WO2015160073A1 - Bidirectional communication optical transceiver - Google Patents

Bidirectional communication optical transceiver Download PDF

Info

Publication number
WO2015160073A1
WO2015160073A1 PCT/KR2015/000219 KR2015000219W WO2015160073A1 WO 2015160073 A1 WO2015160073 A1 WO 2015160073A1 KR 2015000219 W KR2015000219 W KR 2015000219W WO 2015160073 A1 WO2015160073 A1 WO 2015160073A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
wavelength
wavelength band
receiving
laser diode
Prior art date
Application number
PCT/KR2015/000219
Other languages
French (fr)
Korean (ko)
Inventor
김동민
Original Assignee
김동민
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140107202A external-priority patent/KR20150118515A/en
Application filed by 김동민 filed Critical 김동민
Publication of WO2015160073A1 publication Critical patent/WO2015160073A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Definitions

  • the present invention relates to an optical communication module, and more particularly, to an optical transceiver for bidirectional communication, which performs transmission and reception through four wavelength bands, and performs two-way communication using four transmission wavelengths and four reception wavelengths using two optical fibers. will be.
  • optical communication using light as a medium for information transmission has become common for high-capacity information transmission and high-speed information communication. Therefore, an optical signal can be easily converted into laser light using an optical transmission device, and conversely, optical reception device is used. Therefore, the optical signal transmitted through the optical fiber can be easily converted into an electrical signal.
  • Light has very low coherence with each other, and optical communication of two-way communication method that transmits and receives a signal through one optical fiber by using the characteristics of light is preferred.
  • an optical receiving element that receives an optical signal transmitted downward through an optical fiber and converts it into an electrical signal and an optical transmission element that converts the electric signal into an optical signal and transmits the optical signal through the optical fiber are integrated. Therefore, there is a need for a bidirectional integrated optical device manufactured such that optical coupling with one optical fiber occurs.
  • bidirectional integrated optical device In the case of such a bidirectional integrated optical device, it is common to perform bidirectional communication using optical signals of two wavelength bands. Thus, bidirectional communication using only optical signals of two wavelength bands is limited in communication capacity. .
  • wavelength band multiplexing is required to multiplex the wavelength band of an optical signal transmitted through one optical fiber.
  • a bidirectional integrated optical device using only two existing wavelength bands is required.
  • an optical module of a duplexer structure is used in the data center where a large amount of information is transmitted and received through optical fibers.
  • the duplexer optical module performs two-way communication by using two optical fibers, and an optical element for transmission is optically coupled to one of the two optical fibers, and an optical element for reception is optically coupled to one of the two optical fibers and transmitted to one optical module. Receive bidirectional communication.
  • an optical communication module of a quadplexer small form factor pluggable (QSFP) method has been used.
  • the optical communication optical module of QSFP (Quadplexer Small Form factor Pluggable) has four light emitting elements and four light receiving elements in one optical communication module, and uses a method of combining each optical element with each optical fiber.
  • QSFP Quadplexer Small Form factor Pluggable
  • four light emitting devices can be manufactured in an array form so that the distance between the four light emitting devices can be set very densely
  • four light receiving devices can also be manufactured in a single chip in an array form.
  • the distance between the light receiving elements can be set very densely.
  • the optical fiber connecting the QSFP typically uses a 12-core optical fiber, but a 12-core optical fiber is manufactured in a form in which four unused optical fibers are further attached between the optical fiber for the light emitting device and the optical fiber for the light receiving device.
  • the conventional QSFP uses four transmitting laser diode chips and four receiving photodiode chips, and there is a serious problem of wasting optical fibers because optical communication is performed by using each optical fiber to transmit or receive signals. .
  • Patent Document 1 Patent Registration No. 10-1041570 (2011.06.08)
  • the present invention was created in view of the above circumstances, and an object of the present invention is to provide a bidirectional integrated bidirectional integrated optical module device that transmits and receives an optical signal using four wavelength bands in one bidirectional transceiver.
  • the directional communication transceiver By constructing a communication transceiver and connecting one optical fiber to a bidirectional integrated optical module device, the directional communication transceiver provides an optical transceiver for bidirectional communication that enables transmission and reception of optical signals in four wavelength bands simultaneously through two optical fibers. There is.
  • the transmission and reception path of the optical signal is characterized by being determined by the transmission and reflection of the optical signal made by the wavelength selective filter.
  • the optical signal transmitted and received through the one optical fiber includes a first wavelength band, and the second wavelength band having a difference by the predetermined wavelength band from the first wavelength band, the wavelength selective filter
  • the optical signal transmitted and received by any one of the first optical device and the second optical device is transmitted, and the optical signal transmitted and received by the other is reflected to transmit and receive the optical signal of the first wavelength band in the first optical device.
  • the second optical device may include a wavelength selective filter to transmit and receive an optical signal of the second wavelength band.
  • each of the optical signals of the first wavelength band and the second wavelength band includes a reception wavelength band having a difference between the transmission wavelength band and the transmission wavelength band by a predetermined wavelength band, and the first optical band.
  • Each of the device and the second optical device transmits an optical signal of the transmission wavelength band and receives an optical signal of the reception wavelength band.
  • the wavelength selective filter includes an inclined surface having a predetermined inclination angle based on a vertical plane with respect to each of the first optical axis and the second optical axis at an intersection where the first optical axis and the second optical axis intersect each other.
  • the inclined surface On the inclined surface, any one of the optical signal of the first wavelength band and the optical signal of the second wavelength band is reflected, and the remaining non-reflected optical signal is transmitted along the first optical axis or the second optical axis. It is characterized by.
  • the optical transceiver for bidirectional communication transmits four different optical signals through two optical fibers and simultaneously receives four different optical signals.
  • an optical signal of four wavelength bands can be efficiently transmitted through two optical fibers simultaneously. And simultaneously receive optical signals in four wavelength bands.
  • This function is characterized in that the conventional QSFP optical module optically couples the light emitting elements to the four transmitting optical fibers and couples the receiving light receiving elements to the four receiving optical fibers in the four light emitting elements using only two optical fibers.
  • the optical fiber is saved by transmitting the emitted signal and receiving the optical signal using four light receiving elements. This saving of fiber enables the use of the existing duplexer type fiber as it is, so it is very economical way to reduce the cost of replacing the fiber to increase the communication capacity.
  • FIG. 1 is a view illustrating a state in which four transmission signals and four reception signals are transmitted through a 12-core optical fiber in a conventional QSFP optical communication method
  • FIG. 2 is a schematic block diagram of an optical communication system configured based on an optical module for bidirectional communication according to an embodiment of the present invention
  • 3 and 4 are views for explaining the transmission / reflectance according to the wavelength band of the light incident on the wavelength selective filter according to an embodiment of the present invention
  • FIG. 5 is a view for explaining a transmission loss according to a wavelength band in an optical fiber according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an optical module device according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a first optical device according to an embodiment of the present invention.
  • FIG. 8 is a view for explaining the structure of a submount for mounting a wavelength selective filter according to an embodiment of the present invention.
  • FIGS 9 and 10 are views for explaining the optical response according to the wavelength band in the optical receiving device (photodiode chip) according to an embodiment of the present invention.
  • FIG. 11 shows that two optical modules for bidirectional communication are integrated into one transceiver to transmit two wavelengths through each optical fiber and receive two wavelengths, thereby transmitting four optical signals to two optical fibers. And a view for explaining a function of receiving four optical signals simultaneously with two optical fibers,
  • FIG. 12 is an optical device having a structure in which a laser diode chip emitting a first wavelength and a laser diode chip emitting a second wavelength are embedded in one optical device according to another embodiment of the present invention
  • 13 is an optical module for bidirectional communication including two laser diode chips in a first optical element and two photodiode chips in a second optical element;
  • optical module 14 is an optical module for bidirectional communication in which four laser diode chips are all disposed in one optical module, and four photodiodes are disposed in another optical module;
  • FIG. 18 is an example of an optical module for optical communication at four wavelengths using the dual optical fiber collimation apparatus of FIG. 17 and two optical devices for bidirectional communication;
  • FIG. 19 illustrates an example of a QSFP transceiver fabricated to mount two optical modules of FIG. 18 to one transceiver to transmit optical signals of four wavelengths and receive optical signals of four wavelengths.
  • FIG 2 illustrates an optical communication system according to an embodiment of the present invention.
  • an optical communication system receives an optical signal transmitted from a transmitting optical module device 1000 and an transmitting optical module device 1000.
  • the optical module 3000 includes a receiving optical module device 2000 and an optical fiber 3000 which is a transmission medium for transmitting an optical signal between the transmitting optical module device 1000 and the receiving optical module device 1000.
  • the transmitter-side optical module device 1000 and the receiver-side optical module device 2000 both refer to bidirectional integrated optical devices having the same configuration capable of bidirectional communication. In such bidirectional integrated optical devices, transmission and reception of optical signals may be performed together. have.
  • the transmitting side optical module apparatus 1000 may receive the optical signal transmitted through the optical fiber 3000 as well as transmit the optical signal through the optical fiber 3000.
  • the receiving optical module apparatus 2000 In addition to receiving the optical signal transmitted through the optical fiber 3000, it is also possible to transmit the optical signal through the optical fiber 3000.
  • the transmitting side optical module apparatus 1000 and the receiving side optical module apparatus 2000 have the same configuration and operation characteristics. For convenience of description, only one transmitting side optical module apparatus 1000 will be described as an example. Let's do it.
  • the optical fiber 3000 refers to a multi-mode optical fiber that can be applied to both transmission and reception of an optical signal, and is not limited thereto, but also a single mode optical fiber capable of transmitting an optical signal. Applicable
  • the optical module device 1000 transmits and receives an optical signal using four wavelength bands.
  • the optical module apparatus 1000 includes two optical transmitters (eg, semiconductor laser diode chips) for transmitting optical signals using two wavelength bands.
  • two optical receiving elements eg, photodiode chips
  • two optical signal input from an optical fiber must be arranged in one apparatus.
  • a transimpedance amplifier TIA
  • a capacitor for removing noise of an electrical signal input to the preamplifier are simultaneously used for the purpose of minimizing the noise of the signal. Often installed.
  • two optical transmitters, two optical receivers, and two preamplifiers must be arranged in a single device, but the manufacturing difficulty and product characteristics according to the arrangement method. Will occur.
  • an optical fiber currently applied for short-range communication it is common to use an optical fiber optimized for an optical signal of 850 nm wavelength band, for example.
  • the dispersion of the optical fiber is too large, which makes it difficult to transmit data.
  • the wavelength band selected for short-range communication should be selected as the wavelength band as close as possible to 850 nm.
  • the short wavelength of 780 nm or less optical loss is too large and optical communication is difficult. The difficult situation must be solved.
  • laser light is emitted with a constant divergence angle around the laser diode optical axis.
  • the divergence angle of the laser light emitted from the laser diode chip, and the radiating over respective (1 / e 2) is 40 ° if the edge emitting type laser diode chipil, in the case of the surface emission type laser, the divergence angle ( 1 / e 2 ) reaches about 16-30 degrees.
  • the transmission / reflectance according to the wavelength band of the light incident on the wavelength selective filter may be confirmed.
  • the wavelength selective filter transmits or reflects the light emitted from the laser diode chip in the bidirectional integrated optical device to be transmitted to the optical fiber as an optical signal, or transmits or reflects the light transmitted downward from the optical fiber to be a photodiode as a light receiving device.
  • the wavelength selective filter transmits or reflects the light emitted from the laser diode chip in the bidirectional integrated optical device to be transmitted to the optical fiber as an optical signal, or transmits or reflects the light transmitted downward from the optical fiber to be a photodiode as a light receiving device.
  • the laser light incident on the wavelength selective filter disposed at 45 ° with respect to the optical axis of the laser diode chip has an angle of 30 °, 45 °, due to the divergent light characteristics of the laser light.
  • the transmission / reflection of the laser light is shown.
  • the transmission wavelength band of the wavelength selective filter is changed by about 150 nm.
  • the transmission wavelength band of the wavelength selective filter changes by about 60 nm when the divergence angle is +/- 5 ° about the optical axis.
  • the transmission / reflection wavelength band of the wavelength selective filter varies depending on the incident angle of the wavelength selective filter, in order to perform optical communication using the four wavelength bands, very precise wavelength distribution of four wavelength bands is required. something to do.
  • transmission loss according to a wavelength band in a general multi-mode optical fiber can be confirmed.
  • the 850 nm wavelength band has a loss rate of 2.2 dB / Km
  • the 780 nm wavelength band has a loss ratio of about 1 dB / Km compared to 850 nm at 3.2 dB / Km in the 780 nm wavelength band.
  • optical communication is mostly using 780nm or 850nm wavelength even for short distance communication.
  • the longer the wavelength of light passing through the optical fiber the worse the optical communication quality due to modal dispersion in the optical fiber. There is a characteristic.
  • the optical fiber transmission since transmission loss in the optical fiber has a great influence on the optical communication quality, in order to perform smooth optical communication using the four wavelength bands, in addition to the divergence angle emitted from the aforementioned laser diode chip, the optical fiber transmission It can be seen that the loss characteristics and dispersion characteristics in the optical fiber according to the wavelength band should be considered.
  • FIG. 6 is a view showing an optical module device according to an embodiment of the present invention.
  • the optical module apparatus 1000 uses the first optical device 100 and the second wavelength band to transmit and receive an optical signal using the first wavelength band.
  • the second optical device 200 for transmitting and receiving the optical signal and the optical signal is transmitted and reflected so that both the first optical device 100 and the second optical device 200 transmit and receive the optical signal through one optical fiber 3000. It has a configuration including a wavelength selective filter 300.
  • the first wavelength band used for transmitting and receiving optical signals in the first optical device 100 includes a first transmission wavelength band ⁇ 1 and a first reception wavelength band ⁇ 2, and the second optical device 200 In the second wavelength band used for transmitting and receiving the optical signal in the ()) includes a second transmission wavelength band ( ⁇ 3) and the second receiving wavelength band ( ⁇ 4).
  • the first wavelength band and the second wavelength band mean different wavelength bands.
  • the first wavelength band and the second wavelength band may use the second wavelength band in the first optical device 100, and the first wavelength band in the second optical device 200. Can also be used.
  • the first transmission wavelength band [lambda] 1, the first reception wavelength band [lambda] 2, and the second transmission wavelength band [lambda] 3 and the second reception wavelength band [lambda] 4 also mean different wavelength bands.
  • the wavelength band is not limited to the dedicated wavelength band for transmitting or receiving the optical signal, but may be changed according to designation.
  • the first optical device 100 transmits an optical signal using the first transmission wavelength band ⁇ 1 based on the first optical axis a for transmitting and receiving the optical signal, and the first reception wavelength band ⁇ 2. Receive an optical signal by using.
  • the first optical axis a refers to a reference line for emitting laser light corresponding to an optical signal in a laser diode chip applied as an optical transmitter in the first optical device 100.
  • the second optical device 200 transmits the optical signal using the second transmission wavelength band ⁇ 3 based on the second optical axis b for transmitting and receiving the optical signal, and the first reception wavelength band ⁇ 3. ) To receive the optical signal.
  • the second optical axis b refers to a reference line for emitting laser light corresponding to an optical signal in a laser diode chip applied as an optical transmitter in the second optical device 200.
  • the wavelength selective filter 300 transmits and reflects an optical signal at an intersection point at which the first optical axis a and the second optical axis b intersect each other, whereby the first optical device 100 and the second optical device 200. All transmit and receive optical signals through one optical fiber 3000.
  • the wavelength selective filter 300 transmits the optical signal of the first wavelength band as it is to transmit and receive the optical signal of the first wavelength band in the first optical device 100, while the optical signal of the second wavelength band By reflecting, the second optical device 200 can transmit and receive the optical signal of the second wavelength band.
  • the wavelength selective filter 300 is based on the perpendicular to each of the first optical axis (a) and the second optical axis (b) at the intersection of the first optical axis (a) and the second optical axis (b). ° An inclined surface having an inclination angle of? Will be reflected.
  • the transmission and reflection of the wavelength selective filter 300 may be performed by alternately depositing a dielectric film having a relatively high and low refractive index into a plurality of layers to transmit or reflect only an optical signal having a desired wavelength band.
  • the wavelength selective filter 300 receives the optical signal of the first transmission wavelength band ⁇ 1. As it is transmitted through the first optical axis (a) to be transmitted to the optical fiber 3000, as opposed to the wavelength selective filter when the optical signal of the first wavelength band ⁇ 2 transmitted from the optical fiber 3000 is incident on the inclined surface
  • the reference numeral 300 transmits the optical signal of the first reception wavelength band ⁇ 2 as it is, so that the optical signal may be transmitted to the first optical device 100 along the first optical axis a.
  • the wavelength selective filter 300 receives the optical signal of the second transmission wavelength band ⁇ 3. 90 ° by tilting the second optical axis b from the inclined plane
  • the wavelength selective filter 300 may receive the second receiving wavelength. 90 ° through the slope of the optical signal in the band ⁇ 4 It can be transmitted to the second optical device 200 along the second optical axis (b).
  • the first optical device 100 and the second optical device 200 only the wavelength band used for transmitting and receiving the optical signal is different from the first wavelength band and the second wavelength band, as mentioned above. Since the other configurations and the operation characteristics according to the configuration are all the same, the following description will be made by using only the first optical device 100 as an example for convenience of description.
  • the first optical device 100 drills through holes 105 in a substrate made of metal and inserts electrode pins 111 into the through holes 105.
  • a stem 110 made of a glass-sealed form, a metal cap 140 having elements disposed therein, sealed with a lens 150 or flat glass, and equipped with an optical opening through which laser light can pass.
  • an optical transmitter 130 for transmitting an optical signal of the first transmission wavelength band lambda 1 and an optical receiver for receiving an optical signal of the first reception wavelength band lambda 2 transmitted from the optical fiber.
  • the receiving element 170, the preamplifier 180 for amplifying the optical signal received by the optical receiving element 170, and the optical signal of the first transmission wavelength band [lambda] 1 are reflected and the first receiving wavelength band [lambda] 2.
  • the optical signal of the wavelength selective filter 160 to be transmitted is mounted.
  • both an edge emiiting type laser diode chip and a surface emitting type laser diode chip (VCSEL) can be used, but considering characteristics suitable for near field communication Surface-emission laser diode chips that consume less electricity and have a narrower divergence angle of laser light are more appropriate.
  • VCSEL surface emitting type laser diode chip
  • the preamplifier 180 is the most heat generating element, it should be configured to be attached to the bottom surface of the stem 110 to facilitate heat release to the outside.
  • configuring the layout such that the preamplifier 180 is attached to the bottom surface of the stem 110 may easily discharge heat from the preamplifier 180 to the outside to minimize the temperature rise inside the optical device, thereby increasing the temperature. This is to prevent deterioration of characteristics of the internal device.
  • reference numeral '131' which is not mentioned, is a submount on which the optical transmitter 130 is mounted
  • '171' is a submount on which the optical receiver 170 is mounted
  • '120' is a wavelength selective filter ( 160) and the submount to be mounted.
  • the optical signal of the first transmission wavelength band ⁇ 1 emitted from the optical transmitting element 130 in the first optical element 100 having the configuration is output in parallel with the bottom surface of the stem 110 along the optical axis. This is reflected by the wavelength selective filter 160, and is transmitted to the optical fiber through the lens 150 on the wavelength selective filter 160.
  • the optical signal of the first receiving wavelength band ⁇ 2 transmitted from the optical fiber is converted into convergent light through the lens 150 and arrives.
  • the wavelength selective filter 160 transmits the first receiving wavelength band ⁇ 2.
  • the characteristic is set, so that the optical signal of the first receiving wavelength band ⁇ 2 is transmitted to the optical receiving element 170 through the wavelength selective filter 160.
  • the optical signal received by the optical receiving device 170 is amplified by the preamplifier 180 and transmitted to the outside as an electrical signal through the electrode pin 111.
  • the wavelength selective filter 160 should be disposed to have an inclination angle of 45 ° with respect to the vertical plane of each of the optical axis of the optical transmitter 130 and the optical axis of the optical receiver 171.
  • the wavelength selective filter 160 may be modified in various ways, but in one embodiment of the present invention, the wavelength selective filter 160 is attached to the inclined surface of the wedge submount using the wedge-shaped submount 120. How to do it.
  • the wedge-shaped submount 120 should be made of a material having a thermal conductivity of 100 W / m / K, for example, in order to effectively dissipate heat generated from a laser diode chip.
  • the wedge submount 120 has a very high thermal conductivity of 170 W / m / K. It should be made based on silicon having good processability.
  • the wedge-shaped submount 120 as an example of a method for securing a 45 ° inclination angle of the wavelength selective filter 160, as shown in FIG. 8, the inclination of the submount in which the inclination groove of the 45 ° angle is formed is shown. It is also possible to insert the wavelength selective filter 160 into the groove.
  • the optical transmission device 130 applied to the first optical device 100 typically has a divergence angle (1 / e 2 ) of 16 to 30 °, with respect to the divergence angle of the wavelength selective filter 160
  • a wavelength band shift of about 150 nm is made as described with reference to FIG. 2.
  • the first transmission wavelength band [lambda] 1 and the first reception wavelength band [lambda] 2 must have a wavelength band difference of 150 nm or more from each other, and similarly, the second transmission wavelength band [lambda] 3 and The two reception wavelength bands ⁇ 4 should also have a difference in wavelength band of 150 nm or more.
  • the light emitted from the optical transmitting element 130 at the divergence angle 1 / e 2 of 16 to 30 ° is converged by the lens 150.
  • the convergence angle varies depending on the magnification of the lens 150, but it is generally preferable to have the same convergence angle as the divergence angle of the laser light emitted from the optical fiber 3000, and thus, light converged by the lens 150.
  • the convergence angle 1 / e 2 of may have a value of +/ ⁇ 5 °, for example.
  • the wavelength band of 40 nm or more must be different between the first wavelength bands ⁇ 1 and ⁇ 2 and the second wavelength bands ⁇ 3 and ⁇ 4.
  • the wavelength band difference between each of the first transmission wavelength band lambda 1, the first reception wavelength band lambda 2, and the second transmission wavelength band lambda 3 and the second reception wavelength band lambda 4 is 150 nm or more. Since the wavelength bands ⁇ 1 and ⁇ 2 and the second wavelength bands ⁇ 3 and ⁇ 4 have a wavelength band difference of 40 nm or more, both the first wavelength bands ⁇ 1 and ⁇ 2 and the second wavelength bands ⁇ 3 and ⁇ 4 are to be disposed.
  • the minimum wavelength bandwidth that can be is 340nm.
  • the shortest wavelength band becomes 780 nm, and conversely, the longest wavelength band May have a wavelength band of 1120 nm.
  • the oscillation wavelength band of the laser diode chip applied as the optical transmission element in the first optical device 100 and the second optical device 200 depends on the material composition of the active region which is the light formation region of the laser diode chip. This material composition can be determined by the substrate used in the laser diode chip.
  • 780nm, 850nm, and 980nm are implemented as a laser diode chip based on a GaAs substrate, and the longest oscillation wavelength band commercialized so far is about 1060nm in the GaAs series laser diode chip based on the GaAs substrate. .
  • an InP substrate is made of a base material.
  • the shortest wavelength band of the laser diode chips based on an InP substrate is about 1250 nm.
  • the composition ratio of the active layer is responsible for the laser oscillation in the wavelength range of 1250nm ⁇ 1620nm.
  • the distribution of the wavelength bands includes the first transmission wavelength band lambda 1, the first reception wavelength band lambda 2, the second transmission wavelength band lambda 3, and the second reception wavelength band (described above with reference to FIGS. 2 to 4).
  • the wavelength band difference of each wavelength is 150 nm or more, and the wavelength band difference between the first wavelength bands ⁇ 1 and ⁇ 2 and the second wavelength bands ⁇ 3 and ⁇ 4 is 60 nm or more, and the wavelength band is not shorter than 780 nm.
  • the four wavelength bands satisfy all the conditions as close as possible.
  • one of the laser diode chips may have a wavelength band close to 850 nm as much as 1250 nm, while the other laser diode chip is 1410 nm or more and a wavelength band far from 850 nm. Since it is possible to deteriorate the optical transmission quality due to the dispersion of the optical fiber is inevitable.
  • the width of the oscillation wavelength band of the laser diode chip is 780nm to 1060nm, which is only 280nm. I can't get crazy.
  • Photodiode chips which are four optical receiving elements using different wavelength bands for receiving optical signals, can be applied.
  • the four optical transmitters three kinds of laser diode chips using GaAs as a substrate and one type of laser diode chips using InP as substrates can be implemented to satisfy all of the above-described conditions related to the wavelength band.
  • Oscillating wavelength bands of laser diode chips which are widely used in the world, are 780 nm, 850 nm, 980 nm, 1060 nm, 1310 nm, and 1550 nm.
  • the most suitable wavelength band distribution is, for example, a first transmission wavelength band ( ⁇ 1): 780 nm, a first reception wavelength band ( ⁇ 2): 980 nm, and a second transmission wavelength band ( ⁇ 3). ): 1060 nm, second receiving wavelength band ( ⁇ 4): 1310 nm, or first transmitting wavelength band ( ⁇ 1): 780 nm, first receiving wavelength band ( ⁇ 2): 930 nm, second transmitting wavelength band ( ⁇ 3): 990 nm It is also possible to make slight changes in the wavelength band, such as the second received wavelength band? 4: 1250nm.
  • the first transmission wavelength band lambda 1 at 750 nm, and when the second transmission wavelength band lambda 3 is set to 1060 nm, the first transmission wavelength band lambda 1 and the second transmission.
  • the wavelength band difference between the wavelength band lambda 3 corresponds to 310 nm.
  • the wavelength band difference 150 nm or a slight loss required for the wavelength selective filter disposed inside the first optical device 100 and the second optical device 200 is considered, 130 nm or more must be ensured.
  • the wavelength band difference between the first optical device 100 and the second optical device 200 that is, the wavelength band difference between the first reception wavelength band ⁇ 2 and the second transmission wavelength band ⁇ 3, must be guaranteed to be 40 nm or more. .
  • the wavelength band difference between 130 nm and 270 nm or less must be different, and the wavelength band in the first optical device 100 and the second optical device 200 is different.
  • the difference should be set to 40 nm to 180 nm or less, and in the case of the second wavelength band used in the second optical device 200, the wavelength band on the longer wavelength side is preferably as short as 1200 nm to 1400 nm.
  • the photoreactivity of the first optical device 100 and the second optical device 200 according to the wavelength band of the photodiode having GaAs applied as the photoreceiving device as the substrate may be confirmed.
  • the photodiode chip based on GaAs responds appropriately to 780 nm to 870 nm, and the photoreactivity is very poor at 740 nm or less and 880 nm or more.
  • the photodiode chip having InP as a substrate has good photoreactivity at 950 nm to 1600 nm, and rapidly falls at 950 nm or less.
  • the wavelength band in the 900 nm to 950 nm band is difficult to manufacture a suitable photodiode chip, so it is not preferable to use it in the optical communication using the four wavelength band.
  • wavelength band it is most desirable to set wavelength bands of 780nm, 980nm, 1060nm, and 1310nm, which are commercially available laser diode chips, and each laser diode chip typically has a wavelength error of about +/- 20nm.
  • the first transmission wavelength band ⁇ 1 is 780nm +/- 20nm
  • the first reception wavelength band ⁇ 2 is 980nm +/- 20nm
  • the second transmission wavelength band ⁇ 3 is 1060nm +/- 20nm
  • the second reception wavelength band ⁇ 4 Is expected to have the most preferable wavelength of 1310nm + / -20nm.
  • FIG. 11 illustrates a case in which two optical modules 1000 and 2000 for bidirectional communication described above are combined into one transceiver and used as one product. Since there is no signal interference between signals using different optical fibers, the two bidirectional communication optical modules in one transceiver become completely independent optical modules. Therefore, four optical signals are transmitted using two optical fibers and four The optical signal can be simultaneously received. Since this configuration is exactly the same as the function implemented in the conventional QSFP optical transceiver, it is possible to replace the conventional QSFP, and furthermore, the two-core duplexer type optical fiber that already has 12 core optical fiber required in the conventional QSFP optical transceiver. The economic benefits are substantial by allowing them to be replaced by
  • an optical transceiver for bidirectional communication simultaneously embeds two optical module devices 1000 and 2000 for bidirectional communication, and each optical module device 1000 and 200 for bidirectional communication is provided. Since the optical communication using the four wavelength bands is made by tying the first optical device 100 and the second optical device 200 into one, the communication capacity can be increased.
  • the layout may be configured such that the optical axes of the bidirectional integrated optical devices are orthogonal to each other, thereby increasing the volume thereof. It is easy to be compatible with existing devices that are being minimized and commercialized.
  • the pre-amplifier 180 which generates a lot of heat, is attached to the bottom surface of the stem 110 to facilitate heat dissipation to the outside.
  • the layout it is possible to minimize the temperature rise inside the optical device and to prevent deterioration of characteristics of the internal device due to the temperature rise.
  • the preamplifier since the preamplifier is not disposed at a position adjacent to the photodiode chip, the preamplifier may be removed from the optical device in the present invention.
  • the photodiode must be placed on the bottom of the optical device. It is unnecessary to attach the laser diode to one side of the upper part of the photodiode.
  • FIG. 12 shows the first optical device when the laser diode chip 190 emitting the first wavelength and the laser diode chip 191 emitting the second wavelength are arranged in the first optical device.
  • the photodiode chip receiving the third wavelength and the photodiode chip receiving the fourth wavelength are disposed in the second optical element.
  • FIG. 13 illustrates an optical module device in which two laser diode chips are disposed on a first optical element and two optical diode chips are disposed on a second optical element to bundle the optical elements vertically.
  • the optical module manufactured in the form of FIG. 13 two wavelengths are transmitted and two wavelengths are received, thereby performing the function of the optical module shown in FIG. 6. 13 differs from the characteristics of the optical module of FIG. 6 in that laser diode chips 190 and 191 or photodiode chips 195 and 196 are disposed in each optical device.
  • FIG. 13 illustrates an optical module device in which two laser diode chips are disposed on a first optical element and two optical diode chips are disposed on a second optical element to bundle the optical elements vertically.
  • two wavelengths are transmitted and two wavelengths are received, thereby performing the function of the optical module shown in FIG. 6. 13 differs from the characteristics of the optical module of FIG. 6 in that laser diode chips 190 and 191 or photodiode chips 195 and 196 are
  • the laser diode chip and the photodiode chip receiving the laser light emitted from the laser diode chip are simultaneously embedded in one optical device, the laser light emitted from the laser diode chip simultaneously embedded in the optical device is transferred to the optical device. At the same time, leakage into the built-in photodiode chip can cause noise in the photodiode chip. Therefore, as shown in FIG. 13, when two laser diode chips are disposed in one optical element, or when two photo diode chips are disposed in one optical element, the laser diode chip and the photo diode chip may be simultaneously placed in one optical element. The noise is reduced compared to the placement.
  • an optical module for four-wavelength optical communication by tying two optical devices having two laser diode chips in one optical device and two optical devices having two photo diodes in another optical device is described with reference to FIG. 13. It was. However, on the other hand, two laser diode chips are attached to one optical element of the optical module and two laser diode chips of different wavelengths are attached to the other optical element, so that four laser diode chips are provided in one optical module.
  • a method of manufacturing a QSFP may be possible by attaching photodiodes corresponding to four wavelengths to another optical module. An example of an optical module manufactured in such a form is illustrated in FIG. 14.
  • all four laser diode chips 190, 191, 192, and 193 are disposed in one optical module, and four photodiodes are disposed in another optical module.
  • all of the electric lines for transmitting the electrical signal for the laser diode can be driven to one side, whereby the QSFP can be easily manufactured.
  • Figure 15 shows the appearance of a conventional QSFP-type transceiver case.
  • a space corresponding to 16.45 mm in width is a space in which a laser diode chip driver IC or the like is disposed, and spaces in which an optical module is disposed are 10.9 mm and 13.65 mm in FIG. 15.
  • the width of the optical module is at least 8.5 mm. Therefore, two optical modules of this specification cannot be arranged in parallel in the internal space of the QSFP.
  • This difficulty is to place the optical modules in different positions in the longitudinal direction of the QSFP transceiver without placing the optical modules in parallel as shown in Figure 16, at least one optical module to the receptacle (3300) and the optical fiber (3100) for optical coupling with the external optical fiber This can be solved by having a form of connection.
  • optical module for optical communication using the four wavelengths of FIGS. 13 and 14 may be implemented in other manners.
  • FIG. 17 shows the appearance of a dual fiber collimator 4000 applied to another embodiment of the present invention.
  • reference numerals 3400 and 3450 denote optical fibers.
  • the optical signal transmitted from the outside through the optical fiber 3400 is converted into parallel light through a refractive index lens (Grin lens) 3600 and is incident to the wavelength selective filter 3700.
  • Grin lens refractive index lens
  • the component 3900 that passes through the wavelength selective filter 3700 escapes the dual optical fiber collimation device 4000 and is used for light reception.
  • the laser light 3950 of the component reflected by the wavelength selective filter 3700 enters another optical fiber 3450 and proceeds through the optical fiber 3450.
  • the dual optical fiber collimation apparatus 4000 having such a function is equally applied to the light traveling in the opposite direction.
  • FIG. 18 shows an optical module for optical communication at four wavelengths using the dual fiber collimating device 4000 and two bidirectional communication optical devices 100 and 200.
  • the optical wavelength utilized in the optical device 100 is disposed on an optical path passing through the optical wavelength selective filter of the dual optical fiber collimation device 4000, and the optical wavelength utilized in the optical device 200 is used in the wavelength selective filter. Disposed in optical coupling with the optical fiber on the reflected optical path.
  • the dual optical fiber collimation apparatus 4000 of FIG. 18 and two optical devices 100 and 200, each of which corresponds to an optical signal having two wavelengths, are capable of processing four optical wavelengths with a very small size. Will have
  • FIG. 19 illustrates an optical module capable of responding to four optical wavelengths by combining a dual optical fiber collimation apparatus 4000 and two optical elements each corresponding to two optical signals, and manufacturing two optical modules manufactured in this manner.
  • An example of a QSFP transceiver which is mounted on one transceiver, transmits an optical signal of four wavelengths and receives an optical signal of four wavelengths.
  • a laser diode chip and a photo diode chip that transmit four wavelengths and receive four wavelengths may be arranged in various ways. That is, a method of disposing two laser diode chips in one optical device, two photo diode chips in one optical device, or one laser diode chip and one photo diode chip in one optical device. This is possible.
  • the wavelength selective filter transmits or reflects light depending on the wavelength of the laser light irrespective of the laser light propagation direction. Therefore, as long as the semiconductor chip embedded in one optical element is a wavelength separated by the wavelength selective filter, Combinations can also be used.
  • a method of combining two optical elements into one optical module a method of combining four laser diode chips into one optical module, a method of combining four photo diodes into one optical module, and two lasers It is possible to combine a diode chip and two photodiode chips into one optical module.
  • a method of separating the laser diode chip and the photodiode chip into an optical device and configuring the optical device in one optical device and the laser diode chip and one Various arrangements are possible, such as a method of embedding a photodiode chip simultaneously.
  • the refractive index variable lens 3600 and the wavelength selective filter 3700 may be replaced with a concave lens coated with the wavelength selective filter. It is possible.
  • the light reflected by the wavelength selective filter coated on the lens having the concave lens structure among the laser light emitted from one optical fiber 3400 is focused to another optical fiber 3450 by the concave lens shape.
  • the dual optical fiber collimation lens 4000 performs a function.
  • two bidirectional integrated optical devices for transmitting and receiving optical signals using two wavelength bands are integrated to transmit and receive optical signals of four wavelength bands simultaneously through one optical fiber.
  • Limiting the existing technology by implementing two as one transceiver it functions as a QSFP that transmits four optical signals and receives four optical signals through only two core optical fibers, not the 12 core optical fibers required in the conventional QSFP.
  • the invention is an industrially available invention because it is not only sufficient for the use of the related technology but also the possibility of marketing or operating the applied device as well as being practically obvious.
  • 3300 receptacle for optical coupling with external optical fiber

Abstract

An optical module device is disclosed. That is, an optical module device is formed in which two bidirectional integrated optical elements for transmitting and receiving optical signals by using two wavelength bands are integrated into one module, thereby forming a bidirectional communication optical module for simultaneously transmitting and receiving optical signals of four wavelength bands through one optical fiber, and thus provided is a bidirectional communication optical transceiver which simultaneously transmits four optical signals and simultaneously receives four optical signals through two optical fibers by integrating two bidirectional communication optical modules into one transceiver.

Description

양방향 통신용 광트랜시버Optical transceiver for bidirectional communication
본 발명은 광통신 모듈에 관한 것으로, 특히 4개의 파장 대역을 통하여 송수신을 수행하되 2개의 광섬유를 이용하여 송신 4 파장 및 수신 4 파장을 사용하여 양방향 통신을 수행할 수 있도록 하는 양방향 통신용 광트랜시버에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical communication module, and more particularly, to an optical transceiver for bidirectional communication, which performs transmission and reception through four wavelength bands, and performs two-way communication using four transmission wavelengths and four reception wavelengths using two optical fibers. will be.
근래 들어 대용량의 정보 전송 및 고속의 정보 통신을 위하여 빛을 정보 전송의 매개로 하는 광 통신이 일반화되어, 광송신소자를 이용하여 손쉽게 전기 신호를 레이저 빛으로 변환할 수 있으며, 반대로 광수신소자를 이용하여 광섬유를 통해 전송되어오는 광신호를 전기신호로 손쉽게 변환할 수 있다.In recent years, optical communication using light as a medium for information transmission has become common for high-capacity information transmission and high-speed information communication. Therefore, an optical signal can be easily converted into laser light using an optical transmission device, and conversely, optical reception device is used. Therefore, the optical signal transmitted through the optical fiber can be easily converted into an electrical signal.
빛은 서로 간의 간섭성이 매우 떨어지며 이러한 빛의 특성을 이용하여 하나의 광섬유를 통하여 신호를 전송하고 수신하는 양방향 통신 방식의 광 통신이 선호되고 있다. Light has very low coherence with each other, and optical communication of two-way communication method that transmits and receives a signal through one optical fiber by using the characteristics of light is preferred.
이처럼, 양방향 통신 방식의 광 통신이 이루어지기 위해서는, 광섬유를 통하여 하향 전송되어 오는 광신호를 수신하여 전기 신호로 바꾸어주는 광수신소자와 전기신호를 광신호로 바꾸어 광섬유를 통하여 전송하는 광송신소자를 일체화하여 하나의 광섬유와 광 결합이 일어나도록 제작된 양방향 일체형 광소자가 요구된다.As described above, in order to achieve the bidirectional optical communication, an optical receiving element that receives an optical signal transmitted downward through an optical fiber and converts it into an electrical signal and an optical transmission element that converts the electric signal into an optical signal and transmits the optical signal through the optical fiber are integrated. Therefore, there is a need for a bidirectional integrated optical device manufactured such that optical coupling with one optical fiber occurs.
이러한, 양방향 일체형 광소자의 경우, 2개 파장대역의 광신호를 이용하여 양방향 통신을 수행하는 것이 일반적인데, 이처럼 2개 파장대역의 광신호만을 이용하여 양방향 통신을 수행하기에는 통신 용량의 제한이 따르게 된다.In the case of such a bidirectional integrated optical device, it is common to perform bidirectional communication using optical signals of two wavelength bands. Thus, bidirectional communication using only optical signals of two wavelength bands is limited in communication capacity. .
이에, 현재 점증하고 있는 데이터 통신량을 수용하기 위해서는 하나의 광섬유로 전송되는 광신호의 파장대역을 다중화하는 파장대역 다중화가 필요하며, 이에 따라 기존의 2개 파장대역만을 이용하고 있는 양방향 일체형 광소자를 4개 파장대역 이상을 이용할 수 있도록 하기 위한 새로운 방안이 요구된다. Accordingly, in order to accommodate the increasing data traffic volume, wavelength band multiplexing is required to multiplex the wavelength band of an optical signal transmitted through one optical fiber. Thus, a bidirectional integrated optical device using only two existing wavelength bands is required. There is a need for new ways to use more than four wavelength bands.
특히 현재 대규모의 정보가 광섬유를 통하여 송수신되는 데이터 센터의 경우, duplexer 라는 구조의 광모듈이 사용되고 있다. 이러한 duplexer 광모듈은 2개의 광섬유를 이용하여 양방향 통신을 하는 것으로 2개의 광섬유 중 어느 하나에 송신용 광소자가 광결합되고, 다른 하나의 광섬유에 수신용 광소자가 광결합되어 하나의 광모듈로 송,수신의 양방향 통신을 하게 된다. 그러나 폭증하는 데이터 정보량은 이러한 통신을 더욱 대용량화할 필요가 있는데, 이를 위해서 QSFP(Quadplexer Small Form factor Pluggable)라는 방식의 광통신 모듈이 사용되기 시작하였다. 이 QSFP(Quadplexer Small Form factor Pluggable)라는 규격의 광통신용 광모듈은 하나의 광통신용 모듈에 4개의 발광소자와 4개의 수광소자를 구비하고 이들 각각의 광소자를 각각의 광섬유와 결합시키는 방법을 사용한다. 통상적으로 4개의 발광소자는 어레이(array) 형태로 제작이 용이하여 4개의 발광소자 사이의 거리는 매우 조밀하게 설정될 수 있고, 4개의 수광소자 또한 어레이(array) 형태의 하나의 칩으로 제작이 가능하여 수광소자 사이의 거리가 매우 조밀하게 설정될 수 있다. 그러나 발광소자와 수광소자는 서로 상이한 구조를 가지기 때문에 하나의 칩으로 제작이 불가능하므로 이 두 종류의 소자 사이에는 적절한 거리가 필요하게 된다. 그러므로 통상적으로 QSFP를 연결하는 광섬유는 12심의 광섬유를 사용하되 발광소자용의 광섬유와 수광소자용의 광섬유 사이에 4개의 사용하지 않는 광섬유가 더 부착된 형태로 12심 광섬유가 제작된다. In particular, in the data center where a large amount of information is transmitted and received through optical fibers, an optical module of a duplexer structure is used. The duplexer optical module performs two-way communication by using two optical fibers, and an optical element for transmission is optically coupled to one of the two optical fibers, and an optical element for reception is optically coupled to one of the two optical fibers and transmitted to one optical module. Receive bidirectional communication. However, the explosive amount of data information needs to make the communication more large. For this purpose, an optical communication module of a quadplexer small form factor pluggable (QSFP) method has been used. The optical communication optical module of QSFP (Quadplexer Small Form factor Pluggable) has four light emitting elements and four light receiving elements in one optical communication module, and uses a method of combining each optical element with each optical fiber. . In general, four light emitting devices can be manufactured in an array form so that the distance between the four light emitting devices can be set very densely, and four light receiving devices can also be manufactured in a single chip in an array form. Thus, the distance between the light receiving elements can be set very densely. However, since the light emitting device and the light receiving device have different structures from each other, it is impossible to manufacture a single chip, so an appropriate distance is required between the two types of devices. Therefore, the optical fiber connecting the QSFP typically uses a 12-core optical fiber, but a 12-core optical fiber is manufactured in a form in which four unused optical fibers are further attached between the optical fiber for the light emitting device and the optical fiber for the light receiving device.
이와 같은 형태로 제작되는 광섬유에서 광신호가 전달되는 과정을 도 1에 나타내었다. 하지만, 이와 같이 기존의 QSFP는 송신용 레이저 다이오드 칩 4개와 수신용 포토 다이오드 칩 4개를 사용하며 각각의 광섬유를 이용하여 신호를 주거나 또는 받는 형태로 광통신을 하기 때문에 광섬유의 낭비가 심한 문제점이 있다.1 shows a process of transmitting an optical signal in an optical fiber manufactured in such a form. However, the conventional QSFP uses four transmitting laser diode chips and four receiving photodiode chips, and there is a serious problem of wasting optical fibers because optical communication is performed by using each optical fiber to transmit or receive signals. .
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
(특허문헌 1) 특허등록 제10-1041570호 (2011.06.08)(Patent Document 1) Patent Registration No. 10-1041570 (2011.06.08)
본 발명은 상기한 사정을 감안하여 창출된 것으로서, 본 발명에서 해결하고자 하는 목적은, 4개 파장대역을 이용하여 광신호를 송수신하는 양방향 일체형 광모듈 장치 2개를 하나의 양방향 트랜시버로 일체화한 양방향 통신용 트랜시버를 구성하고, 양방향 일체형 광모듈 장치에 각각 하나의 광섬유를 연결시킴으로써 방향 통신용 트랜시버는 2개의 광섬유를 통하여 동시에 4개 파장대역의 광신호를 송신하고 수신할 수 있도록 하는 양방향 통신용 광트랜시버를 제공하는 데 있다.The present invention was created in view of the above circumstances, and an object of the present invention is to provide a bidirectional integrated bidirectional integrated optical module device that transmits and receives an optical signal using four wavelength bands in one bidirectional transceiver. By constructing a communication transceiver and connecting one optical fiber to a bidirectional integrated optical module device, the directional communication transceiver provides an optical transceiver for bidirectional communication that enables transmission and reception of optical signals in four wavelength bands simultaneously through two optical fibers. There is.
상기 목적을 달성하기 위한 본 발명의 제 1 관점에 따른 광모듈장치는, 제 1 광축을 기초로 광신호를 송신하거나 수신 또는 동시에 송수신하는 제 1 광소자; 상기 제 1 광축과 직교하도록 형성된 제 2 광축을 기초로 광신호를 송신하거나 수신 또는 동시에 송수신하는 제 2 광소자; 및 상기 제 1 광축과 상기 제 2 광축이 교차하는 교차점에서 광신호의 송수신 경로를 결정하여 상기 제 1 광소자 및 상기 제 2 광소자 모두가 하나의 광섬유를 통해서 광신호를 송수신하도록 하는 파장선택성필터를 포함하는 것을 특징으로 한다.An optical module device according to a first aspect of the present invention for achieving the above object comprises: a first optical element for transmitting, receiving or simultaneously transmitting and receiving an optical signal based on a first optical axis; A second optical element configured to transmit, receive, or simultaneously transmit and receive an optical signal based on a second optical axis formed to be orthogonal to the first optical axis; And a wavelength selective filter for determining an optical signal transmission / reception path at an intersection point at which the first optical axis and the second optical axis intersect so that both the first optical element and the second optical element transmit and receive an optical signal through one optical fiber. Characterized in that it comprises a.
보다 구체적으로, 상기 광신호의 송수신 경로는, 상기 파장선택성필터에서 이루어지는 상기 광신호에 대한 투과 및 반사에 의해 결정되는 것을 특징으로 한다.More specifically, the transmission and reception path of the optical signal is characterized by being determined by the transmission and reflection of the optical signal made by the wavelength selective filter.
보다 구체적으로, 상기 하나의 광섬유를 통해서 송수신되는 광신호에는, 제1파장대역, 및 상기 제1파장대역과 기 설정된 파장대역만큼의 차이를 갖는 제2파장대역이 포함되며, 상기 파장선택성필터는, 상기 제 1 광소자 및 상기 제 2 광소자 중 어느 하나에서 송수신되는 광신호는 투과하고 나머지에서 송수신되는 광신호는 반사하여, 상기 제 1 광소자에서 상기 제1파장대역의 광신호를 송수신하도록 하며, 상기 제 2 광소자에서는 상기 제2파장대역의 광신호를 송수신하도록 하는 것을 특징으로 하는 파장선택성필터를 포함하는 것을 특징으로 한다.More specifically, the optical signal transmitted and received through the one optical fiber includes a first wavelength band, and the second wavelength band having a difference by the predetermined wavelength band from the first wavelength band, the wavelength selective filter The optical signal transmitted and received by any one of the first optical device and the second optical device is transmitted, and the optical signal transmitted and received by the other is reflected to transmit and receive the optical signal of the first wavelength band in the first optical device. The second optical device may include a wavelength selective filter to transmit and receive an optical signal of the second wavelength band.
보다 구체적으로, 상기 제1파장대역 및 상기 제2파장대역의 광신호 각각에는, 송신파장대역 및 상기 송신파장대역과 기 설정된 파장대역만큼의 차이를 갖는 수신파장대역이 포함되며, 상기 제 1 광소자 및 상기 제 2 광소자 각각은, 상기 송신파장대역의 광신호를 송신하며, 상기 수신파장대역의 광신호를 수신하는 것을 특징으로 한다.More specifically, each of the optical signals of the first wavelength band and the second wavelength band includes a reception wavelength band having a difference between the transmission wavelength band and the transmission wavelength band by a predetermined wavelength band, and the first optical band. Each of the device and the second optical device transmits an optical signal of the transmission wavelength band and receives an optical signal of the reception wavelength band.
보다 구체적으로, 상기 파장선택성필터에는, 상기 제 1 광축과 상기 제 2 광축이 교차하는 교차점에서 상기 제 1 광축 및 상기 제 2 광축 각각에 대한 수직면을 기준으로 기 설정된 경사각을 갖는 경사면이 포함되며, 상기 경사면에서는, 상기 제1파장대역의 광신호 및 상기 제2파장대역의 광신호 중 어느 하나의 광신호가 반사되며, 반사되지 않은 나머지 광신호는 상기 제 1 광축 또는 상기 제 2 광축을 따라서 투과되는 것을 특징으로 한다.More specifically, the wavelength selective filter includes an inclined surface having a predetermined inclination angle based on a vertical plane with respect to each of the first optical axis and the second optical axis at an intersection where the first optical axis and the second optical axis intersect each other. On the inclined surface, any one of the optical signal of the first wavelength band and the optical signal of the second wavelength band is reflected, and the remaining non-reflected optical signal is transmitted along the first optical axis or the second optical axis. It is characterized by.
본 발명의 제 2 관점에서는 상기한 양방향 일체형 광모듈 장치 2개를 하나의 트랜시버 장치에 동시에 내장함으로써 하나의 양방향 통신용 트랜시버 장치에 두개의 양방향 통신용 광모듈장치를 구비하고 각각의 양방향 통신용 광모듈 장치에 하나의 광섬유를 결합함으로써 양방향 통신용 광트랜시버 전체로써 2개의 광섬유를 통하여 4개의 각기 다른 광 신호를 송신하고, 4개의 각기 다른 광 신호를 동시에 수신하는 기능을 수행한다.In the second aspect of the present invention, by simultaneously embedding the two bidirectional integrated optical module devices in one transceiver device, two bidirectional communication optical module devices are provided in one bidirectional communication transceiver device, and each optical module device for bidirectional communication is provided. By combining one optical fiber, the optical transceiver for bidirectional communication transmits four different optical signals through two optical fibers and simultaneously receives four different optical signals.
본 발명에 의하면, 4개 파장대역을 이용하여 광신호를 송수신하는 양방향 일체형 광모듈 2개를 하나의 양방향 통신용 트랜시버로서 일체화함으로써, 두개의 광섬유를 통해서 동시에 4개 파장대역의 광신호를 효율적으로 송신하고 동시에 4개 파장 대역의 광신호를 수신할 수 있다. 이러한 기능은 종래의 QSFP 광 모듈이 4개의 송신용 광섬유에 각각 발광소자를 광결합시키고, 4 개의 수신용 광섬유에 수신용 수광소자를 결합시키는 특성을 단지 2개의 광섬유를 이용하여 4개의 발광소자에서 발광된 신호를 송신하고 또한 4개의 수광소자를 이용하여 광신호를 수신하게 함으로써 광섬유를 절약하게 하여 준다. 이러한 광섬유의 절약은 기존에 이미 설치된 duplexer 형태의 광섬유를 그대로 사용할 수 있게 하여주므로 통신 용량을 증대시키기 위해 광섬유를 교체하는 비용을 절감시켜 매우 경제성이 높은 방식이다.According to the present invention, by integrating two bidirectional integrated optical modules that transmit and receive optical signals using four wavelength bands as one bidirectional transceiver, an optical signal of four wavelength bands can be efficiently transmitted through two optical fibers simultaneously. And simultaneously receive optical signals in four wavelength bands. This function is characterized in that the conventional QSFP optical module optically couples the light emitting elements to the four transmitting optical fibers and couples the receiving light receiving elements to the four receiving optical fibers in the four light emitting elements using only two optical fibers. The optical fiber is saved by transmitting the emitted signal and receiving the optical signal using four light receiving elements. This saving of fiber enables the use of the existing duplexer type fiber as it is, so it is very economical way to reduce the cost of replacing the fiber to increase the communication capacity.
도 1은 종래의 QSFP 광통신 방식에서 12심의 광섬유를 통하여 4개의 송신신호와 4개의 수신신호를 전달하는 모습을 설명하기 위한 도면,1 is a view illustrating a state in which four transmission signals and four reception signals are transmitted through a 12-core optical fiber in a conventional QSFP optical communication method;
도 2 는 본 발명의 일 실시예에 따른 단위 양방향 통신용 광모듈에 기초하여 구성되는 광 통신 시스템의 개략적인 구성도,2 is a schematic block diagram of an optical communication system configured based on an optical module for bidirectional communication according to an embodiment of the present invention;
도 3 및 도 4는 본 발명의 일 실시예에 따른 파장선택성필터로 입사하는 빛의 파장대역에 따른 투과/반사율을 설명하기 위한 도면,3 and 4 are views for explaining the transmission / reflectance according to the wavelength band of the light incident on the wavelength selective filter according to an embodiment of the present invention,
도 5는 본 발명의 일 실시예에 따른 광섬유에서 파장대역에 따른 전송 손실을 설명하기 위한 도면,5 is a view for explaining a transmission loss according to a wavelength band in an optical fiber according to an embodiment of the present invention;
도 6은 본 발명의 일 실시예에 따른 광모듈장치의 개략적인 구성도,6 is a schematic structural diagram of an optical module device according to an embodiment of the present invention;
도 7은 본 발명의 일 실시예에 따른 제 1 광소자의 개략적인 구성도,7 is a schematic structural diagram of a first optical device according to an embodiment of the present invention;
도 8은 본 발명의 일 실시예에 따른 파장선택성필터를 장착하기 위한 서브마운트의 구조를 설명하기 위한 도면,8 is a view for explaining the structure of a submount for mounting a wavelength selective filter according to an embodiment of the present invention;
도 9 및 도 10는 본 발명의 일 실시예에 따른 광수신소자(포토 다이오드 칩)에서의 파장대역에 따른 광반응도를 설명하기 위한 도면,9 and 10 are views for explaining the optical response according to the wavelength band in the optical receiving device (photodiode chip) according to an embodiment of the present invention,
도 11은 양방향 통신용 광모듈 2개를 하나의 트랜시버로 일체화해 각각의 광섬유를 통해서 2개의 파장을 송신하고, 2개의 파장을 수신하게 함으로써, 트랜시버 전체로는 4개의 광신호를 2개의 광섬유로 송신하고, 동시에 4개의 광신호를 2개의 광섬유로 수신하는 기능을 설명하기 위한 도면,FIG. 11 shows that two optical modules for bidirectional communication are integrated into one transceiver to transmit two wavelengths through each optical fiber and receive two wavelengths, thereby transmitting four optical signals to two optical fibers. And a view for explaining a function of receiving four optical signals simultaneously with two optical fibers,
도 12는 본 발명의 다른 실시예에 따른 하나의 광소자에 제 1의 파장을 발산하는 레이저 다이오드 칩과 제 2의 파장을 발산하는 레이저 다이오드 칩을 내장하는 구조의 광소자, 12 is an optical device having a structure in which a laser diode chip emitting a first wavelength and a laser diode chip emitting a second wavelength are embedded in one optical device according to another embodiment of the present invention;
도 13은 제 1의 광소자에 2개의 레이저 다이오드 칩을 구비하고 제 2의 광소자에 2개의 포토 다이오드 칩을 구비한 양방향 통신용 광모듈,13 is an optical module for bidirectional communication including two laser diode chips in a first optical element and two photodiode chips in a second optical element;
도 14는 4개의 레이저 다이오드 칩이 모두 하나의 광모듈에 배치되게 되고, 4개의 포토 다이오드는 다른 광모듈에 배치되는 양방향 통신용 광모듈,14 is an optical module for bidirectional communication in which four laser diode chips are all disposed in one optical module, and four photodiodes are disposed in another optical module;
도 15는 종래의 QSFP형 트랜시버 케이스의 외형 일례,15 is an example of the external appearance of a conventional QSFP-type transceiver case,
도 16은 본 발명의 실시예에 따른 양방향 통신용 광모듈이 배치되는 QSFP 트랜시버 케이스 외형 일례,16 is an example of the external appearance of the QSFP transceiver case in which the optical module for bidirectional communication according to an embodiment of the present invention,
도 17은 본 발명에 적용되는 이중 광섬유 시준화장치(dual fiber collimator)의 일례, 17 is an example of a dual fiber collimator applied to the present invention,
도 18은 상기 도 17의 이중 광섬유 시준화장치와 2개의 양방향 통신용 광소자를 이용하여 4개의 파장으로 광통신을 하는 광모듈 일례,18 is an example of an optical module for optical communication at four wavelengths using the dual optical fiber collimation apparatus of FIG. 17 and two optical devices for bidirectional communication;
도 19는 상기 도 18의 광모듈 2개를 하나의 트랜시버에 장착하여 4개 파장의 광신호를 전송하고 4개 파장의 광신호를 수신할 수 있도록 제작된 QSFP 트랜시버 일례를 나타낸 것이다. FIG. 19 illustrates an example of a QSFP transceiver fabricated to mount two optical modules of FIG. 18 to one transceiver to transmit optical signals of four wavelengths and receive optical signals of four wavelengths.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 2 는 본 발명의 일 실시예에 따른 광 통신 시스템을 도시한 도면이다.2 illustrates an optical communication system according to an embodiment of the present invention.
도 2에 도시된 바와 같이, 본 발명의 일 실시예에 따른 광 통신 시스템은 광신호를 송신하는 송신측 광모듈장치(1000), 송신측 광모듈장치(1000)로부터 송신된 광신호를 수신하는 수신측 광모듈장치(2000) 및, 송신측 광모듈장치(1000)와 수신측 광모듈장치(1000) 간에 광신호를 전달하기 위한 전송 매질인 광섬유(3000)를 포함하는 구성을 갖는다. As shown in FIG. 2, an optical communication system according to an exemplary embodiment of the present invention receives an optical signal transmitted from a transmitting optical module device 1000 and an transmitting optical module device 1000. The optical module 3000 includes a receiving optical module device 2000 and an optical fiber 3000 which is a transmission medium for transmitting an optical signal between the transmitting optical module device 1000 and the receiving optical module device 1000.
상기 송신측 광모듈장치(1000) 및 수신측 광모듈장치(2000)는 모두 양방향 통신이 가능한 동일한 구성의 양방향 일체형 광소자를 일컫는 것으로서, 이러한 양방향 일체형 광소자에서는 광신호의 송신과 수신이 함께 이루어질 수 있다.The transmitter-side optical module device 1000 and the receiver-side optical module device 2000 both refer to bidirectional integrated optical devices having the same configuration capable of bidirectional communication. In such bidirectional integrated optical devices, transmission and reception of optical signals may be performed together. have.
따라서, 송신측 광모듈장치(1000)에서는 광섬유(3000)를 통한 광신호의 송신뿐만 아니라, 광섬유(3000)를 통해서 전달되는 광신호를 수신할 수 있으며, 마찬가지로 수신측 광모듈장치(2000)에서는 광섬유(3000)를 통해 전달되는 광신호의 수신뿐만 아니라, 광섬유(3000)를 통한 광신호의 송신 또한 가능하다.Therefore, the transmitting side optical module apparatus 1000 may receive the optical signal transmitted through the optical fiber 3000 as well as transmit the optical signal through the optical fiber 3000. Similarly, in the receiving optical module apparatus 2000, In addition to receiving the optical signal transmitted through the optical fiber 3000, it is also possible to transmit the optical signal through the optical fiber 3000.
이처럼 송신측 광모듈장치(1000)와 수신측 광모듈장치(2000)는 서로 동일한 구성 및 동작 특성을 갖는바, 이하에서는 설명의 편의를 위해 송신측 광모듈장치(1000) 하나만을 그 예로 들어 설명하기로 한다.As described above, the transmitting side optical module apparatus 1000 and the receiving side optical module apparatus 2000 have the same configuration and operation characteristics. For convenience of description, only one transmitting side optical module apparatus 1000 will be described as an example. Let's do it.
상기 광섬유(3000)는 광신호의 송신 및 수신에 모두 적용할 수 있는 다중모드(multi-mode) 광섬유를 일컫는 것으로서, 이에 제한되는 것이 아닌, 광신호를 전달할 수 있는 단일모드(single mode) 광섬유 또한 적용 가능하다.The optical fiber 3000 refers to a multi-mode optical fiber that can be applied to both transmission and reception of an optical signal, and is not limited thereto, but also a single mode optical fiber capable of transmitting an optical signal. Applicable
한편, 본 발명의 일 실시예에 따르면 광모듈장치(1000)에서는 4개 파장대역을 이용하여 광신호를 송수신하게 된다.On the other hand, according to an embodiment of the present invention, the optical module device 1000 transmits and receives an optical signal using four wavelength bands.
이처럼, 4개의 파장대역을 이용하여 광신호를 송수신하기 위해서는, 광모듈장치(1000)에서는 2개의 파장대역을 이용하여 광신호를 송신하기 위한 2개의 광송신소자(예: 반도체 레이저 다이오드 칩)와, 광섬유로부터 입력되는 광신호를 수신하기 위한 2개의 광수신소자(예: 포토 다이오드 칩)가 하나의 기구 안에 모두 배치되어야만 한다.As such, in order to transmit and receive an optical signal using four wavelength bands, the optical module apparatus 1000 includes two optical transmitters (eg, semiconductor laser diode chips) for transmitting optical signals using two wavelength bands. In addition, two optical receiving elements (eg, photodiode chips) for receiving an optical signal input from an optical fiber must be arranged in one apparatus.
여기서, 광수신소자로서 적용되는 포토 다이오드의 경우 신호의 잡음을 최소화하기 위한 목적으로 전치증폭기(Trans impedance amplifier:TIA)와 전치증폭기에 입력되는 전기 신호의 잡음을 제거하기 위한 캐패시터(capacitor)가 동시에 장착되는 경우가 많다.Here, in the case of a photodiode applied as a photoreceiving element, a transimpedance amplifier (TIA) and a capacitor for removing noise of an electrical signal input to the preamplifier are simultaneously used for the purpose of minimizing the noise of the signal. Often installed.
이처럼, 4개의 파장대역을 이용한 광 통신을 수행하기 위해선, 2개의 광송신소자 및 2개의 광수신소자 그리고 2개의 전치증폭기를 하나의 기구 안에 배치하여야 하나, 그 배치 방법에 따라 제작 난이도와 제품 특성의 변화가 발생하게 된다.As such, in order to perform optical communication using four wavelength bands, two optical transmitters, two optical receivers, and two preamplifiers must be arranged in a single device, but the manufacturing difficulty and product characteristics according to the arrangement method. Will occur.
결국, 제품 제작의 난이도와 제품 특성 변화를 최적화시키기 위해선 광모듈장치(1000) 내에서의 2개의 광송신소자 및 2개의 광수신소자, 그리고 2개의 전치증폭기를 배치하기 위한 구체적인 방안이 요구된다 할 것이다.As a result, in order to optimize the difficulty of manufacturing the product and the change of product characteristics, a concrete plan for disposing two optical transmitters, two optical receivers, and two preamplifiers in the optical module device 1000 is required. will be.
한편, 현재 근거리 통신용으로 적용되는 광섬유로서는, 예컨대, 850nm 파장대역의 광신호에 최적화된 광섬유가 사용되는 것이 일반적이다.On the other hand, as an optical fiber currently applied for short-range communication, it is common to use an optical fiber optimized for an optical signal of 850 nm wavelength band, for example.
이러한 광섬유에서 1550nm 파장대역의 광신호의 경우, 광섬유 분산이 너무 커져 데이터 전송이 어려운 단점이 있다.In the optical signal of 1550nm wavelength band in such an optical fiber, the dispersion of the optical fiber is too large, which makes it difficult to transmit data.
이에, 근거리 통신용으로 선택되는 파장대역의 경우, 850nm에 최대한 가까운 파장대역으로 선정하되, 780nm 이하의 단파장에서는 광섬유 손실이 너무 커져 광 통신이 어려운 현상과 1550nm 파장대역에서는 광섬유의 분산 특성 때문에 광 전송이 어려운 상황을 해결하여야만 한다.Therefore, the wavelength band selected for short-range communication should be selected as the wavelength band as close as possible to 850 nm. However, in the short wavelength of 780 nm or less, optical loss is too large and optical communication is difficult. The difficult situation must be solved.
이러한 상황에서, 4개 파장대역을 이용하여 양방향 통신의 용량을 증대시키기 위해서는, 광섬유의 특성에 부합하는 파장대역 선정 및 배치가 무엇보다 중요하다 할 것이다.In such a situation, in order to increase the capacity of bidirectional communication using four wavelength bands, it is important to select and arrange wavelength bands that match the characteristics of the optical fiber.
양방향 일체형 광소자에서 광송신소자로서 적용되는 레이저 다이오드 칩의 경우, 레이저 다이오드 광축을 중심으로 일정한 발산각을 가진 채 레이저 빛을 방출하게 된다.In the case of a laser diode chip applied as an optical transmitting element in a bidirectional integrated optical device, laser light is emitted with a constant divergence angle around the laser diode optical axis.
통상적으로 레이저 다이오드 칩에서 방출되는 레이저 빛의 발산각의 경우, edge emitting형 레이저 다이오드 칩일 경우에 그 발산각(1/e2)이 40° 이상이며, 표면발광형 레이저의 경우에는 그 발산각(1/e2)이 16∼30° 정도에 이른다. Typically, if the divergence angle of the laser light emitted from the laser diode chip, and the radiating over respective (1 / e 2) is 40 ° if the edge emitting type laser diode chipil, in the case of the surface emission type laser, the divergence angle ( 1 / e 2 ) reaches about 16-30 degrees.
이와 관련하여, 도 3 및 도 4를 참고하면, 파장선택성필터로 입사하는 빛의 파장대역에 따른 투과/반사율을 확인할 수 있다.In this regard, referring to FIGS. 3 and 4, the transmission / reflectance according to the wavelength band of the light incident on the wavelength selective filter may be confirmed.
여기서, 파장선택성필터는, 양방향 일체형 광소자에서 레이저 다이오드 칩으로부터 방출되는 빛을 투과 또는 반사시켜 광신호로서 광섬유에 전달되도록 하거나, 광섬유로부터 하향 전달되는 빛을 투과 또는 반사시켜 광수신소자인 포토 다이오드로 광신호로서 전달하기 위해 요구되는 구성을 일컫는다.Here, the wavelength selective filter transmits or reflects the light emitted from the laser diode chip in the bidirectional integrated optical device to be transmitted to the optical fiber as an optical signal, or transmits or reflects the light transmitted downward from the optical fiber to be a photodiode as a light receiving device. Refers to a configuration required to transmit as an optical signal.
도 3의 경우 레이저 다이오드 칩의 광축에 대해  45° 로 배치된 파장선택성필터로 입사하는 레이저 빛이, 레이저 빛의 발산광 특성에 기인하여 실제 파장선택성필터로 입사하는 각도가 30°, 45°, 60°로 변화할 때 레이저 빛의 투과/반사도를 나타낸다.In the case of FIG. 3, the laser light incident on the wavelength selective filter disposed at 45 ° with respect to the optical axis of the laser diode chip has an angle of 30 °, 45 °, due to the divergent light characteristics of the laser light. When changing to 60 ° The transmission / reflection of the laser light is shown.
또한 도 4의 경우, 파장선택성필터로 입사하는 각도가 40°, 45°, 50°로 변화할 때 레이저 빛의 투과/반사도를 나타낸다.In addition, in the case of Figure 4, when the incident angle to the wavelength selective filter changes to 40 °, 45 °, 50 ° The transmission / reflection of the laser light is shown.
우선, 도 3을 통해서 알 수 있는 바와 같이, 레이저 다이오드 칩에서의 발산각이 광축을 중심으로  +/-15° 일 경우 파장선택성필터의 투과파장대역은 약 150nm 정도 바뀌게 된다.First, as can be seen from FIG. 3, when the divergence angle of the laser diode chip is +/- 15 ° about the optical axis, the transmission wavelength band of the wavelength selective filter is changed by about 150 nm.
이에 비해, 도 4에서는, 발산각이 광축을 중심으로  +/-5° 일 경우 파장선택성필터의 투과파장대역이 약 60nm 정도 바뀌게 됨을 알 수 있다.On the other hand, in FIG. 4, it can be seen that the transmission wavelength band of the wavelength selective filter changes by about 60 nm when the divergence angle is +/- 5 ° about the optical axis.
이처럼, 파장선택성필터의 투과/반사 파장대역의 경우 파장선택성필터로 입사하는 각도에 따라 달라지므로 4개 파장대역을 이용하여 광 통신을 하기 위해선, 4개의 파장대역에 대한 매우 정밀한 파장 분배가 필요하다 할 것이다.As described above, since the transmission / reflection wavelength band of the wavelength selective filter varies depending on the incident angle of the wavelength selective filter, in order to perform optical communication using the four wavelength bands, very precise wavelength distribution of four wavelength bands is required. something to do.
뿐만 아니라, 4개 파장대역을 분배하기 위해선, 광섬유에서의 파장대역에 따른 전송 손실 등이 추가 고려되어야만 한다.In addition, in order to distribute the four wavelength bands, transmission loss according to the wavelength band in the optical fiber and the like must be further considered.
도 5를 참조하면, 일반적인 다중모드(multi-mode) 광섬유에서 파장대역에 따른 전송 손실을 확인할 수 있다.Referring to FIG. 5, transmission loss according to a wavelength band in a general multi-mode optical fiber can be confirmed.
여기서, 850nm 파장대역은 2.2dB/Km의 손실률을 가지며, 780nm 파장대역에서는 3.2dB/Km로 850nm에 비해 780nm는 약 1dB/Km의 손실률 증가를 가져오는 것을 알 수 있다.Here, it can be seen that the 850 nm wavelength band has a loss rate of 2.2 dB / Km, and the 780 nm wavelength band has a loss ratio of about 1 dB / Km compared to 850 nm at 3.2 dB / Km in the 780 nm wavelength band.
그러나 700nm의 파장대역에서는 손실률이 5.5dB/Km로 매우 급격히 증가하며 이에 따라 광 통신은 근거리 통신용이라 할지라도 대부분 780nm 또는 850nm의 파장을 이용하고 있다.However, in the 700nm wavelength band, the loss rate increases rapidly to 5.5dB / Km. Therefore, optical communication is mostly using 780nm or 850nm wavelength even for short distance communication.
또한, 기존에 널리 사용되고 있는 780nm 또는 850nm에서 가장 좋은 광 전송 특성을 가지는 광섬유의 경우, 광섬유를 통과하는 빛의 파장이 길어질수록 광섬유 내에서의 모드 분산(modal dispersion)에 의해 광 통신 품질이 나빠지는 특성이 있다.In addition, in the case of the optical fiber having the best optical transmission characteristics at 780nm or 850nm, which is widely used in the past, the longer the wavelength of light passing through the optical fiber, the worse the optical communication quality due to modal dispersion in the optical fiber. There is a characteristic.
이처럼, 광섬유에서의 전송 손실은 광 통신 품질에 큰 영향을 미치게 되므로, 4개의 파장대역을 이용하여 원활한 광 통신을 수행하기 위해선, 앞서 언급한 레이저 다이오드 칩에서 방출되는 발산각 뿐만 아니라, 광섬유의 전송 손실 특성, 및 파장대역에 따른 광섬유에서의 분산 특성 등이 고려되어야만 함을 알 수 있다.As such, since transmission loss in the optical fiber has a great influence on the optical communication quality, in order to perform smooth optical communication using the four wavelength bands, in addition to the divergence angle emitted from the aforementioned laser diode chip, the optical fiber transmission It can be seen that the loss characteristics and dispersion characteristics in the optical fiber according to the wavelength band should be considered.
이에, 본 발명의 일 실시예에서는, 양방향 일체형 광소자 2개를 사용하여 하나의 광섬유를 통해서 동시에 4개 파장대역의 광신호를 송수신하는 광모듈장치의 구체적인 구성을 제안하고자 하며, 이하에서는 이를 구체적으로 설명하기로 한다.Thus, in one embodiment of the present invention, using a two-way integrated optical device to propose a specific configuration of an optical module device for transmitting and receiving optical signals of four wavelength bands simultaneously through one optical fiber, and in the following This will be described.
도 6은 본 발명의 일 실시예에 따른 광모듈장치를 도시한 도면이다.6 is a view showing an optical module device according to an embodiment of the present invention.
도 6에 도시된 바와 같이, 본 발명의 일 실시예에 다른 광모듈장치(1000)는 제1파장대역을 이용하여 광신호를 송수신하는 제 1 광소자(100), 제2파장대역을 이용하여 광신호를 송수신하는 제 2 광소자(200) 및 광신호를 투과 및 반사하여 제 1 광소자(100) 및 제 2 광소자(200) 모두가 하나의 광섬유(3000)를 통해서 광신호를 송수신하도록 하는 파장선택성필터(300)를 포함하는 구성을 갖는다.As shown in FIG. 6, the optical module apparatus 1000 according to an exemplary embodiment of the present invention uses the first optical device 100 and the second wavelength band to transmit and receive an optical signal using the first wavelength band. The second optical device 200 for transmitting and receiving the optical signal and the optical signal is transmitted and reflected so that both the first optical device 100 and the second optical device 200 transmit and receive the optical signal through one optical fiber 3000. It has a configuration including a wavelength selective filter 300.
여기서, 제 1 광소자(100)에서 광신호를 송수신하기 위해 이용되는 제1파장대역에는 제1송신파장대역(λ1) 및 제1수신파장대역(λ2)이 포함되며, 제 2 광소자(200)에서 광신호를 송수신하기 위해 이용되는 제2파장대역에는 제2송신파장대역(λ3) 및 제2수신파장대역(λ4)이 포함된다.Here, the first wavelength band used for transmitting and receiving optical signals in the first optical device 100 includes a first transmission wavelength band λ1 and a first reception wavelength band λ2, and the second optical device 200 In the second wavelength band used for transmitting and receiving the optical signal in the ()) includes a second transmission wavelength band (λ3) and the second receiving wavelength band (λ4).
제1파장대역 및 제2파장대역은 서로 다른 파장대역을 의미하는 것으로서, 위와 반대로 제 1 광소자(100)에서 제2파장대역을 이용할 수 있으며, 제 2 광소자(200)에서 제1파장대역을 이용할 수도 있다.The first wavelength band and the second wavelength band mean different wavelength bands. On the contrary, the first wavelength band and the second wavelength band may use the second wavelength band in the first optical device 100, and the first wavelength band in the second optical device 200. Can also be used.
마찬가지로, 제1송신파장대역(λ1)과 제1수신파장대역(λ2), 그리고 제2송신파장대역(λ3)과 제2수신파장대역(λ4) 역시, 서로 다른 파장대역을 의미하는 것으로서, 각 파장대역이 광신호의 송신 내지는 수신을 위한 전용 파장대역으로 국한되는 것이 아닌, 지정에 따라서 변경 가능함은 물론이다.Similarly, the first transmission wavelength band [lambda] 1, the first reception wavelength band [lambda] 2, and the second transmission wavelength band [lambda] 3 and the second reception wavelength band [lambda] 4 also mean different wavelength bands. Of course, the wavelength band is not limited to the dedicated wavelength band for transmitting or receiving the optical signal, but may be changed according to designation.
상기 제 1 광소자(100)는 광신호를 송수신하기 위한 제 1 광축(a)을 기초로 제1송신파장대역(λ1)을 이용하여 광신호를 송신하게 되며, 제1수신파장대역(λ2)을 이용하여 광신호를 수신하게 된다.The first optical device 100 transmits an optical signal using the first transmission wavelength band λ1 based on the first optical axis a for transmitting and receiving the optical signal, and the first reception wavelength band λ2. Receive an optical signal by using.
여기서, 제 1 광축(a)은 제 1 광소자(100)에서 광송신소자로서 적용되는 레이저 다이오드 칩에서 광신호에 해당하는 레이저 빛을 방사하기 위한 기준선을 일컫는다.Here, the first optical axis a refers to a reference line for emitting laser light corresponding to an optical signal in a laser diode chip applied as an optical transmitter in the first optical device 100.
또한, 제 2 광소자(200)는 광신호를 송수신하기 위한 제 2 광축(b)을 기초로 제2송신파장대역(λ3)을 이용하여 광신호를 송신하게 되며, 제1수신파장대역(λ3)을 이용하여 광신호를 수신하게 된다.In addition, the second optical device 200 transmits the optical signal using the second transmission wavelength band λ3 based on the second optical axis b for transmitting and receiving the optical signal, and the first reception wavelength band λ3. ) To receive the optical signal.
마찬가지로, 제 2 광축(b)은 제 2 광소자(200)에서 광송신소자로서 적용되는 레이저 다이오드 칩에서 광신호에 해당하는 레이저 빛을 방사하기 위한 기준선을 일컫는다.Similarly, the second optical axis b refers to a reference line for emitting laser light corresponding to an optical signal in a laser diode chip applied as an optical transmitter in the second optical device 200.
또한, 파장선택성필터(300)는 제 1 광축(a)과 제 2 광축(b)이 교차하는 교차점에서 광신호를 투과 및 반사함으로써, 제 1 광소자(100) 및 제 2 광소자(200) 모두가 하나의 광섬유(3000)를 통해서 광신호를 송수신하도록 한다.In addition, the wavelength selective filter 300 transmits and reflects an optical signal at an intersection point at which the first optical axis a and the second optical axis b intersect each other, whereby the first optical device 100 and the second optical device 200. All transmit and receive optical signals through one optical fiber 3000.
보다 구체적으로, 파장선택성필터(300)는 제1파장대역의 광신호는 그대로 투과하여 제 1 광소자(100)에서 제1파장대역의 광신호를 송수신하도록 하는 반면, 제2파장대역의 광신호는 반사함으로써, 제 2 광소자(200)에서 제2파장대역의 광신호를 송수신할 수 있도록 한다.More specifically, the wavelength selective filter 300 transmits the optical signal of the first wavelength band as it is to transmit and receive the optical signal of the first wavelength band in the first optical device 100, while the optical signal of the second wavelength band By reflecting, the second optical device 200 can transmit and receive the optical signal of the second wavelength band.
이를 위해, 파장선택성필터(300)는 제 1 광축(a)과 제 2 광축(b)이 교차하는 교차점에서, 제 1 광축(a) 및 제 2 광축(b) 각각에 대한 수직면을 기준으로 45° 의 경사각을 갖는 경사면이 형성될 수 있도록 배치되어, 해당 경사면으로 입사되는 광신호를 투과하거나 90° 로 꺾어 반사하게 된다. To this end, the wavelength selective filter 300 is based on the perpendicular to each of the first optical axis (a) and the second optical axis (b) at the intersection of the first optical axis (a) and the second optical axis (b). ° An inclined surface having an inclination angle of? Will be reflected.
이러한, 파장선택성필터(300)에서의 투과 및 반사는 굴절률이 상대적으로 높고 낮은 유전체 박막을 복수의 층으로 교대로 증착하여 원하는 파장대역의 광신호만을 투과하거나, 반사하는 방식을 통해서 이루어질 수 있다.The transmission and reflection of the wavelength selective filter 300 may be performed by alternately depositing a dielectric film having a relatively high and low refractive index into a plurality of layers to transmit or reflect only an optical signal having a desired wavelength band.
예를 들어, 제 1 광소자(100)로부터 전송된 제1송신파장대역(λ1)의 광신호가 경사면에 입사되는 경우, 파장선택성필터(300)는 제1송신파장대역(λ1)의 광신호를 그대로 투과시켜 제 1 광축(a)을 따라 광섬유(3000)에 전달될 수 있도록 하며, 반대로 광섬유(3000)로부터 전송된 제1수신파장대역(λ2)의 광신호가 경사면에 입사되는 경우에는 파장선택성필터(300)는 제1수신파장대역(λ2)의 광신호를 그대로 투과시켜, 제 1 광축(a)을 따라 제 1 광소자(100)에 전달될 수 있도록 한다.For example, when the optical signal of the first transmission wavelength band λ1 transmitted from the first optical element 100 is incident on the inclined surface, the wavelength selective filter 300 receives the optical signal of the first transmission wavelength band λ1. As it is transmitted through the first optical axis (a) to be transmitted to the optical fiber 3000, as opposed to the wavelength selective filter when the optical signal of the first wavelength band λ2 transmitted from the optical fiber 3000 is incident on the inclined surface The reference numeral 300 transmits the optical signal of the first reception wavelength band λ 2 as it is, so that the optical signal may be transmitted to the first optical device 100 along the first optical axis a.
다른 예로서, 제 2 광소자(200)로부터 전송된 제2송신파장대역(λ3)의 광신호가 경사면에 입사되는 경우, 파장선택성필터(300)는 제2송신파장대역(λ3)의 광신호를 경사면에서 제 2 광축(b)을 기준으로 꺾어 90° 로 반사하여 광섬유(3000)에 전달될 수 있도록 하며, 반대로 광섬유(3000)로부터 전송된 제2수신파장대역(λ4)의 광신호가 경사면에 입사되는 경우, 파장선택성필터(300)는 제2수신파장대역(λ4)의 광신호를 경사면을 통해 90° 로 꺾어 제 2 광축(b)을 따라서 제 2 광소자(200)에 전달될 수 있도록 한다.As another example, when the optical signal of the second transmission wavelength band λ3 transmitted from the second optical element 200 is incident on the inclined surface, the wavelength selective filter 300 receives the optical signal of the second transmission wavelength band λ3. 90 ° by tilting the second optical axis b from the inclined plane When the optical signal of the second receiving wavelength band λ4 transmitted from the optical fiber 3000 is incident on the inclined plane, the wavelength selective filter 300 may receive the second receiving wavelength. 90 ° through the slope of the optical signal in the band λ4 It can be transmitted to the second optical device 200 along the second optical axis (b).
이하에서는, 도 7을 참조하여 본 발명의 일 실시예에 따른 제 1 광소자(100) 및 제 2 광소자(200)의 구성을 구체적으로 설명하기로 한다.Hereinafter, the configuration of the first optical device 100 and the second optical device 200 according to an embodiment of the present invention will be described in detail with reference to FIG. 7.
여기서, 제 1 광소자(100) 및 제 2 광소자(200)의 경우, 광신호 송수신을 위해 이용되는 파장대역만이 위에서 언급한 바와 같이 제1파장대역 및 제2파장대역으로 상이할 뿐, 그 밖의 구성 및 해당 구성에 따른 동작 특성이 모두 동일한 바, 이하에서는 설명의 편의를 위해 제 1 광소자(100)만을 예로 들어 설명하기로 한다.Here, in the case of the first optical device 100 and the second optical device 200, only the wavelength band used for transmitting and receiving the optical signal is different from the first wavelength band and the second wavelength band, as mentioned above. Since the other configurations and the operation characteristics according to the configuration are all the same, the following description will be made by using only the first optical device 100 as an example for convenience of description.
도 7에 도시된 바와 같이, 본 발명의 일 실시예에 따른 제 1 광소자(100)는 금속으로 이루어진 기판에 관통공(105)을 뚫고 관통공(105)에 전극핀(111)을 삽입하여, 유리로 밀봉되는 형태로 제작되는 스템(110), 내부에 소자들을 배치하고 렌즈(150) 또는 평판형 유리로 밀봉하고, 레이저 빛이 통과할 수 있는 광학적 개구부가 장착된 금속 재질의 캡(140)을 결합하는 구조를 가짐으로써, 내부의 소자의 보호 및 전기적으로의 활용을 손쉽게 하며, 기밀성을 보장하게 된다.As shown in FIG. 7, the first optical device 100 according to an exemplary embodiment of the present invention drills through holes 105 in a substrate made of metal and inserts electrode pins 111 into the through holes 105. , A stem 110 made of a glass-sealed form, a metal cap 140 having elements disposed therein, sealed with a lens 150 or flat glass, and equipped with an optical opening through which laser light can pass. By having a structure that combines), it is easy to protect and internally use the internal element, and ensures airtightness.
제 1 광소자(100) 내부에는, 제1송신파장대역(λ1)의 광신호를 송신하는 광송신소자(130), 광섬유로부터 전송되어온 제1수신파장대역(λ2)의 광신호를 수신하는 광수신소자(170), 광수신소자(170)에서 수신된 광신호를 증폭하기 위한 전치증폭기(180), 및 제1송신파장대역(λ1)의 광신호는 반사하며 제1수신파장대역(λ2)의 광신호는 투과하는 파장선택성필터(160)가 장착되게 된다.In the first optical device 100, an optical transmitter 130 for transmitting an optical signal of the first transmission wavelength band lambda 1 and an optical receiver for receiving an optical signal of the first reception wavelength band lambda 2 transmitted from the optical fiber. The receiving element 170, the preamplifier 180 for amplifying the optical signal received by the optical receiving element 170, and the optical signal of the first transmission wavelength band [lambda] 1 are reflected and the first receiving wavelength band [lambda] 2. The optical signal of the wavelength selective filter 160 to be transmitted is mounted.
여기서, 광송신소자(130)로서는 예컨대, edge emiiting 형의 레이저 다이오드 칩과 표면 발광형의 레이저 다이오드 칩(Vertical Cavity Surface Emitting Laser diode: VCSEL)이 모두 적용 가능하나, 근거리 통신에 적합한 특성을 고려할 경우에는 전기 소모량이 적으며, 레이저 빛의 발산각이 좁은 표면 발광형 레이저 다이오드 칩이 더 적절하다.Here, as the optical transmitting device 130, for example, both an edge emiiting type laser diode chip and a surface emitting type laser diode chip (VCSEL) can be used, but considering characteristics suitable for near field communication Surface-emission laser diode chips that consume less electricity and have a narrower divergence angle of laser light are more appropriate.
또한, 전치증폭기(180)는 열발생이 가장 많은 소자이며, 이에 외부로의 열방출이 용이하도록 스템(110) 바닥면에 부착되도록 레이아웃을 구성하여야 한다.In addition, the preamplifier 180 is the most heat generating element, it should be configured to be attached to the bottom surface of the stem 110 to facilitate heat release to the outside.
이처럼, 전치증폭기(180)가 스템(110) 바닥면에 부착되도록 레이아웃을 구성하는 것은, 전치증폭기(180)로부터 열을 외부로 용이하게 방출하여 광소자 내부의 온도 상승을 최소화함으로써, 온도상승에 따른 내부 소자의 특성 악화를 방지하기 위함이다.As such, configuring the layout such that the preamplifier 180 is attached to the bottom surface of the stem 110 may easily discharge heat from the preamplifier 180 to the outside to minimize the temperature rise inside the optical device, thereby increasing the temperature. This is to prevent deterioration of characteristics of the internal device.
참고로, 언급되지 않은 도면부호 '131'은 광송신소자(130)가 장착되는 서브마운트이고, '171'은 광수신소자(170)이 장착되는 서브마운트이며, '120'은 파장선택성필터(160)과 장착되는 서브마운트이다.For reference, reference numeral '131', which is not mentioned, is a submount on which the optical transmitter 130 is mounted, '171' is a submount on which the optical receiver 170 is mounted, and '120' is a wavelength selective filter ( 160) and the submount to be mounted.
이러한, 구성의 제 1 광소자(100)에서 광송신소자(130)에서 발산되는 제1송신파장대역(λ1)의 광신호는 광축을 따라서 스템(110) 바닥면에 평행한 상태로 출력되며, 이는 파장선택성필터(160)에서 반사되어, 파장선택성필터(160) 상부의 렌즈(150)를 거쳐 광섬유로 전달된다.The optical signal of the first transmission wavelength band λ1 emitted from the optical transmitting element 130 in the first optical element 100 having the configuration is output in parallel with the bottom surface of the stem 110 along the optical axis. This is reflected by the wavelength selective filter 160, and is transmitted to the optical fiber through the lens 150 on the wavelength selective filter 160.
광섬유로부터 전달되는 제1수신파장대역(λ2)의 광신호는 렌즈(150)를 거쳐 수렴광으로 전환되어 도착하게 되는데, 파장선택성필터(160)는 제1수신파장대역(λ2)에 대해 투과하도록 특성이 설정되어, 제1수신파장대역(λ2)의 광신호는 파장선택성필터(160)를 투과하여 광수신소자(170)로 수신되게 된다.The optical signal of the first receiving wavelength band λ2 transmitted from the optical fiber is converted into convergent light through the lens 150 and arrives. The wavelength selective filter 160 transmits the first receiving wavelength band λ2. The characteristic is set, so that the optical signal of the first receiving wavelength band λ2 is transmitted to the optical receiving element 170 through the wavelength selective filter 160.
광수신소자(170)에서 수신된 광신호는 전치증폭기(180)에서 증폭되어 전극핀(111)을 통해 외부에 전기신호로 전달된다.The optical signal received by the optical receiving device 170 is amplified by the preamplifier 180 and transmitted to the outside as an electrical signal through the electrode pin 111.
여기서, 파장선택성필터(160)는 광송신소자(130)의 광축 및 광수신소자(171)의 광축 각각에 대한 수직면을 기준으로 45°의 경사각을 갖도록 배치되어야 한다.Here, the wavelength selective filter 160 should be disposed to have an inclination angle of 45 ° with respect to the vertical plane of each of the optical axis of the optical transmitter 130 and the optical axis of the optical receiver 171.
파장선택성필터(160)의 배치 방법의 경우 여러 가지로 변형이 가능하지만 본 발명의 일 실시예에서는 쐐기형 서브마운트(120)를 이용하여 쐐기형 서브마운트의 경사면에 파장선택성필터(160)를 부착하는 방법을 적용하게 된다.The wavelength selective filter 160 may be modified in various ways, but in one embodiment of the present invention, the wavelength selective filter 160 is attached to the inclined surface of the wedge submount using the wedge-shaped submount 120. How to do it.
여기서 쐐기형 서브마운트(120)는 레이저 다이오드 칩에서 발생되는 열을 효과적으로 방출하기 위해 예컨대, 열전도율이 100W/m/K 인 재질로 제작되어야 하며, 특히 열전도율이 170W/m/K 로 매우 높은 열전도율을 가지며 가공성이 좋은 실리콘을 기반으로 제작되어야 할 것이다.In this case, the wedge-shaped submount 120 should be made of a material having a thermal conductivity of 100 W / m / K, for example, in order to effectively dissipate heat generated from a laser diode chip. In particular, the wedge submount 120 has a very high thermal conductivity of 170 W / m / K. It should be made based on silicon having good processability.
이러한 쐐기형 서브마운트(120)의 경우, 파장선택성필터(160)의 45°경사각을 확보하기 위한 방법의 한 예로써 도 8에서와 같이, 45°각도의 경사 홈이 형성되어 있는 서브마운트의 경사홈에 파장선택성필터(160)를 끼우도록 하는 방법도 가능하다.In the case of the wedge-shaped submount 120, as an example of a method for securing a 45 ° inclination angle of the wavelength selective filter 160, as shown in FIG. 8, the inclination of the submount in which the inclination groove of the 45 ° angle is formed is shown. It is also possible to insert the wavelength selective filter 160 into the groove.
한편, 제 1 광소자(100)에 적용된 광송신소자(130)의 경우, 통상적으로 16∼30°의 발산각(1/e2)을 가지며, 이러한 발산각에 대해서 파장선택성필터(160)의 투과 및 반사 파장대역의 경우 도 2를 통해서 언급한 바와 같이 대략 150nm 정도의 파장대역 이동이 이루어지게 된다.On the other hand, in the case of the optical transmission device 130 applied to the first optical device 100, typically has a divergence angle (1 / e 2 ) of 16 to 30 °, with respect to the divergence angle of the wavelength selective filter 160 In the case of the transmission and reflection wavelength bands, a wavelength band shift of about 150 nm is made as described with reference to FIG. 2.
따라서, 본 발명의 일 실시예에서는 제1송신파장대역(λ1)과 제1수신파장대역(λ2)는 서로 간에 150nm 이상의 파장대역 차이를 가져야만 하며, 마찬가지로 제2송신파장대역(λ3)과 제2수신파장대역(λ4) 역시 150nm 이상의 파장대역의 차이를 가져야만 한다.Therefore, in one embodiment of the present invention, the first transmission wavelength band [lambda] 1 and the first reception wavelength band [lambda] 2 must have a wavelength band difference of 150 nm or more from each other, and similarly, the second transmission wavelength band [lambda] 3 and The two reception wavelength bands λ4 should also have a difference in wavelength band of 150 nm or more.
또한, 광송신소자(130)로부터 16∼30°의 발산각(1/e2)으로 발산된 빛은 렌즈(150)에 의해 수렴되게 된다.In addition, the light emitted from the optical transmitting element 130 at the divergence angle 1 / e 2 of 16 to 30 ° is converged by the lens 150.
이때의 수렴각은 렌즈(150)의 배율에 따라 달라지게 되지만 통상적으로 광섬유(3000)에서 발산되는 레이저 빛의 발산각과 동일한 수렴각을 갖는 것이 바람직하며, 이에, 렌즈(150)에 의해 수렴되는 빛의 수렴각(1/e2)은 예컨대, +/- 5°의 값을 가질 수 있다.At this time, the convergence angle varies depending on the magnification of the lens 150, but it is generally preferable to have the same convergence angle as the divergence angle of the laser light emitted from the optical fiber 3000, and thus, light converged by the lens 150. The convergence angle 1 / e 2 of may have a value of +/− 5 °, for example.
여기서, 제 1 광소자(100)의 렌즈(150)를 통해 수렴된 발산각에 대한 도 5의 파장선택성필터(300)에서의 투과 및 반사 파장대역의 경우 도 3을 통해서 언급한 바와 유사한 대략 40nm 정도의 파장대역 이동이 이루어지게 된다.Here, in the case of the transmission and reflection wavelength band in the wavelength selective filter 300 of FIG. 5 with respect to the divergence angle converged through the lens 150 of the first optical device 100, approximately 40 nm similar to that mentioned in FIG. A degree of wavelength band shift is achieved.
따라서, 본 발명의 일 실시예에서는 제1파장대역(λ1, λ2)과 제2파장대역(λ3, λ4) 간에는 40nm 이상의 파장대역의 차이를 가져야만 한다.Therefore, in the exemplary embodiment of the present invention, the wavelength band of 40 nm or more must be different between the first wavelength bands λ1 and λ2 and the second wavelength bands λ3 and λ4.
결국, 제1송신파장대역(λ1)과 제1수신파장대역(λ2), 그리고 제2송신파장대역(λ3)과 제2수신파장대역(λ4) 각각의 파장대역 차이는 150nm 이상이며, 제1파장대역(λ1, λ2)과 제2파장대역(λ3, λ4) 간에는 40nm 이상의 파장대역 차이를 가지므로, 제1파장대역(λ1, λ2)과 제2파장대역(λ3, λ4)이 모두 배치될 수 있는 최소 파장대역폭은 340nm가 된다.As a result, the wavelength band difference between each of the first transmission wavelength band lambda 1, the first reception wavelength band lambda 2, and the second transmission wavelength band lambda 3 and the second reception wavelength band lambda 4 is 150 nm or more. Since the wavelength bands λ1 and λ2 and the second wavelength bands λ3 and λ4 have a wavelength band difference of 40 nm or more, both the first wavelength bands λ1 and λ2 and the second wavelength bands λ3 and λ4 are to be disposed. The minimum wavelength bandwidth that can be is 340nm.
한편, 도 4를 참조하여 설명한 바와 같이, 광섬유에 있어서, 780nm보다 짧은 파장대역의 레이저 빛에 대해서는 광섬유의 전송 손실이 매우 커지므로 780nm보다 짧은 파장대역을 이용하여 광 통신을 하는 것은 지양해야만 할 것이다.On the other hand, as described with reference to Figure 4, in the optical fiber, since the transmission loss of the optical fiber is very large for the laser light of the wavelength band shorter than 780nm, it should be avoided to perform optical communication using the wavelength band shorter than 780nm. .
따라서, 제1파장대역(λ1, λ2)과 제2파장대역(λ3, λ4)이 모두 배치될 수 있는 최소 파장대역폭은 340nm로 할 경우, 가장 짧은 파장대역은 780nm가 되며, 반대로 가장 긴 파장대역은 1120nm의 파장대역을 가질 수 있다.Therefore, when the minimum wavelength bandwidth in which both of the first wavelength bands λ1 and λ2 and the second wavelength bands λ3 and λ4 can be disposed is 340 nm, the shortest wavelength band becomes 780 nm, and conversely, the longest wavelength band May have a wavelength band of 1120 nm.
그러나, 제 1 광소자(100) 및 제 2 광소자(200)에서 광송신소자로서 적용되는 레이저 다이오드 칩의 발진 파장대역은 레이저 다이오드 칩의 빛의 형성 영역인 활성 영역의 물질 조성에 의존하게 되고, 이러한 물질 조성은 레이저 다이오드 칩에 사용되는 기판에 의해 결정될 수 있다.However, the oscillation wavelength band of the laser diode chip applied as the optical transmission element in the first optical device 100 and the second optical device 200 depends on the material composition of the active region which is the light formation region of the laser diode chip. This material composition can be determined by the substrate used in the laser diode chip.
여기서, 780nm 및 850nm, 980nm는 GaAs 기판을 모재로 하는 레이저 다이오드 칩으로 구현되며, 이러한 GaAs 기판을 모재로 하는 GaAs 계열의 레이저 다이오드 칩의 경우, 현재까지 상용화된 가장 긴 발진 파장대역은 1060nm 정도이다.Here, 780nm, 850nm, and 980nm are implemented as a laser diode chip based on a GaAs substrate, and the longest oscillation wavelength band commercialized so far is about 1060nm in the GaAs series laser diode chip based on the GaAs substrate. .
때문에, 1060nm 보다 긴 파장대역의 레이저 다이오드 칩의 경우, InP 기판을 모재로 제작되는데 현재 InP 기판을 모재로 하는 레이저 다이오드 칩 중에서 가장 짧은 파장대역은 1250nm 정도이며, InP를 기판으로 하는 레이저 다이오드 칩은 활성층의 조성비에 따라 1250nm ~1620nm 파장대역의 레이저 발진을 담당하게 된다.Therefore, in the case of a laser diode chip with a wavelength band longer than 1060 nm, an InP substrate is made of a base material. Currently, the shortest wavelength band of the laser diode chips based on an InP substrate is about 1250 nm. Depending on the composition ratio of the active layer is responsible for the laser oscillation in the wavelength range of 1250nm ~ 1620nm.
따라서, 본 발명의 일 실시예서는, 제1송신파장대역(λ1)과 제1수신파장대역(λ2)으로서 각각 780nm, 930nm, 그리고 제2송신파장대역(λ3)과 제2수신파장대역(λ4)으로서는 990nm, 1250nm의 파장대역을 예로 들 수 있다.Therefore, in one embodiment of the present invention, 780 nm, 930 nm, and the second transmission wavelength band [lambda] 3 and the second reception wavelength band [lambda] 4 as the first transmission wavelength band [lambda] 1 and the first reception wavelength band [lambda] 2, respectively. ) Is a wavelength band of 990 nm and 1250 nm.
이러한 파장대역의 분포는 앞서 도 2 내지 도 4를 참조하여 설명한 제1송신파장대역(λ1)과 제1수신파장대역(λ2), 그리고 제2송신파장대역(λ3)과 제2수신파장대역(λ4) 각각의 파장대역 차이가 150nm 이상이며, 제1파장대역(λ1, λ2)과 제2파장대역(λ3, λ4) 간에는 60nm 이상의 파장대역 차이를 갖고, 780nm 보다 파장대역이 짧지 않으며, 850nm에 최대한 근접한 조건을 모두 만족하는 4개의 파장대역을 구현하고 있는 것이다.The distribution of the wavelength bands includes the first transmission wavelength band lambda 1, the first reception wavelength band lambda 2, the second transmission wavelength band lambda 3, and the second reception wavelength band (described above with reference to FIGS. 2 to 4). λ4) The wavelength band difference of each wavelength is 150 nm or more, and the wavelength band difference between the first wavelength bands λ1 and λ2 and the second wavelength bands λ3 and λ4 is 60 nm or more, and the wavelength band is not shorter than 780 nm. The four wavelength bands satisfy all the conditions as close as possible.
InP를 기판으로 하는 레이저 다이오드 칩을 2개 이상 사용할 경우에 레이저 다이오드 칩의 어느 하나는 1250nm 정도로 850nm에 근접한 파장대역을 갖게 할 수 있지만 다른 하나의 레이저 다이오드 칩은 1410nm 이상으로 850nm에서 멀리 떨어진 파장대역을 가지게 되므로 광섬유의 분산에 의한 광 전송 품질 저하를 피할 수 없다.When using two or more InP-based laser diode chips, one of the laser diode chips may have a wavelength band close to 850 nm as much as 1250 nm, while the other laser diode chip is 1410 nm or more and a wavelength band far from 850 nm. Since it is possible to deteriorate the optical transmission quality due to the dispersion of the optical fiber is inevitable.
반면, GaAs 기판을 사용하는 레이저 다이오드 칩 4 종류를 사용할 경우 레이저 다이오드 칩에서의 발진 파장대역의 폭은 780nm∼1060nm로 280nm에 불과하여 파장선택성필터에서 빛을 분리하기 위한 최소 파장대역 차이인 340nm에 미치지 못하게 된다.On the other hand, when four types of laser diode chips using GaAs substrates are used, the width of the oscillation wavelength band of the laser diode chip is 780nm to 1060nm, which is only 280nm. I can't get crazy.
한편, 본 발명의 일 실시예에 따른 광 통신 시스템에서는, 4개의 파장대역을 이용하여 광신호를 송신하기 위해 각기 다른 파장대역을 사용하는 4개의 광송신소자인 레이저 다이오드 칩과, 4개의 파장대역을 이용하여 광신호를 수신하기 위해 각기 다른 파장대역을 사용하는 4개의 광수신소자인 포토 다이오드 칩이 적용될 수 있다.On the other hand, in the optical communication system according to an embodiment of the present invention, four wavelength bands laser diode chip and four wavelength bands using different wavelength bands for transmitting optical signals using four wavelength bands, Photodiode chips, which are four optical receiving elements using different wavelength bands for receiving optical signals, can be applied.
따라서, 4개의 광송신소자로서는, 파장대역과 관련된 전술한 조건을 모두 만족하기 위해서 GaAs를 기판으로 하는 3종류의 레이저 다이오드 칩과 InP를 기판으로 하는 한 종류의 레이저 다이오드 칩으로 구현될 수 있다.Therefore, as the four optical transmitters, three kinds of laser diode chips using GaAs as a substrate and one type of laser diode chips using InP as substrates can be implemented to satisfy all of the above-described conditions related to the wavelength band.
현재 세계적으로 많이 사용되고 있는 레이저 다이오드 칩의 발진 파장대역은 780nm, 850nm, 980nm, 1060nm, 1310nm, 1550nm 등을 예로 들 수 있다.Oscillating wavelength bands of laser diode chips, which are widely used in the world, are 780 nm, 850 nm, 980 nm, 1060 nm, 1310 nm, and 1550 nm.
이러한 기존의 상용화 된 레이저 다이오드 칩을 사용하기 위해서 가장 적절한 파장대역의 분배는 예컨대, 제1송신파장대역(λ1):780nm, 제1수신파장대역(λ2):980nm, 제2송신파장대역(λ3):1060nm, 제2수신파장대역(λ4):1310nm으로 설정하거나, 제1송신파장대역(λ1):780nm, 제1수신파장대역(λ2):930nm, 제2송신파장대역(λ3):990nm, 제2수신파장대역(λ4):1250nm등과 같이 약간의 파장대역의 변화를 두는 것 또한 가능하다.In order to use such a conventional commercialized laser diode chip, the most suitable wavelength band distribution is, for example, a first transmission wavelength band (λ1): 780 nm, a first reception wavelength band (λ2): 980 nm, and a second transmission wavelength band (λ3). ): 1060 nm, second receiving wavelength band (λ4): 1310 nm, or first transmitting wavelength band (λ1): 780 nm, first receiving wavelength band (λ2): 930 nm, second transmitting wavelength band (λ3): 990 nm It is also possible to make slight changes in the wavelength band, such as the second received wavelength band? 4: 1250nm.
약간의 손실을 고려하면 제1송신파장대역(λ1)을 750nm에서 시작하는 것도 가능하며, 제2송신파장대역(λ3)을 1060nm로 설정하는 경우에는 제1송신파장대역(λ1)과 제2송신파장대역(λ3) 사이의 파장대역 차이는 310nm에 해당된다.Considering the slight loss, it is also possible to start the first transmission wavelength band lambda 1 at 750 nm, and when the second transmission wavelength band lambda 3 is set to 1060 nm, the first transmission wavelength band lambda 1 and the second transmission. The wavelength band difference between the wavelength band lambda 3 corresponds to 310 nm.
이러한 310nm 파장대역 차이에, 제 1 광소자(100) 및 제 2 광소자(200) 내부에 배치되는 파장선택성필터에 필요한 파장대역 차이 150nm 또는 약간의 손실을 고려하면 130nm 이상이 보장되어야 하며, 제 1 광소자(100)와 제 2 광소자(200)와의 파장대역 차이 즉, 제1수신파장대역(λ2)과, 제2송신파장대역(λ3) 사이의 파장대역 차이인 40nm 이상이 보장되어야 한다.In consideration of the 310 nm wavelength band difference, when the wavelength band difference 150 nm or a slight loss required for the wavelength selective filter disposed inside the first optical device 100 and the second optical device 200 is considered, 130 nm or more must be ensured. The wavelength band difference between the first optical device 100 and the second optical device 200, that is, the wavelength band difference between the first reception wavelength band λ 2 and the second transmission wavelength band λ 3, must be guaranteed to be 40 nm or more. .
따라서, 제 1 광소자(100)에서 사용하는 제1파장대역의 경우, 130nm 내지 270nm 이하의 파장대역 차이를 가져야 하며, 제 1 광소자(100)와 제 2 광소자(200)에서의 파장대역 차이는 40nm 내지 180nm 이하로 설정되어야 하며, 제 2 광소자(200)에서 사용하는 제2파장대역의 경우, 장파장 쪽의 파장대역은 가능한 짧은 1200nm∼1400nm 정도가 되는 것이 바람직하다.  Therefore, in the case of the first wavelength band used in the first optical device 100, the wavelength band difference between 130 nm and 270 nm or less must be different, and the wavelength band in the first optical device 100 and the second optical device 200 is different. The difference should be set to 40 nm to 180 nm or less, and in the case of the second wavelength band used in the second optical device 200, the wavelength band on the longer wavelength side is preferably as short as 1200 nm to 1400 nm.
도 9를 참조하면, 제 1 광소자(100) 및 제 2 광소자(200)에서 각각의 광수신소자로서 적용된 GaAs를 기판으로 하는 포토 다이오드에서의 파장대역에 따른 광반응도를 확인할 수 있다.Referring to FIG. 9, the photoreactivity of the first optical device 100 and the second optical device 200 according to the wavelength band of the photodiode having GaAs applied as the photoreceiving device as the substrate may be confirmed.
여기서, GaAs를 기반으로 하는 포토 다이오드 칩의 경우 780nm∼870nm에 적절히 반응하며 740nm 이하 및 880nm 이상에서는 광반응도가 매우 떨어짐을 알 수 있다.Here, it can be seen that the photodiode chip based on GaAs responds appropriately to 780 nm to 870 nm, and the photoreactivity is very poor at 740 nm or less and 880 nm or more.
또한, 도 10을 참조하면, 제 1 광소자(100) 및 제 2 광소자(200)에서 각각의 광수신소자로서 적용된 GaAs를 기판으로 하는 포토 다이오드에서의 파장대역에 따른 광반응도를 확인할 수 있다.In addition, referring to FIG. 10, it is possible to confirm the optical reactivity according to the wavelength band of the photodiode having GaAs applied as the photoreceiving element in the first optical device 100 and the second optical device 200 as a substrate. .
여기서, InP를 기판으로 하는 포토 다이오드 칩의 경우 950nm∼1600nm에서 광반응도가 좋으며 950nm이하에서는 광반응도가 급격히 떨어지는 것을 알 수 있다.Here, it can be seen that the photodiode chip having InP as a substrate has good photoreactivity at 950 nm to 1600 nm, and rapidly falls at 950 nm or less.
그러므로 900nm∼950nm 대역의 파장대역은 적절한 포토 다이오드 칩의 제작이 어려우므로 4 파장대역을 이용하는 광 통신에서는 사용하지 않는 것이 바람직하다.Therefore, the wavelength band in the 900 nm to 950 nm band is difficult to manufacture a suitable photodiode chip, so it is not preferable to use it in the optical communication using the four wavelength band.
결국, 파장선택성필터에서 가져야 할 파장 간격과 InP와 GaAs를 기반으로 하는 레이저 다이오드 칩에서 얻을 수 있는 파장대역 분포, InP와 GaAs를 기반으로 하는 포토 다이오드 칩에서의 광반응도와 광섬유(3000)에서의 전송 손실 및 광섬유(300)에서의 분산의 특성을 고려하여 볼 때, 가장 바람직한 파장 분포는 제1송신파장대역(λ1)은 730nm∼880nm, 제1수신파장대역(λ2)은 950nm∼1000nm, 제2송신파장대역(λ3)은 1010nm∼1080nm, 제2수신파장대역(λ4)은 1260nm∼1400nm의 파장대역을 가지는 것이 바람직할 것이다.As a result, the wavelength spacing required for the wavelength selective filter, the wavelength band distribution obtained from the laser diode chip based on InP and GaAs, the optical reactivity of the photodiode chip based on InP and GaAs, Considering the characteristics of transmission loss and dispersion in the optical fiber 300, the most preferable wavelength distribution is 730 nm to 880 nm for the first transmission wavelength band lambda 1, 950 nm to 1000 nm for the first reception wavelength band lambda 2, and It is preferable that the second transmission wavelength band? 3 has a wavelength band of 1010 nm to 1080 nm, and the second reception wavelength band? 4 has a wavelength band of 1260 nm to 1400 nm.
이러한 파장대역에서 기존 상용화된 레이저 다이오드 칩인 780nm, 980nm, 1060nm, 1310nm의 파장대역을 설정하는 것이 가장 바람직할 것이며, 각각의 레이저 다이오드 칩은 통상적으로 +/- 20nm 정도의 파장 오차를 가지므로 상온 기준에서 제1송신파장대역(λ1)은 780nm+/-20nm, 제1수신파장대역(λ2)은 980nm+/-20nm, 제2송신파장대역(λ3)은 1060nm+/-20nm, 제2수신파장대역(λ4)은 1310nm+/-20nm의 파장대역을 가지는 것이 가장 바람직할 것으로 예상된다.In this wavelength band, it is most desirable to set wavelength bands of 780nm, 980nm, 1060nm, and 1310nm, which are commercially available laser diode chips, and each laser diode chip typically has a wavelength error of about +/- 20nm. In the first transmission wavelength band λ1 is 780nm +/- 20nm, the first reception wavelength band λ2 is 980nm +/- 20nm, the second transmission wavelength band λ3 is 1060nm +/- 20nm, and the second reception wavelength band λ4 ) Is expected to have the most preferable wavelength of 1310nm + / -20nm.
도 11은 이미 설명한 양방향 통신용 광모듈(1000, 2000) 2개를 하나의 트랜시버로 묶어 하나의 제품으로 활용하게 되는 경우를 보인다. 서로 다른 광섬유를 사용하는 신호 사이에는 어떠한 신호간의 간섭도 없으므로 하나의 트랜시버에 들어가는 2개의 양방향 통신용 광모듈은 완전히 독립적인 광모듈이 되므로, 2개의 광섬유를 이용하여 4개의 광신호를 송신하고 4개의 광신호를 동시에 수신할 수 있게 된다. 이러한 구성은 종래의 QSFP 광 트랜시버에서 구현하는 기능과 완전히 동일하므로 종래의 QSFP를 대체 할 수 있으며, 더 나아가 종래의 QSFP 광트랜시버에서 요구되는 12심의 광섬유를 종래에 이미 포설되어 있는 2심의 duplexer type 광섬유로 대체 할 수 있게 하여줌으로써 경제적 이익이 상당하다.FIG. 11 illustrates a case in which two optical modules 1000 and 2000 for bidirectional communication described above are combined into one transceiver and used as one product. Since there is no signal interference between signals using different optical fibers, the two bidirectional communication optical modules in one transceiver become completely independent optical modules. Therefore, four optical signals are transmitted using two optical fibers and four The optical signal can be simultaneously received. Since this configuration is exactly the same as the function implemented in the conventional QSFP optical transceiver, it is possible to replace the conventional QSFP, and furthermore, the two-core duplexer type optical fiber that already has 12 core optical fiber required in the conventional QSFP optical transceiver. The economic benefits are substantial by allowing them to be replaced by
이상에서 살펴본 바와 같이, 본 발명의 일 실시예에 따른 양방향 통신용 광트랜시버는 2개의 양방향 통신용 광모듈장치(1000, 2000)를 동시에 내장하고, 각각의 양방향 통신용 광모듈 장치(1000,200)은 제 1 광소자(100) 및 제 2 광소자(200)를 하나로 묶어 4개의 파장대역을 이용한 광통신이 이루어지게 되므로 통신 용량의 증대를 가져올 수 있다.As described above, an optical transceiver for bidirectional communication according to an embodiment of the present invention simultaneously embeds two optical module devices 1000 and 2000 for bidirectional communication, and each optical module device 1000 and 200 for bidirectional communication is provided. Since the optical communication using the four wavelength bands is made by tying the first optical device 100 and the second optical device 200 into one, the communication capacity can be increased.
또한, 제 1 광소자(100) 및 제 2 광소자(200)를 하나로 묶어 하나의 광모듈장치(1000)를 제작하는데 있어서, 양방향 일체형 광소자의 광축이 서로 직교하도록 레이아웃을 구성함으로써, 그 부피를 최소화하여 상용화되고 있는 기존 장치와의 호환이 용이하다.In addition, in manufacturing one optical module device 1000 by combining the first optical device 100 and the second optical device 200 into one, the layout may be configured such that the optical axes of the bidirectional integrated optical devices are orthogonal to each other, thereby increasing the volume thereof. It is easy to be compatible with existing devices that are being minimized and commercialized.
그 밖에, 제 1 광소자(100) 및 제 2 광소자(200)를 구성함에 있어서, 열발생이 많은 전치증폭기(180)가 외부로의 열방출이 용이하도록 스템(110) 바닥면에 부착되도록 레이아웃을 구성함으로써, 광소자 내부의 온도 상승을 최소화하여 온도상승에 따른 내부 소자의 특성 악화를 방지할 수 있다.In addition, in configuring the first optical device 100 and the second optical device 200, the pre-amplifier 180, which generates a lot of heat, is attached to the bottom surface of the stem 110 to facilitate heat dissipation to the outside. By constructing the layout, it is possible to minimize the temperature rise inside the optical device and to prevent deterioration of characteristics of the internal device due to the temperature rise.
지금까지 본 발명을 바람직한 실시 예를 참조하여 상세히 설명하였지만, 본 발명이 상기한 실시 예에 한정되는 것은 아니며, 하기의 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 또는 수정이 가능한 범위까지 본 발명의 기술적 사상이 미친다 할 것이다.Although the present invention has been described in detail with reference to preferred embodiments, the present invention is not limited to the above-described embodiments, and the technical field to which the present invention belongs without departing from the gist of the present invention as claimed in the following claims. Anyone skilled in the art will have the technical idea of the present invention to the extent that various modifications or changes are possible.
특히 종래의 QSFP에서는 포토 다이오드 칩과 인접한 위치에 전치증폭기가 배치되지 않는 구조이므로, 본 발명에서도 전치 증폭기는 광소자에서 제거될 수 있다.In particular, in the conventional QSFP, since the preamplifier is not disposed at a position adjacent to the photodiode chip, the preamplifier may be removed from the optical device in the present invention.
이와 같이, 전치증폭기가 제거된 경우에는 TO can형의 외형을 가지는 제 1 광소자 또는 제 2 광소자에 많은 열을 발생하는 소자가 없어지게 되므로, 이러한 경우 굳이 포토 다이오드를 광소자 바닥에 배치하고 레이저 다이오드를 포토 다이오드 상부의 일측에 붙여 부착하는 것이 불필요해진다. As such, when the preamplifier is removed, a device that generates a lot of heat in the first optical device or the second optical device having the TO can type is eliminated. In this case, the photodiode must be placed on the bottom of the optical device. It is unnecessary to attach the laser diode to one side of the upper part of the photodiode.
즉, 제 1 광소자에 2개의 레이저 다이오드 칩을 배치하고 제 2 광소자에 2개의 포토 다이오드를 배치하는 것이 가능하다. 도 12는 제 1의 광소자에 제 1의 파장을 발산하는 레이저 다이오드 칩(190)과 제 2의 파장을 발산하는 레이저 다이오드 칩(191)이 배치된 경우의 제 1 광소자의 모습을 보여준다. 이 경우 제 2의 광소자에는 제 3의 파장을 수신하는 포토 다이오드 칩과 제 4의 파장을 수신하는 포토 다이오드 칩이 배치된다.That is, it is possible to arrange two laser diode chips in the first optical element and two photo diodes in the second optical element. FIG. 12 shows the first optical device when the laser diode chip 190 emitting the first wavelength and the laser diode chip 191 emitting the second wavelength are arranged in the first optical device. In this case, the photodiode chip receiving the third wavelength and the photodiode chip receiving the fourth wavelength are disposed in the second optical element.
도 13은 제 1의 광소자에 2개의 레이저 다이오드 칩이 배치되고 제 2의 광소자에 2개의 포토 다이오드 칩이 배치된 광소자를 광축이 수직이 되도록 묶는 형태로 제작되는 광모듈 장치를 나타내고 있다. 도 13의 형태로 제작되는 광모듈에 있어서 2개의 파장을 송신하고 2개의 파장을 수신하는 점에 있어서는 도 6에 도시된 광모듈의 기능을 그대로 수행한다. 그러나 도 13의 구조에서는 각각의 광소자에 레이저 다이오드 칩(190)(191)이 배치되거나 포토 다이오드 칩(195)(196)가 배치된다는 점이 도 6의 광모듈의 특성과는 다르다. 도 6의 배치에서는 하나의 광소자에 레이저 다이오드 칩과 레이저 다이오드 칩에서 발산되는 레이저 빛을 수신하는 포토 다이오드 칩이 동시에 내장되므로 광소자에 동시에 내장되는 레이저 다이오드 칩으로부터 발산되는 레이저 빛이 광소자에 동시에 내장되는 포토 다이오드 칩으로 누설되어 포토 다이오드 칩에 잡음으로 작용할 수 있다. 그러므로 도 13에서와 같이 하나의 광소자에 2 개의 레이저 다이오드 칩이 배치되던지, 또는 하나의 광소자에 두 개의 포토 다이오드 칩이 배치될 경우 하나의 광소자에 레이저 다이오드 칩과 포토 다이오드 칩을 동시에 배치할 때에 비해 잡음이 줄어들게 된다. FIG. 13 illustrates an optical module device in which two laser diode chips are disposed on a first optical element and two optical diode chips are disposed on a second optical element to bundle the optical elements vertically. In the optical module manufactured in the form of FIG. 13, two wavelengths are transmitted and two wavelengths are received, thereby performing the function of the optical module shown in FIG. 6. 13 differs from the characteristics of the optical module of FIG. 6 in that laser diode chips 190 and 191 or photodiode chips 195 and 196 are disposed in each optical device. In the arrangement of FIG. 6, since the laser diode chip and the photodiode chip receiving the laser light emitted from the laser diode chip are simultaneously embedded in one optical device, the laser light emitted from the laser diode chip simultaneously embedded in the optical device is transferred to the optical device. At the same time, leakage into the built-in photodiode chip can cause noise in the photodiode chip. Therefore, as shown in FIG. 13, when two laser diode chips are disposed in one optical element, or when two photo diode chips are disposed in one optical element, the laser diode chip and the photo diode chip may be simultaneously placed in one optical element. The noise is reduced compared to the placement.
이와 같이 하나의 광소자에 2개의 레이저 다이오드 칩을 장착한 광소자와 다른 하나의 광소자에 2개의 포토 다이오드를 장착한 광소자 2개를 묶어 4파장 광통신을 이루는 광모듈을 도 13을 통하여 설명하였다. 그러나, 다른 한편으로 광모듈의 하나의 광소자에 2개의 레이저 다이오드 칩을 부착하고 다른 하나의 광소자에 2개의 다른 파장의 레이저 다이오드 칩을 부착하여 하나의 광모듈에 4개의 레이저 다이오드 칩을 구비하고, 다른 하나의 광모듈에 4개의 파장에 대응하는 포토 다이오드를 부착하는 방법으로 QSFP를 제작하는 방법도 가능하다. 이러한 형태로 제작되는 광모듈의 일례를 도 14에 도시하였다. 이 경우 4개의 레이저 다이오드 칩(190)(191)(192)(193)은 모두 하나의 광모듈에 배치되게 되고, 4개의 포토 다이오드는 다른 광모듈에 배치되게 된다. 이렇게 배치할 경우 레이저 다이오드용 전기 신호를 보내는 전기선을 모두 한쪽으로 몰아서 배치할 수 있으므로 QSFP의 제작이 용이하여진다. As described above with reference to FIG. 13, an optical module for four-wavelength optical communication by tying two optical devices having two laser diode chips in one optical device and two optical devices having two photo diodes in another optical device is described with reference to FIG. 13. It was. However, on the other hand, two laser diode chips are attached to one optical element of the optical module and two laser diode chips of different wavelengths are attached to the other optical element, so that four laser diode chips are provided in one optical module. In addition, a method of manufacturing a QSFP may be possible by attaching photodiodes corresponding to four wavelengths to another optical module. An example of an optical module manufactured in such a form is illustrated in FIG. 14. In this case, all four laser diode chips 190, 191, 192, and 193 are disposed in one optical module, and four photodiodes are disposed in another optical module. In this arrangement, all of the electric lines for transmitting the electrical signal for the laser diode can be driven to one side, whereby the QSFP can be easily manufactured.
도 15는 종래의 QSFP형 트랜시버 케이스의 외형을 나타낸 것이다. 도 15에서 폭이 16.45mm에 해당하는 공간이 레이저 다이오드 칩 드라이버 IC 등이 배치되는 공간이며, 광모듈이 배치될 수 있는 공간은 도 15의 10.9mm 영역과 13.65mm 영역이다. 그러나 본 발명에서 사용되는 2개의 레이저 다이오드 칩 또는 포토 다이오드 칩이 포함되는 광소자를 이용하여 4 파장에 대응가능한 광모듈을 제작할 경우 광모듈의 폭은 최소 8.5mm 이상이다. 그러므로 이러한 규격의 광모듈 2개를 병렬로 배치하여 QSFP의 내부 공간에 배치할 수 없다. Figure 15 shows the appearance of a conventional QSFP-type transceiver case. In FIG. 15, a space corresponding to 16.45 mm in width is a space in which a laser diode chip driver IC or the like is disposed, and spaces in which an optical module is disposed are 10.9 mm and 13.65 mm in FIG. 15. However, when fabricating an optical module corresponding to four wavelengths by using an optical device including two laser diode chips or photo diode chips used in the present invention, the width of the optical module is at least 8.5 mm. Therefore, two optical modules of this specification cannot be arranged in parallel in the internal space of the QSFP.
이러한 어려움은 도 16과 같이 광모듈을 병렬로 배치하지 않고 QSFP 트랜시버의 길이 방향으로 다른 위치에 배치하되 최소한 하나의 광모듈은 외부 광섬유와 광 결합을 하기 위한 Receptacle(3300)과 광섬유(3100)로 연결하는 형태를 가지게 함으로써 해결할 수 있다. This difficulty is to place the optical modules in different positions in the longitudinal direction of the QSFP transceiver without placing the optical modules in parallel as shown in Figure 16, at least one optical module to the receptacle (3300) and the optical fiber (3100) for optical coupling with the external optical fiber This can be solved by having a form of connection.
한편, 상기 도 13과 도 14의 4파장을 이용한 광통신용 광모듈은 다른 방식으로도 구현될 수 있다. Meanwhile, the optical module for optical communication using the four wavelengths of FIGS. 13 and 14 may be implemented in other manners.
도 17은 본 발명의 다른 실시예에 적용되는 이중 광섬유 시준화장치(dual fiber collimator)(4000)의 모습을 보여준다. 도 17에서 도면부호 3400과 3450은 광섬유를 나타낸다. 외부에서 광섬유(3400)을 통하여 전송되어 온 광신호는 굴절률 변화형 렌즈(Graded index lens: Grin lens)(3600)을 통하여 평행광으로 변화되어 파장선택성필터(3700)으로 입사한다. 파장선택성필터(3700)에 도달한 빛 중에서 파장선택성필터(3700)를 투과하는 성분(3900)은 이중 광섬유 시준화 장치(4000)를 탈출하여 광수신에 사용된다. 한편, 파장선택성필터(3700)에서 반사된 성분의 레이저 빛(3950)은 또 다른 광섬유(3450)로 입사하여 이 광섬유(3450)을 통하여 진행한다. 이러한 기능을 가지는 이중 광섬유 시준화장치(4000)는 빛의 반대 방향 진행에 대해서도 동일하게 적용된다. 17 shows the appearance of a dual fiber collimator 4000 applied to another embodiment of the present invention. In FIG. 17, reference numerals 3400 and 3450 denote optical fibers. The optical signal transmitted from the outside through the optical fiber 3400 is converted into parallel light through a refractive index lens (Grin lens) 3600 and is incident to the wavelength selective filter 3700. Among the light reaching the wavelength selective filter 3700, the component 3900 that passes through the wavelength selective filter 3700 escapes the dual optical fiber collimation device 4000 and is used for light reception. On the other hand, the laser light 3950 of the component reflected by the wavelength selective filter 3700 enters another optical fiber 3450 and proceeds through the optical fiber 3450. The dual optical fiber collimation apparatus 4000 having such a function is equally applied to the light traveling in the opposite direction.
도 18은 이중 광섬유 시준화장치(4000)와 2개의 양방향 통신용 광소자(100, 200)를 이용하여 4개의 파장으로 광통신을 하는 광모듈을 보여준다. 도 18에서, 광소자(100)에서 활용되는 광파장은 이중 광섬유 시준화장치(4000)의 광파장선택성필터를 투과하는 광 경로상에 배치되며, 광소자(200)에서 활용되는 광파장은 파장선택성 필터에서 반사되는 광 경로상의 광섬유와 광 결합하게 배치된다. FIG. 18 shows an optical module for optical communication at four wavelengths using the dual fiber collimating device 4000 and two bidirectional communication optical devices 100 and 200. In FIG. 18, the optical wavelength utilized in the optical device 100 is disposed on an optical path passing through the optical wavelength selective filter of the dual optical fiber collimation device 4000, and the optical wavelength utilized in the optical device 200 is used in the wavelength selective filter. Disposed in optical coupling with the optical fiber on the reflected optical path.
이러한 도 18의 이중 광섬유 시준화장치(4000)와 각각이 2개 파장의 광신호에 대응하는 광소자 2개(100, 200)를 결합한 장치는 매우 작은 크기로 4개의 광파장을 처리할 수 있는 기능을 가지게 된다. The dual optical fiber collimation apparatus 4000 of FIG. 18 and two optical devices 100 and 200, each of which corresponds to an optical signal having two wavelengths, are capable of processing four optical wavelengths with a very small size. Will have
도 19는 이중 광섬유 시준화장치(4000)와 각각이 2개의 광신호에 대응 가능한 광소자 2개를 결합하여 4개의 광파장에 대응 가능한 광모듈을 제작하고, 이러한 방법으로 제작된 2개의 광모듈을 하나의 트랜시버에 장착하여 4개 파장의 광신호를 전송하고 4개 파장의 광신호를 수신할 수 있도록 제작된 QSFP 트랜시버 일례를 나타낸 것이다. FIG. 19 illustrates an optical module capable of responding to four optical wavelengths by combining a dual optical fiber collimation apparatus 4000 and two optical elements each corresponding to two optical signals, and manufacturing two optical modules manufactured in this manner. An example of a QSFP transceiver, which is mounted on one transceiver, transmits an optical signal of four wavelengths and receives an optical signal of four wavelengths.
도 19에서 4개의 파장을 송신하고, 4개의 파장을 수신하는 레이저 다이오드 칩과 포토 다이오드 칩은 다양한 방법으로 배치될 수 있다. 즉 하나의 광소자에 2개의 레이저 다이오드 칩을 배치하거나, 하나의 광소자에 2개의 포토 다이오드 칩을 배치하거나, 또는 하나의 광소자에 하나의 레이저 다이오드 칩과 하나의 포토 다이오드 칩을 배치하는 방법이 가능하여 진다. 파장선택성필터는 레이저 빛의 진행 방향과는 무관하게 레이저 빛의 파장에만 의존하여 빛을 투과 또는 반사시키므로 하나의 광소자에 내장되는 반도체 칩이 파장선택성필터에 의해 분리되는 파장이기만 하면 어떤 반도체 칩의 조합도 사용이 가능하다. 또한 2개의 광소자를 하나의 광모듈로 결합하는 방법에 있어서도, 4개의 레이저 다이오드 칩을 하나의 광모듈로 결합시키는 방법과, 4개의 포토 다이오드를 하나의 광모듈로 결합시키는 방법과, 2개의 레이저 다이오드 칩과 2개의 포토 다이오드 칩을 하나의 광모듈로 결합하는 방법이 가능하다. 2개의 레이저 다이오드 칩과 2개의 포토 다이오드 칩을 하나의 광모듈로 결합하는 방법에 있어서 레이저 다이오드 칩과 포토 다이오드 칩을 각각 분리하여 광소자로 구성하는 방법과 하나의 광소자에 레이저 다이오드 칩과 하나의 포토 다이오드 칩을 동시에 내장하는 방법 등 여러 가지 배치 구조가 가능하다.In FIG. 19, a laser diode chip and a photo diode chip that transmit four wavelengths and receive four wavelengths may be arranged in various ways. That is, a method of disposing two laser diode chips in one optical device, two photo diode chips in one optical device, or one laser diode chip and one photo diode chip in one optical device. This is possible. The wavelength selective filter transmits or reflects light depending on the wavelength of the laser light irrespective of the laser light propagation direction. Therefore, as long as the semiconductor chip embedded in one optical element is a wavelength separated by the wavelength selective filter, Combinations can also be used. Also in the method of combining two optical elements into one optical module, a method of combining four laser diode chips into one optical module, a method of combining four photo diodes into one optical module, and two lasers It is possible to combine a diode chip and two photodiode chips into one optical module. In the method of combining two laser diode chips and two photodiode chips into one optical module, a method of separating the laser diode chip and the photodiode chip into an optical device and configuring the optical device in one optical device and the laser diode chip and one Various arrangements are possible, such as a method of embedding a photodiode chip simultaneously.
한편, 본 발명의 실시예에서 굴절률 변화형 렌즈(3600)를 이용하는 방법을 예시하였지만, 굴절률 변화형 렌즈(3600)와 파장선택성필터(3700)를 파장선택성필터가 코팅된 오목형 렌즈로 교체하는 것도 가능하다. 이러한 구조에서는 하나의 광섬유(3400)에서 발산된 레이저 빛 중에서 오목형의 렌즈 구조를 가지는 렌즈에 코팅된 파장선택성필터에 반사된 빛은 오목형 렌즈 형태에 의해 또 다른 광섬유(3450)로 집속되게 되어 이중 광섬유 시준화 렌즈(4000)의 기능을 수행하게 된다.Meanwhile, although the method of using the refractive index variable lens 3600 is illustrated in the embodiment of the present invention, the refractive index variable lens 3600 and the wavelength selective filter 3700 may be replaced with a concave lens coated with the wavelength selective filter. It is possible. In this structure, the light reflected by the wavelength selective filter coated on the lens having the concave lens structure among the laser light emitted from one optical fiber 3400 is focused to another optical fiber 3450 by the concave lens shape. The dual optical fiber collimation lens 4000 performs a function.
이와 같이, 본 발명은 상술한 실시예에 한정되는 것이 아니며 본 발명이 속하는 기술 분야에서 통상의 지식을 갖춘 자에 의해 본 발명의 기술사상과 아래의 기재될 특허청구 범위의 균등범위 내에서 다양한 수정 및 변형이 이루어질 수 있음은 물론이다.As such, the present invention is not limited to the above-described embodiments and various modifications within the equivalent scope of the technical concept of the present invention and the claims to be described below by those skilled in the art to which the present invention pertains. And of course modifications can be made.
본 발명에 따르면, 2개 파장대역을 이용하여 광신호를 송수신하는 양방향 일체형 광소자 2개를 일체화하여 하나의 광섬유를 통해서 동시에 4개 파장대역의 광신호를 송수신하도록 하며, 이러한 양방향 통신용 광모듈 장치 2개를 하나의 트랜시버로 구현함으로써, 종래의 QSFP에서 필요한 12심의 광섬유가 아니라 단지 2심의 광섬유를 통하여 4개의 광신호를 송신하고 4개의 광신호를 수신하는 QSFP의 기능을 하게 함으로써 기존 기술의 한계를 뛰어 넘음에 따라 관련 기술에 대한 이용만이 아닌 적용되는 장치의 시판 또는 영업의 가능성이 충분할 뿐만 아니라 현실적으로 명백하게 실시할 수 있는 정도이므로 산업상 이용가능성이 있는 발명이다.According to the present invention, two bidirectional integrated optical devices for transmitting and receiving optical signals using two wavelength bands are integrated to transmit and receive optical signals of four wavelength bands simultaneously through one optical fiber. Limiting the existing technology by implementing two as one transceiver, it functions as a QSFP that transmits four optical signals and receives four optical signals through only two core optical fibers, not the 12 core optical fibers required in the conventional QSFP. The invention is an industrially available invention because it is not only sufficient for the use of the related technology but also the possibility of marketing or operating the applied device as well as being practically obvious.
[부호의 설명][Description of the code]
1000, 2000 : 광모듈장치1000, 2000: optical module device
100 : 제 1 광소자100: first optical element
105 : 스템에서 전극핀을 스템과 결합하는 유리 밀봉재105: glass seal for joining electrode pins to stem
110 : 스템 베이스 금속110: stem base metal
111 : 스템 전극핀 111: stem electrode pin
120 : 쐐기형 서브마운트120: wedge submount
130 : 레이저 다이오드 칩130: laser diode chip
131 : 레이저 다이오드용 서브마운트131: submount for laser diode
140 : TO can형 패키지의 뚜껑 캡140: lid cap of the TO can package
150 : TO can형 패키지의 뚜껑에 설치되는 렌즈150: Lens installed on the lid of TO can package
160 : 45도 파장선택성필터160: 45 degree wavelength selective filter
170 : 포토 다이오드 칩170: photodiode chip
171 : 포토 다이오드용 서브마운트171: submount for photodiode
180 : 전치 증폭기180: preamplifier
190 : 제 1 파장을 가지는 레이저 다이오드 칩190: laser diode chip having a first wavelength
191 : 제 2 파장을 가지는 레이저 다이오드 칩191: laser diode chip having a second wavelength
192 : 제 3의 파장을 가지는 레이저 다이오드 칩192: laser diode chip having a third wavelength
193 : 제 4의 파장을 가지는 레이저 다이오드 칩193: laser diode chip having a fourth wavelength
195 : 제 3 파장을 수신하는 포토 다이오드 칩195: photodiode chip receiving a third wavelength
196 : 제 4 파장을 수신하는 포토 다이오드 칩196: photodiode chip receiving a fourth wavelength
200 : 제 2 광소자200: second optical element
300, 3700 : 파장선택성필터300, 3700: wavelength selective filter
3000, 3100, 3400, 3450 : 광섬유3000, 3100, 3400, 3450: Fiber Optic
3300 : 외부 광섬유와 광결합하기 위한 receptacle3300: receptacle for optical coupling with external optical fiber
3600 : 굴절률 변화형 렌즈3600: refractive index variable lens
3900, 3950 : 광경로3900, 3950: light path

Claims (16)

  1. 제 1 광축을 기초로 광신호를 송신하거나 수신 또는 동시에 송수신하는 제 1 광소자,A first optical element transmitting, receiving or simultaneously transmitting and receiving an optical signal based on the first optical axis,
    상기 제 1 광축과 직교하도록 형성된 제 2 광축을 기초로 광신호를 송신하거나 수신 또는 동시에 송수신하는 제 2 광소자, A second optical element for transmitting, receiving or simultaneously transmitting and receiving an optical signal based on a second optical axis formed to be orthogonal to the first optical axis,
    상기 제 1 광축과 상기 제 2 광축이 교차하는 교차점에서 광신호의 송수신 경로를 결정하여 상기 제 1 광소자 및 상기 제 2 광소자 모두가 하나의 광섬유를 통해서 광신호를 송수신하도록 하는 파장선택성필터가 구비된 광모듈장치;를 포함하여 이루어지는 것을 특징으로 하는 양방향 통신용 광트랜시버.A wavelength selective filter for determining an optical signal transmission / reception path at an intersection point of the first optical axis and the second optical axis so that both the first optical element and the second optical element transmit and receive an optical signal through one optical fiber; Optical transceiver for bidirectional communication comprising a; optical module device provided.
  2. 2개의 파장의 광신호를 송신하거나 수신 또는 동시에 송수신하는 하는 제 1 광소자,A first optical element for transmitting, receiving, or simultaneously transmitting and receiving an optical signal having two wavelengths,
    상기 제 1 광소자의 광신호 파장과 다른 2개 파장의 광신호를 송신하거나 수신 또는 동시에 송수신하는 제 2 광소자,A second optical element for transmitting, receiving or simultaneously transmitting and receiving an optical signal having two wavelengths different from the optical signal wavelength of the first optical element,
    상기 제 1 광소자와 제 2 광소자는 광섬유로 연결되고, 상기 제 1 광소자는 일측에 배치된 파장선택성필터를 투과하여 외부와 연결되는 광섬유와 신호를 송수신하고, 상기 제 2 광소자는 상기 제 1 광소자의 일측에 배치된 파장선택성필터에 의한 반사를 통하여 외부와 연결하는 광섬유와 신호를 송수신하는 광모듈장치;를 포함하여 이루어지는 것을 특징으로 하는 양방향 통신용 광트랜시버.The first optical element and the second optical element are connected by an optical fiber, the first optical element transmits and receives a signal with an optical fiber connected to the outside through a wavelength selective filter disposed on one side, the second optical element is the first optical element And an optical module device for transmitting and receiving a signal with an optical fiber connected to the outside through reflection by a wavelength selective filter disposed at one side of the ruler.
  3. 제 1 항 또는 제 2 항에 있어서, The method according to claim 1 or 2,
    상기 2개의 광모듈장치는 하나의 트랜시버에 내장되어, 2개의 광섬유를 통하여 4개의 광신호를 송신하고 동시에 4개의 광신호를 수신할 수 있도록 하는 것을 특징으로 하는 양방향 통신용 광트랜시버.The two optical module devices are embedded in one transceiver, so that four optical signals can be transmitted through two optical fibers and four optical signals can be simultaneously received.
  4. 제 3 항에 있어서, The method of claim 3, wherein
    상기 2개의 광모듈장치 중 어느 하나의 광모듈장치의 제 1 광소자에는 제 1의 파장을 발산하는 레이저 다이오드 칩과 제 2의 파장을 발산하는 레이저 다이오드 칩이 배치되고, 상기 제 2 광소자에는 제 3의 파장을 발산하는 레이저 다이오드 칩과 제 4의 파장을 발산하는 레이저 다이오드 칩이 구비되며, A laser diode chip emitting a first wavelength and a laser diode chip emitting a second wavelength are disposed in a first optical element of any one of the two optical module devices, and in the second optical element. A laser diode chip emitting a third wavelength and a laser diode chip emitting a fourth wavelength are provided.
    다른 하나의 광모듈장치의 제 1 광소자에는 제 1의 파장을 수신하는 포토 다이오드 칩과 제 2의 파장을 수신하는 포토 다이오드 칩이 배치되고, 상기 제 2 광소자에는 제 3의 파장을 수신하는 포토 다이오드 칩과 제 4의 파장을 수신하는 포토 다이오드 칩이 구비되는 것을 특징으로 하는 양방향 통신용 광트랜시버.A photodiode chip receiving a first wavelength and a photodiode chip receiving a second wavelength are disposed in a first optical element of another optical module device, and a third wavelength is received in the second optical element. An optical transceiver for bidirectional communication, comprising: a photodiode chip and a photodiode chip receiving a fourth wavelength.
  5. 제 3 항에 있어서,The method of claim 3, wherein
    상기 2개의 광모듈장치 중 어느 하나의 광모듈장치의 제 1 광소자에는 제 1의 파장을 발산하는 레이저 다이오드 칩과 제 2의 파장을 발산하는 레이저 다이오드 칩이 배치되고, 상기 제 2 광소자에는 제 3의 파장을 수신하는 포토 다이오드 칩과 제 4의 파장을 수신하는 포토 다이오드 칩이 구비되며, A laser diode chip emitting a first wavelength and a laser diode chip emitting a second wavelength are disposed in a first optical element of any one of the two optical module devices, and in the second optical element. A photodiode chip receiving a third wavelength and a photodiode chip receiving a fourth wavelength are provided.
    다른 하나의 광모듈장치의 제 1 광소자에는 제 1의 파장을 수신하는 포토 다이오드 칩과 제 2의 파장을 수신하는 포토 다이오드 칩이 배치되고, 상기 제 2 광소자에는 제 3의 파장을 발산하는 레이저 다이오드 칩과 제 4의 파장을 발산하는 레이저 다이오드 칩이 구비되는 것을 특징으로 하는 양방향 통신용 광트랜시버.A photodiode chip receiving a first wavelength and a photodiode chip receiving a second wavelength are disposed in a first optical element of another optical module device, and a third wavelength is emitted in the second optical element. An optical transceiver for bidirectional communication, comprising: a laser diode chip and a laser diode chip emitting a fourth wavelength.
  6. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서, The method according to any one of claims 1 to 3,
    상기 제 1 광소자에는 제 1의 파장을 발산하는 레이저 다이오드 칩과 제 2의 파장을 발산하는 레이저 다이오드 칩이 배치되고, In the first optical element, a laser diode chip emitting a first wavelength and a laser diode chip emitting a second wavelength are disposed.
    상기 제 2 광소자에는 제 3의 파장을 수신하는 포토 다이오드 칩과 제 4의 파장을 수신하는 포토 다이오드 칩이 구비되는 것을 특징으로 하는 양방향 통신용 광트랜시버.And the photodiode chip receiving the third wavelength and the photodiode chip receiving the fourth wavelength are provided in the second optical element.
  7. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서, The method according to any one of claims 1 to 3,
    상기 제 1 광소자에는 제 1의 파장을 발산하는 레이저 다이오드 칩과 제 2의 파장을 수신하는 포토 다이오드 칩이 배치되고, In the first optical device, a laser diode chip emitting a first wavelength and a photodiode chip receiving a second wavelength are disposed.
    상기 제 2 광소자에는 제 3의 파장을 발산하는 레이저 다이오드 칩과 제 4의 파장을 수신하는 포토 다이오드 칩이 구비되는 것을 특징으로 하는 양방향 통신용 광트랜시버.And the second optical device comprises a laser diode chip emitting a third wavelength and a photodiode chip receiving a fourth wavelength.
  8. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 광신호의 송수신 경로는,The transmission and reception path of the optical signal,
    상기 파장선택성필터에서 이루어지는 상기 광신호에 대한 투과 및 반사에 의해 결정되는 것을 특징으로 하는 양방향 통신용 광트랜시버.The optical transceiver for bidirectional communication, characterized in that determined by the transmission and reflection of the optical signal made by the wavelength selective filter.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 하나의 광섬유를 통해서 송수신되는 광신호에는,In the optical signal transmitted and received through the one optical fiber,
    제 1 파장대역 및 상기 제 1 파장대역과 기 설정된 파장대역 만큼의 차이를 갖는 제 2 파장대역이 포함되며,A first wavelength band and a second wavelength band having a difference by a predetermined wavelength band from the first wavelength band,
    상기 파장선택성필터는,The wavelength selective filter,
    상기 제 1 광소자 및 상기 제 2 광소자 중 어느 하나에서 송수신되는 광신호는 투과하고 나머지에서 송수신되는 광신호는 반사하여, 상기 제 1 광소자에서 상기 제 1 파장대역의 광신호를 송수신하도록 하며, 상기 제 2 광소자에서는 상기 제 2 파장대역의 광신호를 송수신하도록 하는 것을 특징으로 하는 양방향 통신용 광트랜시버. The optical signal transmitted and received by any one of the first optical device and the second optical device is transmitted, and the optical signal transmitted and received by the other is reflected to allow the first optical device to transmit and receive the optical signal of the first wavelength band. And the second optical device transmits and receives an optical signal of the second wavelength band.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 제 1 파장대역 및 상기 제 2 파장대역의 광신호 각각에는 기 설정된 파장만큼 차이를 갖는 2개의 광신호 파장이 포함되며, Each of the optical signals of the first wavelength band and the second wavelength band includes two optical signal wavelengths having a difference by a predetermined wavelength.
    상기 제 1 광소자 및 상기 제 2 광소자 각각은 상기 2개 파장의 광신호를 동시에 송신하거나 동시에 수신 또는 동시에 송수신하는 것을 특징으로 하는 양방향 통신용 광트랜시버.And each of the first optical element and the second optical element transmits, simultaneously receives, or simultaneously transmits and receives optical signals of the two wavelengths.
  11. 제 1 항 또는 제 3항에 있어서,The method according to claim 1 or 3,
    상기 파장선택성필터에는,The wavelength selective filter,
    상기 제 1 광축과 상기 제 2 광축이 교차하는 교차점에서 상기 제 1 광축 및 상기 제 2 광축 각각에 대한 수직면을 기준으로 기 설정된 경사각을 갖는 경사면이 포함되며,An inclined surface having a predetermined inclination angle based on a vertical plane with respect to each of the first optical axis and the second optical axis at an intersection point where the first optical axis and the second optical axis intersect,
    상기 경사면에서는,On the inclined surface,
    서로 다른 파장대역을 갖는 광신호 중 어느 하나의 광신호가 반사되며, 반사되지 않은 나머지 광신호는 상기 제 1 광축 또는 상기 제 2 광축을 따라서 투과되는 것을 특징으로 하는 양방향 통신용 광트랜시버.The optical transceiver of any one of the optical signal having a different wavelength band is reflected, and the remaining non-reflected optical signal is transmitted along the first optical axis or the second optical axis.
  12. 제 2 항 또는 제 3 항에 있어서,The method of claim 2 or 3,
    상기 파장선택성필터에는,The wavelength selective filter,
    상기 제 1 광소자 및 제 2 광소자를 통하여 송수신되는 광신호의 광축이 서로 교차되는 교차점에서 각각의 광축으로부터 기 설정된 경사각을 갖는 경사면이 포함되며,An inclined surface having a predetermined inclination angle from each optical axis at intersections where optical axes of optical signals transmitted and received through the first optical device and the second optical device cross each other,
    상기 경사면에서는,On the inclined surface,
    서로 다른 파장대역을 갖는 광신호 중 어느 하나의 광신호가 반사되며, 반사되지 않은 나머지 광신호는 광축을 따라서 투과되는 것을 특징으로 하는 양방향 통신용 광트랜시버.The optical transceiver of any one of the optical signal having a different wavelength band is reflected, and the remaining non-reflected optical signal is transmitted along the optical axis, the optical transceiver for bidirectional communication.
  13. 제 3 항에 있어서,The method of claim 3, wherein
    상기 2개의 광모듈장치 중 적어도 어느 하나의 광모듈은 외부 광섬유와 광 결합하기 위한 receptacle을 통하여 광섬유와 연결되는 것을 특징으로 하는 양방향 통신용 광트랜시버.At least one optical module of the two optical module device is optical transceiver for bidirectional communication, characterized in that connected to the optical fiber through a receptacle for optical coupling with the external optical fiber.
  14. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 광섬유와 제 1 광소자 일측에 배치된 파장선택성필터 사이에는 렌즈가 배치되는 것을 특징으로 하는 양방향 통신용 광트랜시버.And a lens is disposed between the optical fiber and the wavelength selective filter disposed on one side of the first optical element.
  15. 제 14 항에 있어서,The method of claim 14,
    상기 렌즈는 굴절률 변화 렌즈(graded index lens)인 것을 특징으로 하는 양방향 통신용 광트랜시버.And said lens is a refractive index lens.
  16. 제 14 항에 있어서,The method of claim 14,
    상기 파장선택성필터는 상기 렌즈에 코팅되는 것을 특징으로 하는 양방향 통신용 광트랜시버. The wavelength selective filter is an optical transceiver for bidirectional communication, characterized in that the coating on the lens.
PCT/KR2015/000219 2014-04-14 2015-01-09 Bidirectional communication optical transceiver WO2015160073A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR20140044316 2014-04-14
KR10-2014-0044316 2014-04-14
KR10-2014-0058987 2014-05-16
KR20140058987 2014-05-16
KR10-2014-0059949 2014-05-19
KR20140059949 2014-05-19
KR1020140107202A KR20150118515A (en) 2014-04-14 2014-08-18 Optical transceiver for bi-directional data communication
KR10-2014-0107202 2014-08-18

Publications (1)

Publication Number Publication Date
WO2015160073A1 true WO2015160073A1 (en) 2015-10-22

Family

ID=54324241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/000219 WO2015160073A1 (en) 2014-04-14 2015-01-09 Bidirectional communication optical transceiver

Country Status (1)

Country Link
WO (1) WO2015160073A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116908970A (en) * 2023-06-25 2023-10-20 武汉海飞通光电子科技有限公司 Internal light path structure of COMBO device and COMBO device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012083424A (en) * 2010-10-07 2012-04-26 Sumitomo Electric Ind Ltd Optical module and optical data link
US20120189314A1 (en) * 2011-01-21 2012-07-26 Finisar Corporation Multi-laser transmitter optical subassembly
KR101227182B1 (en) * 2011-07-26 2013-01-28 주식회사 피엔에스 Optical module using lenz having coated concave plane
KR20130045583A (en) * 2011-10-26 2013-05-06 한국전자통신연구원 Multi-channel optical module
KR20140033559A (en) * 2012-08-30 2014-03-19 한국전자통신연구원 Bi-directional optical module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012083424A (en) * 2010-10-07 2012-04-26 Sumitomo Electric Ind Ltd Optical module and optical data link
US20120189314A1 (en) * 2011-01-21 2012-07-26 Finisar Corporation Multi-laser transmitter optical subassembly
KR101227182B1 (en) * 2011-07-26 2013-01-28 주식회사 피엔에스 Optical module using lenz having coated concave plane
KR20130045583A (en) * 2011-10-26 2013-05-06 한국전자통신연구원 Multi-channel optical module
KR20140033559A (en) * 2012-08-30 2014-03-19 한국전자통신연구원 Bi-directional optical module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116908970A (en) * 2023-06-25 2023-10-20 武汉海飞通光电子科技有限公司 Internal light path structure of COMBO device and COMBO device

Similar Documents

Publication Publication Date Title
US10042116B2 (en) Techniques for direct optical coupling of photodetectors to optical demultiplexer outputs and an optical transceiver using the same
US8380075B2 (en) Optical transceiver module
US11063671B2 (en) Method and system for redundant light sources by utilizing two inputs of an integrated modulator
KR101711691B1 (en) hybrid optical coupling module and manufacturing method thereof
WO2012039542A2 (en) Apparatus for wavelength-division multiplexing and demultiplexing
US8774578B2 (en) Optical module and manufacturing method thereof
EP3267606B1 (en) Method and system for selectable parallel optical fiber and wavelength division multiplexed operation
WO2017044422A1 (en) Multi-channel transmitter optical subassembly (tosa) with an optical coupling receptacle providing an off-center fiber
WO2011008041A2 (en) Wavelength division multiplexing optical module
US20160261092A1 (en) Temperature insensitive laser
US7142740B2 (en) Planar lightwave circuit type optical transceiver module
JP2009522622A (en) Method and system for integrated DWDM receiver
US11280970B2 (en) Beam steering structure with integrated polarization splitter
EP3988974A1 (en) Modulation chip and light emission module
US7171081B1 (en) Plug-in coupler to convert the transceiver (transmitter/receiver, tx/rx) transmission into a bi-directional fiber
US11320598B2 (en) Optical demultiplexer with truncated profile and an optical transceiver module implementing same
WO2019201318A1 (en) An optical transposer assembly
JPWO2020153236A1 (en) Optical communication equipment, optical communication method and optical communication system
CN111684739A (en) Optical structure and packaging structure of optical transceiver module and operation method
US20160231581A1 (en) Multiple Laser Optical Assembly
WO2015160073A1 (en) Bidirectional communication optical transceiver
CN1737619B (en) Optical duplexer and optical triplexer
CN112444926B (en) Light turning mirror with tilted output interface to increase coupling efficiency and multi-channel optical sub-assembly using the same
WO2010036081A2 (en) Optical module and method for manufacturing same
KR101961812B1 (en) Optical module for ftth overlay

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15779379

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20.02.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15779379

Country of ref document: EP

Kind code of ref document: A1