WO2015161453A1 - 一种小区切换方法和设备 - Google Patents
一种小区切换方法和设备 Download PDFInfo
- Publication number
- WO2015161453A1 WO2015161453A1 PCT/CN2014/075971 CN2014075971W WO2015161453A1 WO 2015161453 A1 WO2015161453 A1 WO 2015161453A1 CN 2014075971 W CN2014075971 W CN 2014075971W WO 2015161453 A1 WO2015161453 A1 WO 2015161453A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terminal
- cell
- time
- channel quality
- serving cell
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 70
- 238000012544 monitoring process Methods 0.000 claims abstract description 59
- 238000012545 processing Methods 0.000 claims abstract description 19
- 238000005562 fading Methods 0.000 claims description 23
- 230000033001 locomotion Effects 0.000 claims description 19
- 238000004422 calculation algorithm Methods 0.000 claims description 17
- 230000005540 biological transmission Effects 0.000 abstract description 16
- 238000002360 preparation method Methods 0.000 abstract description 5
- 238000005259 measurement Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 8
- 238000004590 computer program Methods 0.000 description 7
- 238000004891 communication Methods 0.000 description 6
- 238000003860 storage Methods 0.000 description 4
- 230000001960 triggered effect Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000002596 correlated effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000005653 Brownian motion process Effects 0.000 description 1
- 241000760358 Enodes Species 0.000 description 1
- 238000005537 brownian motion Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/16—Performing reselection for specific purposes
- H04W36/18—Performing reselection for specific purposes for allowing seamless reselection, e.g. soft reselection
Definitions
- the present invention relates to the field of wireless communication technologies, and in particular, to a cell handover method and device. Background technique
- Cell handover refers to a process in which a terminal in a connected state transfers from one cell to another.
- the cell handover procedure is controlled by the terminal-assisted network control.
- the set measurement threshold for example, the reference signal received quality (Reference Signal Received Quality, When the RSRQ threshold is recorded as RSRQ Thr )
- the terminal is triggered to measure the neighboring cell (the switching measurement time is recorded as ⁇ ), and the measurement report is reported to the network side. If the channel quality of the neighboring cell is not low.
- the handover operation of the terminal from the serving cell to the neighboring cell is triggered (the pre-switching time is recorded as T n ); after the handover process is completed, the terminal accesses the neighboring cell (the handover completion time is recorded as T n+1) ).
- a typical heterogeneous network includes: a wireless communication network composed of a macro base station (Macro) and a micro base station (Pico), and the wireless communication network may further include a home base station (Femto) and a relay base station (Relay).
- Mocro macro base station
- Pico micro base station
- Relay relay base station
- the Macro cell is used to provide basic wide-area coverage for the user;
- the Pico cell is used to provide a small coverage, and the capacity of the hotspot service area is increased to balance the load of the Macro cell;
- To provide a small coverage can be a Human users provide better quality of service, such as higher service rates, higher quality links; relay cells are used to extend the coverage of the Macro Cell edge, or deployed in locations where it is not convenient to deploy wired backhaul.
- the embodiment of the present invention provides a cell handover method and device.
- the terminal can prepare for handover before the serving cell channel fading until the data packet cannot be transmitted.
- the channel resources of the serving cell are utilized to the maximum extent, and seamless handover is realized.
- the first aspect a cell switching method, the method includes:
- the cell handover process of the terminal is performed according to the predicted channel quality of the serving cell and the predicted channel quality of the at least one neighboring cell, including:
- the initial monitoring time ⁇ ) is a randomly set time, or a time to satisfy the set trigger condition.
- the triggering condition includes that a signal quality of a current serving cell of the terminal is lower than a set threshold.
- the prediction of the serving cell and the neighboring cells in the +1 timing channel quality comprising: Gauss - Markov model moves, and predict the serving cell in the neighboring cell channel time + 1 quality.
- the channel of the serving cell and the neighboring cell at time t M is predicted according to a Gauss-Markov moving model Quality, including:
- the channel quality of the serving cell and the neighboring cell at time t is predicted according to the predicted location information, including:
- a path loss algorithm for predicting the channel quality of the serving cell at time +1 ; and determining a path loss of the shadow fading according to the determined distance information of the terminal to the base station to which the neighboring cell belongs
- the algorithm predicts the channel quality of the neighboring cell at time t M .
- each of said predicted channel quality in a neighboring cell ⁇ ⁇ time, selected according to a neighboring cell as a target cell And switching the terminal from the serving cell to the target cell, including: according to a moving speed of the terminal at a moment and/or a service type currently transmitted by the terminal, and each predicted neighboring The cell quality of the cell at time +1 , the cell handover procedure of the terminal is performed.
- an eighth possible implementation manner according to the moving speed of the terminal at the moment, and/or the type of service currently transmitted by the terminal, and each predicted The channel quality of the neighboring cell at time t, and performing the cell handover process of the terminal, including:
- the macro cell is Selected as a target cell, and switching the terminal from the serving cell to the target cell;
- the moving speed of the terminal at the time is not greater than the set first threshold and not less than the set second threshold, and the service currently transmitted by the terminal is a real-time service, and the neighboring cell macrocell channel quality is not less than the time t M set threshold, the macro cell selected as a target cell, and the terminal hands over from the serving cell to the target cell, the Said that the first threshold is greater than the second threshold; or
- the moving speed of the terminal at the time is not greater than the set first threshold and not less than the set second threshold, and the currently transmitted service of the terminal is a non-real-time service
- the predicted neighboring Selecting in the cell, the neighboring cell with the best channel quality as the target cell, and switching the terminal from the serving cell to the target cell, where the first threshold is greater than the second threshold; or
- the moving speed of the terminal at the time is less than the set second threshold, and the service currently transmitted by the terminal is a real-time service, and the neighboring cell with the best channel quality is selected from the predicted neighboring cells as the target cell. And switching the terminal from the serving cell to the target cell.
- the size of the monitoring period is the switching delay size of the terminal, where the switching delay size refers to the time from the handover trigger to the completion of the handover.
- a terminal includes:
- a processing module configured to perform a cell handover procedure of the terminal according to the predicted channel quality of the serving cell and the predicted channel quality of the at least one neighboring cell.
- the processing module is specifically configured to: when the channel quality of the serving cell predicted by the prediction module is lower than a set threshold, according to the prediction The module predicts the channel quality of each of the neighboring cells at the moment, selects a neighboring cell as the target cell, and switches the terminal from the serving cell to the target cell.
- the initial monitoring time ⁇ ) is a randomly set time, or a time to satisfy the set trigger condition.
- the triggering condition includes that a signal quality of a current serving cell of the terminal is lower than a set threshold.
- the prediction module is specifically configured to:
- the Gauss - Markov model moves, the serving cell and predict the adjacent channel quality + 1 cell time.
- the prediction module is specifically configured to:
- the prediction module is specifically configured to:
- the processing module is specifically configured to: according to the moving speed of the terminal at the moment and/or the current transmission of the terminal The service type, and the predicted channel quality of each neighboring cell at time +1 , perform a cell handover procedure of the terminal.
- the processing module is specifically configured to:
- the macro cell is Selected as a target cell, and switching the terminal from the serving cell to the target cell;
- the moving speed of the terminal at the time is not greater than the set first threshold and not less than the set second threshold, and the service currently transmitted by the terminal is a real-time service, and the neighboring cell macrocell channel quality is not less than the time t M set threshold, the macro cell selected as a target cell, and the terminal hands over from the serving cell to the target cell, the Said that the first threshold is greater than the second threshold; or
- the moving speed of the terminal at the time is not greater than the set first threshold and not less than the set second threshold, and the currently transmitted service of the terminal is a non-real-time service
- the predicted neighboring Selecting in the cell, the neighboring cell with the best channel quality as the target cell, and switching the terminal from the serving cell to the target cell, where the first threshold is greater than the second threshold; or
- the moving speed of the terminal at the time is less than the set second threshold, and the service currently transmitted by the terminal is a real-time service, and the neighboring cell with the best channel quality is selected from the predicted neighboring cells as the target cell. And switching the terminal from the serving cell to the target cell.
- the size of the monitoring period is the switching delay size of the terminal, where the switching delay size refers to the time from the handover trigger to the completion of the handover.
- a terminal includes:
- a transceiver for communicating with other devices
- the channel quality of the serving cell and the predicted channel quality of the at least one neighboring cell perform a cell handover procedure of the terminal.
- the processor is specifically configured to: when the predicted channel quality of the serving cell is lower than a set threshold, according to each predicted neighbor The channel quality of the cell at time +1 , selecting a neighboring cell as the target cell, and switching the terminal from the serving cell to the target cell.
- the initial monitoring moment In conjunction with the third aspect, in a second possible implementation, the initial monitoring moment.
- the triggering condition includes that a signal quality of a current serving cell of the terminal is lower than a set threshold.
- the processor is specifically used to:
- the Gauss - Markov model moves, the serving cell and predict the adjacent channel quality + 1 cell time.
- the processor is specifically configured to:
- the processor is specifically configured to:
- the processor is specifically configured to:
- the cell handover procedure of the terminal is performed according to the moving speed of the terminal at the moment and/or the type of traffic currently transmitted by the terminal, and the predicted channel quality of each neighboring cell at time +1 .
- the processor is specifically configured to:
- the macro cell is Selected as a target cell, and switching the terminal from the serving cell to the target cell;
- the moving speed of the terminal at the time is not greater than the set first threshold and not less than the set second threshold, and the service currently transmitted by the terminal is a real-time service, and the neighboring cell macrocell channel quality is not less than the time t M set threshold, the macro cell selected as a target cell, and the terminal hands over from the serving cell to the target cell, the Said that the first threshold is greater than the second threshold; or If the moving speed of the terminal at the time is not greater than the set first threshold and not less than the set second threshold, and the currently transmitted service of the terminal is a non-real-time service, the predicted neighboring Selecting, in the cell, the neighboring cell with the best channel quality as the target cell, and switching the terminal from the serving cell to the target cell, where the first threshold is greater than the second threshold; or The moving speed of the terminal at the time is less than the set second threshold, and the service currently transmitted by the terminal is a real-time service, and the neighboring cell with the best channel quality is selected from the predicted neighboring cells as the target cell. And
- the size of the monitoring period is the switching delay size of the terminal, where the switching delay size refers to the time from the handover trigger to the completion of the handover.
- the method and device provided by the embodiment of the present invention predict, when the current monitoring time arrives, the channel quality of the serving cell currently serving the terminal and the at least one neighboring cell of the serving cell at the next monitoring time t M ;
- the channel quality of the out-going serving cell and the predicted channel quality of the at least one neighboring cell perform a cell handover procedure of the terminal. Since the channel quality of the serving cell of the terminal at the next moment is predicted, the terminal can prepare for handover before the serving cell channel fading until the data packet cannot be transmitted, and the service is maximized under the premise of ensuring normal transmission of the data packet.
- the channel resources of the cell are seamlessly switched.
- 1 is a schematic diagram of terminal-assisted network control switching
- FIG. 2 is a schematic flowchart of a cell handover method according to the present invention.
- Embodiment 1 of the present invention is a schematic flow chart of Embodiment 1 of the present invention.
- FIG. 4 is a schematic diagram of a first terminal provided by the present invention.
- FIG. 5 is a schematic diagram of a second terminal provided by the present invention. detailed description
- the terminal by predicting the channel quality of the serving cell of the terminal at the next moment, the terminal can prepare for handover before the serving cell channel fading until the data packet cannot be transmitted, and the maximum is ensured under the premise of ensuring normal transmission of the data packet.
- the channel resources of the serving cell are utilized to achieve seamless handover.
- the embodiments of the present invention are applicable to GSM (Global System for Mobile communication), Time Division-Synchronous Code Division Multiple Access (TD-SCDMA), and Wideband Code Division Multiple Access (Wideband Code).
- GSM Global System for Mobile communication
- TD-SCDMA Time Division-Synchronous Code Division Multiple Access
- Wideband Code Division Multiple Access Wideband Code Division Multiple Access
- WCDMA Wideband Code Division Multiple Access
- CDMA2000 Code Division Multiple Access
- LTE Long Term Evolution
- LTE-Advanced, LTE-A Long Term Evolution-Advanced, LTE-A
- the base station is an evolved Node B (eNode B, eNB), and the network interface between the base station and the terminal is a Uu interface, and the network interface between the base station and the base station is an X2 interface, and the base station and the core network The interface between them is the S1 interface.
- the base station uses a single antenna or multiple antennas to implement wireless signal coverage for a specific area, which is called a cell.
- the cell provides services to user terminals within this particular coverage area.
- the value of the monitoring period ⁇ affects the performance of the network, which in turn affects the user experience quality.
- the size of the monitoring period is the switching delay size of the terminal, where the switching delay size refers to the time from the handover trigger to the completion of the handover.
- the result of this prediction is the signal quality of the serving cell and the target cell after the terminal completes the handover.
- the size of the handover delay t is related to the current handover measurement time T measure , the network handover preparation time length T ready, and the target network link access time length T access , that is, step 22, according to the predicted channel quality of the serving cell. And predicting the channel quality of the at least one neighboring cell, and performing a cell handover procedure of the terminal.
- the terminal when the current monitoring time t t arrives, predict the channel quality of the serving cell currently serving the terminal and the at least one neighboring cell of the serving cell at the next monitoring time +1 ; and according to the predicted The channel quality of the serving cell and the predicted channel quality of the at least one neighboring cell perform a cell handover procedure of the terminal. Since the channel quality of the serving cell of the terminal at the next moment is predicted, the terminal can prepare for handover before the serving cell channel fading until the data packet cannot be transmitted, and the service is maximized under the premise of ensuring normal transmission of the data packet. The channel resources of the cell are seamlessly switched.
- the channel quality of the current serving cell of the terminal is predicted to determine whether handover is required, and when the predicted channel quality of the serving cell is less than a set threshold (ie, a preset value is switched), In order to prepare for cell handover, it is ensured that the cell handover is completed before the transmission link quality deteriorates, and the continuity of data transmission is ensured.
- the channel quality of the neighboring cell of the serving cell is determined to determine the target cell to which the terminal is handed over, and the cell with the best channel quality can be selected as the target cell.
- the execution body of the above steps is a terminal.
- the initial monitoring time may be a randomly set time (this mode is applicable to the serving cell and the neighboring cell being the same frequency cell, and is set when the terminal establishes a connection), and the ⁇ ) may also be satisfied.
- the timing of the trigger condition (this method is applicable to the serving cell quality being lower than the set threshold and monitoring the neighboring cell as an inter-frequency cell).
- the set trigger condition includes but is not limited to the following conditions: The signal quality of the current serving cell of the terminal is lower than the set threshold.
- the step 22 specifically includes: when the predicted channel quality of the serving cell is lower than a set threshold, selecting a neighboring cell according to the predicted channel quality of each neighboring cell at time +1 . As the target cell, the terminal is switched from the current serving cell to the target cell.
- the terminal may be switched to the channel. Good quality community.
- step 21 the channel quality of the current serving cell of the terminal and the at least one neighboring cell of the serving cell at the +1 time is predicted, including:
- the channel quality of the serving cell and at least one neighboring cell of the serving cell at time T M is predicted.
- the channel quality of the serving cell and the at least one neighboring cell of the serving cell at time t i+1 is predicted, including: acquiring location information of the terminal at time t t , the location information Including the moving speed and moving direction of the terminal at time t t ;
- the Gauss-Markov mobile model works by considering the motion rate of a mobile node (such as a terminal) as a temporally correlated Gauss-Markov process, and designing a speed and direction for each mobile node at the initial moment.
- each mobile node updates the current speed and direction.
- the channel quality of the serving cell, and the measured data is stored in the location database, and the information is periodically updated. Then, according to the current position information in the location database, the Gauss-Markov moving model is used to predict the moving speed and moving direction ⁇ ⁇ of the terminal at the next moment.
- ⁇ is the set monitoring period.
- ⁇ Vx n ⁇ is a Gaussian distribution that satisfies the mean of 0, and a random number can be selected from it.
- the channel quality of the current serving cell of the terminal and the at least one neighboring cell of the serving cell at the +1 time is predicted according to the predicted location information, including:
- the shadow fading is used.
- Path loss algorithm predicting the channel quality of the serving cell at time +1 ; and/or, according to the determined distance information of the base station to which the terminal belongs to at least one neighboring cell of the serving cell, using shadow fading
- the path loss algorithm predicts the channel quality of the at least one neighboring cell at time t M .
- the terminal determines its own distance to the serving cell according to the predicted location information of the serving cell at the +1 time (ie, the terminal to the base station to which the serving cell belongs). Distance) According to the path loss model of shadow fading, the signal strength of the serving cell at time +1 is obtained.
- ⁇ ⁇ is the transmission power of the base station
- ! ⁇ is the path loss of the set reference point
- ⁇ is the distance from the reference point to the base station
- the path loss index is usually 2 dB ⁇ 4 dB, which is the distance from the current position of the terminal to the base station, representing the shadow Fading, generally a Gaussian distribution with a mean of 0 and a variance of ⁇ 2 .
- the path loss of the reference point and the distance from the reference point to the base station are known.
- the interference strength of the neighboring cell ie, the cell other than the serving cell of the terminal
- the ratio of the two measured parameters is the channel quality of the serving cell at time +1 .
- the measurement parameter used to measure the channel quality of the cell may be a reference signal received quality (RSRQ). , that is, the ratio of signal strength to interference intensity.
- RSRQ Thr a preset handover threshold
- the embodiment of the present invention is not limited to using the RSRQ to measure a cell (including a serving cell of the terminal).
- the channel quality of the cell other than the serving cell, and other parameters can also be used to measure the channel quality of the cell, such as Reference Signal Received Power (RSRP).
- RSRP Reference Signal Received Power
- step 22 according to the predicted channel quality of each neighboring cell at time +1 , selecting a neighboring cell as the target cell, and switching the terminal from the serving cell to the target cell, includes:
- the cell handover procedure of the terminal is performed according to the moving speed of the terminal at the moment and/or the type of traffic currently transmitted by the terminal, and the predicted channel quality of each neighboring cell at time +1 .
- the cell handover process of the terminal when performing the cell handover process of the terminal, not only the channel quality of each neighboring cell but also the current time (ie, the moving speed, and/or the type of service currently transmitted by the terminal) is considered.
- the speed of the terminal movement it can be divided into high-speed movement, medium-speed movement and low-speed movement state, which are mainly divided according to the preset speed threshold;
- the service type is divided into real-time service (such as voice call, video chat, etc.) and non- Real-time business (such as SMS business, etc.).
- the cell handover process of the terminal is performed according to the moving speed of the terminal at the time and/or the type of service currently transmitted by the terminal, and the predicted channel quality of each neighboring cell at time +1 , including the following four types.
- Mode 1 if the moving speed of the terminal at the time is greater than the set first threshold and the channel quality of the macro cell (Macrocell) in the neighboring cell at the +1 time is not lower than the set threshold, the macro is The cell is selected as the target cell and the terminal is handed over from the current serving cell to the selected target cell.
- Mocrocell macro cell
- the terminal uses the existing mode to perform cell handover, that is, enters a cell level pre-switching mode, and according to a preset cell handover selection algorithm, a candidate cell list
- the list includes neighboring cells that are predicted by the terminal and satisfying the channel quality not lower than the set threshold.
- the neighboring cell with the best channel quality is selected as the target cell, and the decision result is notified to the current serving cell.
- the base station may be specifically exchanged and coordinated by the serving cell and the target cell of the terminal, and guide the terminal to switch to the target cell to implement seamless handover, that is, the "network control, terminal assisted" cell handover mode is adopted.
- Manner 2 If the moving speed of the terminal at time t t is not greater than the set first threshold and not less than the set second threshold, and the service currently transmitted by the terminal is real-time service, and the neighboring cell If the channel quality of the macro cell in time is not lower than the set threshold, the macro cell is selected as the target cell, and the terminal is switched from the current serving cell to the selected target cell, where A threshold is greater than the second threshold.
- Mode 3 If the moving speed of the terminal at time t t is not greater than the set first threshold and not less than the set second threshold, and the currently transmitted service of the terminal is a non-real time service, the prediction is The neighboring cell with the best channel quality is selected as the target cell, and the terminal is switched from the current serving cell to the selected target cell, where the first threshold is greater than the second threshold.
- the terminal uses the "network control, terminal assistance" cell switching mode to implement seamless switching.
- seamless switching For details, refer to the description in the above mode 1.
- Manner 4 If the moving speed of the terminal at the time is less than the set second threshold, and the currently transmitted service of the terminal is a real-time service, the neighboring cell with the best channel quality is selected from the predicted neighboring cells. The target cell, and the terminal is switched from the current serving cell to the selected target cell.
- the terminal uses the "network control, terminal assistance" cell switching mode to implement seamless switching.
- seamless switching For details, refer to the description in the above mode 1.
- Embodiment 1 As shown in FIG. 3, the cell handover process in this embodiment includes:
- Step 301 Periodically monitor a moving speed and a position of a current moment (ie) of the user;
- Step 302 predict the user at the next moment (ie, speed and location;
- Step 303 Calculate the channel quality of the user at the next moment, including the channel quality of the current serving cell of the user and the channel quality of the neighboring cell.
- Step 304 Determine whether the user meets a cell handover condition.
- step 305 is performed
- Step 305 Determine whether the user is moving at a high speed
- Step 306 Directly switch to a macro cell under the macro base station
- Step 307 Determine whether the user is moving at a medium speed
- Step 308 Determine whether the service currently transmitted by the user is a real-time service.
- step 310 If no, go to step 310;
- Step 310 Select an optimal target cell to perform handover, that is, an existing cell handover process.
- the above method processing flow can be implemented by a software program, which can be stored in a storage medium, and when the stored software program is called, the above method steps are performed.
- an embodiment of the present invention further provides a terminal.
- the terminal includes:
- the processing module 42 is configured to perform a cell handover process of the terminal according to the predicted channel quality of the serving cell and the predicted channel quality of the at least one neighboring cell.
- the terminal provided by the embodiment of the present invention predicts the channel quality of the serving cell currently serving the terminal and the at least one neighboring cell of the serving cell at the next monitoring time t i+1 when the current monitoring time arrives;
- the channel quality of the out-going serving cell and the predicted channel quality of the at least one neighboring cell perform a cell handover procedure of the terminal. Since the channel quality of the serving cell of the terminal at the next moment is predicted, the terminal can prepare for handover before the serving cell channel fading until the data packet cannot be transmitted, and the service is maximized under the premise of ensuring normal transmission of the data packet.
- the channel resources of the cell are seamlessly switched.
- the size of the monitoring period is the switching delay of the terminal, where the switching delay is triggered by the handover. The time until the switch is completed. The result of this prediction is the signal quality of the serving cell and the target cell after the terminal completes the handover.
- the size of the handover delay t is related to the current handover measurement time T measure , the network handover preparation time length T ready, and the target network link access time length T access , that is, in the embodiment of the present invention, the prediction module 41 predicts the current terminal.
- the channel quality of the serving cell determines whether handover is required. When the predicted channel quality of the serving cell is less than the set threshold (ie, the preset value is switched), the cell handover is prepared from the moment. Before the transmission link quality deteriorates, the cell handover is completed to ensure the continuity of data transmission.
- the prediction module 41 predicts the channel quality of the neighboring cell of the serving cell to determine the target cell to which the terminal is handed over, and may select the cell with the best channel quality as the target cell.
- the initial monitoring time may be a randomly set time (this mode is applicable to the serving cell and the neighboring cell being the same frequency cell, and is set when the terminal establishes a connection), and the ⁇ ) may also be satisfied.
- the timing of the trigger condition (this method is applicable to the serving cell quality being lower than the set threshold and monitoring the neighboring cell as an inter-frequency cell).
- the set trigger condition includes but is not limited to the following conditions: the current serving cell of the terminal The signal quality is below the set threshold.
- processing module 42 is specifically configured to:
- a neighboring cell is selected according to the channel quality of each of the neighboring cells predicted by the prediction module 41 at time +1 . a target cell, and switching the terminal from the serving cell to the target cell.
- the terminal may be used. Switch to a cell with good channel quality.
- the prediction module 41 is specifically configured to:
- the Gauss - Markov model moves, the serving cell and predict the adjacent channel quality + 1 cell time.
- the prediction module 41 predicts the channel quality of the serving cell and the neighboring cell at time t i+1 according to the Gauss-Markov moving model, and includes: acquiring location information of the terminal at time t t , The location information includes a moving speed and a moving direction of the terminal at time t t ;
- the Gauss-Markov mobile model works by considering the motion rate of a mobile node (such as a terminal) as a temporally correlated Gauss-Markov process, and designing a speed and direction for each mobile node at the initial moment. After the set time interval T, each mobile node updates the current speed and direction. In each time interval, the speed and direction of the mobile node can be considered to be constant, thereby the speed and direction of the previous moment. Predict the speed and direction of the next moment. Based on any of the foregoing embodiments, in the implementation, the prediction module 41 predicts channel quality of the serving cell and the neighboring cell at time +1 according to the predicted location information, including:
- the measurement parameter used to measure the channel quality of the cell may be a reference signal received quality (RSRQ). , that is, the ratio of signal strength to interference intensity.
- RSRQ Thr a preset handover threshold
- the embodiment of the present invention is not limited to measuring the channel quality of the cell (including the serving cell of the terminal and the cell other than the serving cell) by using the RSRQ, and may also measure the channel quality of the cell by using other parameters, such as the reference signal receiving power (Reference). Signal Received Power, RSRP).
- Reference Signal Received Power
- processing module 42 is specifically configured to:
- the cell handover procedure of the terminal is performed according to the moving speed of the terminal at the moment and/or the type of traffic currently transmitted by the terminal, and the predicted channel quality of each neighboring cell at time +1 .
- the speed of the terminal movement it can be divided into high-speed movement, medium-speed movement and low-speed movement state, which are mainly divided according to preset speed threshold values; Business (such as voice calls, video chat, etc.) and non-real-time services (such as SMS services, etc.).
- Business such as voice calls, video chat, etc.
- non-real-time services such as SMS services, etc.
- the processing module 42 performs the cell handover process of the terminal according to the moving speed of the terminal at time t t and/or the type of service currently transmitted by the terminal, and the predicted channel quality of each neighboring cell at time +1 . , including the following four preferred implementations:
- Manner 1 If the moving speed of the terminal at the time is greater than the set first threshold, and the channel quality of the macro cell in the neighboring cell at time t i+1 is not lower than the set threshold, The macro cell is selected as a target cell, and the terminal is handed over from the serving cell to the target cell. For details, refer to the description of the foregoing mode 1, and details are not described herein again.
- Manner 3 If the moving speed of the terminal at t t is not greater than the set first threshold and not less than the set second threshold, and the service currently transmitted by the terminal is a non-real-time service, Selecting a neighboring cell with the best channel quality as the target cell from the predicted neighboring cells, and switching the terminal from the serving cell to the target cell, where the first threshold is greater than the second gate Limit.
- the service currently transmitted by the terminal is a non-real-time service
- Manner 4 If the moving speed of the terminal at the time is less than the set second threshold, and the service currently transmitted by the terminal is a real-time service, select the neighbor with the best channel quality from the predicted neighboring cells.
- the cell acts as a target cell, and the terminal is handed over from the serving cell to the target cell.
- the present invention also provides another terminal, as shown in FIG. 5, the final The end includes:
- transceiver 51 for communicating with other devices
- the terminal provided by the embodiment of the present invention predicts the channel quality of the serving cell currently serving the terminal and the at least one neighboring cell of the serving cell at the next monitoring time t i+1 when the current monitoring time arrives;
- the channel quality of the out-going serving cell and the predicted channel quality of the at least one neighboring cell perform a cell handover procedure of the terminal. Since the channel quality of the serving cell of the terminal at the next moment is predicted, the terminal can prepare for handover before the serving cell channel fading until the data packet cannot be transmitted, and the service is maximized under the premise of ensuring normal transmission of the data packet.
- the channel resources of the cell are seamlessly switched.
- the size of the monitoring period is the switching delay of the terminal, where the switching delay is triggered by the handover. The time until the switch is completed. The result of this prediction is the signal quality of the serving cell and the target cell after the terminal completes the handover.
- the size of the handover delay t is related to the current handover measurement time T measure , the network handover preparation time length T ready, and the target network link access time length T access , that is, in the embodiment of the present invention, the processor 52 predicts the current terminal.
- the channel quality of the serving cell determines whether handover is required. When the predicted channel quality of the serving cell is less than the set threshold (ie, the preset value is switched), the cell handover is prepared from the moment. Before the transmission link quality deteriorates, the cell handover is completed to ensure the continuity of data transmission.
- the processor 52 predicts the serving cell
- the channel quality of the neighboring cell determines the target cell to which the terminal is handed over, and the cell with the best channel quality can be selected as the target cell.
- the initial monitoring time may be a randomly set time (this mode is applicable to the serving cell and the neighboring cell being the same frequency cell, and is set when the terminal establishes a connection), and the ⁇ ) may also be satisfied.
- the timing of the trigger condition (this method is applicable to the serving cell quality being lower than the set threshold and monitoring the neighboring cell as an inter-frequency cell).
- the set trigger condition includes but is not limited to the following conditions: The signal quality of the current serving cell of the terminal is lower than the set threshold.
- processor 52 is specifically configured to:
- the predicted channel quality of the serving cell is lower than the set threshold, selecting a neighboring cell as the target cell according to the predicted channel quality of each of the neighboring cells at time +1 , and The terminal is handed over to the target cell by the serving cell.
- the terminal may be switched to the channel. Good quality community.
- the processor 52 is specifically configured to:
- the Gauss - Markov model moves, the serving cell and predict the adjacent channel quality + 1 cell time.
- the processor 52 predicts the channel quality of the serving cell and the neighboring cell at the +1 time according to the Gauss-Markov moving model, and includes: acquiring location information of the terminal at time t t , The location information includes a moving speed and a moving direction of the terminal at time t t ;
- the processor 52 predicts the channel quality of the serving cell and the neighboring cell at the +1 time according to the predicted location information, including:
- the measurement parameter used to measure the channel quality of the cell may be RSRQ, that is, the ratio of the signal strength to the interference strength.
- RSRQ the ratio of the signal strength to the interference strength.
- the embodiment of the present invention is not limited to measuring the channel quality of the cell (including the serving cell of the terminal and the cell other than the serving cell) by using RSRQ, and may also measure the channel quality of the cell, such as RSRP, by using other parameters.
- the processor 52 is specifically configured to:
- the cell handover procedure of the terminal is performed according to the moving speed of the terminal at the moment and/or the type of traffic currently transmitted by the terminal, and the predicted channel quality of each neighboring cell at time +1 .
- the processor 52 when performing the cell handover process of the terminal, the processor 52 considers not only the channel quality of each neighboring cell, but also the current time of the terminal (ie, the moving speed, and/or the type of service currently transmitted by the terminal). Among them, according to the speed of the terminal movement, it can be divided into high-speed movement, The medium-speed mobile and low-speed mobile states are mainly divided according to preset speed thresholds; the service types are classified into real-time services (such as voice calls, video chats, etc.) and non-real-time services (such as short message services).
- the processor 52 performs the cell handover process of the terminal according to the moving speed of the terminal at time t t and/or the type of traffic currently transmitted by the terminal, and the predicted channel quality of each neighboring cell at time +1 . , including the following four preferred implementations:
- Manner 1 If the moving speed of the terminal at the time is greater than the set first threshold, and the channel quality of the macro cell in the neighboring cell at time t i+1 is not lower than the set threshold, The macro cell is selected as a target cell, and the terminal is handed over from the serving cell to the target cell. For details, refer to the description of the foregoing mode 1, and details are not described herein again.
- Manner 3 If the moving speed of the terminal at t t is not greater than the set first threshold and not less than the set second threshold, and the service currently transmitted by the terminal is a non-real-time service, Selecting a neighboring cell with the best channel quality as the target cell from the predicted neighboring cells, and switching the terminal from the serving cell to the target cell, where the first threshold is greater than the second gate Limit.
- the service currently transmitted by the terminal is a non-real-time service
- Manner 4 If the moving speed of the terminal at the time is less than the set second threshold, and the service currently transmitted by the terminal is a real-time service, select the neighbor with the best channel quality from the predicted neighboring cells.
- the cell acts as a target cell, and the terminal is handed over from the serving cell to the target cell.
- the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware.
- the invention can be embodied in the form of one or more computer program products embodied on a computer-usable storage medium (including but not limited to disk storage, CD-ROM, optical storage, etc.) in which computer usable program code is embodied.
- the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
- the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
- These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
- the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明公开了一种小区切换方法和设备,通过预测下一时刻终端的服务小区的信道质量,使该终端在服务小区信道衰落到无法传输数据包之前即可做好切换准备,在保证数据包正常传输的前提下,最大限度地利用服务小区的信道资源,实现无缝切换。终端包括:预测模块,用于在当前监测时刻t i到达时,预测当前为终端提供服务的服务小区以及所述服务小区的至少一个相邻小区在下一个监测时刻t i+1的信道质量,其中,t i+1=t i+T,T为设定的监测周期,i=0,1,2,…;处理模块,用于根据预测出的服务小区的信道质量以及预测出的所述至少一个相邻小区的信道质量,执行所述终端的小区切换过程。
Description
一种小区切换方法和设备
技术领域
本发明涉及无线通信技术领域, 特别涉及一种小区切换方法和设备。 背景技术
小区切换是指处于连接状态下的终端从一个小区转移到另一个小区的过 程。 目前, 小区切换流程是由终端辅助的网络控制切换, 具体参见图 1所示, 当终端的服务小区的信道质量低于设定测量门限(例如, 设定参考信号接收 质量(Reference Signal Received Quality, RSRQ ) 的门限值, 记为 RSRQThr ) 时, 就会触发终端对邻小区进行测量(切换测量时刻记为 Ί^ ), 并将测量报 告上报给网络侧, 如果邻小区的信道质量不低于设定切换门限, 则触发终端 从服务小区切换到该邻小区的切换操作(预切换时刻记为 Tn ); 完成切换过程 后, 终端接入邻小区 (切换完成时刻记为 Tn+1 )。
从上述切换过程可以看出, 现有切换机制下, 从开始测量到测量报告上 报并触发切换, 需要数百毫秒到数秒的时间, 从开始切换到切换完成, 也需 要数百毫秒到数秒的时间, 由于需要较长的准备时间, 而在这段时间内服务 小区的信道质量可能变得很差, 从而可能导致切换失败。
随着用户需求的增长和通信技术的发展, 长期演进增强 (Long Term Evolution- Advanced, LTE- Advanced ) 系统中, 出现了异构网络重叠覆盖的区 域, 异构网络改变了传统蜂窝网络的拓朴结构, 在同一区域中可以同时部署 多个不同的网络节点, 网络部署更加灵活, 同时也提高了小区容量和无线链 路速率。 典型的异构网络包括: 宏基站 (Macro )和微基站 (Pico )构成的无 线通信网络, 该无线通信网络中还可以包括家庭基站 (Femto ) 和中继基站 ( Relay )等。 在上述异构网络中, Macro 小区用于为用户提供基础的广域覆 盖; Pico 小区用于提供小范围的覆盖, 提高热点业务地区的容量, 以达到平 衡 Macro小区的负载的目的; Femto小区用于提供小范围的覆盖, 能够为个
人用户提供更好的服务质量,如获得更高的业务速率,更高质量的链路; Relay 小区用于扩展 Macro小区边缘的覆盖, 或者部署在不方便部署有线回程的地 点。
随着业务种类的多样化和用户移动的快速化, 现有小区切换机制已不能 满足用户体验质量的需求, 如何在快速移动中减少切换时延, 避免切换失败, 同时减少不必要的切换, 保证用户的体验质量, 成为目前小区切换研究的一 个重要问题。 发明内容
本发明实施例提供了一种小区切换方法和设备, 通过预测下一时刻终端 的服务小区的信道质量, 使该终端在服务小区信道衰落到无法传输数据包之 前即可做好切换准备, 在保证数据包正常传输的前提下, 最大限度地利用服 务小区的信道资源, 实现无缝切换。
第一方面, 一种小区切换方法, 该方法包括:
在当前监测时刻 tt到达时,预测当前为终端提供服务的服务小区以及所述 服务小区的至少一个相邻小区在下一个监测时刻 +1的信道质量, 其中, tM ^ tt +T , 为设定的监测周期, = 0, 1, 2,…;
根据预测出的服务小区的信道质量以及预测出的所述至少一个相邻小区 的信道质量, 执行所述终端的小区切换过程。
结合第一方面, 在第一种可能的实现方式中, 根据预测出的服务小区的 信道质量以及预测出的所述至少一个相邻小区的信道质量, 执行所述终端的 小区切换过程, 包括:
当预测出的服务小区的信道质量低于设定的门限值时, 根据预测出的每 个所述相邻小区在 +1时刻的信道质量, 选择一个相邻小区作为目标小区, 并 将所述终端由所述服务小区切换到所述目标小区。
结合第一方面, 在第二种可能的实现方式中, 初始监测时刻^)为随机设 定的时刻, 或者, 为满足设定的触发条件的时刻。
结合第一方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述触发条件包括终端当前的服务小区的信号质量低于设定的门限值。
结合第一方面、 第一方面的第一种可能的实现方式、 第一方面的第二种 可能的实现方式、 或第一方面的第三种可能的实现方式, 在第四种可能的实 现方式中,预测所述服务小区以及所述相邻小区在 +1时刻的信道质量,包括: 根据高斯 -马尔科夫移动模型, 预测出所述服务小区以及所述相邻小区在 +1时刻的信道质量。
结合第一方面的第四种可能的实现方式, 在第五种可能的实现方式中, 根据高斯-马尔科夫移动模型, 预测出所述服务小区以及所述相邻小区在 tM 时刻的信道质量, 包括:
获取所述终端在 时刻的位置信息 ,所述位置信息包括所述终端在 时刻 的移动速度和移动方向;
根据所述终端在 时刻的位置信息, 预测所述终端在 +1时刻的位置信 息; 以及
根据预测得到的位置信息,预测所述服务小区以及所述相邻小区在 t 时 刻的信道质量。
结合第一方面的第五种可能的实现方式, 在第六种可能的实现方式中, 根据预测得到的位置信息,预测所述服务小区以及所述相邻小区在 t 时刻的 信道质量, 包括:
根据预测得到的位置信息, 分别确定出所述终端到所述服务小区以及所 述相邻小区所属的基站的距离信息;
根据确定出的所述终端到所述服务小区所属的基站的距离信息, 釆用阴
影衰落的路径损耗算法, 预测出所述服务小区在 +1时刻的信道质量; 以及, 根据确定出的所述终端到所述相邻小区所属的基站的距离信息, 釆用阴影衰 落的路径损耗算法, 预测出所述相邻小区在 tM时刻的信道质量。
结合第一方面的第一种可能的实现方式, 在第七种可能的实现方式中, 根据预测出的每个所述相邻小区在 ίΜ时刻的信道质量,选择一个相邻小区作 为目标小区, 并将所述终端由所述服务小区切换到所述目标小区, 包括: 根据所述终端在 时刻的移动速度和 /或所述终端当前所传输的业务类 型、 以及预测出的每个相邻小区在 +1时刻的信道质量, 执行所述终端的小区 切换过程。
结合第一方面的第七种可能的实现方式, 在第八种可能的实现方式中, 根据所述终端在 时刻的移动速度和 /或所述终端当前所传输的业务类型、 以 及预测出的每个相邻小区在 t 时刻的信道质量,执行所述终端的小区切换过 程, 包括:
若所述终端在 时刻的移动速度大于设定的第一门限值且所述相邻小区 中的宏小区在 tM时刻的信道质量不低于设定的门限值,将所述宏小区选定为 目标小区, 并将所述终端由所述服务小区切换到所述目标小区; 或者
若所述终端在 时刻的移动速度不大于设定的第一门限值且不小于设定 的第二门限值, 且所述终端当前所传输的业务为实时业务, 且所述相邻小区 中的宏小区在 tM时刻的信道质量不低于设定的门限值,将所述宏小区选定为 目标小区, 并将所述终端由所述服务小区切换到所述目标小区, 所述第一门 限值大于所述第二门限值; 或者
若所述终端在 时刻的移动速度不大于设定的第一门限值且不小于设定 的第二门限值, 且所述终端当前所传输的业务为非实时业务, 从预测的相邻
小区中选择信道质量最好的相邻小区作为目标小区, 并将所述终端由所述服 务小区切换到所述目标小区, 所述第一门限值大于所述第二门限值; 或者 若所述终端在 时刻的移动速度小于设定的第二门限值,且所述终端当前 所传输的业务为实时业务, 从预测的相邻小区中选择信道质量最好的相邻小 区作为目标小区, 并将所述终端由所述服务小区切换到所述目标小区。
结合第一方面、 第一方面的第一种可能的实现方式、 第一方面的第二种 可能的实现方式、 或第一方面的第三种可能的实现方式, 在第九种可能的实 现方式中, 所述监测周期的大小为所述终端的切换时延大小, 其中, 所述切 换时延大小是指从切换触发到切换完成的时间。
第二方面, 一种终端, 该终端包括:
预测模块,用于在当前监测时刻 到达时,预测当前为终端提供服务的服 务小区以及所述服务小区的至少一个相邻小区在下一个监测时刻 +1的信道 质量, 其中, tM = ti +T , 为设定的监测周期, = 0, 1, 2,…;
处理模块, 用于根据预测出的服务小区的信道质量以及预测出的所述至 少一个相邻小区的信道质量, 执行所述终端的小区切换过程。
结合第二方面, 在第一种可能的实现方式中, 所述处理模块具体用于: 当所述预测模块预测出的服务小区的信道质量低于设定的门限值时, 根 据所述预测模块预测出的每个所述相邻小区在 时刻的信道质量,选择一个 相邻小区作为目标小区, 并将所述终端由所述服务小区切换到所述目标小区。
结合第二方面, 在第二种可能的实现方式中, 初始监测时刻^ )为随机设 定的时刻, 或者, 为满足设定的触发条件的时刻。
结合第二方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述触发条件包括终端当前的服务小区的信号质量低于设定的门限值。
结合第二方面、 第二方面的第一种可能的实现方式、 第二方面的第二种 可能的实现方式、 或第二方面的第三种可能的实现方式, 在第四种可能的实
现方式中, 所述预测模块具体用于:
根据高斯 -马尔科夫移动模型, 预测出所述服务小区以及所述相邻小区在 +1时刻的信道质量。
结合第二方面的第四种可能的实现方式, 在第五种可能的实现方式中, 所述预测模块具体用于:
获取所述终端在 时刻的位置信息 ,所述位置信息包括所述终端在 时刻 的移动速度和移动方向;
根据所述终端在 时刻的位置信息, 预测所述终端在 +1时刻的位置信 息; 以及
根据预测得到的位置信息,预测所述服务小区以及所述相邻小区在 t 时 刻的信道质量。
结合第二方面的第五种可能的实现方式, 在第六种可能的实现方式中, 所述预测模块具体用于:
根据预测得到的位置信息, 分别确定出所述终端到所述服务小区以及所 述相邻小区所属的基站的距离信息;
根据确定出的所述终端到所述服务小区所属的基站的距离信息, 釆用阴 影衰落的路径损耗算法, 预测出所述服务小区在 +1时刻的信道质量; 以及, 根据确定出的所述终端到所述相邻小区所属的基站的距离信息, 釆用阴影衰 落的路径损耗算法, 预测出所述相邻小区在 tM时刻的信道质量。
结合第二方面的第一种可能的实现方式, 在第七种可能的实现方式中, 所述处理模块具体用于: 根据所述终端在 时刻的移动速度和 /或所述终端当前所传输的业务类 型、 以及预测出的每个相邻小区在 +1时刻的信道质量, 执行所述终端的小区 切换过程。
结合第二方面的第七种可能的实现方式, 在第八种可能的实现方式中, 所述处理模块具体用于:
若所述终端在 时刻的移动速度大于设定的第一门限值且所述相邻小区 中的宏小区在 tM时刻的信道质量不低于设定的门限值,将所述宏小区选定为 目标小区, 并将所述终端由所述服务小区切换到所述目标小区; 或者
若所述终端在 时刻的移动速度不大于设定的第一门限值且不小于设定 的第二门限值, 且所述终端当前所传输的业务为实时业务, 且所述相邻小区 中的宏小区在 tM时刻的信道质量不低于设定的门限值,将所述宏小区选定为 目标小区, 并将所述终端由所述服务小区切换到所述目标小区, 所述第一门 限值大于所述第二门限值; 或者
若所述终端在 时刻的移动速度不大于设定的第一门限值且不小于设定 的第二门限值, 且所述终端当前所传输的业务为非实时业务, 从预测的相邻 小区中选择信道质量最好的相邻小区作为目标小区, 并将所述终端由所述服 务小区切换到所述目标小区, 所述第一门限值大于所述第二门限值; 或者 若所述终端在 时刻的移动速度小于设定的第二门限值,且所述终端当前 所传输的业务为实时业务, 从预测的相邻小区中选择信道质量最好的相邻小 区作为目标小区, 并将所述终端由所述服务小区切换到所述目标小区。
结合第二方面、 第二方面的第一种可能的实现方式、 第二方面的第二种 可能的实现方式、 或第二方面的第三种可能的实现方式, 在第九种可能的实 现方式中, 所述监测周期的大小为所述终端的切换时延大小, 其中, 所述切 换时延大小是指从切换触发到切换完成的时间。
第三方面, 一种终端, 该终端包括:
收发器, 用于与其他设备进行通信;
处理器,用于在当前监测时刻 到达时,预测当前为终端提供服务的服务
小区以及所述服务小区的至少一个相邻小区在下一个监测时刻 tM的信道质 量, 其中, t = ti +T , 为设定的监测周期, = ο,ι,2,···; 根据预测出的服务 小区的信道质量以及预测出的所述至少一个相邻小区的信道质量, 执行所述 终端的小区切换过程。
结合第三方面, 在第一种可能的实现方式中, 处理器具体用于: 当预测出的服务小区的信道质量低于设定的门限值时, 根据预测出的每 个所述相邻小区在 +1时刻的信道质量, 选择一个相邻小区作为目标小区, 并 将所述终端由所述服务小区切换到所述目标小区。
结合第三方面, 在第二种可能的实现方式中, 初始监测时刻 。为随机设 定的时刻, 或者, 为满足设定的触发条件的时刻。
结合第三方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述触发条件包括终端当前的服务小区的信号质量低于设定的门限值。
结合第三方面、 第三方面的第一种可能的实现方式、 第三方面的第二种 可能的实现方式、 或第三方面的第三种可能的实现方式, 在第四种可能的实 现方式中, 处理器具体用于:
根据高斯 -马尔科夫移动模型, 预测出所述服务小区以及所述相邻小区在 +1时刻的信道质量。
结合第三方面的第四种可能的实现方式, 在第五种可能的实现方式中, 处理器具体用于:
获取所述终端在 ti时刻的位置信息 ,所述位置信息包括所述终端在 ti时刻 的移动速度和移动方向;
根据所述终端在 时刻的位置信息, 预测所述终端在 d时刻的位置信 息; 以及
根据预测得到的位置信息,预测所述服务小区以及所述相邻小区在 +1时
刻的信道质量。
结合第三方面的第五种可能的实现方式, 在第六种可能的实现方式中, 处理器具体用于:
根据预测得到的位置信息, 分别确定出所述终端到所述服务小区以及所 述相邻小区所属的基站的距离信息;
根据确定出的所述终端到所述服务小区所属的基站的距离信息, 釆用阴 影衰落的路径损耗算法, 预测出所述服务小区在 +1时刻的信道质量; 以及, 根据确定出的所述终端到所述相邻小区所属的基站的距离信息, 釆用阴影衰 落的路径损耗算法, 预测出所述相邻小区在 tM时刻的信道质量。
结合第三方面的第一种可能的实现方式, 在第七种可能的实现方式中, 处理器具体用于:
根据所述终端在 时刻的移动速度和 /或所述终端当前所传输的业务类 型、 以及预测出的每个相邻小区在 +1时刻的信道质量, 执行所述终端的小区 切换过程。
结合第三方面的第七种可能的实现方式, 在第八种可能的实现方式中, 处理器具体用于:
若所述终端在 时刻的移动速度大于设定的第一门限值且所述相邻小区 中的宏小区在 tM时刻的信道质量不低于设定的门限值,将所述宏小区选定为 目标小区, 并将所述终端由所述服务小区切换到所述目标小区; 或者
若所述终端在 时刻的移动速度不大于设定的第一门限值且不小于设定 的第二门限值, 且所述终端当前所传输的业务为实时业务, 且所述相邻小区 中的宏小区在 tM时刻的信道质量不低于设定的门限值,将所述宏小区选定为 目标小区, 并将所述终端由所述服务小区切换到所述目标小区, 所述第一门 限值大于所述第二门限值; 或者
若所述终端在 时刻的移动速度不大于设定的第一门限值且不小于设定 的第二门限值, 且所述终端当前所传输的业务为非实时业务, 从预测的相邻 小区中选择信道质量最好的相邻小区作为目标小区, 并将所述终端由所述服 务小区切换到所述目标小区, 所述第一门限值大于所述第二门限值; 或者 若所述终端在 时刻的移动速度小于设定的第二门限值,且所述终端当前 所传输的业务为实时业务, 从预测的相邻小区中选择信道质量最好的相邻小 区作为目标小区, 并将所述终端由所述服务小区切换到所述目标小区。
结合第三方面、 第三方面的第一种可能的实现方式、 第三方面的第二种 可能的实现方式、 或第三方面的第三种可能的实现方式, 在第九种可能的实 现方式中, 所述监测周期的大小为所述终端的切换时延大小, 其中, 所述切 换时延大小是指从切换触发到切换完成的时间。
本发明实施例提供的方法和设备,在当前监测时刻 到达时,预测当前为 该终端提供服务的服务小区以及该服务小区的至少一个相邻小区在下一个监 测时刻 tM的信道质量; 并根据预测出的服务小区的信道质量以及预测出的该 至少一个相邻小区的信道质量, 执行终端的小区切换过程。 由于预测了下一 时刻终端的服务小区的信道质量, 使该终端在服务小区信道衰落到无法传输 数据包之前即可做好切换准备, 在保证数据包正常传输的前提下, 最大限度 地利用服务小区的信道资源, 实现无缝切换。 附图说明
图 1为一种终端辅助的网络控制切换的示意图;
图 2为本发明提供的一种小区切换方法的流程示意图;
图 3为本发明提供的实施例一的流程示意图;
图 4为本发明提供的第一种终端的示意图;
图 5为本发明提供的第二种终端的示意图。
具体实施方式
本发明实施例通过预测下一时刻终端的服务小区的信道质量, 使该终端 在服务小区信道衰落到无法传输数据包之前即可做好切换准备, 在保证数据 包正常传输的前提下, 最大限度地利用服务小区的信道资源, 实现无缝切换。
本发明实施例适用于 GSM ( Global System for Mobile communication, 全 球移动通信系统)、 时分同步的码分多址 (Time Division- Synchronous Code Division Multiple Access , TD-SCDMA )、 宽带码分多址 (Wideband Code Division Multiple Access , WCDMA )、 CDMA2000 , 长期演进(Long Term Evolution, LTE )、 长期演进增强 ( LTE- Advanced, LTE-A )等通信系统。
以 LTE-A系统为例, 基站为演进的节点 B ( eNode B , eNB ), 基站与终 端之间的网络接口为 Uu接口, 基站与基站之间的网络接口为 X2接口, 基站 与核心网之间的接口为 S1接口。基站釆用单天线或多天线实现对特定区域的 无线信号覆盖, 这些特定区域被称为小区。 小区为这一特定覆盖区域内的用 户终端提供服务。
下面结合说明书附图对本发明实施例作进一步详细描述。 应当理解, 此 处所描述的实施例仅用于说明和解释本发明, 并不用于限定本发明。
本发明实施例提供的一种小区切换方法, 参见图 2所示, 该方法包括: 步骤 21、 在当前监测时刻 到达时, 预测当前为终端提供服务的服务小 区以及该服务小区的至少一个相邻小区在下一个监测时刻 tM的信道质量。 本步骤中, ti+1 = ti + T , 为设定的监测周期, ζ· = 0,1,2,· · ·。
本步骤中, 由于监测周期 Τ的取值大小会影响到网络的性能, 进而影响 用户的体验质量。 监测周期越小, 虽然预测结果准确, 但会造成终端的频繁 切换, 并且监测周期太小也会导致计算量大, 浪费资源; 监测周期越大, 预 测结果便会越不准确, 而且会导致当服务小区的信号质量已经无法维持数据 正常传输时, 还没有接入目标小区, 增加切换失败的风险; 因此, 为了在保 证不丟失数据包的前提下最大限度地利用当前服务小区的网络资源, 较佳地,
监测周期的大小为该终端的切换时延大小, 其中, 该切换时延大小是指从切 换触发到切换完成的时间。 这样预测结果便是终端完成切换后的服务小区和 目标小区的信号质量。
具体的, 切换时延 t的大小与当前切换测量时间 Tmeasure、 网络切换准备时 间长度 Tready 以及 目 标网络链路接入时间长度 Taccess 相关, 即 步骤 22、 根据预测出的服务小区的信道质量以及预测出的该至少一个相 邻小区的信道质量, 执行终端的小区切换过程。
本发明实施例中,在当前监测时刻 tt到达时,预测当前为该终端提供服务 的服务小区以及该服务小区的至少一个相邻小区在下一个监测时刻 +1的信 道质量; 并根据预测出的服务小区的信道质量以及预测出的该至少一个相邻 小区的信道质量, 执行终端的小区切换过程。 由于预测了下一时刻终端的服 务小区的信道质量, 使该终端在服务小区信道衰落到无法传输数据包之前即 可做好切换准备, 在保证数据包正常传输的前提下, 最大限度地利用服务小 区的信道资源, 实现无缝切换。
本发明实施例中, 预测终端当前的服务小区的信道质量决定是否需要切 换, 当预测出的服务小区的信道质量小于设定的门限值(即切换预设值) 时, 从该时刻起就要为小区切换做准备了, 保证在传输链路质量恶化之前, 完成 小区切换, 保证数据传输的连续性。 而预测该服务小区的相邻小区的信道质 量决定终端切换到的目标小区, 可以选择信道质量最好的小区作为目标小区。
较佳地, 上述步骤的执行主体为终端。
本发明实施例中, 初始监测时刻 可以为随机设定的时刻 (该方式适用 于服务小区及其相邻小区为同频小区, 在终端建立连接时设定), 该^)也可以 为满足设定的触发条件的时刻 (该方式适用于服务小区质量低于设定门限且 监测相邻小区为异频小区)。
较佳地, 设定的触发条件包括但不限于以下条件: 终端当前的服务小区 的信号质量低于设定的门限值。
在实施中, 步骤 22具体包括: 当预测出的服务小区的信道质量低于设定 的门限值时, 根据预测出的每个相邻小区在 +1时刻的信道质量, 选择一个相 邻小区作为目标小区, 并将终端由当前的服务小区切换到该目标小区。
具体的, 当预测出该终端的服务小区在 +1时刻的信道质量低于设定的门 限值时, 即该终端的服务小区在 +1时刻的信道质量变差, 可以将终端切换到 信道质量好的小区。
在实施中, 步骤 21中, 预测终端当前的服务小区以及该服务小区的至少 一个相邻小区在 +1时刻的信道质量, 包括:
根据高斯 -马尔科夫移动模型, 预测出该服务小区以及该服务小区的至少 一个相邻小区在 tM时刻的信道质量。
进一步, 根据高斯-马尔科夫移动模型, 预测出服务小区以及该服务小区 的至少一个相邻小区在 ti+l时刻的信道质量, 包括: 获取终端在 tt时刻的位置信息,该位置信息包括终端在 tt时刻的移动速度 和移动方向;
根据终端在 时刻的位置信息,预测该终端在 +1时刻的位置信息; 以及, 根据预测得到的位置信息, 预测该终端当前的服务小区以及该服务小区 的至少一个相邻小区在 tM时刻的信道质量。
具体的, 高斯-马尔科夫移动模型的工作原理是将移动节点 (如终端) 的 运动速率看作时间上相关的高斯 -马尔科夫过程, 在初始时刻为每个移动节点 设计一个速度和方向, 经过设定的时间间隔 T后, 每个移动节点更新当前的 速度和方向, 在每个时间间隔内可以认为该移动节点的速度和方向是不变的, 从而由前一时刻的速度和方向预测出后一时刻的速度和方向。
举例说明, 该终端接入到服务小区后, 由于用户初始时刻是静止的, 因 此, 定义初始速度 ^=0, 设定宏基站为坐标原点, 初始位置为 (A, Y0 ), 获 得当前时刻服务小区的信道质量, 并将这些测量的数据存储到位置数据库中, 周期性地更新信息。 然后根据位置数据库中当前的位置信息, 利用高斯一马 尔科夫移动模型预测出下一时刻该终端的移动速度 和移动方向 θη ,具体公式 下:
Vn= *Vn_1+(\-a)*V + (l-«2) * ^ ......公式 1; θη= *θη_λ+{\-α)*θ+ (l-a2) * θΧη 公式 2;
其中, "用于表征移动的随机性, 且 0≤"≤1, 极限地, 当" =0时, 是线 性匀速运动, 当" =1时, 是布朗运动; 和 表示当 时速度和方向的均 值; ― ^。^是均值为 0的高斯分布中的随机变量。
下一时刻终端的位置坐标 ( )可以由如下公式获得:
......公式 3;
其中, Τ为设定的监测周期。
需要说明的是,上述公式 1和公式 2中, "的值是根据终端的实际运动场 景的需要进行设置的, 由于通常情况下运动是相互联系的,所以"的取值范围 是 0<α<1, —般可以设为 0.75。 Vn是根据初始速度 V。得到的, 而初始时刻移 动用户一般为静止状态,故而可以定义 V。=0,从而可以根据公式递推得出 Vn。 而 {Vxn}是满足均值为 0的高斯分布, 可从中选择一个随机数即可。
基于上述任一实施例, 在实施中, 根据预测得到的位置信息, 预测终端 当前的服务小区以及该服务小区的至少一个相邻小区在 +1时刻的信道质量, 包括:
根据预测得到的位置信息, 分别确定出终端到服务小区以及该服务小区 的至少一个相邻小区所属的基站的距离信息; 以及,
根据确定出的该终端到服务小区所属的基站的距离信息, 釆用阴影衰落
的路径损耗算法, 预测出该服务小区在 +1时刻的信道质量; 和 /或, 根据确定 出的该终端到该服务小区的至少一个相邻小区所属的基站的距离信息, 釆用 阴影衰落的路径损耗算法, 预测出该至少一个相邻小区在 tM时刻的信道质 量。
举例说明, 以预测服务小区在 +1时刻的信道质量为例, 终端根据预测出 的自身在 +1时刻的位置信息, 确定出自身到服务小区的距离 (即该终端到服 务小区所属的基站的距离), 根据阴影衰落的路径损耗模型, 即可得到 +1时 刻服务小区的信号强度。
RSS= PTx - PLrf - 10 * β * ^ - /( , σ) ... ...公式 5;
"ref
其中, ΡΤχ是基站的发送功率, !^是设定的参考点的路径损耗, ^是该 参考点到基站的距离, 是路径损耗指数,城市环境中 的取值通常为 2 dB ~ 4dB, 是终端当前位置到基站的距离, 代表阴影衰落, 一般为均值为 0、 方差为 σ2的高斯分布。 其中, 参考点的路径损耗以及参考点到基站的距离 是已知的。
同样, 可以利用上述公式 5计算出相邻小区 (即除该终端的服务小区之 外的小区)的干扰强度, 这两个测量参数的比值就是 +1时刻服务小区的信道 质量。
基于上述任一实施例, 较佳地, 用于衡量小区 (包括终端的服务小区以 及除该服务小区之外的小区)信道质量的测量参数可以是参考信号接收质量 ( Reference Signal Received Quality, RSRQ ), 即信号强度与干扰强度之比。 当预测的终端当前的服务小区的 RSRQ值小于预设的切换门限值( RSRQThr ) 时, 则认为该终端当前满足小区切换条件, 否则, 继续周期性监测自身当前 的服务小区的信道质量, 更新位置数据库信息。
当然, 本发明实施例不限于釆用 RSRQ衡量小区 (包括终端的服务小区
以及除该服务小区之外的小区)信道质量, 也可以釆用其他参数衡量小区信 道质量, 如参考信号接收功率 (Reference Signal Received Power, RSRP )。
基于上述任一实施例, 步骤 22 中, 根据预测出的每个相邻小区在 +1时 刻的信道质量, 选择一个相邻小区作为目标小区, 并将终端由服务小区切换 到目标小区, 包括:
根据终端在 时刻的移动速度和 /或该终端当前所传输的业务类型、 以及 预测出的每个相邻小区在 +1时刻的信道质量, 执行该终端的小区切换过程。
具体的, 在执行该终端的小区切换过程时, 不仅考虑各相邻小区的信道 质量, 还考虑该终端在当前时刻 (即 的移动速度, 和 /或该终端当前所传 输的业务类型。 其中, 根据终端移动的快慢, 可以分为高速移动、 中速移动 和低速移动状态, 主要是根据预设的速度门限值来划分; 业务类型分为实时 业务(如语音通话、 视频聊天等)和非实时业务(如短信业务等)。
进一步, 根据终端在 时刻的移动速度和 /或该终端当前所传输的业务类 型、 以及预测出的每个相邻小区在 +1时刻的信道质量, 执行该终端的小区切 换过程, 包括以下四种优选的实现方式:
方式 1、若终端在 时刻的移动速度大于设定的第一门限值且相邻小区中 的宏小区(Macrocell )在 +1时刻的信道质量不低于设定的门限值, 则将宏小 区选定为目标小区, 并将该终端由当前的服务小区切换到所选定的目标小区。
该方式下, 只需要通知自身当前的服务小区所属的基站, 由服务小区的 基站找到宏基站, 并引导该终端切换到相应宏小区 (Macrocell ) 下, 从而保 证了通信的连续性。
该方式下, 若宏小区在 +1时刻的信道质量低于设定的门限值, 即宏小区 在 +1时刻的信道质量也不好, 则终端釆用现有方式进行小区切换, 即进入小 区水平预切换模式, 并根据预设的小区切换选择算法, 从小区候选列表(该
列表包括该终端预测的满足信道质量不低于设定的门限值的相邻小区) 中选 择信道质量最好的相邻小区作为目标小区, 并将决策结果通告给自身当前的 服务小区所属的基站, 具体可由该终端的服务小区和目标小区进行信息交换 和协调处理, 引导终端切换到目标小区, 实现无缝切换, 即釆用 "网络控制, 终端辅助" 的小区切换方式。
方式 2、若终端在 tt时刻的移动速度不大于设定的第一门限值且不小于设 定的第二门限值, 且该终端当前所传输的业务为实时业务, 且相邻小区中的 宏小区在 时刻的信道质量不低于设定的门限值, 则将宏小区选定为目标小 区, 并将该终端由当前的服务小区切换到所选定的目标小区, 其中, 第一门 限值大于第二门限值。
方式 3、若终端在 tt时刻的移动速度不大于设定的第一门限值且不小于设 定的第二门限值, 且该终端当前所传输的业务为非实时业务, 则从预测的相 邻小区中选择信道质量最好的相邻小区作为目标小区, 并将该终端由当前的 服务小区切换到所选定的目标小区, 其中, 第一门限值大于第二门限值。
该方式下, 终端釆用 "网络控制, 终端辅助" 的小区切换方式, 实现无 缝切换, 具体参见上述方式 1中的描述。
方式 4、 若终端在 时刻的移动速度小于设定的第二门限值, 且该终端当 前所传输的业务为实时业务, 则从预测的相邻小区中选择信道质量最好的相 邻小区作为目标小区, 并将该终端由当前的服务小区切换到所选定的目标小 区。
该方式下, 终端釆用 "网络控制, 终端辅助" 的小区切换方式, 实现无 缝切换, 具体参见上述方式 1中的描述。
下面结合以下具体实施例, 对本发明提供的切换过程进行详细说明。 实施例一、 参见图 3所示, 本实施例中小区切换过程包括:
步骤 301、 周期性监测用户当前时刻 (即 ) 的移动速度和位置;
步骤 302、 预测用户在下一时刻 (即 的速度和位置;
步骤 303、计算用户在下一时刻的信道质量, 包括用户当前的服务小区的 信道质量和相邻小区的信道质量;
步骤 304、 判断用户是否满足小区切换条件;
若是, 则执行步骤 305;
若否, 则返回步骤 301 ;
步骤 305、 判断用户是否处于高速移动;
若是, 则执行步骤 306;
若否, 则执行步骤 307;
步骤 306、 直接切换到宏基站下的宏小区;
步骤 307、 判断用户是否处于中速移动;
若是, 则执行步骤 308;
若否, 则执行步骤 309;
步骤 308、 判断用户当前传输的业务是否为实时业务;
若是, 则执行步骤 306;
若否, 则执行步骤 310;
步骤 310、 选择最佳目标小区执行切换, 即现有小区切换过程。
上述方法处理流程可以用软件程序实现, 该软件程序可以存储在存储介 质中, 当存储的软件程序被调用时, 执行上述方法步骤。
基于同一发明构思, 本发明实施例还提供了一种终端, 参见图 4 所示, 该终端包括:
预测模块 41 , 用于在当前监测时刻 tt到达时, 预测当前为终端提供服务 的服务小区以及所述服务小区的至少一个相邻小区在下一个监测时刻 +1的 信道质量, 其中, tM = ti +T , 为设定的监测周期, = 0, 1, 2,…;
处理模块 42 , 用于根据预测出的服务小区的信道质量以及预测出的所述 至少一个相邻小区的信道质量, 执行所述终端的小区切换过程。
本发明实施例提供的终端,在当前监测时刻 到达时,预测当前为该终端 提供服务的服务小区以及该服务小区的至少一个相邻小区在下一个监测时刻 ti+l的信道质量; 并根据预测出的服务小区的信道质量以及预测出的该至少一 个相邻小区的信道质量, 执行终端的小区切换过程。 由于预测了下一时刻终 端的服务小区的信道质量, 使该终端在服务小区信道衰落到无法传输数据包 之前即可做好切换准备, 在保证数据包正常传输的前提下, 最大限度地利用 服务小区的信道资源, 实现无缝切换。
为了在保证不丟失数据包的前提下最大限度地利用当前服务小区的网络 资源, 较佳地, 监测周期的大小为该终端的切换时延大小, 其中, 该切换时 延大小是指从切换触发到切换完成的时间。 这样预测结果便是终端完成切换 后的服务小区和目标小区的信号质量。
具体的, 切换时延 t的大小与当前切换测量时间 Tmeasure、 网络切换准备时 间长度 Tready 以及 目 标网络链路接入时间长度 Taccess 相关, 即 本发明实施例中, 预测模块 41预测终端当前的服务小区的信道质量决定 是否需要切换, 当预测出的服务小区的信道质量小于设定的门限值(即切换 预设值) 时, 从该时刻起就要为小区切换做准备了, 保证在传输链路质量恶 化之前, 完成小区切换, 保证数据传输的连续性。 而预测模块 41预测该服务 小区的相邻小区的信道质量决定终端切换到的目标小区, 可以选择信道质量 最好的小区作为目标小区。
本发明实施例中, 初始监测时刻 可以为随机设定的时刻 (该方式适用 于服务小区及其相邻小区为同频小区, 在终端建立连接时设定), 该^)也可以 为满足设定的触发条件的时刻 (该方式适用于服务小区质量低于设定门限且 监测相邻小区为异频小区)。
较佳地, 设定的触发条件包括但不限于以下条件: 终端当前的服务小区
的信号质量低于设定的门限值。
在实施中, 处理模块 42具体用于:
当预测模块 41预测出的服务小区的信道质量低于设定的门限值时, 根据 预测模块 41预测出的每个所述相邻小区在 +1时刻的信道质量, 选择一个相 邻小区作为目标小区, 并将所述终端由所述服务小区切换到所述目标小区。
具体的, 当预测模块 41预测出该终端的服务小区在 +1时刻的信道质量 低于设定的门限值时, 即该终端的服务小区在 +1时刻的信道质量变差, 可以 将终端切换到信道质量好的小区。
基于上述任一实施例, 在实施中, 预测模块 41具体用于:
根据高斯 -马尔科夫移动模型, 预测出所述服务小区以及所述相邻小区在 +1时刻的信道质量。
进一步,预测模块 41根据高斯-马尔科夫移动模型,预测出所述服务小区 以及所述相邻小区在 ti+1时刻的信道质量, 包括: 获取所述终端在 tt时刻的位置信息 ,所述位置信息包括所述终端在 tt时刻 的移动速度和移动方向;
根据所述终端在 时刻的位置信息, 预测所述终端在 +1时刻的位置信 息; 以及
根据预测得到的位置信息,预测所述服务小区以及所述相邻小区在 时 刻的信道质量。
具体的, 高斯-马尔科夫移动模型的工作原理是将移动节点 (如终端) 的 运动速率看作时间上相关的高斯 -马尔科夫过程, 在初始时刻为每个移动节点 设计一个速度和方向, 经过设定的时间间隔 T后, 每个移动节点更新当前的 速度和方向, 在每个时间间隔内可以认为该移动节点的速度和方向是不变的, 从而由前一时刻的速度和方向预测出后一时刻的速度和方向。
基于上述任一实施例,在实施中,预测模块 41根据预测得到的位置信息, 预测所述服务小区以及所述相邻小区在 +1时刻的信道质量, 包括:
根据预测得到的位置信息, 分别确定出所述终端到所述服务小区以及所 述相邻小区所属的基站的距离信息;
根据确定出的所述终端到所述服务小区所属的基站的距离信息, 釆用阴 影衰落的路径损耗算法, 预测出所述服务小区在 +1时刻的信道质量; 以及, 根据确定出的所述终端到所述相邻小区所属的基站的距离信息, 釆用阴影衰 落的路径损耗算法, 预测出所述相邻小区在 ti+1时刻的信道质量。
基于上述任一实施例, 较佳地, 用于衡量小区 (包括终端的服务小区以 及除该服务小区之外的小区)信道质量的测量参数可以是参考信号接收质量 ( Reference Signal Received Quality, RSRQ ), 即信号强度与干扰强度之比。 当预测的终端当前的服务小区的 RSRQ值小于预设的切换门限值( RSRQThr ) 时, 则认为该终端当前满足小区切换条件, 否则, 继续周期性监测自身当前 的服务小区的信道质量, 更新位置数据库信息。
当然, 本发明实施例不限于釆用 RSRQ衡量小区 (包括终端的服务小区 以及除该服务小区之外的小区)信道质量, 也可以釆用其他参数衡量小区信 道质量, 如参考信号接收功率 (Reference Signal Received Power, RSRP )。
基于上述任一实施例, 在实施中, 处理模块 42具体用于:
根据所述终端在 时刻的移动速度和 /或所述终端当前所传输的业务类 型、 以及预测出的每个相邻小区在 +1时刻的信道质量, 执行所述终端的小区 切换过程。
具体的, 在执行该终端的小区切换过程时, 不仅考虑各相邻小区的信道 质量, 还考虑该终端在当前时刻 (即 的移动速度, 和 /或该终端当前所传 输的业务类型。 其中, 根据终端移动的快慢, 可以分为高速移动、 中速移动 和低速移动状态, 主要是根据预设的速度门限值来划分; 业务类型分为实时
业务(如语音通话、 视频聊天等)和非实时业务(如短信业务等)。
进一步,处理模块 42根据终端在 tt时刻的移动速度和 /或该终端当前所传 输的业务类型、 以及预测出的每个相邻小区在 +1时刻的信道质量, 执行该终 端的小区切换过程, 包括以下四种优选的实现方式:
方式一、若所述终端在 时刻的移动速度大于设定的第一门限值且所述相 邻小区中的宏小区在 ti+1时刻的信道质量不低于设定的门限值,将所述宏小区 选定为目标小区, 并将所述终端由所述服务小区切换到所述目标小区。 具体 参见上述方式 1的描述, 此处不再赘述。
方式二、若所述终端在 时刻的移动速度不大于设定的第一门限值且不小 于设定的第二门限值, 且所述终端当前所传输的业务为实时业务, 且所述相 邻小区中的宏小区在 ti+1时刻的信道质量不低于设定的门限值,将所述宏小区 选定为目标小区, 并将所述终端由所述服务小区切换到所述目标小区, 所述 第一门限值大于所述第二门限值。 具体参见上述方式 2 的描述, 此处不再赘 述。
方式三、若所述终端在 tt时刻的移动速度不大于设定的第一门限值且不小 于设定的第二门限值, 且所述终端当前所传输的业务为非实时业务, 从预测 的相邻小区中选择信道质量最好的相邻小区作为目标小区, 并将所述终端由 所述服务小区切换到所述目标小区, 所述第一门限值大于所述第二门限值。 具体参见上述方式 3的描述, 此处不再赘述。
方式四、若所述终端在 时刻的移动速度小于设定的第二门限值,且所述 终端当前所传输的业务为实时业务, 从预测的相邻小区中选择信道质量最好 的相邻小区作为目标小区, 并将所述终端由所述服务小区切换到所述目标小 区。 具体参见上述方式 4的描述, 此处不再赘述。
基于同一发明构思, 本发明还提供了另一种终端, 参见图 5 所示, 该终
端包括:
收发器 51 , 用于与其他设备进行通信;
处理器 52 , 用于在当前监测时刻 到达时, 预测当前为终端提供服务的 服务小区以及所述服务小区的至少一个相邻小区在下一个监测时刻 +1的信 道质量, 其中, t = ti +T , 为设定的监测周期, = 0, 1, 2, · · · ; 根据预测出的 服务小区的信道质量以及预测出的所述至少一个相邻小区的信道质量, 执行 所述终端的小区切换过程。
本发明实施例提供的终端,在当前监测时刻 到达时,预测当前为该终端 提供服务的服务小区以及该服务小区的至少一个相邻小区在下一个监测时刻 ti+l的信道质量; 并根据预测出的服务小区的信道质量以及预测出的该至少一 个相邻小区的信道质量, 执行终端的小区切换过程。 由于预测了下一时刻终 端的服务小区的信道质量, 使该终端在服务小区信道衰落到无法传输数据包 之前即可做好切换准备, 在保证数据包正常传输的前提下, 最大限度地利用 服务小区的信道资源, 实现无缝切换。
为了在保证不丟失数据包的前提下最大限度地利用当前服务小区的网络 资源, 较佳地, 监测周期的大小为该终端的切换时延大小, 其中, 该切换时 延大小是指从切换触发到切换完成的时间。 这样预测结果便是终端完成切换 后的服务小区和目标小区的信号质量。
具体的, 切换时延 t的大小与当前切换测量时间 Tmeasure、 网络切换准备时 间长度 Tready 以及 目 标网络链路接入时间长度 Taccess 相关, 即 本发明实施例中, 处理器 52预测终端当前的服务小区的信道质量决定是 否需要切换, 当预测出的服务小区的信道质量小于设定的门限值(即切换预 设值) 时, 从该时刻起就要为小区切换做准备了, 保证在传输链路质量恶化 之前, 完成小区切换, 保证数据传输的连续性。 而处理器 52预测该服务小区
的相邻小区的信道质量决定终端切换到的目标小区, 可以选择信道质量最好 的小区作为目标小区。
本发明实施例中, 初始监测时刻 可以为随机设定的时刻 (该方式适用 于服务小区及其相邻小区为同频小区, 在终端建立连接时设定), 该^)也可以 为满足设定的触发条件的时刻 (该方式适用于服务小区质量低于设定门限且 监测相邻小区为异频小区)。
较佳地, 设定的触发条件包括但不限于以下条件: 终端当前的服务小区 的信号质量低于设定的门限值。
在实施中, 处理器 52具体用于:
当预测出的服务小区的信道质量低于设定的门限值时, 根据预测出的每 个所述相邻小区在 +1时刻的信道质量, 选择一个相邻小区作为目标小区, 并 将所述终端由所述服务小区切换到所述目标小区。
具体的, 当预测出该终端的服务小区在 +1时刻的信道质量低于设定的门 限值时, 即该终端的服务小区在 +1时刻的信道质量变差, 可以将终端切换到 信道质量好的小区。
基于上述任一实施例, 在实施中, 处理器 52具体用于:
根据高斯 -马尔科夫移动模型, 预测出所述服务小区以及所述相邻小区在 +1时刻的信道质量。
进一步,处理器 52根据高斯-马尔科夫移动模型,预测出所述服务小区以 及所述相邻小区在 +1时刻的信道质量, 包括: 获取所述终端在 tt时刻的位置信息 ,所述位置信息包括所述终端在 tt时刻 的移动速度和移动方向;
根据所述终端在 时刻的位置信息, 预测所述终端在 +1时刻的位置信 息; 以及
根据预测得到的位置信息,预测所述服务小区以及所述相邻小区在 t 时 刻的信道质量。
基于上述任一实施例, 在实施中, 处理器 52根据预测得到的位置信息, 预测所述服务小区以及所述相邻小区在 +1时刻的信道质量, 包括:
根据预测得到的位置信息, 分别确定出所述终端到所述服务小区以及所 述相邻小区所属的基站的距离信息;
根据确定出的所述终端到所述服务小区所属的基站的距离信息, 釆用阴 影衰落的路径损耗算法, 预测出所述服务小区在 +1时刻的信道质量; 以及, 根据确定出的所述终端到所述相邻小区所属的基站的距离信息, 釆用阴影衰 落的路径损耗算法, 预测出所述相邻小区在 ti+1时刻的信道质量。
基于上述任一实施例, 较佳地, 用于衡量小区 (包括终端的服务小区以 及除该服务小区之外的小区)信道质量的测量参数可以是 RSRQ, 即信号强度 与干扰强度之比。 当预测的终端当前的服务小区的 RSRQ值小于预设的切换 门限值(R^RO ) 时, 则认为该终端当前满足小区切换条件, 否则, 继续周 期性监测自身当前的服务小区的信道质量, 更新位置数据库信息。
当然, 本发明实施例不限于釆用 RSRQ衡量小区 (包括终端的服务小区 以及除该服务小区之外的小区)信道质量, 也可以釆用其他参数衡量小区信 道质量, 如 RSRP。
基于上述任一实施例, 在实施中, 处理器 52具体用于:
根据所述终端在 时刻的移动速度和 /或所述终端当前所传输的业务类 型、 以及预测出的每个相邻小区在 +1时刻的信道质量, 执行所述终端的小区 切换过程。
具体的, 处理器 52在执行该终端的小区切换过程时, 不仅考虑各相邻小 区的信道质量, 还考虑该终端在当前时刻 (即 的移动速度, 和 /或该终端 当前所传输的业务类型。 其中, 根据终端移动的快慢, 可以分为高速移动、
中速移动和低速移动状态, 主要是根据预设的速度门限值来划分; 业务类型 分为实时业务(如语音通话、 视频聊天等)和非实时业务(如短信业务等)。
进一步,处理器 52根据终端在 tt时刻的移动速度和 /或该终端当前所传输 的业务类型、 以及预测出的每个相邻小区在 +1时刻的信道质量, 执行该终端 的小区切换过程, 包括以下四种优选的实现方式:
方式一、若所述终端在 时刻的移动速度大于设定的第一门限值且所述相 邻小区中的宏小区在 ti+1时刻的信道质量不低于设定的门限值,将所述宏小区 选定为目标小区, 并将所述终端由所述服务小区切换到所述目标小区。 具体 参见上述方式 1的描述, 此处不再赘述。
方式二、若所述终端在 时刻的移动速度不大于设定的第一门限值且不小 于设定的第二门限值, 且所述终端当前所传输的业务为实时业务, 且所述相 邻小区中的宏小区在 ti+1时刻的信道质量不低于设定的门限值,将所述宏小区 选定为目标小区, 并将所述终端由所述服务小区切换到所述目标小区, 所述 第一门限值大于所述第二门限值。 具体参见上述方式 2 的描述, 此处不再赘 述。
方式三、若所述终端在 tt时刻的移动速度不大于设定的第一门限值且不小 于设定的第二门限值, 且所述终端当前所传输的业务为非实时业务, 从预测 的相邻小区中选择信道质量最好的相邻小区作为目标小区, 并将所述终端由 所述服务小区切换到所述目标小区, 所述第一门限值大于所述第二门限值。 具体参见上述方式 3的描述, 此处不再赘述。
方式四、若所述终端在 时刻的移动速度小于设定的第二门限值,且所述 终端当前所传输的业务为实时业务, 从预测的相邻小区中选择信道质量最好 的相邻小区作为目标小区, 并将所述终端由所述服务小区切换到所述目标小 区。 具体参见上述方式 4的描述, 此处不再赘述。
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或 计算机程序产品。 因此, 本发明可釆用完全硬件实施例、 完全软件实施例、 或结合软件和硬件方面的实施例的形式。 而且, 本发明可釆用在一个或多个 其中包含有计算机可用程序代码的计算机可用存储介质 (包括但不限于磁盘 存储器、 CD-ROM、 光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、 设备(系统)、 和计算机程序产 品的流程图和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图 和 /或方框图中的每一流程和 /或方框、 以及流程图和 /或方框图中的流程 和 /或方框的结合。 可提供这些计算机程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器, 使得通 过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流 程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设 备以特定方式工作的计算机可读存储器中, 使得存储在该计算机可读存储器 中的指令产生包括指令装置的制造品, 该指令装置实现在流程图一个流程或 多个流程和 /或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的 处理, 从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图 一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的步 骤。
尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了 基本创造性概念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权 利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要
求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。
Claims
1、 一种终端, 其特征在于, 该终端包括:
预测模块,用于在当前监测时刻 到达时,预测当前为终端提供服务的服 务小区以及所述服务小区的至少一个相邻小区在下一个监测时刻 +1的信道 质量, 其中, tM = ti +T , 为设定的监测周期, = 0, 1, 2,…;
处理模块, 用于根据预测出的服务小区的信道质量以及预测出的所述至 少一个相邻小区的信道质量, 执行所述终端的小区切换过程。
2、 如权利要求 1所述的终端, 其特征在于, 所述处理模块具体用于: 当所述预测模块预测出的服务小区的信道质量低于设定的门限值时, 根 据所述预测模块预测出的每个所述相邻小区在 时刻的信道质量,选择一个 相邻小区作为目标小区, 并将所述终端由所述服务小区切换到所述目标小区。
3、 如权利要求 1所述的终端, 其特征在于, 初始监测时刻^)为随机设定 的时刻, 或者, 为满足设定的触发条件的时刻。
4、 如权利要求 3所述的终端, 其特征在于, 所述触发条件包括终端当前 的服务小区的信号质量低于设定的门限值。
5、 如权利要求 1~4任一项所述的终端, 其特征在于, 所述预测模块具体 用于:
根据高斯 -马尔科夫移动模型, 预测出所述服务小区以及所述相邻小区在 +1时刻的信道质量。
6、 如权利要求 5所述的终端, 其特征在于, 所述预测模块具体用于: 获取所述终端在 tt时刻的位置信息 ,所述位置信息包括所述终端在 tt时刻 的移动速度和移动方向;
根据所述终端在 时刻的位置信息, 预测所述终端在 +1时刻的位置信 息; 以及
根据预测得到的位置信息,预测所述服务小区以及所述相邻小区在 t 时 刻的信道质量。
7、 如权利要求 6所述的终端, 其特征在于, 所述预测模块具体用于: 根据预测得到的位置信息, 分别确定出所述终端到所述服务小区以及所 述相邻小区所属的基站的距离信息;
根据确定出的所述终端到所述服务小区所属的基站的距离信息, 釆用阴 影衰落的路径损耗算法, 预测出所述服务小区在 +1时刻的信道质量; 以及, 根据确定出的所述终端到所述相邻小区所属的基站的距离信息, 釆用阴影衰 落的路径损耗算法, 预测出所述相邻小区在 ti+1时刻的信道质量。
8、 如权利要求 2所述的终端, 其特征在于, 所述处理模块具体用于: 根据所述终端在 时刻的移动速度和 /或所述终端当前所传输的业务类 型、 以及预测出的每个相邻小区在 +1时刻的信道质量, 执行所述终端的小区 切换过程。
9、 如权利要求 8所述的终端, 其特征在于, 所述处理模块具体用于: 若所述终端在 时刻的移动速度大于设定的第一门限值且所述相邻小区 中的宏小区在 ti+1时刻的信道质量不低于设定的门限值,将所述宏小区选定为 目标小区, 并将所述终端由所述服务小区切换到所述目标小区; 或者
若所述终端在 时刻的移动速度不大于设定的第一门限值且不小于设定 的第二门限值, 且所述终端当前所传输的业务为实时业务, 且所述相邻小区 中的宏小区在 ti+1时刻的信道质量不低于设定的门限值,将所述宏小区选定为 目标小区, 并将所述终端由所述服务小区切换到所述目标小区, 所述第一门 限值大于所述第二门限值; 或者
若所述终端在 时刻的移动速度不大于设定的第一门限值且不小于设定 的第二门限值, 且所述终端当前所传输的业务为非实时业务, 从预测的相邻
小区中选择信道质量最好的相邻小区作为目标小区, 并将所述终端由所述服 务小区切换到所述目标小区, 所述第一门限值大于所述第二门限值; 或者 若所述终端在 时刻的移动速度小于设定的第二门限值,且所述终端当前 所传输的业务为实时业务, 从预测的相邻小区中选择信道质量最好的相邻小 区作为目标小区, 并将所述终端由所述服务小区切换到所述目标小区。
10、 如权利要求 1~4任一项所述的终端, 其特征在于, 所述监测周期的 大小为所述终端的切换时延大小, 其中, 所述切换时延大小是指从切换触发 到切换完成的时间。
11、 一种小区切换方法, 其特征在于, 该方法包括:
在当前监测时刻 tt到达时,预测当前为终端提供服务的服务小区以及所述 服务小区的至少一个相邻小区在下一个监测时刻 +1的信道质量, 其中, tM ^ tt +T , 为设定的监测周期, = 0,1,2,…;
根据预测出的服务小区的信道质量以及预测出的所述至少一个相邻小区 的信道质量, 执行所述终端的小区切换过程。
12、 如权利要求 11所述的方法, 其特征在于, 根据预测出的服务小区的 信道质量以及预测出的所述至少一个相邻小区的信道质量, 执行所述终端的 小区切换过程, 包括:
当预测出的服务小区的信道质量低于设定的门限值时, 根据预测出的每 个所述相邻小区在 +1时刻的信道质量, 选择一个相邻小区作为目标小区, 并 将所述终端由所述服务小区切换到所述目标小区。
13、 如权利要求 11所述的方法, 其特征在于, 初始监测时刻^)为随机设 定的时刻, 或者, 为满足设定的触发条件的时刻。
14、 如权利要求 13所述的方法, 其特征在于, 所述触发条件包括终端当 前的服务小区的信号质量低于设定的门限值。
15、 如权利要求 11~14任一项所述的方法, 其特征在于, 预测所述服务
小区以及所述相邻小区在 +1时刻的信道质量, 包括:
根据高斯 -马尔科夫移动模型, 预测出所述服务小区以及所述相邻小区在 +1时刻的信道质量。
16、 如权利要求 15所述的方法, 其特征在于, 根据高斯-马尔科夫移动模 型, 预测出所述服务小区以及所述相邻小区在 +1时刻的信道质量, 包括: 获取所述终端在 tt时刻的位置信息 ,所述位置信息包括所述终端在 tt时刻 的移动速度和移动方向;
根据所述终端在 时刻的位置信息, 预测所述终端在 +1时刻的位置信 息; 以及
根据预测得到的位置信息,预测所述服务小区以及所述相邻小区在 时 刻的信道质量。
17、如权利要求 16所述的方法,其特征在于,根据预测得到的位置信息, 预测所述服务小区以及所述相邻小区在 +1时刻的信道质量, 包括:
根据预测得到的位置信息, 分别确定出所述终端到所述服务小区以及所 述相邻小区所属的基站的距离信息;
根据确定出的所述终端到所述服务小区所属的基站的距离信息, 釆用阴 影衰落的路径损耗算法, 预测出所述服务小区在 +1时刻的信道质量; 以及, 根据确定出的所述终端到所述相邻小区所属的基站的距离信息, 釆用阴影衰 落的路径损耗算法, 预测出所述相邻小区在 ti+1时刻的信道质量。
18、 如权利要求 12所述的方法, 其特征在于, 根据预测出的每个所述相 邻小区在 +1时刻的信道质量, 选择一个相邻小区作为目标小区, 并将所述终 端由所述服务小区切换到所述目标小区, 包括:
根据所述终端在 时刻的移动速度和 /或所述终端当前所传输的业务类
型、 以及预测出的每个相邻小区在 +1时刻的信道质量, 执行所述终端的小区 切换过程。
19、 如权利要求 18所述的方法, 其特征在于, 根据所述终端在 时刻的 移动速度和 /或所述终端当前所传输的业务类型、 以及预测出的每个相邻小区 在 +1时刻的信道质量, 执行所述终端的小区切换过程, 包括: 若所述终端在 时刻的移动速度大于设定的第一门限值且所述相邻小区 中的宏小区在 ti+1时刻的信道质量不低于设定的门限值,将所述宏小区选定为 目标小区, 并将所述终端由所述服务小区切换到所述目标小区; 或者
若所述终端在 时刻的移动速度不大于设定的第一门限值且不小于设定 的第二门限值, 且所述终端当前所传输的业务为实时业务, 且所述相邻小区 中的宏小区在 ti+1时刻的信道质量不低于设定的门限值,将所述宏小区选定为 目标小区, 并将所述终端由所述服务小区切换到所述目标小区, 所述第一门 限值大于所述第二门限值; 或者
若所述终端在 时刻的移动速度不大于设定的第一门限值且不小于设定 的第二门限值, 且所述终端当前所传输的业务为非实时业务, 从预测的相邻 小区中选择信道质量最好的相邻小区作为目标小区, 并将所述终端由所述服 务小区切换到所述目标小区, 所述第一门限值大于所述第二门限值; 或者 若所述终端在 时刻的移动速度小于设定的第二门限值,且所述终端当前 所传输的业务为实时业务, 从预测的相邻小区中选择信道质量最好的相邻小 区作为目标小区, 并将所述终端由所述服务小区切换到所述目标小区。
20、 如权利要求 11~14任一项所述的方法, 其特征在于, 所述监测周期 的大小为所述终端的切换时延大小, 其中, 所述切换时延大小是指从切换触 发到切换完成的时间。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2014/075971 WO2015161453A1 (zh) | 2014-04-22 | 2014-04-22 | 一种小区切换方法和设备 |
CN201480000686.2A CN105557025A (zh) | 2014-04-22 | 2014-04-22 | 一种小区切换方法和设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2014/075971 WO2015161453A1 (zh) | 2014-04-22 | 2014-04-22 | 一种小区切换方法和设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015161453A1 true WO2015161453A1 (zh) | 2015-10-29 |
Family
ID=54331593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/075971 WO2015161453A1 (zh) | 2014-04-22 | 2014-04-22 | 一种小区切换方法和设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105557025A (zh) |
WO (1) | WO2015161453A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107770828A (zh) * | 2017-11-10 | 2018-03-06 | 重庆邮电大学 | 一种基于本地移动性切换管理方法 |
CN113574922A (zh) * | 2019-03-20 | 2021-10-29 | 日本电气株式会社 | 控制系统、中继设备、控制设备、控制方法和非暂时性计算机可读介质 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111586777B (zh) * | 2020-03-25 | 2021-09-28 | 北京邮电大学 | 室内环境下的网络切换方法、装置、电子设备及存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1520221A (zh) * | 2003-01-28 | 2004-08-11 | �ձ�������ʽ���� | 移动无线电通信系统中的无线电参数控制 |
US20060234757A1 (en) * | 2005-04-14 | 2006-10-19 | Samsung Electronics Co., Ltd. | Method of efficiently reselecting cell in mobile station using GPS |
CN101715206A (zh) * | 2009-04-24 | 2010-05-26 | 北京新岸线无线技术有限公司 | 用于越区切换的方法和装置 |
CN101715223A (zh) * | 2009-04-24 | 2010-05-26 | 北京新岸线无线技术有限公司 | 用于越区切换的方法和装置 |
CN102547833A (zh) * | 2012-02-22 | 2012-07-04 | 华北电力大学 | 基于移动预测的异构网络预切换方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004289226A (ja) * | 2003-03-19 | 2004-10-14 | Nec Corp | 携帯情報端末及びハンドオーバー解決方法 |
CN101686474B (zh) * | 2008-09-24 | 2012-07-04 | 上海摩波彼克半导体有限公司 | 无线蜂窝网络中的移动台实现小区快速选择方法 |
CN101534534A (zh) * | 2009-04-21 | 2009-09-16 | 华为技术有限公司 | 一种基站切换方法及切换处理装置 |
CN102769879B (zh) * | 2012-06-27 | 2018-08-03 | 南京中兴新软件有限责任公司 | 一种移动终端快速切换的方法、移动终端及基站 |
CN103546929A (zh) * | 2012-07-09 | 2014-01-29 | 普天信息技术研究院有限公司 | 一种提高异构网切换性能的方法 |
CN102905307B (zh) * | 2012-09-12 | 2014-12-31 | 北京邮电大学 | 实现邻区列表和负载均衡联合优化的系统 |
-
2014
- 2014-04-22 WO PCT/CN2014/075971 patent/WO2015161453A1/zh active Application Filing
- 2014-04-22 CN CN201480000686.2A patent/CN105557025A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1520221A (zh) * | 2003-01-28 | 2004-08-11 | �ձ�������ʽ���� | 移动无线电通信系统中的无线电参数控制 |
US20060234757A1 (en) * | 2005-04-14 | 2006-10-19 | Samsung Electronics Co., Ltd. | Method of efficiently reselecting cell in mobile station using GPS |
CN101715206A (zh) * | 2009-04-24 | 2010-05-26 | 北京新岸线无线技术有限公司 | 用于越区切换的方法和装置 |
CN101715223A (zh) * | 2009-04-24 | 2010-05-26 | 北京新岸线无线技术有限公司 | 用于越区切换的方法和装置 |
CN102547833A (zh) * | 2012-02-22 | 2012-07-04 | 华北电力大学 | 基于移动预测的异构网络预切换方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107770828A (zh) * | 2017-11-10 | 2018-03-06 | 重庆邮电大学 | 一种基于本地移动性切换管理方法 |
CN107770828B (zh) * | 2017-11-10 | 2020-07-03 | 重庆邮电大学 | 一种基于本地移动性切换管理方法 |
CN113574922A (zh) * | 2019-03-20 | 2021-10-29 | 日本电气株式会社 | 控制系统、中继设备、控制设备、控制方法和非暂时性计算机可读介质 |
CN113574922B (zh) * | 2019-03-20 | 2024-10-22 | 日本电气株式会社 | 控制系统、中继设备、控制设备、控制方法和非暂时性计算机可读介质 |
Also Published As
Publication number | Publication date |
---|---|
CN105557025A (zh) | 2016-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11483720B2 (en) | Communications device and method | |
Tayyab et al. | A survey on handover management: From LTE to NR | |
US20180227824A1 (en) | Method of Heterogeneous Network Mobility | |
EP2749082B1 (en) | Adapting a triggering threshold for cell re-selection measurements | |
Ulvan et al. | Handover procedure and decision strategy in LTE-based femtocell network | |
US10271258B2 (en) | Communication units, integrated circuits and methods therefor | |
US20220217556A1 (en) | Network Node, User Equipment and Methods for Handling Signal Quality Variations | |
CN104581849B (zh) | 一种小区切换方法 | |
CN103796256B (zh) | 基于移动状态信息和邻区邻近度的移动鲁棒性优化方法及装置 | |
EP2763448B1 (en) | Mobility state estimation enhancement for small cell and heterogeneous network deployments | |
WO2013104333A1 (zh) | 获取移动终端移动速度的方法、基站及终端 | |
WO2012152162A1 (zh) | 移动状态估计方法、用户设备及基站 | |
JP2024054165A (ja) | ハンドオーバを開始するための方法、ノード、およびue | |
WO2012163152A1 (zh) | 一种基于优先级的测量上报方法和设备 | |
WO2015161453A1 (zh) | 一种小区切换方法和设备 | |
Huang et al. | A handover scheme for LTE wireless networks under the assistance of GPS | |
Ahmad et al. | Performance of movement direction distance-based vertical handover algorithm under various femtocell distributions in HetNet | |
Cheikh et al. | Optimized handover algorithm for two-tier macro-femto cellular LTE networks | |
JP7138446B2 (ja) | 基地局装置及びユーザ装置 | |
JP2013143664A (ja) | 無線端末装置、通信システム、通信制御方法および通信制御プログラム | |
Ray et al. | Self-tracking mobile station controls its fast handover in mobile WiMAX | |
Syuhada et al. | Performance evaluation of vertical handoff in fourth generation (4G) networks model | |
KR101639944B1 (ko) | 무선통신망 기반 타겟노드에 의한 개선된 핸드오버 수행방법 및 그 방법을 수행하는 기지국 | |
WO2018000246A1 (zh) | 一种小区切换方法及相关装置 | |
Tabany et al. | A mobility prediction scheme of LTE/LTE-A femtocells under different velocity scenarios |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480000686.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14890331 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14890331 Country of ref document: EP Kind code of ref document: A1 |