WO2015159785A1 - Power supply system - Google Patents

Power supply system Download PDF

Info

Publication number
WO2015159785A1
WO2015159785A1 PCT/JP2015/061050 JP2015061050W WO2015159785A1 WO 2015159785 A1 WO2015159785 A1 WO 2015159785A1 JP 2015061050 W JP2015061050 W JP 2015061050W WO 2015159785 A1 WO2015159785 A1 WO 2015159785A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
output current
unit
units
output
Prior art date
Application number
PCT/JP2015/061050
Other languages
French (fr)
Japanese (ja)
Inventor
鵜野良之
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to DE112015001799.2T priority Critical patent/DE112015001799T5/en
Priority to CN201580014530.4A priority patent/CN106104412B/en
Priority to JP2016513741A priority patent/JP6202196B2/en
Publication of WO2015159785A1 publication Critical patent/WO2015159785A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/1566Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with means for compensating against rapid load changes, e.g. with auxiliary current source, with dual mode control or with inductance variation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a power supply system that includes a plurality of power supply devices and that has an input unit and an output unit connected in parallel.
  • Patent Document 1 discloses a power supply system configured by connecting a master module and a plurality of slave modules in parallel.
  • the master module monitors the load current obtained by summing up the output currents of the modules, and determines the optimum number of modules to be operated according to the load current.
  • the master module drives the determined number of slave modules.
  • JP 2000-102164 A Japanese Patent Laid-Open No. 3-124228
  • an object of the present invention is to provide a power supply system that can suppress each module from being driven quickly and used in an overcurrent state even when the load current increases rapidly when the number of operating units is decreased. It is to provide.
  • the present invention includes a plurality of power supply devices having a converter unit that performs power conversion, and an input unit and an output unit of the plurality of power supply devices are respectively connected in parallel, the plurality of power supply devices communicate with each other, and the plurality of power supply devices
  • the other power supply device detects an output current, and the detection result is transmitted to the master module.
  • An output current detection output unit that outputs to a power supply device set to, and the power supply device set to the master module includes an output current detection unit that detects an output current, and an output current detected by the output current detection unit.
  • a drive control unit that drives all the other power supply devices when a threshold value is exceeded, and the output current detection when all the other power supply devices are driven
  • the output unit detected by the other power supply unit and the output current detection result output from the other power supply unit are added to calculate a total output current, and the power supply unit to be driven based on the calculation result by the calculation unit
  • a number-of-units determining unit that determines the number of the other power supply devices based on the number of units determined by the number-of-units determining unit when all the other power supply units are driven Any one of the above is stopped.
  • the threshold value is equal to or greater than an output current value detected by the output current detection unit when one or more of the power supply devices are stopped.
  • the power supply system can be stably operated without interfering with the number switching operation for the steady state and the all power source starting operation for the sudden increase in load.
  • the plurality of power supply devices include an overcurrent protection circuit, and the threshold value is less than an overcurrent protection point of the overcurrent protection circuit.
  • the operation of the overcurrent protection can be prevented beforehand by driving all other power supply devices before the overcurrent protection point is exceeded and sharing the output current with each power supply device.
  • Circuit diagram of power supply system A block diagram of the controller function that operates as a master
  • a graph of FIG. Diagram for explaining the timing to drive all units when the load suddenly increases Flow chart showing processing executed by unit controller
  • FIG. 1 is a circuit diagram of a power supply system according to the present embodiment.
  • the power supply system 201 includes a plurality of power supply unit units (hereinafter simply “units”) 100A, 100B..., And their input units and output units are connected in parallel. In FIG. 1, the third and subsequent units are not shown.
  • Each of the units 100A, 100B,... Has basically the same configuration, but in this example, the unit 100A operates as a master and the other units 100B and the like operate as slaves.
  • the unit 100A includes a converter unit 1, a switching control circuit 2, a controller 10A, an output voltage detection circuit 3, an output current detection circuit 5, and a droop generation circuit 6.
  • the converter unit 1 includes a switch element Q1, a diode D1, an inductor L1, and a capacitor C1, and constitutes a non-insulated step-down converter circuit.
  • the switching control circuit 2 includes a PWM control circuit including an error amplifier, a PWM comparator, a triangular wave generation circuit, and the like.
  • the output voltage detection circuit 3 is a voltage dividing circuit using resistors R0 and R1.
  • the switching control circuit 2 generates a PWM modulation signal whose on-duty is changed in accordance with the voltage value input from the output voltage detection circuit 3, and supplies the PWM modulation signal to the switch element Q1.
  • the switch element Q1 is controlled by this PWM modulated signal.
  • An exciting current flows through the inductor L1 during the ON period of the switch element Q1, and a return current flows through the diode D1 during the OFF period.
  • the output current detection circuit 5 detects the output current Io of the unit 100A and outputs the detection result to the controller 10A.
  • the controller 10A When the output current Io detected by the output current detection circuit 5 exceeds a threshold value (overcurrent protection point), the controller 10A outputs a signal to the switching control circuit 2 so that the overcurrent does not flow. Switching control of the switch element Q1 is performed. For example, the switching control circuit 2 turns off the switch element Q1 or shortens the on-duty.
  • the switch element Q1, the switching control circuit 2, the output current detection circuit 5, the controller 10A, and the like correspond to the overcurrent protection circuit according to the present invention.
  • the droop generation circuit 6 generates a droop correction value for providing a voltage-current characteristic that decreases the output voltage as the output current Io increases, that is, a droop characteristic.
  • the droop correction value increases as the output current Io increases and is added to the output voltage of the output voltage detection circuit 3.
  • the output voltage decreases as the output current Io increases. Since each unit 100A, 100B... Has a droop characteristic, each unit 100A, 100B... Outputs an equal output current to each other, so that a plurality of units 100A, 100B. In some cases, appropriate load sharing can be realized.
  • FIG. 2 is a block diagram showing the functions of the controller 10A operating as a master.
  • the communication unit 11 communicates with other units (100B, etc.) via the serial bus 4.
  • the output current acquisition unit 12 receives a voltage signal representing the magnitude of the output current Io from the output current detection circuit 5 and converts it into digital data.
  • the drive control unit 13 drives all the units (100B, etc.) via the communication unit 11.
  • the threshold value used in the drive control unit 13 is equal to or greater than the value of the output current detected when at least one of the plurality of units 100B... Is in a stopped state, and is used in the overcurrent protection unit 16. Is less than the threshold value (overcurrent protection point).
  • the addition unit 14 adds the output current Io of the unit 100A acquired by the output current acquisition unit 12 and the output current of another unit (100B or the like) in the operating state acquired via the communication unit 11. By this addition, the output current of the entire power supply system 201 is obtained.
  • the number determination unit 15 determines the number of units to be operated from the output current of the power supply system 201 obtained by the addition unit 14 adding.
  • the drive control part 13 drives or stops each unit (100B etc.) according to the determination.
  • the overcurrent protection unit 16 determines whether the output current Io of the unit 100A acquired by the output current acquisition unit 12 exceeds a threshold value (overcurrent protection point).
  • the switch control unit 17 outputs a signal to the switching control circuit 2 when the overcurrent protection unit 16 determines that the output current Io exceeds the threshold value.
  • the switching control circuit 2 to which this signal is input turns off the switch element Q1 or shortens the on-duty so as not to be in an overcurrent state. When the entire power supply system 201 is turned off, the switch element Q1 is turned off and the converter unit 1 is stopped.
  • FIG. 3 is a block diagram showing the function of the controller 10B operating as a slave.
  • the controller 10B does not include the drive control unit 13, the addition unit 14, and the number determination unit 15 of the controller 10A, but includes the communication unit 11, the overcurrent protection unit 16, and the switch control unit 17.
  • the controller 10B converts the information of the output current Io of the unit 100B detected by the output current detection circuit 5 into digital data in the output current acquisition unit 12, and outputs the digital data from the communication unit 11 to the controller 10A operating as a master. Further, the controller 10B drives or stops the converter unit 1 in accordance with a drive or stop command by communication from the controller 10A operating as a master.
  • the unit 100A operating as a master drives or stops other units (such as 100B) operating as slaves.
  • the control will be described.
  • FIG. 4 is a graph showing the efficiency characteristics of the power supply unit with respect to the load.
  • the horizontal axis represents the output current [A] of one unit (100A, etc.), and the vertical axis represents the efficiency (%).
  • the maximum output of the unit is 100A.
  • it is designed so that the efficiency is highest when the output current is around 50A. Therefore, when a plurality of units 100A, 100B,... Are operated in parallel, high efficiency can be maintained by switching the number of operating units so that the output per unit is around 50A (40A to 70A). .
  • FIG. 5 is a diagram showing the efficiency of the power supply system 201 when the number of operating units is increased in accordance with the increasing load current.
  • FIG. 5 also shows the efficiency when the number of operating units is five regardless of the load current for comparison.
  • FIG. 6 is a graph of FIG. The horizontal axis in FIG. 6 represents the output current of the power supply system 201, that is, the total output current of the units 100A, 100B,.
  • the power supply system 201 can maintain high efficiency by setting the number of operating units so that the output current of each unit is around 50 A (for example, 40 A to 70 A). Regardless of the load current, the unit 100A operating as a master is always in an operating state.
  • the number determining unit 15 determines the number of operating units as one. In this case, only the unit 100A operating as the master is driven, and the other units (100B and the like) are stopped. As shown in FIG. 6, when only one unit (100A) is operated, the efficiency per unit is high as compared with the case where five units are operated without changing the number of units.
  • the number determining unit 15 determines the number of operating units to be three. In this case, the load current per unit is 60A. At this time, three units including the unit 100A are operated. As shown in FIG. 6, when three units are operated, the efficiency per unit is higher than when five units are operated without changing the number of units.
  • the number determining unit 15 determines the number of operating units to be five. In this case, the load current per unit is 52A. At this time, five units including the unit 100A operate.
  • high efficiency can be maintained by setting the number of operating units according to the load current and driving the units 100A, 100B,. This process is performed while the controller 10A of the unit 100A communicates with the controller (10B, etc.) of another unit (100B, etc.).
  • the power supply system 201 can maintain high efficiency even if the processing is performed.
  • the unit 100A communicates to calculate the load current of the power supply system 201 and determine the necessary number of units to be operated.
  • the controller 10A of the unit 100A operating as a master drives all the units via the serial bus 4 when the output current detected by the output current detection circuit 5 exceeds the threshold value.
  • FIG. 7 is a diagram for explaining the timing for driving all the units when the load increases rapidly.
  • the load current of the power supply system 201 is 120A.
  • the threshold value of the output current when driving all the units is 80A.
  • the load current When the load current is 120A, the two units 100A and 100B are operating. Thereafter, when the load current increases suddenly, when the load current exceeds 140 A, the number of operating units needs to be three as shown in FIGS. 5 and 6 in order to maintain high efficiency. And in load current 160A, it is necessary for three units to be in an operating state. However, since the load fluctuation is steep, after the load current exceeds 140A, the load current reaches 160A immediately before performing the process of increasing the number of operating units from two units to three. If only two units are operating when the load current is 160A, the output current per unit is 80A, exceeding the output currents 40A to 70A per unit that can maintain high efficiency.
  • the threshold is set to 80A and the output current of the unit 100A operating as the master exceeds the threshold 80A, that is, when the load current exceeds 160A, another unit that immediately operates as a slave. Send a command to drive everything.
  • the output current borne by one unit can be reduced, and the use of each unit in an overcurrent state can be suppressed.
  • the power supply system 201 can maintain high efficiency in response to a sudden increase in load current.
  • Threshold value is set to be equal to or greater than the maximum value of output current borne by one unit when one or more units are stopped. That is, in this example, it is at least 70 A or more. As a result, it is possible to prevent malfunctions such as driving all modules when the number of normal operations is reduced. It is desirable to have a margin between the maximum value of the output current and the threshold value so that all modules do not drive due to slight load fluctuations, but in order not to activate the overcurrent protection operation when the load suddenly increases, the threshold value is It must be below the overcurrent protection point, and it is desirable to provide a margin for this as well.
  • FIG. 8 is a flowchart showing processing executed by the controller 10A of the unit 100A.
  • the output current detection circuit 5 detects the output current (S2).
  • the controller 10A determines whether or not the detected output current is greater than or equal to a threshold value (for example, 80A) (S3).
  • the controller 10A drives all units (S4). Thereby, even when the load current increases rapidly, by driving all the units, the output current borne by one unit can be reduced, and the use of each unit in an overcurrent state can be suppressed.
  • the controller 10A calculates the load current (S5). Specifically, the controller 10A acquires the output current detected by the other unit via communication from the other unit (100B or the like), and adds the total output current. Then, the controller 10A determines the number of operating units from the calculated load current (S6), and drives or stops each unit according to the operating units (S7).
  • the controller 10A determines whether or not to end this process.
  • the case where this process is terminated is, for example, a case where the power supply of the power supply system 201 is turned off.
  • the controller 10A executes the process of S2.
  • this process ends (S8: YES)
  • the controller 10A performs a shutdown process, for example, and ends this process.
  • the power supply system 201 can generate the output current borne by each unit by driving all the units 100A, 100B,... Even when the load current increases rapidly. It can reduce, and it can control that each unit is used in an overcurrent state.
  • detection information is exchanged by communication. Therefore, as in the power supply system described in Patent Document 2, the number of signal lines and connector terminals for the number of modules to be connected are compared to the case where the detection result of the operating status of each module is transmitted to the number controller via the signal lines. This eliminates the need to reduce the size, cost, and simplification of the apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Dc-Dc Converters (AREA)
  • Power Sources (AREA)

Abstract

Disclosed is a power supply system (201) wherein: a plurality of units (100A, 100B and so on), each of which has a converter section (1) that performs power conversion, are provided; an input section and an output section of each of the units (100A, 100B and so on) are connected in parallel; the units (100A, 100B and so on) are communicating with each other; and the unit (100A) is set as a master module that controls driving and stopping of other units (100B and the like). The unit (100A) makes all other units (100B and the like) driven when an output current (Io) exceeds a threshold value, said output current having been detected by means of an output current detection circuit (5). In the cases where all the units (100B and the like) are driven, one of the all other units (100B and the like) is stopped on the basis of the total of the output currents of the units (100A, 100B and so on). Consequently, provided is the power supply system capable of suppressing the modules being used in an overcurrent state when a load current is rapidly increased.

Description

電源システムPower system
 本発明は、複数の電源装置を備え、それらの入力部及び出力部がそれぞれ並列接続された電源システムに関するものである。 The present invention relates to a power supply system that includes a plurality of power supply devices and that has an input unit and an output unit connected in parallel.
 高出力化又は回路の冗長化を目的として、複数の電源装置を並列接続して構成される電源システムが利用される。特許文献1には、マスタモジュール及び複数のスレーブモジュールを並列接続して構成される電源システムが開示されている。この電源システムでは、マスタモジュールは、各モジュールの出力電流を合計した負荷電流を監視し、その負荷電流に応じた最適なモジュール運転台数を決定している。そして、マスタモジュールは、決定した台数のスレーブモジュールを駆動させている。 A power supply system configured by connecting a plurality of power supply devices in parallel is used for the purpose of increasing output or circuit redundancy. Patent Document 1 discloses a power supply system configured by connecting a master module and a plurality of slave modules in parallel. In this power supply system, the master module monitors the load current obtained by summing up the output currents of the modules, and determines the optimum number of modules to be operated according to the load current. The master module drives the determined number of slave modules.
特開2000-102164号公報JP 2000-102164 A 特開平3-124228号公報Japanese Patent Laid-Open No. 3-124228
 ここで、特許文献1に記載の電源システムにおいて、特許文献2に記載されているように、各スレーブモジュールにおいて負荷電流を検出し、これらの検出情報により駆動する電源モジュールの台数を制御することがある。しかしながら、特許文献1に記載されているような送受信回路による通信の制御では、時間当たりに伝達可能な情報量に限界があるため、負荷電流が急激に増加する場合、マスタモジュールが各スレーブモジュールの負荷電流検出値による負荷電流情報を収集して、最適なモジュール運転台数を決定することに時間を要してしまう。したがって、マスタモジュールは、負荷電流の急激な増加に合わせて、必要数の各スレーブモジュールを即時に駆動させることができない、という問題が発生する。このため、各モジュールが過電流状態で使用される場合があり、不具合が生じるおそれがある。 Here, in the power supply system described in Patent Document 1, as described in Patent Document 2, the load current is detected in each slave module, and the number of power supply modules to be driven is controlled based on the detection information. is there. However, in the communication control by the transmission / reception circuit as described in Patent Document 1, since there is a limit to the amount of information that can be transmitted per time, when the load current increases rapidly, the master module is connected to each slave module. It takes time to collect the load current information based on the detected load current value and determine the optimum number of modules to operate. Accordingly, there arises a problem that the master module cannot immediately drive the necessary number of slave modules in accordance with the rapid increase in load current. For this reason, each module may be used in an overcurrent state, which may cause a problem.
 また、特許文献1に記載の電源システムのように、電源システムの出力を一括で検出する場合、大きな電流が流れるため大きな検出回路が必要となり、サイズアップ又はコスト増加につながる。 Also, as in the power supply system described in Patent Document 1, when the outputs of the power supply system are detected at once, a large current flows, so a large detection circuit is required, leading to an increase in size or cost.
 そこで、本発明の目的は、動作台数を減少させているときに負荷電流が急激に増加した場合においても、各モジュールが速やかに駆動され、過電流状態で使用されることを抑制できる電源システムを提供することにある。 Therefore, an object of the present invention is to provide a power supply system that can suppress each module from being driven quickly and used in an overcurrent state even when the load current increases rapidly when the number of operating units is decreased. It is to provide.
 本発明は、電力変換を行うコンバータ部を有する複数の電源装置を備え、前記複数の電源装置の入力部及び出力部がそれぞれ並列接続され、前記複数の電源装置は互いに通信して、前記複数の電源装置のうち少なくとも一つは、他の前記電源装置の駆動及び停止を制御するマスタモジュールに設定された電源システムにおいて、前記他の電源装置は、出力電流を検出し、検出結果を前記マスタモジュールに設定された電源装置へ出力する出力電流検出出力部を備え、前記マスタモジュールに設定された電源装置は、出力電流を検出する出力電流検出部と、前記出力電流検出部が検出した出力電流が閾値を超えたときに、他のすべての前記電源装置を駆動させる駆動制御部と、前記他の電源装置すべてが駆動している場合、前記出力電流検出部が検出した出力電流、及び、前記他の電源装置が出力した出力電流の検出結果を加算し、出力電流の合計を算出する算出部と、前記算出部による算出結果に基づいて、駆動させる電源装置の台数を決定する台数決定部と、を備え、前記駆動制御部は、他のすべての前記電源装置が駆動しているときに前記台数決定部が決定した台数に基づいて、前記他の電源装置の何れかを停止させることを特徴とする。 The present invention includes a plurality of power supply devices having a converter unit that performs power conversion, and an input unit and an output unit of the plurality of power supply devices are respectively connected in parallel, the plurality of power supply devices communicate with each other, and the plurality of power supply devices In the power supply system in which at least one of the power supply devices is set as a master module that controls driving and stopping of the other power supply device, the other power supply device detects an output current, and the detection result is transmitted to the master module. An output current detection output unit that outputs to a power supply device set to, and the power supply device set to the master module includes an output current detection unit that detects an output current, and an output current detected by the output current detection unit. A drive control unit that drives all the other power supply devices when a threshold value is exceeded, and the output current detection when all the other power supply devices are driven The output unit detected by the other power supply unit and the output current detection result output from the other power supply unit are added to calculate a total output current, and the power supply unit to be driven based on the calculation result by the calculation unit A number-of-units determining unit that determines the number of the other power supply devices based on the number of units determined by the number-of-units determining unit when all the other power supply units are driven Any one of the above is stopped.
 この構成では、マスタモジュールに設定された電源装置で、閾値を超える出力電流が検出されたときに、他の全ての電源装置へ駆動を指令することで、負荷電流が急激に増加したときでも、他の電源装置が速やかに起動する。これにより、急激な負荷電流の増加したときに、各電源装置が過電流状態で使用されることを抑制できる。また、出力電流の検出結果を加算処理する算出部を備えているので、大きな検出回路が不要であり、小型化及びコスト削減を達成できる。 In this configuration, when an output current exceeding the threshold is detected in the power supply device set in the master module, even when the load current suddenly increases by instructing driving to all other power supply devices, Other power supplies start up quickly. Thereby, when a sudden load current increases, it can suppress that each power supply device is used in an overcurrent state. In addition, since a calculation unit for adding the detection results of the output current is provided, a large detection circuit is unnecessary, and downsizing and cost reduction can be achieved.
 前記閾値は、一以上の前記電源装置が停止している場合に前記出力電流検出部が検出する出力電流値以上であることが好ましい。 It is preferable that the threshold value is equal to or greater than an output current value detected by the output current detection unit when one or more of the power supply devices are stopped.
 この構成では、定常時のための台数切替動作と、負荷急増時のための全電源起動動作とが干渉せず、電源システムを安定に動作させることができる。 In this configuration, the power supply system can be stably operated without interfering with the number switching operation for the steady state and the all power source starting operation for the sudden increase in load.
 前記複数の電源装置は過電流保護回路を備え、前記閾値は前記過電流保護回路の過電流保護点未満であることが好ましい。 It is preferable that the plurality of power supply devices include an overcurrent protection circuit, and the threshold value is less than an overcurrent protection point of the overcurrent protection circuit.
 この構成では、過電流保護点を超える前に他の全ての電源装置を駆動させて、出力電流を各電源装置に分担させることで、過電流保護の作動を未然に防止できる。 In this configuration, the operation of the overcurrent protection can be prevented beforehand by driving all other power supply devices before the overcurrent protection point is exceeded and sharing the output current with each power supply device.
 本発明によれば、負荷電流が急激に増加したときに、各電源装置が過電流状態で使用されることを抑制できる。 According to the present invention, it is possible to prevent each power supply device from being used in an overcurrent state when the load current increases rapidly.
実施形態に係る電源システムの回路図Circuit diagram of power supply system according to embodiment マスタとして動作するコントローラの機能をブロック化して表した図A block diagram of the controller function that operates as a master スレーブとして動作するコントローラの機能をブロック化して表した図A block diagram of the controller function that operates as a slave 負荷に対する電源ユニットの効率特性を示すグラフGraph showing efficiency characteristics of power supply unit against load 増加する負荷電流に合わせて動作台数を増やしたときのユニット一台当たりの効率を示す図Diagram showing efficiency per unit when the number of operating units is increased to match the increasing load current 図5をグラフ化した図A graph of FIG. 負荷が急激に増加したときに、全ユニットを駆動させるタイミングを説明するための図Diagram for explaining the timing to drive all units when the load suddenly increases ユニットのコントローラが実行する処理を示すフローチャートFlow chart showing processing executed by unit controller
 図1は、本実施形態に係る電源システムの回路図である。この電源システム201は、複数の電源装置ユニット(以下、単に「ユニット」)100A,100B・・・を備え、それらの入力部および出力部がそれぞれ並列接続されて構成されている。図1では3つめ以降のユニットの図示は省略している。ユニット100A,100B・・・のそれぞれは基本的に同一構成であるが、この例では、ユニット100Aがマスタ、他のユニット100B等はスレーブとして動作する。 FIG. 1 is a circuit diagram of a power supply system according to the present embodiment. The power supply system 201 includes a plurality of power supply unit units (hereinafter simply “units”) 100A, 100B..., And their input units and output units are connected in parallel. In FIG. 1, the third and subsequent units are not shown. Each of the units 100A, 100B,... Has basically the same configuration, but in this example, the unit 100A operates as a master and the other units 100B and the like operate as slaves.
 ユニット100Aは、コンバータ部1、スイッチング制御回路2、コントローラ10A、出力電圧検出回路3、出力電流検出回路5、及びドループ生成回路6を備えている。 The unit 100A includes a converter unit 1, a switching control circuit 2, a controller 10A, an output voltage detection circuit 3, an output current detection circuit 5, and a droop generation circuit 6.
 コンバータ部1は、スイッチ素子Q1、ダイオードD1、インダクタL1及びキャパシタC1を備え、非絶縁の降圧コンバータ回路を構成している。スイッチング制御回路2は、誤差増幅器、PWMコンパレータ及び三角波生成回路等により構成されるPWM制御回路を備えている。 The converter unit 1 includes a switch element Q1, a diode D1, an inductor L1, and a capacitor C1, and constitutes a non-insulated step-down converter circuit. The switching control circuit 2 includes a PWM control circuit including an error amplifier, a PWM comparator, a triangular wave generation circuit, and the like.
 出力電圧検出回路3は抵抗R0,R1による分圧回路である。スイッチング制御回路2は、出力電圧検出回路3から入力した電圧値に応じて、オンデューティを変更したPWM変調信号を生成し、スイッチ素子Q1へ与える。スイッチ素子Q1は、このPWM変調された信号で制御される。スイッチ素子Q1のオン期間にインダクタL1に励磁電流が流れ、オフ期間にダイオードD1を通して還流電流が流れる。 The output voltage detection circuit 3 is a voltage dividing circuit using resistors R0 and R1. The switching control circuit 2 generates a PWM modulation signal whose on-duty is changed in accordance with the voltage value input from the output voltage detection circuit 3, and supplies the PWM modulation signal to the switch element Q1. The switch element Q1 is controlled by this PWM modulated signal. An exciting current flows through the inductor L1 during the ON period of the switch element Q1, and a return current flows through the diode D1 during the OFF period.
 出力電流検出回路5は、ユニット100Aの出力電流Ioを検出し、検出結果をコントローラ10Aへ出力する。 The output current detection circuit 5 detects the output current Io of the unit 100A and outputs the detection result to the controller 10A.
 コントローラ10Aは、出力電流検出回路5が検出した出力電流Ioが閾値(過電流保護点)を超えると、スイッチング制御回路2へ信号を出力し、過電流が流れないように、スイッチング制御回路2がスイッチ素子Q1をスイッチング制御する。例えば、スイッチング制御回路2は、スイッチ素子Q1をオフにし、又は、オンデューティを短くする。スイッチ素子Q1、スイッチング制御回路2、出力電流検出回路5及びコントローラ10A等は、本発明に係る過電流保護回路に相当する。 When the output current Io detected by the output current detection circuit 5 exceeds a threshold value (overcurrent protection point), the controller 10A outputs a signal to the switching control circuit 2 so that the overcurrent does not flow. Switching control of the switch element Q1 is performed. For example, the switching control circuit 2 turns off the switch element Q1 or shortens the on-duty. The switch element Q1, the switching control circuit 2, the output current detection circuit 5, the controller 10A, and the like correspond to the overcurrent protection circuit according to the present invention.
 ドループ生成回路6は、出力電流Ioが大きくなるにともなって出力電圧を小さくする電圧電流特性、すなわちドループ特性をもたせるためのドループ用補正値を生成する。ドループ用補正値は、出力電流Ioが大きくなるにともなって大きくなり、出力電圧検出回路3の出力電圧に加算される。出力電圧検出回路3の出力電圧にドループ用補正値が加算されることで、出力電流Ioが大きくなるにともなって出力電圧は低下する。各ユニット100A,100B・・・がドループ特性を有することで、各ユニット100A,100B・・・からは、互いに等しい出力電流が出力されるため、複数のユニット100A,100B・・・を並列稼働させる場合に、適正な負荷分担を実現できる。 The droop generation circuit 6 generates a droop correction value for providing a voltage-current characteristic that decreases the output voltage as the output current Io increases, that is, a droop characteristic. The droop correction value increases as the output current Io increases and is added to the output voltage of the output voltage detection circuit 3. By adding the droop correction value to the output voltage of the output voltage detection circuit 3, the output voltage decreases as the output current Io increases. Since each unit 100A, 100B... Has a droop characteristic, each unit 100A, 100B... Outputs an equal output current to each other, so that a plurality of units 100A, 100B. In some cases, appropriate load sharing can be realized.
 図2は、マスタとして動作するコントローラ10Aの機能をブロック化して表した図である。 FIG. 2 is a block diagram showing the functions of the controller 10A operating as a master.
 コントローラ10Aにおいて、通信部11は、他のユニット(100B等)とシリアルバス4を介して通信する。出力電流取得部12は、出力電流Ioの大きさを表す電圧信号を出力電流検出回路5から入力してディジタルデータに変換する。駆動制御部13は、出力電流取得部12により取得した出力電流Ioが閾値以上である場合、通信部11を介して、各ユニット(100B等)を全て駆動させる。 In the controller 10A, the communication unit 11 communicates with other units (100B, etc.) via the serial bus 4. The output current acquisition unit 12 receives a voltage signal representing the magnitude of the output current Io from the output current detection circuit 5 and converts it into digital data. When the output current Io acquired by the output current acquisition unit 12 is equal to or greater than the threshold, the drive control unit 13 drives all the units (100B, etc.) via the communication unit 11.
 ここで、駆動制御部13で用いられる閾値とは、複数のユニット100B・・・のうち一台でも停止状態である場合に検出される出力電流の値以上であり、過電流保護部16で用いられる閾値(過電流保護点)未満である。 Here, the threshold value used in the drive control unit 13 is equal to or greater than the value of the output current detected when at least one of the plurality of units 100B... Is in a stopped state, and is used in the overcurrent protection unit 16. Is less than the threshold value (overcurrent protection point).
 加算部14は、出力電流取得部12が取得したユニット100Aの出力電流Ioと、通信部11を介して取得した、稼働状態にある他のユニット(100B等)の出力電流とを加算する。この加算により、電源システム201全体の出力電流が得られる。 The addition unit 14 adds the output current Io of the unit 100A acquired by the output current acquisition unit 12 and the output current of another unit (100B or the like) in the operating state acquired via the communication unit 11. By this addition, the output current of the entire power supply system 201 is obtained.
 台数決定部15は、加算部14が加算して得られた電源システム201の出力電流から、ユニットの動作台数を決定する。駆動制御部13は、その決定に応じて、各ユニット(100B等)を駆動又は停止させる。 The number determination unit 15 determines the number of units to be operated from the output current of the power supply system 201 obtained by the addition unit 14 adding. The drive control part 13 drives or stops each unit (100B etc.) according to the determination.
 過電流保護部16は、出力電流取得部12が取得したユニット100Aの出力電流Ioが閾値(過電流保護点)を超えているかを判定する。スイッチ制御部17は、過電流保護部16により、出力電流Ioが閾値を超えていると判定された場合、スイッチング制御回路2へ信号を出力する。この信号が入力されたスイッチング制御回路2は、スイッチ素子Q1をオフにし、又は、オンデューティを短くし、過電流状態とならないようにする。また、電源システム201全体をオフする場合は、スイッチ素子Q1をオフにして、コンバータ部1を停止させる。 The overcurrent protection unit 16 determines whether the output current Io of the unit 100A acquired by the output current acquisition unit 12 exceeds a threshold value (overcurrent protection point). The switch control unit 17 outputs a signal to the switching control circuit 2 when the overcurrent protection unit 16 determines that the output current Io exceeds the threshold value. The switching control circuit 2 to which this signal is input turns off the switch element Q1 or shortens the on-duty so as not to be in an overcurrent state. When the entire power supply system 201 is turned off, the switch element Q1 is turned off and the converter unit 1 is stopped.
 図3は、スレーブとして動作するコントローラ10Bの機能をブロック化して表した図である。コントローラ10Bは、コントローラ10Aの駆動制御部13、加算部14及び台数決定部15を備えず、通信部11、過電流保護部16及びスイッチ制御部17を備えた構成である。コントローラ10Bは、出力電流検出回路5により検出されたユニット100Bの出力電流Ioの情報を、出力電流取得部12においてディジタルデータに変換して、通信部11からマスタとして動作するコントローラ10Aに出力する。また、コントローラ10Bは、マスタとして動作するコントローラ10Aからの通信による駆動又は停止指令に応じて、コンバータ部1を駆動又は停止させる。 FIG. 3 is a block diagram showing the function of the controller 10B operating as a slave. The controller 10B does not include the drive control unit 13, the addition unit 14, and the number determination unit 15 of the controller 10A, but includes the communication unit 11, the overcurrent protection unit 16, and the switch control unit 17. The controller 10B converts the information of the output current Io of the unit 100B detected by the output current detection circuit 5 into digital data in the output current acquisition unit 12, and outputs the digital data from the communication unit 11 to the controller 10A operating as a master. Further, the controller 10B drives or stops the converter unit 1 in accordance with a drive or stop command by communication from the controller 10A operating as a master.
 以上のように構成されたユニット100A,100B・・・を備える電源システム201では、マスタとして動作するユニット100Aが、スレーブとして動作する他のユニット(100B等)を駆動させ、又は、停止させる。以下、その制御について説明する。 In the power supply system 201 including the units 100A, 100B... Configured as described above, the unit 100A operating as a master drives or stops other units (such as 100B) operating as slaves. Hereinafter, the control will be described.
 図4は、負荷に対する電源ユニットの効率特性を示すグラフである。図4に示すグラフは、横軸を一のユニット(100A等)の出力電流[A]、縦軸を効率(%)としている。この例では、ユニットの最大出力は100Aとしてある。そして、出力電流50A付近のときに最も効率が高くなるように設計されている。したがって、複数のユニット100A,100B・・・を並列稼働させる場合、ユニット一台あたりの出力が50A付近(40A~70A)となるよう、動作台数を切り替えることで、高効率を維持することができる。 FIG. 4 is a graph showing the efficiency characteristics of the power supply unit with respect to the load. In the graph shown in FIG. 4, the horizontal axis represents the output current [A] of one unit (100A, etc.), and the vertical axis represents the efficiency (%). In this example, the maximum output of the unit is 100A. And it is designed so that the efficiency is highest when the output current is around 50A. Therefore, when a plurality of units 100A, 100B,... Are operated in parallel, high efficiency can be maintained by switching the number of operating units so that the output per unit is around 50A (40A to 70A). .
 図5は、増加する負荷電流に合わせて動作台数を増やしたときの電源システム201の効率を示す図である。図5では、比較のために負荷電流に関係なくユニットの動作台数を5台とした場合の効率も示す。図6は、図5をグラフ化した図である。図6の横軸は、電源システム201の出力電流、すなわち、各ユニット100A,100B・・・の出力電流の合計である。 FIG. 5 is a diagram showing the efficiency of the power supply system 201 when the number of operating units is increased in accordance with the increasing load current. FIG. 5 also shows the efficiency when the number of operating units is five regardless of the load current for comparison. FIG. 6 is a graph of FIG. The horizontal axis in FIG. 6 represents the output current of the power supply system 201, that is, the total output current of the units 100A, 100B,.
 図4で説明したように、各ユニットの出力電流が50A付近(例えば、40A~70A)となるようにユニットの動作台数を設定することで、電源システム201は、高効率を維持できる。なお、負荷電流に関係なく、マスタとして動作するユニット100Aは、常に動作状態にある。 As described with reference to FIG. 4, the power supply system 201 can maintain high efficiency by setting the number of operating units so that the output current of each unit is around 50 A (for example, 40 A to 70 A). Regardless of the load current, the unit 100A operating as a master is always in an operating state.
 例えば、負荷電流が40Aの場合、台数決定部15は、動作台数を1台に決定する。この場合、マスタとして動作するユニット100Aのみが駆動し、他のユニット(100B等)は停止状態となる。図6に示すように、1台のみのユニット(100A)を動作させた場合、台数を変更せずに、5台のユニットを動作させている場合と比べて、一台当たりの効率は高い。 For example, when the load current is 40 A, the number determining unit 15 determines the number of operating units as one. In this case, only the unit 100A operating as the master is driven, and the other units (100B and the like) are stopped. As shown in FIG. 6, when only one unit (100A) is operated, the efficiency per unit is high as compared with the case where five units are operated without changing the number of units.
 負荷電流が180Aの場合、台数決定部15は、動作台数は3台に決定する。この場合、ユニット一台あたりの負荷電流は60Aである。このとき、ユニット100Aを含む3台が稼働するようにする。図6に示すように、3台のユニットを動作させた場合、台数を変更せずに、5台のユニットを動作させている場合と比べて、一台当たりの効率は高い。 When the load current is 180 A, the number determining unit 15 determines the number of operating units to be three. In this case, the load current per unit is 60A. At this time, three units including the unit 100A are operated. As shown in FIG. 6, when three units are operated, the efficiency per unit is higher than when five units are operated without changing the number of units.
 さらに、加算部14による加算の結果、負荷電流が260Aの場合、台数決定部15は、動作台数は5台に決定する。この場合、ユニット一台あたりの負荷電流は52Aである。このとき、ユニット100Aを含む5台が稼働する。 Furthermore, when the load current is 260 A as a result of the addition by the adding unit 14, the number determining unit 15 determines the number of operating units to be five. In this case, the load current per unit is 52A. At this time, five units including the unit 100A operate.
 以上のように、負荷電流に応じて動作台数を設定して、ユニット100A,100B・・・を駆動させることで、高効率を維持できる。この処理は、ユニット100Aのコントローラ10Aが、他のユニット(100B等)のコントローラ(10B等)と通信しつつ行われる。負荷変動が小さい場合、前記処理を行っても、電源システム201は高効率を維持できる。 As described above, high efficiency can be maintained by setting the number of operating units according to the load current and driving the units 100A, 100B,. This process is performed while the controller 10A of the unit 100A communicates with the controller (10B, etc.) of another unit (100B, etc.). When the load fluctuation is small, the power supply system 201 can maintain high efficiency even if the processing is performed.
 一方で、負荷電流が急峻に変化した場合、ユニット100Aが通信を行って、電源システム201の負荷電流を算出し、かつ、必要な動作台数を決定したのち、その台数分のユニット(100B等)を駆動させると、停止状態の他のユニットを駆動させるのに遅れが生じ、負荷電流の増加に合わせてユニットの動作台数が追随できず、電源システム201の各ユニットが過電流状態で使用される等の不具合が生じる。そこで、本実施形態では、マスタとして動作するユニット100Aのコントローラ10Aは、出力電流検出回路5が検出する出力電流が閾値を超えたときに、シリアルバス4を介して、各ユニットを全て駆動させる。 On the other hand, when the load current changes abruptly, the unit 100A communicates to calculate the load current of the power supply system 201 and determine the necessary number of units to be operated. When the unit is driven, there is a delay in driving other units in the stopped state, the number of operating units cannot follow the increase in load current, and each unit of the power supply system 201 is used in an overcurrent state. Such problems occur. Therefore, in the present embodiment, the controller 10A of the unit 100A operating as a master drives all the units via the serial bus 4 when the output current detected by the output current detection circuit 5 exceeds the threshold value.
 図7は、負荷が急激に増加したときに、全ユニットを駆動させるタイミングを説明するための図である。この例では、最初、電源システム201の負荷電流は120Aであるとする。また、全ユニットを駆動させる際の出力電流の閾値は80Aとする。 FIG. 7 is a diagram for explaining the timing for driving all the units when the load increases rapidly. In this example, initially, it is assumed that the load current of the power supply system 201 is 120A. The threshold value of the output current when driving all the units is 80A.
 負荷電流が120Aの場合、2台のユニット100A,100Bが動作している。この後、負荷電流が急激に増加した場合、負荷電流が140Aを超えたときに、高効率の維持のため、図5及び図6に示すように、動作台数を3台にする必要がある。そして、負荷電流160Aでは、3台のユニットが稼働状態である必要がある。しかしながら、負荷変動が急峻であるため、負荷電流が140Aを超えた後、2台のユニットから動作台数を3台に増やす処理を行う前に、すぐに負荷電流が160Aに達する。負荷電流160Aの場合に2台のユニットのみが動作していると、ユニット一台当たりの出力電流は80Aとなり、高効率を維持できるユニット一台当たりの出力電流40A~70Aを超える。 When the load current is 120A, the two units 100A and 100B are operating. Thereafter, when the load current increases suddenly, when the load current exceeds 140 A, the number of operating units needs to be three as shown in FIGS. 5 and 6 in order to maintain high efficiency. And in load current 160A, it is necessary for three units to be in an operating state. However, since the load fluctuation is steep, after the load current exceeds 140A, the load current reaches 160A immediately before performing the process of increasing the number of operating units from two units to three. If only two units are operating when the load current is 160A, the output current per unit is 80A, exceeding the output currents 40A to 70A per unit that can maintain high efficiency.
 そこで、閾値を例えば80Aに設定し、マスタとして動作するユニット100Aの出力電流が、その閾値80Aを超えたときに、すなわち、負荷電流が160Aを超えたときに、直ちにスレーブとして動作する他のユニット全てを駆動させるコマンドを送信する。これにより、負荷電流が急増した場合であっても、全ユニットを駆動させることで、一台当たりが負担する出力電流を軽減でき、各ユニットが過電流状態で使用されることを抑制できる。そして、電源システム201は、急激な負荷電流の増加に対応し、高効率を維持できる。 Therefore, for example, when the threshold is set to 80A and the output current of the unit 100A operating as the master exceeds the threshold 80A, that is, when the load current exceeds 160A, another unit that immediately operates as a slave. Send a command to drive everything. Thereby, even when the load current increases rapidly, by driving all the units, the output current borne by one unit can be reduced, and the use of each unit in an overcurrent state can be suppressed. The power supply system 201 can maintain high efficiency in response to a sudden increase in load current.
 閾値は、一以上のユニットが停止している場合にユニット一台当たりが負担する出力電流の最大値以上に設定する。すなわちこの例では、最低でも70A以上とする。これにより、通常の動作台数を減少させているときに全モジュール駆動してしまうといった誤動作を防止することができる。多少の負荷変動で全モジュールが駆動しないように、出力電流の最大値と閾値との間にはマージンを持たせることが望ましいが、負荷急増時に過電流保護動作を起動させないためには、閾値は過電流保護点未満にする必要があり、これについてもマージンを持たせることが望ましい。 Threshold value is set to be equal to or greater than the maximum value of output current borne by one unit when one or more units are stopped. That is, in this example, it is at least 70 A or more. As a result, it is possible to prevent malfunctions such as driving all modules when the number of normal operations is reduced. It is desirable to have a margin between the maximum value of the output current and the threshold value so that all modules do not drive due to slight load fluctuations, but in order not to activate the overcurrent protection operation when the load suddenly increases, the threshold value is It must be below the overcurrent protection point, and it is desirable to provide a margin for this as well.
 図8は、ユニット100Aのコントローラ10Aが実行する処理を示すフローチャートである。 FIG. 8 is a flowchart showing processing executed by the controller 10A of the unit 100A.
 コントローラ10Aは起動すると(S1)、出力電流検出回路5により出力電流を検出する(S2)。コントローラ10Aは、その検出した出力電流が閾値(例えば80A)以上であるか否かを判定する(S3)。 When the controller 10A is activated (S1), the output current detection circuit 5 detects the output current (S2). The controller 10A determines whether or not the detected output current is greater than or equal to a threshold value (for example, 80A) (S3).
 検出した出力電流が閾値以上である場合(S3:YES)、コントローラ10Aは全ユニットを駆動させる(S4)。これにより、負荷電流が急増した場合であっても、全ユニットを駆動させることで、一台当たりが負担する出力電流を軽減でき、各ユニットが過電流状態で使用されることを抑制できる。 When the detected output current is equal to or greater than the threshold (S3: YES), the controller 10A drives all units (S4). Thereby, even when the load current increases rapidly, by driving all the units, the output current borne by one unit can be reduced, and the use of each unit in an overcurrent state can be suppressed.
 検出した出力電流が閾値以上でない場合(S3:NO)、コントローラ10Aは、負荷電流を算出する(S5)。詳しくは、コントローラ10Aは、他のユニット(100B等)から通信を介して、他のユニットが検出した出力電流を取得し、全出力電流を加算する。そして、コントローラ10Aは、算出した負荷電流から、動作台数を決定し(S6)、その動作台数に応じて各ユニットを駆動又は停止させる(S7)。 When the detected output current is not equal to or greater than the threshold (S3: NO), the controller 10A calculates the load current (S5). Specifically, the controller 10A acquires the output current detected by the other unit via communication from the other unit (100B or the like), and adds the total output current. Then, the controller 10A determines the number of operating units from the calculated load current (S6), and drives or stops each unit according to the operating units (S7).
 S5からS7の処理では、S4で一度全ユニット100A,100B・・・を駆動させた場合、その全台数が、各ユニットの出力電流の合計から決定された台数を超えている場合には、ユニットを停止させる。不要なユニットを停止させることで、効率よく電流を出力できる。 In the processing from S5 to S7, when all the units 100A, 100B,... Are driven once in S4, if the total number exceeds the number determined from the total output current of each unit, Stop. By stopping unnecessary units, current can be output efficiently.
 S8では、コントローラ10Aは本処理を終了するか否かを判定する。本処理を終了する場合とは、例えば、電源システム201の電源がオフされる場合などである。本処理を終了しない場合(S8:NO)、コントローラ10AはS2の処理を実行する。本処理を終了する場合(S8:YES)、コントローラ10Aは、例えばシャットダウン処理等を行い、本処理を終了する。 In S8, the controller 10A determines whether or not to end this process. The case where this process is terminated is, for example, a case where the power supply of the power supply system 201 is turned off. When this process is not terminated (S8: NO), the controller 10A executes the process of S2. When this process ends (S8: YES), the controller 10A performs a shutdown process, for example, and ends this process.
 なお、図8ではすべての処理を定常処理で示しているが、定常処理ではS2→S5→・・・とし、S3の処理を割り込みトリガとし、S4の処理を割り込みルーチンにすることで、さらにすみやかに全ユニットを起動することもできる。 In FIG. 8, all processes are shown as steady processes. However, in the steady process, S2 → S5 →..., The process of S3 is set as an interrupt trigger, and the process of S4 is set as an interrupt routine. You can also activate all units.
 以上説明したように、本実施形態に係る電源システム201は、負荷電流が急増した場合であっても、全ユニット100A,100B・・・を駆動させることで、一台当たりが負担する出力電流を軽減でき、各ユニットが過電流状態で使用されることを抑制できる。 As described above, the power supply system 201 according to the present embodiment can generate the output current borne by each unit by driving all the units 100A, 100B,... Even when the load current increases rapidly. It can reduce, and it can control that each unit is used in an overcurrent state.
 また、本実施形態は、通信により検出情報をやり取りしている。したがって、特許文献2に記載の電源システムのように、各モジュールの稼働状況の検出結果を台数制御器にそれぞれ信号線で伝達する場合に比べて、モジュールを接続する台数分の信号線及びコネクタ端子が不要となり、装置の小型化、コストダウン、及び簡素化が可能となる。 In the present embodiment, detection information is exchanged by communication. Therefore, as in the power supply system described in Patent Document 2, the number of signal lines and connector terminals for the number of modules to be connected are compared to the case where the detection result of the operating status of each module is transmitted to the number controller via the signal lines. This eliminates the need to reduce the size, cost, and simplification of the apparatus.
1…コンバータ部
2…スイッチング制御回路
3…出力電圧検出回路
4…シリアルバス
5…出力電流検出回路(出力電流検出部)
6…ドループ生成回路
10A,10B…コントローラ
11…通信部
12…出力電流取得部(出力電流検出部)
13…駆動制御部
14…加算部(算出部)
15…台数決定部
16…過電流保護部
17…スイッチ制御部
21…三角波生成回路
100A,100B…ユニット
201…電源システム
C1,C2…キャパシタ
CMP1…PWMコンパレータ
D1…ダイオード
L1…インダクタ
OPAMP1…誤差増幅器
Q1…スイッチ素子
R0,R1,R2…抵抗
DESCRIPTION OF SYMBOLS 1 ... Converter part 2 ... Switching control circuit 3 ... Output voltage detection circuit 4 ... Serial bus 5 ... Output current detection circuit (output current detection part)
6 ... Droop generation circuits 10A, 10B ... Controller 11 ... Communication unit 12 ... Output current acquisition unit (output current detection unit)
13 ... Drive control unit 14 ... Addition unit (calculation unit)
DESCRIPTION OF SYMBOLS 15 ... Number determination part 16 ... Overcurrent protection part 17 ... Switch control part 21 ... Triangle wave generation circuit 100A, 100B ... Unit 201 ... Power supply system C1, C2 ... Capacitor CMP1 ... PWM comparator D1 ... Diode L1 ... Inductor OPAMP1 ... Error amplifier Q1 ... Switch elements R0, R1, R2 ... Resistance

Claims (3)

  1.  電力変換を行うコンバータ部を有する複数の電源装置を備え、前記複数の電源装置の入力部及び出力部がそれぞれ並列接続され、前記複数の電源装置は互いに通信して、前記複数の電源装置のうち少なくとも一つは、他の前記電源装置の駆動及び停止を制御するマスタモジュールに設定された電源システムにおいて、
     前記他の電源装置は、
     出力電流を検出し、検出結果を前記マスタモジュールに設定された電源装置へ出力する出力電流検出出力部
     を備え、
     前記マスタモジュールに設定された電源装置は、
     出力電流を検出する出力電流検出部と、
     前記出力電流検出部が検出した出力電流が閾値を超えたときに、他のすべての前記電源装置を駆動させる駆動制御部と、
     前記他の電源装置すべてが駆動している場合、前記出力電流検出部が検出した出力電流、及び、前記他の電源装置が出力した出力電流の検出結果を加算し、出力電流の合計を算出する算出部と、
     前記算出部による算出結果に基づいて、駆動させる電源装置の台数を決定する台数決定部と、
     を備え、
     前記駆動制御部は、
     他のすべての前記電源装置が駆動しているときに前記台数決定部が決定した台数に基づいて、前記他の電源装置の何れかを停止させる、
     電源システム。
    A plurality of power supply devices having a converter unit for performing power conversion, wherein input units and output units of the plurality of power supply devices are respectively connected in parallel, and the plurality of power supply devices communicate with each other, and among the plurality of power supply devices At least one of the power supply systems set in the master module that controls the driving and stopping of the other power supply device,
    The other power supply is
    An output current detection output unit that detects an output current and outputs a detection result to a power supply set in the master module;
    The power supply set in the master module is
    An output current detector for detecting the output current;
    When the output current detected by the output current detection unit exceeds a threshold, a drive control unit that drives all the other power supply devices;
    When all the other power supply devices are driven, the output current detected by the output current detector and the detection result of the output current output by the other power supply device are added to calculate the total output current. A calculation unit;
    Based on the calculation result by the calculation unit, a unit number determination unit that determines the number of power supply devices to be driven,
    With
    The drive control unit
    Based on the number determined by the number determination unit when all the other power supply devices are driven, any one of the other power supply devices is stopped.
    Power system.
  2.  前記閾値は、一以上の前記電源装置が停止している場合に前記出力電流検出部が検出する出力電流値以上である、請求項1に記載の電源システム。 The power supply system according to claim 1, wherein the threshold value is equal to or greater than an output current value detected by the output current detection unit when one or more of the power supply devices are stopped.
  3.  前記複数の電源装置は過電流保護回路を備え、
     前記閾値は前記過電流保護回路の過電流保護点未満である、
     請求項1又は2に記載の電源システム。
    The plurality of power supply devices include an overcurrent protection circuit,
    The threshold is less than an overcurrent protection point of the overcurrent protection circuit;
    The power supply system according to claim 1 or 2.
PCT/JP2015/061050 2014-04-14 2015-04-09 Power supply system WO2015159785A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112015001799.2T DE112015001799T5 (en) 2014-04-14 2015-04-09 Power system
CN201580014530.4A CN106104412B (en) 2014-04-14 2015-04-09 Power-supply system
JP2016513741A JP6202196B2 (en) 2014-04-14 2015-04-09 Power system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014082580 2014-04-14
JP2014-082580 2014-04-14

Publications (1)

Publication Number Publication Date
WO2015159785A1 true WO2015159785A1 (en) 2015-10-22

Family

ID=54323995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061050 WO2015159785A1 (en) 2014-04-14 2015-04-09 Power supply system

Country Status (4)

Country Link
JP (1) JP6202196B2 (en)
CN (1) CN106104412B (en)
DE (1) DE112015001799T5 (en)
WO (1) WO2015159785A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094247A1 (en) * 2015-11-30 2017-06-08 パナソニックIpマネジメント株式会社 Power supply device, method of controlling power supply device, and power supply device control program
WO2017094403A1 (en) * 2015-11-30 2017-06-08 株式会社村田製作所 Switching power source device and droop characteristic correction method
CN111740405A (en) * 2020-05-29 2020-10-02 科华恒盛股份有限公司 Starting control method, system and device of electrical equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011055637A (en) * 2009-09-01 2011-03-17 Ntt Facilities Inc Dc power supply apparatus and method for controlling the same
JP2012114971A (en) * 2010-11-19 2012-06-14 Chugoku Electric Power Co Inc:The Dc power supply, charging equipment for electric vehicle, parallel operating method for dc power supply unit, and charging current control method for electric vehicle
JP2015056945A (en) * 2013-09-11 2015-03-23 日本電信電話株式会社 Coordination control system for power supply and ict device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000102164A (en) * 1998-09-21 2000-04-07 Toshiba Corp Power supply device
US7304462B2 (en) * 2005-02-02 2007-12-04 Power-One, Inc. Compensated droop method for paralleling of power supplies (C-droop method)
JP4523568B2 (en) * 2006-05-26 2010-08-11 オリジン電気株式会社 DC power supply method and DC power supply apparatus
JP4982474B2 (en) * 2008-12-24 2012-07-25 株式会社Nttファシリティーズ DC power supply
CN102545899B (en) * 2012-03-05 2014-11-05 中达电通股份有限公司 Current equalization control method for analog power module and digital power module hybrid plug power system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011055637A (en) * 2009-09-01 2011-03-17 Ntt Facilities Inc Dc power supply apparatus and method for controlling the same
JP2012114971A (en) * 2010-11-19 2012-06-14 Chugoku Electric Power Co Inc:The Dc power supply, charging equipment for electric vehicle, parallel operating method for dc power supply unit, and charging current control method for electric vehicle
JP2015056945A (en) * 2013-09-11 2015-03-23 日本電信電話株式会社 Coordination control system for power supply and ict device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094247A1 (en) * 2015-11-30 2017-06-08 パナソニックIpマネジメント株式会社 Power supply device, method of controlling power supply device, and power supply device control program
WO2017094403A1 (en) * 2015-11-30 2017-06-08 株式会社村田製作所 Switching power source device and droop characteristic correction method
CN108292889A (en) * 2015-11-30 2018-07-17 松下知识产权经营株式会社 Supply unit, the control method of supply unit and supply unit control program
CN108352783A (en) * 2015-11-30 2018-07-31 株式会社村田制作所 Switching power unit and droop characteristic correction method
JPWO2017094403A1 (en) * 2015-11-30 2018-09-06 株式会社村田製作所 Switching power supply device and droop characteristic correction method
US10128748B2 (en) 2015-11-30 2018-11-13 Murata Manufacturing Co., Ltd. Switching power-supply apparatus and droop characteristic correction method
EP3370330A4 (en) * 2015-11-30 2019-07-17 Murata Manufacturing Co., Ltd. Switching power source device and droop characteristic correction method
CN108352783B (en) * 2015-11-30 2020-05-29 株式会社村田制作所 Switching power supply device and droop characteristic correction method
CN111740405A (en) * 2020-05-29 2020-10-02 科华恒盛股份有限公司 Starting control method, system and device of electrical equipment

Also Published As

Publication number Publication date
JPWO2015159785A1 (en) 2017-04-13
JP6202196B2 (en) 2017-09-27
DE112015001799T5 (en) 2016-12-29
CN106104412A (en) 2016-11-09
CN106104412B (en) 2018-12-04

Similar Documents

Publication Publication Date Title
CN104731293B (en) Power supply device and power supply method thereof
JP2007512798A (en) Power converter with improved control
JP2013120604A5 (en)
KR101323788B1 (en) Ac/dc server power apparatus for enhancing efficiency of power supply
CN108781034A (en) controlled adaptive power limiter
JPWO2014016919A1 (en) Power system
US9729043B2 (en) Power conversion apparatus and protection method thereof while feedback current signal being abnormal
JP2011097669A (en) Charging circuit and charging method
JP6202196B2 (en) Power system
EP3041109A1 (en) Distributed power supply system and power conditioner
US20130227310A1 (en) Server power system
JP2019530426A (en) DC voltage converter control device, DC voltage converter, and DC voltage converter control method
EP2360825A2 (en) Voltage and current regulation method for a two-stage DC-DC converter circuit
US9525347B2 (en) Programmable voltage converter
JP2007049822A (en) Power supply system
CN107078643A (en) The prebias of converter starts
US20180366943A1 (en) Control device of power converter
US9372522B2 (en) Overvoltage protection systems and method
GB2546147A (en) A system and method for fault ride through
US20150021996A1 (en) Modular DC Power Supply with Independent Output Converters
KR20190032682A (en) System and method for voltage drop compensation control of power supply device
JP2009142028A (en) Parallel power supply system
US9317097B2 (en) Efficiency adjustments in power supply system
US6650099B2 (en) Switching power supply
US10855084B2 (en) Power conversion system for power system interconnection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15779766

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016513741

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112015001799

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15779766

Country of ref document: EP

Kind code of ref document: A1