WO2015162773A1 - Emulsion separation device - Google Patents

Emulsion separation device Download PDF

Info

Publication number
WO2015162773A1
WO2015162773A1 PCT/JP2014/061649 JP2014061649W WO2015162773A1 WO 2015162773 A1 WO2015162773 A1 WO 2015162773A1 JP 2014061649 W JP2014061649 W JP 2014061649W WO 2015162773 A1 WO2015162773 A1 WO 2015162773A1
Authority
WO
WIPO (PCT)
Prior art keywords
emulsion
ultrasonic vibration
flow path
flow
discharge port
Prior art date
Application number
PCT/JP2014/061649
Other languages
French (fr)
Japanese (ja)
Inventor
琢也 神林
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/061649 priority Critical patent/WO2015162773A1/en
Publication of WO2015162773A1 publication Critical patent/WO2015162773A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations

Definitions

  • the present invention relates to a technique for separating an emulsion.
  • the present invention also relates to an emulsion separator using ultrasonic waves.
  • a pair of an ultrasonic transducer and a reflector is arranged through a flow path portion through which the emulsion flows, and functions as an external drive control circuit. It has a generator etc.
  • the function generator is a waveform generator that generates a control waveform signal to be given to the ultrasonic transducer.
  • the emulsion separator generates a sound field by ultrasonic waves between the ultrasonic transducer and the reflection plate by applying a waveform signal to the ultrasonic transducer, and applies an external force to the droplets in the flow path. This separates the emulsion.
  • Patent Document 1 Japanese Patent Document 1
  • JP-A-2004-24959 JP-A-10-109283
  • Japanese Patent Application Laid-Open No. H10-228561 describes that “when a micro object in a liquid medium 12 is captured and aligned at a half-wavelength interval at a node of sound pressure in a standing wave sound field, the back electrode of the ultrasonic transducer 16 is independently A plurality of strip-shaped electrode pieces 34 arranged in parallel with each other, a voltage is applied to a selected part of the electrode pieces 34 and driven to emit ultrasonic waves.
  • a standing sound field is formed between the drive electrode piece arrangement portion of the ultrasonic transducer 16 and the reflector 18, while the electrode piece 34 to which such a voltage is applied is electrically switched to the adjacent electrode piece 34.
  • the driving portion of the ultrasonic transducer is moved to move the standing wave sound field, and the captured micro object is moved along the arrangement direction of the electrode pieces 34 (see summary).
  • Patent Document 2 states that “in a flow path filled with a liquid medium, an ultrasonic vibrator and a reflector are installed in parallel along the flow path, and the ultrasonic vibrator is driven by a predetermined electrical signal to emit radiation. The reflected ultrasonic wave is reflected by a reflector, and a minute object dispersed in a liquid medium is captured in a node of sound pressure of a standing wave sound field generated in a flow path or an antinode of sound pressure, Ultrasonic non-contact filtering method and apparatus thereof (see summary) ".
  • the emulsion separator described in any of the above-mentioned prior art documents uses solid waves or droplets in a suspension or emulsion in a non-contact manner using ultrasonic waves generated from an ultrasonic vibrator. However, no consideration is given to the processing operation during operation.
  • an aqueous component may be mixed when recovering droplets with a large amount of oil component, and a high density liquid is obtained by mixing an aqueous component with droplets with a high density of oil component. Drops are difficult to collect. Therefore, there is a demand for a discharge port with good recovery efficiency.
  • an oily component and an aqueous component adhere to the inner wall in the emulsion separation device.
  • an aqueous component adheres to the upper side of the emulsion separator (the side on which the oily component after separation floats)
  • it is difficult to remove and move the attached aqueous component since it is difficult to remove and move the oily component adhering to the lower side of the separated and settled aqueous component, there is a need for a device that does not stick to the inner wall portion in the emulsion separator. Yes.
  • the emulsion separator when the droplets in the liquid are separated from the emulsion and separated into at least two kinds of liquids, the acoustic flow suddenly occurs, Although the sound field is disturbed, the liquid in the tank is agitated, and thus there is a problem that the separation performance is deteriorated.
  • these problems are not considered in the above-mentioned literature.
  • the influence by the said acoustic flow occurs also at the time of a single operation, it is more remarkable at the time of continuous operation.
  • stored in the tank will mix in the drained liquid after isolation
  • a typical embodiment of the present invention is an emulsion separator using ultrasonic waves, and has the following configuration.
  • An emulsion decomposing apparatus is an emulsion decomposing apparatus that separates an emulsion containing an oily component and an aqueous component, and an emulsion supply port that supplies the emulsion;
  • the inner wall around the oily liquid discharge port is made of a hydrophobic member, and the ultrasonic vibration part composed of an ultrasonic vibration element and an ultrasonic reflection element arranged so as to face each other across the flow path part It is characterized by performing a separation process by applying a sonic vibration to the emulsion.
  • An emulsion separator is an emulsion separator that separates an emulsion containing an oily component and an aqueous component, and an emulsion supply port that supplies the emulsion;
  • An oily liquid discharge port for discharging the oily component and an aqueous liquid discharge port for discharging the aqueous component; and a flow path part for separating the emulsion, and the outer wall of the flow path part is super
  • An ultrasonic vibration unit that applies ultrasonic vibration is disposed, and the ultrasonic vibration unit applies ultrasonic vibration to the emulsion.
  • FIG. 1 It is a figure which shows the structure of the system containing the emulsion separation apparatus using the ultrasonic wave of Embodiment 1 of this invention. It is a figure which shows the structure of the emulsion process part of the emulsion separation apparatus of Embodiment 1 in a XZ cross section.
  • (A) is a view showing the structure of an emulsion treatment unit of the emulsion separation apparatus of Embodiment 1 in the XZ section
  • (b) to (d) are views in the YZ section.
  • FIG. It is a figure which shows the state of the emulsion process by the emulsion separator of Embodiment 1.
  • FIG. It is a figure which shows the state of the emulsion process by the emulsion separator of Embodiment 1.
  • FIG. It is a figure which shows the structure of the system containing the emulsion separation apparatus using the ultrasonic wave of Embodiment 3 of this invention. It is a figure which shows the structure of the emulsion process part of the emulsion separation apparatus of Embodiment 3 in a XZ cross section. It is a figure which shows the structure of the emulsion process part of the emulsion separation apparatus of Embodiment 3 in a XZ cross section.
  • FIG. 8 shows an XY cross section of the ultrasonic transducer of the emulsion treatment section of FIG. 8
  • (b) shows an XZ cross section near the ultrasonic transducer
  • (c) shows an XY cross section near the oily liquid discharge port. It is a figure shown by.
  • the emulsion separation device of each embodiment has a configuration suitable for use in separating a liquid in which plural kinds of liquids are mixed, such as purified water of an emulsion.
  • a liquid in which plural kinds of liquids are mixed such as purified water of an emulsion.
  • an emulsion treatment or water purification treatment by an emulsion separator an emulsion mixed with oil and water, represented by factory wastewater, etc., an oily liquid containing a large amount of oily components, and other aqueous liquids To separate.
  • the emulsion separation device 10 includes an emulsion processing unit 30 including a flow path unit through which the emulsion flows, and a drive unit 20 that drives the emulsion processing unit 30.
  • an ultrasonic transducer 35 and an ultrasonic reflection plate 36 are provided at one end of the outer wall so as to sandwich the flow path section 34, and a sensor 37 that detects (senses) the flow in the flow path section 34.
  • the sensor 37 that detects the flow may detect the flow direction, flow rate, and pressure in the flow path section 34.
  • the inner wall of the flow path part 34 mentioned above has both a hydrophilic region and a hydrophobic region.
  • the ultrasonic transducer 35 receives an electrical signal from the drive unit 20, generates an ultrasonic wave, and forms a sound field in the flow path unit 34.
  • the droplets in the emulsion existing in the flow path section 34 are captured and separated, and separated into an oily liquid containing a large amount of oily components and other aqueous liquids.
  • the operation method of the emulsion separator is, for example, (1) filling the emulsion separator with droplets to be separated, (2) separating into two or more liquids, and (3) draining the separated liquids, respectively. Batch processing the above processing steps, discharging from the outlet, (4) filling the emulsion separation device with droplets, etc., and (5) further separating the filled droplets into two or more liquids Call it. Further, the process step of filling the droplets and the like of (4) while performing the discharge process of (3) is also included in the continuous operation process, and this process step is called a flow process.
  • the operation processing of the emulsion separator including these batch processing or flow processing is called continuous processing. Moreover, you may have the driving
  • FIG. 1 (Configuration of emulsion separator)
  • the entire system of FIG. 1 is configured to include an emulsion separator 10, an emulsion tank 41, a liquid feed pump 44, an aqueous liquid tank 42, and an oily liquid tank 43.
  • the emulsion separation apparatus 10 includes an emulsion processing unit 30 and a drive unit 20 connected thereto.
  • the emulsion tank 41 is a tank filled with the emulsion 51.
  • the emulsion tank 41 and the liquid feeding pump 44 are connected by a liquid feeding pipe 60, and the liquid feeding pump 44 is connected to the emulsion processing unit 30 via the liquid feeding pipe 61.
  • the emulsion 51 in the emulsion tank 41 is supplied to the emulsion supply port 31 of the emulsion processing unit 30 through the liquid supply pipe 60 and the liquid supply pipe 61 by the liquid supply pump 44.
  • the emulsion 51 supplied to the emulsion processing unit 30 is separated into an oily liquid 53 containing a large amount of oily components and an aqueous liquid 52 other than that, and the aqueous liquid 52 is transferred to the aqueous liquid tank 42 and the oily liquid 53.
  • the emulsion processing unit 30 is driven by a driving unit 20 including a signal detection unit 22 and an output control unit 21.
  • FIG. 2 shows an XZ cross section in the structure of the emulsion processing unit 30 of FIG.
  • the emulsion processing unit 30 includes a tubular structure that is disposed in the longitudinal direction in the horizontal direction that constitutes the flow path unit 34, and an ultrasonic transducer 35 that is provided to face each other across the region of the flow path unit 34. And a sound wave reflection plate 36. Note that “facing” means facing each other and substantially parallel.
  • the flow path section 34 is provided with an emulsion supply port 31, an aqueous liquid (aqueous component) discharge port 32, and an oily liquid (oil component) discharge port 33 as openings.
  • the flow path unit 34 which is a tubular structure, is arranged as shown in the space of (X, Y, Z). That is, the flow path part 34 has a long axis arranged in the X direction and a radius and a short axis arranged in the Z direction and the Y direction.
  • the flow path part 34 which is a tubular structure has at least three or more surfaces.
  • the YZ cross section is circular as shown in the figure, but may have other shapes.
  • the ultrasonic transducer 35 and the ultrasonic reflector 36 are disposed on two surfaces of the channel portion 34 facing in the X direction, and the emulsion supply port 31 is provided on the side of the tubular structure that is the other surface.
  • An aqueous liquid discharge port 32, an oily liquid discharge port 33, and the like are provided.
  • the emulsion supply port 31 is connected to the Z direction downward end of the liquid feeding pipe 61, and the emulsion 51 flows in.
  • the emulsion supply port 31 is provided in an arrangement that opens upward in the Z direction in the vicinity of the right end portion in the X direction of the flow path portion 34 that is a tubular structure.
  • the aqueous liquid discharge port 32 is a first discharge port and is connected to the upward end of the liquid feeding pipe 62 in the Z direction to discharge the aqueous liquid 52.
  • the aqueous liquid discharge port 32 is provided near the left end in the X direction of the flow path portion 34 so as to open downward in the Z direction.
  • the oily liquid discharge port 33 is a second discharge port, and is connected to the end of the liquid supply pipe 63 facing downward in the Z direction, and discharges the oily liquid 53.
  • the discharge port 33 is provided in the vicinity of the left end portion in the X direction of the flow path portion 34 so as to open upward in the Z direction.
  • the flow path section 34 has flows such as f1, f2, and f3 as the flow of the emulsion 51 and the like.
  • the emulsion 51 flows into the flow path part 34 from the emulsion supply port 31 on the right side in the X direction.
  • the inflowing emulsion 51 flows in the flow path part 34 from the upstream in the X direction on the right side to the downstream in the X direction on the downstream side via the X direction that is the long axis.
  • One of the flows of f1 is discharged as an aqueous liquid 52 from the aqueous liquid discharge port 32 below the left end of the X direction as in f2.
  • the other of the flow of f1 is discharged
  • the direction in which the emulsion 51 flows changes from the downward direction in the Z direction to the left direction in the X direction as shown by f1 in the liquid feeding pipe 61 and in the flow path portion 34.
  • the direction in which the aqueous liquid 52 flows changes from the left in the X direction to the downward in the Z direction as indicated by f2 in the flow path section 34 and in the liquid feeding pipe 62.
  • the direction in which the oily liquid 53 flows changes from the left in the X direction to the upward in the Z direction as indicated by f3 in the flow path section 34 and in the liquid feeding pipe 63.
  • oily or aqueous droplets are captured from the flowing emulsion 51 by the action of ultrasonic waves in the flow path section 34 having the long axis in the X direction.
  • the trapped droplets increase or decrease in buoyancy due to aggregation. Therefore, when the droplet is an aqueous component, it settles downward in the Z direction due to its own weight, and when the droplet is an oil component, it floats upward in the Z direction. Thereby, in the flow path part 34, a lot of aqueous components gather in the bottom part below the Z direction, and a lot of oily ingredients gather in the Z direction upper part.
  • the aqueous liquid discharge port 32 in the flow path part 34 is provided at an arbitrary position on the bottom part below the Z direction, and the oily liquid discharge port 33 is provided at an arbitrary position above the Z direction.
  • the aqueous liquid discharge port 32 is provided on the left side in the X direction and below the Z direction.
  • the oily liquid discharge port 33 is provided at a position on the left side in the X direction and above the Z direction.
  • oily components have high wettability with hydrophobic materials
  • aqueous components have high wettability with hydrophilic materials. Therefore, when the inner wall in the flow path part 34 is hydrophobic, the oil component in the emulsion 51 is easily attached, and when it is hydrophilic, the aqueous component is easily attached. Since the aqueous component or oily component adhering and accumulating in the flow path part 34 is mixed into the discharged liquid from the oily liquid discharge port 33 or the aqueous liquid discharge port 32, the purity of the discharged liquid is lowered. Therefore, it is necessary to reduce the deposits in the flow path portion 34.
  • High wettability refers to a state in which a liquid is in contact with a solid surface and a contact angle that is an angle formed by a tangent to the surface of the liquid and the solid surface is 90 degrees or less. High wettability is also called hydrophilic. Further, when the contact angle exceeds 90 degrees, the wettability is said to be low, and it is said to have hydrophobicity.
  • Oily components have high wettability with hydrophobic materials, and aqueous components have high wettability with hydrophilic materials, whereas oily components are difficult to wet with hydrophilic materials, and aqueous components are difficult to wet with hydrophobic materials. That is, the oil component is less likely to adhere to the hydrophilic material, and the aqueous component is less likely to adhere to the hydrophobic material. Therefore, the above-mentioned deposits can be suppressed by patterning the inner wall surface of the flow path portion 34 to be hydrophobic or hydrophilic. The patterning process is performed by plasma processing, UV processing, or the like.
  • the upper part in the Z direction where the oil component increases is made hydrophobic
  • the lower part in the Z direction where the aqueous component increases is made hydrophilic, so that the oily liquid drained above the Z direction is discharged. It is possible to suppress the mixing of the aqueous component into the outlet 33 and to suppress the mixing of the oily component into the aqueous liquid discharge port 32 disposed below the Z direction.
  • the inner wall surface of the flow path 34 it is possible to make the inner wall surface of the flow path 34 more difficult to adhere by changing the area ratio of the hydrophobic material and the hydrophilic material depending on the content ratio of the oily component and the aqueous component of the emulsion 51. That is, when the oily component of the emulsion 51 is large, the deposit can be further suppressed by patterning the large area of the hydrophobic material in the upper part in the Z direction. Moreover, when there are many aqueous components of the emulsion 51, it is good to enlarge the area of the hydrophilic material of the Z direction lower part.
  • the hydrophobic material may be configured to cover the periphery of the oil component discharge port
  • the hydrophilic material may be configured to cover the periphery of the aqueous component discharge port.
  • the periphery refers to the inner wall inner circumference at least about 5 mm below the lower end of the oil component discharge port. Further, when processed with a hydrophobic material so as to exceed about 5 mm, the aqueous component is still difficult to adhere, and the oil component is easily adsorbed. Similarly, the periphery of the aqueous component discharge port side is about 5 mm.
  • FIG. 3A shows an XZ cross section in the structure of the emulsion processing unit 30 shown in FIG. 2, and FIGS. 3B to 3C show YZ cross sections along AA ′ in FIG. 3A.
  • the inner wall at the upper part in the Z direction in which a large amount of oil component is present is subjected to surface treatment in the hydrophobic area, and the inner wall in the lower part in the Z direction in which the aqueous component is increased is subjected to surface treatment.
  • the oily liquid discharge port 33 has openings in the hydrophobic region, and the aqueous liquid discharge port 32 has openings in the hydrophilic region, respectively, in contact with the liquid feeding pipes 61, 62, 63.
  • the emulsion supply port 31 has an opening in the hydrophobic region and is connected to the liquid feeding pipe 61, but may be disposed in the hydrophilic region.
  • the flow path portion 34 may be treated so that only the inner wall surface thereof becomes a hydrophobic region and a hydrophilic region.
  • You may be comprised with the conjugate
  • you may have a structure where a hydrophobic member and a hydrophilic member closely_contact
  • a hydrophobic region and a hydrophobic member are described. These are collectively referred to as a hydrophobic portion.
  • region and a hydrophobic member both process the surface of a material or show the property of material itself, and do not point out only any one. Therefore, the expression “hydrophobic part” is used below. It should be noted that the expression “hydrophilic part” is used for the hydrophilic material and the hydrophilic region as well as the “hydrophobic part”.
  • the recovery efficiency of the liquid droplets containing a large amount of aqueous components is somewhat lowered even if the inner wall portion of the flow path portion 34 is formed of a hydrophobic portion without using a hydrophilic portion, It is effective for collecting drops.
  • the constituent ratio of the hydrophobic part and the hydrophilic part used for the inner wall part of the flow path part 34 is changed according to the ratio of the oily component and the aqueous component of the emulsion.
  • the oily component of the emulsion contains about 70%
  • the inner wall portion of the flow path portion 34 is moved from the position of the oily liquid discharge port 33 to a position of about 30%, that is, the oily liquid discharge port 33 is aqueous.
  • Up to 70% of the inner wall portion toward the liquid discharge port 32 is constituted by a hydrophobic portion, and the inner wall is constituted according to the constituent ratio of the oily component of the emulsion, so that the decomposition efficiency can be increased.
  • the ultrasonic transducer 35 is an element that converts an electric signal into vibration, is connected to the output control unit 21 through a conducting wire (not shown), and is driven by the electric signal E1 from the output control unit 21.
  • the ultrasonic transducer 35 is attached so that the vibration surface s1 is exposed in the flow path section 34, and is substantially parallel to the ultrasonic reflection plate 36 in the YZ plane corresponding to the direction of the short axis of the flow path section 34.
  • FIG. 4 is an explanatory diagram relating to the emulsion processing including the operation principle relating to the ultrasonic waves by the emulsion processing unit 30 in FIGS. 2 and 3.
  • the ultrasonic transducer 35 receives and drives the electric signal E1.
  • the ultrasonic transducer 35 that has received the electric signal E1 converts the electric signal into ultrasonic vibration and generates an ultrasonic wave in the flow path portion 34, thereby forming a strong sound field.
  • the sound field generated by the ultrasonic waves is a standing wave sound field corresponding to a frequency specific to the ultrasonic transducer 35.
  • a droplet sufficiently smaller than the distance between the abdomen 302 and the node 301 is present in the emulsion 51 that is a medium in the flow path portion 34, The droplet receives a force directed toward the antinode 302 or the node 301 of the sound field according to the physical property value, and is thereby captured at the position of the antinode 302 or the node 301.
  • the captured droplets aggregate due to intermolecular force.
  • the capturing position is included in the entire X direction in which the sound field in the flow path portion 34 is formed.
  • the emulsion 51 can be efficiently decomposed into an oily liquid containing a large amount of oily components and other aqueous liquids, and the decomposition performance can be improved.
  • the ultrasonic wave When the emulsion 51 is separated in the flow path section 34, the ultrasonic wave may be disturbed by a solid matter contained in the emulsion, and a sudden acoustic flow may be generated.
  • the acoustic flow is the same as the direction in which ultrasonic waves propagate, and has a flow in the right direction in the X direction.
  • the force for capturing the droplets is weakened, so the captured droplets are released and flowed into the acoustic stream. Since the generation of the acoustic flow lowers the emulsion separation performance, when the emulsion is continuously processed using the apparatus, the generation of the acoustic flow in the flow path section 34 is detected and the flow is controlled.
  • the generation of the acoustic flow detects, for example, the generation of vibrations different from the ultrasonic waves by the ultrasonic vibration unit or the generation of a flow different from the average flow velocity of the emulsion.
  • the average flow velocity passing through the cross section is sampled, and a case where the average flow velocity changes from the previous value is detected.
  • This change can be detected by any method as long as it can be detected that there is a change in the average flow velocity. For example, as an example of a change detection method, when a flow rate that is twice or more instantaneously detected relative to the average flow rate of the emulsion flowing in the flow path, a different flow or vibration is detected. It can be said.
  • a moving average value of the flow rate of the emulsion flowing through the flow path is calculated, and a normal state is measured.
  • the occurrence of a different flow or vibration was detected when the flow velocity increased and the moving average value was about 10% to 20% higher than in the normal state.
  • the above-described acoustic flow detection / control system will be described with reference to FIGS.
  • the acoustic flow generated in the flow path portion stops once the ultrasonic vibration of the ultrasonic transducer 34 is stopped.
  • the sensor 37 that detects the direction of the flow disposed in the flow path part 34 illustrated in FIG. 2 detects the flow when an acoustic flow is generated in the flow path part 34, and sends the electric signal E ⁇ b> 2 to the signal detection part.
  • Call 22 Upon receiving the electric signal E2, the signal detection unit 22 transmits an electric signal E3 for stopping the electric signal E1 to the output control unit 21.
  • the output control unit 21 Upon receiving the electrical signal E3, the output control unit 21 stops the electrical signal E1 and stops the ultrasonic vibration of the ultrasonic transducer 35. After stopping the electrical signal E1, the output control unit 21 transmits the electrical signal E1 again to drive the ultrasonic transducer 35.
  • the ultrasonic vibrator stop time may be appropriately changed according to the flow rate and pressure, the cross-sectional area of the flow path portion 34, and the viscosity and weight of the emulsion to be decomposed. It is desirable to stop for at least about 1 second.
  • the emulsion 51 supplied from the emulsion supply port 31 into the flow path portion 34 is changed into an oily liquid 53 containing a large amount of oily components and an aqueous liquid 52 other than that.
  • the oily liquid 53 containing a large amount of oily components can be selectively and efficiently recovered and discharged from the oily liquid discharge port 33, and other aqueous liquids 52 can be selectively and efficiently recovered from the aqueous liquid discharge port 32. And can discharge.
  • the second embodiment in addition to the effects of the first embodiment, even if a sudden acoustic flow occurs, the generation of the ultrasonic wave is stopped, thereby disturbing the sound field due to the generated acoustic flow. By reducing it, it becomes possible to further improve the decomposition performance.
  • FIG. 5 is used to explain the results of experiments on the processing performance in the emulsion processing using the emulsion separator 10 of the second embodiment.
  • FIG. 5 shows the result of the emulsion treatment by the suspension treatment apparatus 10 of the first embodiment.
  • the sample solution of emulsion 51 used in this evaluation was prepared by mixing waste oil solution (black brown) at a concentration of 30 ppm with tap water (colorless and transparent) and stirring for 30 seconds with a disperser. Moreover, the ultrasonic transducer
  • FIG. 5 (a) shows a state in the flow path (inner diameter: 20 mm, length: 150 mm) before ultrasonic irradiation.
  • FIG. 5B shows a state in the flow channel portion after irradiation with ultrasonic waves for 30 seconds.
  • FIG. 5A it can be seen that the sample liquid is uniformly milky brown, and the waste oil liquid droplets are uniformly distributed throughout the sample liquid.
  • an ultrasonic transducer 35 is arranged on the left side of the image, and an ultrasonic reflector 36 is arranged on the right side.
  • the oily liquid discharge port 33 is disposed on the upper left end in the image, the aqueous liquid discharge port 32 is disposed on the lower left end in the image, and the emulsion supply port 31 is disposed on the upper right outside the image.
  • the distance between the antinodes and the nodes of the ultrasonic wave is about 0.3 mm, and there is a YZ plane in the waste liquid droplets in the sample liquid in the liquid in the X direction in the flow path section. To do.
  • FIG. 6 shows a state in which an acoustic stream is generated during ultrasonic irradiation.
  • FIG. 6A shows a state in the flow channel portion immediately before the acoustic flow is generated
  • FIG. 6B shows an enlarged view of a region surrounded by a dotted line in the flow channel portion 34 shown in FIG. 6 (c) to 6 (f) show how the acoustic flow is observed at regular intervals
  • FIG. 6 (g) shows that the ultrasonic wave is stopped after FIG. 6 (f).
  • Each of the states in the flow path section 34 is shown.
  • the captured droplets are released, and the droplets do not aggregate, so that the emulsion separation performance of the emulsion separation device 10 is deteriorated.
  • the generated acoustic flow can be stopped by stopping the ultrasonic wave, it is effective to dispose the sensor 37 for detecting the flow in the flow path portion 34 to detect the generation of the acoustic flow.
  • the ultrasonic oscillation is stopped as described in the second embodiment, and the ultrasonic oscillation is resumed when the flow of the sample liquid in the flow path portion 34 is stabilized.
  • the emulsion separation performance of the emulsion separator can be improved.
  • FIG. 7 shows the configuration of a system including the emulsion separator 10a of the third embodiment. Since the configuration is substantially the same except for the emulsion processing unit 30a, differences will be described.
  • FIG. 8 shows an XZ cross section of the structure and flow of the emulsion processing unit 30a in the emulsion separation apparatus 10a of the third embodiment. A sensor 37 for detecting the flow may be provided and will be described later.
  • the emulsion processing unit 30a has a flow path part 34a, and the flow path part 34 having a tube state structure has a major axis arranged in the Z direction and a radius and a minor axis arranged in the X direction and the Y direction. This is different from the first and second embodiments.
  • the emulsion supply port 31 is disposed in the vertical direction (X direction) of the flow path portion 34 and is provided at an intermediate position in the Z direction on the side surface of the long axis (longitudinal) so as to open rightward in the X direction. It is connected to the end of the liquid pipe 61 facing left in the X direction.
  • the aqueous liquid discharge port 32 is provided at the position of the lower end in the Z direction on the side surface of the flow path portion 34 so as to open to the left in the X direction, and is connected to the right end of the liquid feeding pipe 62 in the X direction.
  • the oily liquid discharge port 33 is provided at an upper end position in the Z direction of the flow path portion 34 so as to open upward in the Z direction, and is connected to the lower end portion of the liquid feeding pipe 63 in the Z direction.
  • the ultrasonic transducer 35 and the ultrasonic reflection plate 36 are opposed substantially parallel to both the upper and lower ends in the Z direction across the almost entire region of the flow path section 34 in the Z direction, which is the long axis of the flow path section 34.
  • the flow path section 34 has a flow such as f1, f2, and f3 as the flow of the emulsion 51 and the like.
  • the emulsion 51 that has flowed into the flow path portion 34 from the emulsion supply port 31 flows in the flow path portion 34 in the upper and lower directions f1 and f2 in the Z direction as indicated by f1.
  • the flowing direction of the emulsion 51 changes from the left in the X direction to the up and down direction in the Z direction as shown by f1 in the liquid feeding pipe 61 and in the flow path part 34a.
  • the flow direction of the aqueous liquid 52 changes from the downward direction in the Z direction to the left direction in the X direction as indicated by f2 in the flow path part 34a and in the liquid feeding pipe 62.
  • the direction in which the oily liquid 53 flows is the same in the upward direction in the Z direction as indicated by f3 in the flow path section 34 and in the liquid feeding pipe 63.
  • droplets are captured from the flowing emulsion 51 by the action of ultrasonic waves in the flow path portion 34 having a long axis in the Z direction.
  • the flow-path part 34a many oil-based components gather in the Z direction upper part, and many aqueous components gather in the bottom part below Z direction.
  • the oily liquid discharge port 33 is provided at the upper end in the Z direction of the flow path portion 34a, and the aqueous liquid discharge port 32 is provided at a position near the bottom portion below the Z direction.
  • the oily component of the emulsion 51 to be decomposed rises by buoyancy. Therefore, the oil component floats upward in the Z direction.
  • the oily component that has floated up is captured at the positions of the abdomen 302 and the node 301 (not shown) at the top in the X direction. Therefore, it will be further decomposed by being captured at the surface where it has surfaced.
  • the decomposed aqueous component is trapped in the abdomen 302 and the node 301 at the point of sedimentation. Thereafter, the decomposed oily component floats and the aqueous component settles. They are captured and decomposed again at the point where they float or sink. Therefore, the decomposition performance is further improved as compared with the first and second embodiments.
  • the configurations of the ultrasonic transducer 35 and the ultrasonic reflector 36 may be interchanged. If the ultrasonic transducer 35 is arranged in the upper part in the Z direction, that is, in a direction in which a large amount of oily components are collected, stronger ultrasonic waves can be irradiated. Therefore, when it is desired to improve the decomposition performance of the oil component, the configuration shown in FIG. On the contrary, when it is desired to improve the decomposition performance of the aqueous component, the ultrasonic transducer 35 may be disposed in the lower part in the Z direction, that is, in a direction in which a large amount of the aqueous component is collected.
  • FIG. 9 shows an XZ sectional view of the emulsion treatment unit 30a shown in FIG.
  • the inner wall at the upper part in the Z direction in which a large amount of oil component is present in the separation process is applied to the hydrophobic region, and the inner wall at the lower part in the Z direction in which the aqueous component is increased is processed to the hydrophilic region.
  • the aqueous liquid discharge port 32 is opened in the hydrophilic area.
  • FIGS. 10 (a) and 10 (c) show an XY cross-sectional view of BB ′ of the emulsion processing unit 30a shown in FIG. 9, and FIGS. 10 (b) and 10 (d) show an XY cross-sectional view of CC ′.
  • the flow path portion 34a is treated as shown in FIGS. 10 (c) and 10 (d) even if only the inner wall surface is treated as a hydrophobic region or a hydrophilic region.
  • the structure may be such that the hydrophobic member and the hydrophilic member are in close contact with the inside of the tubular structure which is the flow path portion 34a.
  • the separation performance can be improved by reducing the adhesion of the deposit by appropriately changing the ratio of the hydrophobic member and the hydrophilic member in accordance with the ratio of the oily component and the aqueous component of the emulsion 51. .
  • FIG. 11A shows an XY cross-sectional view of the ultrasonic transducer 35 of the emulsion processing unit 30 shown in FIG.
  • the oily liquid discharge port 33 is disposed at the same position as the ultrasonic transducer 35 disposed on the XY plane at the upper end in the Z direction of the flow path portion 34a which is a tubular structure.
  • vibrator 35 has the opening part 70, as shown to Fig.11 (a).
  • the opening 70 is also provided corresponding to the oily liquid discharge port 33, and the opening 70 communicates the flow path portion 34 a and the liquid feeding pipe 63 in the Z direction.
  • FIG. 11B shows an XZ cross-sectional view in the vicinity of the ultrasonic transducer 35 of the emulsion processing unit 30a shown in FIG. 8, and FIG. 11C shows an XY cross-sectional view.
  • the outer peripheral portion of the vibration surface s1 of the ultrasonic transducer 35 is fixed to the side surface of the flow channel portion 34a that is a tubular structure on the upper surface in the Z direction of the flow channel portion 34a. Further, the vibration surface s1 of the ultrasonic transducer 35 is disposed so as to be exposed, and the oily liquid discharge port 33 is disposed on the ultrasonic transducer 35.
  • the emulsion processing unit 30a in the third embodiment also has a sensor 37 for detecting the flow in the flow path portion 34a, as in the second embodiment, will be described (FIG. 8).
  • the sensor 37 that detects the flow and the drive unit 20 detect an acoustic flow that reduces the separation performance of the emulsion, and control the flow.
  • the separation performance of Embodiment 3 can be further improved.
  • the decomposition performance of the suspension treatment can be improved.
  • efficient disassembly is possible, it is possible to contribute to reducing power consumption during driving.
  • the present embodiment is applicable not only to water purification applications such as emulsion separation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)

Abstract

 The purpose of the present invention pertains to an emulsion separation device in which ultrasonic waves are used, the purpose being to provide a technique by which it is possible to mitigate decreases in separation performance. An emulsion separation device according to an embodiment of the present invention separates an emulsion containing an oil-based component and a water-based component, wherein the emulsion separation device is characterized in that: the emulsion separation device has a flow path for separating an emulsion, the flow path having an emulsion supply opening for supplying an emulsion, an oil-based fluid discharge opening for discharging an oil-based component, and a water-based fluid discharge opening for discharging a water-based component; a portion of an inner wall of the flow path in contact with the emulsion, the portion being in the vicinity of the oil-based fluid discharge opening, is configured to be hydrophobic; and an ultrasonic wave oscillating unit configured from an ultrasonic wave oscillating element and an ultrasonic wave reflecting element arranged opposite each other across the flow path performs a process for separating the emulsion by applying an ultrasonic wave to the emulsion.

Description

乳濁液分離装置Emulsion separator
 本発明は、乳濁液を分離する技術に関する。また本発明は、超音波を用いた乳濁液分離装置に関する。 The present invention relates to a technique for separating an emulsion. The present invention also relates to an emulsion separator using ultrasonic waves.
 従来例における超音波を用いた乳濁液分離装置は、乳濁液が流れる流路部を介して超音波振動子と反射板との対が配置され、外部の駆動制御用の回路として、ファンクションジェネレータ等を有する。ファンクションジェネレータは、超音波振動子に与える制御用の波形信号を生成する波形生成器である。乳濁液分離装置は、超音波振動子への波形信号の印加により、超音波振動子と反射板との間で超音波による音場を発生させ、流路部内の液滴に外力を与え。これにより乳濁液を分離する。 In the conventional emulsion separation apparatus using ultrasonic waves, a pair of an ultrasonic transducer and a reflector is arranged through a flow path portion through which the emulsion flows, and functions as an external drive control circuit. It has a generator etc. The function generator is a waveform generator that generates a control waveform signal to be given to the ultrasonic transducer. The emulsion separator generates a sound field by ultrasonic waves between the ultrasonic transducer and the reflection plate by applying a waveform signal to the ultrasonic transducer, and applies an external force to the droplets in the flow path. This separates the emulsion.
 上記乳濁分離に関する先行技術文献として、特開平10-109283号公報(特許文献1)、特開2004-24959号公報がある。 As prior art documents relating to the above-mentioned emulsion separation, there are JP-A-10-109283 (Patent Document 1) and JP-A-2004-24959.
 特許文献1は、「液体媒質12中の微小物体を定在波音場中の音圧の節に半波長間隔で整列させて捕捉するに際し、超音波振動子16の裏面電極を、それぞれ独立して互いに平行に配列された短冊状の電極片34の複数にて構成し、電極片34のうちの選択された一部のものに電圧を印加せしめて駆動させ、超音波を放射させることにより、定在波音場を超音波振動子16における駆動電極片配設部位と反射板18との間に形成する一方、かかる電圧の印加せしめられる電極片34を隣接する電極片34に電気的に切り換えることにより、超音波振動子の駆動部分を移動せしめて定在波音場を移動させ、捕捉された微小物体を電極片34の配列方向に沿って移動せしめる。(要約参照)」ことが記載されている。 Japanese Patent Application Laid-Open No. H10-228561 describes that “when a micro object in a liquid medium 12 is captured and aligned at a half-wavelength interval at a node of sound pressure in a standing wave sound field, the back electrode of the ultrasonic transducer 16 is independently A plurality of strip-shaped electrode pieces 34 arranged in parallel with each other, a voltage is applied to a selected part of the electrode pieces 34 and driven to emit ultrasonic waves. A standing sound field is formed between the drive electrode piece arrangement portion of the ultrasonic transducer 16 and the reflector 18, while the electrode piece 34 to which such a voltage is applied is electrically switched to the adjacent electrode piece 34. , The driving portion of the ultrasonic transducer is moved to move the standing wave sound field, and the captured micro object is moved along the arrangement direction of the electrode pieces 34 (see summary).
 特許文献2は、「液体媒質で満たされている流路中に、流路に沿って超音波振動子と反射板を平行に設置し、超音波振動子を所定の電気信号で駆動し、放射される超音波が反射板で反射し、流路中に生成される定在波音場の音圧の節もしくは音圧の腹に液体媒質中に分散する微小物体を捕捉することを特徴とする、超音波非接触フィルタリング方法、及びその装置。(要約参照)」が記載されている。 Patent Document 2 states that “in a flow path filled with a liquid medium, an ultrasonic vibrator and a reflector are installed in parallel along the flow path, and the ultrasonic vibrator is driven by a predetermined electrical signal to emit radiation. The reflected ultrasonic wave is reflected by a reflector, and a minute object dispersed in a liquid medium is captured in a node of sound pressure of a standing wave sound field generated in a flow path or an antinode of sound pressure, Ultrasonic non-contact filtering method and apparatus thereof (see summary) ".
特開平10-109283号公報JP-A-10-109283 特開2004-24959号公報JP 2004-24959 A
 上記いずれの先行技術文献に記載される乳濁液分離装置には、超音波振動子から発生する超音波を用いて、非接触で、懸濁液ないし乳濁液中の固形物ないし液滴等を、捕捉、搬送、濃縮、分離、またはフィルタリング等を行う技術について記載されているが、運用の際にかかる処理動作に関しては考慮されていない。 The emulsion separator described in any of the above-mentioned prior art documents uses solid waves or droplets in a suspension or emulsion in a non-contact manner using ultrasonic waves generated from an ultrasonic vibrator. However, no consideration is given to the processing operation during operation.
 乳濁液の分離が行われる際に分離性能は徐々に低下するため、分離性能の低下を改善する低減させる機構あるいは構造あるいは制御方法が必要である。 Since the separation performance gradually decreases when the emulsion is separated, a mechanism, structure, or control method for reducing the reduction in the separation performance is required.
 また、分離された乳濁液のうち、油性成分が多い液滴を回収する際に水性成分が混ざることがあり、高密度の油性成分が多い液滴に水性成分が混ざることで高密度の液滴が回収しづらくなる。そのため、回収効率のよい排出口が求められている。 Further, among the separated emulsions, an aqueous component may be mixed when recovering droplets with a large amount of oil component, and a high density liquid is obtained by mixing an aqueous component with droplets with a high density of oil component. Drops are difficult to collect. Therefore, there is a demand for a discharge port with good recovery efficiency.
 また、乳濁液の分離処理には、乳濁液分離装置内の内壁には、油性成分と水性成分が付着する。特に、乳濁液分離装置の上方側(分離後の油性成分が浮上する側)に水性成分が付着すると、付着した水性成分は除去・移動するのが困難である。また、分離し、沈降した水性成分のうち下方側に付着した油性成分を除去・移動するのも同様に困難であることから、乳濁液分離装置内の内壁部分に張り付きにくい装置が求められている。 Also, in the separation process of the emulsion, an oily component and an aqueous component adhere to the inner wall in the emulsion separation device. In particular, if an aqueous component adheres to the upper side of the emulsion separator (the side on which the oily component after separation floats), it is difficult to remove and move the attached aqueous component. Also, since it is difficult to remove and move the oily component adhering to the lower side of the separated and settled aqueous component, there is a need for a device that does not stick to the inner wall portion in the emulsion separator. Yes.
 他方、乳濁液分離装置の運転時においては、乳濁液から液中の液滴を分離し、少なくとも二種以上の液体に分離する場合に、突発的に発生する音響流により、槽内の音場が乱れることによって、槽内の液体が撹拌されてしまいため分離性能が低下してしまう課題を有しているがこれらの課題について、上記した文献では考慮されていない。
  なお、単独運転時でも上記音響流による影響は起こるが、連続運転時はより顕著である。
  また、分離後の排出液には、槽内に蓄積された付着物が混入してしまうため、処理後の不純物含有率が高くなり、分離性能が低下する。
  このため、乳濁液分離装置は、連続処理動作の際に分離性能が低下しないための機構あるいは構造あるいは制御方法が必要である。
On the other hand, during the operation of the emulsion separator, when the droplets in the liquid are separated from the emulsion and separated into at least two kinds of liquids, the acoustic flow suddenly occurs, Although the sound field is disturbed, the liquid in the tank is agitated, and thus there is a problem that the separation performance is deteriorated. However, these problems are not considered in the above-mentioned literature.
In addition, although the influence by the said acoustic flow occurs also at the time of a single operation, it is more remarkable at the time of continuous operation.
Moreover, since the deposit | attachment accumulate | stored in the tank will mix in the drained liquid after isolation | separation, the impurity content rate after a process will become high and separation performance will fall.
For this reason, the emulsion separator requires a mechanism, structure, or control method for preventing the separation performance from being deteriorated during the continuous processing operation.
 本発明の目的は、超音波を用いた乳濁液分離装置に関して、分離性能低下を抑制することができる技術を提供することである。また、乳濁液分離装置に関して、乳濁液分離装置内において、装置内壁に油性成分・水性成分の貼り付きを低減される技術を提供することである。 An object of the present invention is to provide a technique capable of suppressing a decrease in separation performance with respect to an emulsion separation apparatus using ultrasonic waves. Another object of the present invention is to provide a technique for reducing the sticking of oily components and aqueous components to the inner wall of the apparatus in the emulsion separator.
 本発明のうち代表的な実施の形態は、超音波を用いた乳濁液分離装置であって、以下に示す構成を有することを特徴とする。 A typical embodiment of the present invention is an emulsion separator using ultrasonic waves, and has the following configuration.
 本発明の実施形態の一態様の乳濁液分解装置は、油性成分と水性成分を含む乳濁液を分離する乳濁液分解装置であって、乳濁液を供給する乳濁液供給口と、油性成分を排出する油性液排出口と、水性成分を排出する水性液排出口と、を有する乳濁液を分解する流路部を有し、流路部の乳濁液と接する内壁のうち油性液排出口周囲の内壁は疎水性部材で構成されており、流路部を挟み対向するように配置された超音波振動素子と超音波反射素子とから構成される超音波振動部は、超音波振動を乳濁液に与えることによって分離する処理を行うことを特徴とする。 An emulsion decomposing apparatus according to one aspect of an embodiment of the present invention is an emulsion decomposing apparatus that separates an emulsion containing an oily component and an aqueous component, and an emulsion supply port that supplies the emulsion; An inner fluid wall having a flow path portion for decomposing an emulsion having an oil liquid discharge port for discharging an oil component and an aqueous liquid discharge port for discharging an aqueous component, the inner wall being in contact with the emulsion of the flow path portion The inner wall around the oily liquid discharge port is made of a hydrophobic member, and the ultrasonic vibration part composed of an ultrasonic vibration element and an ultrasonic reflection element arranged so as to face each other across the flow path part It is characterized by performing a separation process by applying a sonic vibration to the emulsion.
 本発明の実施形態の一態様の乳濁液分離装置は、油性成分と水性成分を含む乳濁液を分離する乳濁液分離装置であって、乳濁液を供給する乳濁液供給口と、油性成分を排出する油性液排出口と、水性成分を排出する水性液排出口と、を有する乳濁液を分離する流路部を有し、流路部の外壁には流路内に超音波振動を与える超音波振動部が配置され、超音波振動部は、乳濁液に超音波振動を与えることを特徴とする。 An emulsion separator according to one aspect of an embodiment of the present invention is an emulsion separator that separates an emulsion containing an oily component and an aqueous component, and an emulsion supply port that supplies the emulsion; An oily liquid discharge port for discharging the oily component and an aqueous liquid discharge port for discharging the aqueous component; and a flow path part for separating the emulsion, and the outer wall of the flow path part is super An ultrasonic vibration unit that applies ultrasonic vibration is disposed, and the ultrasonic vibration unit applies ultrasonic vibration to the emulsion.
 本発明のうち代表的な実施の形態によれば、超音波を用いた乳濁液分離装置に関して、分離性能の低下を抑制することができる。 According to a typical embodiment of the present invention, it is possible to suppress a decrease in separation performance with respect to an emulsion separator using ultrasonic waves.
本発明の実施の形態1の超音波を用いた乳濁液分離装置を含むシステムの構成を示す図である。It is a figure which shows the structure of the system containing the emulsion separation apparatus using the ultrasonic wave of Embodiment 1 of this invention. 実施の形態1の乳濁液分離装置の乳濁液処理部の構造をXZ断面で示す図である。It is a figure which shows the structure of the emulsion process part of the emulsion separation apparatus of Embodiment 1 in a XZ cross section. (a)は実施の形態1の乳濁液分離装置の乳濁液処理部の構造をXZ断面で、(b)~(d)はYZ断面で示す図である。(A) is a view showing the structure of an emulsion treatment unit of the emulsion separation apparatus of Embodiment 1 in the XZ section, and (b) to (d) are views in the YZ section. 図2の乳濁液処理部の超音波に関する動作原理をXZ断面で示す図である。It is a figure which shows the operation principle regarding the ultrasonic wave of the emulsion process part of FIG. 2 in a XZ cross section. 実施の形態1の乳濁液分離装置による乳濁液処理の状態を示す図である。It is a figure which shows the state of the emulsion process by the emulsion separator of Embodiment 1. FIG. 実施の形態1の乳濁液分離装置による乳濁液処理の状態を示す図である。It is a figure which shows the state of the emulsion process by the emulsion separator of Embodiment 1. FIG. 本発明の実施の形態3の超音波を用いた乳濁液分離装置を含むシステムの構成を示す図である。It is a figure which shows the structure of the system containing the emulsion separation apparatus using the ultrasonic wave of Embodiment 3 of this invention. 実施の形態3の乳濁液分離装置の乳濁液処理部の構造をXZ断面で示す図である。It is a figure which shows the structure of the emulsion process part of the emulsion separation apparatus of Embodiment 3 in a XZ cross section. 実施の形態3の乳濁液分離装置の乳濁液処理部の構造をXZ断面で示す図である。It is a figure which shows the structure of the emulsion process part of the emulsion separation apparatus of Embodiment 3 in a XZ cross section. 実施の形態3の乳濁液分離装置の乳濁液処理部の構造をXY断面で示す図である。It is a figure which shows the structure of the emulsion process part of the emulsion separation apparatus of Embodiment 3 in XY cross section. (a)は図8の乳濁液処理部の超音波振動子をXY断面を示し、(b)は超音波振動子近辺をXZ断面を示し、(c)は油性液排出口付近をXY断面で示す図である。(A) shows an XY cross section of the ultrasonic transducer of the emulsion treatment section of FIG. 8, (b) shows an XZ cross section near the ultrasonic transducer, and (c) shows an XY cross section near the oily liquid discharge port. It is a figure shown by.
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお実施の形態を説明するための全図において同一部には原則として同一符号を付しその繰り返しの説明は省略する。説明上の方向として、X,Y,Zを用いる。X,Yは水平面を構成する方向とし、Zは鉛直方向とする。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted. X, Y, and Z are used as directions for explanation. X and Y are directions constituting a horizontal plane, and Z is a vertical direction.
 <概要等>
  各実施の形態の乳濁液分離装置は、乳濁液の浄水など、複数種の液体が混在する液体を分離する用途に好適な構成を有する。乳濁液分離装置による乳濁液処理ないし浄水処理として、工場排水などに代表される、油と水とが混合した乳濁液を、油性成分を多く含む油性液と、それ以外の水性液とに分離する。
<Summary>
The emulsion separation device of each embodiment has a configuration suitable for use in separating a liquid in which plural kinds of liquids are mixed, such as purified water of an emulsion. As an emulsion treatment or water purification treatment by an emulsion separator, an emulsion mixed with oil and water, represented by factory wastewater, etc., an oily liquid containing a large amount of oily components, and other aqueous liquids To separate.
 各実施の形態の乳濁液分離装置10は、乳濁液が流れる流路部が構成される乳濁液処理部30と、乳濁液処理部30を駆動する駆動部20とを備える。乳濁液処理部は、流路部34を挟むように、超音波振動子35と超音波反射板36が外壁の一端にそれぞれ設けられ、流路部34内の流れ検知(感知)するセンサー37を有する。流れを検知するセンサー37は流路部34内の流れの向きや流量や圧力を検出するものであってもよい。また、上述した流路部34の内壁は親水領域と疎水領域の両方とを有する。超音波振動子35は駆動部20からの電気信号を受け、超音波を発生し、流路部34内に音場を形成する。当該音場において、流路部34内に存在する乳濁液中の液滴は、捕捉・分離され、油性成分を多く含む油性液と、それ以外の水性液に分離される。 The emulsion separation device 10 according to each embodiment includes an emulsion processing unit 30 including a flow path unit through which the emulsion flows, and a drive unit 20 that drives the emulsion processing unit 30. In the emulsion processing section, an ultrasonic transducer 35 and an ultrasonic reflection plate 36 are provided at one end of the outer wall so as to sandwich the flow path section 34, and a sensor 37 that detects (senses) the flow in the flow path section 34. Have The sensor 37 that detects the flow may detect the flow direction, flow rate, and pressure in the flow path section 34. Moreover, the inner wall of the flow path part 34 mentioned above has both a hydrophilic region and a hydrophobic region. The ultrasonic transducer 35 receives an electrical signal from the drive unit 20, generates an ultrasonic wave, and forms a sound field in the flow path unit 34. In the sound field, the droplets in the emulsion existing in the flow path section 34 are captured and separated, and separated into an oily liquid containing a large amount of oily components and other aqueous liquids.
 <乳濁液分離装置の運用例>
  乳濁液分離装置の運用方法は例えば、(1)乳濁液分離装置に分離する液滴等を充填し、(2)二種以上の液体に分離し、(3)分離した液体をそれぞれ排出口から排出し、(4)さらに乳濁液分離装置に分離する液滴等を充填し、(5)さらに充填した液滴等を二種以上の液体に分離する、上記の処理工程をバッチ処理と呼ぶ。また、上記(3)の排出処理を行いながら(4)の液滴等を充填する処理工程も連続運転処理に含み、この処理工程をフロー処理と呼ぶ。これらのバッチ処理あるいはフロー処理を含む乳濁液分離装置の運転処理を連続処理という。
  また、これら以外の運転処理方法を有していてもよく、運転が連続あるいは継続して行われるものであればよい。
<Operation example of emulsion separator>
The operation method of the emulsion separator is, for example, (1) filling the emulsion separator with droplets to be separated, (2) separating into two or more liquids, and (3) draining the separated liquids, respectively. Batch processing the above processing steps, discharging from the outlet, (4) filling the emulsion separation device with droplets, etc., and (5) further separating the filled droplets into two or more liquids Call it. Further, the process step of filling the droplets and the like of (4) while performing the discharge process of (3) is also included in the continuous operation process, and this process step is called a flow process. The operation processing of the emulsion separator including these batch processing or flow processing is called continuous processing.
Moreover, you may have the driving | running processing method other than these, and what is necessary is just to perform driving | running continuously or continuously.
 また、上記したように連続運転時には分離性能の低下が課題となるが、連続運転に限らずとも乳濁液の分離が行われる際には、分離性能の低下を改善する低減させる機構あるいは構造あるいは制御方法が必要である。 <実施の形態1>
  図1~図4等を用いて、本発明の実施の形態1の超音波を用いた乳濁液分離装置について説明する。図2に示される流路部内に流れを検知するセンサー37を有する構成については実施の形態2で説明する。
Further, as described above, a decrease in separation performance becomes a problem during continuous operation, but not only in continuous operation, but when an emulsion is separated, a mechanism or structure for reducing the decrease in separation performance or A control method is needed. <Embodiment 1>
The emulsion separator using ultrasonic waves according to the first embodiment of the present invention will be described with reference to FIGS. A configuration having a sensor 37 for detecting a flow in the flow path portion shown in FIG. 2 will be described in a second embodiment.
 (乳濁液分離装置の構成)
  図1では、乳濁液分離装置10を使用して乳濁液を分離処理するシステムの構成例を示している。図1のシステム全体は、乳濁液分離装置10と、乳濁液槽41と、送液ポンプ44と、水性液槽42と、油性液槽43とを含む構成である。
(Configuration of emulsion separator)
In FIG. 1, the structural example of the system which isolate | separates an emulsion using the emulsion separation apparatus 10 is shown. The entire system of FIG. 1 is configured to include an emulsion separator 10, an emulsion tank 41, a liquid feed pump 44, an aqueous liquid tank 42, and an oily liquid tank 43.
 実施の形態1の乳濁液分離装置10は、乳濁液処理部30と、それに接続される駆動部20とを備える。乳濁液槽41は、乳濁液51で満たされる槽である。乳濁液槽41と送液ポンプ44は送液管60で接続されており、送液ポンプ44は、送液管61を介して乳濁液処理部30に接続される。 The emulsion separation apparatus 10 according to the first embodiment includes an emulsion processing unit 30 and a drive unit 20 connected thereto. The emulsion tank 41 is a tank filled with the emulsion 51. The emulsion tank 41 and the liquid feeding pump 44 are connected by a liquid feeding pipe 60, and the liquid feeding pump 44 is connected to the emulsion processing unit 30 via the liquid feeding pipe 61.
 乳濁液槽41内の乳濁液51は、送液ポンプ44により、送液管60及び送液管61を通じて、乳濁液処理部30の乳濁液供給口31に供給される。乳濁液処理部30に供給された乳濁液51は、油性成分を多く含む油性液53と、それ以外の水性液52とに分離され、水性液52は水性液槽42に、油性液53は油性液槽43にそれぞれ排出される。乳濁液処理部30は、信号検出部22と出力制御部21からなる駆動部20により駆動される。 The emulsion 51 in the emulsion tank 41 is supplied to the emulsion supply port 31 of the emulsion processing unit 30 through the liquid supply pipe 60 and the liquid supply pipe 61 by the liquid supply pump 44. The emulsion 51 supplied to the emulsion processing unit 30 is separated into an oily liquid 53 containing a large amount of oily components and an aqueous liquid 52 other than that, and the aqueous liquid 52 is transferred to the aqueous liquid tank 42 and the oily liquid 53. Are discharged to the oil-based liquid tank 43, respectively. The emulsion processing unit 30 is driven by a driving unit 20 including a signal detection unit 22 and an output control unit 21.
 図2は、図1の乳濁液処理部30の構造におけるXZ断面を示す。
  乳濁液処理部30は、流路部34を構成する水平方向に長手方向に配置される管状構造体と、流路部34の領域を挟んで対向して設けられる超音波振動子35と超音波反射板36とを備える。なお、対向とは向かい合うことであって略平行となる関係である。流路部34には、開口部として、乳濁液供給口31、水性液(水性成分)排出口32、及び油性液(油性成分)排出口33が設けられる。
FIG. 2 shows an XZ cross section in the structure of the emulsion processing unit 30 of FIG.
The emulsion processing unit 30 includes a tubular structure that is disposed in the longitudinal direction in the horizontal direction that constitutes the flow path unit 34, and an ultrasonic transducer 35 that is provided to face each other across the region of the flow path unit 34. And a sound wave reflection plate 36. Note that “facing” means facing each other and substantially parallel. The flow path section 34 is provided with an emulsion supply port 31, an aqueous liquid (aqueous component) discharge port 32, and an oily liquid (oil component) discharge port 33 as openings.
 乳濁液処理部30は、管状構造体である流路部34が、(X,Y,Z)の空間内において図示の通りに配置される。即ち、流路部34は、長軸がX方向に配置され、半径及び短軸がZ方向及びY方向に配置される。管状構造体である流路部34は、少なくとも3つ以上の面を持つ。例えば、そのYZ断面は図示するように円形であるがその他の形状であってもよい。流路部34の面のうちX方向で対向する2つの面に超音波振動子35と超音波反射板36が配置され、他の面である管状構造体側面に乳濁液供給口31と、水性液排出口32と、油性液排出口33等が設けられる。 In the emulsion processing unit 30, the flow path unit 34, which is a tubular structure, is arranged as shown in the space of (X, Y, Z). That is, the flow path part 34 has a long axis arranged in the X direction and a radius and a short axis arranged in the Z direction and the Y direction. The flow path part 34 which is a tubular structure has at least three or more surfaces. For example, the YZ cross section is circular as shown in the figure, but may have other shapes. The ultrasonic transducer 35 and the ultrasonic reflector 36 are disposed on two surfaces of the channel portion 34 facing in the X direction, and the emulsion supply port 31 is provided on the side of the tubular structure that is the other surface. An aqueous liquid discharge port 32, an oily liquid discharge port 33, and the like are provided.
 乳濁液供給口31は、送液管61のZ方向下向きの端部と接続され、乳濁液51が流入する。乳濁液供給口31は、管状構造体である流路部34のX方向右端部付近にZ方向上向きに開口する配置で設けられる。 The emulsion supply port 31 is connected to the Z direction downward end of the liquid feeding pipe 61, and the emulsion 51 flows in. The emulsion supply port 31 is provided in an arrangement that opens upward in the Z direction in the vicinity of the right end portion in the X direction of the flow path portion 34 that is a tubular structure.
 水性液排出口32は、第1の排出口であり、送液管62のZ方向上向きの端部と接続され、水性液52を排出する。水性液排出口32は、流路部34のX方向左端付近にZ方向下向きに開口する配置で設けられる。 The aqueous liquid discharge port 32 is a first discharge port and is connected to the upward end of the liquid feeding pipe 62 in the Z direction to discharge the aqueous liquid 52. The aqueous liquid discharge port 32 is provided near the left end in the X direction of the flow path portion 34 so as to open downward in the Z direction.
 油性液排出口33は、第2の排出口であり、送液管63のZ方向下向きの端部と接続され、油性液53を排出する。排出口33は、流路部34のX方向左端部付近にZ方向上向きに開口する配置で設けられる。 The oily liquid discharge port 33 is a second discharge port, and is connected to the end of the liquid supply pipe 63 facing downward in the Z direction, and discharges the oily liquid 53. The discharge port 33 is provided in the vicinity of the left end portion in the X direction of the flow path portion 34 so as to open upward in the Z direction.
 流路部34内は、乳濁液51等の流れとして、f1,f2,f3のような流れを有する。f1のようにX方向右側の乳濁供給口31から流路部34内に乳濁液51が流入する。流入した乳濁液51は、流路部34内を、上流であるX方向右側から、長軸であるX方向を経由して、下流であるX方向左側へ向かって流れる。f1の流れのうち一方は、f2のようにX方左端下方の水性液排出口32から水性液52として排出される。f1の流れのうち他方は、f3のようにX方向左側の下流の油性液排出口33から油性液53として排出される。 The flow path section 34 has flows such as f1, f2, and f3 as the flow of the emulsion 51 and the like. Like f1, the emulsion 51 flows into the flow path part 34 from the emulsion supply port 31 on the right side in the X direction. The inflowing emulsion 51 flows in the flow path part 34 from the upstream in the X direction on the right side to the downstream in the X direction on the downstream side via the X direction that is the long axis. One of the flows of f1 is discharged as an aqueous liquid 52 from the aqueous liquid discharge port 32 below the left end of the X direction as in f2. The other of the flow of f1 is discharged | emitted as the oily liquid 53 from the oily liquid discharge port 33 of the downstream of the X direction left like f3.
 乳濁液51の流れる向きは、送液管61内と流路部34内とでf1のようにZ方向下向きからX方向左向きへ変わる。水性液52の流れる向きは、流路部34内と送液管62内とでf2のようにX方向左向きからZ方向下向きへ変わる。油性液53の流れる向きは、流路部34内と送液管63内とでf3のようにX方向左向きからZ方向上向きへ変わる。 The direction in which the emulsion 51 flows changes from the downward direction in the Z direction to the left direction in the X direction as shown by f1 in the liquid feeding pipe 61 and in the flow path portion 34. The direction in which the aqueous liquid 52 flows changes from the left in the X direction to the downward in the Z direction as indicated by f2 in the flow path section 34 and in the liquid feeding pipe 62. The direction in which the oily liquid 53 flows changes from the left in the X direction to the upward in the Z direction as indicated by f3 in the flow path section 34 and in the liquid feeding pipe 63.
 実施の形態1では、X方向が長軸の流路部34において、流れる乳濁液51から、超音波の作用により、油性あるいは水性の液滴が捕捉される。捕捉された液滴は、凝集により、浮力が増加、あるいは減少する。そのため、液滴が水性成分である場合、自重によりZ方向下方へ沈降し、液滴が油性成分である場合、Z方向上方へ浮上する。これにより流路部34は、Z方向下方の底部は水性成分が多く集まり、Z方向上部は油性成分が多く集まる。これに対応させて、流路部34における水性液排出口32はZ方向下方にある底部における任意の位置に、油性液排出口33はZ方向上方における任意の位置に、それぞれ設けられる。特に、実施の形態1では、水性液排出口32は、X方向左側でZ方向下方に設けられる。また、油性液排出口33は、X方向左側でZ方向上方の位置に設けられる。 In the first embodiment, oily or aqueous droplets are captured from the flowing emulsion 51 by the action of ultrasonic waves in the flow path section 34 having the long axis in the X direction. The trapped droplets increase or decrease in buoyancy due to aggregation. Therefore, when the droplet is an aqueous component, it settles downward in the Z direction due to its own weight, and when the droplet is an oil component, it floats upward in the Z direction. Thereby, in the flow path part 34, a lot of aqueous components gather in the bottom part below the Z direction, and a lot of oily ingredients gather in the Z direction upper part. Correspondingly, the aqueous liquid discharge port 32 in the flow path part 34 is provided at an arbitrary position on the bottom part below the Z direction, and the oily liquid discharge port 33 is provided at an arbitrary position above the Z direction. In particular, in the first embodiment, the aqueous liquid discharge port 32 is provided on the left side in the X direction and below the Z direction. The oily liquid discharge port 33 is provided at a position on the left side in the X direction and above the Z direction.
 一般的に、油性成分は疎水性材料との濡れ性が高く、水性成分は親水性材料との濡れ性が高いことが知られている。そのため、流路部34内の内壁が、疎水性である場合、乳濁液51内の油性成分が付着しやくすくなり、親水性である場合、水性成分が付着しやすくなる。流路部34内に付着、蓄積された水性成分、或いは油性成分は、油性液排出口33、或いは水性液排出口32からの排出液に混入するため、排出液の純度が低下してしまう。そのため、こうした流路部34内の付着物を低減する必要がある。 Generally, it is known that oily components have high wettability with hydrophobic materials, and aqueous components have high wettability with hydrophilic materials. Therefore, when the inner wall in the flow path part 34 is hydrophobic, the oil component in the emulsion 51 is easily attached, and when it is hydrophilic, the aqueous component is easily attached. Since the aqueous component or oily component adhering and accumulating in the flow path part 34 is mixed into the discharged liquid from the oily liquid discharge port 33 or the aqueous liquid discharge port 32, the purity of the discharged liquid is lowered. Therefore, it is necessary to reduce the deposits in the flow path portion 34.
 ここで、疎水性・親水性について簡単に説明する。濡れ性が高いとは、固体表面上に液体が接触し、液体の表面の接線と固体表面のなす角である接触角が90度以下の状態を指す。濡れ性が高いことをまた親水性を有するという。また、接触角が90度を超える場合を濡れ性が低いといい、また、疎水性を有するという。 Here, we will briefly explain hydrophobicity and hydrophilicity. High wettability refers to a state in which a liquid is in contact with a solid surface and a contact angle that is an angle formed by a tangent to the surface of the liquid and the solid surface is 90 degrees or less. High wettability is also called hydrophilic. Further, when the contact angle exceeds 90 degrees, the wettability is said to be low, and it is said to have hydrophobicity.
 油性成分は疎水性材料との濡れ性が高く、水性成分は親水性材料との濡れ性が高いのに対し、油性成分は親水性材料に濡れにくく、水性成分は疎水性材料に濡れにくい。即ち、油性成分は親水性材料に付着しにくく、水性成分は疎水性材料に付着しにくい。そのため、流路部34の内壁表面を、疎水性、或いは親水性にパターニング処理することで、上述した付着物を抑制することができる。パターニング処理は、プラズマ処理やUV処理等によって表面加工を施す。 Oily components have high wettability with hydrophobic materials, and aqueous components have high wettability with hydrophilic materials, whereas oily components are difficult to wet with hydrophilic materials, and aqueous components are difficult to wet with hydrophobic materials. That is, the oil component is less likely to adhere to the hydrophilic material, and the aqueous component is less likely to adhere to the hydrophobic material. Therefore, the above-mentioned deposits can be suppressed by patterning the inner wall surface of the flow path portion 34 to be hydrophobic or hydrophilic. The patterning process is performed by plasma processing, UV processing, or the like.
 つまり、流路部34内で、油性成分が多くなるZ方向上部を疎水性に、水性成分が多くなるZ方向下部を親水性に表面処理することで、Z方向上方に配置された油性液排出口33への水性成分の混入を抑制し、Z方向下方に配置された水性液排出口32への油性成分の混入を抑制することが可能となる。なお、親水性材料と疎水性材料の両方の表面加工をしなければならないわけではなく、いずれか一方だけを加工してもよい。例えば、Z方向上部を疎水性材料とする加工をすることで、水性成分の侵入を低下させることができる。 That is, in the flow path part 34, the upper part in the Z direction where the oil component increases is made hydrophobic, and the lower part in the Z direction where the aqueous component increases is made hydrophilic, so that the oily liquid drained above the Z direction is discharged. It is possible to suppress the mixing of the aqueous component into the outlet 33 and to suppress the mixing of the oily component into the aqueous liquid discharge port 32 disposed below the Z direction. In addition, it is not necessary to process the surface of both the hydrophilic material and the hydrophobic material, and only one of them may be processed. For example, the penetration of the aqueous component can be reduced by processing the upper part in the Z direction as a hydrophobic material.
 また、変形例として、乳濁液51の油性成分と水性成分の含有率によって流路部34の内壁表面を疎水性材料と親水性材料の面積比を変更するとさらに付着しにくくすることができる。つまり、乳濁液51の油性成分が多い場合には、Z方向上部の疎水性材料の面積を大きくパターニング処理することで、より付着物を抑制することができる。また、乳濁液51の水性成分が多い場合には、Z方向下部の親水性材料の面積を大きくするとよい。また、疎水性材料は油性成分排出口の周囲を覆うように構成してもよく、また親水性材料は水性成分排出口の周囲を覆うように構成してもよい。なお、周囲とは油性成分排出口の下端より少なくとも5mm程度下側の内壁内周までを指す。また、5mm程度を超えるように疎水性材料で加工するとなお水性成分が付着しにくくなり、また油性成分は吸着されやすくなる。また、水性成分排出口側も同様に周囲とは5mm程度を指す。 Also, as a modification, it is possible to make the inner wall surface of the flow path 34 more difficult to adhere by changing the area ratio of the hydrophobic material and the hydrophilic material depending on the content ratio of the oily component and the aqueous component of the emulsion 51. That is, when the oily component of the emulsion 51 is large, the deposit can be further suppressed by patterning the large area of the hydrophobic material in the upper part in the Z direction. Moreover, when there are many aqueous components of the emulsion 51, it is good to enlarge the area of the hydrophilic material of the Z direction lower part. The hydrophobic material may be configured to cover the periphery of the oil component discharge port, and the hydrophilic material may be configured to cover the periphery of the aqueous component discharge port. In addition, the periphery refers to the inner wall inner circumference at least about 5 mm below the lower end of the oil component discharge port. Further, when processed with a hydrophobic material so as to exceed about 5 mm, the aqueous component is still difficult to adhere, and the oil component is easily adsorbed. Similarly, the periphery of the aqueous component discharge port side is about 5 mm.
 図3(a)に、図2記載の乳濁液処理部30の構造におけるXZ断面を、図3(b)~(c)に、図3(a)のAA’におけるYZ断面を示す。 3A shows an XZ cross section in the structure of the emulsion processing unit 30 shown in FIG. 2, and FIGS. 3B to 3C show YZ cross sections along AA ′ in FIG. 3A.
 流路部34おいて、油性成分が多く存在するZ方向上部の内壁は疎水領域に、水性成分が多くなるZ方向下方部の内壁は親水領域に表面加工を施した。油性液排出口33は上記疎水領域内に、水性液排出口32は上記親水領域内に、それぞれ送液管61,62,63と接する箇所に開口部を有し、それぞれが接続されている。図3において、乳濁液供給口31は、疎水領域内に開口部を有し、送液管61と接続されているが、親水領域内に配置してもよい。 In the flow path part 34, the inner wall at the upper part in the Z direction in which a large amount of oil component is present is subjected to surface treatment in the hydrophobic area, and the inner wall in the lower part in the Z direction in which the aqueous component is increased is subjected to surface treatment. The oily liquid discharge port 33 has openings in the hydrophobic region, and the aqueous liquid discharge port 32 has openings in the hydrophilic region, respectively, in contact with the liquid feeding pipes 61, 62, 63. In FIG. 3, the emulsion supply port 31 has an opening in the hydrophobic region and is connected to the liquid feeding pipe 61, but may be disposed in the hydrophilic region.
 また、流路部34は、図3(b)に示すように、その内壁表面のみが疎水領域と親水領域となるように処理してもよく、図3(c)に示すように、疎水性部材と親水性部材の接合体で構成されていてもよい。また、図3(d)に示すように、管状構造体内部に疎水性部材と親水性部材が密着するような構造を有していてもよい。 Further, as shown in FIG. 3B, the flow path portion 34 may be treated so that only the inner wall surface thereof becomes a hydrophobic region and a hydrophilic region. As shown in FIG. You may be comprised with the conjugate | zygote of the member and the hydrophilic member. Moreover, as shown in FIG.3 (d), you may have a structure where a hydrophobic member and a hydrophilic member closely_contact | adhere inside a tubular structure.
 図3(a)(b)(c)には、疎水領域、疎水性部材と記載されているが、これらを総称し、疎水部と呼ぶ。なお、単に疎水領域、疎水性部材とも記載するが、いずれも材料の表面に加工を施すか、材料そのものの性質を示すものであり、いずれか一方のみを指すものではない。そのため、以下、「疎水部」という表現を用いるが、
  なお、親水性材料と親水領域も「疎水部」と同様に「親水部」という表現を用いることとする。
In FIGS. 3A, 3B, and 3C, a hydrophobic region and a hydrophobic member are described. These are collectively referred to as a hydrophobic portion. In addition, although it describes only a hydrophobic area | region and a hydrophobic member, both process the surface of a material or show the property of material itself, and do not point out only any one. Therefore, the expression “hydrophobic part” is used below.
It should be noted that the expression “hydrophilic part” is used for the hydrophilic material and the hydrophilic region as well as the “hydrophobic part”.
 また、図示しないが、流路部34の内壁部は、親水部を用いずに疎水部で構成しても、水性成分を多く含む液滴の回収効率は多少下がるが、油性成分を多く含む液滴の回収には有効である。 Although not shown in the figure, the recovery efficiency of the liquid droplets containing a large amount of aqueous components is somewhat lowered even if the inner wall portion of the flow path portion 34 is formed of a hydrophobic portion without using a hydrophilic portion, It is effective for collecting drops.
 また、乳濁液の油性成分と水性成分の比率に応じて、流路部34の内壁部に用いる疎水性部と親水性部の構成比率を変更するとなおよい。例えば、乳濁液の油性成分が7割程度を含有する場合には、流路部34の内壁部を油性液排出口33の位置から3割程度の位置まで、すなわち油性液排出口33から水性液排出口32に向かって内壁部の70%までを、疎水部で構成し、乳濁液の油性成分の構成比率に応じて内壁が構成されるため、分解効率を高めることができる。この場合は、先の流路部34の内壁部全体を疎水部で構成するよりも水性成分を多く含む液滴の回収効率が高くなり、また油性成分を多く含む液滴の回収効率もよい。 超音波振動子35は、電気信号を振動に変換する素子であり、導線(図示しない)を通じて、出力制御部21に接続されており、上記出力制御部21からの電気信号E1により駆動する。超音波振動子35は、流路部34に振動面s1が露出するように取り付けられており、超音波反射板36とは、流路部34の短軸の方向に対応したYZ平面で略平行に対向する。超音波振動子35のYZ平面は、管状構造体である流路部34の断面形状に対応させて円形とするとよい。また、円形に限らず矩形なども可能である。
(動作/処理)
 図4は、図2と図3の乳濁液処理部30による超音波に関する動作原理を含む乳濁液処理に関する説明図を示す。前述のように、超音波振動子35は電気信号E1を受け、駆動する。電気信号E1を受けた超音波振動子35は、電気信号を超音波振動に変換し、流路部34内に超音波を発生させ、強い音場を形成する。当該超音波による音場は、超音波振動子35に固有の周波数に応じた定在波の音場である。
Further, it is more preferable to change the constituent ratio of the hydrophobic part and the hydrophilic part used for the inner wall part of the flow path part 34 according to the ratio of the oily component and the aqueous component of the emulsion. For example, when the oily component of the emulsion contains about 70%, the inner wall portion of the flow path portion 34 is moved from the position of the oily liquid discharge port 33 to a position of about 30%, that is, the oily liquid discharge port 33 is aqueous. Up to 70% of the inner wall portion toward the liquid discharge port 32 is constituted by a hydrophobic portion, and the inner wall is constituted according to the constituent ratio of the oily component of the emulsion, so that the decomposition efficiency can be increased. In this case, the recovery efficiency of the liquid droplets containing a large amount of the aqueous component is higher than that of the entire inner wall portion of the flow path part 34 constituted by the hydrophobic part, and the recovery efficiency of the liquid droplets containing a large amount of the oil component is also good. The ultrasonic transducer 35 is an element that converts an electric signal into vibration, is connected to the output control unit 21 through a conducting wire (not shown), and is driven by the electric signal E1 from the output control unit 21. The ultrasonic transducer 35 is attached so that the vibration surface s1 is exposed in the flow path section 34, and is substantially parallel to the ultrasonic reflection plate 36 in the YZ plane corresponding to the direction of the short axis of the flow path section 34. Opposite to. The YZ plane of the ultrasonic transducer 35 may be circular corresponding to the cross-sectional shape of the flow path portion 34 that is a tubular structure. Moreover, not only a circular shape but also a rectangular shape is possible.
(Operation / Processing)
FIG. 4 is an explanatory diagram relating to the emulsion processing including the operation principle relating to the ultrasonic waves by the emulsion processing unit 30 in FIGS. 2 and 3. As described above, the ultrasonic transducer 35 receives and drives the electric signal E1. The ultrasonic transducer 35 that has received the electric signal E1 converts the electric signal into ultrasonic vibration and generates an ultrasonic wave in the flow path portion 34, thereby forming a strong sound field. The sound field generated by the ultrasonic waves is a standing wave sound field corresponding to a frequency specific to the ultrasonic transducer 35.
 流路部34内の長軸のX方向において形成される強い音場において、図4に示すように、超音波振動子35の固有周波数に応じた、音圧が高い領域である節301と音圧が低い領域である腹302とがX方向に沿って周期的に発現する。 In a strong sound field formed in the X direction of the long axis in the flow path portion 34, as shown in FIG. 4, the node 301 and the sound, which are regions with high sound pressure, according to the natural frequency of the ultrasonic transducer 35 The abdomen 302, which is a low pressure region, appears periodically along the X direction.
 上記流路部34における超音波による音場の形成時、流路部34内の媒質である乳濁液51中に、腹302と節301の間隔よりも十分小さな液滴が存在する場合、当該液滴は、その物性値に応じて、音場の腹302または節301へ向かう力を受け、これにより腹302または節301の位置に捕捉される。捕捉された液滴は、分子間力により凝集する。上記捕捉の位置は、流路部34内の音場が形成されるX方向の全体の中に含まれる。補足された液滴は、凝集し一定の大きさになると、油性成分は自身の浮力によってZ方向上方に浮上し、水性成分は自重によって下方の底部に向かって沈降する。したがって、乳濁液51は、油性成分を多く含む油性液とそれ以外の水性液に効率的に分解することができ、分解性能を向上させることができる。 When a sound field is formed by ultrasonic waves in the flow path portion 34, if a droplet sufficiently smaller than the distance between the abdomen 302 and the node 301 is present in the emulsion 51 that is a medium in the flow path portion 34, The droplet receives a force directed toward the antinode 302 or the node 301 of the sound field according to the physical property value, and is thereby captured at the position of the antinode 302 or the node 301. The captured droplets aggregate due to intermolecular force. The capturing position is included in the entire X direction in which the sound field in the flow path portion 34 is formed. When the captured droplets aggregate and become a certain size, the oily component floats upward in the Z direction by its own buoyancy, and the aqueous component settles toward the bottom of the bottom by its own weight. Therefore, the emulsion 51 can be efficiently decomposed into an oily liquid containing a large amount of oily components and other aqueous liquids, and the decomposition performance can be improved.
 <実施の形態2>
  先に説明した実施の形態1の一部を変形させた例として流路部内に流れを検知するセンサー37を配置したときの処理を説明する。
<Embodiment 2>
As an example in which a part of the first embodiment described above is modified, a process when the sensor 37 that detects the flow is arranged in the flow path will be described.
 乳濁液51が流路部34内で分離される際に、乳濁液中に含まれる固形物などにより、超音波が乱れ、突発的な音響流が発生する場合がある。一般的に上記音響流は、超音波の伝搬する方向と同じであり、X方向右向きの流れを有する。このとき、音場が乱れることで、液滴を捕捉する力が弱くなるため、捕捉された液滴は解放され、音響流に流されてしまう。音響流の発生は乳濁液分離性能を低下させるため、当該装置を用いて、乳濁液を連続処理する際は、流路部34内における音響流の発生を検知し、その流れを制御する必要がある。音響流の発生は、例えば、超音波振動部による超音波とは異なる振動の発生あるいは乳濁液の平均流速とは異なる流れの発生を検出する。また、断面を透過する平均流速をサンプリングし、前回の値よりも変化した場合を検出する。この変化の検出はどのような方法でもよく平均流速の変化があることが検出できるものであればよい。例えば、変化の検出方法の一例として、流路部を流れる乳濁液の平均的な流速に対して、瞬間的に2倍以上の流速を検出した場合には異なる流れあるいは振動の発生を検出したといえる。また、例えば、流路部を流れる乳濁液の流速の移動平均値を算出し、通常の状態を測定する。それに対して流速が上がり通常の状態に比べ移動平均値が10%から20%程度高い場合に異なる流れあるいは振動の発生を検出したといえる。 When the emulsion 51 is separated in the flow path section 34, the ultrasonic wave may be disturbed by a solid matter contained in the emulsion, and a sudden acoustic flow may be generated. Generally, the acoustic flow is the same as the direction in which ultrasonic waves propagate, and has a flow in the right direction in the X direction. At this time, since the sound field is disturbed, the force for capturing the droplets is weakened, so the captured droplets are released and flowed into the acoustic stream. Since the generation of the acoustic flow lowers the emulsion separation performance, when the emulsion is continuously processed using the apparatus, the generation of the acoustic flow in the flow path section 34 is detected and the flow is controlled. There is a need. The generation of the acoustic flow detects, for example, the generation of vibrations different from the ultrasonic waves by the ultrasonic vibration unit or the generation of a flow different from the average flow velocity of the emulsion. In addition, the average flow velocity passing through the cross section is sampled, and a case where the average flow velocity changes from the previous value is detected. This change can be detected by any method as long as it can be detected that there is a change in the average flow velocity. For example, as an example of a change detection method, when a flow rate that is twice or more instantaneously detected relative to the average flow rate of the emulsion flowing in the flow path, a different flow or vibration is detected. It can be said. Further, for example, a moving average value of the flow rate of the emulsion flowing through the flow path is calculated, and a normal state is measured. On the other hand, it can be said that the occurrence of a different flow or vibration was detected when the flow velocity increased and the moving average value was about 10% to 20% higher than in the normal state.
 図1と図2を用いて、上述した音響流の検知・制御システムを説明する。流路部内で発生した音響流は、超音波振動子34の超音波振動を一旦停止させると止まる。図2に記載の流路部34内に配置された流れの向きを検知するセンサー37は、流路部34内で音響流が発生した場合、その流れを検知し、電気信号E2を信号検出部22に発信する。電気信号E2を受けた信号検出部22は、電気信号E1を停止するための電気信号E3を、出力制御部21に発信する。 The above-described acoustic flow detection / control system will be described with reference to FIGS. The acoustic flow generated in the flow path portion stops once the ultrasonic vibration of the ultrasonic transducer 34 is stopped. The sensor 37 that detects the direction of the flow disposed in the flow path part 34 illustrated in FIG. 2 detects the flow when an acoustic flow is generated in the flow path part 34, and sends the electric signal E <b> 2 to the signal detection part. Call 22 Upon receiving the electric signal E2, the signal detection unit 22 transmits an electric signal E3 for stopping the electric signal E1 to the output control unit 21.
 電気信号E3を受けた出力制御部21は、電気信号E1を停止し、超音波振動子35の超音波振動を停止させる。出力制御部21は、電気信号E1を停止した後、再度、電気信号E1を発信し、超音波振動子35を駆動させる。超音波振動子停止時間は流量や圧力、流路部34の断面積、分解する乳濁液の粘性や重量によって適宜変更するとよい。少なくとも1秒程度は停止することが望ましい。 Upon receiving the electrical signal E3, the output control unit 21 stops the electrical signal E1 and stops the ultrasonic vibration of the ultrasonic transducer 35. After stopping the electrical signal E1, the output control unit 21 transmits the electrical signal E1 again to drive the ultrasonic transducer 35. The ultrasonic vibrator stop time may be appropriately changed according to the flow rate and pressure, the cross-sectional area of the flow path portion 34, and the viscosity and weight of the emulsion to be decomposed. It is desirable to stop for at least about 1 second.
 音響流が発生することによって、捕捉されていた液滴は解放され音響流に流されてしまうが、超音波の発生を一旦停止させた後、再度、発生させることによって音場の乱れを低減させ、弱くなった液滴を捕捉する力を再度向上させることができる。 When the acoustic flow is generated, the trapped droplets are released and flowed into the acoustic flow. The force for capturing weakened droplets can be improved again.
 上記超音波を用いた乳濁液処理により、乳濁液供給口31から流路部34内に供給される乳濁液51を、油性成分を多く含む油性液53とそれ以外の水性液52とに分離することができる。即ち、油性成分を多く含んだ油性液53を油性液排出口33から選択的及び効率的に回収及び排出でき、またそれ以外の水性液52を水性液排出口32から選択的及び効率的に回収及び排出できる。本実施の形態2では、実施の形態1の効果だけでなくさらに、突発的な音響流の発生が起こっても、超音波の発生を停止することで、発生した音響流による音場の乱れを低減させることで、さらに分解性能を向上させることが可能となる。 By the emulsion treatment using the ultrasonic wave, the emulsion 51 supplied from the emulsion supply port 31 into the flow path portion 34 is changed into an oily liquid 53 containing a large amount of oily components and an aqueous liquid 52 other than that. Can be separated. That is, the oily liquid 53 containing a large amount of oily components can be selectively and efficiently recovered and discharged from the oily liquid discharge port 33, and other aqueous liquids 52 can be selectively and efficiently recovered from the aqueous liquid discharge port 32. And can discharge. In the second embodiment, in addition to the effects of the first embodiment, even if a sudden acoustic flow occurs, the generation of the ultrasonic wave is stopped, thereby disturbing the sound field due to the generated acoustic flow. By reducing it, it becomes possible to further improve the decomposition performance.
 図5を用いて、実施の形態2の乳濁液分離装置10を用いた乳濁液処理における処理性能について実験した結果について説明する。図5は、実施の形態1の懸濁液処理装置10による乳濁液処理の結果を示す。 FIG. 5 is used to explain the results of experiments on the processing performance in the emulsion processing using the emulsion separator 10 of the second embodiment. FIG. 5 shows the result of the emulsion treatment by the suspension treatment apparatus 10 of the first embodiment.
 本評価で用いた乳濁液51のサンプル液は、水道水(無色透明)に30ppmの濃度で廃油液(黒褐色)を混合し、ディスパーサーで30秒攪拌し、作成した。また、本評価で用いた超音波振動子35は、共振周波数が2.26MHzである超音波振動子を用いた。 The sample solution of emulsion 51 used in this evaluation was prepared by mixing waste oil solution (black brown) at a concentration of 30 ppm with tap water (colorless and transparent) and stirring for 30 seconds with a disperser. Moreover, the ultrasonic transducer | vibrator 35 used by this evaluation used the ultrasonic transducer | vibrator whose resonance frequency is 2.26 MHz.
 図5(a)は超音波照射前の流路部(内径:20mm、長さ:150mm)内の様子である。また、図5(b)は超音波を30秒照射した後の流路部内の様子を表している。図5(a)において、サンプル液は、茶褐色に一様に乳濁しており、廃油液の液滴がサンプル液全域に均一に分布していることが分かる。図5において、画像左側には超音波振動子35が、右側には超音波反射板36が、それぞれ配置されている。また、油性液排出口33は画像内の左端上側に、水性液排出口32は、画像内の左端下側に配置されており、乳濁液供給口31は、画像外右上に配置されている。 上記共振周波数において、超音波の腹と節の間隔は約0.3mmであり、流路部内のX方向において、上記間隔で、液中のサンプル液中の廃油滴が捕捉されるYZ面が存在する。 FIG. 5 (a) shows a state in the flow path (inner diameter: 20 mm, length: 150 mm) before ultrasonic irradiation. FIG. 5B shows a state in the flow channel portion after irradiation with ultrasonic waves for 30 seconds. In FIG. 5A, it can be seen that the sample liquid is uniformly milky brown, and the waste oil liquid droplets are uniformly distributed throughout the sample liquid. In FIG. 5, an ultrasonic transducer 35 is arranged on the left side of the image, and an ultrasonic reflector 36 is arranged on the right side. The oily liquid discharge port 33 is disposed on the upper left end in the image, the aqueous liquid discharge port 32 is disposed on the lower left end in the image, and the emulsion supply port 31 is disposed on the upper right outside the image. . At the resonance frequency, the distance between the antinodes and the nodes of the ultrasonic wave is about 0.3 mm, and there is a YZ plane in the waste liquid droplets in the sample liquid in the liquid in the X direction in the flow path section. To do.
 超音波を照射することにより、サンプル液中に分散する極微小な廃油滴は凝集、浮上するため、流路部内上部の廃油成分は多くなり、一方、流路部下部では、廃油成分が少なくなる。そのため、超音波照射後である図5(b)に示されるように、サンプル液中の廃油成分が分離され、流路部上部において黒褐色の領域が増え、流路部下部において茶褐色が薄くなることが分かる。 By irradiating with ultrasonic waves, the microscopic waste oil droplets dispersed in the sample liquid aggregate and float, so the waste oil component in the upper part of the flow path part increases, while the waste oil component decreases in the lower part of the flow path part. . Therefore, as shown in FIG. 5B after ultrasonic irradiation, the waste oil component in the sample liquid is separated, the blackish brown area increases in the upper part of the flow path part, and the brown color becomes lighter in the lower part of the flow path part. I understand.
 図6に、超音波照射中に音響流が発生した様子を示す。図6(a)は、音響流が発生する直前の流路部内の様子を、図6(b)は、図6(a)に示す流路部34において、点線で囲った領域を拡大した様子を、図6(c)~(f)は、音響流が発生している様子を一定時間ごとに観察した様子を示し、図6(g)は、図6(f)の後に超音波を停止した流路部34内の様子をそれぞれ表す。 FIG. 6 shows a state in which an acoustic stream is generated during ultrasonic irradiation. FIG. 6A shows a state in the flow channel portion immediately before the acoustic flow is generated, and FIG. 6B shows an enlarged view of a region surrounded by a dotted line in the flow channel portion 34 shown in FIG. 6 (c) to 6 (f) show how the acoustic flow is observed at regular intervals, and FIG. 6 (g) shows that the ultrasonic wave is stopped after FIG. 6 (f). Each of the states in the flow path section 34 is shown.
 図6(b)の点線で囲まれた領域において、突発的に音響流が発生し、図6(c)~(f)に示すように、捕捉されていた廃油滴が音響流に流され、乳濁液供給口31側(画像においてX方向右側)に向かって移動している事が分かる。 In the region surrounded by the dotted line in FIG. 6 (b), an acoustic flow suddenly occurs, and as shown in FIGS. 6 (c) to (f), the captured waste oil droplets are caused to flow into the acoustic flow, It turns out that it is moving toward the emulsion supply port 31 side (X direction right side in an image).
 このように、音響流が発生した場合、捕捉されていた液滴が解放されてしまうため、液滴は凝集しないため、当該乳濁液分離装置10の乳濁液分離性能が低下してしまう。 Thus, when the acoustic flow is generated, the captured droplets are released, and the droplets do not aggregate, so that the emulsion separation performance of the emulsion separation device 10 is deteriorated.
 発生した音響流は、超音波を停止させることで、停止することができるため、流路部34内に流れを検知するセンサー37を配置し、音響流の発生を検出することが有効である。音響流を検出した場合には、上述の実施の形態2で説明したように超音波の発振を止めて、流路部34内のサンプル液の流れが安定したところで超音波の発振を再開させることで、乳濁液分離装置の乳濁液分離性能を向上させることができる。
Since the generated acoustic flow can be stopped by stopping the ultrasonic wave, it is effective to dispose the sensor 37 for detecting the flow in the flow path portion 34 to detect the generation of the acoustic flow. When the acoustic flow is detected, the ultrasonic oscillation is stopped as described in the second embodiment, and the ultrasonic oscillation is resumed when the flow of the sample liquid in the flow path portion 34 is stabilized. Thus, the emulsion separation performance of the emulsion separator can be improved.
 <実施の形態3>
  次に、図7~図11を用いて、本発明の実施の形態3の超音波を用いた乳濁液分離装置について説明する。図7は、実施の形態3の乳濁液分離装置10aを含むシステムの構成を示す。乳濁液処理部30a以外はほぼ同様の構成を有するため、差異のある箇所について説明する。
(乳濁液分離装置の構成)
 図8に、実施の形態3の乳濁液分離装置10aにおける乳濁液処理部30aの構造及び流れ等をXZ断面で示す。流れを検知するセンサー37については有していてもよく後述する。乳濁液処理部30aは流路部34aを有しており、管状態構造である流路部34は長軸がZ方向に配置され、半径及び短軸がX方向及びY方向に配置される点が実施の形態1、2と異なる。乳濁液供給口31は、流路部34の鉛直方向(X方向)に配置され長軸(長手)の側面におけるZ方向中間付近の位置に、X方向右向きに開口する配置で設けられ、送液管61のX方向左向きの端部と接続される。
<Embodiment 3>
Next, the emulsion separator using ultrasonic waves according to the third embodiment of the present invention will be described with reference to FIGS. FIG. 7 shows the configuration of a system including the emulsion separator 10a of the third embodiment. Since the configuration is substantially the same except for the emulsion processing unit 30a, differences will be described.
(Configuration of emulsion separator)
FIG. 8 shows an XZ cross section of the structure and flow of the emulsion processing unit 30a in the emulsion separation apparatus 10a of the third embodiment. A sensor 37 for detecting the flow may be provided and will be described later. The emulsion processing unit 30a has a flow path part 34a, and the flow path part 34 having a tube state structure has a major axis arranged in the Z direction and a radius and a minor axis arranged in the X direction and the Y direction. This is different from the first and second embodiments. The emulsion supply port 31 is disposed in the vertical direction (X direction) of the flow path portion 34 and is provided at an intermediate position in the Z direction on the side surface of the long axis (longitudinal) so as to open rightward in the X direction. It is connected to the end of the liquid pipe 61 facing left in the X direction.
 水性液排出口32は、流路部34の側面におけるZ方向下端の位置に、X方向左向きに開口する配置で設けられ、送液管62のX方向右向きの端部と接続される。 The aqueous liquid discharge port 32 is provided at the position of the lower end in the Z direction on the side surface of the flow path portion 34 so as to open to the left in the X direction, and is connected to the right end of the liquid feeding pipe 62 in the X direction.
 油性液排出口33は、流路部34のZ方向上端の位置に、Z方向上向きに開口する配置で設けられ、送液管63のZ方向下向きの端部と接続される。 The oily liquid discharge port 33 is provided at an upper end position in the Z direction of the flow path portion 34 so as to open upward in the Z direction, and is connected to the lower end portion of the liquid feeding pipe 63 in the Z direction.
 超音波振動子35と超音波反射板36は、流路部34の長軸であるZ方向において流路部34のほぼ全体の領域を挟んでZ方向上下両端に略平行して対向するように設けられる。 流路部34内は、乳濁液51等の流れとしてf1,f2,f3のような流れを有する。乳濁液供給口31から流路部34内に流入した乳濁液51は、f1のように流路部34内をZ方向上下のf1とf2に分かれて流れる。 乳濁液51の流れる向きは、送液管61内と流路部34a内とでf1のようにX方向左向きからZ方向上下の向きへ変わる。水性液52の流れる向きは、流路部34a内と送液管62内とでf2のようにZ方向下向きからX方向左向きへ変わる。油性液53の流れる向きは、流路部34内と送液管63内とでf3のようにZ方向上向きで同じである。 The ultrasonic transducer 35 and the ultrasonic reflection plate 36 are opposed substantially parallel to both the upper and lower ends in the Z direction across the almost entire region of the flow path section 34 in the Z direction, which is the long axis of the flow path section 34. Provided. The flow path section 34 has a flow such as f1, f2, and f3 as the flow of the emulsion 51 and the like. The emulsion 51 that has flowed into the flow path portion 34 from the emulsion supply port 31 flows in the flow path portion 34 in the upper and lower directions f1 and f2 in the Z direction as indicated by f1. The flowing direction of the emulsion 51 changes from the left in the X direction to the up and down direction in the Z direction as shown by f1 in the liquid feeding pipe 61 and in the flow path part 34a. The flow direction of the aqueous liquid 52 changes from the downward direction in the Z direction to the left direction in the X direction as indicated by f2 in the flow path part 34a and in the liquid feeding pipe 62. The direction in which the oily liquid 53 flows is the same in the upward direction in the Z direction as indicated by f3 in the flow path section 34 and in the liquid feeding pipe 63.
 実施の形態3では、Z方向が長軸の流路部34において、流れる乳濁液51から、超音波の作用により液滴が捕捉される。これにより流路部34aは、Z方向上方に油性成分が、Z方向下方の底部に水性成分が多く集まる。これに対応させて、油性液排出口33は、流路部34aのZ方向上端に、水性液排出口32はZ方向下方の底部の付近の位置に設けられる。 In the third embodiment, droplets are captured from the flowing emulsion 51 by the action of ultrasonic waves in the flow path portion 34 having a long axis in the Z direction. Thereby, as for the flow-path part 34a, many oil-based components gather in the Z direction upper part, and many aqueous components gather in the bottom part below Z direction. Correspondingly, the oily liquid discharge port 33 is provided at the upper end in the Z direction of the flow path portion 34a, and the aqueous liquid discharge port 32 is provided at a position near the bottom portion below the Z direction.
 本実施の形態で分離処理を行うと、分解される乳濁液51の油性成分は浮力により浮上する。そのため、油性成分はZ方向上部へ浮上する。浮上した油性成分は、X方向上部の図示しない腹302と節301の位置に捕捉されることとなる。そのため、浮上した先で捕捉されることで、さらに分解されることとなる。同様に分解された水性成分は沈降した先で腹302と節301に捕捉される。その後、分解された油性成分は浮上し、水性成分は沈降する。それらが浮上あるいは沈降した先で再度捕捉され分解されることとなる。したがって、実施の形態1,2よりもさらに分解性能は向上する。 When the separation process is performed in the present embodiment, the oily component of the emulsion 51 to be decomposed rises by buoyancy. Therefore, the oil component floats upward in the Z direction. The oily component that has floated up is captured at the positions of the abdomen 302 and the node 301 (not shown) at the top in the X direction. Therefore, it will be further decomposed by being captured at the surface where it has surfaced. Similarly, the decomposed aqueous component is trapped in the abdomen 302 and the node 301 at the point of sedimentation. Thereafter, the decomposed oily component floats and the aqueous component settles. They are captured and decomposed again at the point where they float or sink. Therefore, the decomposition performance is further improved as compared with the first and second embodiments.
 また、油性成分が浮上する際には送液管63までに腹302と節301により捕捉されやすいため実施例1,2よりもさらに分解される頻度が高くなる。 Further, when the oil component rises, it is easily captured by the abdomen 302 and the node 301 up to the liquid feeding pipe 63, so that the frequency of decomposition is higher than in the first and second embodiments.
 また、超音波振動子35と超音波反射板36の構成は入れ替えてもよい。超音波振動子35をZ方向上部つまり油性成分が多く集まる方向に配置すると、より強い超音波を照射することができる。そのため、油性成分の分解性能を高めたい場合には図8の構成を取るとよい。逆に、水性成分の分解性能を高めたい場合には、超音波振動子35をZ方向下部つまり水性成分が多く集まる方向に配置するとよい。 Further, the configurations of the ultrasonic transducer 35 and the ultrasonic reflector 36 may be interchanged. If the ultrasonic transducer 35 is arranged in the upper part in the Z direction, that is, in a direction in which a large amount of oily components are collected, stronger ultrasonic waves can be irradiated. Therefore, when it is desired to improve the decomposition performance of the oil component, the configuration shown in FIG. On the contrary, when it is desired to improve the decomposition performance of the aqueous component, the ultrasonic transducer 35 may be disposed in the lower part in the Z direction, that is, in a direction in which a large amount of the aqueous component is collected.
 図9に、図8に示す乳濁液処理部30aのXZ断面図を示す。流路部34aにおいて、分離過程で油性成分が多く存在するZ方向上部の内壁は疎水領域に、水性成分が多くなるZ方向下方部の内壁は親水領域とする処理を施し、油性液排出口33は流路部34a上部に、水性液排出口32は上記親水領域内に、それぞれ開口している。 FIG. 9 shows an XZ sectional view of the emulsion treatment unit 30a shown in FIG. In the flow path part 34a, the inner wall at the upper part in the Z direction in which a large amount of oil component is present in the separation process is applied to the hydrophobic region, and the inner wall at the lower part in the Z direction in which the aqueous component is increased is processed to the hydrophilic region. Are opened in the upper part of the flow path part 34a, and the aqueous liquid discharge port 32 is opened in the hydrophilic area.
 図10の(a)と(c)に、図9に示す乳濁液処理部30aのBB’のXY断面図を、(b)と(d)に、CC’におけるXY断面図を示す。流路部34aは、図10(a)と(b)に示すように、その内壁表面のみが疎水領域あるいは親水領域となるように処理されていても、図10(c)と(d)に示すように、流路部34aである管状構造体内部に疎水性部材と親水性部材とが密着するような構造を有していてもよい。いずれの場合も乳濁液51の油性成分と水性成分の比率に合わせて適宜疎水性部材と親水性部材の比率を変えることで付着物の付着を低減させることによって分離性能を向上させることができる。 10 (a) and 10 (c) show an XY cross-sectional view of BB ′ of the emulsion processing unit 30a shown in FIG. 9, and FIGS. 10 (b) and 10 (d) show an XY cross-sectional view of CC ′. As shown in FIGS. 10 (a) and 10 (b), the flow path portion 34a is treated as shown in FIGS. 10 (c) and 10 (d) even if only the inner wall surface is treated as a hydrophobic region or a hydrophilic region. As shown, the structure may be such that the hydrophobic member and the hydrophilic member are in close contact with the inside of the tubular structure which is the flow path portion 34a. In any case, the separation performance can be improved by reducing the adhesion of the deposit by appropriately changing the ratio of the hydrophobic member and the hydrophilic member in accordance with the ratio of the oily component and the aqueous component of the emulsion 51. .
 図11(a)に、図8に示す乳濁液処理部30の超音波振動子35のXY断面図を示す。油性液排出口33は、管状構造体である流路部34aのZ方向上端のXY平面に配置される超音波振動子35と同じ位置に配置される。このため、超音波振動子35は、図11(a)に示すように開口部70を持つ。開口部70は、油性液排出口33にも対応して設けられ、開口部70により、流路部34a内と送液管63とがZ方向で通じる。 FIG. 11A shows an XY cross-sectional view of the ultrasonic transducer 35 of the emulsion processing unit 30 shown in FIG. The oily liquid discharge port 33 is disposed at the same position as the ultrasonic transducer 35 disposed on the XY plane at the upper end in the Z direction of the flow path portion 34a which is a tubular structure. For this reason, the ultrasonic transducer | vibrator 35 has the opening part 70, as shown to Fig.11 (a). The opening 70 is also provided corresponding to the oily liquid discharge port 33, and the opening 70 communicates the flow path portion 34 a and the liquid feeding pipe 63 in the Z direction.
 図11(b)に、図8に示す乳濁液処理部30aの超音波振動子35近辺におけるXZ断面図を、図11(c)にXY断面図を示す。
  図8の構成では、流路部34aのZ方向上面において超音波振動子35の振動面s1の外周部が管状構造体である流路部34aの側面に対して固定され、流路部34a内に超音波振動子35の振動面s1が露出するように配置されており、油性液排出口33は、超音波振動子35の上部に配置される。
FIG. 11B shows an XZ cross-sectional view in the vicinity of the ultrasonic transducer 35 of the emulsion processing unit 30a shown in FIG. 8, and FIG. 11C shows an XY cross-sectional view.
In the configuration of FIG. 8, the outer peripheral portion of the vibration surface s1 of the ultrasonic transducer 35 is fixed to the side surface of the flow channel portion 34a that is a tubular structure on the upper surface in the Z direction of the flow channel portion 34a. Further, the vibration surface s1 of the ultrasonic transducer 35 is disposed so as to be exposed, and the oily liquid discharge port 33 is disposed on the ultrasonic transducer 35.
 さらに、実施の形態3における乳濁液処理部30aも、実施の形態2と同様に、その流路部34a内に流れを検知するセンサー37を有する場合について説明する(図8)。上記流れを検知するセンサー37と、駆動部20により、乳濁液の分離性能を低下させる音響流を検知し、その流れを制御する。この場合、実施の形態3の分離性能をさらに向上させることができる。 Furthermore, the case where the emulsion processing unit 30a in the third embodiment also has a sensor 37 for detecting the flow in the flow path portion 34a, as in the second embodiment, will be described (FIG. 8). The sensor 37 that detects the flow and the drive unit 20 detect an acoustic flow that reduces the separation performance of the emulsion, and control the flow. In this case, the separation performance of Embodiment 3 can be further improved.
 以上説明したように、各実施の形態の乳濁液分離装置によれば、懸濁液処理の分解性能を向上することができる。また、効率がよい分解が可能となるため、駆動時の消費電力を低減することにも貢献できる。 As described above, according to the emulsion separation device of each embodiment, the decomposition performance of the suspension treatment can be improved. In addition, since efficient disassembly is possible, it is possible to contribute to reducing power consumption during driving.
 上記の本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。例えば本実施の形態は乳濁液分離などの浄水用途に限らず適用可能である。 The invention made by the present inventors has been specifically described based on the embodiment. However, the invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say. For example, the present embodiment is applicable not only to water purification applications such as emulsion separation.
10…乳濁液分離装置、20…駆動部、21…出力制御部、22…信号検出部、30、30a…乳濁液処理部、31…乳濁液供給口、32…水性液排出口、33…油性液排出口、34、34a…流路部、35…超音波振動子、36…超音波反射板、41…乳濁液槽、42…水性液槽、43…油性液槽、44…送液ポンプ、51…乳濁液、52…水性液、53…油性液、61~64…送液管 DESCRIPTION OF SYMBOLS 10 ... Emulsion separator, 20 ... Drive part, 21 ... Output control part, 22 ... Signal detection part, 30, 30a ... Emulsion processing part, 31 ... Emulsion supply port, 32 ... Aqueous liquid discharge port, 33 ... Oily liquid outlet, 34, 34a ... Flow path part, 35 ... Ultrasonic vibrator, 36 ... Ultrasonic reflector, 41 ... Emulsion tank, 42 ... Aqueous liquid tank, 43 ... Oily liquid tank, 44 ... Liquid feed pump, 51 ... Emulsion, 52 ... Aqueous liquid, 53 ... Oil liquid, 61-64 ... Liquid feed pipe

Claims (16)

  1.  油性成分と水性成分を含む乳濁液を分離する乳濁液分離装置であって、
     前記乳濁液を供給する乳濁液供給口と、油性成分を排出する油性液排出口と、水性成分を排出する水性液排出口と、を有する乳濁液を分離する流路部を有し、
     前記流路部の前記乳濁液と接する内壁のうち前記油性成分排出口周囲の内壁は疎水部で構成されており、
     前記流路部を挟み対向するように配置された超音波振動素子と超音波反射素子とから構成される超音波振動部は、超音波振動を前記乳濁液に与えることによって分離する処理を行うこと
    を特徴とする乳濁液分離装置。
    An emulsion separator for separating an emulsion containing an oily component and an aqueous component,
    A flow path portion for separating the emulsion, the emulsion supply port supplying the emulsion, the oily liquid discharge port discharging the oily component, and the aqueous liquid discharge port discharging the aqueous component; ,
    The inner wall around the oil component discharge port of the inner wall in contact with the emulsion of the flow path portion is composed of a hydrophobic portion,
    An ultrasonic vibration unit composed of an ultrasonic vibration element and an ultrasonic reflection element disposed so as to face each other with the flow channel part interposed therebetween performs a separation process by applying ultrasonic vibration to the emulsion. An emulsion separator characterized by that.
  2.  請求項1記載の乳濁液分離装置であって、
     前記流路部の内壁のうち前記水性液排出口周囲の内壁は、親水部で構成されていること
    を特徴とする乳濁液分離装置。
    The emulsion separator according to claim 1,
    Of the inner walls of the flow path part, the inner wall around the aqueous liquid discharge port is constituted by a hydrophilic part.
  3.  請求項1または2記載の乳濁液分離装置であって、
     前記周囲とは、前記乳濁液排出口の下端部より5mmまでの領域であること
    を特徴とする乳濁液分離装置。
    The emulsion separator according to claim 1 or 2,
    The periphery is an area of 5 mm from the lower end of the emulsion discharge port.
  4.  請求項2記載の乳濁液分離装置であって、
     前記疎水部と前記親水部の面積の比率は前記乳濁液が有する前記油性成分と前記水性成分との比率によって決定されること
    を特徴とする乳濁液分離装置。
    The emulsion separator according to claim 2,
    The ratio of the area of the hydrophobic part and the hydrophilic part is determined by the ratio of the oily component and the aqueous component of the emulsion.
  5.  請求項1記載の乳濁液分離装置であって、
     前記流路部は管状構造体であり長手方向は略水平方向であること
    を特徴とする乳濁液分離装置。
    The emulsion separator according to claim 1,
    The emulsion separator according to claim 1, wherein the flow path portion is a tubular structure, and a longitudinal direction thereof is a substantially horizontal direction.
  6.  請求項1記載の乳濁液分離装置であって、
     前記流路部は管状構造体であり長手方向は略鉛直方向に配置され、
     前記油性液排出口は鉛直方向の前記超音波振動素子よりも高い位置に有していること
    を特徴とする乳濁液分離装置。
    The emulsion separator according to claim 1,
    The flow path part is a tubular structure and the longitudinal direction is arranged in a substantially vertical direction,
    The emulsion separator according to claim 1, wherein the oily liquid discharge port is located at a position higher than the ultrasonic vibration element in the vertical direction.
  7.  請求項1乃至6に記載の乳濁液分離装置であって、
     前記流路部には、前記油性液排出口と、前記水性液排出口との間に前記流路内の前記乳濁液の流れを検知する検知部を有し、
     前記検知部によって前記乳濁液の流れを検知した場合には、前記超音波振動部の動作を停止すること
    を特徴とする乳濁液分離装置。
    The emulsion separator according to any one of claims 1 to 6,
    The flow path part has a detection part for detecting the flow of the emulsion in the flow path between the oily liquid discharge port and the aqueous liquid discharge port,
    When the flow of the emulsion is detected by the detection unit, the operation of the ultrasonic vibration unit is stopped.
  8.  請求項7に記載の乳濁液分離装置であって、
     停止された前記超音波振動部を一定時間経過後に再度超音波振動を前記乳濁液に与えること
    を特徴とする乳濁液分離装置。
    The emulsion separator according to claim 7,
    The emulsion separating apparatus, wherein the ultrasonic vibration part is applied to the emulsion again after a certain period of time from the stopped ultrasonic vibration unit.
  9.  請求項7に記載の乳濁液分離装置であって、
     停止された前記超音波振動部を動作させる入力部を有し、
     前記入力部に、超音波振動部を動作させる情報を入力し、
     停止された前記超音波振動部は、前記動作される情報に基づいて超音波振動を前記乳濁液に与えること
    を特徴とする乳濁液分離装置。
    The emulsion separator according to claim 7,
    An input unit for operating the stopped ultrasonic vibration unit;
    Information for operating the ultrasonic vibration unit is input to the input unit,
    The stopped ultrasonic vibration section applies ultrasonic vibration to the emulsion based on the operated information.
  10.  油性成分と水性成分を含む乳濁液を分離する乳濁液分離装置であって、
     前記乳濁液を供給する乳濁液供給口と、油性成分を排出する油性液排出口と、水性成分を排出する水性液排出口と、を有する乳濁液を分離する流路部を有し、
     前記流路部の外壁には前記流路内に超音波振動を与える超音波振動部が配置され、
     前記超音波振動部は、前記乳濁液に超音波振動を与えること
    を特徴とする乳濁液分離装置。
    An emulsion separator for separating an emulsion containing an oily component and an aqueous component,
    A flow path portion for separating the emulsion, the emulsion supply port supplying the emulsion, the oily liquid discharge port discharging the oily component, and the aqueous liquid discharge port discharging the aqueous component; ,
    On the outer wall of the flow path portion is disposed an ultrasonic vibration portion for applying ultrasonic vibration in the flow path,
    The emulsion separating apparatus, wherein the ultrasonic vibration unit applies ultrasonic vibration to the emulsion.
  11.  請求項10に記載の乳濁液分離装置であって、
     前記流路部内には、前記超音波振動部により発生した超音波振動とは異なる振動あるいは乳濁液の平均流速とは異なる流れを検知する検知部を有しており、
     前記検知部は、前記流路部内の前記異なる振動あるいは前記異なる流れを検知した場合には、前記超音波振動を停止し、前記流路部内の前記異なる振動あるいは前記異なる流れを検知しない場合には、前記超音波振動を与えることによって前記乳濁液の分離を行うこと
    を特徴とする乳濁液分離装置。
    The emulsion separator according to claim 10,
    In the flow path section, there is a detection section for detecting a flow different from the ultrasonic vibration generated by the ultrasonic vibration section or a flow different from the average flow velocity of the emulsion,
    When the detection unit detects the different vibrations or the different flows in the flow channel unit, the detection unit stops the ultrasonic vibration and does not detect the different vibrations or the different flows in the flow channel unit. The emulsion separator is characterized by separating the emulsion by applying the ultrasonic vibration.
  12.  請求項11に記載の乳濁液分離装置であって、
     前記検知部により前記異なる振動あるいは前記異なる流れを検知していない場合に、一定時間経過後に前記超音波振動部は前記乳濁液に超音波振動を与えること
    を特徴とする乳濁液分離装置。
    The emulsion separator according to claim 11,
    The emulsion separator according to claim 1, wherein the ultrasonic vibration unit applies ultrasonic vibration to the emulsion after a predetermined time has elapsed when the detection unit does not detect the different vibrations or the different flows.
  13.  請求項10に記載の乳濁液分離装置であって、
     前記流路部内には、前記超音波振動部により発生した超音波振動とは異なる振動あるいは乳濁液の平均流速とは異なる流れを検知する検知部を有しており、
     前記検知部は、前記流路部内の前記異なる振動あるいは前記異なる流れを検知した場合には、前記超音波振動を停止し、
     停止された前記超音波振動部を動作させる情報を入力する入力部を有し、
     入力された前記動作させる情報に基づいて、停止された前記超音波振動部は、前記動作される情報に基づいて超音波振動を前記乳濁液に与えること
    を特徴とする乳濁液分離装置。
    The emulsion separator according to claim 10,
    In the flow path section, there is a detection section for detecting a flow different from the ultrasonic vibration generated by the ultrasonic vibration section or a flow different from the average flow velocity of the emulsion,
    The detection unit, when detecting the different vibration or the different flow in the flow path unit, stops the ultrasonic vibration,
    An input unit for inputting information for operating the stopped ultrasonic vibration unit;
    The emulsion separation device, wherein the stopped ultrasonic vibration unit applies ultrasonic vibration to the emulsion based on the operated information based on the input information to be operated.
  14.  油性成分と水性成分を含む乳濁液を分離する乳濁液分離方法であって、
     前記乳濁液に超音波振動を与え油性成分を多く含む油性液と水性成分を多く含む水性液とに分離し、
     前記分離は、与えた前記超音波振動とは異なる振動あるいは乳濁液の平均流速とは異なる流れを検知した場合には、前記超音波振動を停止すること
    を特徴とする乳濁液分離方法。
    An emulsion separation method for separating an emulsion containing an oily component and an aqueous component,
    The emulsion is subjected to ultrasonic vibration and separated into an oily liquid containing a lot of oily components and an aqueous liquid containing a lot of aqueous components,
    The method for separating an emulsion according to claim 1, wherein, when the separation detects a vibration different from the applied ultrasonic vibration or a flow different from the average flow velocity of the emulsion, the ultrasonic vibration is stopped.
  15.  請求項14記載の乳濁液分離方法であって、
     前記超音波振動が停止された後に、前記流路部内の前記異なる振動あるいは前記異なる流れを検知しない場合には、前記超音波振動を再度与えること
    を特徴とする乳濁液分離方法。
    The method of separating an emulsion according to claim 14,
    After the ultrasonic vibration is stopped, the ultrasonic vibration is applied again when the different vibration or the different flow in the flow path portion is not detected.
  16.  請求項15記載の乳濁液分離方法であって、
     前記超音波振動が停止された後に、前記異なる振動あるいは前記異なる流れを検知しない場合には、前記超音波振動を再度与えること
    を特徴とする乳濁液分離方法。
    The method of separating an emulsion according to claim 15,
    After the ultrasonic vibration is stopped, the ultrasonic vibration is applied again when the different vibration or the different flow is not detected.
PCT/JP2014/061649 2014-04-25 2014-04-25 Emulsion separation device WO2015162773A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/061649 WO2015162773A1 (en) 2014-04-25 2014-04-25 Emulsion separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/061649 WO2015162773A1 (en) 2014-04-25 2014-04-25 Emulsion separation device

Publications (1)

Publication Number Publication Date
WO2015162773A1 true WO2015162773A1 (en) 2015-10-29

Family

ID=54331960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061649 WO2015162773A1 (en) 2014-04-25 2014-04-25 Emulsion separation device

Country Status (1)

Country Link
WO (1) WO2015162773A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013523449A (en) * 2010-04-12 2013-06-17 フローデザイン ソニックス, インコーポレイテッド Ultrasonic and acoustophoretic techniques for water-oil separation for use in producing water
WO2014050320A1 (en) * 2012-09-26 2014-04-03 株式会社日立製作所 Suspension processing device using ultrasonic waves

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013523449A (en) * 2010-04-12 2013-06-17 フローデザイン ソニックス, インコーポレイテッド Ultrasonic and acoustophoretic techniques for water-oil separation for use in producing water
WO2014050320A1 (en) * 2012-09-26 2014-04-03 株式会社日立製作所 Suspension processing device using ultrasonic waves

Similar Documents

Publication Publication Date Title
US10350514B2 (en) Separation of multi-component fluid through ultrasonic acoustophoresis
US9340435B2 (en) Separation of multi-component fluid through ultrasonic acoustophoresis
US9701955B2 (en) Acoustophoretic separation technology using multi-dimensional standing waves
US7766121B2 (en) Methods and apparatus for conditioning and degassing liquids and gases in suspension
WO2014050320A1 (en) Suspension processing device using ultrasonic waves
GB2420510A (en) Methods and apparatus for conditioning and degassing liquids and gases in suspension
CA2879365A1 (en) Improved separation of multi-component fluid through ultrasonic acoustophoresis
JP6064640B2 (en) Solid-liquid separation method and apparatus
JP6339210B2 (en) Emulsion separation method, piping for feeding emulsion, emulsion separation apparatus and emulsion separation system
WO2015162773A1 (en) Emulsion separation device
JP6171019B2 (en) Suspension processing equipment
JP6454818B2 (en) Turbid liquid feed separation apparatus, system, and method
JP2015100719A (en) Suspension treatment apparatus and suspension treatment method
JP6661512B2 (en) Suspension liquid separation equipment
KR20110048134A (en) Pollutant Separate System and Pollutant Separate Method using Ultrasonic standing Wave
JP6674399B2 (en) Liquid treatment equipment
WO2023132146A1 (en) Water treatment device
EP1797941A1 (en) Methods and apparatus for conditioning and degassing liquids and gases in suspension in an ultrasonic field
CA2530974C (en) Methods and apparatus for conditioning and degassing liquids and gases in suspension
CN115991555A (en) Separator with granule separation and clearance filter core function
NZ544254A (en) Methods and apparatus for conditioning and degassing liquids and gases in suspension
NO334433B1 (en) Devices and methods for conditioning and degassing liquids and gases in suspension

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890143

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14890143

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP