WO2015159889A1 - Method for transplanting insulin-producing cells - Google Patents
Method for transplanting insulin-producing cells Download PDFInfo
- Publication number
- WO2015159889A1 WO2015159889A1 PCT/JP2015/061492 JP2015061492W WO2015159889A1 WO 2015159889 A1 WO2015159889 A1 WO 2015159889A1 JP 2015061492 W JP2015061492 W JP 2015061492W WO 2015159889 A1 WO2015159889 A1 WO 2015159889A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- insulin
- cells
- islet
- transplanted
- producing
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/37—Digestive system
- A61K35/39—Pancreas; Islets of Langerhans
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/48—Reproductive organs
- A61K35/54—Ovaries; Ova; Ovules; Embryos; Foetal cells; Germ cells
- A61K35/545—Embryonic stem cells; Pluripotent stem cells; Induced pluripotent stem cells; Uncharacterised stem cells
Definitions
- the present invention relates to a novel method for transplanting insulin-producing cells. More specifically, the present invention relates to a novel method for transplanting insulin-producing cells in which insulin-producing cells are transplanted into subcutaneous fat tissue.
- Diabetes is a typical lifestyle-related disease and is a complex chronic disease in which carbohydrates, lipids and proteins cannot be properly maintained and used. Diabetes is also characterized by abnormally high blood sugar levels due to insulin production deficiency or impaired insulin function caused by various genetic and environmental factors. As the symptoms of diabetes progress, it causes complications such as retinopathy, nephropathy, and neuropathy, causing stroke, cerebrovascular disorder, etc., resulting in a significant decrease in patient quality of life (QOL) Ultimately leading to a fatal prognosis for the patient.
- QOL patient quality of life
- Non-patent Document 1 the number of diabetic patients is estimated to reach about 350 million worldwide.
- the total number of patients with diabetes is enormous, adding to the number of patients who are strongly suspected of having diabetes or the number of patients with diabetes reserves.
- the fact that only a limited number of diabetic patients are receiving appropriate treatment is a major problem both medically and economically.
- Type 1 diabetes (formerly known as insulin-dependent diabetes mellitus (IDDM)) is characterized by specific destruction of insulin-producing pancreatic ⁇ -cells and depletion of insulin. This type 1 diabetes often occurs in children and young people.
- Type 2 diabetes (previously known as non-insulin-dependent diabetes mellitus (NIDDM)) responds appropriately to insulin production deficiency due to dysfunction of insulin-producing pancreatic ⁇ -cells or muscle and liver cells produced in the pancreas It develops due to a relative shortage of insulin, such as when it is not possible. It is noted that type 2 diabetes occurs most frequently in adults but is also increasing in young people.
- Type 2 diabetes accounts for about 90% of all diabetic patients. In particular, the number of type 2 diabetic patients is rapidly increasing due to obesity, lack of exercise, and aging. It should also be noted that many young patients with type 2 diabetes have pancreatic autoimmune abnormalities, increasing the number of cases where it is difficult to distinguish type 2 diabetes from type 1 diabetes or vice versa. It is that.
- T1DM type 1 diabetes
- an islet transplantation method in which insulin-producing ⁇ cells of Langerhans islet isolated from the pancreas are directly transplanted into a type 1 diabetes patient.
- This islet transplantation method is theoretically an excellent method for diabetic patients with islet cell disorders, and is an endocrine complement therapy that has been widely attempted in clinical practice since the late 1960s.
- This islet transplantation is now a very promising approach for the treatment of type 1 diabetes.
- This islet transplantation is a simple method of transplanting islet cells simply by instilling them into the portal vein of the liver. Therefore, it is extremely safe and dangerous compared to the operation of transplanting all organs. There is an advantage that it can be carried out even for highly peculiar patients.
- This islet transplantation is also advantageous because there is no need for abdominal surgery or vascular anastomosis.
- this islet transplantation has an advantage that even if a transplant rejection reaction occurs, removal is not necessary and the burden on the patient is extremely low (see, for example, Patent Document 1).
- this islet transplantation also has the risk that the islet graft forms an embolus in the peripheral portal vein and implants in the liver of a diabetic patient, causing ischemic alterations in the corresponding area. This can result in a post-transplant immune response that releases inflammatory santocaine that is detrimental to islet cell debris.
- ⁇ cells that secrete insulin are susceptible to in vitro effects when exposed to pro-inflammatory cytokines such as IFN- ⁇ , TNF- ⁇ , and IL-1 ⁇ , for example (see Non-Patent Document 6).
- islet transplantation has become increasingly useful as a fundamental treatment for diabetes, further improvement is necessary for successful islet transplantation.
- the reason for this is that, for example, the current islet transplantation has a low engraftment rate of islet cells, the need for infusion of a large amount of islet cells due to such a low engraftment rate, and a small number of donors, etc. This is because they still face a number of problems.
- Shapiro et al. Reported on the results of islet transplant patients using the Edmonton protocol, and 76% of patients who did not need insulin therapy once islet transplants. Insulin therapy was resumed 2 years after transplantation.
- islet transplantation requires a low number of transplanted islet cells transplanted to the liver, so two or more donors are required for one diabetes recipient. This should be urgently solved even from the viewpoint that there are few donors. If this problem is solved and the ratio of donors to recipients has improved to a one-to-one ratio, islet transplantation is expected to spread explosively and make a significant contribution to the treatment of diabetes.
- islet transplantation faces several problems, as a result of decades of research to improve intrahepatic islet delivery, the intrahepatic space is nourishing and physical to the islets. It has been found to be a support and play an essential role in maintaining the engraftment and function of transplanted islet cells for a long period of time. Therefore, islet transplantation is an attractive method for the treatment of diabetes, and currently, the liver via the portal vein of diabetic patients is a transplant site in a clinical setting (see, for example, Non-Patent Documents 4 and 7).
- Non-Patent Documents 8 and 9 there are reports that the hepatic vascular system is a hostile environment that restricts engraftment and functions.
- many different sites for islet transplantation were investigated to optimize islet engraftment and function, reduce the number of transplanted islet cell mass required, and reduce immunogenicity (non- Patent Documents 9 and 10).
- Non-Patent Documents 9, 11, and 12 kidney subcapsular sites, spleen, omentum, pancreas, gastrointestinal wall, immune protection sites such as thymus, brain and testis, musculoskeletal sites such as bone marrow, and subcutaneous sites.
- implantation sites for patients have been tested as described above, until now it has not been possible to make patients non-insulin dependent.
- intraportal islet transplantation has been empirically recognized as the best site for use in patients (Non-patent Document 9).
- the present inventors have conducted intensive research. As a result, the present inventor has developed a novel method that is easy to handle when transplanting pancreatic islet cells and can be immediately extracted when a transplanted pancreatic islet cell malfunctions.
- a subcutaneous implant site was found. Subcutaneous transplantation has been reported in the past to require about 5,000 islet cells from 5 or more donor rats to treat diabetes in one diabetic recipient rat (Non-patent Document 15). Report that the engraftment efficiency is very low. The present inventor reasoned that the engraftment efficiency was so low that the islet cells died of hypoxia after transplantation due to the lack of nutrient blood vessels.
- the subcutaneous fat part of the heel part is selected as a new subcutaneous transplantation site where improvement of engraftment efficiency can be expected because the nutritional blood vessels of the inferior abdominal wall arteries and veins pass through on both sides (Non-patent Document 16). did.
- islet cell transplantation into the subcutaneous adipose tissue of the buttocks of diabetic mice reduces the blood glucose level to a normal level and achieves transplantation as efficient as conventional liver transplantation. I found.
- the present inventor can cure diabetes of a recipient by simply transplanting the same or a small number of insulin-producing islets to the number of islet cells of one donor into the subcutaneous fat tissue of one diabetes recipient, or for a long period of time. It was found that it can be expected to maintain a normal blood sugar level.
- insulin / glucagon co-positive cells in which both insulin and glucagon are expressed in the same transplanted islet cells are transplanted into subcutaneous adipose tissue. glucagon double positive cells).
- an object of the present invention is to provide a novel method for transplanting insulin-producing cells in which insulin-producing cells are transplanted into subcutaneous adipose tissue in which vegetative blood vessels are widely distributed.
- subcutaneous adipose tissue is a subcutaneous adipose tissue of a diabetic recipient, and is a nutrient-supplementing blood vessel that is localized in the body and can supply essential nutrients to the islet cells.
- nutrient blood vessel means a blood vessel capable of supplying nutrients essential to transplanted islets to subcutaneous adipose tissue.
- blood vessels can include, for example, arteries, veins and / or capillaries.
- the present invention also enables the blood sugar level of a diabetic recipient to be normal blood glucose level for a long period of time simply by transplanting the same or a small number of islet-producing islets as the number of islet cells of one donor to the subcutaneous fat tissue of one diabetic recipient.
- Another object is to provide a novel method of treating diabetes comprising maintaining and treating diabetes.
- an object of the present invention is to provide insulin / glucagon double positive cells which are cells in which insulin and glucagon are expressed in the same cell.
- the present invention provides a novel method for transplanting insulin-producing cells in which insulin-producing cells are transplanted into subcutaneous adipose tissue in which nutrient blood vessels are widely distributed.
- the insulin-producing cells are human islet cells, heterologous islet cells such as pigs, insulin / glucagon double positive positive cells, or insulin-producing cells prepared from ES cells or iPS cells.
- An insulin producing cell transplantation method comprising the above is provided.
- Another preferred embodiment of the present invention is an insulin-producing cell comprising a subcutaneous adipose tissue in a site in which nutrient blood vessels such as the buttocks, armpits, and back of a diabetic recipient are widely distributed. Provide a transplantation method.
- the subcutaneous adipose tissue of one diabetic recipient contains insulin producing pancreatic islets equal to or less than the number of islet cells of one donor, eg, 1/10 of the number of islet cells of one donor, preferably Treats diabetes by maintaining the blood glucose level of the diabetic recipient at a normal blood glucose level for a long period of time simply by transplanting 2/3 to 1/6, more preferably 1/2 to 1/5 islet cells. And a novel method for treating diabetes.
- a method for treating diabetes comprising transplanting insulin-producing cells and producing insulin from the transplanted cells to treat diabetes.
- insulin / glucagon double positive cells which are cells in which insulin and glucagon are expressed in the same cell, are provided.
- transplantation is performed by selecting a transplantation site for transplanting insulin-producing cells into subcutaneous adipose tissue existing in a site where nutritional blood vessels such as the buttocks, armpits, and back of a diabetic recipient are widely distributed.
- This is not only easy to implement, but also has the great advantage that once transplanted insulin-producing cells cause transplant rejection, the transplanted insulin-producing cells can be removed.
- the present invention can treat a diabetic patient by transplanting an insulin-producing cell of a single donor, for example, a human islet or a porcine islet cell, which is almost the same as or less than a number of islet cells, which has been impossible until now. There is a tremendous advantage of being possible.
- FIG. 1 is a view showing a part of mouse hip subcutaneous tissue as a novel islet transplantation site.
- FIG. 1 (A) shows the subcutaneous adipose tissue of the left buttock in a state lifted with tweezers.
- FIG. 1 (A) and 1 (B) the trophic blood vessels of the subcutaneous fat tissue of the buttocks can be seen.
- Long and short arrows indicate the thigh arteriovenous and the lower abdominal wall arteriovenous, respectively.
- FIG. 2 is a diagram showing a method of islet transplantation into mouse hip subcutaneous tissue.
- FIG. 2a is a top view of the left groin skin incision.
- FIG. 2b shows a small pocket created in the hip subcutaneous tissue.
- FIG. 2c and 2d show islets attached to the tip of the tube placed inside the pocket.
- arrows indicate islets in the pockets, and arrowheads indicate islets at the tip of the tube.
- FIG. 2e shows the pocket opening held by tweezers.
- FIG. 2f shows a pocket opening closed with a stapler. The scale is 1 mm.
- FIG. 3 is a graph showing the plasma glucose concentration of streptozotocin (STZ) -induced diabetic C57BL / 6 mice in which allogeneic islets were transplanted into the buttock subcutaneous adipose tissue.
- STZ streptozotocin
- the upper line graph shows a case where 200 islets were transplanted from a single donor mouse pancreas
- the lower line graph shows a case where 400 islets were transplanted.
- a line with a mark (+) indicates a mouse that died of severe diabetes
- a line with a mark (*) indicates a case in which the pancreatic islet transplanted to the subcutaneous adipose tissue of a diabetic recipient mouse was removed Indicates.
- FIG. 4 shows the morphology of transplanted islets into the subcutaneous subcutaneous fat 60 days after transplantation.
- FIG. 4a shows exposed hip subcutaneous tissue, where the arrows indicate staples with closed pockets. The arrowheads in FIG.
- FIGS. 5a and 5b show a mass of transplanted islet with new blood vessel formation.
- the short and long arrows indicate the lower abdominal wall arteriovenous and the femoral arterial vein, respectively.
- FIG. 5a shows a section of transplanted islets stained for DAP1, insulin and glucagon and an image combining these together.
- FIG. 5b is the high magnification image of FIG. 5a.
- Figures 5c, 5d and 5e show stained images for insulin, glucagon and DAP1, respectively.
- FIG. 5b shows insulin / glucagon co-positive cells.
- the horizontal lines in FIGS. 5a and 5b indicate 50 ⁇ m and 5 ⁇ m, respectively.
- FIG. 6 shows islet graft tissue within the kidney capsule (kc, upper panel) and liver (pv, lower panel) 60 days after transplantation. From left to right in the figure, DAP1, insulin, glucagon, and a panel showing a combination image thereof are shown. However, insulin / glucagon co-positive cells are not observed in this image.
- FIG. 7 shows the plasma glucose level of STZ-induced diabetic NOD / scid mice transplanted with human islets in the buttock subcutaneous adipose tissue. In the figure, a line with a mark (*) indicates that the pancreatic islet transplanted to the subcutaneous subcutaneous fat tissue of the recipient mouse was removed.
- FIG. 8 shows a confocal microscopic image of a human islet graft in the hip subcutaneous fat tissue of STZ-induced diabetic NOD / scid mice 60 days after transplantation.
- FIG. 8 (A) shows a human islet graft stained with HE. 8 (B), 8 (C), and 8 (D) are enlarged images of a portion surrounded by a square in FIG. 8 (A), and show human islet grafts stained for insulin, glucagon, and DAP1, respectively.
- FIG. 8E shows an image obtained by combining the stained images of the human islet grafts of FIGS. 8B, 8C, and 8D.
- the arrowheads in FIG. 8 (E) indicate insulin / glucagon simultaneous positive cells.
- FIG. 8 (E) indicate insulin / glucagon simultaneous positive cells.
- FIG. 9 shows the morphology of transplanted islets 6 hours after transplantation into the subcutaneous subcutaneous adipose tissue of STZ-induced diabetic recipient mice.
- FIG. 9 (A) shows a HE-stained section of the transplanted islet 6 hours after transplantation. The portion surrounded by the square in the upper left corner is a high-magnification portion of the portion enclosed by the square shown in the right portion of the HE-stained pancreatic islet. In the high-magnification portion, the arrowheads indicate infiltrating neutrophils in the transplanted islets.
- FIG. 9B shows immunofluorescence images of islet grafts stained for insulin (green) and Gr-1 (red), respectively.
- FIG. 10 is a line graph showing plasma glucose levels in STZ-induced diabetic J ⁇ 18-deficient (NKT cell-deficient) mice transplanted with allogeneic islets in the buttock subcutaneous adipose tissue.
- diabetes in STZ-induced diabetic J ⁇ 18 deficient (NKT cell deficient) mice was ameliorated after transplanting 50 islets, equivalent to 1/4 of the islets from one donor, into the subcutaneous subcutaneous adipose tissue. This indicates that islet transplantation into the subcutaneous subcutaneous adipose tissue in the absence of recipient NKT cells has improved by a factor of four.
- FIG. 11 is an immunoelectron micrograph of human transplanted islet cells.
- insulin-producing cells are transplanted into the subcutaneous fat tissue of a diabetic recipient, the transplanted insulin-producing cells are engrafted in the subcutaneous fat tissue, and insulin is secreted to thereby change the blood glucose level of the diabetic recipient to normal blood glucose level. It consists of reducing and treating diabetes.
- the insulin-producing cell transplant site that can be selected in the present invention is a subcutaneous adipose tissue that can be used as a scaffold for engraftment of the transplanted insulin-producing cells and secreting insulin among various body parts where the subcutaneous adipose tissue is localized,
- any subcutaneous adipose tissue may be used as long as nutritional blood vessels essential for replenishing the transplanted insulin-producing cells are circulated and distributed in the subcutaneous adipose tissue.
- transplantation sites include the buttocks, armpits, back or abdomen. Of these tissues, the groin is preferred because the circulating lower abdominal wall arteriovenous can replenish the transplanted islet cells.
- Insulin producing cells to be transplanted in the present invention include, for example, human islet cells, heterologous islet cells such as pigs, etc., and insulin / glucagon that is first discovered in the present invention and insulin / glucagon expressed in the same cell. Mention may be made of positive cells.
- the insulin-producing cell transplantation of the present invention can transplant insulin-producing islet cells into the subcutaneous adipose tissue of a diabetic recipient by injection from a cell-containing container embedded in the body of the diabetic recipient.
- a cell-containing container embedded in the body of the diabetic recipient can be used. This is extremely useful in treating diabetes by cell transplantation.
- NKT cell-deficient mice The results of experiments by the present inventors using NKT cell-deficient (J ⁇ 18-deficient) mice indicate that the engraftment rate of insulin-producing pancreatic islets transplanted into subcutaneous adipose tissue has been remarkably improved. This means that NKT cells are involved in graft rejection. Therefore, transplantation of insulin-producing cells according to the present invention into subcutaneous adipose tissue has the great advantage that early rejection can be largely prevented and the number of cells to be transplanted can be significantly reduced. As a result, one diabetic patient can be transplanted with the same number or a small number of cells as the number of cells of one donor.
- the transplantation method of the present invention can reverse or ameliorate diabetes of a diabetic recipient by transplanting insulin-producing cells of one donor to one or more diabetic recipients.
- the subcutaneous adipose tissue of a 1 diabetic recipient is 1/1 to 1/10, preferably 2/3 to 1/6, more preferably 1/2 to 1/5 of the number of cells of one donor. What is necessary is just to transplant a cell number.
- the method for transplanting insulin-producing pancreatic islet cells into subcutaneous adipose tissue according to the present invention is an effective method for the treatment and remission of diabetes.
- the cell transplantation method is very simple and can be transplanted by a conventional technique, and the number of cells transplanted into subcutaneous adipose tissue can be drastically reduced.
- the present invention has been mainly described by taking a type 1 diabetic patient as an example, but it can be applied to a type 2 diabetic patient who requires cell transplantation in substantially the same manner as a type 1 diabetic patient. Also should be noted.
- the insulin / glucagon co-positive cells expressed in the same cells transplanted by both the insulin and glucagon found by the present inventor for the first time are the insulin granules and the glucagon granules separately and independently in the same cells. And stained.
- This insulin / glucagon co-positive cell could not be found in neither the kidney subcapsular transplanted islet nor the intrahepatic transplanted islet. It is still unclear from which cell this insulin / glucagon co-positive cell is derived, ie, ⁇ cell, ⁇ cell or other cells.
- mice Male C57BL / 6 and NOD / scid mice were purchased from Charles Reaver Japan (Kanagawa, Japan). J ⁇ 18-deficient (NKT cell-deficient) mice were prepared by literature methods (Cui, J., et al. Science 278, 1623-1626 (1997)) and backcrossed to C57BL / 6 mice. Mice were raised in specific sterile rooms and used for experiments at 8-16 weeks of age. All experiments were performed according to a protocol that had received prior approval from the Fukuoka University Animal Care and Use Committee.
- mice are in accordance with literature procedures (Sutton, R., et al., Transplantation, 42, 689-691 (1986); Okeda, T., et al., Endocrinol. Jpn. 26, 495-499 (1979)). After isolation, mice with a diameter of 150-250 ⁇ M were carefully selected for the experiment. The isolated islets were cultured overnight at 24 ° C. in a CO 2 incubator (5% CO 2 + 95% air) using 10% FBS-supplemented medium (D-MEM, Nissui) and used as a donor.
- D-MEM 10% FBS-supplemented medium
- Islets were transplanted into the left groin subcutaneous adipose tissue of STZ (Sigma) (180 mg / kg) induced diabetic syngenetic recipient mice on day 3 of STZ injection.
- Non-fasted plasma glucose levels were measured twice before and after STZ injection using a GlucoCard DIA meter (Arkray) and once a week after islet transplantation.
- When collecting transplanted cells first check the staples used to close the pockets containing the islets of diabetic recipients, and then cut the base and distal sides of the needles to a length of about 5 mm for the following experiment. used.
- intrahepatic Kemp., CB, et al. Nature 244, 447 (1973)
- subcapsular Yasunami, Y., et al., Transplantation 35, 281-284
- Human islet transplantation Human islets were provided by Prodo Lab (Irvine, Calif.) And cultured at 24 ° C. in CMRL1066 medium (Mediatech) containing 2% human albumin for 2-3 days prior to the following experiment.
- CMRL1066 medium Mediatech
- a total of 3 batches of human islet cells were used for islet transplantation. For each batch, transplantation with islet cells (1500 IEQ) was performed 1-2 times. Human islet cells were transplanted into the subcutaneous subcutaneous fat tissue of STZ (170 mg / kg, iv injection) -induced diabetic male NOD / scid mice or under one kidney capsule. Non-fasting plasma glucose levels and body weights were measured once a week after transplantation. Subcutaneous adipose tissue and kidney of diabetic recipients with human islet grafts were excised, fixed with 10% formalin, embedded in paraffin, and sectioned for morphological analysis.
- FIG. 1 shows the anatomical findings of the left groin subcutaneous adipose tissue of the mouse.
- FIG. 1 (A) and FIG. 1 (B) show a state where the left hip subcutaneous fat tissue in which a nutritional blood vessel is observed is lifted with tweezers (left side).
- the long and short arrows indicate the thigh arteriovenous and the lower abdominal wall arteriovenous, respectively.
- FIG. 2 shows a state in which islet transplantation is performed on the mouse subcutaneous subcutaneous adipose tissue.
- FIG. 2 (a) is a view of the skin incision in the left groin subcutaneous adipose tissue of the mouse as viewed from above.
- FIG. 2 (b) shows a small pocket provided in the buttock subcutaneous adipose tissue, and the opening is kept open with a suture line.
- FIGS. 2 (c) and 2 (d) show islet cells present at the tip of the tube placed inside the pocket.
- arrows indicate islet cells arranged in the pocket
- arrowheads indicate islet cells at the tip of the tube.
- FIG. 2 (e) shows the opening of the pocket held by the forceps
- FIG. 2 (f) shows the opening of the pocket closed with a staple.
- the scale is 1 mm.
- FIG. 3 shows a graph of plasma glucose levels in streptozotocin (STZ) -induced diabetic C57BL / 6 mice in which allogeneic islet cells were transplanted into the subcutaneous subcutaneous adipose tissue.
- the upper graph shows a case transplanted with 200 islet cells
- the lower graph shows a case transplanted with 400 islet cells.
- Each line graph shows the plasma glucose level of each mouse.
- each line represents the plasma glucose level of each animal
- the mark (+) indicates a mouse that died of severe diabetes
- the mark (*) is transplanted into the subcutaneous subcutaneous fat tissue of each recipient It shows that the removed islet cells were removed.
- FIG. 3 show that the hyperglycemia of STZ-induced diabetic mice ameliorated after transplanting 400 allogeneic islet cells into the hip subcutaneous fat tissue, but when 200 allogeneic islet cells were transplanted Indicates that he did not remit.
- the transplantation efficiency achieved by this transplantation was comparable to the conventional transplantation to the liver reported by the present inventors (Yasunami, Y., et al., J. Exp. Med., 202). , 913-918 (2005); Matsuoka, N., et al., J. Clin. Invest., 120, 735-743 (2010)).
- FIG. 3 show that the hyperglycemia of STZ-induced diabetic mice ameliorated after transplanting 400 allogeneic islet cells into the hip subcutaneous fat tissue, but when 200 allogeneic islet cells were transplanted Indicates that he did not remit.
- the transplantation efficiency achieved by this transplantation was comparable to the conventional transplantation to the liver reported by the present inventors
- FIG. 4 shows the morphology of islet cells transplanted into the subcutaneous hip adipose tissue 60 days after transplantation.
- FIG. 4 (a) shows the exposed surface portion of the hip subcutaneous tissue transplanted with islet cells.
- the arrows indicate staples used for closing the pockets.
- FIG. 4 (b) shows massive transplanted islet cells in which new blood vessels are formed (arrowheads).
- the long and short arrows shown in FIG. 4B indicate the lower abdominal wall arteriovenous and the femoral arterial vein.
- FIG. 4 show microscopically that new blood vessels are formed in some of the islet cells transplanted into the buttock subcutaneous adipose tissue and are formed in a lump of various sizes. Yes. It was also revealed microscopically that the transplanted islet cells were surrounded by adipose tissue where pancreatic endocrine cells were observed.
- FIG. 5b shows a series of panels showing micrographs of insulin / glucagon co-positive cells formed in transplanted islet cells. Transplanted islet cell sections were stained for insulin, glucagon and DAP1, respectively, and observed with a confocal fluorescence microscope.
- FIG. 5 shows a state in which insulin / glucagon simultaneous positive cells appear in the transplanted islet cells observed with a confocal fluorescence microscope.
- 120 days after transplantation transplanted islet cells stained for DAP1 (blue), insulin (green) and glucagon (red), respectively, are shown for transplanted islet cells stained for insulin, glucagon and DAP1, and these stained images
- the image which combined is shown.
- Each horizontal line in the upper and lower combined image panels represents 50 ⁇ m and 10 ⁇ m, respectively.
- a portion surrounded by a square in the upper left image is a high magnification image panel, and a high magnification image of the square portion is shown in a lower combination image panel.
- FIG 11 shows an immunoelectron micrograph of insulin and glucagon simultaneously expressed in transplanted human islet cells.
- the left figure of this micrograph was taken by staining tissue sections with anti-insulin antibody and anti-glucagon antibody bound to 18 nm and 12 nm gold particles, respectively. It is the figure which expanded the glucagon granule (a hollow arrowhead mark) and one insulin granule (black arrowhead mark) (right figure).
- FIG. 6 shows the tissue analysis of the islet graft under the kidney capsule (kc, upper panel) and in the liver (pv, lower panel) 60 days after transplantation. This result showed no insulin / glucagon co-positive cells.
- the horizontal line indicates 50 ⁇ m.
- insulin / glucagon co-positive cells appeared in some of the transplanted islet cells as peaks after 30 and 60 days of transplantation. Insulin / glucagon co-positive cells, insulin and glucagon granules were stained separately in the cytoplasm of the same cell as shown in FIG. 5 and FIG. In contrast, it should be noted that no insulin / glucagon co-positive cells were found in FIG. 6 either under the kidney capsule or in the liver of the recipient mouse.
- This example relates to a case where human pancreatic islet cells were transplanted into STZ-induced diabetic NOD / scid mice. Surprisingly, it was found that some transplanted islet cells had been converted to insulin / glucagon co-positive cells.
- FIG. 7 is a line graph showing plasma glucose levels of STZ-induced diabetic NOD / scid mice transplanted with human islet cells into the hip subcutaneous tissue.
- the mark (*) means that the islet cells transplanted into the subcutaneous fat tissue of the diabetic recipient were removed.
- FIG. 7 shows that after transplanting human islet cells (1500IEQ) into the subcutaneous subcutaneous adipose tissue, the blood glucose in STZ-induced diabetic NOD / scid mice became normal blood glucose, and immediately after the transplanted islet cells were removed, the blood glucose level returned to hyperglycemia again. It shows that.
- FIG. 8 shows a confocal microscope image of a human islet graft in the hip subcutaneous tissue of STZ-induced diabetic NOD / scid mice 60 days after transplantation of human islet cells. Indicates.
- FIG. 8 (A) shows HE-stained transplanted sections of mice 60 days after transplantation, and FIGS. 8 (B), 8 (C), 8 (D) and 8 (E) are shown in FIG. 8 (A).
- the confocal microscope image of the human islet cell of the part enclosed by the square is shown.
- FIG. 8B shows a cross-sectional portion stained for insulin
- FIG. 8C shows a cross-sectional portion stained for glucagon.
- FIG. 8D shows a cross-sectional portion stained for DAP1.
- FIG. 8E is a combined image obtained by merging the three images of FIGS. 8B to 8D into one image, and the cells indicated by the arrowheads are insulin / glucagon simultaneous positive cells.
- the lengths of the horizontal bars in the HE stained image and the immunofluorescent stained image are 200 ⁇ m and 20 ⁇ m, respectively.
- FIG. 8 shows that insulin / glucagon co-positive cells appeared in large amounts in islet grafts transplanted into the subcutaneous subcutaneous adipose tissue.
- This example evaluates islet transplantation efficiency when a hip subcutaneous tissue is selected as a transplant site because low transplantation efficiency is a major factor that limits the clinical application of islet transplantation. Therefore, a new transplantation site called hip subcutaneous tissue is not practically available unless it can potentially solve this disorder.
- FIG. 9 shows a tissue analysis of transplanted islet cells 6 hours after transplantation into the subcutaneous subcutaneous fat tissue of STZ-induced diabetic recipients.
- FIG. 9 (A) shows a cross section of transplanted islet cells stained with HE. The square part in the upper left corner is a high-magnification image of the square part shown on the left side with HE staining shown in FIG. In the high-magnification image of this square portion, the arrows indicate wet neutrophils in the transplanted islet cells.
- FIG. 9B is an immunofluorescence image of an islet graft stained for insulin (green) and neutrophil marker Gr-1 (red). The horizontal bars in the images of FIGS. 9A and 9B indicate 100 ⁇ m and 10 ⁇ m, respectively.
- FIG. 10 is a line graph showing the plasma glucose level of STZ-induced diabetic J ⁇ 18-deficient mice (NKT cell-deficient) mice transplanted with allogeneic syngeneic islet cells into the subcutaneous subcutaneous adipose tissue.
- the top graph shows a case of transplanting 200 allogeneic islet cells
- the second graph from the top shows a case of 100 transplants
- the third graph from the top shows a case of 50 transplants
- the bottom graph Indicates a case where 25 were transplanted.
- transplanted islet cells can be easily recovered, and more importantly, transplanting 50 islet cells, that is, 1/4 islet cell of one donor, targeting NKT cells.
- the ability to reverse or ameliorate diabetes indicates that the hip subcutaneous adipose tissue is a novel functional site for islet cell transplantation.
- mice showed insulin / glucagon co-positive cells that were not seen at all after birth, and human islet cell grafts were found only at this site.
- the above findings provide a potential solution to the current obstacle faced by clinical islet transplantation, namely the difficulty in evaluating and recovering transplanted islet cells as well as low transplantation efficiency. Since it has been shown to be a new functional site for islet transplantation, it has a great influence on the clinical application of islet transplantation. Furthermore, the present invention shows that insulin / glucagon co-positive cells appear only in islet cells transplanted into the buttock subcutaneous adipose tissue of mice, and the insulin / glucagon co-positive cells are ⁇ cells, ⁇ cells or other cell groups or Whether it was derived from an endocrine precursor is undecided, but provides evidence that it provides a new in vivo model of ⁇ -cell differentiation.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Cell Biology (AREA)
- Developmental Biology & Embryology (AREA)
- Chemical & Material Sciences (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Immunology (AREA)
- Virology (AREA)
- Zoology (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Reproductive Health (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Gynecology & Obstetrics (AREA)
- Gastroenterology & Hepatology (AREA)
- Nutrition Science (AREA)
- Physiology (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
In the present invention, insulin-producing cells are transplanted into the subcutaneous fat tissue of the inguinal region or the like of a diabetic patient, providing a new mechanical cellular transplantation method that can potentially resolve obstacles currently faced in clinical pancreatic islet transplantation, i.e., the evaluation of transplant pancreatic islet cells, the difficulty in harvesting said cells, and the low transplantation efficiency. Moreover, the present invention is a breakthrough method for treating a diabetic patient merely by transplanting, into a recipient, the same number or a lower number of insulin-producing cells present in one donor. The present invention can alleviate the problem of insufficient transplanted insulin-producing cells. Moreover, the present invention provides evidence that insulin/glucagon double-positive cells only appear in the pancreatic islet cells transplanted to the subcutaneous fat tissue of the inguinal region of mice, and that these insulin/glucagon double-positive cells provide a new in-vivo model of β cell differentiation.
Description
この発明は新規なインスリン産生細胞移植方法に関するものである。更に詳細には、この発明は、インスリン産生細胞を皮下脂肪組織に移植する新規なインスリン産生細胞移植方法に関するものである。
The present invention relates to a novel method for transplanting insulin-producing cells. More specifically, the present invention relates to a novel method for transplanting insulin-producing cells in which insulin-producing cells are transplanted into subcutaneous fat tissue.
糖尿病は、代表的な生活習慣関連疾患であり、炭水化物、脂質ならびにタンパク質を適切に維持ならびに利用できない複雑な慢性疾患である。糖尿病はまた様々な遺伝的、環境的要因により生起されるインスリン産生欠乏もしくはインスリン機能低下による異常な高血糖レベルに特徴がある。糖尿病の症状が進行すると、網膜症、腎症、神経障害等の合併症を引き起こし、脳卒中、脳血管障害等の発作の原因となって、その結果、患者の生活の質(QOL)の著しい低下をもたらして、最終的には患者を致命的な予後に至らしめることになる。
Diabetes is a typical lifestyle-related disease and is a complex chronic disease in which carbohydrates, lipids and proteins cannot be properly maintained and used. Diabetes is also characterized by abnormally high blood sugar levels due to insulin production deficiency or impaired insulin function caused by various genetic and environmental factors. As the symptoms of diabetes progress, it causes complications such as retinopathy, nephropathy, and neuropathy, causing stroke, cerebrovascular disorder, etc., resulting in a significant decrease in patient quality of life (QOL) Ultimately leading to a fatal prognosis for the patient.
最近では、糖尿病患者数は世界中で約3.5億人にも達すると推定されている(非特許文献1)。しかも、糖尿病の総患者数は、糖尿病に罹患していると強く疑われる患者や、糖尿病予備軍の患者数を加えると、その数は膨大な数になり、明らかに大問題である。それに加えて、ごく限られた数の糖尿病患者しか適切な治療を受けていないことも医学的にも、経済的にも非常に大きな問題である。
Recently, the number of diabetic patients is estimated to reach about 350 million worldwide (Non-patent Document 1). In addition, the total number of patients with diabetes is enormous, adding to the number of patients who are strongly suspected of having diabetes or the number of patients with diabetes reserves. In addition, the fact that only a limited number of diabetic patients are receiving appropriate treatment is a major problem both medically and economically.
糖尿病には2つの主要な形態、つまり1型糖尿病(T1DM)と2型糖尿病(T2DM)とがある。1型糖尿病(以前はインスリン依存糖尿病(IDDM)と知られていた)はインスリンを産生する膵β細胞が特異的に破壊され、インスリンが枯渇することに特徴がある。この1型糖尿病は、子供や若年者にしばしば発症する。2型糖尿病(以前は非インスリン依存糖尿病(NIDDM)と知られていた)は、インスリン産生膵β細胞の機能不全によるインスリン産生不足や筋肉や肝臓の細胞が膵臓で産生されたインスリンに適切に反応できないときなどのインスリンの相対的不足により発症する。この2型糖尿病は、大人に最も頻繁に発生するが、若者にも増加していることが注目されている。2型糖尿病は総糖尿病患者数の約90%を占めている。特に、2型糖尿病患者数は、肥満、運動不足の生活習慣、加齢によって急激に増加している。さらに注目すべきことは、2型糖尿病の多くの若年患者に膵臓の自己免疫異常が認められことから、2型糖尿病を1型糖尿病から区別すること、またはその逆の区別が難しい症例が増加していることである。
There are two main forms of diabetes: type 1 diabetes (T1DM) and type 2 diabetes (T2DM). Type 1 diabetes (formerly known as insulin-dependent diabetes mellitus (IDDM)) is characterized by specific destruction of insulin-producing pancreatic β-cells and depletion of insulin. This type 1 diabetes often occurs in children and young people. Type 2 diabetes (previously known as non-insulin-dependent diabetes mellitus (NIDDM)) responds appropriately to insulin production deficiency due to dysfunction of insulin-producing pancreatic β-cells or muscle and liver cells produced in the pancreas It develops due to a relative shortage of insulin, such as when it is not possible. It is noted that type 2 diabetes occurs most frequently in adults but is also increasing in young people. Type 2 diabetes accounts for about 90% of all diabetic patients. In particular, the number of type 2 diabetic patients is rapidly increasing due to obesity, lack of exercise, and aging. It should also be noted that many young patients with type 2 diabetes have pancreatic autoimmune abnormalities, increasing the number of cases where it is difficult to distinguish type 2 diabetes from type 1 diabetes or vice versa. It is that.
上記したように、1型糖尿病(T1DM)患者は、ランゲルハンス島(膵島)内のインスリン産生β細胞が免疫細胞の浸潤により完全にもしくはほぼすべてが破壊され、血液中のグルコース値の急激な変動を引き起こして、最終的には生命ならびに死に関わる高血糖(高血糖症)に関連する合併症の原因となる事象により、インスリン産生能力を喪失している。したがって、1型糖尿病患者は、1日に1回から数回のインスリン注射もしくはインスリンポンプによるインスリンを外部から投与することによるインスリン療法に依存せざるを得ない(非特許文献2)。
As mentioned above, patients with type 1 diabetes (T1DM) have a rapid change in blood glucose level due to complete or almost complete destruction of insulin-producing β cells in the islets of Langerhans (islets). Caused by the event that causes complications related to hyperglycemia (hyperglycemia), which is ultimately related to life and death, the ability to produce insulin has been lost. Therefore, patients with type 1 diabetes must rely on insulin therapy by administering insulin injection from one to several times a day or insulin by an insulin pump from the outside (Non-patent Document 2).
しかしながら、1型糖尿病患者がインスリンによる高度な治療を受けたとしても、血中グルコース濃度を安定的にかつ持続的に維持し、高血糖症によって引き起こされる慢性的な長期にわたる臓器障害を引き起こす合併症を予防するのは困難である。インスリン療法はまた過剰なインスリン投与の原因にもなり、それにより致命的にもなりうる重大な意識の変調を伴う急性低血糖症の発症の危険性を増加させる結果にもなる。かかる困難と危険性があるにもかかわらず、現在ではインスリン療法は、突然死に繋がる緊急状態から1型糖尿病を救命するのに非常に重要な役割を果たしている。しかしながら、インスリン療法は、あくまでも対処治療であって、1型糖尿病を完全に根治させる療法にはなりえず、低血糖症の危険性や長期にわたる合併症の発症などの非常に困難な問題が解決されないままになっている(例えば、特許文献1日本特許公開第2008-189574号公報)。
However, even if type 1 diabetics receive advanced treatment with insulin, the complications that maintain blood glucose levels stably and continuously and cause chronic long-term organ damage caused by hyperglycemia It is difficult to prevent. Insulin therapy can also cause excessive insulin administration, thereby increasing the risk of developing acute hypoglycemia with significant consciousness modulation that can be fatal. Despite these difficulties and risks, insulin therapy now plays a very important role in saving type 1 diabetes from emergency situations that lead to sudden death. However, insulin therapy is only a coping treatment and cannot completely cure type 1 diabetes, solving extremely difficult problems such as the risk of hypoglycemia and the onset of long-term complications (For example, Patent Document 1 Japanese Patent Publication No. 2008-189574).
1型糖尿病を治療するかかるインスリン療法の別の方法として、膵臓から単離したランゲルハンス膵島のインスリン産生β細胞を1型糖尿病患者に直接移植する膵島移植法がある。この膵島移植法は、膵島細胞に障害を有する糖尿病患者にとっては理論的には優れた方法であって、臨床においても1960年代後半から幅広い試みがなされている内分泌補完療法である。この膵島移植は今では1型糖尿病治療に対する非常に有望な取り組みである。この膵島移植は、膵島細胞を肝臓の門脈に点滴にて注入するだけで移植する簡便な方法であるので、全臓器を移植する手術に比べて、手術的にも極めて安全で、かつ、危険性が高い患者にとっても実施ができるという利点がある。この膵島移植はまた腹部の手術や血管吻合の必要がないことからも利点がある。これらに加えて、この膵島移植は、たとえ移植拒否反応が起こっても除去が必要なく、患者の負担が極めて低いという利点もある(例えば、特許文献1参照)。
As another method of such insulin therapy for treating type 1 diabetes, there is an islet transplantation method in which insulin-producing β cells of Langerhans islet isolated from the pancreas are directly transplanted into a type 1 diabetes patient. This islet transplantation method is theoretically an excellent method for diabetic patients with islet cell disorders, and is an endocrine complement therapy that has been widely attempted in clinical practice since the late 1960s. This islet transplantation is now a very promising approach for the treatment of type 1 diabetes. This islet transplantation is a simple method of transplanting islet cells simply by instilling them into the portal vein of the liver. Therefore, it is extremely safe and dangerous compared to the operation of transplanting all organs. There is an advantage that it can be carried out even for highly peculiar patients. This islet transplantation is also advantageous because there is no need for abdominal surgery or vascular anastomosis. In addition to these, this islet transplantation has an advantage that even if a transplant rejection reaction occurs, removal is not necessary and the burden on the patient is extremely low (see, for example, Patent Document 1).
しかしながら、この膵島移植法は、早期の移植片拒絶のために移植膵島の生着率が極めて低いという欠点に直面している。したがって、1型糖尿病患者が1人のドナーの膵臓から膵島細胞の移植を受けたとしても、インスリン非依存になることができない(例えば、非特許文献3、4)。移植した膵島細胞が早期に喪失する割合は移植した膵島細胞総数の60%程度であると推定されている。したがって、現在の膵島移植においては、1人の糖尿病患者を良好な状態に治療するためには2人もしくはそれ以上の人の膵臓からの膵島細胞を繰り返し移植する必要がある(例えば、非特許文献3、4、5参照)。
However, this islet transplantation method is faced with the disadvantage that the engraftment rate of the transplanted islet is extremely low due to early rejection of the graft. Therefore, even if a patient with type 1 diabetes receives transplantation of islet cells from the pancreas of one donor, it cannot become insulin-independent (for example, Non-Patent Documents 3 and 4). The rate of early loss of transplanted islet cells is estimated to be about 60% of the total number of transplanted islet cells. Therefore, in the current islet transplantation, it is necessary to repeatedly transplant islet cells from the pancreas of two or more people in order to treat one diabetic patient in a good condition (for example, non-patent document). 3, 4, 5).
しかしながら、この膵島移植はまた、膵島移植片が末梢門脈中に塞栓を形成して糖尿病患者の肝臓内に着床し、対応領域において虚血性変質を引き起こすという危険性がある。このことは、移植後免疫反応を引き起こして、膵島細胞片に対して有害な炎症性サントカインを放出する結果になりかねない。インスリンを分泌するβ細胞は、例えばIFN-γ、TNF-α、IL-1β等の炎症誘発サイトカインに曝露されるとin vitroで影響を受けやすい(例えば、非特許文献6)。
However, this islet transplantation also has the risk that the islet graft forms an embolus in the peripheral portal vein and implants in the liver of a diabetic patient, causing ischemic alterations in the corresponding area. This can result in a post-transplant immune response that releases inflammatory santocaine that is detrimental to islet cell debris. Β cells that secrete insulin are susceptible to in vitro effects when exposed to pro-inflammatory cytokines such as IFN-γ, TNF-α, and IL-1β, for example (see Non-Patent Document 6).
ヒトの患者に対する膵島細胞の臨床移植が初めて行われたのは、ミネソタ大学で行われた1974年である。しかしながら、その実績は、他の臓器移植に比べて、最近まで貧弱なものであった。しかしながら、2000年になって、アルバータ大学から、ステロイド剤を全く使用しないで免疫抑制を用いたいわゆる「エドモントン・プロトコール(Edmonton Protocol)」と呼ばれる臨床的膵島移植プロトコール下ではインスリンが極めて高率で放出されたとの報告が出された(例えば、非特許文献4)。それ以来、膵島移植は、1型糖尿病治療のブレイクスルーとなる方法として確立した。
The first clinical transplantation of islet cells for human patients was performed in 1974 at the University of Minnesota. However, its performance has been poor until recently compared to other organ transplants. However, in 2000, insulin was released at a very high rate from the University of Alberta under a clinical islet transplantation protocol called the “Edmonton Protocol” using immunosuppression without any steroids. It was reported that it was made (for example, non-patent document 4). Since then, islet transplantation has been established as a breakthrough for the treatment of type 1 diabetes.
上記したように、膵島移植は根本的な糖尿病治療法として有用性が高まっているけれども、膵島移植を成功させるためには更なる改良が必要である。その理由は、現在の膵島移植は、例えば、膵島細胞の生着率が低いこと、かかる低生着率のために多量の膵島細胞の点滴が必要なこと、さらにはドナーの数が少ないことなどの数々の問題になお直面しているためである。2006年に、シャピロら(A.M. Shapiro et al.)による、エドモントン・プロトコールを用いた膵島移植した患者の結果についての報告によると、膵島移植によって一旦はインスリン療法が必要でなくなった患者の76%が移植2年後にはインスリン療法を再開していた。
As described above, although islet transplantation has become increasingly useful as a fundamental treatment for diabetes, further improvement is necessary for successful islet transplantation. The reason for this is that, for example, the current islet transplantation has a low engraftment rate of islet cells, the need for infusion of a large amount of islet cells due to such a low engraftment rate, and a small number of donors, etc. This is because they still face a number of problems. In 2006, Shapiro et al. Reported on the results of islet transplant patients using the Edmonton protocol, and 76% of patients who did not need insulin therapy once islet transplants. Insulin therapy was resumed 2 years after transplantation.
さらに、大きな問題は、現在の膵島移植では、肝臓に移植した膵島細胞の生着率が低いために、1人の糖尿病レシピエントのために、2人以上のドナーが必要であることである。このことは、ドナーが少ないという観点からしても喫緊に解決すべきことである。この問題が解決されて、ドナーとレシピエントとの割合が改善して1対1という割合になったとしたら、膵島移植は、爆発的に普及し、糖尿病治療に多大なる貢献をすることが期待される。
Furthermore, a major problem is that current islet transplantation requires a low number of transplanted islet cells transplanted to the liver, so two or more donors are required for one diabetes recipient. This should be urgently solved even from the viewpoint that there are few donors. If this problem is solved and the ratio of donors to recipients has improved to a one-to-one ratio, islet transplantation is expected to spread explosively and make a significant contribution to the treatment of diabetes. The
このように膵島移植はいくつかの問題点に直面しているけれども、肝臓内膵島デリバリーを改善するという10年にも亘る研究の結果、肝臓内スペースは、膵島に対して栄養的かつ物理的な支持体となり、かつ、移植した膵島細胞の生着ならびに機能を長期間維持するのに本質的な役割を果たすことが判明した。したがって、膵島移植は、糖尿病治療にとって魅力的な方法であり、現在では、糖尿病患者の門脈経由の肝臓は臨床設定における移植部位である(例えば、非特許文献4、7参照)。しかしながら、一方では、肝脈管系は生着や機能を制限する敵対的な環境であるとの報告もある(非特許文献8、9)。この結果、膵島移植に対する多くの別の部位が、膵島の生着ならびに機能を最適化し、必要な移植膵島細胞塊の数を減少し、かつ、免疫原性を低下させるかどうか調べられた(非特許文献9、10)。
Thus, although islet transplantation faces several problems, as a result of decades of research to improve intrahepatic islet delivery, the intrahepatic space is nourishing and physical to the islets. It has been found to be a support and play an essential role in maintaining the engraftment and function of transplanted islet cells for a long period of time. Therefore, islet transplantation is an attractive method for the treatment of diabetes, and currently, the liver via the portal vein of diabetic patients is a transplant site in a clinical setting (see, for example, Non-Patent Documents 4 and 7). However, on the other hand, there are reports that the hepatic vascular system is a hostile environment that restricts engraftment and functions (Non-Patent Documents 8 and 9). As a result, many different sites for islet transplantation were investigated to optimize islet engraftment and function, reduce the number of transplanted islet cell mass required, and reduce immunogenicity (non- Patent Documents 9 and 10).
肝臓門脈内部位に加えて、例えば、腎臓被膜下部位、脾臓、大網(omentum)、膵臓、胃腸壁、胸腺や脳や精巣等の免疫保護部位、骨髄等の筋骨格部位、皮下部位などを含む多くの別の移植部位が調べられた(例えば、非特許文献9、11、12)。上記したように患者の多くの別の移植部位が試験されたけれども、これまで患者を非インスリン依存にすることはできなかった。その結果、門脈内膵島移植は、経験的に患者において使用するための最善の部位として認められている(非特許文献9)。
In addition to sites in the liver portal vein, for example, kidney subcapsular sites, spleen, omentum, pancreas, gastrointestinal wall, immune protection sites such as thymus, brain and testis, musculoskeletal sites such as bone marrow, and subcutaneous sites Many other transplant sites have been investigated (eg, Non-Patent Documents 9, 11, and 12). Although many other implantation sites for patients have been tested as described above, until now it has not been possible to make patients non-insulin dependent. As a result, intraportal islet transplantation has been empirically recognized as the best site for use in patients (Non-patent Document 9).
しかしながら、肝臓の門脈内部位以外の新規移植部位の開発は、糖尿病患者に移植された膵島細胞の損失を少なくするため、また移植すべき膵島細胞の不足に関わる問題を克服するためにも必要である。
However, the development of new transplantation sites other than the intraportal site of the liver is necessary to reduce the loss of pancreatic islet cells transplanted in diabetics and to overcome problems related to the lack of pancreatic islet cells to be transplanted It is.
さらに、最新の研究では、インスリンとグルカゴンの両者の顆粒を含有する膵島細胞が明らかになった。これまでは、インスリンはランゲルハンス島のβ細胞で産生され、グルカゴンはそのα細胞で産生されると知られていた(非特許文献13参照)。さらに、数十年の間インスリン欠乏が糖尿病の唯一の問題であると考えられていたけれども、グルカゴンもまた糖尿病の病因にも重要な役割を果たしていることが示唆された(非特許文献14)。
Furthermore, the latest study revealed islet cells containing both insulin and glucagon granules. Until now, it has been known that insulin is produced in β cells of the islets of Langerhans and glucagon is produced in the α cells (see Non-Patent Document 13). Furthermore, although insulin deficiency has been considered to be the only problem with diabetes for decades, it has been suggested that glucagon also plays an important role in the pathogenesis of diabetes (Non-Patent Document 14).
したがって、これらの膵島細胞は、糖尿病患者に一旦移植されるとin vivoでこれらのホルモンを分泌するのに何らかの役割を果たしていることが期待される。
Therefore, these islet cells are expected to play some role in secreting these hormones in vivo once transplanted into a diabetic patient.
上記の背景技術を前提として、本発明者は、鋭意研究した結果、膵島細胞を移植するに際して取り扱いが簡単で、かつ、一旦移植した膵島細胞に不具合が生じた場合にすぐに摘出可能な新規の皮下移植部位を見いだした。皮下移植は従来の報告では、1匹の糖尿病レシピエントラットの糖尿病を治療するのに5匹以上のドナーラットからの約5,000個の膵島細胞が必要である(非特許文献15)という程度に生着効率が非常に低いとの報告がある。本発明者は、生着効率がこのように低いのは栄養血管が不足していることで移植後に膵島細胞が低酸素で死に至ったのではないかと理由付けをした。そして、鼠蹊(そけい)部の皮下脂肪部を、両側に下腹壁動静脈の栄養血管が通っていることから(非特許文献16)、生着効率の改善が見込める新規な皮下移植部位として選択した。
Based on the background art described above, the present inventors have conducted intensive research. As a result, the present inventor has developed a novel method that is easy to handle when transplanting pancreatic islet cells and can be immediately extracted when a transplanted pancreatic islet cell malfunctions. A subcutaneous implant site was found. Subcutaneous transplantation has been reported in the past to require about 5,000 islet cells from 5 or more donor rats to treat diabetes in one diabetic recipient rat (Non-patent Document 15). Report that the engraftment efficiency is very low. The present inventor reasoned that the engraftment efficiency was so low that the islet cells died of hypoxia after transplantation due to the lack of nutrient blood vessels. The subcutaneous fat part of the heel part is selected as a new subcutaneous transplantation site where improvement of engraftment efficiency can be expected because the nutritional blood vessels of the inferior abdominal wall arteries and veins pass through on both sides (Non-patent Document 16). did.
そこで、本発明者は、糖尿病マウスの鼠蹊部の皮下脂肪組織への膵島細胞移植が血糖レベルを正常なレベルに低下させるとともに、従来の肝臓への移植と同程度に効率よい移植を達成することを見いだした。
Therefore, the present inventor has achieved that islet cell transplantation into the subcutaneous adipose tissue of the buttocks of diabetic mice reduces the blood glucose level to a normal level and achieves transplantation as efficient as conventional liver transplantation. I found.
さらに、本発明者は、ドナー1人の膵島細胞数と同数または少数のインスリン産生膵島を、糖尿病レシピエント1人の皮下脂肪組織に移植するだけで該レシピエントの糖尿病を治癒できること、または長期間正常な血糖値に維持することが期待できることを見いだした。
Furthermore, the present inventor can cure diabetes of a recipient by simply transplanting the same or a small number of insulin-producing islets to the number of islet cells of one donor into the subcutaneous fat tissue of one diabetes recipient, or for a long period of time. It was found that it can be expected to maintain a normal blood sugar level.
また、非常に驚いたことに、本発明者は、皮下脂肪組織に移植した膵島細胞中に、同一の移植膵島細胞にインスリンとグルカゴンの両者が発現しているインスリン/グルカゴン同時陽性細胞(insulin/glucagon double positive cells)を見いだした。
Also, surprisingly, the present inventor has found that insulin / glucagon co-positive cells (insulin / glucagon) in which both insulin and glucagon are expressed in the same transplanted islet cells are transplanted into subcutaneous adipose tissue. glucagon double positive cells).
したがって、この発明は、インスリン産生細胞を栄養血管が広範に分布している皮下脂肪組織に移植する新規なインスリン産生細胞移植方法を提供することを目的としている。
Therefore, an object of the present invention is to provide a novel method for transplanting insulin-producing cells in which insulin-producing cells are transplanted into subcutaneous adipose tissue in which vegetative blood vessels are widely distributed.
なお、本明細書で使用する用語「皮下脂肪組織」とは、糖尿病罹患レシピエントの皮下脂肪組織であって、その体内に局在するとともに、その膵島細胞に必須の栄養を補給できる栄養補給血管がその領域に広範に循環・分布している皮下脂肪組織を意味するものとする。かかる皮下脂肪組織としては、例えば、下腹壁動静脈が循環している鼠蹊部、腋下、背中または腹部などの皮下脂肪組織を挙げることができるが、これらに限定されるものではない。これらの組織のうち、血管がその領域全体に分布しているので、鼠蹊部が好ましい。
As used herein, the term “subcutaneous adipose tissue” is a subcutaneous adipose tissue of a diabetic recipient, and is a nutrient-supplementing blood vessel that is localized in the body and can supply essential nutrients to the islet cells. Means subcutaneous adipose tissue that is widely circulated and distributed in the region. Examples of such subcutaneous adipose tissue include, but are not limited to, subcutaneous adipose tissue such as the buttocks, armpits, back or abdomen where the lower abdominal wall arteriovenous circulates. Of these tissues, the groin is preferred because blood vessels are distributed throughout the region.
本明細書に使用する用語「栄養血管」とは、移植膵島に必須の栄養を皮下脂肪組織に補給できる血管を意味するものとする。かかる血管としては、例えば、動脈、静脈および/または毛細血管を挙げることができる。
As used herein, the term “nutrient blood vessel” means a blood vessel capable of supplying nutrients essential to transplanted islets to subcutaneous adipose tissue. Such blood vessels can include, for example, arteries, veins and / or capillaries.
この発明はまた、糖尿病レシピエント1人の皮下脂肪組織に、ドナー1個体の膵島細胞数と同数または少数のインスリン産生膵島を移植するだけで糖尿病レシピエントの血糖値を長期間正常な血糖値に維持して糖尿病を治療することからなる新規な糖尿病治療方法を提供することを別の目的としている。
The present invention also enables the blood sugar level of a diabetic recipient to be normal blood glucose level for a long period of time simply by transplanting the same or a small number of islet-producing islets as the number of islet cells of one donor to the subcutaneous fat tissue of one diabetic recipient. Another object is to provide a novel method of treating diabetes comprising maintaining and treating diabetes.
さらに、この発明は、インスリンとグルカゴンが同一細胞中に発現する細胞であるインスリン/グルカゴン同時陽性細胞(insulin/glucagon double positive cells)を提供することを目的としている。
Furthermore, an object of the present invention is to provide insulin / glucagon double positive cells which are cells in which insulin and glucagon are expressed in the same cell.
上記目的を達成するために、この発明は、インスリン産生細胞を、栄養血管が広範囲に分布している皮下脂肪組織に移植する新規なインスリン産生細胞移植方法を提供する。
In order to achieve the above object, the present invention provides a novel method for transplanting insulin-producing cells in which insulin-producing cells are transplanted into subcutaneous adipose tissue in which nutrient blood vessels are widely distributed.
この発明の好ましい態様は、インスリン産生細胞がヒト膵島細胞、ブタ等の異種膵島細胞、インスリン/グルカゴン同時陽性細胞(insulin/glucagon double positive cells)またはES細胞もしくはiPS細胞から作製したインスリン産生細胞であることからなるインスリン産生細胞移植方法を提供する。
In a preferred embodiment of the present invention, the insulin-producing cells are human islet cells, heterologous islet cells such as pigs, insulin / glucagon double positive positive cells, or insulin-producing cells prepared from ES cells or iPS cells. An insulin producing cell transplantation method comprising the above is provided.
この発明の別の好ましい態様は、皮下脂肪組織が糖尿病レシピエントの鼠蹊部、腋下、背中などの栄養血管が広範囲に分布している部位に存在する皮下脂肪組織であることからなるインスリン産生細胞移植方法を提供する。
Another preferred embodiment of the present invention is an insulin-producing cell comprising a subcutaneous adipose tissue in a site in which nutrient blood vessels such as the buttocks, armpits, and back of a diabetic recipient are widely distributed. Provide a transplantation method.
この発明の別の形態では、糖尿病レシピエント1人の皮下脂肪組織に、ドナー1個体の膵島細胞数と同数または少数のインスリン産生膵島、例えば、ドナー1人の膵島細胞数の1/10、好ましくは2/3~1/6、さらに好ましくは1/2~1/5の膵島細胞数を移植するだけで該糖尿病レシピエントの血糖値を長期間正常な血糖値に維持して糖尿病を治療することからなる新規な糖尿病治療方法を提供する。
In another form of the invention, the subcutaneous adipose tissue of one diabetic recipient contains insulin producing pancreatic islets equal to or less than the number of islet cells of one donor, eg, 1/10 of the number of islet cells of one donor, preferably Treats diabetes by maintaining the blood glucose level of the diabetic recipient at a normal blood glucose level for a long period of time simply by transplanting 2/3 to 1/6, more preferably 1/2 to 1/5 islet cells. And a novel method for treating diabetes.
この発明の好ましい態様では、インスリン産生細胞を移植し、当該移植細胞からインスリンを産生して糖尿病を治療することからなる糖尿病治療方法を提供する。
In a preferred embodiment of the present invention, there is provided a method for treating diabetes comprising transplanting insulin-producing cells and producing insulin from the transplanted cells to treat diabetes.
この発明の更に別の形態では、インスリンとグルカゴンが同一細胞中に発現する細胞であるインスリン/グルカゴン同時陽性細胞(insulin/glucagon double positive cells)を提供する。
In yet another embodiment of the present invention, insulin / glucagon double positive cells, which are cells in which insulin and glucagon are expressed in the same cell, are provided.
この発明は、インスリン産生細胞を移植する移植部位を糖尿病レシピエントの鼠蹊部、腋下、背中などの栄養血管が広範囲に分布している部位に存在する皮下脂肪組織に選択することによって、移植を簡便に実施することが可能であるばかりではなく、一旦移植したインスリン産生細胞が移植片拒絶などを惹起した場合には、その移植インスリン産生細胞を摘出できるという大きな利点がある。
In the present invention, transplantation is performed by selecting a transplantation site for transplanting insulin-producing cells into subcutaneous adipose tissue existing in a site where nutritional blood vessels such as the buttocks, armpits, and back of a diabetic recipient are widely distributed. This is not only easy to implement, but also has the great advantage that once transplanted insulin-producing cells cause transplant rejection, the transplanted insulin-producing cells can be removed.
さらに、この発明は、これまで不可能であったドナー1個体のインスリン産生細胞、例えばヒト膵島またはブタ等の異種膵島細胞とほぼ同数または少ない数の膵島細胞を移植するだけで糖尿病患者の治療が可能であるという極めて大きな利点がある。
Furthermore, the present invention can treat a diabetic patient by transplanting an insulin-producing cell of a single donor, for example, a human islet or a porcine islet cell, which is almost the same as or less than a number of islet cells, which has been impossible until now. There is a tremendous advantage of being possible.
この発明は、インスリン産生細胞を糖尿病レシピエントの皮下脂肪組織に移植し、移植インスリン産生細胞を皮下脂肪組織内に生着させ、インスリンを分泌することによって糖尿病レシピエントの血糖値を正常血糖値に低下させて糖尿病を治療することからなっている。
In this invention, insulin-producing cells are transplanted into the subcutaneous fat tissue of a diabetic recipient, the transplanted insulin-producing cells are engrafted in the subcutaneous fat tissue, and insulin is secreted to thereby change the blood glucose level of the diabetic recipient to normal blood glucose level. It consists of reducing and treating diabetes.
この発明において選択できるインスリン産生細胞移植部位は、皮下脂肪組織が局在する様々な身体部分のうち、移植したインスリン産生細胞が生着しインスリンを分泌する足場として利用できる皮下脂肪組織であって、かつ、その皮下脂肪組織内に移植インスリン産生細胞に栄養を補給するのに必須の栄養補給血管が組織内に循環し分布している限り、いかなる皮下脂肪組織であってもよい。かかる移植部位として好ましい例としては、鼠蹊部、腋下、背中または腹部などが挙げられる。これらの組織のうち、循環している下腹壁動静脈が移植膵島細胞に栄養を補給することができることから、鼠蹊部が好ましい。
The insulin-producing cell transplant site that can be selected in the present invention is a subcutaneous adipose tissue that can be used as a scaffold for engraftment of the transplanted insulin-producing cells and secreting insulin among various body parts where the subcutaneous adipose tissue is localized, In addition, any subcutaneous adipose tissue may be used as long as nutritional blood vessels essential for replenishing the transplanted insulin-producing cells are circulated and distributed in the subcutaneous adipose tissue. Preferable examples of such transplantation sites include the buttocks, armpits, back or abdomen. Of these tissues, the groin is preferred because the circulating lower abdominal wall arteriovenous can replenish the transplanted islet cells.
この発明において移植するインスリン産生細胞としては、例えば、ヒト膵島細胞、ブタ等の異種膵島細胞の他に、この発明にて初めて発見されたインスリンとグルカゴンとが同一細胞中に発現するインスリン/グルカゴン同時陽性細胞を挙げることができる。
Insulin producing cells to be transplanted in the present invention include, for example, human islet cells, heterologous islet cells such as pigs, etc., and insulin / glucagon that is first discovered in the present invention and insulin / glucagon expressed in the same cell. Mention may be made of positive cells.
また、この発明のインスリン産生細胞移植は、糖尿病レシピエントの体内に埋設した細胞含有容器から注射で糖尿病レシピエントの皮下脂肪組織にインスリン産生膵島細胞を移植することができる。かかる容器を使用する大きな利点は、一旦移植したインスリン産生細胞が移植片拒絶を引き起こした場合、それを除去できる。このことは細胞移植により糖尿病を治療するに当たって極めて有益である。
In addition, the insulin-producing cell transplantation of the present invention can transplant insulin-producing islet cells into the subcutaneous adipose tissue of a diabetic recipient by injection from a cell-containing container embedded in the body of the diabetic recipient. The great advantage of using such a container is that once transplanted insulin producing cells cause graft rejection, it can be removed. This is extremely useful in treating diabetes by cell transplantation.
NKT細胞欠如(Jα18欠如)マウスを使用した本発明者による実験結果は、皮下脂肪組織に移植したインスリン産生膵島の生着率を顕著に改善したことを示している。このことは、NKT細胞が移植片拒絶に関与していることを意味している。したがって、この発明に係るインスリン産生細胞の皮下脂肪組織への移植は、早期拒絶を大幅に防止し、かつ、移植すべき細胞数を顕著に減少できるという大きな利点がある。その結果、1糖尿病患者に対して、1ドナーの細胞数と同数もしくは少数の細胞を移植することができる。換言すると、この発明の移植方法は、1ドナーのインスリン産生細胞を、1もしくは複数の糖尿病レシピエントに移植して糖尿病レシピエントの糖尿病を逆転もしくは寛解することができる。更に詳細には、1糖尿病レシピエントの皮下脂肪組織に、1ドナーの細胞数の1/1~1/10、好ましくは2/3~1/6、より好ましくは1/2~1/5の細胞数を移植すればよい。
The results of experiments by the present inventors using NKT cell-deficient (Jα18-deficient) mice indicate that the engraftment rate of insulin-producing pancreatic islets transplanted into subcutaneous adipose tissue has been remarkably improved. This means that NKT cells are involved in graft rejection. Therefore, transplantation of insulin-producing cells according to the present invention into subcutaneous adipose tissue has the great advantage that early rejection can be largely prevented and the number of cells to be transplanted can be significantly reduced. As a result, one diabetic patient can be transplanted with the same number or a small number of cells as the number of cells of one donor. In other words, the transplantation method of the present invention can reverse or ameliorate diabetes of a diabetic recipient by transplanting insulin-producing cells of one donor to one or more diabetic recipients. More specifically, the subcutaneous adipose tissue of a 1 diabetic recipient is 1/1 to 1/10, preferably 2/3 to 1/6, more preferably 1/2 to 1/5 of the number of cells of one donor. What is necessary is just to transplant a cell number.
この発明に係るインスリン産生膵島細胞の皮下脂肪組織への移植方法は、糖尿病の治療・寛解の効果的な方法である。この発明は、細胞移植方法が極めて単純でかつ従来の手法で移植でき、かつ、皮下脂肪組織に移植する細胞の数を劇的に低減することができ、かつ、移植した細胞を必要なら移植後でも移植した皮下脂肪組織から除去できるという利点がある。
The method for transplanting insulin-producing pancreatic islet cells into subcutaneous adipose tissue according to the present invention is an effective method for the treatment and remission of diabetes. In the present invention, the cell transplantation method is very simple and can be transplanted by a conventional technique, and the number of cells transplanted into subcutaneous adipose tissue can be drastically reduced. However, there is an advantage that it can be removed from the transplanted subcutaneous fat tissue.
最近の状況では、2型糖尿病の多くの若年患者に膵臓の自己免疫異常が認められことから1型糖尿病と2型糖尿病とを識別するのか困難な例が増加している。したがって、この発明は、以上の説明は1型糖尿病患者を例に挙げて主に説明したが、細胞移植を必要とする2型糖尿病患者にも1型糖尿病患者と実質的に同じ方法で適用できることにも注目すべきである。
In the recent situation, there are an increasing number of cases where it is difficult to distinguish between type 1 diabetes and type 2 diabetes because many young patients with type 2 diabetes have pancreatic autoimmune abnormalities. Therefore, the present invention has been mainly described by taking a type 1 diabetic patient as an example, but it can be applied to a type 2 diabetic patient who requires cell transplantation in substantially the same manner as a type 1 diabetic patient. Also should be noted.
上記したように、本発明者が初めて見出したインスリンとグルカゴンの両者が移植した同一の細胞内に発現するインスリン/グルカゴン同時陽性細胞は、インスリン顆粒とグルカゴン顆粒は同一細胞中で別個にかつ独立して染色された。このインスリン/グルカゴン同時陽性細胞は、腎臓被膜下移植膵島にも、肝臓内移植膵島にも見出せなかった。このインスリン/グルカゴン同時陽性細胞が、どの細胞から、つまり、α細胞、β細胞またはその他の細胞から派生したのかはまだ未解明のままである。
As described above, the insulin / glucagon co-positive cells expressed in the same cells transplanted by both the insulin and glucagon found by the present inventor for the first time are the insulin granules and the glucagon granules separately and independently in the same cells. And stained. This insulin / glucagon co-positive cell could not be found in neither the kidney subcapsular transplanted islet nor the intrahepatic transplanted islet. It is still unclear from which cell this insulin / glucagon co-positive cell is derived, ie, α cell, β cell or other cells.
この発明を実施例により詳細に説明するが、下記実施例は、この発明を限定するものでは一切なく、例示の目的だけで説明するものである。したがつて、この発明は、上記の明細書の記載ならびに下記の実施例から派生するあらゆる改変ならびに改良をこの発明の範囲内に包含するものである。
The present invention will be described in detail by way of examples. However, the following examples are not intended to limit the present invention, and are described only for the purpose of illustration. Accordingly, the present invention includes all modifications and improvements derived from the description of the above specification and the following examples.
〔材料ならびに方法〕
(マウス)
オスのC57BL/6ならびにNOD/scidマウスはチャールス・リーバー・ジャパン社(日本神奈川県)から購入した。Jα18欠如(NKT細胞欠如)マウスは文献記載の方法で作製し(Cui, J., et al. Science 278, 1623-1626 (1997))、C57BL/6マウスに戻し交雑した。マウスは特定の無菌室で飼育し、8-16週齢で実験に使用した。全ての実験は福岡大学動物管理使用委員会の事前承認を受けたプロトコールに従って実施した。 [Materials and methods]
(mouse)
Male C57BL / 6 and NOD / scid mice were purchased from Charles Reaver Japan (Kanagawa, Japan). Jα18-deficient (NKT cell-deficient) mice were prepared by literature methods (Cui, J., et al. Science 278, 1623-1626 (1997)) and backcrossed to C57BL / 6 mice. Mice were raised in specific sterile rooms and used for experiments at 8-16 weeks of age. All experiments were performed according to a protocol that had received prior approval from the Fukuoka University Animal Care and Use Committee.
(マウス)
オスのC57BL/6ならびにNOD/scidマウスはチャールス・リーバー・ジャパン社(日本神奈川県)から購入した。Jα18欠如(NKT細胞欠如)マウスは文献記載の方法で作製し(Cui, J., et al. Science 278, 1623-1626 (1997))、C57BL/6マウスに戻し交雑した。マウスは特定の無菌室で飼育し、8-16週齢で実験に使用した。全ての実験は福岡大学動物管理使用委員会の事前承認を受けたプロトコールに従って実施した。 [Materials and methods]
(mouse)
Male C57BL / 6 and NOD / scid mice were purchased from Charles Reaver Japan (Kanagawa, Japan). Jα18-deficient (NKT cell-deficient) mice were prepared by literature methods (Cui, J., et al. Science 278, 1623-1626 (1997)) and backcrossed to C57BL / 6 mice. Mice were raised in specific sterile rooms and used for experiments at 8-16 weeks of age. All experiments were performed according to a protocol that had received prior approval from the Fukuoka University Animal Care and Use Committee.
(マウス膵島単離、移植ならびに回収)
膵島は文献記載の手法(Sutton, R., et al., Transplantation, 42, 689-691 (1986); Okeda, T., et al., Endocrinol. Jpn. 26, 495-499 (1979))に従って単離し、直径150-250μMのマウスを厳選して実験に供した。単離した膵島は、CO2培養器(5% CO2+95%空気)内で10%FBS添加培地(D-MEM、ニッスイ)を用いて24℃で1夜培養し、ドナーとして使用した。膵島は、STZ注射3日目に、STZ(Sigma)(180mg/kg)誘発糖尿病シンジェニツクレシピエントマウスの左側鼠蹊部皮下脂肪組織に移植した。非絶食状態の血漿グルコースレベルを、GlucoCard DIA meter (Arkray)を用いてSTZ注射の前後2回、膵島移植後は週に1回測定した。移植細胞の回収に当たっては、糖尿病レシピエントの膵島を含むポケットの閉口に使用したホッチキスの針をまず確認して、その針の基部と末端側を約5mmの長さに切除して以下の実験に使用した。比較のために、STZ誘発糖尿病レシピエントの肝臓内(Kemp., C. B., et al. Nature 244, 447 (1973))または腎臓被膜下(Yasunami, Y., et al., Transplantation 35, 281-284 (1983))に移植した。 (Mouse islet isolation, transplantation and recovery)
Islets are in accordance with literature procedures (Sutton, R., et al., Transplantation, 42, 689-691 (1986); Okeda, T., et al., Endocrinol. Jpn. 26, 495-499 (1979)). After isolation, mice with a diameter of 150-250 μM were carefully selected for the experiment. The isolated islets were cultured overnight at 24 ° C. in a CO 2 incubator (5% CO 2 + 95% air) using 10% FBS-supplemented medium (D-MEM, Nissui) and used as a donor. Islets were transplanted into the left groin subcutaneous adipose tissue of STZ (Sigma) (180 mg / kg) induced diabetic syngenetic recipient mice on day 3 of STZ injection. Non-fasted plasma glucose levels were measured twice before and after STZ injection using a GlucoCard DIA meter (Arkray) and once a week after islet transplantation. When collecting transplanted cells, first check the staples used to close the pockets containing the islets of diabetic recipients, and then cut the base and distal sides of the needles to a length of about 5 mm for the following experiment. used. For comparison, intrahepatic (Kemp., CB, et al. Nature 244, 447 (1973)) or subcapsular (Yasunami, Y., et al., Transplantation 35, 281-284) of STZ-induced diabetic recipients. (1983)).
膵島は文献記載の手法(Sutton, R., et al., Transplantation, 42, 689-691 (1986); Okeda, T., et al., Endocrinol. Jpn. 26, 495-499 (1979))に従って単離し、直径150-250μMのマウスを厳選して実験に供した。単離した膵島は、CO2培養器(5% CO2+95%空気)内で10%FBS添加培地(D-MEM、ニッスイ)を用いて24℃で1夜培養し、ドナーとして使用した。膵島は、STZ注射3日目に、STZ(Sigma)(180mg/kg)誘発糖尿病シンジェニツクレシピエントマウスの左側鼠蹊部皮下脂肪組織に移植した。非絶食状態の血漿グルコースレベルを、GlucoCard DIA meter (Arkray)を用いてSTZ注射の前後2回、膵島移植後は週に1回測定した。移植細胞の回収に当たっては、糖尿病レシピエントの膵島を含むポケットの閉口に使用したホッチキスの針をまず確認して、その針の基部と末端側を約5mmの長さに切除して以下の実験に使用した。比較のために、STZ誘発糖尿病レシピエントの肝臓内(Kemp., C. B., et al. Nature 244, 447 (1973))または腎臓被膜下(Yasunami, Y., et al., Transplantation 35, 281-284 (1983))に移植した。 (Mouse islet isolation, transplantation and recovery)
Islets are in accordance with literature procedures (Sutton, R., et al., Transplantation, 42, 689-691 (1986); Okeda, T., et al., Endocrinol. Jpn. 26, 495-499 (1979)). After isolation, mice with a diameter of 150-250 μM were carefully selected for the experiment. The isolated islets were cultured overnight at 24 ° C. in a CO 2 incubator (5% CO 2 + 95% air) using 10% FBS-supplemented medium (D-MEM, Nissui) and used as a donor. Islets were transplanted into the left groin subcutaneous adipose tissue of STZ (Sigma) (180 mg / kg) induced diabetic syngenetic recipient mice on day 3 of STZ injection. Non-fasted plasma glucose levels were measured twice before and after STZ injection using a GlucoCard DIA meter (Arkray) and once a week after islet transplantation. When collecting transplanted cells, first check the staples used to close the pockets containing the islets of diabetic recipients, and then cut the base and distal sides of the needles to a length of about 5 mm for the following experiment. used. For comparison, intrahepatic (Kemp., CB, et al. Nature 244, 447 (1973)) or subcapsular (Yasunami, Y., et al., Transplantation 35, 281-284) of STZ-induced diabetic recipients. (1983)).
(形態)
膵島移植片を有する糖尿病レシピエントの切除した鼠蹊部皮下脂肪組織、肝臓ならびに腎臓は、10%ホルマリンで固定、加工、バラフィン包埋した後、形態分析のために切片にした。切片は、ヘマトキシリンとエオシンで染色し、免疫蛍光顕微鏡で観察した。使用した抗体は次の通りである:抗インスリン抗体、抗グルカゴン抗体、抗ソマトスタチン抗体ならびに抗PP抗体。染色した膵島移植切片は蛍光顕微鏡で観察した。 (Form)
The resected buttocks subcutaneous adipose tissue, liver and kidney of diabetic recipients with islet grafts were fixed in 10% formalin, processed, embedded in barafin and then sectioned for morphological analysis. The sections were stained with hematoxylin and eosin and observed with an immunofluorescence microscope. The antibodies used are as follows: anti-insulin antibody, anti-glucagon antibody, anti-somatostatin antibody and anti-PP antibody. Stained islet transplanted sections were observed with a fluorescence microscope.
膵島移植片を有する糖尿病レシピエントの切除した鼠蹊部皮下脂肪組織、肝臓ならびに腎臓は、10%ホルマリンで固定、加工、バラフィン包埋した後、形態分析のために切片にした。切片は、ヘマトキシリンとエオシンで染色し、免疫蛍光顕微鏡で観察した。使用した抗体は次の通りである:抗インスリン抗体、抗グルカゴン抗体、抗ソマトスタチン抗体ならびに抗PP抗体。染色した膵島移植切片は蛍光顕微鏡で観察した。 (Form)
The resected buttocks subcutaneous adipose tissue, liver and kidney of diabetic recipients with islet grafts were fixed in 10% formalin, processed, embedded in barafin and then sectioned for morphological analysis. The sections were stained with hematoxylin and eosin and observed with an immunofluorescence microscope. The antibodies used are as follows: anti-insulin antibody, anti-glucagon antibody, anti-somatostatin antibody and anti-PP antibody. Stained islet transplanted sections were observed with a fluorescence microscope.
(ヒト膵島移植)
ヒト膵島は、Prodo Lab (Irvine, CA)から提供を受け、下記実験前2-3日間2%ヒトアルブミンを含むCMRL1066培地(Mediatech)中において24℃で培養した。 (Human islet transplantation)
Human islets were provided by Prodo Lab (Irvine, Calif.) And cultured at 24 ° C. in CMRL1066 medium (Mediatech) containing 2% human albumin for 2-3 days prior to the following experiment.
ヒト膵島は、Prodo Lab (Irvine, CA)から提供を受け、下記実験前2-3日間2%ヒトアルブミンを含むCMRL1066培地(Mediatech)中において24℃で培養した。 (Human islet transplantation)
Human islets were provided by Prodo Lab (Irvine, Calif.) And cultured at 24 ° C. in CMRL1066 medium (Mediatech) containing 2% human albumin for 2-3 days prior to the following experiment.
膵島移植のために、全体で3バッチのヒト膵島細胞を使用した。各バッチにつき、膵島細胞(1500 IEQ)を用いた移植を1-2回実施した。ヒト膵島細胞は、STZ(170mg/kg, iv注射)誘発糖尿病オスNOD/scidマウスの鼠蹊部皮下脂肪組織内または1個の腎臓被膜下に移植した。非絶食血漿グルコース値と体重は移植後週1回測定した。ヒト膵島移植片を持つ糖尿病レシピエントの鼠蹊部皮下脂肪組織と腎臓を摘出し、10%ホルマリン固定、パラフィン包埋後、形態分析のために切片にした。
A total of 3 batches of human islet cells were used for islet transplantation. For each batch, transplantation with islet cells (1500 IEQ) was performed 1-2 times. Human islet cells were transplanted into the subcutaneous subcutaneous fat tissue of STZ (170 mg / kg, iv injection) -induced diabetic male NOD / scid mice or under one kidney capsule. Non-fasting plasma glucose levels and body weights were measured once a week after transplantation. Subcutaneous adipose tissue and kidney of diabetic recipients with human islet grafts were excised, fixed with 10% formalin, embedded in paraffin, and sectioned for morphological analysis.
(統計分析)
膵島移植後のSTZ誘発糖尿病マウスの正常血糖率についての統計分析は、Fisher's exact testによって決定した。p値が0.05未満である場合は有意差ありと判断した。 (Statistical analysis)
Statistical analysis of normoglycemia in STZ-induced diabetic mice after islet transplantation was determined by Fisher's exact test. When p value was less than 0.05, it was judged that there was a significant difference.
膵島移植後のSTZ誘発糖尿病マウスの正常血糖率についての統計分析は、Fisher's exact testによって決定した。p値が0.05未満である場合は有意差ありと判断した。 (Statistical analysis)
Statistical analysis of normoglycemia in STZ-induced diabetic mice after islet transplantation was determined by Fisher's exact test. When p value was less than 0.05, it was judged that there was a significant difference.
この実施例では、図1を参照して、マウスの鼠蹊部皮下脂肪組織への膵島移植の手法を説明する。
In this example, referring to FIG. 1, a technique for islet transplantation into the subcutaneous subcutaneous fat tissue of the mouse will be described.
図1は、マウスの左側鼠蹊部皮下脂肪組織の解剖所見を示す。図1(A)と図1(B)は、栄養血管が認められる左側鼠蹊部皮下脂肪組織をピンセット(左側)で持ち上げた状態をそれぞれ示す。図中、長短矢印は大腿部動静脈と下腹壁動静脈とをそれぞれ示す。
FIG. 1 shows the anatomical findings of the left groin subcutaneous adipose tissue of the mouse. FIG. 1 (A) and FIG. 1 (B) show a state where the left hip subcutaneous fat tissue in which a nutritional blood vessel is observed is lifted with tweezers (left side). In the figure, the long and short arrows indicate the thigh arteriovenous and the lower abdominal wall arteriovenous, respectively.
図2はマウス鼠蹊部皮下脂肪組織へ膵島移植をした状態を示す。図2(a)はマウスの左側鼠蹊部皮下脂肪組織の皮膚切開口部を上から見た図である。図2(b)は鼠蹊部皮下脂肪組織に設けた小さなポケットを示していて、縫合線で開口を開いた状態に保っている。図2(c)、2(d)はポケット内部に留置したチューブ先端に存在する膵島細胞を示す。図2(c)、2(d)中、矢印はポケットに配置した膵島細胞を示し、矢じり印はチューブ先端の膵島細胞を示す。図2(e)は鉗子で保持したポケットの開口部を示し、図(f)はホッチキスの針で閉口したポケットの開口部を示す。図中、目盛は1mmである。
FIG. 2 shows a state in which islet transplantation is performed on the mouse subcutaneous subcutaneous adipose tissue. FIG. 2 (a) is a view of the skin incision in the left groin subcutaneous adipose tissue of the mouse as viewed from above. FIG. 2 (b) shows a small pocket provided in the buttock subcutaneous adipose tissue, and the opening is kept open with a suture line. FIGS. 2 (c) and 2 (d) show islet cells present at the tip of the tube placed inside the pocket. In FIGS. 2 (c) and 2 (d), arrows indicate islet cells arranged in the pocket, and arrowheads indicate islet cells at the tip of the tube. FIG. 2 (e) shows the opening of the pocket held by the forceps, and FIG. 2 (f) shows the opening of the pocket closed with a staple. In the figure, the scale is 1 mm.
図3は、同種同系膵島細胞を鼠蹊部皮下脂肪組織に移植したストレプトゾトシン(STZ)誘発糖尿病C57BL/6マウスの血漿グルコースレベルのグラフを示す。上部のグラフは膵島細胞200個を移植した症例、下部のグラフは膵島細胞400個を移植した症例を示す。各線グラフは各マウスの血漿グルコースレベルを示す。図中、個々の線は各動物の血漿グルコースレベルを表わしていて、印(+)は重篤の糖尿病で死亡したマウスを示し、印(*)は各レシピエントの鼠蹊部皮下脂肪組織に移植した膵島細胞を除去したことを示す。
FIG. 3 shows a graph of plasma glucose levels in streptozotocin (STZ) -induced diabetic C57BL / 6 mice in which allogeneic islet cells were transplanted into the subcutaneous subcutaneous adipose tissue. The upper graph shows a case transplanted with 200 islet cells, and the lower graph shows a case transplanted with 400 islet cells. Each line graph shows the plasma glucose level of each mouse. In the figure, each line represents the plasma glucose level of each animal, the mark (+) indicates a mouse that died of severe diabetes, and the mark (*) is transplanted into the subcutaneous subcutaneous fat tissue of each recipient It shows that the removed islet cells were removed.
図3で示した結果は、STZ誘発糖尿病マウスの高血糖症が、同種同系膵島細胞400個を鼠蹊部皮下脂肪組織に移植した後に寛解したが、同種同系膵島細胞200個を移植した場合には寛解しなかったことを示している。この移植によって達成された移植効率は、本発明者らによってこれまで報告された従来の肝臓に対する移植の場合と同等であった(Yasunami, Y., et al., J. Exp. Med., 202, 913-918 (2005); Matsuoka, N., et al., J. Clin. Invest., 120, 735-743 (2010))。これに加えて、しかしながら、図3は、同種同系膵島細胞400個を鼠蹊部皮下脂肪組織に移植して正常血糖になった後に、鼠蹊部皮下脂肪組織から膵島移植片を除去するとすぐに高血糖症に戻ってしまったことを示している。この結果は、移植後の正常血糖が移植膵島細胞に依存していることを示している。
The results shown in FIG. 3 show that the hyperglycemia of STZ-induced diabetic mice ameliorated after transplanting 400 allogeneic islet cells into the hip subcutaneous fat tissue, but when 200 allogeneic islet cells were transplanted Indicates that he did not remit. The transplantation efficiency achieved by this transplantation was comparable to the conventional transplantation to the liver reported by the present inventors (Yasunami, Y., et al., J. Exp. Med., 202). , 913-918 (2005); Matsuoka, N., et al., J. Clin. Invest., 120, 735-743 (2010)). In addition to this, however, FIG. 3 shows that once allograft islet cells are transplanted into the buttock subcutaneous adipose tissue and become normoglycemic, hyperglycemia immediately after removal of the islet graft from the buttock subcutaneous adipose tissue It shows that it has returned to symptom. This result shows that normal blood glucose after transplantation depends on transplanted islet cells.
図4は移植60日後の鼠蹊部皮下脂肪組織に移植した膵島細胞の形態を示す。図4(a)は膵島細胞を移植した鼠蹊部皮下脂肪組織の露出表面部分を示す。図中、矢印はポケットの閉口に使用したホッチキスの針を示す。図4(b)は、新規血管が形成された塊状の移植膵島細胞を示す(矢じり印)。図4(b)中に示す長短の矢印は、下腹壁動静脈と大腿部動静脈とをそれぞれ示す。
FIG. 4 shows the morphology of islet cells transplanted into the subcutaneous hip adipose tissue 60 days after transplantation. FIG. 4 (a) shows the exposed surface portion of the hip subcutaneous tissue transplanted with islet cells. In the figure, the arrows indicate staples used for closing the pockets. FIG. 4 (b) shows massive transplanted islet cells in which new blood vessels are formed (arrowheads). The long and short arrows shown in FIG. 4B indicate the lower abdominal wall arteriovenous and the femoral arterial vein.
図4の結果から、鼠蹊部皮下脂肪組織に移植した膵島細胞のいくつかに新規な血管が形成されたうえに様々な大きさの塊り状に形成されていることが顕微鏡的に示されている。また移植した膵島細胞が膵臓の内分泌細胞が認められる脂肪組織によって取り囲まれていることが顕微鏡的に判明した。
The results of FIG. 4 show microscopically that new blood vessels are formed in some of the islet cells transplanted into the buttock subcutaneous adipose tissue and are formed in a lump of various sizes. Yes. It was also revealed microscopically that the transplanted islet cells were surrounded by adipose tissue where pancreatic endocrine cells were observed.
驚いたことに、同種同系膵島細胞をマウスの鼠蹊部皮下脂肪組織に移植したところ、移植した膵島細胞内に、インスリンがグルカゴンと一緒に存在しているインスリン/グルカゴン同時陽性細胞が形成されていることが判明した。図5bは、移植膵島細胞内に形成したインスリン/グルカゴン同時陽性細胞の顕微鏡写真を示す1連のパネルを示す。移植膵島細胞の切片は、インスリン、グルカゴンならびにDAP1についてそれぞれ染色し、共焦点蛍光顕微鏡で観察した。
Surprisingly, when allogeneic islet cells were transplanted into mouse subcutaneous subcutaneous adipose tissue, insulin / glucagon co-positive cells in which insulin was present together with glucagon were formed in the transplanted islet cells. It has been found. FIG. 5b shows a series of panels showing micrographs of insulin / glucagon co-positive cells formed in transplanted islet cells. Transplanted islet cell sections were stained for insulin, glucagon and DAP1, respectively, and observed with a confocal fluorescence microscope.
図5は、移植した膵島細胞にインスリン/グルカゴン同時陽性細胞が出現した状態を共焦点蛍光顕微鏡で観察した図を示す。移植後120日目にインスリン、グルカゴン、ならびにDAP1について染色した移植膵島の切片をDAP1(青色)、インスリン(緑色)ならびにグルカゴン(赤色)についてそれぞれ染色した移植膵島細胞をそれぞれ示し、またこれらの染色画像を組み合わせた画像を示す。上部ならびに下部の組合せ画像パネル中の各横線は50μmと10μmをそれぞれ示す。左側上部画像の四角で囲った部分は高倍率の画像パネルで、その四角部分の高倍率画像を下部の組合せ画像パネルに示す。図11は移植したヒト膵島細胞中にインスリンとグルカゴンが同時に発現した免疫電子顕微鏡写真を示している。本顕微鏡写真の左図は、組織切片を18nmと12nm金粒子にそれぞれ結合した抗インスリン抗体ならびに抗グルカゴン抗体で染色して撮影したものであり、図中四角で囲った部分に局在する2個のグルカゴン顆粒(中抜き矢じり印)と1個のインスリン顆粒(黒塗り矢じり印)を拡大した図である(右図)。
FIG. 5 shows a state in which insulin / glucagon simultaneous positive cells appear in the transplanted islet cells observed with a confocal fluorescence microscope. 120 days after transplantation, transplanted islet cells stained for DAP1 (blue), insulin (green) and glucagon (red), respectively, are shown for transplanted islet cells stained for insulin, glucagon and DAP1, and these stained images The image which combined is shown. Each horizontal line in the upper and lower combined image panels represents 50 μm and 10 μm, respectively. A portion surrounded by a square in the upper left image is a high magnification image panel, and a high magnification image of the square portion is shown in a lower combination image panel. FIG. 11 shows an immunoelectron micrograph of insulin and glucagon simultaneously expressed in transplanted human islet cells. The left figure of this micrograph was taken by staining tissue sections with anti-insulin antibody and anti-glucagon antibody bound to 18 nm and 12 nm gold particles, respectively. It is the figure which expanded the glucagon granule (a hollow arrowhead mark) and one insulin granule (black arrowhead mark) (right figure).
図6は、移植後60日目の腎臓被膜下(kc、上部パネル)と肝臓内(pv、下部パネル)の膵島移植片の組織分析を示す。この結果にはインスリン/グルカゴン同時陽性細胞は認められなかった。横線は50μmを示す。
FIG. 6 shows the tissue analysis of the islet graft under the kidney capsule (kc, upper panel) and in the liver (pv, lower panel) 60 days after transplantation. This result showed no insulin / glucagon co-positive cells. The horizontal line indicates 50 μm.
興味深いことに、インスリン/グルカゴン同時陽性細胞は、移植30日後と60日後にピークとして移植膵島細胞のいくつかに出現したことが示された。インスリン/グルカゴン同時陽性細胞には、インスリンとグルカゴンの顆粒が同一細胞内の細胞質中に別々に図5および図11に示すように染色された。反対に、インスリン/グルカゴン同時陽性細胞は、図6に、レシピエントマウスの腎臓被膜下にも、肝臓内にも認められなかったことは注目すべきである。
Interestingly, it was shown that insulin / glucagon co-positive cells appeared in some of the transplanted islet cells as peaks after 30 and 60 days of transplantation. Insulin / glucagon co-positive cells, insulin and glucagon granules were stained separately in the cytoplasm of the same cell as shown in FIG. 5 and FIG. In contrast, it should be noted that no insulin / glucagon co-positive cells were found in FIG. 6 either under the kidney capsule or in the liver of the recipient mouse.
本実施例は、ヒト膵島細胞を、STZ誘発糖尿病NOD/scidマウスに移植した症例に関する。驚いたことに、いくつかの移植膵島細胞がインスリン/グルカゴン同時陽性細胞に変換されていたことが判明した。
This example relates to a case where human pancreatic islet cells were transplanted into STZ-induced diabetic NOD / scid mice. Surprisingly, it was found that some transplanted islet cells had been converted to insulin / glucagon co-positive cells.
図7は、ヒト膵島細胞を鼠蹊部皮下脂肪組織に移植したSTZ誘発糖尿病NOD/scidマウスの血漿グルコースレベルを示す線グラフである。印(*)は、糖尿病レシピエントの皮下脂肪組織に移植した膵島細胞を除去したことを意味する。
FIG. 7 is a line graph showing plasma glucose levels of STZ-induced diabetic NOD / scid mice transplanted with human islet cells into the hip subcutaneous tissue. The mark (*) means that the islet cells transplanted into the subcutaneous fat tissue of the diabetic recipient were removed.
図7に示す結果は、マウス膵島細胞について得られた上記知見はヒト膵島細胞についての症例にも当てはまることを示す。図7は、ヒト膵島細胞(1500IEQ)を鼠蹊部皮下脂肪組織に移植した後、STZ誘発糖尿病NOD/scidマウスの血糖が正常血糖になり、移植膵島細胞を除去するとすぐに再度高血糖に戻ったことを示す。
The results shown in FIG. 7 show that the above findings obtained for mouse islet cells also apply to cases for human islet cells. FIG. 7 shows that after transplanting human islet cells (1500IEQ) into the subcutaneous subcutaneous adipose tissue, the blood glucose in STZ-induced diabetic NOD / scid mice became normal blood glucose, and immediately after the transplanted islet cells were removed, the blood glucose level returned to hyperglycemia again. It shows that.
図8は、ヒト膵島細胞を移植した60日後のSTZ誘発糖尿病NOD/scidマウスの鼠蹊部皮下脂肪組織中のヒト膵島移植片の共焦点顕微鏡画像を示す。を示す。図8(A)は、移植後60日目のマウスのHE染色移植切片を示し、図8(B)、8(C)、8(D)および8(E)は、図8(A)で四角に囲った部分のヒト膵島細胞の共焦点顕微鏡画像を示す。図8(B)はインスリンについて染色した断面部分を示し、図8(C)はグルカゴンについて染色した断面部分を示す。図8(D)はDAP1について染色した断面部分を示す。図8(E)は、図8(B)~8(D)の3つの画像を合併して1画像にした組合せ画像であり、矢じり印で示した細胞はインスリン/グルカゴン同時陽性細胞である。HE染色画像と免疫蛍光染色画像中の横棒の長さは200μmと20μmをそれぞれ示す。驚いたことに、図8には、インスリン/グルカゴン同時陽性細胞が大量に鼠蹊部皮下脂肪組織に移植した膵島移植片に現れたことが示されている。
FIG. 8 shows a confocal microscope image of a human islet graft in the hip subcutaneous tissue of STZ-induced diabetic NOD / scid mice 60 days after transplantation of human islet cells. Indicates. FIG. 8 (A) shows HE-stained transplanted sections of mice 60 days after transplantation, and FIGS. 8 (B), 8 (C), 8 (D) and 8 (E) are shown in FIG. 8 (A). The confocal microscope image of the human islet cell of the part enclosed by the square is shown. FIG. 8B shows a cross-sectional portion stained for insulin, and FIG. 8C shows a cross-sectional portion stained for glucagon. FIG. 8D shows a cross-sectional portion stained for DAP1. FIG. 8E is a combined image obtained by merging the three images of FIGS. 8B to 8D into one image, and the cells indicated by the arrowheads are insulin / glucagon simultaneous positive cells. The lengths of the horizontal bars in the HE stained image and the immunofluorescent stained image are 200 μm and 20 μm, respectively. Surprisingly, FIG. 8 shows that insulin / glucagon co-positive cells appeared in large amounts in islet grafts transplanted into the subcutaneous subcutaneous adipose tissue.
本実施例は、低い移植効率が膵島移植の臨床応用を制限する主要な要因であることから、鼠蹊部皮下脂肪組織を移植部位に選択したときの膵島移植効率を評価するものである。したがって、鼠蹊部皮下脂肪組織という新規移植部位は、もしこの障害を潜在的に解決するものでなければ、臨床で現実には利用できない。
This example evaluates islet transplantation efficiency when a hip subcutaneous tissue is selected as a transplant site because low transplantation efficiency is a major factor that limits the clinical application of islet transplantation. Therefore, a new transplantation site called hip subcutaneous tissue is not practically available unless it can potentially solve this disorder.
図9は、STZ誘発糖尿病レシピエントの鼠蹊部皮下脂肪組織に移植後6時間目の移植膵島細胞の組織分析を示す。図9(A)はHEで染色した移植膵島細胞の断面を示す。上部左隅の四角部分は、図9(A)で示したHE染色した左側に示した四角部分の高倍率画像である。この四角部分の高倍率画像において、矢印は移植膵島細胞内の湿潤好中球を示す。図9(B)は、インスリン(緑色)と好中球マーカーであるGr-1(赤色)について染色した膵島移植片の免疫蛍光画像である。図9(A)および9(B)の画像中の横棒は、100μmおよび10μmとをそれぞれ示す。
FIG. 9 shows a tissue analysis of transplanted islet cells 6 hours after transplantation into the subcutaneous subcutaneous fat tissue of STZ-induced diabetic recipients. FIG. 9 (A) shows a cross section of transplanted islet cells stained with HE. The square part in the upper left corner is a high-magnification image of the square part shown on the left side with HE staining shown in FIG. In the high-magnification image of this square portion, the arrows indicate wet neutrophils in the transplanted islet cells. FIG. 9B is an immunofluorescence image of an islet graft stained for insulin (green) and neutrophil marker Gr-1 (red). The horizontal bars in the images of FIGS. 9A and 9B indicate 100 μm and 10 μm, respectively.
図9に示すように、組織学的には、鼠蹊部皮下脂肪組織に移植した膵島移植片は、移植後6時間目には好中球で湿潤されていた。これらの知見は、本発明者が以前論文(非特許文献8)に報告した肝臓に移植した移植膵島細胞に見られた知見と正確に類似している。このことは、NKT細胞依存好中球活性化がこの部位への膵島細胞移植の早期損失に根本的な役割をも果たしていることを示唆している。
As shown in FIG. 9, histologically, the islet graft transplanted into the hip subcutaneous tissue was wetted with neutrophils 6 hours after transplantation. These findings are exactly similar to the findings seen in transplanted islet cells transplanted into the liver previously reported by the inventor in a paper (Non-Patent Document 8). This suggests that NKT cell-dependent neutrophil activation also plays a fundamental role in the early loss of islet cell transplantation to this site.
図10は、同種同系膵島細胞を鼠蹊部皮下脂肪組織に移植したSTZ誘発糖尿病Jα18欠如(NKT細胞欠如)マウスの血漿グルコースレベルを示す線グラフである。最上部のグラフは、同種同系膵島細胞200個を移植した症例、上から2番目のグラフは100個を移植した症例、上から3番目のグラフは50個を移植した症例、一番下のグラフは25個を移植した症例を示す。
FIG. 10 is a line graph showing the plasma glucose level of STZ-induced diabetic Jα18-deficient mice (NKT cell-deficient) mice transplanted with allogeneic syngeneic islet cells into the subcutaneous subcutaneous adipose tissue. The top graph shows a case of transplanting 200 allogeneic islet cells, the second graph from the top shows a case of 100 transplants, the third graph from the top shows a case of 50 transplants, the bottom graph Indicates a case where 25 were transplanted.
上記の結果から、移植膵島細胞が容易に回収でき、かつ、より重要なことには、膵島細胞50個、つまり1ドナーの1/4の膵島細胞を、NKT細胞を標的にして移植することで、糖尿病を逆転もしくは寛解できることから、鼠蹊部皮下脂肪組織が膵島細胞移植の新規な機能的な部位であることを示している。さらには、出生後には全く見られなかったインスリン/グルカゴン同時陽性細胞がマウスにみられると共に、ヒト膵島細胞移植片がこの部位にだけ認められた。
From the above results, transplanted islet cells can be easily recovered, and more importantly, transplanting 50 islet cells, that is, 1/4 islet cell of one donor, targeting NKT cells. The ability to reverse or ameliorate diabetes indicates that the hip subcutaneous adipose tissue is a novel functional site for islet cell transplantation. In addition, mice showed insulin / glucagon co-positive cells that were not seen at all after birth, and human islet cell grafts were found only at this site.
総括すれば、上記の知見は、鼠蹊部皮下脂肪組織が、臨床的膵島移植が直面する現在の障害、つまり、移植膵島細胞の評価・回収の困難さならびに低移植効率に対する潜在的な解決法となりうる膵島移植の新規な機能的な部位となることを示していることから、膵島移植の臨床応用に対して大きな影響を有している。更には、この発明は、インスリン/グルカゴン同時陽性細胞がマウスの鼠蹊部皮下脂肪組織に移植した膵島細胞にだけ出現し、このインスリン/グルカゴン同時陽性細胞がβ細胞、α細胞またはその他の細胞群もしくは内分泌前駆体から派生したかどうかは未定であるけれども、β細胞分化の新規なin vivoモデルを提供しているとの証拠を提供する。
In summary, the above findings provide a potential solution to the current obstacle faced by clinical islet transplantation, namely the difficulty in evaluating and recovering transplanted islet cells as well as low transplantation efficiency. Since it has been shown to be a new functional site for islet transplantation, it has a great influence on the clinical application of islet transplantation. Furthermore, the present invention shows that insulin / glucagon co-positive cells appear only in islet cells transplanted into the buttock subcutaneous adipose tissue of mice, and the insulin / glucagon co-positive cells are β cells, α cells or other cell groups or Whether it was derived from an endocrine precursor is undecided, but provides evidence that it provides a new in vivo model of β-cell differentiation.
Claims (10)
- インスリン産生細胞を栄養血管が分布している皮下脂肪組織に移植することからなるインスリン産生細胞移植方法。 An insulin-producing cell transplantation method comprising transplanting insulin-producing cells into subcutaneous adipose tissue where nutrient vessels are distributed.
- 請求項1に記載のインスリン産生細胞移植方法であって、前記インスリン産生細胞が、ヒト膵島細胞、異種膵島細胞、インスリン/グルカゴン同時陽性細胞またはES細胞もしくはiPS細胞から作製したインスリン産生細胞であることからなるインスリン産生細胞移植方法。 The insulin-producing cell transplantation method according to claim 1, wherein the insulin-producing cells are human islet cells, heterologous islet cells, insulin / glucagon simultaneous positive cells, or insulin-producing cells prepared from ES cells or iPS cells. An insulin-producing cell transplantation method comprising:
- 請求項1または2に記載のインスリン産生細胞移植方法であって、前記皮下脂肪組織が鼠蹊部、腋下、背中または腹部の皮下脂肪組織であることからなるインスリン産生細胞移植方法。 3. The insulin-producing cell transplantation method according to claim 1 or 2, wherein the subcutaneous adipose tissue is a subcutaneous adipose tissue of the buttocks, armpits, back or abdomen.
- 請求項1ないし3のいずれか1項に記載のインスリン産生細胞移植方法であって、ドナー1個体のインスリン産生細胞数と同数または少数のインスリン産生細胞を1レシピエントに移植することからなるインスリン産生細胞移植方法。 The insulin-producing cell transplantation method according to any one of claims 1 to 3, wherein the insulin production cell comprises transplanting the same number or a small number of insulin-producing cells as the number of insulin-producing cells of one donor to one recipient. Cell transplantation method.
- 請求項1ないし4のいずれか1項に記載のインスリン産生細胞移植方法であって、移植するインスリン産生細胞数が、1ドナーの膵島細胞数と同数から1/10、好ましくは2/3から1/6、より好ましくは1/2から1/5であることからなるインスリン産生細胞移植方法。 The insulin-producing cell transplantation method according to any one of claims 1 to 4, wherein the number of insulin-producing cells to be transplanted is from the same number to 1/10, preferably from 2/3 to 1, as the number of islet cells of one donor. / 6, more preferably 1/2 to 1/5, an insulin-producing cell transplantation method.
- インスリン産生細胞を栄養血管が分布している皮下脂肪組織に移植し、移植インスリン産生細胞がインスリンを分泌し、分泌インスリンによって糖尿病を治療することからなる糖尿病治療方法。 A method for treating diabetes comprising transplanting insulin-producing cells into subcutaneous adipose tissue in which nutrient vessels are distributed, the transplanted insulin-producing cells secreting insulin, and treating diabetes with secreted insulin.
- 請求項6に記載の糖尿病治療方法であって、前記インスリン産生細胞が、ヒト膵島細胞、異種膵島細胞、インスリン/グルカゴン同時陽性細胞またはES細胞もしくはiPS細胞から作製したインスリン産生細胞であることからなる糖尿病治療方法。 The method for treating diabetes according to claim 6, wherein the insulin-producing cells are human islet cells, heterologous islet cells, insulin / glucagon simultaneous positive cells, or insulin-producing cells prepared from ES cells or iPS cells. Diabetes treatment method.
- 請求項6または7に記載の糖尿病治療方法であって、前記皮下脂肪組織が鼠蹊部、腋下、背中または腹部の皮下脂肪組織であることからなる糖尿病治療方法。 The diabetes treatment method according to claim 6 or 7, wherein the subcutaneous adipose tissue is a subcutaneous adipose tissue of the buttocks, armpits, back or abdomen.
- 請求項6ないし8のいずれか1項に記載の糖尿病治療方法であって、ドナー1個体のインスリン産生細胞数と同数または少数のインスリン産生細胞を1レシピエントに移植することからなる糖尿病治療方法。 A method for treating diabetes according to any one of claims 6 to 8, wherein the method comprises transplanting the same number or a small number of insulin producing cells as the number of insulin producing cells of one individual donor to one recipient.
- 請求項6ないし9のいずれか1項に記載の糖尿病治療方法であって、移植するインスリン産生細胞数が、1ドナーの膵島細胞数と同数から1/10、好ましくは2/3から1/6、より好ましくは1/2から1/5であることからなる糖尿病治療方法。 The method for treating diabetes according to any one of claims 6 to 9, wherein the number of insulin-producing cells to be transplanted is from the same number to 1/10, preferably 2/3 to 1/6, as the number of islet cells of one donor. More preferably, it is 1/2 to 1/5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016513798A JP6300287B2 (en) | 2014-04-14 | 2015-04-14 | Insulin-producing islet cell transplant preparation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201461979229P | 2014-04-14 | 2014-04-14 | |
US61/979,229 | 2014-04-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015159889A1 true WO2015159889A1 (en) | 2015-10-22 |
Family
ID=54324094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/061492 WO2015159889A1 (en) | 2014-04-14 | 2015-04-14 | Method for transplanting insulin-producing cells |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6300287B2 (en) |
WO (1) | WO2015159889A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06507412A (en) * | 1991-04-25 | 1994-08-25 | ブラウン ユニヴァーシティ リサーチ ファンデーション | Implantable and biocompatible immunoblocking vehicles for the release of selected therapeutic substances |
JP2001299908A (en) * | 2000-04-26 | 2001-10-30 | Yasuhiko Tabata | Cell transplantation bag and artificial pancreas |
WO2011016423A1 (en) * | 2009-08-02 | 2011-02-10 | 学校法人 東京女子医科大学 | Islet cell sheet, process for production thereof, and use thereof |
-
2015
- 2015-04-14 WO PCT/JP2015/061492 patent/WO2015159889A1/en active Application Filing
- 2015-04-14 JP JP2016513798A patent/JP6300287B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06507412A (en) * | 1991-04-25 | 1994-08-25 | ブラウン ユニヴァーシティ リサーチ ファンデーション | Implantable and biocompatible immunoblocking vehicles for the release of selected therapeutic substances |
JP2001299908A (en) * | 2000-04-26 | 2001-10-30 | Yasuhiko Tabata | Cell transplantation bag and artificial pancreas |
WO2011016423A1 (en) * | 2009-08-02 | 2011-02-10 | 学校法人 東京女子医科大学 | Islet cell sheet, process for production thereof, and use thereof |
Non-Patent Citations (9)
Title |
---|
BORUD L J ET AL.: "Prefabrication of a neo- endocrine organ: a rat model", THE JOURNAL OF SURGICAL RESEARCH, vol. 61, no. 1, 1996, pages 221 - 226 * |
BORUD L. J. ET AL.: "The fasciovascular flap: a new vehicle for islet transplantation", CELL TRANSPLANTATION, vol. 3, no. 6, 1994, pages 509 - 514 * |
BROWN DAVID L. ET AL.: "Survival and function of transplanted islet cells on an in vivo, vascularized tissue engineering platform in the rat: A pilot study", CELL TRANSPLANTATION, vol. 15, no. 4, 2006, pages 319 - 324, XP008093805, DOI: doi:10.3727/000000006783981909 * |
FORSTER NATASHA A ET AL.: "A prevascularized tissue engineering chamber supports growth and function of islets and progenitor cells in diabetic mice", ISLETS, vol. 3, no. 5, 2011, pages 271 - 283 * |
FUMIMOTO, Y. ET AL.: "Creation of a Rich Subcutaneous Vascular Network with Implanted Adipose Tissue-Derived Stromal Cells and Adipose Tissue Enhances Subcutaneous Grafting of Islets in Diabetic Mice", TISSUE ENGINEERING, PART C, vol. 15, no. 3, 2009, pages 437 - 444, XP055110871 * |
JOVANOVIC-PETERSON L. ET AL.: "Studies of human fetal pancreatic allografts in diabetic recipients without immunosuppression", THE JOURNAL OF DIABETIC COMPLICATIONS, vol. 3, no. 2, 1989, pages 107 - 112, XP026285746 * |
MIYATA M. ET AL.: "Segmental auto- transplantation of the pancreas", THE JAPANESE JOURNAL OF SURGERY, vol. 17, no. 1, 1987, pages 41 - 46 * |
PAPACHRISTOU D. N. ET AL.: "A simple method of pancreatic transplantation in the dog", AMERICAN JOURNAL OF SURGERY, vol. 139, no. 3, 1980, pages 344 - 347, XP023229131, DOI: doi:10.1016/0002-9610(80)90290-1 * |
YOSHIYUKI KAWAKAMI ET AL.: "Successful subcutaneous pancreatic islet transplantation using an angiogenic growth factor-releasing device", THE JOURNAL OF JAPAN PANCREAS SOCIETY, vol. 17, no. 2, 2002, pages 165 - 167 * |
Also Published As
Publication number | Publication date |
---|---|
JP6300287B2 (en) | 2018-04-04 |
JPWO2015159889A1 (en) | 2017-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bottino et al. | The future of islet transplantation is now | |
Bruni et al. | Islet cell transplantation for the treatment of type 1 diabetes: recent advances and future challenges | |
DE69525151T2 (en) | METHODS FOR DISEASE TREATMENT USING SERTOLI CELLS AND ALLOTRANSPLANT OR XENOTRANSPLANTAT | |
Dolgin | Encapsulate this. | |
US20080318202A1 (en) | Chimeric pancreas | |
Prochorov et al. | Treatment of insulin dependent diabetes mellitus with intravascular transplantation of pancreatic islet cells without immunosuppressive therapy | |
Wszola et al. | Endoscopic islet autotransplantation into gastric submucosa—1000-day follow-up of patients | |
Poradzka et al. | Insulin replacement therapy in patients with type 1 diabetes by isolated pancreatic islet transplantation | |
ES2377464T3 (en) | Cell therapy: a method and composition to treat diabetes | |
Rajab et al. | Comparison of the portal vein and kidney subcapsule as sites for primate islet autotransplantation | |
Rabkin et al. | Transcontinental shipping of pancreatic islets for autotransplantation after total pancreatectomy | |
Evers et al. | Stem cells in clinical practice | |
JP5579270B2 (en) | Islet transplantation using islets and adipose tissue-derived stem cells | |
JP6300287B2 (en) | Insulin-producing islet cell transplant preparation | |
Bertera et al. | Pig-to-macaque islet xenotransplantation | |
WO2014151229A1 (en) | Cell therapy: a method and a composition for treating diabetes | |
O'neil et al. | A simple and cost-effective method for the isolation of islets from nonhuman primates | |
Karl et al. | Transplantation of insulin-secreting tissues. | |
JP2019218273A (en) | Method for creating insulin-producing pancreatic islet cells | |
Mandel et al. | Effect of culture conditions on fetal mouse pancreas in vitro and after transplantation in syngeneic and allogeneic recipients | |
Peterson et al. | Human fetal pancreas transplants | |
Malasevskaia et al. | Stem Cells Therapy for Diabetes Mellitus Type 1. An Update on Safety and Outcomes | |
CN109125348A (en) | Umbilical cord mesenchymal stem cells combine application of the vitamin D in treatment diabetes medicament | |
Tun | The Anterior Chamber of the eye as an Islet Transplantation site in Type-2 Diabetes | |
Hakim | Recent developments and future prospects in pancreatic and islet transplantation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15780331 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2016513798 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15780331 Country of ref document: EP Kind code of ref document: A1 |