WO2015159958A1 - Method for producing polycarbonate resin - Google Patents

Method for producing polycarbonate resin Download PDF

Info

Publication number
WO2015159958A1
WO2015159958A1 PCT/JP2015/061746 JP2015061746W WO2015159958A1 WO 2015159958 A1 WO2015159958 A1 WO 2015159958A1 JP 2015061746 W JP2015061746 W JP 2015061746W WO 2015159958 A1 WO2015159958 A1 WO 2015159958A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction zone
polycarbonate resin
reaction
producing
polycarbonate
Prior art date
Application number
PCT/JP2015/061746
Other languages
French (fr)
Japanese (ja)
Inventor
幸子 長尾
菅 浩一
亜起 山田
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2015159958A1 publication Critical patent/WO2015159958A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes

Definitions

  • the present invention relates to a method for producing a polycarbonate resin. Specifically, the present invention relates to a method for producing a polycarbonate resin having a pentadecylphenoxy group at a terminal group by an interfacial polymerization method.
  • Polycarbonate resins have excellent characteristics such as transparency, heat resistance, and mechanical properties, and are used in a wide range of applications such as OA / home appliance casings, members in the electrical / electronic field, and optical materials such as lenses. In recent years, it has become necessary to further improve fluidity in response to demands for thinner and larger molded products and improved molding cycles.
  • a method of improving the fluidity of a molding material using a polycarbonate resin a method of using a plasticizer or a resin having excellent fluidity such as a styrene resin such as ABS, HIPS, AS is used. ing.
  • these methods can improve the fluidity of the polycarbonate resin, there is a problem that the excellent impact resistance inherent in the polycarbonate resin is lowered.
  • a polymerization method using an interfacial polymerization method or a transesterification method is known.
  • a terminal terminator molecular weight regulator
  • Patent Document 1 and Patent Document 2 describe a production method by an interfacial polymerization method using 3-pentadecylphenol.
  • the production methods described in Patent Documents 1 and 2 only describe a laboratory batch production method in which a raw material is charged into a flask and reacted while adding phosgene to the raw material liquid.
  • the polycondensation step When caustic alkali is dividedly added in the polycondensation step or added in the middle of the polycondensation step, the polycondensation step When the reaction solution (emulsion solution) obtained from the above is separated into an aqueous phase and an organic phase containing a polycarbonate resin, there is a problem in that the separation performance deteriorates and the production efficiency is not good.
  • the object of the present invention is to devise the addition position of 3-pentadecylphenol and caustic alkali in the reaction step when producing a polycarbonate resin by interfacial polymerization using 3-pentadecylphenol as a terminal stopper. It is an object of the present invention to provide a method for producing a polycarbonate resin, in which the obtained polycarbonate resin molded article has a good YI value and is excellent in productivity.
  • the present inventors have found that the position of addition of 3-pentadecylphenol and caustic alkali in the continuous production of polycarbonate resin by interfacial polymerization using 3-pentadecylphenol as a terminal terminator.
  • the position is set to an appropriate position, the YI value of the obtained polycarbonate resin molded article is improved, and a method for producing a polycarbonate resin excellent in productivity has been found and the present invention has been completed. That is, the present invention relates to the following [1] to [13].
  • a method for producing a polycarbonate resin by reacting a polycarbonate oligomer having a weight average molecular weight of less than 5000 and an alkaline aqueous solution of dihydric phenol, the polycarbonate oligomer is obtained from the natural product at the inlet to the first reaction zone.
  • a 3-pentadecylphenol having a purity of 97.5% by mass or more and caustic are introduced, and the polycarbonate oligomer and 3-pentadecylphenol are reacted in the first reaction zone.
  • reaction liquid containing a polycarbonate oligomer which is a pentadecylphenoxy group is generated, and then the reaction liquid obtained from the first reaction zone, an aqueous alkali solution of dihydric phenol and caustic alkali are introduced into the inlet to the second reaction zone. And caustic to be introduced into the second reaction zone.
  • Alkaline method for manufacturing a polycarbonate resin characterized in that the reaction is carried out by introducing the total amount from the inlet of the second reaction zone in a second reaction zone.
  • the YI value of the obtained polycarbonate resin molded product becomes good, the color tone can be improved, and the production efficiency of the polycarbonate resin can be increased.
  • FIG. 1 is a schematic diagram showing a reaction process used in Example 1.
  • FIG. Schematic which shows the reaction process used in the comparative example 2.
  • FIG. Schematic which shows the reaction process used in the comparative example 3.
  • the method for producing a polycarbonate resin of the present invention is a method for producing a polycarbonate resin by reacting a polycarbonate oligomer having a weight average molecular weight of less than 5,000 with an alkaline aqueous solution of a dihydric phenol.
  • Polycarbonate oligomer having a weight average molecular weight of less than 5000 Although there is no restriction
  • an organic solvent such as methylene chloride
  • R 1 and R 2 each independently represent a halogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms.
  • X is a single bond, an alkylene group having 1 to 8 carbon atoms, an alkylidene group having 2 to 8 carbon atoms, a cycloalkylene group having 5 to 15 carbon atoms, a cycloalkylidene group having 5 to 15 carbon atoms, a fluorenediyl group, a carbon
  • the dihydric phenol represented by the general formula (1) is not particularly limited, but 2,2-bis (4-hydroxyphenyl) propane [common name: bisphenol A] is preferable.
  • dihydric phenols other than bisphenol A include bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) butane, 2,2 -Bis (4-hydroxyphenyl) octane, bis (4-hydroxyphenyl) phenylmethane, bis (4-hydroxyphenyl) diphenylmethane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, bis (4- Hydroxyphenyl) naphthylmethane, 1,1-bis (4-hydroxy-t-butylphenyl) propane, 2,2-bis (4-hydroxy-3-bromophenyl) propane, 2,2-bis (4-hydroxy-) 3,5-dimethylphenyl) propane, 2,2-bis (4-hydroxy-3-chlorophenyl) Bis
  • the dihydric phenol not contained in the dihydric phenol represented by the general formula (1) is represented by the general formula (1)
  • the dihydric phenol containing the structural unit represented by the following formula (2) is represented by the general formula (1).
  • the dihydric phenol containing a structural unit represented by the following general formula (2) include a polyorganosiloxane compound represented by the following general formula (2-1).
  • R 7 , R 8 , R 9 and R 10 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, or 1 carbon atom.
  • Z represents a phenol residue having a trimethylene group, which is derived from a phenol compound having an allyl group.
  • n represents 30 to 1000.
  • the polyorganosiloxane represented by the general formula (2-1) is obtained by modifying the terminal of a polyorganosiloxane having a hydrogen end with a phenol compound having an allyl group such as 2-allylphenol and eugenol. .
  • the polyorganosiloxane modified with a phenol compound having an allyl group at the end can be synthesized by the method described in Japanese Patent No. 2662310.
  • dimethylsiloxane is preferred.
  • a branching agent is used in the main chain of the polycarbonate resin. It can also have a branched structure.
  • the amount of the branching agent added is preferably 0.01 to 3 mol%, more preferably 0.1 to 1.0 mol%, based on the dihydric phenol.
  • branching agent examples include 1,1,1-tris (4-hydroxyphenyl) ethane, 4,4 ′-[1- [4- [1- (4-hydroxyphenyl) -1-methylethyl] phenyl ] Ethylidene] bisphenol, ⁇ , ⁇ ′, ⁇ ′′ -tris (4-hydroxyphenyl) -1,3,5-triisopropylbenzene, 1- [ ⁇ -methyl- ⁇ - (4′-hydroxyphenyl) ethyl]- Examples include compounds having three or more functional groups such as 4- [ ⁇ ′, ⁇ ′-bis (4 ′′ -hydroxyphenyl) ethyl] benzene, phloroglucin, trimetic acid, and isatin bis (o-cresol).
  • an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide can be preferably used, and usually one having a concentration of 1 to 15% by mass is preferably used.
  • the content of the dihydric phenol in the alkaline aqueous solution is usually selected in the range of 0.5 to 20% by mass.
  • the amount of the organic solvent used is desirably selected so that the volume ratio of the organic phase to the aqueous phase is 5/1 to 1/7, preferably 2/1 to 1/4.
  • the reaction temperature is usually selected in the range of 0 to 70 ° C, preferably 5 to 40 ° C.
  • the chloroformate end group concentration in the obtained polycarbonate oligomer is usually 0.6 to 0.9 mol / L, and a polycarbonate oligomer having a weight average molecular weight of less than 5,000 can be obtained.
  • a monohydric phenol other than 3-pentadecylphenol for example, a compound such as pt-butylphenol, p-cumylphenol, or phenol, is used as a terminal terminator (molecular weight regulator) as necessary. It may be used, and some of the chloroformate end groups may be terminated with these compounds.
  • a part of 3-pentadecylphenol used in the first reaction zone may be divided and used.
  • a reactor it can manufacture by a continuous type or a batch type using a tank reactor. Moreover, it is also a preferable manufacturing method to manufacture continuously using a tubular reactor.
  • the reaction solution obtained by the method described above is obtained as an emulsion state of an organic phase containing a polycarbonate oligomer having a weight average molecular weight of less than 5000 and an aqueous phase containing impurities such as sodium chloride.
  • the organic phase containing the polycarbonate oligomer is separated into the organic phase containing the polycarbonate oligomer and the aqueous phase by standing separation or the like, and the separated organic phase containing the polycarbonate oligomer is used in the first reaction zone.
  • the lower limit of the weight average molecular weight of a polycarbonate oligomer having a weight average molecular weight of less than 5000 is usually about 500.
  • the first reaction zone defined in the present invention refers to a part of the polycarbonate oligomer end group having a weight average molecular weight of less than 5000, and 3-pentadecylphenol having a purity of 97.5% by mass or more obtained from a natural product.
  • the objective is to produce a polycarbonate oligomer having a 3-pentadecylphenoxy group, and no polycondensation reaction is carried out in this first reaction zone.
  • the highly purified 3-pentadecylphenol is in a fine needle crystal state.
  • the length is 200 to 300 ⁇ m
  • the diameter (major axis) is about 50 ⁇ m
  • the bulk density has a very small value of about 0.16 g / cm 3 .
  • fine powdery 3-pentadecylphenol it is difficult to handle, so fine powder of 3-pentadecylphenol having a low bulk density is pressed and granulated at 30 to 48 ° C., It is preferable to use one having a bulk density of about 0.3 to 0.7 g / cm 3 .
  • the size of the granulated product is not particularly limited, but the maximum diameter or length is preferably 0.5 to 10 mm, more preferably 0.5 to 5 mm.
  • the shape of the granulated product is not particularly limited, but may be a cylindrical shape, a rectangular parallelepiped shape, a cubic shape, an elliptical shape, a spherical shape, a flake shape, or the like.
  • 3-pentadecylphenol is difficult to dissolve in an alkaline aqueous solution, it is preferable to use it dissolved in an organic solvent, preferably methylene chloride, when introduced into the first reaction zone. If a 3-pentadecylphenol organic solvent solution having a specific concentration is prepared in advance, the amount of introduction per unit time is constant when continuously introduced into the first reaction zone. The continuous production at is preferred.
  • concentration of 3-pentadecylphenol in the solution is usually preferably in the range of 5 to 35% by mass.
  • a phase transfer catalyst such as a tertiary amine or a salt thereof, a quaternary ammonium salt, or a quaternary phosphonium salt can be preferably used.
  • the tertiary amine include triethylamine, tributylamine, N, N-dimethylcyclohexylamine, pyridine, dimethylaniline and the like, and examples of the tertiary amine salt include hydrochlorides and bromates of these tertiary amines. Etc.
  • Examples of the quaternary ammonium salt include trimethylbenzylammonium chloride, triethylbenzylammonium chloride, tributylbenzylammonium chloride, trioctylmethylammonium chloride, tetrabutylammonium chloride, and tetrabutylammonium bromide.
  • Examples thereof include butylphosphonium chloride and tetrabutylphosphonium bromide.
  • These catalysts may be used alone or in combination of two or more. Among the catalysts, tertiary amines are preferable, and triethylamine is particularly preferable. These catalysts can be introduced as they are in a liquid state or dissolved in an organic solvent or water. Moreover, a solid state thing can be dissolved and introduce
  • a line mixer, a static mixer, an orifice mixer, a stirring tank, etc. can be used as a reactor used in the first reaction zone, and the reaction can be carried out continuously or batchwise.
  • These reactors may be arbitrarily combined and used as a plurality of reactors. Further, it is preferable to use a line mixer in these reactors because the reaction can be continuously carried out and the reaction can be advanced efficiently.
  • a polycarbonate oligomer having a chloroformate group at the end group as a polycarbonate oligomer having a weight average molecular weight of less than 5000 is used in the first reaction zone, sodium hydroxide as a caustic alkali, and triethylamine (TEA) as a catalyst for the reaction accelerator
  • the reaction temperature is usually controlled at 10 to 30 ° C., preferably 10 to 20 ° C.
  • the reaction pressure is usually normal pressure.
  • 95% or more of 3-pentadecylphenol (PDP) reacts in the first reaction zone, and usually 50 to 95 mol%, preferably 50 to 80 mol% of all end groups are chloroformate.
  • a polycarbonate oligomer remaining as a group can be obtained.
  • the proportion of 3-pentadecylphenoxy groups in all terminal groups of the polycarbonate oligomer is usually set in the range of 5 to 50 mol%, preferably 20 to 50 mol%.
  • a reaction solution containing a polycarbonate oligomer having a 3-pentadecylphenoxy group at the terminal obtained from the first reaction zone, an alkali aqueous solution of dihydric phenol and caustic alkali are introduced, The reaction is performed in the second reaction zone.
  • the polycarbonate oligomer and the dihydric phenol are polycondensed, and a polycarbonate resin (hereinafter referred to as PDP-PC) having 3-pentadecylphenoxy groups in at least a part of the resulting end groups. Is the target viscosity average molecular weight.
  • PDP-PC polycarbonate resin
  • Reaction liquid containing a polycarbonate oligomer having a 3-pentadecylphenoxy group at the terminal The reaction liquid containing a polycarbonate oligomer having a 3-pentadecylphenoxy group at the terminal obtained from the first reaction zone described above is used. Is done.
  • Alkaline aqueous solution of dihydric phenol The alkaline aqueous solution of dihydric phenol used in the second reaction zone is subjected to a polycondensation reaction with a polycarbonate oligomer having a 3-pentadecylphenoxy group at the terminal obtained from the first reaction zone. Used to increase the molecular weight.
  • the dihydric phenol represented by the said General formula (1) or the dihydric phenol represented by the said General formula (1), and the said formula ( It is preferable to use together with the dihydric phenol containing the structural unit represented by 2), and bisphenol A can be mentioned as a particularly preferred dihydric phenol represented by the general formula (1).
  • the alkaline aqueous solution an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide used for producing the polycarbonate oligomer can be preferably used, and caustic alkali such as sodium hydroxide or potassium hydroxide in the alkaline aqueous solution can be used.
  • the concentration of 1 to 15% by mass is preferably used.
  • the content of the dihydric phenol in the alkaline aqueous solution is selected in the range of 0.5 to 20% by mass.
  • the molecular weight can be increased by reacting an alkaline aqueous solution of dihydric phenol with a polycarbonate oligomer having a 3-pentadecylphenoxy group (interfacial polycondensation reaction).
  • the divalent phenol becomes an alkali metal salt in an aqueous alkali solution of dihydric phenol, and the polycarbonate oligomer chlorophore having a 3-pentadecylphenoxy group dissolved in the divalent phenol alkali metal salt and an organic solvent.
  • the mate group is polycondensed by a desalting reaction at the interface between the organic phase and the aqueous phase to increase the molecular weight. Since this interfacial polycondensation reaction proceeds under alkalinity, it is necessary to react by adding caustic alkali such as sodium hydroxide or potassium hydroxide in order to accelerate the reaction.
  • caustic alkali such as sodium hydroxide or potassium hydroxide
  • the caustic alkali introduced from the inlet of the second reaction zone preferably has a concentration of 10 to 50% by mass, and the caustic alkali concentration in the aqueous phase of the reaction solution is 0.05 to 0.7 N (N) It is preferable to supply so that it becomes.
  • the reaction rate is increased by the high concentration of caustic alkali supplied in this way, and as a result, the reaction time is shortened.
  • a polycarbonate resin (PDP-PC) having a high blocking ratio with monohydric phenols at the polymer terminals (reducing the residual amount of hydroxyl terminal groups) and a small amount of low molecular weight can be obtained.
  • the caustic introduced from the inlet to the second reaction zone is the total amount of caustic used from the inlet to the second reaction zone (when using multiple reactors, the inlet of the first reactor to be used). It is necessary to introduce.
  • a part of caustic alkali is divided from the middle of the second reaction zone and used, when separating the resulting reaction liquid (emulsion solution containing PDP-PC) into an aqueous phase and an organic phase containing PDP-PC, When the separated organic phase is separated into an aqueous phase and an organic phase in a washing step such as alkali washing, acid washing, and water washing, it is not preferable because the separation performance deteriorates and the productivity deteriorates.
  • a reaction liquid containing a polycarbonate resin after the polycondensation reaction is taken out. In addition, it can react without introduce
  • a terminal stopper molecular weight regulator
  • the terminal stopper a known terminal stopper other than 3-pentadecylphenol can be used, and at least one terminal stopper selected from pt-butylphenol, p-cumylphenol and phenol is used. It is preferable to use it.
  • the molar ratio of 3-pentadecylphenol introduced into the first reaction zone to the end stopper introduced into the second reaction zone is 1: 9 to 9: 1. It is preferable to be within the range.
  • the same catalyst used at the time of interfacial polymerization of the polycarbonate resin demonstrated in the 1st reaction zone can be used, The preferable aspect is also the same.
  • ⁇ Reactor and reaction conditions used in the second reaction zone In the second reaction zone, depending on the capacity of the reactor used, the reaction can be completed with the use of only one reactor, but if necessary, a subsequent second reactor, Can be combined with a plurality of reactors such as a third reactor to form a second reaction zone.
  • a reactor used in the second reaction zone a stirring tank, a multi-stage tower type stirring tank, a non-stirring tank, a static mixer, a line mixer, an orifice mixer, a pipe, etc. can be used, and the reaction is efficiently performed. Therefore, it is preferable to use a line mixer.
  • a plurality of these reactors may be used in any combination.
  • the polycarbonate resin of the present invention can be produced either continuously or batchwise.
  • a polycarbonate oligomer having a weight average molecular weight of less than 5000, 3-pentadecylphenol, a catalyst (TEA, etc.), caustic alkali is used.
  • the oligomer is reacted with pentadecylphenol to produce a polycarbonate oligomer having a 3-pentadecylphenoxy group in a part of the terminal groups of the polycarbonate oligomer.
  • the conditions of the second reaction zone (specifically, caustic concentration 0.05 to 0.7 N) may be set. That is, the reaction conditions may be adjusted using the same reactor, and the conditions for both of the first reaction zone and the second reaction zone may be set sequentially.
  • the temperature in the second reaction zone is preferably 20 to 35 ° C. In particular, if the temperature in the second reaction zone exceeds 35 ° C., the terminal hydroxyl group fraction of the molded product increases and the YI value of the molded product may increase.
  • (Ii) Washing Step The organic phase containing the polycarbonate resin thus separated is washed with an alkaline aqueous solution, an acidic aqueous solution, pure water, or the like in order to remove impurities such as residual monomers, catalysts, and alkaline substances. .
  • the washing mixture is separated into an organic phase containing a purified polycarbonate resin and an aqueous phase using a centrifuge or a stationary separation tank.
  • Concentration step The organic phase containing the purified polycarbonate resin that has been subjected to the washing treatment is efficiently concentrated in a kneader, a powder bed granulator, a hot water granulator, etc. Preferably, it is concentrated to 10 to 45% by mass.
  • the organic phase containing the purified polycarbonate resin obtained in the concentration step is a known powder / granulation method such as a kneader, powder bed granulator, hot water granulator, etc. Powdered and granulated. Since the obtained powder / granulated product contains 1 to 8% by mass of the organic solvent such as methylene chloride used, the residual organic solvent is further reduced to 1000 ppm or less by drying by heating, drying under reduced pressure, or the like. Is desirable.
  • a polycarbonate resin (PDP-PC) having excellent transparency and a yellow index (YI value) of 1.1 or less is obtained.
  • the polycarbonate resin obtained by the production method of the present invention may have a viscosity average molecular weight of 8,000 to 20,000.
  • the PDP-PC obtained by the production method of the present invention has a 3-pentadecylphenoxy group as a terminal group, and thus has excellent fluidity, and has a low YI value, so that it has excellent color tone and transparency. It can be suitably used for a liquid crystal member.
  • the production method of the present invention provides a method for producing a polycarbonate resin (PDP-PC) with high production efficiency because the separation is excellent when separating the reaction liquid after polymerization into an organic phase and an aqueous phase. be able to.
  • the polycarbonate resin (PDP-PC) obtained by the method for producing a polycarbonate resin of the present invention can be mixed with a polycarbonate resin other than PDP-PC at an arbitrary ratio to obtain a polycarbonate resin composition.
  • the polycarbonate resin is not particularly limited, and various known polycarbonate resins other than PDP-PC can be used.
  • the polycarbonate resin (PDP-PC) or the polycarbonate resin (PDP-PC) composition includes an antioxidant, an ultraviolet absorber, a flame retardant, a release agent, an inorganic filler (glass fiber, talc, Titanium oxide, mica, etc.), colorants, light diffusing agents and the like can be used according to the properties required for the intended use.
  • the polycarbonate resin or the polycarbonate resin composition can be formed into a molded body by various molding methods such as injection molding, injection compression molding, extrusion molding, and blow molding.
  • the molded article formed by molding the polycarbonate resin (PDP-PC) or the polycarbonate resin (PDP-PC) composition is preferably a liquid crystal display device used for a mobile phone, a liquid crystal television, a personal computer, an electronic dictionary, an electronic book, etc. It can be set as the member for liquid crystal equipment. Since the polycarbonate resin obtained by the present invention is excellent in fluidity, it is desirable to form it by injection molding, particularly when manufacturing a thin molded body, and it is a resin for a light guide plate or a light diffusion plate of a liquid crystal display device. Can be suitably used.
  • ⁇ Measurement of flow value (Q value)> Melting out from a nozzle with a diameter of 1 mm and a length of 10 mm in accordance with JISK7210 using a polycarbonate flow pellet used in the measurement of the YI value under a pressure of 280 ° C. and 15.7 MPa. The amount of resin ( ⁇ 10 ⁇ 2 mL / sec) was measured.
  • Adegas tub PEP36 bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol phosphite made by ADEKA Corporation] was added to the obtained polycarbonate resin flakes, and 40 mm ⁇ uniaxial with a vent was added. The mixture was melt-kneaded and extruded by an extruder at a resin temperature of 280 ° C. and a screw rotation speed of 100 rpm to obtain pellets.
  • a molded product having a thickness of 3 mm was molded, and measured with a spectrocolorimeter ⁇ 90 manufactured by Nippon Denshoku Industries Co., Ltd., with a measurement area of 30 ⁇ and a C2 light source transmission method.
  • 3-Pentadecylphenol fine powder with a purity of 97.75% by mass is put into a roller compactor, and after applying a load of 0.2 tons per 1 cm roll width, it is pulverized to obtain a granulated product having a maximum diameter of 3 mm. It was.
  • the powder temperature after granulation was 23.4 ° C.
  • the bulk density of this granulated product was 0.46 g / cm 3 .
  • PTBP pt-butylphenoxy group
  • CF chloroformate group
  • the weight average molecular weight (Mw) was measured using GPC [column: TOSOH TSK-GEL MULTIPIORE HXL-M (2) + Shodex KF801 (1)], temperature 40 ° C., flow rate 1. It was measured as a standard polystyrene equivalent molecular weight (weight average molecular weight: Mw) at 0 ml / min, detector: RI].
  • the ratio of 3-pentadecylphenoxy group to all terminal groups of the polycarbonate oligomer contained in the polycarbonate oligomer reaction solution was 32 mol%, and the ratio of chloroformate group was 57 mol%.
  • the proportion of end groups was measured by 1 H-NMR.
  • the unreacted 3-pentadecylphenol contained in the polycarbonate oligomer reaction solution was measured by 1 H-NMR and found to be 0.1%, and 99.7% of the supplied pentadecylphenol reacted. I confirmed.
  • the temperature at the first reaction zone outlet (point a) was 20 ° C.
  • the polycarbonate oligomer exiting the first reaction zone was cooled by a heat exchanger, and the temperature (point b) at the heat exchanger outlet was 15 ° C.
  • a throughzer mixer manufactured by Sumitomo Heavy Industries, Ltd. having an inner diameter of 9.2 mm, a length of 230 mm and incorporating 14 elements [used as the first reactor in the second reaction zone]
  • the reaction solution from the outlet of the first reactor an aqueous solution (BPA-Na) in which bisphenol A was dissolved in a 5.6 mass% sodium hydroxide aqueous solution to a concentration of 13.5 mass%.
  • This polymerization solution was allowed to stand, and was separated into an organic phase containing a polycarbonate resin and an aqueous phase containing excess bisphenol A and NaOH.
  • water content in the organic phase 60 minutes after standing was measured with a Karl Fischer moisture meter, it was 2000 ppm by mass.
  • the organic phase is washed with alkali, acid, and water (washing with pure water is repeated until the electric conductivity in the aqueous phase after washing is 0.05 ⁇ S / m or less.) Obtained as a phase.
  • the methylene chloride solution of the polycarbonate resin obtained by washing was concentrated and pulverized, and the obtained flakes were dried at 100 ° C. under reduced pressure to obtain polycarbonate resin flakes.
  • the viscosity average molecular weight of this polycarbonate resin flake was 11,500, the content of 3-pentadecylphenol derived from 3-pentadecylphenoxy group was 3% by mass, and the unreacted 3-pentadecylphenol in the flake was 9 ppm. It was. Moreover, the hydroxyl group terminal fraction with respect to all the terminal groups was 1.9 mol%.
  • the flakes dried granulated with an extruder to pellets was measured the flow value of the pellet (Q value) was 123 ⁇ 10 -2 mL / sec. Further, a plate was formed using this pellet, and the yellow index (YI value) was measured and found to be 1.0. The obtained results are shown in Table 1.
  • Example 5 In Example 1, the first reaction zone was the same as in Example 1 except that a 20-liter stirred tank with a Faudler blade having a diameter of 260 mm was used as the first reactor and the operation was performed at a rotational speed of 290 rpm. The reaction was performed. Cooling was performed by passing cooling water at 15 ° C. through the jacket. In the second reaction zone, the same line mixer as that used in the first reactor of Example 1 [used as the first reactor in the second reaction zone] was used for polymerization at a rotational speed of 4000 rpm. Completed the reaction in a 30 liter vertical pot without a stirrer [used as the second reactor in the second reaction zone]. The results are shown in Table 1.
  • Example 1 instead of 3-pentadecylphenol having a purity of 97.75% by mass, a 3-pentadecylphenol solid product having a purity of 92.10% by mass (manufactured by Tokyo Chemical Industry Co., Ltd.) was used. 1, a polycarbonate resin was obtained. The results are shown in Table 1.
  • Example 2 In Example 1, the first reactor as the first reaction zone was stopped, and a methylene chloride solution of 3-pentadecylphenol having a concentration of 12% by mass introduced into the first reaction zone, a 4% by mass aqueous solution of triethylamine, 10% by mass. The same procedure as in Example 1 was carried out except that all the aqueous sodium hydroxide solution was introduced into the inlet of the second reaction zone (process diagram is shown in FIG. 2). The results are shown in Table 1.
  • the organic phase and the aqueous phase are completely separated even after 60 minutes from standing. Not separated.
  • Comparative Example 2 the first reaction zone was not used, but the temperature in the second reaction zone was increased, the hydroxyl group terminal fraction of the obtained polycarbonate resin was increased, and the YI value of the molded product was You can see that it is getting higher.
  • Comparative Example 3 is an example which divided and added the caustic used for a 2nd reaction zone. In Comparative Example 3, it was shown that the molded product could not be evaluated because the polymerization solution obtained after the reaction could not be separated.
  • the method for producing a polycarbonate resin of the present invention has good oil-water separation properties of the reaction solution after the reaction, can increase production efficiency, and can lower the YI value of the molded product.
  • a polycarbonate resin excellent in color tone can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

A method for producing a polycarbonate resin by reacting a polycarbonate oligomer having a weight average molecular weight of less than 5000 with an aqueous alkali solution containing a bivalent phenol, said method being characterized by comprising: introducing the polycarbonate oligomer, 3-pentadecylphenol produced from a natural material and having a purity of 97.5% by mass or more and a caustic alkali to an inlet port for a first reaction zone to cause the reaction of the polycarbonate oligomer with 3-pentadecylphenol in the first reaction zone, thereby producing a reaction solution containing a polycarbonate oligomer in which some of terminal groups are 3-pentadecylphenoxy groups; and then introducing the reaction solution produced in the first reaction zone, an aqueous alkali solution containing a bivalent phenol and a caustic alkali to an inlet port for a second reaction zone, wherein the whole volume of the caustic alkali to be introduced to the second reaction zone is introduced through the inlet port for the second reaction zone, and the reaction of these components is performed in the second reaction zone.

Description

ポリカーボネート樹脂の製造方法Method for producing polycarbonate resin
 本発明は、ポリカーボネート樹脂の製造方法に関する。詳しくは、界面重合法により、末端基にペンタデシルフェノキシ基を有するポリカーボネート樹脂の製造方法に関する。 The present invention relates to a method for producing a polycarbonate resin. Specifically, the present invention relates to a method for producing a polycarbonate resin having a pentadecylphenoxy group at a terminal group by an interfacial polymerization method.
 ポリカーボネート樹脂は、透明性、耐熱性、機械特性など優れた特徴を有し、OA・家電の筐体や電気・電子分野の部材、レンズなどの光学材料など、幅広い用途に使用されている。近年、成形品の薄型化、大型化や成形サイクルの向上といった要望に対し、さらに流動性の向上が必要となっている。
 ポリカーボネート樹脂を用いた成形材料の流動性を改善する方法として、可塑剤を使用したり、ABS、HIPS、AS等のスチレン系樹脂のような流動性に優れる樹脂を使用したりする方法が用いられている。しかし、これらの方法は、ポリカーボネート樹脂の流動性を向上できるが、ポリカーボネート樹脂が本来有する優れた耐衝撃性を低下させるという問題があった。
Polycarbonate resins have excellent characteristics such as transparency, heat resistance, and mechanical properties, and are used in a wide range of applications such as OA / home appliance casings, members in the electrical / electronic field, and optical materials such as lenses. In recent years, it has become necessary to further improve fluidity in response to demands for thinner and larger molded products and improved molding cycles.
As a method of improving the fluidity of a molding material using a polycarbonate resin, a method of using a plasticizer or a resin having excellent fluidity such as a styrene resin such as ABS, HIPS, AS is used. ing. However, although these methods can improve the fluidity of the polycarbonate resin, there is a problem that the excellent impact resistance inherent in the polycarbonate resin is lowered.
 ポリカーボネート樹脂を製造する方法として、界面重合法やエステル交換法を用いた重合方法が知られている。これらの重合方法では、得られるポリカーボネート樹脂の分子量を調節するために末端停止剤(分子量調節剤)を使用する。
 上記の問題点を回避するために、末端停止剤として長鎖アルキルフェノールを末端停止剤として用いることにより、ポリカーボネート樹脂自体の構造を変えて流動性を向上させることが知られている。
As a method for producing a polycarbonate resin, a polymerization method using an interfacial polymerization method or a transesterification method is known. In these polymerization methods, a terminal terminator (molecular weight regulator) is used to regulate the molecular weight of the resulting polycarbonate resin.
In order to avoid the above problems, it is known to improve the fluidity by changing the structure of the polycarbonate resin itself by using a long-chain alkylphenol as a terminal stopper as a terminal stopper.
 上記長鎖アルキルフェノールを末端停止剤とするポリカーボネート樹脂の製造方法として、3-ペンタデシルフェノールを用いて界面重合法による製造方法が、特許文献1及び特許文献2に記載されている。しかし、この特許文献1及び2に記載の製造方法はフラスコ中に原料を仕込み、この原料液中にホスゲンを加えながら反応させる、実験室なバッチ製造方法が記載されているのみである。 As a method for producing a polycarbonate resin using the above long-chain alkylphenol as a terminal stopper, Patent Document 1 and Patent Document 2 describe a production method by an interfacial polymerization method using 3-pentadecylphenol. However, the production methods described in Patent Documents 1 and 2 only describe a laboratory batch production method in which a raw material is charged into a flask and reacted while adding phosgene to the raw material liquid.
特表2005-524923号公報JP 2005-524923 A 特開2003-41011号公報JP 2003-41011 A
 末端停止剤として上記の3-ペンタデシルフェノールを用いて、界面重合法により連続的にポリカーボネート樹脂を製造する際に、重縮合工程で3-ペンタデシルフェノールを用いると反応温度が高くなり、その結果、得られるポリカーボネート樹脂の末端水酸基分率が高くなって、成形品YI値に悪影響を与える恐れがあった。
 また、重縮合工程で重縮合反応を促進するために苛性アルカリを使用する必要があるが、重縮合工程で苛性アルカリを分割添加したり、重縮合工程の途中から添加した場合に、重縮合工程から得られる反応液(エマルジョン溶液)を水相とポリカーボネート樹脂を含む有機相とに分離させる際、分離性が悪化して、製造効率が良くないという問題点があった。
When continuously producing a polycarbonate resin by the interfacial polymerization method using the above-mentioned 3-pentadecylphenol as a terminal terminator, if 3-pentadecylphenol is used in the polycondensation step, the reaction temperature becomes high. The resulting polycarbonate resin has a high terminal hydroxyl group fraction, which may adversely affect the YI value of the molded product.
In addition, it is necessary to use caustic alkali in order to accelerate the polycondensation reaction in the polycondensation step. However, when caustic alkali is dividedly added in the polycondensation step or added in the middle of the polycondensation step, the polycondensation step When the reaction solution (emulsion solution) obtained from the above is separated into an aqueous phase and an organic phase containing a polycarbonate resin, there is a problem in that the separation performance deteriorates and the production efficiency is not good.
 本発明の課題は、末端停止剤として3-ペンタデシルフェノールを用いて界面重合法によりポリカーボネート樹脂を製造する際に、反応工程における3-ペンタデシルフェノール及び苛性アルカリの添加位置を工夫することにより、得られるポリカーボネート樹脂成形品のYI値が良好となり、また生産性に優れたポリカーボネート樹脂の製造方法を提供することを目的とするものである。 The object of the present invention is to devise the addition position of 3-pentadecylphenol and caustic alkali in the reaction step when producing a polycarbonate resin by interfacial polymerization using 3-pentadecylphenol as a terminal stopper. It is an object of the present invention to provide a method for producing a polycarbonate resin, in which the obtained polycarbonate resin molded article has a good YI value and is excellent in productivity.
 本発明者等は、鋭意検討した結果、末端停止剤として、3-ペンタデシルフェノールを用いてポリカーボネート樹脂を界面重合法により連続的に製造する際に、3-ペンタデシルフェノール及び苛性アルカリの添加位置を適切な位置とすることにより、得られるポリカーボネート樹脂成形品のYI値が良好となり、また生産性に優れたポリカーボネート樹脂の製造方法を見出し、本発明を完成させるに至った。
 すなわち、本発明は、下記[1]~[13]に関する。
As a result of diligent study, the present inventors have found that the position of addition of 3-pentadecylphenol and caustic alkali in the continuous production of polycarbonate resin by interfacial polymerization using 3-pentadecylphenol as a terminal terminator. When the position is set to an appropriate position, the YI value of the obtained polycarbonate resin molded article is improved, and a method for producing a polycarbonate resin excellent in productivity has been found and the present invention has been completed.
That is, the present invention relates to the following [1] to [13].
[1]重量平均分子量が5000未満のポリカーボネートオリゴマーと二価フェノールのアルカリ水溶液とを反応させてポリカーボネート樹脂を製造する方法において、第一反応帯域への導入口に前記ポリカーボネートオリゴマー、天然物から得られる純度が97.5質量%以上の3-ペンタデシルフェノール及び苛性アルカリを導入し、前記第一反応帯域でポリカーボネートオリゴマーと3-ペンタデシルフェノールとを反応させ、ポリカーボネートオリゴマーの末端基の一部が3-ペンタデシルフェノキシ基であるポリカーボネートオリゴマーを含む反応液を生成し、次いで前記第一反応帯域から得られた反応液、二価フェノールのアルカリ水溶液及び苛性アルカリを第二反応帯域への導入口に導入し、かつ、第二反応帯域へ導入する苛性アルカリは、その全量を第二反応帯域の導入口から導入して第二反応帯域で反応を行うことを特徴とするポリカーボネート樹脂の製造方法。
[2]前記第二反応帯域に末端停止剤として、p-t-ブチルフェノール、p-クミルフェノール及びフェノールから選択される少なくとも1種を導入して反応を行う、上記[1]に記載のポリカーボネート樹脂の製造方法。
[3]前記第一反応帯域に導入する3-ペンタデシルフェノールと前記第二反応帯域に導入する末端停止剤とのモル比率が、1:9~9:1である、上記[2]に記載のポリカーボネート樹脂の製造方法。
[4]前記第二反応帯域に末端停止剤を導入しないで第二反応帯域で反応を行う、上記[1]に記載のポリカーボネート樹脂の製造方法。
[5]3-ペンタデシルフェノールを前記第一反応帯域に導入するに当たり、塩化メチレンに溶解させた溶液として導入する、上記[1]~[4]のいずれかに記載のポリカーボネート樹脂の製造方法。
[6]前記第二反応帯域の温度が20~36℃である、上記[1]~[5]のいずれかに記載のポリカーボネート樹脂の製造方法。
[7]前記第一反応帯域から得られたポリカーボネートオリゴマーの全末端基の5~50モル%が3-ペンタデシルフェノキシ基である、上記[1]~[6]のいずれかに記載のポリカーボネート樹脂の製造方法。
[8]前記第一反応帯域から得られたポリカーボネートオリゴマーの全末端基の50~95モル%がクロロホーメート基である、上記[1]~[7]のいずれかに記載のポリカーボネート樹脂の製造方法。
[9]得られるポリカーボネート樹脂の粘度平均分子量が8,000~20,000である、上記[1]~[8]のいずれかに記載のポリカーボネート樹脂の製造方法。
[10]重量平均分子量が5000未満のポリカーボネートオリゴマーが、ビスフェノールAを用いて得られたものである、上記[1]~[9]のいずれかに記載のポリカーボネート樹脂の製造方法。
[11]前記二価フェノールがビスフェノールAである、上記[1]~[10]のいずれかに記載のポリカーボネート樹脂の製造方法。
[12]前記第一反応帯域に導入されたペンタデシルフェノールを当該第一反応帯域中で95%以上反応させる、上記[1]~[11]のいずれかに記載のポリカーボネート樹脂の製造方法。
[13]前記第一反応帯域及び/又は前記第二反応帯域にラインミキサーを用いる、上記[1]~[12]のいずれかに記載のポリカーボネート樹脂の製造方法。
[1] In a method for producing a polycarbonate resin by reacting a polycarbonate oligomer having a weight average molecular weight of less than 5000 and an alkaline aqueous solution of dihydric phenol, the polycarbonate oligomer is obtained from the natural product at the inlet to the first reaction zone. A 3-pentadecylphenol having a purity of 97.5% by mass or more and caustic are introduced, and the polycarbonate oligomer and 3-pentadecylphenol are reacted in the first reaction zone. -A reaction liquid containing a polycarbonate oligomer which is a pentadecylphenoxy group is generated, and then the reaction liquid obtained from the first reaction zone, an aqueous alkali solution of dihydric phenol and caustic alkali are introduced into the inlet to the second reaction zone. And caustic to be introduced into the second reaction zone. Alkaline method for manufacturing a polycarbonate resin, characterized in that the reaction is carried out by introducing the total amount from the inlet of the second reaction zone in a second reaction zone.
[2] The polycarbonate according to [1], wherein the reaction is carried out by introducing at least one selected from pt-butylphenol, p-cumylphenol and phenol as a terminal stopper in the second reaction zone. Manufacturing method of resin.
[3] The above [2], wherein the molar ratio of 3-pentadecylphenol introduced into the first reaction zone and the terminal terminator introduced into the second reaction zone is 1: 9 to 9: 1. Of producing a polycarbonate resin.
[4] The method for producing a polycarbonate resin according to the above [1], wherein the reaction is performed in the second reaction zone without introducing a terminal terminator into the second reaction zone.
[5] The method for producing a polycarbonate resin according to any one of [1] to [4] above, wherein 3-pentadecylphenol is introduced into the first reaction zone as a solution dissolved in methylene chloride.
[6] The method for producing a polycarbonate resin according to any one of the above [1] to [5], wherein the temperature of the second reaction zone is 20 to 36 ° C.
[7] The polycarbonate resin according to any one of [1] to [6] above, wherein 5 to 50 mol% of all terminal groups of the polycarbonate oligomer obtained from the first reaction zone are 3-pentadecylphenoxy groups Manufacturing method.
[8] The production of the polycarbonate resin according to any one of [1] to [7] above, wherein 50 to 95 mol% of all terminal groups of the polycarbonate oligomer obtained from the first reaction zone are chloroformate groups. Method.
[9] The method for producing a polycarbonate resin according to any one of [1] to [8] above, wherein the obtained polycarbonate resin has a viscosity average molecular weight of 8,000 to 20,000.
[10] The method for producing a polycarbonate resin according to any one of the above [1] to [9], wherein the polycarbonate oligomer having a weight average molecular weight of less than 5000 is obtained using bisphenol A.
[11] The method for producing a polycarbonate resin according to any one of the above [1] to [10], wherein the dihydric phenol is bisphenol A.
[12] The method for producing a polycarbonate resin according to any one of the above [1] to [11], wherein pentadecylphenol introduced into the first reaction zone is reacted at 95% or more in the first reaction zone.
[13] The method for producing a polycarbonate resin according to any one of the above [1] to [12], wherein a line mixer is used in the first reaction zone and / or the second reaction zone.
 本発明によれば、得られるポリカーボネート樹脂成形品のYI値が良好となり、色調を向上させることができ、かつ、ポリカーボネート樹脂の生産効率を上げることができる。 According to the present invention, the YI value of the obtained polycarbonate resin molded product becomes good, the color tone can be improved, and the production efficiency of the polycarbonate resin can be increased.
実施例1で使用した反応工程を示す概略図。1 is a schematic diagram showing a reaction process used in Example 1. FIG. 比較例2で使用した反応工程を示す概略図。Schematic which shows the reaction process used in the comparative example 2. FIG. 比較例3で使用した反応工程を示す概略図。Schematic which shows the reaction process used in the comparative example 3. FIG.
 本発明のポリカーボネート樹脂の製造方法は、重量平均分子量が5000未満のポリカーボネートオリゴマーと二価フェノールのアルカリ水溶液とを反応させてポリカーボネート樹脂を製造する方法において、第一反応帯域への導入口に該ポリカーボネートオリゴマー、天然物から得られる純度が97.5質量%以上の3-ペンタデシルフェノール及び苛性アルカリを導入し、該第一反応帯域でポリカーボネートオリゴマーと3-ペンタデシルフェノールとを反応させ、ポリカーボネートオリゴマーの末端基の一部が3-ペンタデシルフェノキシ基であるポリカーボネートオリゴマーを含む反応液を生成させ、次いで第一反応帯域から得られた反応液、二価フェノールのアルカリ水溶液及び苛性アルカリを第二反応帯域への導入口に導入し、第二反応帯域で反応を行うものである。
 以下、本発明のポリカーボネート樹脂の製造方法について詳細に説明する。なお、本明細書において、好ましいとされている規定は任意に採用することができ、好ましいもの同士の組み合わせはより好ましいと言える。
The method for producing a polycarbonate resin of the present invention is a method for producing a polycarbonate resin by reacting a polycarbonate oligomer having a weight average molecular weight of less than 5,000 with an alkaline aqueous solution of a dihydric phenol. Introducing 3-pentadecylphenol having a purity of 97.5% by mass or more obtained from an oligomer or a natural product and caustic, and reacting the polycarbonate oligomer with 3-pentadecylphenol in the first reaction zone, A reaction liquid containing a polycarbonate oligomer in which a part of the end groups is a 3-pentadecylphenoxy group is generated, and then the reaction liquid obtained from the first reaction zone, an aqueous alkali solution of dihydric phenol and caustic alkali are added to the second reaction zone. To the introduction to In which the reaction is carried out in the second reaction zone.
Hereafter, the manufacturing method of the polycarbonate resin of this invention is demonstrated in detail. In the present specification, it is possible to arbitrarily adopt provisions that are preferable, and it can be said that a combination of preferable ones is more preferable.
[重量平均分子量が5000未満のポリカーボネートオリゴマー]
 本発明のポリカーボネート樹脂の製造方法に使用される重量平均分子量が5000未満のポリカーボネートオリゴマーの製造方法については、特に制限はないが、例えば次に示す方法を好ましく用いることができる。
 まず、二価フェノールのアルカリ水溶液を調製し、この二価フェノールのアルカリ水溶液と塩化メチレン等の有機溶媒とを混合し、撹拌しながら二価フェノールのアルカリ水溶液と有機溶媒との共存下でホスゲンを反応させることにより、ポリカーボネートオリゴマーが得られる。
[Polycarbonate oligomer having a weight average molecular weight of less than 5000]
Although there is no restriction | limiting in particular about the manufacturing method of the polycarbonate oligomer whose weight average molecular weight used for the manufacturing method of the polycarbonate resin of this invention is less than 5000, For example, the method shown next can be used preferably.
First, prepare an alkaline aqueous solution of dihydric phenol, mix this alkaline aqueous solution of dihydric phenol with an organic solvent such as methylene chloride, and stir phosgene in the presence of the alkaline aqueous solution of dihydric phenol and organic solvent while stirring. By reacting, a polycarbonate oligomer is obtained.
 前記二価フェノールとしては、下記一般式(1)で表される二価フェノールを用いることが好ましい。
Figure JPOXMLDOC01-appb-C000001

 上記一般式(1)中、R及びRは、それぞれ独立にハロゲン原子、炭素数1~6のアルキル基又は炭素数1~6のアルコキシ基を示す。Xは、単結合、炭素数1~8のアルキレン基、炭素数2~8のアルキリデン基、炭素数5~15のシクロアルキレン基、炭素数5~15のシクロアルキリデン基、フルオレンジイル基、炭素数7~15のアリールアルキレン基、炭素数7~15のアリールアルキリデン基、-S-、-SO-、-SO-、-O-又は-CO-を示す。a及びbは、それぞれ独立に0~4の整数を示す。
As the dihydric phenol, it is preferable to use a dihydric phenol represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000001

In the general formula (1), R 1 and R 2 each independently represent a halogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms. X is a single bond, an alkylene group having 1 to 8 carbon atoms, an alkylidene group having 2 to 8 carbon atoms, a cycloalkylene group having 5 to 15 carbon atoms, a cycloalkylidene group having 5 to 15 carbon atoms, a fluorenediyl group, a carbon An arylalkylene group having 7 to 15 carbon atoms, an arylalkylidene group having 7 to 15 carbon atoms, —S—, —SO—, —SO 2 —, —O— or —CO—; a and b each independently represent an integer of 0 to 4.
 一般式(1)で表される二価フェノールとしては、特に限定されないが、2,2-ビス(4-ヒドロキシフェニル)プロパン〔通称:ビスフェノールA〕が好適である。
 ビスフェノールA以外の二価フェノールとしては、例えば、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、ビス(4-ヒドロキシフェニル)フェニルメタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、ビス(4-ヒドロキシフェニル)ナフチルメタン、1,1-ビス(4-ヒドロキシ-t-ブチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-ブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-クロロフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジクロロフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン等のビス(ヒドロキシアリール)アルカン類、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,5,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシフェニル)ノルボルナン、1,1-ビス(4-ヒドロキシフェニル)シクロドデカン等のビス(ヒドロキシアリール)シクロアルカン類、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジメチルフェニルエーテル等のジヒドロキシアリールエーテル類、4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィド等のジヒドロキシジアリールスルフィド類、4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド等のジヒドロキシジアリールスルホキシド類、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホン等のジヒドロキシジアリールスルホン類、4,4’-ジヒドロキシジフェニル等のジヒドロキシジフェニル類、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン等のジヒドロキシジアリールフルオレン類、1,3-ビス(4-ヒドロキシフェニル)アダマンタン、2,2-ビス(4-ヒドロキシフェニル)アダマンタン、1,3-ビス(4-ヒドロキシフェニル)-5,7-ジメチルアダマンタン等のジヒドロキシジアリールアダマンタン類、4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスフェノール、10,10-ビス(4-ヒドロキシフェニル)-9-アントロン、1,5-ビス(4-ヒドロキシフェニルチオ)-2,3-ジオキサペンタン等が挙げられる。
 これらの二価フェノールは、単独で又は二種以上を混合して用いてもよい。
The dihydric phenol represented by the general formula (1) is not particularly limited, but 2,2-bis (4-hydroxyphenyl) propane [common name: bisphenol A] is preferable.
Examples of dihydric phenols other than bisphenol A include bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) butane, 2,2 -Bis (4-hydroxyphenyl) octane, bis (4-hydroxyphenyl) phenylmethane, bis (4-hydroxyphenyl) diphenylmethane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, bis (4- Hydroxyphenyl) naphthylmethane, 1,1-bis (4-hydroxy-t-butylphenyl) propane, 2,2-bis (4-hydroxy-3-bromophenyl) propane, 2,2-bis (4-hydroxy-) 3,5-dimethylphenyl) propane, 2,2-bis (4-hydroxy-3-chlorophenyl) Bis (hydroxyaryl) alkanes such as propane, 2,2-bis (4-hydroxy-3,5-dichlorophenyl) propane, 2,2-bis (4-hydroxy-3,5-dibromophenyl) propane, 1, 1-bis (4-hydroxyphenyl) cyclopentane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,5,5-trimethylcyclohexane, 2,2- Bis (hydroxyaryl) cycloalkanes such as bis (4-hydroxyphenyl) norbornane, 1,1-bis (4-hydroxyphenyl) cyclododecane, 4,4′-dihydroxydiphenyl ether, 4,4′-dihydroxy-3, Dihydroxy aryl ethers such as 3′-dimethylphenyl ether, 4,4′-dihy Roxydiphenyl sulfide, dihydroxydiaryl sulfides such as 4,4′-dihydroxy-3,3′-dimethyldiphenyl sulfide, 4,4′-dihydroxydiphenyl sulfoxide, 4,4′-dihydroxy-3,3′-dimethyldiphenyl sulfoxide Dihydroxydiaryl sulfoxides such as 4,4′-dihydroxydiphenylsulfone, dihydroxydiarylsulfones such as 4,4′-dihydroxy-3,3′-dimethyldiphenylsulfone, and dihydroxydiphenyls such as 4,4′-dihydroxydiphenyl Dihydroxydiarylfluorenes such as 9,9-bis (4-hydroxyphenyl) fluorene, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 1,3-bis (4-hydroxyphenyl) ada Dihydroxydiaryladamantanes such as tantalum, 2,2-bis (4-hydroxyphenyl) adamantane, 1,3-bis (4-hydroxyphenyl) -5,7-dimethyladamantane, 4,4 ′-[1,3- Phenylenebis (1-methylethylidene)] bisphenol, 10,10-bis (4-hydroxyphenyl) -9-anthrone, 1,5-bis (4-hydroxyphenylthio) -2,3-dioxapentane, etc. It is done.
These dihydric phenols may be used alone or in admixture of two or more.
 さらに、上記一般式(1)で表される二価フェノールに含まれない二価フェノールして、下記式(2)で表される構成単位を含む二価フェノールを一般式(1)で表される二価フェノールと併用して用いることができる。このような構成単位を有する共重合体とすることにより、ポリカーボネート樹脂の難燃性を向上させることができる。下記一般式(2)で表される構成単位を含む二価フェノールとしては、例えば、下記一般式(2-1)で表されるポリオルガノシロキサン化合物を例示することができる。 Furthermore, the dihydric phenol not contained in the dihydric phenol represented by the general formula (1) is represented by the general formula (1), and the dihydric phenol containing the structural unit represented by the following formula (2) is represented by the general formula (1). Can be used in combination with the dihydric phenol. By setting it as the copolymer which has such a structural unit, the flame retardance of polycarbonate resin can be improved. Examples of the dihydric phenol containing a structural unit represented by the following general formula (2) include a polyorganosiloxane compound represented by the following general formula (2-1).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記一般式(2)又は一般式(2-1)中、R、R、R及びR10は、それぞれ独立に水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基を示す。Zは、アリル基を有するフェノール化合物から誘導される、トリメチレン基を有するフェノール残基を示す。nは30~1000を示す。
 上記一般式(2-1)で表されるポリオルガノシロキサンは、末端が水素のポリオルガノシロキサンの末端を、例えば、2-アリルフェノール及びオイゲノール等のアリル基を有するフェノール化合物で変性したものである。末端がアリル基を有するフェノール化合物で変性されたポリオルガノシロキサンは、特許第2662310号公報に記載の方法により合成することができる。
 上記ポリオルガノシロキサンとしては、ジメチルシロキサンが好適である。
In the general formula (2) or the general formula (2-1), R 7 , R 8 , R 9 and R 10 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, or 1 carbon atom. An alkoxy group having 6 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms; Z represents a phenol residue having a trimethylene group, which is derived from a phenol compound having an allyl group. n represents 30 to 1000.
The polyorganosiloxane represented by the general formula (2-1) is obtained by modifying the terminal of a polyorganosiloxane having a hydrogen end with a phenol compound having an allyl group such as 2-allylphenol and eugenol. . The polyorganosiloxane modified with a phenol compound having an allyl group at the end can be synthesized by the method described in Japanese Patent No. 2662310.
As the polyorganosiloxane, dimethylsiloxane is preferred.
 更に、上記の一般式(1)で表わされる二価フェノール及び式(2)で表される構成単位を含む二価フェノールに対して、分岐化剤を用いて、該ポリカーボネート樹脂の主鎖中に分岐構造を有することもできる。この分岐化剤の添加量は、上記の二価フェノールに対して、好ましくは0.01~3モル%、より好ましくは0.1~1.0モル%である。
 分岐化剤としては、例えば、1,1,1-トリス(4-ヒドロキシフェニル)エタン、4,4’-[1-[4-[1-(4-ヒドロキシフェニル)-1-メチルエチル]フェニル]エチリデン]ビスフェノール、α,α’,α”-トリス(4-ヒドロキシフェニル)-1,3,5-トリイソプロピルベンゼン、1-[α-メチル-α-(4’-ヒドロキシフェニル)エチル]-4-[α’,α’-ビス(4”-ヒドロキシフェニル)エチル]ベンゼン、フロログルシン、トリメット酸、イサチンビス(o-クレゾール)等の官能基を3つ以上有する化合物が挙げられる。
Furthermore, with respect to the dihydric phenol represented by the general formula (1) and the dihydric phenol containing the structural unit represented by the formula (2), a branching agent is used in the main chain of the polycarbonate resin. It can also have a branched structure. The amount of the branching agent added is preferably 0.01 to 3 mol%, more preferably 0.1 to 1.0 mol%, based on the dihydric phenol.
Examples of the branching agent include 1,1,1-tris (4-hydroxyphenyl) ethane, 4,4 ′-[1- [4- [1- (4-hydroxyphenyl) -1-methylethyl] phenyl ] Ethylidene] bisphenol, α, α ′, α ″ -tris (4-hydroxyphenyl) -1,3,5-triisopropylbenzene, 1- [α-methyl-α- (4′-hydroxyphenyl) ethyl]- Examples include compounds having three or more functional groups such as 4- [α ′, α′-bis (4 ″ -hydroxyphenyl) ethyl] benzene, phloroglucin, trimetic acid, and isatin bis (o-cresol).
 また、アルカリ水溶液としては、水酸化ナトリウム、水酸化カリウム等のアルカリ水溶液を好ましく用いることができ、通常その濃度が1~15質量%のものが好ましく用いられる。また、アルカリ水溶液中の二価フェノールの含有量は、通常0.5~20質量%の範囲で選ばれる。さらに、有機溶媒の使用量は、有機相と水相の容量比が5/1~1/7、好ましくは2/1~1/4となるように選定するのが望ましい。反応温度は通常0~70℃、好ましくは5~40℃の範囲で選ばれる。得られるポリカーボネートオリゴマー中のクロロホーメート末端基濃度は、通常、0.6~0.9mol/Lであり、重量平均分子量が5000未満のポリカーボネートオリゴマーとすることができる。
 ポリカーボネートオリゴマー製造工程において、必要に応じて、3-ペンタデシルフェノール以外の1価フェノール、例えば、p-t-ブチルフェノール、p-クミルフェノール、フェノール等の化合物を末端停止剤(分子量調節剤)として用いることができ、クロロホーメート末端基の一部をこれら化合物で停止させておいてもよい。また、末端停止剤として、第一反応帯域に使用される3-ペンタデシルフェノールの一部を分割して使用してもよい。
 反応器としては槽型反応器を用いて、連続式又はバッチ式で製造することができる。また、管型反応器を用いて連続的に製造することも好ましい製造方法である。
 上記に記載した方法により得られる反応液は、重量平均分子量が5000未満のポリカーボネートオリゴマーを含む有機相と塩化ナトリウム等の不純物を含む水相とのエマルジョン状態として得られ、このエマルジョン状態の反応液を静置分離等することにより、ポリカーボネートオリゴマーを含む有機相と水相とに分離させ、分離されたポリカーボネートオリゴマーを含む有機相を第一反応帯域で使用する。重量平均分子量が5000未満のポリカーボネートオリゴマーの重量平均分子量の下限値は、通常、約500程度である。
Further, as the alkaline aqueous solution, an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide can be preferably used, and usually one having a concentration of 1 to 15% by mass is preferably used. The content of the dihydric phenol in the alkaline aqueous solution is usually selected in the range of 0.5 to 20% by mass. Further, the amount of the organic solvent used is desirably selected so that the volume ratio of the organic phase to the aqueous phase is 5/1 to 1/7, preferably 2/1 to 1/4. The reaction temperature is usually selected in the range of 0 to 70 ° C, preferably 5 to 40 ° C. The chloroformate end group concentration in the obtained polycarbonate oligomer is usually 0.6 to 0.9 mol / L, and a polycarbonate oligomer having a weight average molecular weight of less than 5,000 can be obtained.
In the polycarbonate oligomer production process, a monohydric phenol other than 3-pentadecylphenol, for example, a compound such as pt-butylphenol, p-cumylphenol, or phenol, is used as a terminal terminator (molecular weight regulator) as necessary. It may be used, and some of the chloroformate end groups may be terminated with these compounds. Further, as a terminal stopper, a part of 3-pentadecylphenol used in the first reaction zone may be divided and used.
As a reactor, it can manufacture by a continuous type or a batch type using a tank reactor. Moreover, it is also a preferable manufacturing method to manufacture continuously using a tubular reactor.
The reaction solution obtained by the method described above is obtained as an emulsion state of an organic phase containing a polycarbonate oligomer having a weight average molecular weight of less than 5000 and an aqueous phase containing impurities such as sodium chloride. The organic phase containing the polycarbonate oligomer is separated into the organic phase containing the polycarbonate oligomer and the aqueous phase by standing separation or the like, and the separated organic phase containing the polycarbonate oligomer is used in the first reaction zone. The lower limit of the weight average molecular weight of a polycarbonate oligomer having a weight average molecular weight of less than 5000 is usually about 500.
[第一反応帯域]
 本発明で規定される第一反応帯域とは、上記重量平均分子量が5000未満のポリカーボネートオリゴマー末端基の一部を、天然物から得られる純度が97.5質量%以上の3-ペンタデシルフェノールと反応させ、3-ペンタデシルフェノキシ基を有するポリカーボネートオリゴマーを製造することを目的としており、この第一反応帯域では、重縮合反応は行われない。
[First reaction zone]
The first reaction zone defined in the present invention refers to a part of the polycarbonate oligomer end group having a weight average molecular weight of less than 5000, and 3-pentadecylphenol having a purity of 97.5% by mass or more obtained from a natural product. The objective is to produce a polycarbonate oligomer having a 3-pentadecylphenoxy group, and no polycondensation reaction is carried out in this first reaction zone.
<第一反応帯域に使用される原料>
(i)重量平均分子量が5000未満のポリカーボネートオリゴマー
 重量平均分子量が5000未満のポリカーボネートオリゴマーは、上記したとおり、重量平均分子量が5000未満のポリカーボネートオリゴマーを含む有機相として使用される。有機相の有機溶媒としては、塩化メチレンを用いることが好ましい。
(ii)天然物から得られる純度が97.5質量%以上の3-ペンタデシルフェノール
 3-ペンタデシルフェノール(以下、PDPということもある。)は、一般的にカシューナッツ殻油等の天然物由来の植物油から蒸留及び抽出工程を経て得られるカルダノールを主成分とする組成物を水素添加反応処理することにより得られる。3-ペンタデシルフェノールの市販品の純度は、通常90質量%以上、97.5質量%未満である。本発明で使用される3-ペンタデシルフェノールの純度としては、97.5質量%以上の純度のものを用いることが必要である。97.5質量%未満のものを用いると、得られたポリカーボネート樹脂成形品のYI値が高くなり、透明性が低下するので好ましくない。低純度の3-ペンタデシルフェノールの蒸留や晶析等を行い高純度化することにより、純度が97.5質量%以上の3-ペンタデシルフェノールを得ることができる。高純度化した3-ペンタデシルフェノールは、微細な針状結晶状態となっている。そのサイズは、長さが200~300μm、径(長径)が50μm程度であり、その嵩密度は、約0.16g/cm程度と極めて小さい値を有している。このような微細な粉末状の3-ペンタデシルフェノールを用いた場合、取扱いが困難であるので、嵩密度の低い3-ペンタデシルフェノールの微粉末を30~48℃でプレスして造粒し、嵩密度を0.3~0.7g/cm程度としたものを用いることが好ましい。造粒物のサイズは特に制限されないが、最大径又は長さが好ましくは0.5~10mm、より好ましくは0.5~5mmとすることができる。造粒物の形状は特に制限されないが、円筒状、直方体状、立方体状、楕円状、球状、薄片状等とすることができる。
<Raw materials used in the first reaction zone>
(I) Polycarbonate oligomer having a weight average molecular weight of less than 5000 As described above, a polycarbonate oligomer having a weight average molecular weight of less than 5000 is used as an organic phase containing a polycarbonate oligomer having a weight average molecular weight of less than 5000. As the organic solvent for the organic phase, methylene chloride is preferably used.
(Ii) 3-pentadecylphenol having a purity of 97.5% by mass or more obtained from natural products 3-pentadecylphenol (hereinafter sometimes referred to as PDP) is generally derived from natural products such as cashew nut shell oil. It is obtained by subjecting a composition containing cardanol as a main component obtained from the vegetable oil of the above through a distillation and extraction process to a hydrogenation reaction treatment. The purity of commercially available 3-pentadecylphenol is usually 90% by mass or more and less than 97.5% by mass. The purity of 3-pentadecylphenol used in the present invention must be 97.5% by mass or more. Use of less than 97.5% by mass is not preferable because the YI value of the obtained polycarbonate resin molded product increases and the transparency decreases. 3-pentadecylphenol having a purity of 97.5% by mass or more can be obtained by purifying the low-purity 3-pentadecylphenol by distillation or crystallization. The highly purified 3-pentadecylphenol is in a fine needle crystal state. As for the size, the length is 200 to 300 μm, the diameter (major axis) is about 50 μm, and the bulk density has a very small value of about 0.16 g / cm 3 . When such fine powdery 3-pentadecylphenol is used, it is difficult to handle, so fine powder of 3-pentadecylphenol having a low bulk density is pressed and granulated at 30 to 48 ° C., It is preferable to use one having a bulk density of about 0.3 to 0.7 g / cm 3 . The size of the granulated product is not particularly limited, but the maximum diameter or length is preferably 0.5 to 10 mm, more preferably 0.5 to 5 mm. The shape of the granulated product is not particularly limited, but may be a cylindrical shape, a rectangular parallelepiped shape, a cubic shape, an elliptical shape, a spherical shape, a flake shape, or the like.
 3-ペンタデシルフェノールは、アルカリ水溶液に溶解しにくいことから、第一反応帯域に導入する際は、有機溶媒、好ましくは塩化メチレンに溶解させて用いることが好ましい。特定の濃度の3-ペンタデシルフェノール有機溶媒溶液を事前に調製しておけば、連続して第一反応帯域に導入する際に、単位時間当たりの導入量が一定となるので、第一反応帯域での連続的な製造が好ましいものとなる。上記溶液中の3-ペンタデシルフェノール濃度は、通常、5~35質量%の範囲内で用いることが望ましい。 Since 3-pentadecylphenol is difficult to dissolve in an alkaline aqueous solution, it is preferable to use it dissolved in an organic solvent, preferably methylene chloride, when introduced into the first reaction zone. If a 3-pentadecylphenol organic solvent solution having a specific concentration is prepared in advance, the amount of introduction per unit time is constant when continuously introduced into the first reaction zone. The continuous production at is preferred. The concentration of 3-pentadecylphenol in the solution is usually preferably in the range of 5 to 35% by mass.
(iii)苛性アルカリ
 第一反応帯域でのポリカーボネートオリゴマーと3-ペンタデシルフェノールとの反応を行うためには、反応系内をアルカリ性(苛性アルカリ濃度0.05~0.7N)に保つ必要がある。使用される苛性アルカリとしては、水酸化ナトリウム又は水酸化カリウムが好ましい。苛性アルカリは、水溶液として導入することが好ましい。
(iv)その他原料
 第一反応帯域での反応を促進するために、ポリカーボネート樹脂の界面重合時に使用される公知の触媒を用いることができる。触媒としては、相間移動触媒、例えば三級アミン又はその塩、四級アンモニウム塩、四級ホスホニウム塩などを好ましく用いることができる。三級アミンとしては、例えばトリエチルアミン、トリブチルアミン、N,N-ジメチルシクロヘキシルアミン、ピリジン、ジメチルアニリンなどが挙げられ、また三級アミン塩としては、例えばこれらの三級アミンの塩酸塩、臭素酸塩などが挙げられる。四級アンモニウム塩としては、例えばトリメチルベンジルアンモニウムクロリド、トリエチルベンジルアンモニウムクロリド、トリブチルベンジルアンモニウムクロリド、トリオクチルメチルアンモニウムクロリド、テトラブチルアンモニウムクロリド、テトラブチルアンモニウムブロミドなどが、四級ホスホニウム塩としては、例えばテトラブチルホスホニウムクロリド、テトラブチルホスホニウムブロミドなどが挙げられる。これらの触媒は、それぞれ単独で用いてもよく、二種以上を組み合わせて用いてもよい。前記触媒の中では、三級アミンが好ましく、特にトリエチルアミンが好適である。これらの触媒は、液体状態ものであればそのまま、または有機溶媒や水に溶解させて導入することができる。また固体状態ものは、有機溶媒や水に溶解させて導入することができる。
(Iii) Caustic alkali In order to carry out the reaction between the polycarbonate oligomer and 3-pentadecylphenol in the first reaction zone, it is necessary to keep the inside of the reaction system alkaline (caustic alkali concentration 0.05 to 0.7 N). . As the caustic used, sodium hydroxide or potassium hydroxide is preferable. Caustic is preferably introduced as an aqueous solution.
(Iv) Other raw materials In order to promote the reaction in the first reaction zone, a known catalyst used during the interfacial polymerization of the polycarbonate resin can be used. As the catalyst, a phase transfer catalyst such as a tertiary amine or a salt thereof, a quaternary ammonium salt, or a quaternary phosphonium salt can be preferably used. Examples of the tertiary amine include triethylamine, tributylamine, N, N-dimethylcyclohexylamine, pyridine, dimethylaniline and the like, and examples of the tertiary amine salt include hydrochlorides and bromates of these tertiary amines. Etc. Examples of the quaternary ammonium salt include trimethylbenzylammonium chloride, triethylbenzylammonium chloride, tributylbenzylammonium chloride, trioctylmethylammonium chloride, tetrabutylammonium chloride, and tetrabutylammonium bromide. Examples thereof include butylphosphonium chloride and tetrabutylphosphonium bromide. These catalysts may be used alone or in combination of two or more. Among the catalysts, tertiary amines are preferable, and triethylamine is particularly preferable. These catalysts can be introduced as they are in a liquid state or dissolved in an organic solvent or water. Moreover, a solid state thing can be dissolved and introduce | transduced in an organic solvent or water.
<第一反応帯域に使用される反応器及び反応条件>
 ラインミキサー、スタティックミキサー、オリフィスミキサー、攪拌槽等を第一反応帯域に使用する反応器として用いて、連続式又はバッチ式で反応を行うことができる。これらの反応器は、任意に組み合わせて、複数の反応器として用いてもよい。また、これらの反応器の中で特にラインミキサーを使用すれば連続的に反応を行うことができ、反応を効率的に進めることができるので好ましい。
 第一反応帯域に、重量平均分子量が5000未満のポリカーボネートオリゴマーとして末端基にクロロホーメート基を有するポリカーボネートオリゴマー、苛性アルカリとして水酸化ナトリウム、反応促進剤の触媒としてトリエチルアミン(TEA)を使用した場合、重量平均分子量が5000未満のポリカーボネートオリゴマー、3-ペンタデシルフェノール(PDP)、苛性アルカリ(NaOH)、触媒(TEA:トリエチルアミン)の好ましい使用モル比率は、ポリカーボネートオリゴマー中のクロロホーメート基のモル濃度(CF値)を基準として、PDP/CF=0.01~0.2、TEA/CF=0.001~0.006、NaOH/CF=0.1~0.3の範囲とすることが好ましい。また、反応温度は通常、10~30℃、好ましくは10~20℃で制御することが好ましい。反応圧力は、通常、常圧で行われる。この反応条件で、第一反応帯域において、3-ペンタデシルフェノール(PDP)の95%以上は反応し、通常、全末端基の50~95モル%、好ましくは50~80モル%がクロロホーメート基として残存するポリカーボネートオリゴマーを得ることができる。このポリカーボネートオリゴマーの全末端基の3-ペンタデシルフェノキシ基の割合は、通常、5~50モル%、好ましくは20~50モル%の範囲内で設定される。
<Reactor and reaction conditions used in the first reaction zone>
A line mixer, a static mixer, an orifice mixer, a stirring tank, etc. can be used as a reactor used in the first reaction zone, and the reaction can be carried out continuously or batchwise. These reactors may be arbitrarily combined and used as a plurality of reactors. Further, it is preferable to use a line mixer in these reactors because the reaction can be continuously carried out and the reaction can be advanced efficiently.
When a polycarbonate oligomer having a chloroformate group at the end group as a polycarbonate oligomer having a weight average molecular weight of less than 5000 is used in the first reaction zone, sodium hydroxide as a caustic alkali, and triethylamine (TEA) as a catalyst for the reaction accelerator, The preferred molar ratio of the polycarbonate oligomer having a weight average molecular weight of less than 5000, 3-pentadecylphenol (PDP), caustic alkali (NaOH), and catalyst (TEA: triethylamine) is the molar concentration of chloroformate groups in the polycarbonate oligomer ( With respect to (CF value), it is preferable that PDP / CF = 0.01 to 0.2, TEA / CF = 0.001 to 0.006, and NaOH / CF = 0.1 to 0.3. The reaction temperature is usually controlled at 10 to 30 ° C., preferably 10 to 20 ° C. The reaction pressure is usually normal pressure. Under these reaction conditions, 95% or more of 3-pentadecylphenol (PDP) reacts in the first reaction zone, and usually 50 to 95 mol%, preferably 50 to 80 mol% of all end groups are chloroformate. A polycarbonate oligomer remaining as a group can be obtained. The proportion of 3-pentadecylphenoxy groups in all terminal groups of the polycarbonate oligomer is usually set in the range of 5 to 50 mol%, preferably 20 to 50 mol%.
[第二反応帯域]
 本発明で規定される第二反応帯域は、第一反応帯域から得られた末端に3-ペンタデシルフェノキシ基を有するポリカーボネートオリゴマーを含む反応液、二価フェノールのアルカリ水溶液及び苛性アルカリを導入し、第二反応帯域で反応を行うものである。この第二反応帯域での反応は、前記ポリカーボネートオリゴマーと前記二価フェノールとを重縮合させて、得られる末端基の少なくとも一部に3-ペンタデシルフェノキシ基を有するポリカーボネート樹脂(以下、PDP-PCということもある。)を目標の粘度平均分子量とするものである。以下、この第二反応帯域について説明する。
[Second reaction zone]
In the second reaction zone defined in the present invention, a reaction solution containing a polycarbonate oligomer having a 3-pentadecylphenoxy group at the terminal obtained from the first reaction zone, an alkali aqueous solution of dihydric phenol and caustic alkali are introduced, The reaction is performed in the second reaction zone. In the reaction in the second reaction zone, the polycarbonate oligomer and the dihydric phenol are polycondensed, and a polycarbonate resin (hereinafter referred to as PDP-PC) having 3-pentadecylphenoxy groups in at least a part of the resulting end groups. Is the target viscosity average molecular weight. Hereinafter, this second reaction zone will be described.
<第二反応帯域に使用される原料>
(i)末端に3-ペンタデシルフェノキシ基を有するポリカーボネートオリゴマーを含む反応液
 前記にて説明した第一反応帯域から得られた末端に3-ペンタデシルフェノキシ基を有するポリカーボネートオリゴマーを含む反応液が使用される。
(ii)二価フェノールのアルカリ水溶液
 第二反応帯域で使用される二価フェノールのアルカリ水溶液は、第一反応帯域から得られる末端に3-ペンタデシルフェノキシ基を有するポリカーボネートオリゴマーと重縮合反応させて高分子量化させるために使用される。
 使用される二価フェノールとしては、ポリカーボネートオリゴマーを製造する際に使用される前記一般式(1)で表される二価フェノール又は前記一般式(1)で表される二価フェノールと前記式(2)で表される構成単位を含む二価フェノールとを併用して用いることが好ましく、前記一般式(1)で表される特に好ましい二価フェノールとしてビスフェノールAを挙げることができる。
 また、アルカリ水溶液も、ポリカーボネートオリゴマーを製造する際に使用される水酸化ナトリウム、水酸化カリウム等のアルカリ水溶液を好ましく用いることができ、そのアルカリ水溶液中の水酸化ナトリウム、水酸化カリウム等の苛性アルカリの濃度も同様にしてその濃度が1~15質量%のものが好ましく用いられる。また、アルカリ水溶液中の二価フェノールの含有量についても同様に、0.5~20質量%の範囲で選ばれる。
<Raw materials used in the second reaction zone>
(I) Reaction liquid containing a polycarbonate oligomer having a 3-pentadecylphenoxy group at the terminal The reaction liquid containing a polycarbonate oligomer having a 3-pentadecylphenoxy group at the terminal obtained from the first reaction zone described above is used. Is done.
(Ii) Alkaline aqueous solution of dihydric phenol The alkaline aqueous solution of dihydric phenol used in the second reaction zone is subjected to a polycondensation reaction with a polycarbonate oligomer having a 3-pentadecylphenoxy group at the terminal obtained from the first reaction zone. Used to increase the molecular weight.
As a dihydric phenol used, when manufacturing a polycarbonate oligomer, the dihydric phenol represented by the said General formula (1) or the dihydric phenol represented by the said General formula (1), and the said formula ( It is preferable to use together with the dihydric phenol containing the structural unit represented by 2), and bisphenol A can be mentioned as a particularly preferred dihydric phenol represented by the general formula (1).
Further, as the alkaline aqueous solution, an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide used for producing the polycarbonate oligomer can be preferably used, and caustic alkali such as sodium hydroxide or potassium hydroxide in the alkaline aqueous solution can be used. Similarly, the concentration of 1 to 15% by mass is preferably used. Similarly, the content of the dihydric phenol in the alkaline aqueous solution is selected in the range of 0.5 to 20% by mass.
(iii)苛性アルカリ
 第二反応帯域では、二価フェノールのアルカリ水溶液と3-ペンタデシルフェノキシ基を有するポリカーボネートオリゴマーとを反応(界面重縮合反応)させることにより、高分子量化を行うことができる。この反応は、二価フェノールのアルカリ水溶液中で二価フェノールがアルカリ金属塩となり、この二価フェノールのアルカリ金属塩と有機溶媒に溶解している3-ペンタデシルフェノキシ基を有するポリカーボネートオリゴマーのクロロホーメート基とを有機相と水相の界面で脱塩反応させることにより重縮合させ、高分子量化するものである。この界面重縮合反応は、アルカリ性の下で反応が進行するので、反応を促進させるために、水酸化ナトリウム、水酸化カリウム等の苛性アルカリを追加して反応させることが必要である。
(Iii) Caustic alkali In the second reaction zone, the molecular weight can be increased by reacting an alkaline aqueous solution of dihydric phenol with a polycarbonate oligomer having a 3-pentadecylphenoxy group (interfacial polycondensation reaction). In this reaction, the divalent phenol becomes an alkali metal salt in an aqueous alkali solution of dihydric phenol, and the polycarbonate oligomer chlorophore having a 3-pentadecylphenoxy group dissolved in the divalent phenol alkali metal salt and an organic solvent. The mate group is polycondensed by a desalting reaction at the interface between the organic phase and the aqueous phase to increase the molecular weight. Since this interfacial polycondensation reaction proceeds under alkalinity, it is necessary to react by adding caustic alkali such as sodium hydroxide or potassium hydroxide in order to accelerate the reaction.
 第二反応帯域の入り口から導入される苛性アルカリは、10~50質量%の濃度のものが好ましく、これを反応液の水相中の苛性アルカリ濃度が0.05~0.7規定(N)となるように供給することが好ましい。このように供給した高濃度の苛性アルカリによって反応速度が上昇し、その結果、反応時間の短縮が図られる。また、ポリマー末端において、一価フェノール類での封鎖率が高くなり(水酸基末端の残留量が少なくなる)、かつ、低分子量物の少ないポリカーボネート樹脂(PDP-PC)が得られる。
 第二反応帯域への導入口から導入される苛性アルカリは、第二反応帯域への導入口(複数の反応器を用いる場合、最初に使用する反応器の導入口)からその使用量の全量を導入することが必要である。苛性アルカリの一部を第二反応帯域の途中から分割して使用すると、得られる反応液(PDP-PCを含むエマルジョン溶液)から水相とPDP-PC含む有機相とに分離する際、また、分離した有機相をアルカリ洗浄、酸洗浄、水洗浄等の洗浄工程で水相と有機相とに分離する際、分離性が悪化し、生産性が悪くなるので好ましくない。
The caustic alkali introduced from the inlet of the second reaction zone preferably has a concentration of 10 to 50% by mass, and the caustic alkali concentration in the aqueous phase of the reaction solution is 0.05 to 0.7 N (N) It is preferable to supply so that it becomes. The reaction rate is increased by the high concentration of caustic alkali supplied in this way, and as a result, the reaction time is shortened. In addition, a polycarbonate resin (PDP-PC) having a high blocking ratio with monohydric phenols at the polymer terminals (reducing the residual amount of hydroxyl terminal groups) and a small amount of low molecular weight can be obtained.
The caustic introduced from the inlet to the second reaction zone is the total amount of caustic used from the inlet to the second reaction zone (when using multiple reactors, the inlet of the first reactor to be used). It is necessary to introduce. When a part of caustic alkali is divided from the middle of the second reaction zone and used, when separating the resulting reaction liquid (emulsion solution containing PDP-PC) into an aqueous phase and an organic phase containing PDP-PC, When the separated organic phase is separated into an aqueous phase and an organic phase in a washing step such as alkali washing, acid washing, and water washing, it is not preferable because the separation performance deteriorates and the productivity deteriorates.
(iv)その他原料
 第二反応帯域の出口からは、重縮合反応が終了したポリカーボネート樹脂を含む反応液が取り出される。なお、この第二反応帯域には末端停止剤を導入しないで反応を行うことができる。また、第二反応帯域の反応終了後のポリカーボネート樹脂の分子量を調整するために、第二反応帯域に末端停止剤(分子量調整剤)を添加してもよい。末端停止剤としては、3-ペンタデシルフェノール以外の公知の末端停止剤を用いることができるが、p-t-ブチルフェノール、p-クミルフェノール及びフェノールから選択される少なくとも1種の末端停止剤を用いることが好ましい。第二反応帯域に末端停止剤を添加する場合、第一反応帯域に導入する3-ペンタデシルフェノールと第二反応帯域に導入する末端停止剤とのモル比率は、1:9~9:1の範囲内であることが好ましい。
 また、重縮合反応を促進させるために、第一反応帯域で説明したポリカーボネート樹脂の界面重合時に使用される同様の触媒を用いることができ、その好ましい態様も同様である。
(Iv) Other raw materials From the outlet of the second reaction zone, a reaction liquid containing a polycarbonate resin after the polycondensation reaction is taken out. In addition, it can react without introduce | transducing a terminal terminator into this 2nd reaction zone. Moreover, in order to adjust the molecular weight of the polycarbonate resin after completion | finish of reaction of a 2nd reaction zone, you may add a terminal stopper (molecular weight regulator) to a 2nd reaction zone. As the terminal stopper, a known terminal stopper other than 3-pentadecylphenol can be used, and at least one terminal stopper selected from pt-butylphenol, p-cumylphenol and phenol is used. It is preferable to use it. When the end stopper is added to the second reaction zone, the molar ratio of 3-pentadecylphenol introduced into the first reaction zone to the end stopper introduced into the second reaction zone is 1: 9 to 9: 1. It is preferable to be within the range.
Moreover, in order to accelerate | stimulate a polycondensation reaction, the same catalyst used at the time of interfacial polymerization of the polycarbonate resin demonstrated in the 1st reaction zone can be used, The preferable aspect is also the same.
<第二反応帯域に使用される反応器及び反応条件>
 第二反応帯域では、使用される反応器の能力次第では1基の反応器のみの使用で反応を完結することができるが、必要に応じてさらに、それに後続する2基目の反応器、更には3基目の反応器等の複数の反応器を組み合わせて、第二反応帯域とすることができる。第二反応帯域に使用される反応器としては、撹拌槽,多段塔型撹拌槽,無撹拌槽,スタティックミキサー,ラインミキサー,オリフィスミキサー,配管などを用いることができ、中でも反応を効率的に行うことができるため、ラインミキサーを用いることが好ましい。これらの反応器の複数を任意に組み合わせて用いてもよい。
<Reactor and reaction conditions used in the second reaction zone>
In the second reaction zone, depending on the capacity of the reactor used, the reaction can be completed with the use of only one reactor, but if necessary, a subsequent second reactor, Can be combined with a plurality of reactors such as a third reactor to form a second reaction zone. As a reactor used in the second reaction zone, a stirring tank, a multi-stage tower type stirring tank, a non-stirring tank, a static mixer, a line mixer, an orifice mixer, a pipe, etc. can be used, and the reaction is efficiently performed. Therefore, it is preferable to use a line mixer. A plurality of these reactors may be used in any combination.
 本発明のポリカーボネート樹脂の製造は、連続式でもバッチ式でも実施することができる。バッチ式で製造する場合は、まず、第一反応帯域として使用する反応器で、重量平均分子量が5000未満のポリカーボネートオリゴマー、3-ペンタデシルフェノール、触媒(TEA等)、苛性アルカリを使用し、ポリカーボネートオリゴマーとペンタデシルフェノールとの反応を行い、ポリカーボネートオリゴマーの末端基の一部に3-ペンタデシルフェノキシ基を有するポリカーボネートオリゴマーを生成させる。次いで、同一の反応器に苛性アルカリ及び二価フェノールを加えて、前記の第二反応帯域の条件(具体的には苛性アルカリ濃度0.05~0.7N)に設定すればよい。つまり、同一反応器を用いて反応条件を調節して、前述の第一反応帯域と第二反応帯域の両反応帯域の条件を順次設定すればよい。
 第二反応帯域での温度は、20~35℃とすることが好ましい。特に、第二反応帯域での温度が35℃を超えると、成形品の末端水酸基分率が増加し、成形品のYI値が高くなる恐れが発生するので、35℃以下とすることが好ましい。
The polycarbonate resin of the present invention can be produced either continuously or batchwise. When manufacturing in a batch system, first, in the reactor used as the first reaction zone, a polycarbonate oligomer having a weight average molecular weight of less than 5000, 3-pentadecylphenol, a catalyst (TEA, etc.), caustic alkali is used. The oligomer is reacted with pentadecylphenol to produce a polycarbonate oligomer having a 3-pentadecylphenoxy group in a part of the terminal groups of the polycarbonate oligomer. Next, caustic and dihydric phenol are added to the same reactor, and the conditions of the second reaction zone (specifically, caustic concentration 0.05 to 0.7 N) may be set. That is, the reaction conditions may be adjusted using the same reactor, and the conditions for both of the first reaction zone and the second reaction zone may be set sequentially.
The temperature in the second reaction zone is preferably 20 to 35 ° C. In particular, if the temperature in the second reaction zone exceeds 35 ° C., the terminal hydroxyl group fraction of the molded product increases and the YI value of the molded product may increase.
[反応後の工程]
(i)分離工程
 第二反応帯域から得られた反応後の混合液は、エマルジョン状態となっており、このエマルジョンからポリカーボネートを含む有機相と水相とに分離する必要がある。そのために、反応後の混合液に塩化メチレン等の不活性有機溶媒を加えて適当に希釈したのち、静置又は遠心分離などによって、水相とポリカーボネート樹脂を含む有機相とに分離する。
(ii)洗浄工程
 このように分離されたポリカーボネート樹脂を含む有機相は、不純物である残留モノマー、触媒、アルカリ物質などを除去するために、アルカリ性水溶液、酸性水溶液及び純水などにより洗浄処理される。なお洗浄混合物は、遠心分離機や静置分離槽を用いて、精製ポリカーボネート樹脂を含む有機相と水相とに分離される。
(iii)濃縮工程
 洗浄処理された精製ポリカーボネート樹脂を含む有機相は、ニーダーや粉体床造粒器、温水造粒器等で効率よく、粉末化や造粒化するために適正な濃度範囲、好ましくは10~45質量%に濃縮される。
(iv)粉末・造粒・乾燥化工程
 濃縮工程で得られた精製ポリカーボネート樹脂を含む有機相は、ニーダー、粉体床造粒器、温水造粒器等の公知の粉末・造粒化方法で粉末・造粒される。得られた粉末・造粒物には、使用された塩化メチレン等の有機溶媒を1~8質量%含むため、さらに加熱乾燥、減圧乾燥等により残留する有機溶媒を1000ppm以下となるようにすることが望ましい。
[Process after reaction]
(I) Separation step The mixed solution after the reaction obtained from the second reaction zone is in an emulsion state, and it is necessary to separate this emulsion into an organic phase containing polycarbonate and an aqueous phase. For this purpose, an inert organic solvent such as methylene chloride is added to the mixed solution after the reaction and diluted appropriately, and then separated into an aqueous phase and an organic phase containing a polycarbonate resin by standing or centrifuging.
(Ii) Washing Step The organic phase containing the polycarbonate resin thus separated is washed with an alkaline aqueous solution, an acidic aqueous solution, pure water, or the like in order to remove impurities such as residual monomers, catalysts, and alkaline substances. . The washing mixture is separated into an organic phase containing a purified polycarbonate resin and an aqueous phase using a centrifuge or a stationary separation tank.
(Iii) Concentration step The organic phase containing the purified polycarbonate resin that has been subjected to the washing treatment is efficiently concentrated in a kneader, a powder bed granulator, a hot water granulator, etc. Preferably, it is concentrated to 10 to 45% by mass.
(Iv) Powder / granulation / drying step The organic phase containing the purified polycarbonate resin obtained in the concentration step is a known powder / granulation method such as a kneader, powder bed granulator, hot water granulator, etc. Powdered and granulated. Since the obtained powder / granulated product contains 1 to 8% by mass of the organic solvent such as methylene chloride used, the residual organic solvent is further reduced to 1000 ppm or less by drying by heating, drying under reduced pressure, or the like. Is desirable.
 本発明の製造方法によって、透明性に優れ、イエローインデックス(YI値)が1.1以下であるポリカーボネート樹脂(PDP-PC)が得られる。本発明の製造方法により得られるポリカーボネート樹脂は、8,000~20,000の粘度平均分子量を有し得る。
 本発明の製造方法によって得られるPDP-PCは、末端基に3-ペンタデシルフェノキシ基を有するので、流動性に優れており、YI値が低いので成形品の色調に優れ、透明性が要求される液晶用部材に好適に使用することができる。また、本発明の製造方法では、重合後の反応液を有機相と水相とに分離させる際に、分離性に優れるので、生産効率の良いポリカーボネート樹脂(PDP-PC)の製造方法を提供することができる。
By the production method of the present invention, a polycarbonate resin (PDP-PC) having excellent transparency and a yellow index (YI value) of 1.1 or less is obtained. The polycarbonate resin obtained by the production method of the present invention may have a viscosity average molecular weight of 8,000 to 20,000.
The PDP-PC obtained by the production method of the present invention has a 3-pentadecylphenoxy group as a terminal group, and thus has excellent fluidity, and has a low YI value, so that it has excellent color tone and transparency. It can be suitably used for a liquid crystal member. Further, the production method of the present invention provides a method for producing a polycarbonate resin (PDP-PC) with high production efficiency because the separation is excellent when separating the reaction liquid after polymerization into an organic phase and an aqueous phase. be able to.
 本発明のポリカーボネート樹脂の製造方法によって得られるポリカーボネート樹脂(PDP-PC)は、PDP-PC以外のポリカーボネート樹脂と任意の割合で混合して、ポリカーボネート樹脂組成物とすることができる。
 前記ポリカーボネート樹脂としては、特に制限はなく、PDP-PC以外の種々の公知のポリカーボネート樹脂を使用できる。
 前記ポリカーボネート樹脂(PDP-PC)又はポリカーボネート樹脂(PDP-PC)組成物には、必要に応じて、酸化防止剤、紫外線吸収剤、難燃剤、離型剤、無機充填材(ガラス繊維、タルク、酸化チタン、マイカ等)、着色剤、光拡散剤等の添加剤を目的とする用途に必要とされる特性に応じて用いることができる。前記のポリカーボネート樹脂又はポリカーボネート樹脂組成物は、射出成形、射出圧縮成形、押出成形、ブロー成形等の各種成形方法により、成形体とすることができる。
The polycarbonate resin (PDP-PC) obtained by the method for producing a polycarbonate resin of the present invention can be mixed with a polycarbonate resin other than PDP-PC at an arbitrary ratio to obtain a polycarbonate resin composition.
The polycarbonate resin is not particularly limited, and various known polycarbonate resins other than PDP-PC can be used.
The polycarbonate resin (PDP-PC) or the polycarbonate resin (PDP-PC) composition includes an antioxidant, an ultraviolet absorber, a flame retardant, a release agent, an inorganic filler (glass fiber, talc, Titanium oxide, mica, etc.), colorants, light diffusing agents and the like can be used according to the properties required for the intended use. The polycarbonate resin or the polycarbonate resin composition can be formed into a molded body by various molding methods such as injection molding, injection compression molding, extrusion molding, and blow molding.
 前記ポリカーボネート樹脂(PDP-PC)又はポリカーボネート樹脂(PDP-PC)組成物を成形してなる成形体は、好ましくは、携帯電話、液晶テレビ、パソコン、電子辞書、電子書籍等に用いられる液晶表示装置の液晶機器用部材とすることができる。本発明で得られるポリカーボネート樹脂は、流動性に優れるため、特に、厚みの薄い成形体を製造する場合は、射出成形により成形することが望ましく、液晶表示装置の導光板や光拡散板用の樹脂として好適に用いることができる。 The molded article formed by molding the polycarbonate resin (PDP-PC) or the polycarbonate resin (PDP-PC) composition is preferably a liquid crystal display device used for a mobile phone, a liquid crystal television, a personal computer, an electronic dictionary, an electronic book, etc. It can be set as the member for liquid crystal equipment. Since the polycarbonate resin obtained by the present invention is excellent in fluidity, it is desirable to form it by injection molding, particularly when manufacturing a thin molded body, and it is a resin for a light guide plate or a light diffusion plate of a liquid crystal display device. Can be suitably used.
 以下に実施例を挙げ、本発明をさらに詳しく説明する。なお、本発明はこれらの例によって限定されるものではない。なお、実施例及び比較例中の測定評価は以下に示す方法で行った。 Hereinafter, the present invention will be described in more detail with reference to examples. Note that the present invention is not limited to these examples. In addition, the measurement evaluation in an Example and a comparative example was performed by the method shown below.
<3-ペンタデシルフェノールの純度の測定方法>
 3-ペンタデシルフェノールの純度は、アジレント・テクノロジー(株)製;「AGILENT1200」にて、カラムに「L-column ODS」(4.6mmID×150mm,粒径3μm)、移動相にアセトニトリル/ギ酸バッファー=95/5(vol/vol)を用いて測定した。
<Method for measuring purity of 3-pentadecylphenol>
The purity of 3-pentadecylphenol was “Agilent 1200” manufactured by Agilent Technologies, Inc., “L-column ODS” (4.6 mm ID × 150 mm, particle size 3 μm) in the column, and acetonitrile / formic acid buffer in the mobile phase. = 95/5 (vol / vol).
<粘度平均分子量(Mv)の測定>
 ポリカーボネート樹脂の粘度平均分子量(Mv)は、ウベローデ型粘度計を用いて、20℃における塩化メチレン溶液の粘度を測定し、これより極限粘度[η]を求め、次式にて算出するものである。
 [η]=1.23×10-5Mv0.83
<Measurement of viscosity average molecular weight (Mv)>
The viscosity average molecular weight (Mv) of the polycarbonate resin is obtained by measuring the viscosity of the methylene chloride solution at 20 ° C. using an Ubbelohde viscometer, obtaining the intrinsic viscosity [η] from this, and calculating by the following formula. .
[Η] = 1.23 × 10 −5 Mv 0.83
<末端基組成量の測定>
 日本電子株式会社製;「JNM-LA500」を用い、H-NMRを測定して、ポリカーボネート樹脂の末端基組成量を算出した。
<Measurement of end group composition amount>
1 H-NMR was measured using “JNM-LA500” manufactured by JEOL Ltd., and the terminal group composition amount of the polycarbonate resin was calculated.
<流れ値(Q値)の測定>
 YI値の測定に使用したポリカーボネート樹脂ペレットを用い、高架式フローテスターを使用して、JISK7210に準拠し、280℃、15.7MPaの圧力下で、直径1mm、長さ10mmのノズルより流出する溶融樹脂量(×10-2mL/秒)を測定した。
<Measurement of flow value (Q value)>
Melting out from a nozzle with a diameter of 1 mm and a length of 10 mm in accordance with JISK7210 using a polycarbonate flow pellet used in the measurement of the YI value under a pressure of 280 ° C. and 15.7 MPa. The amount of resin (× 10 −2 mL / sec) was measured.
<YI値の測定>
 得られたポリカーボネート樹脂フレークに、アデガスタブPEP36〔株式会社ADEKA製ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールホスファイト〕を500質量ppm添加し、ベント付き40mmφの単軸押出機によって樹脂温280℃、スクリュー回転数100rpmで溶融混練押出し、ペレットを得た。得られたペレットを用い、厚み3mmの成形品を成形し、日本電色工業株式会社製の分光測色計Σ90で測定面積30φ、C2光源の透過法で測定した。
<Measurement of YI value>
Adegas tub PEP36 [bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol phosphite made by ADEKA Corporation] was added to the obtained polycarbonate resin flakes, and 40 mmφ uniaxial with a vent was added. The mixture was melt-kneaded and extruded by an extruder at a resin temperature of 280 ° C. and a screw rotation speed of 100 rpm to obtain pellets. Using the obtained pellets, a molded product having a thickness of 3 mm was molded, and measured with a spectrocolorimeter Σ90 manufactured by Nippon Denshoku Industries Co., Ltd., with a measurement area of 30φ and a C2 light source transmission method.
<嵩密度の測定>
 嵩密度は、JISK7365に基づいて測定した。
<Measurement of bulk density>
The bulk density was measured based on JISK7365.
製造例1<高純度3-ペンタデシルフェノールの製造>
 内径30mm、容量500mLのカラムにマクマホンパッキン(Mc.MAHON Packing、規格サイズ:6mm)を充填して精留塔とし、内温測定装置の付いた2Lフラスコに取り付け、充填塔頂には還流比(還流量/留出量)を調整する器具と塔頂温度を測定する装置、更には減圧度調整装置を取り付けた。3-ペンタデシルフェノール固形物(東京化成工業株式会社製、純度92.10質量%)1006.96gをフラスコに供給し、窒素置換後、加熱減圧を開始した。減圧度2mmHg、還流量/留出量=1に設定し、塔頂温度205~210℃の留分を分取した。この時、フラスコ温度は230~245℃であった。分取量は825.71g(仕込みの82質量%)、3-ペンタデシルフェノールの純度は93.61質量%であった。
 次に、得られた粗3-ペンタデシルフェノールを60℃の湯浴にて融解させ規格瓶に70g秤量した後、420gのn-ヘキサンを加え溶解させた。室温にて12時間静置し、析出した固体を減圧濾過した後、室温にて8時間減圧乾燥することにより、微粉末状の精製した3-ペンタデシルフェノールを得た。この精製した3-ペンタデシルフェノールの純度は97.75質量%、3-ペンタデシルフェノール微粉末の嵩密度は0.16g/cmであった。この純度が97.75質量%の3-ペンタデシルフェノール微粉末をローラーコンパクターに入れ、ロール幅1cmあたり0.2トンの荷重を加えた後に粉砕し、最大径が3mmを有する造粒物を得た。造粒後の粉体温度は23.4℃であった。この造粒物の嵩密度は、0.46g/cmであった。
Production Example 1 <Production of high-purity 3-pentadecylphenol>
A column having an inner diameter of 30 mm and a capacity of 500 mL is packed with McMahon packing (Mc. MAHON Packing, standard size: 6 mm) to form a rectifying column, which is attached to a 2 L flask equipped with an internal temperature measuring device, and a reflux ratio ( A device for adjusting the reflux amount / distillation amount), a device for measuring the tower top temperature, and a depressurization degree adjusting device were attached. 100.96 g of 3-pentadecylphenol solid (manufactured by Tokyo Chemical Industry Co., Ltd., purity 92.10% by mass) was supplied to the flask, and after replacing with nitrogen, heating and decompression were started. The degree of vacuum was set to 2 mmHg, reflux / distillation = 1, and the fraction having a tower top temperature of 205-210 ° C. was fractionated. At this time, the flask temperature was 230 to 245 ° C. The amount collected was 825.71 g (82% by mass of the charge), and the purity of 3-pentadecylphenol was 93.61% by mass.
Next, the obtained crude 3-pentadecylphenol was melted in a 60 ° C. hot water bath and weighed 70 g in a standard bottle, and 420 g of n-hexane was added and dissolved. The mixture was allowed to stand at room temperature for 12 hours, and the precipitated solid was filtered under reduced pressure, and then dried under reduced pressure at room temperature for 8 hours to obtain purified 3-pentadecylphenol as a fine powder. The purity of the purified 3-pentadecylphenol was 97.75% by mass, and the bulk density of the 3-pentadecylphenol fine powder was 0.16 g / cm 3 . 3-Pentadecylphenol fine powder with a purity of 97.75% by mass is put into a roller compactor, and after applying a load of 0.2 tons per 1 cm roll width, it is pulverized to obtain a granulated product having a maximum diameter of 3 mm. It was. The powder temperature after granulation was 23.4 ° C. The bulk density of this granulated product was 0.46 g / cm 3 .
実施例1
 ポリカーボネートオリゴマーとしてビスフェノールAの水酸化ナトリウム水溶液、ホスゲン、塩化メチレン及びp-t-ブチルフェノール(PTBP)を用いて製造された、濃度318g/L、クロロホーメート基濃度0.75mol/L、重量平均分子量(Mw)=3,100、NMRより求めた全末端基における官能基比がp-t-ブチルフェノキシ基(PTBP由来の末端基):OH:クロロホーメート基(CF)=3.3:7.7:89.0のポリカーボネートオリゴマーの塩化メチレン溶液(PCO)を原料に使用した。
 なお、重量平均分子量(Mw)は、展開溶媒としてTHF(テトラヒドロフラン)を用い、GPC〔カラム:TOSOH TSK-GEL MULTIPORE HXL-M(2本)+Shodex KF801(1本)、温度40℃、流速1.0ml/分、検出器:RI〕にて、標準ポリスチレン換算分子量(重量平均分子量:Mw)として測定した。
Example 1
Manufactured using sodium hydroxide aqueous solution of bisphenol A as a polycarbonate oligomer, phosgene, methylene chloride and pt-butylphenol (PTBP), concentration 318 g / L, chloroformate group concentration 0.75 mol / L, weight average molecular weight (Mw) = 3,100, the functional group ratio of all terminal groups determined by NMR is pt-butylphenoxy group (terminal group derived from PTBP): OH: chloroformate group (CF) = 3.3: 7 7: 89.0 polycarbonate oligomer in methylene chloride (PCO) was used as the starting material.
The weight average molecular weight (Mw) was measured using GPC [column: TOSOH TSK-GEL MULTIPIORE HXL-M (2) + Shodex KF801 (1)], temperature 40 ° C., flow rate 1. It was measured as a standard polystyrene equivalent molecular weight (weight average molecular weight: Mw) at 0 ml / min, detector: RI].
 このポリカーボネートオリゴマー20リットル/hr,上記製造例1で得られた純度97.75質量%の3-ペンタデシルフェノール(PDP)を塩化メチレンに溶解して12質量%含有させた塩化メチレン溶液1.7リットル/hr(PDP/CF=0.057),トリエチルアミンの4質量%水溶液0.04リットル/hr及び10質量%の水酸化ナトリウム水溶液1.0リットル/hr(NaOH/CF=0.2)の流量で、第一反応器として、直径43mmと直径48mmのタービン翼を有する内容積0.3リットルのT.Kパイプラインホモミキサー2SL型(特殊機化工業製)〔第一反応帯域として使用したラインミキサー〕に供給し、3000rpmの回転下で反応を行い、ポリカーボネートオリゴマー末端基のクロロホーメート基の一部と3-ペンタデシルフェノールとを反応させ、末端基の一部が3-ペンタデシルフェノキシ基であるポリカーボネートオリゴマー反応液を得た。
 このポリカーボネートオリゴマー反応液中に含まれているポリカーボネートオリゴマーの全末端基に対する3-ペンタデシルフェノキシ基の割合は32モル%であり、クロロホーメート基の割合は57モル%であった。なお、末端基の割合は、H-NMRにより測定した。また、ポリカーボネートオリゴマー反応液中に含まれている未反応の3-ペンタデシルフェノールをH-NMRにより測定したところ0.1%であり、供給したペンタデシルフェノールの99.7%が反応していることを確認した。第一反応帯域出口(a点)の温度は20℃であった。第一反応帯域を出たポリカーボネートオリゴマーは熱交換器にて冷却し、熱交換器出口の温度(b点)は15℃であった。
This polycarbonate oligomer 20 liters / hr, a solution of 1.7 methylene chloride of 97.75% by mass of 3-pentadecylphenol (PDP) obtained in Preparation Example 1 was dissolved in methylene chloride and contained 1.7% of methylene chloride. Liter / hr (PDP / CF = 0.057), 0.04 liter / hr of 4% by weight aqueous solution of triethylamine and 1.0 liter / hr of 10% by weight sodium hydroxide aqueous solution (NaOH / CF = 0.2) At a flow rate, as a first reactor, a T.D. with an internal volume of 0.3 liter having turbine blades with a diameter of 43 mm and a diameter of 48 mm. Supply to K pipeline homomixer 2SL type (manufactured by Tokushu Kika Kogyo Co., Ltd.) [Line mixer used as the first reaction zone], react under rotation of 3000 rpm, part of the chloroformate group of polycarbonate oligomer end group Was reacted with 3-pentadecylphenol to obtain a polycarbonate oligomer reaction solution in which a part of the end groups were 3-pentadecylphenoxy groups.
The ratio of 3-pentadecylphenoxy group to all terminal groups of the polycarbonate oligomer contained in the polycarbonate oligomer reaction solution was 32 mol%, and the ratio of chloroformate group was 57 mol%. The proportion of end groups was measured by 1 H-NMR. Further, the unreacted 3-pentadecylphenol contained in the polycarbonate oligomer reaction solution was measured by 1 H-NMR and found to be 0.1%, and 99.7% of the supplied pentadecylphenol reacted. I confirmed. The temperature at the first reaction zone outlet (point a) was 20 ° C. The polycarbonate oligomer exiting the first reaction zone was cooled by a heat exchanger, and the temperature (point b) at the heat exchanger outlet was 15 ° C.
 続いて、第二反応器として、内径9.2mm,長さ230mmでエレメント14個を内蔵したスルーザーミキサー(住友重機械(株)製)[第二反応帯域の1基目の反応器として用いたラインミキサー]に、第一反応器出口からの反応液,5.6質量%の水酸化ナトリウム水溶液にビスフェノールAを溶解して13.5質量%の濃度にした水溶液(BPA-Na)11.5リットル/hr(NaOH/OH当量比=1.03),分子量調節剤としてp-t-ブチルフェノール(PTBP)を溶解して濃度24質量%にした塩化メチレン溶液0.35リットル/hr(PTBP/CF=0.055)及び25質量%水酸化ナトリウム水溶液0.64リットル/hr(NaOH/CF=1.3)を導入した。この際のCF値は、第一反応帯域に使用したポリカーボネートオリゴマーのクロロホーメート基濃度を示す。第二反応器出口(c点)の温度は33℃であった。
 反応を完結させるための第三反応器として、ジャケット付きの50リットル,パドル翼三段の塔型撹拌槽[第二反応帯域の2基目の反応器として用いた]に供給し、重縮合を行った。ジャケットには、15℃の冷却水を流し、重合液の出口温度を35℃とした。上記第一反応帯域から第二反応帯域までの工程図を図1に示す。
Subsequently, as a second reactor, a throughzer mixer (manufactured by Sumitomo Heavy Industries, Ltd.) having an inner diameter of 9.2 mm, a length of 230 mm and incorporating 14 elements [used as the first reactor in the second reaction zone] In the line mixer], the reaction solution from the outlet of the first reactor, an aqueous solution (BPA-Na) in which bisphenol A was dissolved in a 5.6 mass% sodium hydroxide aqueous solution to a concentration of 13.5 mass%. 5 liter / hr (NaOH / OH equivalent ratio = 1.03), 0.35 liter / hr (PTBP / PTBP / methylene chloride solution in which pt-butylphenol (PTBP) was dissolved as a molecular weight regulator to a concentration of 24% by mass. CF = 0.055) and 25% by mass aqueous sodium hydroxide solution 0.64 l / hr (NaOH / CF = 1.3) were introduced. The CF value at this time indicates the chloroformate group concentration of the polycarbonate oligomer used in the first reaction zone. The temperature at the outlet of the second reactor (point c) was 33 ° C.
As a third reactor for completing the reaction, it was supplied to a 50 liter jacketed, three-stage tower-type stirring tank with a paddle blade [used as the second reactor in the second reaction zone] and subjected to polycondensation. went. A 15 ° C. cooling water was passed through the jacket, and the outlet temperature of the polymerization solution was set to 35 ° C. A process diagram from the first reaction zone to the second reaction zone is shown in FIG.
 この重合液を静置し、ポリカーボネート樹脂を含む有機相と過剰のビスフェノールA及びNaOHを含む水相に分離した。静置してから60分後の有機相中の水分量をカールフィッシャー水分計で測定したところ、2000質量ppmであった。この有機相をアルカリ洗浄,酸洗浄及び水洗(洗浄後の水相中の電気伝導度が0.05μS/m以下になるまで純水で洗浄を繰り返した。)することによって透明なポリマー溶液を有機相として得た。
 洗浄により得られたポリカーボネート樹脂の塩化メチレン溶液を濃縮・粉砕し、得られたフレークを減圧下、100℃で乾燥し、ポリカーボネート樹脂フレークを得た。このポリカーボネート樹脂フレークの粘度平均分子量は11,500で、3-ペンタデシルフェノキシ基に由来する3-ペンタデシルフェノール含有量は3質量%、フレーク中の未反応の3-ペンタデシルフェノールは9ppmであった。また、全末端基に対する水酸基末端分率は、1.9モル%であった。乾燥後のフレークを押出機で造粒してペレットとし、このペレットの流れ値(Q値)を測定したところ、123×10-2mL/秒であった。また、このペレットを用いてプレートを成形し、イエローインデックス(YI値)を測定したところ、1.0であった。得られた結果を表1に示す。
This polymerization solution was allowed to stand, and was separated into an organic phase containing a polycarbonate resin and an aqueous phase containing excess bisphenol A and NaOH. When the water content in the organic phase 60 minutes after standing was measured with a Karl Fischer moisture meter, it was 2000 ppm by mass. The organic phase is washed with alkali, acid, and water (washing with pure water is repeated until the electric conductivity in the aqueous phase after washing is 0.05 μS / m or less.) Obtained as a phase.
The methylene chloride solution of the polycarbonate resin obtained by washing was concentrated and pulverized, and the obtained flakes were dried at 100 ° C. under reduced pressure to obtain polycarbonate resin flakes. The viscosity average molecular weight of this polycarbonate resin flake was 11,500, the content of 3-pentadecylphenol derived from 3-pentadecylphenoxy group was 3% by mass, and the unreacted 3-pentadecylphenol in the flake was 9 ppm. It was. Moreover, the hydroxyl group terminal fraction with respect to all the terminal groups was 1.9 mol%. The flakes dried granulated with an extruder to pellets was measured the flow value of the pellet (Q value) was 123 × 10 -2 mL / sec. Further, a plate was formed using this pellet, and the yellow index (YI value) was measured and found to be 1.0. The obtained results are shown in Table 1.
実施例2
 実施例1において、第二反応帯域に導入した濃度24質量%のp-t-ブチルフェノールの塩化メチレン溶液を0.25リットル/hr(PTBP/CF=0.039)に変更した以外は、実施例1と同様にしてポリカーボネート樹脂を得た。その結果を表1に示す。
Example 2
In Example 1, except that the methylene chloride solution of pt-butylphenol having a concentration of 24% by mass introduced into the second reaction zone was changed to 0.25 liter / hr (PTBP / CF = 0.039). 1 to obtain a polycarbonate resin. The results are shown in Table 1.
実施例3
 実施例1において、第一反応帯域に導入した濃度12質量%の3-ペンタデシルフェノールの塩化メチレン溶液を0.57リットル/hr(PDP/CF=0.019)とし、第二反応帯域に導入した濃度24質量%のp-t-ブチルフェノールの塩化メチレン溶液を0.59リットル/hr(PTBP/CF=0.093)に変更した以外は、実施例1と同様にしてポリカーボネート樹脂を得た。その結果を表1に示す。
Example 3
In Example 1, a methylene chloride solution of 3-pentadecylphenol having a concentration of 12% by mass introduced into the first reaction zone was adjusted to 0.57 liter / hr (PDP / CF = 0.199) and introduced into the second reaction zone. A polycarbonate resin was obtained in the same manner as in Example 1 except that the methylene chloride solution of pt-butylphenol having a concentration of 24% by mass was changed to 0.59 l / hr (PTBP / CF = 0.093). The results are shown in Table 1.
実施例4
 実施例1において、第一反応帯域に導入した濃度12質量%の3-ペンタデシルフェノールの塩化メチレン溶液を3.34リットル/hr(PDP/CF=0.112)とし、第二反応帯域にp-t-ブチルフェノールを導入しなかった以外は、実施例1と同様にしてポリカーボネート樹脂を得た。その結果を表1に示す。
Example 4
In Example 1, the methylene chloride solution of 3-pentadecylphenol having a concentration of 12% by mass introduced into the first reaction zone was adjusted to 3.34 liter / hr (PDP / CF = 0.112), and p-type was added to the second reaction zone. A polycarbonate resin was obtained in the same manner as in Example 1 except that -t-butylphenol was not introduced. The results are shown in Table 1.
実施例5
 実施例1において、第一反応帯域には、第1反応器として、直径260mmのファウドラー翼を有するジャケット付き20リットルの撹拌槽を用い、回転数290rpmで運転した以外は、実施例1と同様にして反応を行った。ジャケットには、15℃の冷却水を通し、冷却を行った。第二反応帯域には、実施例1の第一反応器と同じラインミキサー[第二反応帯域の最初の反応器として用いた]を用い、回転数4000rpmで重合を行い、続く第三反応器としては、撹拌機のない30リットルの縦型のポット[第二反応帯域の2番目の反応器として用いた]で反応を完結させた。その結果を表1に示す。
Example 5
In Example 1, the first reaction zone was the same as in Example 1 except that a 20-liter stirred tank with a Faudler blade having a diameter of 260 mm was used as the first reactor and the operation was performed at a rotational speed of 290 rpm. The reaction was performed. Cooling was performed by passing cooling water at 15 ° C. through the jacket. In the second reaction zone, the same line mixer as that used in the first reactor of Example 1 [used as the first reactor in the second reaction zone] was used for polymerization at a rotational speed of 4000 rpm. Completed the reaction in a 30 liter vertical pot without a stirrer [used as the second reactor in the second reaction zone]. The results are shown in Table 1.
比較例1
 実施例1において、純度97.75質量%の3-ペンタデシルフェノールに変えて、純度92.10質量%の3-ペンタデシルフェノール固形物(東京化成工業株式会社製)を用いた以外は実施例1と同様にして、ポリカーボネート樹脂を得た。その結果を表1に示す。
Comparative Example 1
In Example 1, instead of 3-pentadecylphenol having a purity of 97.75% by mass, a 3-pentadecylphenol solid product having a purity of 92.10% by mass (manufactured by Tokyo Chemical Industry Co., Ltd.) was used. 1, a polycarbonate resin was obtained. The results are shown in Table 1.
比較例2
 実施例1において、第一反応帯域としての第1反応器を停止し、第一反応帯域に導入した濃度12質量%の3-ペンタデシルフェノールの塩化メチレン溶液、トリエチルアミンの4質量%水溶液、10質量%の水酸化ナトリウム水溶液を、全て第二反応帯域の入口に導入した以外は実施例1と同様に実施した(工程図を図2に示す。)。結果を表1に示す。
Comparative Example 2
In Example 1, the first reactor as the first reaction zone was stopped, and a methylene chloride solution of 3-pentadecylphenol having a concentration of 12% by mass introduced into the first reaction zone, a 4% by mass aqueous solution of triethylamine, 10% by mass. The same procedure as in Example 1 was carried out except that all the aqueous sodium hydroxide solution was introduced into the inlet of the second reaction zone (process diagram is shown in FIG. 2). The results are shown in Table 1.
比較例3
 実施例1において、第二反応帯域に導入した25質量%水酸化ナトリウム水溶液を、第二反応器の入口(第二反応帯域の入口)に0.25リットル/hr(Na/CF=0.5)導入し、第二反応器の出口に0.39リットル/hr(Na/CF=0.8)導入する分割導入を行ったこと以外は、実施例1と同様に重縮合反応を実施した(工程図を図3に示す)。得られた重合液を静置しポリカーボネート樹脂を含む有機相と過剰のビスフェノールA及びNaOHを含む水相とに分離する際、静置してから60分経過しても有機相と水相は全く分離しなかった。
Comparative Example 3
In Example 1, 25 mass% sodium hydroxide aqueous solution introduced into the second reaction zone was added at 0.25 liter / hr (Na / CF = 0.5) at the inlet of the second reactor (inlet of the second reaction zone). ) And a polycondensation reaction was carried out in the same manner as in Example 1 except that split introduction was carried out at 0.39 liter / hr (Na / CF = 0.8) at the outlet of the second reactor ( The process diagram is shown in FIG. When the obtained polymerization liquid is allowed to stand to separate into an organic phase containing a polycarbonate resin and an aqueous phase containing excess bisphenol A and NaOH, the organic phase and the aqueous phase are completely separated even after 60 minutes from standing. Not separated.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1から明らかな通り、実施例1~5の本願発明のポリカーボネート樹脂の製造方法では、重縮合反応後に得られる反応液を有機相と水相とに分離する分離性が良好であり、有機相中の水分濃度も安定していることが示されている。また、得られたポリカーボネート樹脂を成形し、成形品を測定したYI値も良好であることがわかる。一方、比較例1は、純度の低い3-ペンタデシルフェノールを用いたものであるが、実施例と比較してYI値が高くなっており、透明性が低下していることが示されている。比較例2は、第一反応帯域を使用しなかったものであるが、第二反応帯域での温度が上昇し、得られたポリカーボネート樹脂の水酸基末端分率が高くなり、成形品のYI値が高くなっていることがわかる。そして、比較例3は、第二反応帯域に使用する苛性アルカリを分割して添加した例である。この比較例3では、反応後に得られた重合液を分離することができなかったので、成形品の評価ができなかったことを示している。 As is apparent from Table 1, in the method for producing the polycarbonate resin of the present invention of Examples 1 to 5, the separation property for separating the reaction liquid obtained after the polycondensation reaction into an organic phase and an aqueous phase is good. It is shown that the water concentration in the inside is also stable. Moreover, it turns out that the YI value which shape | molded the obtained polycarbonate resin and measured the molded article is also favorable. On the other hand, Comparative Example 1 uses 3-pentadecylphenol having a low purity, but the YI value is higher than that of the Example, indicating that the transparency is lowered. . In Comparative Example 2, the first reaction zone was not used, but the temperature in the second reaction zone was increased, the hydroxyl group terminal fraction of the obtained polycarbonate resin was increased, and the YI value of the molded product was You can see that it is getting higher. And the comparative example 3 is an example which divided and added the caustic used for a 2nd reaction zone. In Comparative Example 3, it was shown that the molded product could not be evaluated because the polymerization solution obtained after the reaction could not be separated.
 本発明のポリカーボネート樹脂の製造方法は、反応後の反応液の油水分離性が良好であり、生産効率を上げることができるとともに、成形品のYI値を低くすることができるので、透明性等の色調に優れるポリカーボネート樹脂を得ることができる。 The method for producing a polycarbonate resin of the present invention has good oil-water separation properties of the reaction solution after the reaction, can increase production efficiency, and can lower the YI value of the molded product. A polycarbonate resin excellent in color tone can be obtained.

Claims (13)

  1.  重量平均分子量が5000未満のポリカーボネートオリゴマーと二価フェノールのアルカリ水溶液とを反応させてポリカーボネート樹脂を製造する方法において、第一反応帯域への導入口に前記ポリカーボネートオリゴマー、天然物から得られる純度が97.5質量%以上の3-ペンタデシルフェノール及び苛性アルカリを導入し、前記第一反応帯域でポリカーボネートオリゴマーと3-ペンタデシルフェノールとを反応させ、ポリカーボネートオリゴマーの末端基の一部が3-ペンタデシルフェノキシ基であるポリカーボネートオリゴマーを含む反応液を生成し、次いで前記第一反応帯域から得られた反応液、二価フェノールのアルカリ水溶液及び苛性アルカリを第二反応帯域への導入口に導入し、かつ、第二反応帯域へ導入する苛性アルカリは、その全量を第二反応帯域の導入口から導入して第二反応帯域で反応を行うことを特徴とするポリカーボネート樹脂の製造方法。 In a method for producing a polycarbonate resin by reacting a polycarbonate oligomer having a weight average molecular weight of less than 5,000 with an alkaline aqueous solution of a dihydric phenol, the purity obtained from the polycarbonate oligomer or natural product is 97 at the inlet to the first reaction zone. Introducing 5% by mass or more of 3-pentadecylphenol and caustic alkali, the polycarbonate oligomer and 3-pentadecylphenol are reacted in the first reaction zone, and a part of the end group of the polycarbonate oligomer is 3-pentadecyl. Producing a reaction liquid containing a polycarbonate oligomer that is a phenoxy group, then introducing the reaction liquid obtained from the first reaction zone, an alkali aqueous solution of dihydric phenol and caustic alkali into the inlet to the second reaction zone; and Caustic fluid introduced into the second reaction zone Kali method for producing a polycarbonate resin characterized in that the reaction is carried out by introducing the total amount from the inlet of the second reaction zone in a second reaction zone.
  2.  前記第二反応帯域に末端停止剤として、p-t-ブチルフェノール、p-クミルフェノール及びフェノールから選択される少なくとも1種を導入して反応を行う、請求項1に記載のポリカーボネート樹脂の製造方法。 The method for producing a polycarbonate resin according to claim 1, wherein the reaction is carried out by introducing at least one selected from pt-butylphenol, p-cumylphenol and phenol as a terminal stopper in the second reaction zone. .
  3.  前記第一反応帯域に導入する3-ペンタデシルフェノールと前記第二反応帯域に導入する末端停止剤とのモル比率が、1:9~9:1である、請求項2に記載のポリカーボネート樹脂の製造方法。 The polycarbonate resin according to claim 2, wherein a molar ratio of 3-pentadecylphenol introduced into the first reaction zone and a terminal stopper introduced into the second reaction zone is 1: 9 to 9: 1. Production method.
  4.  前記第二反応帯域に末端停止剤を導入しないで第二反応帯域で反応を行う、請求項1に記載のポリカーボネート樹脂の製造方法。 The method for producing a polycarbonate resin according to claim 1, wherein the reaction is carried out in the second reaction zone without introducing a terminal stopper into the second reaction zone.
  5.  3-ペンタデシルフェノールを前記第一反応帯域に導入するに当たり、塩化メチレンに溶解させた溶液として導入する、請求項1~4のいずれかに記載のポリカーボネート樹脂の製造方法。 5. The method for producing a polycarbonate resin according to claim 1, wherein 3-pentadecylphenol is introduced into the first reaction zone as a solution dissolved in methylene chloride.
  6.  前記第二反応帯域の温度が20~36℃である、請求項1~5のいずれかに記載のポリカーボネート樹脂の製造方法。 The method for producing a polycarbonate resin according to any one of claims 1 to 5, wherein the temperature of the second reaction zone is 20 to 36 ° C.
  7.  前記第一反応帯域から得られたポリカーボネートオリゴマーの全末端基の5~50モル%が3-ペンタデシルフェノキシ基である、請求項1~6のいずれかに記載のポリカーボネート樹脂の製造方法。 The method for producing a polycarbonate resin according to any one of claims 1 to 6, wherein 5 to 50 mol% of all terminal groups of the polycarbonate oligomer obtained from the first reaction zone are 3-pentadecylphenoxy groups.
  8.  前記第一反応帯域から得られたポリカーボネートオリゴマーの全末端基の50~95モル%がクロロホーメート基である、請求項1~7のいずれかに記載のポリカーボネート樹脂の製造方法。 The method for producing a polycarbonate resin according to any one of claims 1 to 7, wherein 50 to 95 mol% of all terminal groups of the polycarbonate oligomer obtained from the first reaction zone are chloroformate groups.
  9.  得られるポリカーボネート樹脂の粘度平均分子量が8,000~20,000である、請求項1~8のいずれかに記載のポリカーボネート樹脂の製造方法。 The method for producing a polycarbonate resin according to any one of claims 1 to 8, wherein the obtained polycarbonate resin has a viscosity average molecular weight of 8,000 to 20,000.
  10.  重量平均分子量が5000未満のポリカーボネートオリゴマーが、ビスフェノールAを用いて得られたものである、請求項1~9のいずれかに記載のポリカーボネート樹脂の製造方法。 10. The method for producing a polycarbonate resin according to claim 1, wherein the polycarbonate oligomer having a weight average molecular weight of less than 5000 is obtained using bisphenol A.
  11.  前記二価フェノールがビスフェノールAである、請求項1~10のいずれかに記載のポリカーボネート樹脂の製造方法。 The method for producing a polycarbonate resin according to any one of claims 1 to 10, wherein the dihydric phenol is bisphenol A.
  12.  前記第一反応帯域に導入されたペンタデシルフェノールを当該第一反応帯域中で95%以上反応させる、請求項1~11のいずれかに記載のポリカーボネート樹脂の製造方法。 The method for producing a polycarbonate resin according to any one of claims 1 to 11, wherein pentadecylphenol introduced into the first reaction zone is reacted at 95% or more in the first reaction zone.
  13.  前記第一反応帯域及び/又は前記第二反応帯域にラインミキサーを用いる、請求項1~12のいずれかに記載のポリカーボネート樹脂の製造方法。 The method for producing a polycarbonate resin according to any one of claims 1 to 12, wherein a line mixer is used in the first reaction zone and / or the second reaction zone.
PCT/JP2015/061746 2014-04-17 2015-04-16 Method for producing polycarbonate resin WO2015159958A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-085350 2014-04-17
JP2014085350 2014-04-17

Publications (1)

Publication Number Publication Date
WO2015159958A1 true WO2015159958A1 (en) 2015-10-22

Family

ID=54324159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061746 WO2015159958A1 (en) 2014-04-17 2015-04-16 Method for producing polycarbonate resin

Country Status (2)

Country Link
TW (1) TW201542619A (en)
WO (1) WO2015159958A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115322356A (en) * 2022-08-09 2022-11-11 万华化学集团股份有限公司 Copolycarbonate with high heat resistance and high chemical stability resistance, and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6922575B2 (en) * 2016-09-14 2021-08-18 三菱ケミカル株式会社 Multivalent phenol compound and its manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069168A (en) * 2000-08-29 2002-03-08 Mitsubishi Chemicals Corp Method for producing polycarbonate resin
JP2002332400A (en) * 2001-05-10 2002-11-22 Teijin Chem Ltd Polycarbonate molding material for optics having high precision transferability, and optical disk base board formed therefrom
JP2003041011A (en) * 2001-07-31 2003-02-13 Teijin Chem Ltd Optical recording medium
JP2005524923A (en) * 2002-05-09 2005-08-18 ゼネラル・エレクトリック・カンパニイ Method for enhancing pit duplication of optical disc
JP2014224244A (en) * 2013-04-19 2014-12-04 出光興産株式会社 Polycarbonate resin, polycarbonate resin composition, and molded article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069168A (en) * 2000-08-29 2002-03-08 Mitsubishi Chemicals Corp Method for producing polycarbonate resin
JP2002332400A (en) * 2001-05-10 2002-11-22 Teijin Chem Ltd Polycarbonate molding material for optics having high precision transferability, and optical disk base board formed therefrom
JP2003041011A (en) * 2001-07-31 2003-02-13 Teijin Chem Ltd Optical recording medium
JP2005524923A (en) * 2002-05-09 2005-08-18 ゼネラル・エレクトリック・カンパニイ Method for enhancing pit duplication of optical disc
JP2014224244A (en) * 2013-04-19 2014-12-04 出光興産株式会社 Polycarbonate resin, polycarbonate resin composition, and molded article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115322356A (en) * 2022-08-09 2022-11-11 万华化学集团股份有限公司 Copolycarbonate with high heat resistance and high chemical stability resistance, and preparation method and application thereof

Also Published As

Publication number Publication date
TW201542619A (en) 2015-11-16

Similar Documents

Publication Publication Date Title
US9365683B2 (en) Polycarbonate-polyorganosiloxane copolymer and method for producing same
WO2013058214A1 (en) Polycarbonate-polyorganosiloxane copolymer and method for producing same
JP6711502B2 (en) Method for producing polycarbonate-polyorganosiloxane copolymer
JP6913028B2 (en) Polycarbonate resin composition
CN105940035A (en) Copolycarbonate composition and article comprising same
JP6355951B2 (en) Polyorganosiloxane, polycarbonate-polyorganosiloxane copolymer and method for producing the same
CN105849153A (en) Copolycarbonate and composition containing same
JP6397645B2 (en) Polycarbonate resin composition and molded body
WO2015186773A1 (en) Process for producing polycarbonate
WO2015159958A1 (en) Method for producing polycarbonate resin
JP2018135540A (en) Polyorganosiloxane, polycarbonate-polyorganosiloxane copolymer and production method of copolymer
US20170327639A1 (en) Polycarbonate-polyorganosiloxane copolymer production method
JPWO2014171509A1 (en) Polycarbonate resin for liquid crystal member, polycarbonate resin composition for liquid crystal member containing the same, and liquid crystal member
WO2015147198A1 (en) Methylene chloride solution of 3-pentadecylphenol, process for producing same, and process for producing polycarbonate resin using said solution
JP2014224244A (en) Polycarbonate resin, polycarbonate resin composition, and molded article
US10059800B2 (en) Process for producing polycarbonate
WO2016104532A1 (en) Process for producing polycarbonate
WO2015182700A1 (en) Method for producing polycarbonate
JP6357408B2 (en) Method for producing branched polycarbonate
US20170313824A1 (en) Method for preparing polycarbonate-polyorganosiloxane copolymer
JP2014224245A (en) Method of producing polycarbonate resin
JP6035182B2 (en) Polycarbonate copolymer and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15779218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15779218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP