共振周波数が圧力脈動の周波数の0.5倍から1.5倍までの範囲に入るように拡張容器140の容積と絞り径が調整される。実施の形態4の冷却装置104によれば、排気ポート10内の排気ガスの温度を低下させて、熱的に厳しい環境下にある排気バルブ14を冷却することができる。
Embodiment 4 FIG.
FIG. 13 is a diagram showing the turbocharged internal combustion engine 2 including the cooling device 104 according to the fourth embodiment of the present invention. The cooling device 104 of the fourth embodiment has the same structure as the cooling device 103 of the third embodiment. However, while the cooling device 103 according to the third embodiment is connected to the exhaust pipe (more specifically, the collection portion of the exhaust manifold), the cooling device 104 according to the fourth embodiment is provided for each cylinder. Connected to the exhaust port 10. More specifically, a passage branched from the exhaust port 10 is formed in the cylinder head 4, and the cooling device 104 is attached to the passage. For this reason, only the pulsation of the pressure of the exhaust gas discharged from one cylinder acts on the cooling device 104. The period of pressure pulsation is one cycle, that is, 720 degrees. In the cooling device 104 of the fourth embodiment, the resonance frequency of the gas inside the cooling device 104 falls within the range of 0.5 to 1.5 times the frequency of the pressure pulsation with respect to the pressure pulsation having a period of 720 degrees. In this way, the volume and the diameter of the expansion container 140 are adjusted. According to the cooling device 104 of the fourth embodiment, the temperature of the exhaust gas in the exhaust port 10 can be lowered to cool the exhaust valve 14 in a thermally severe environment.
実施の形態5.
 図14は、本発明の実施の形態5の冷却装置105を備えたターボ過給機付き内燃機関2を示す図である。実施の形態5の冷却装置105は、実施の形態3の冷却装置103と同じ構造を有している。しかし、実施の形態5の冷却装置105は、タービン34をバイパスするバイパス通路36においてウエストゲートバルブ38の上流に取り付けられている。実施の形態5の冷却装置105は、特に、ウエストゲートバルブ38の冷却のために設けられている。冷却装置105が取り付けられるバイパス通路36は、上流の排気管24と同じ圧力脈動が生じるものの、排気ガスの流量は少ない。このため、実施の形態5の冷却装置105によれば、バイパス通路36を流れる排気ガスに対して高い冷却効果を得ることができる。
Embodiment 5 FIG.
FIG. 14 is a diagram showing the turbocharged internal combustion engine 2 including the cooling device 105 according to the fifth embodiment of the present invention. The cooling device 105 of the fifth embodiment has the same structure as the cooling device 103 of the third embodiment. However, the cooling device 105 of the fifth embodiment is attached upstream of the wastegate valve 38 in the bypass passage 36 that bypasses the turbine 34. The cooling device 105 according to the fifth embodiment is particularly provided for cooling the waste gate valve 38. The bypass passage 36 to which the cooling device 105 is attached has the same pressure pulsation as that of the upstream exhaust pipe 24, but the exhaust gas flow rate is small. For this reason, according to the cooling device 105 of the fifth embodiment, a high cooling effect can be obtained for the exhaust gas flowing through the bypass passage 36.
実施の形態6.
 図15は、本発明の実施の形態6の冷却装置106を備えたターボ過給機付き内燃機関2を示す図である。実施の形態6の冷却装置106は、その全体がシリンダヘッド4に内蔵されている。詳しくは、排気ポート10から分岐する通路がシリンダヘッド4に形成され、その通路に水冷クーラ120が収容される。実施の形態6においても、冷却装置106は少なくとも式(1)の関係を満たすように構成されている。また、実施の形態2-5のように、水冷クーラ120の後方に余裕空間を設けてもよい。実施の形態6の冷却装置106は、実施の形態4の冷却装置104と同じく、排気バルブ14を効果的に冷却することができる。
Embodiment 6 FIG.
FIG. 15 is a diagram showing the turbocharged internal combustion engine 2 provided with the cooling device 106 according to the sixth embodiment of the present invention. The entire cooling device 106 according to the sixth embodiment is built in the cylinder head 4. Specifically, a passage branched from the exhaust port 10 is formed in the cylinder head 4, and the water-cooled cooler 120 is accommodated in the passage. Also in the sixth embodiment, the cooling device 106 is configured to satisfy at least the relationship of the expression (1). Further, a marginal space may be provided behind the water-cooled cooler 120 as in the embodiment 2-5. The cooling device 106 according to the sixth embodiment can effectively cool the exhaust valve 14 as the cooling device 104 according to the fourth embodiment.
実施の形態7.
 図16は、本発明の実施の形態7の冷却装置107を備えた自然吸気型内燃機関202を示す図である。実施の形態7の冷却装置107の取り付け位置は、排気管24における触媒26の上流、より詳しくは排気マニホールドの集合部から触媒26までの区間である。冷却装置107が有する冷却能力の自己調整機能は、自然吸気型内燃機関202に対しても有効である。なお、図16では、冷却装置107は、実施の形態3の冷却装置103と同じ構造を有しているが、実施の形態1の冷却装置101や実施の形態2の冷却装置102と同じ構造を採ることもできる。また、実施の形態4や6のように、気筒ごとに排気ポートに冷却装置107を取り付けることもできる。
Embodiment 7 FIG.
FIG. 16 is a diagram showing a naturally aspirated internal combustion engine 202 including the cooling device 107 according to the seventh embodiment of the present invention. The mounting position of the cooling device 107 according to the seventh embodiment is the upstream of the catalyst 26 in the exhaust pipe 24, more specifically, the section from the exhaust manifold assembly to the catalyst 26. The self-adjusting function of the cooling capacity of the cooling device 107 is also effective for the naturally aspirated internal combustion engine 202. In FIG. 16, the cooling device 107 has the same structure as the cooling device 103 of the third embodiment, but has the same structure as the cooling device 101 of the first embodiment and the cooling device 102 of the second embodiment. It can also be taken. Further, as in the fourth and sixth embodiments, the cooling device 107 can be attached to the exhaust port for each cylinder.
その他の実施の形態.
 図17は、実施の形態3の冷却装置103の変形例を示す図である。この変形例では、拡張管130から分岐する分岐管136が設けられている。分岐管136の先端は閉じている。この例のように、水冷クーラ120の後ろの余裕空間は複雑な形状であってもよい。また、専用の冷却装置を設けるのではなく、EGR装置のEGRクーラを冷却装置として兼用することもできる。EGRバルブを閉じることにより、EGR管を実施の形態3の拡張管のように機能させることができる。
Other embodiments.
FIG. 17 is a diagram illustrating a modification of the cooling device 103 according to the third embodiment. In this modification, a branch pipe 136 that branches from the expansion pipe 130 is provided. The tip of the branch pipe 136 is closed. As in this example, the marginal space behind the water-cooled cooler 120 may have a complicated shape. Further, instead of providing a dedicated cooling device, the EGR cooler of the EGR device can also be used as a cooling device. By closing the EGR valve, the EGR pipe can function like the expansion pipe of the third embodiment.
 冷却機構において用いる冷却媒体は冷却水には限定されない。空気を冷却媒体とする熱交換器をクーラコアとして用いることもできる。また、冷却方法としては、ファンでおこした風により容器の外部から強制冷却するものでもよいし、放熱器による熱の拡散によって自然冷却するものでもよい。なお、冷却装置の内部では、排気ガスが冷却されることに伴い凝縮水が発生する場合がある。よって、実施の形態1-7では図示を省略しているが、冷却装置には、凝縮水を外部に排出する排水設備(例えば、排水管及びバルブ)を設けておくことが望ましい。例えば、実施の形態1の冷却装置101であれば、容器112の底に排水設備を取り付けることができる。実施の形態2の冷却装置102であれば、拡張管130の先端132に排水設備を取り付けることができる。また、実施の形態3の冷却装置103であれば、拡張容器140の底に排水設備を取り付けることができる。 The cooling medium used in the cooling mechanism is not limited to cooling water. A heat exchanger using air as a cooling medium can also be used as the cooler core. Moreover, as a cooling method, forced cooling from the outside of the container by wind generated by a fan may be used, or natural cooling may be performed by diffusion of heat by a radiator. In the cooling device, condensed water may be generated as the exhaust gas is cooled. Therefore, although not shown in Embodiment 1-7, it is desirable that the cooling device is provided with a drainage facility (for example, a drainage pipe and a valve) that discharges condensed water to the outside. For example, if it is the cooling device 101 of Embodiment 1, a drainage equipment can be attached to the bottom of the container 112. With the cooling device 102 of the second embodiment, a drainage facility can be attached to the tip 132 of the expansion pipe 130. In the cooling device 103 according to the third embodiment, a drainage facility can be attached to the bottom of the expansion container 140.
 本発明に係る冷却装置は、直列エンジンだけでなく、V型エンジンや水平対向エンジン等の他の多気筒エンジにも適用できる。また、本発明に係る冷却装置は、不等間隔爆発を行うエンジンや単気筒エンジンにも適用することができる。また、本発明に係る冷却装置は、2ストローク1サイクルエンジンにも適用することができる。 The cooling device according to the present invention can be applied not only to an in-line engine but also to other multi-cylinder engines such as a V-type engine and a horizontally opposed engine. Moreover, the cooling device according to the present invention can be applied to an engine that performs explosion at unequal intervals or a single cylinder engine. The cooling device according to the present invention can also be applied to a two-stroke one-cycle engine.
2 内燃機関
4 シリンダヘッド
6 燃焼室
10 排気ポート
14 排気バルブ
24 排気管
26 触媒
34 タービン
40 孔
101、102、103、104、105、106、107 冷却装置
110 接続管
112 容器
120 水冷クーラ(クーラコア)
130 拡張管
140 拡張容器
2 Internal combustion engine 4 Cylinder head 6 Combustion chamber 10 Exhaust port 14 Exhaust valve 24 Exhaust pipe 26 Catalyst 34 Turbine 40 Hole 101, 102, 103, 104, 105, 106, 107 Cooling device 110 Connection pipe 112 Container 120 Water-cooled cooler (cooler core)
130 Expansion tube 140 Expansion container

Claims (5)

  1.  ガスの出入口を1つ有する容器と、
     前記容器の内部に配置されたクーラコアと、
     排気バルブから触媒までの区間において排気通路から分岐し、前記排気通路と前記容器の前記出入口とを接続する接続管と、を備え、
     前記容器及び前記接続管は、以下の関係を満たすように形成されていることを特徴とする内燃機関の冷却装置。
     V1/(V1+V2)<1-A
     ここで、V1は、前記接続管の分岐点から前記クーラコアの前端面までの空間の容積、V2は、前記クーラコアの前端面より奥側の前記容器の容積、Aは、前記内燃機関が最大トルクを出力するときに排気圧力が示す最低圧力と最高圧力との比である。
    A container having one gas inlet and outlet;
    A cooler core disposed inside the container;
    A branch pipe branched from the exhaust passage in the section from the exhaust valve to the catalyst, and connecting the exhaust passage and the inlet / outlet of the container,
    The cooling device for an internal combustion engine, wherein the container and the connection pipe are formed to satisfy the following relationship.
    V1 / (V1 + V2) <1-A
    Here, V1 is the volume of the space from the branch point of the connecting pipe to the front end surface of the cooler core, V2 is the volume of the container on the back side of the front end surface of the cooler core, and A is the maximum torque of the internal combustion engine. Is the ratio of the lowest pressure to the highest pressure indicated by the exhaust pressure.
  2.  前記容器及び前記接続管は、内部のガスの共振周波数が、前記内燃機関が最大トルクを出力するときに前記排気通路に生じる圧力脈動の周波数の0.5倍より大きく1.5倍より小さくなるように形成されていることを特徴とする請求項1に記載の内燃機関の冷却装置。 In the container and the connecting pipe, the resonance frequency of the internal gas is greater than 0.5 times and less than 1.5 times the frequency of pressure pulsation generated in the exhaust passage when the internal combustion engine outputs maximum torque. The cooling apparatus for an internal combustion engine according to claim 1, wherein the cooling apparatus is configured as described above.
  3.  前記クーラコアの後端面と前記容器との間には余裕空間が設けられていることを特徴とする請求項1又は2に記載の内燃機関の冷却装置。 3. The cooling device for an internal combustion engine according to claim 1, wherein a marginal space is provided between a rear end surface of the cooler core and the container.
  4.  前記容器及び前記接続管は、以下の関係を満たすように構成されていることを特徴とする請求項3に記載の内燃機関の冷却装置。
     (V1+V3)/(V1+V3+V4)<1-A
     ここで、V3は、前記クーラコアの容積、V4は、前記クーラコアの後端面と前記容器との間に設けられた前記余裕空間の容積である。
    The cooling device for an internal combustion engine according to claim 3, wherein the container and the connection pipe are configured to satisfy the following relationship.
    (V1 + V3) / (V1 + V3 + V4) <1-A
    Here, V3 is the volume of the cooler core, and V4 is the volume of the margin space provided between the rear end surface of the cooler core and the container.
  5.  前記内燃機関はターボ過給機を備え、
     前記接続管は、前記排気バルブから前記ターボ過給機のタービンまでの区間において前記排気通路から分岐していることを特徴とする請求項1から4の何れか1項に記載の内燃機関の冷却装置。
    The internal combustion engine comprises a turbocharger;
    The cooling of the internal combustion engine according to any one of claims 1 to 4, wherein the connection pipe branches from the exhaust passage in a section from the exhaust valve to a turbine of the turbocharger. apparatus.
PCT/JP2015/058294 2014-04-25 2015-03-19 Cooling device for internal combustion engine WO2015163052A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016514814A JPWO2015163052A1 (en) 2014-04-25 2015-03-19 Cooling device for internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014091310 2014-04-25
JP2014-091310 2014-04-25

Publications (1)

Publication Number Publication Date
WO2015163052A1 true WO2015163052A1 (en) 2015-10-29

Family

ID=54332222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058294 WO2015163052A1 (en) 2014-04-25 2015-03-19 Cooling device for internal combustion engine

Country Status (2)

Country Link
JP (1) JPWO2015163052A1 (en)
WO (1) WO2015163052A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019124203A (en) * 2018-01-19 2019-07-25 株式会社Subaru Exhaust cooler

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512821A (en) * 1974-06-24 1976-01-10 Masaharu Motoyoshi TEIKOGAIJIDOSHAENJINNIKANSURUHATSUMEI
JPH01219308A (en) * 1988-02-25 1989-09-01 Takuma Co Ltd Exhaust gas treating device
JPH02131019U (en) * 1989-04-05 1990-10-30
JP2007332832A (en) * 2006-06-13 2007-12-27 Toyota Motor Corp Exhaust temperature reducing device of internal combustion engine
JP2012519827A (en) * 2009-03-09 2012-08-30 デーナ、カナダ、コーパレイシャン Heat exchanger with cast housing and method for making the same
JP2013113482A (en) * 2011-11-28 2013-06-10 Maruyasu Industries Co Ltd U-turn type heat exchanger

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1113551A (en) * 1997-06-23 1999-01-19 Isuzu Motors Ltd Egr cooler

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512821A (en) * 1974-06-24 1976-01-10 Masaharu Motoyoshi TEIKOGAIJIDOSHAENJINNIKANSURUHATSUMEI
JPH01219308A (en) * 1988-02-25 1989-09-01 Takuma Co Ltd Exhaust gas treating device
JPH02131019U (en) * 1989-04-05 1990-10-30
JP2007332832A (en) * 2006-06-13 2007-12-27 Toyota Motor Corp Exhaust temperature reducing device of internal combustion engine
JP2012519827A (en) * 2009-03-09 2012-08-30 デーナ、カナダ、コーパレイシャン Heat exchanger with cast housing and method for making the same
JP2013113482A (en) * 2011-11-28 2013-06-10 Maruyasu Industries Co Ltd U-turn type heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019124203A (en) * 2018-01-19 2019-07-25 株式会社Subaru Exhaust cooler
JP7075220B2 (en) 2018-01-19 2022-05-25 株式会社Subaru Exhaust cooler

Also Published As

Publication number Publication date
JPWO2015163052A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
US10774793B2 (en) Intake and exhaust device for automotive engine
US9086011B2 (en) Directly communicated turbocharger
RU152164U1 (en) TURBOCHARGED ENGINE SYSTEM
RU2589556C2 (en) Engine system and method of reducing production cost thereof
RU139593U1 (en) SYSTEM (OPTIONS) OF TURBOCHARGERS
US20070056281A1 (en) Integrated inboard exhaust manifolds for V-type engines
JP2009513875A (en) Exhaust gas recirculation system
JP5293550B2 (en) Multi-cylinder engine intake system
JP5315342B2 (en) Internal combustion engine
JP6428827B2 (en) Engine intake passage structure
US8281761B2 (en) Internal combustion engine
JPH04175449A (en) Exhaust gas recirculation device of engine
RU142014U1 (en) TURBOCHARGER SYSTEM WITH PRESSURE REGULATOR
US20120006019A1 (en) Internal combustion engine with horizontally arranged cylinder banks and exhaust-gas turbocharger
WO2015163052A1 (en) Cooling device for internal combustion engine
JP2016094888A (en) Blow-by gas recirculation device
JP6614221B2 (en) Control device for internal combustion engine
JP5760773B2 (en) Control device for turbocharged internal combustion engine
RU181354U1 (en) In-line diesel engine
JP2018168781A (en) Intake passage structure for multiple cylinder engine
JP6512237B2 (en) Engine fuel injection system
WO2019153497A1 (en) High power v-shaped 16-cylinder diesel engine
JP2019065731A (en) Engine intake system
JP2017089585A (en) Control method and device for vehicle
Cui et al. Turbocharging system design and performance analysis of a marine diesel engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15783662

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016514814

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15783662

Country of ref document: EP

Kind code of ref document: A1