WO2015159750A1 - Vehicle control device - Google Patents

Vehicle control device Download PDF

Info

Publication number
WO2015159750A1
WO2015159750A1 PCT/JP2015/060718 JP2015060718W WO2015159750A1 WO 2015159750 A1 WO2015159750 A1 WO 2015159750A1 JP 2015060718 W JP2015060718 W JP 2015060718W WO 2015159750 A1 WO2015159750 A1 WO 2015159750A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
upper limit
vehicle
driving force
limit value
Prior art date
Application number
PCT/JP2015/060718
Other languages
French (fr)
Japanese (ja)
Inventor
和也 奥村
隼人 吉川
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Publication of WO2015159750A1 publication Critical patent/WO2015159750A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used

Definitions

  • the present invention relates to a control device that controls a driving force or a braking force of a vehicle by changing a gear ratio of a transmission connected to a driving force source.
  • Japanese Patent Application Laid-Open No. 2005-256636 discloses an apparatus configured to stabilize the behavior of a vehicle or improve the turning performance by controlling the driving force generated by the driving wheels when the vehicle turns. Yes.
  • a target value of the stability factor is obtained when the vehicle turns, and a basic required driving force requested by the driver is obtained, and the actual value of the stability factor is obtained.
  • the basic required driving force is corrected so as to follow the target value.
  • Japanese Patent Laid-Open No. 2013-63733 a device for controlling the braking force or driving force at the time of turning is described in Japanese Patent Laid-Open No. 2013-63733.
  • the device described in Japanese Patent Laid-Open No. 2013-63733 has a sense of incongruity due to excessive or insufficient braking force or driving force or shock when the braking force or driving force is controlled to stabilize the behavior of the vehicle during turning. It is a device for the purpose of suppressing.
  • the change rate of the driving force is set based on the operation amount or the operation speed when the steering angle is increased or decreased. The greater the amount of change and the speed of change in the driving force, the more likely the driver feels uncomfortable. It becomes a large area.
  • the region where the uncomfortable feeling is unlikely is enlarged as the lateral acceleration increases.
  • the device described in Japanese Patent Application Laid-Open No. 2006-250337 determines whether or not deceleration is necessary based on the size of the front corner, and decelerates. In this case, the gear ratio is obtained.
  • the necessity of deceleration is determined based on, for example, the estimated deceleration force and the limit lateral force obtained from the tire friction circle. If deceleration is required, a gear ratio corresponding to the deceleration is obtained. Can be secured.
  • the braking force or driving force is controlled so as to improve the turning performance or stabilize the behavior of the vehicle. If the vehicle is in a so-called accelerator-off state where the accelerator pedal is not depressed during the turn, control for increasing the gear ratio may be performed to obtain a braking force. If the gear ratio is increased during cornering, the rotational speed of a driving force source such as an engine increases with an increase in the gear ratio.
  • the gear ratio is increased to increase the braking force or deceleration force when turning while the accelerator is off, if the accelerator pedal is depressed when exiting the corner, the gear ratio increase control is canceled. As a result, the gear ratio is reduced.
  • the gear ratio decreases, the rotational speed of the driving force source decreases. Therefore, control for decreasing the rotational speed of the driving force source is executed despite the acceleration operation. Therefore, even if the gear ratio can be increased to improve turning performance and behavior stability, the driver may feel uncomfortable, and there is room for technical improvement in this regard. .
  • the present invention has been made paying attention to the above technical problem, and has an object of suppressing a sense of incongruity associated with control of braking force or driving force for stabilizing the behavior of the vehicle during travel. .
  • the present invention increases the speed ratio of the transmission connected to the output side of the driving force source so as to increase the deceleration force when a predetermined condition is satisfied,
  • a vehicle control apparatus that performs control to end the increase of the deceleration force when the condition is no longer satisfied, the condition is not satisfied when the speed ratio is increased when the condition is satisfied.
  • the speed ratio control is performed to control the speed to a value equal to or less than the speed ratio that can generate the required driving force.
  • the estimated control for estimating the driving force required when the condition is no longer satisfied, and the upper limit value when the speed ratio is increased by the satisfaction of the condition are estimated. Further, an upper limit value setting control obtained based on a speed ratio capable of generating a driving force is further performed, and the speed ratio control sets a speed ratio to be increased when the condition is satisfied, by setting the upper limit value. It can be set as the control set to the value below the upper limit calculated by control.
  • the present invention may be configured to further perform correction control for obtaining the driving orientation of the driver of the vehicle and correcting the upper limit value based on the driving orientation.
  • the driving orientation is at least one of the longitudinal acceleration of the vehicle, the lateral acceleration, the combined acceleration obtained by combining the longitudinal acceleration and the lateral acceleration, and the jerk which is a change rate of any one of these accelerations.
  • the correction control may be obtained based on the control, and the upper limit value may be increased as the driving orientation in which the driving orientation causes the vehicle to be agile.
  • the present invention is further configured to further execute control for increasing the speed ratio based on information relating to a travel path on which the vehicle is traveling.
  • the speed ratio increased by the establishment of the condition is added to the speed ratio increased based on the information on the information
  • the speed ratio after the addition is controlled to a value equal to or less than the upper limit value. It may be configured.
  • the present invention is configured to execute another upper limit value setting control for obtaining another upper limit value of the speed ratio so as to limit the deceleration force that increases when the condition is satisfied.
  • the speed ratio control includes an upper limit value obtained by the upper limit value setting control based on a speed ratio capable of generating the estimated driving force, and another value obtained by the other upper limit value setting control.
  • the transmission ratio may be controlled to a value that is equal to or less than a large upper limit value among the upper limit values.
  • the driving force estimated by the estimation control may be a driving force equal to a running resistance when the condition is no longer satisfied.
  • the above condition in the present invention may include that the required driving force becomes equal to or less than a predetermined value while the vehicle is traveling.
  • the above condition in the present invention may include that the required driving force becomes equal to or less than a predetermined value when the vehicle turns.
  • the speed ratio when a predetermined condition is satisfied while the vehicle is traveling, the speed ratio is increased and the deceleration force is increased.
  • the speed ratio by the increase control of the speed ratio is set to a speed ratio that is equal to or lower than the speed ratio that can generate the driving force required for the vehicle when the condition is no longer satisfied and the speed ratio is restored. Therefore, even if the above-mentioned condition is not satisfied and the gear ratio once increased is changed, the gear ratio does not change or slightly changes, and as a result, the driving force obtained with the gear ratio is increased. Since it is not particularly different from the required driving force, it is possible to suppress a sense of discomfort.
  • the rotational speed of the driving force source increases as the gear ratio increases. Even if it increases, the rotational speed is close to the rotational speed for obtaining the driving force required to maintain the traveling of the vehicle, so that the driver can be prevented from feeling uncomfortable.
  • the upper limit value is corrected in accordance with data representing the driving orientation of the driver, for example, acceleration or jerk of the vehicle. Accordingly, the driver's intention or driving intention can be reflected in the upper limit value, and the deceleration force according to the driver's intention or driving intention and the driving force after the termination of the increase control of the deceleration force can be obtained. .
  • the control for increasing the speed ratio based on the information on the traveling road such as that the traveling road is an uphill / downhill road or the road ahead obtained by the navigation system is a road with a continuous winding road is performed. If it is being executed, a gear ratio that is increased by the establishment of the condition is added. Since the added gear ratio is set or restricted based on the above-described upper limit value, it is possible to suppress such a sense of incongruity.
  • control which sets the upper limit at the time of increasing a gear ratio with predetermined conditions being satisfied, in that case, a small value of Since the gear ratio is controlled based on the upper limit value, it can be suppressed that the gear ratio becomes excessively large and uncomfortable.
  • the driver's intended deceleration and turning performance can be obtained.
  • FIG. 6 is a time chart showing an example of changes in engine execution speed and gear ratio, and downhill control and turning control execution flags when the control shown in FIG. 4 is performed.
  • FIG. It is a schematic diagram showing an example of a configuration of a vehicle and a control system to be controlled in the present invention.
  • the present invention will be described based on specific examples.
  • the vehicle targeted by the present invention is a vehicle equipped with a transmission capable of appropriately changing the gear ratio by automatic control, and an example thereof is schematically shown in FIG.
  • the vehicle Ve shown in FIG. 6 is a rear wheel drive in which the left and right front wheels 1 and 2 are steering wheels, the left and right rear wheels 3 and 4 are drive wheels, and the rear wheels 3 and 4 are driven by the power output from the engine 5. It is configured as a car.
  • the engine 5 is an internal combustion engine mounted on a conventional vehicle, and is configured such that its throttle opening, fuel injection amount, ignition timing, and valve timing can be electrically controlled.
  • a transmission 6 is connected to the output side of the engine 5.
  • This transmission 6 is a so-called automatic transmission that can appropriately change the gear ratio by electrical control, and is a stepped transmission mainly composed of a gear mechanism, a stepless type such as a belt type or a toroidal type.
  • a transmission can be employed.
  • a power split mechanism (not shown) including a differential mechanism that splits the power output from the engine 5 into a motor / generator and an output member corresponds to the transmission according to the present invention.
  • a vehicle capable of continuously changing a gear ratio such as a vehicle equipped with a continuously variable transmission or a hybrid vehicle will be described as an example.
  • Each wheel 1 to 4 is provided with a brake device 7, 8, 9, 10 respectively.
  • These brake devices 7 to 10 have the same configuration as conventionally known brake devices, and are configured to operate by a brake operation by a driver and to operate by electrical control.
  • a brake actuator 11 for operating the brake devices 7 to 10 is provided.
  • the brake actuator 11 is a device for supplying hydraulic pressure to each of the brake devices 7 to 10 and discharging the hydraulic pressure.
  • the brake actuator 11 electrically controls a control valve such as a solenoid valve, and performs predetermined control.
  • the brake device 7 to 10 is configured to supply and discharge hydraulic pressure.
  • An electronic control unit (ECU) 12 is provided for controlling the engine 5, the transmission 6, the brake actuator 11, and the like.
  • the electronic control unit 12 is mainly composed of a microcomputer, and performs calculations based on various types of input data, data stored in advance and programs, and uses the results of the calculations as control command signals for the engine 5 and the transmission 6. Alternatively, it is configured to output to the brake actuator 11.
  • the data input to the electronic control unit 12 is a signal from a sensor disposed in each part of the vehicle Ve.
  • the sensor includes a depression angle (or depression amount or depression amount) of an accelerator pedal (not shown).
  • An acceleration sensor 17 and a lateral acceleration sensor 18 that detects an acceleration of the vehicle Ve in the axle direction (left-right direction in FIG. 6), that is, lateral acceleration (that is, lateral G).
  • yaw rate sensor 19 for detecting a yaw rate of the vehicle Ve.
  • data acquired from the outside can be input to the electronic control device 12.
  • road information from a communication satellite, a sign post, a ground FM station, or the like can be received by the navigation system and the information can be input to the electronic control unit 12.
  • the control device is configured to control the driving force in order to stabilize the behavior of the vehicle Ve.
  • the driving force is output from the engine 5, so that the driving force is basically controlled by changing the throttle opening of the engine 5 based on the accelerator opening. .
  • the accelerator opening is equal to or less than a predetermined value, that is, approximately “0”
  • the driving force is further reduced by the engine 5 or the engine braking force (deceleration force) is further increased by the engine 5. Since it cannot be increased, the driving force is changed depending on the gear ratio. That is, the control device is configured to control the driving force or the deceleration force by controlling the engine 5 or the transmission 6.
  • control that stabilizes the behavior of the vehicle by increasing the deceleration force by such a gear ratio, or causes the target behavior, is to increase the deceleration force when turning, and the front wheels 1, which are steered wheels.
  • 2 is a control (turning control) that increases the ground load and thereby improves the turning performance.
  • the control shown in FIG. 1 is repeatedly executed every predetermined short time while the vehicle Ve is traveling, for example, in the electronic control device 12 described above, or is repeatedly executed every predetermined short time during turning, or the turn control is performed. It is repeatedly executed when the execution condition is satisfied.
  • a gear ratio is calculated from the accelerator opening and the vehicle speed (step S1).
  • the transmission 6 is a continuously variable transmission or a hybrid drive device that controls the engine speed by a motor / generator
  • the required driving force is determined based on the accelerator opening, the vehicle speed, and a map prepared in advance.
  • the target engine output is determined from the required driving force and the vehicle speed, and the target engine speed for outputting the target engine output in a state with good fuel consumption is determined.
  • the required driving force used in the control of the present invention may be the accelerator opening.
  • a gear ratio is calculated from the target engine speed and the vehicle speed. Further, when a stepped automatic transmission is used as the transmission 6, a gear ratio (shift speed) is obtained based on a so-called shift diagram (shift map) prepared in advance.
  • the amount of change in the driving force (including the deceleration force that is a negative driving force; the same applies hereinafter) by turning control is calculated (step S2).
  • the turning control is a control for setting the driving force so that the vehicle Ve travels along a target travel line when the vehicle Ve travels.
  • One example is obtaining the target stability factor based on the steering angle, vehicle speed, longitudinal acceleration, etc., detecting the actual stability factor, and determining the acceleration so that the actual stability factor matches or follows the target stability factor.
  • the driving force is set so as to generate the acceleration. Further, as described in Japanese Patent Laid-Open No.
  • control may be performed in which a target yaw rate is obtained based on a steering angle and the driving force is set so that the actual yaw rate follows the target yaw rate. .
  • step S2 the driving force by such turning control is obtained, or the driving force change amount for achieving the driving force is obtained.
  • step S3 a gear ratio by turning control is calculated based on the gear ratio obtained in step S1 and the driving force change amount obtained in step S2 (step S3).
  • the driving force is decreased to increase the load applied to the front wheels. That is, the deceleration force is increased.
  • the gear ratio is increased in order to increase the engine braking force (deceleration force). Therefore, in step S3, the speed ratio to be set when the speed reduction force is increased by changing the speed ratio is calculated. In other words, the gear ratio that is insufficient in the gear ratio obtained in step S1 is obtained, and the gear ratio obtained by adding the shortage to the gear ratio obtained in step S1 is the gear ratio obtained in step S3. .
  • the engine braking force that is, the deceleration force is increased by increasing the gear ratio.
  • the lateral acceleration is increased by the turn control.
  • Such acceleration (deceleration and lateral acceleration) is obtained by adding the acceleration generated by increasing the gear ratio by turning control to the acceleration based on the operation of the driver. If it is large, the driver's operation and the acceleration that accompanies the driver's operation will not match the driver's consciousness, which may cause a sense of discomfort. Therefore, the first upper limit value A for the gear ratio is set so that the acceleration (front-rear G or combined acceleration) does not feel uncomfortable (step S4).
  • This upper limit value A corresponds to “another upper limit value” in the present invention, and can be set by the control described in Japanese Patent Laid-Open No. 2013-63733. This will be briefly explained.
  • the amount of change such as acceleration accompanying the operation of the steering wheel or brake
  • the rate of change such as acceleration accompanying the operation
  • the amount of change is small, it is difficult to feel uncomfortable even if the rate of change is large. Therefore, a region that does not cause a sense of incongruity can be set based on the change amount and the change speed associated with the above operation.
  • the driver wants agile behavior change, or the agile behavior change is a normal behavior change.
  • the above-described region can be expanded in the direction in which the above-described change amount and change rate are large.
  • the driver wants a so-called mild behavior change, or such a behavior change is normal. There is a high possibility that it is recognized as a change in behavior.
  • the region where the above-mentioned uncomfortable feeling is not reduced is the one in which the change amount and the change speed are smaller. Based on the region set in this way, the upper limit value A of the gear ratio is set so that the acceleration accompanying the increase in the gear ratio, that is, the change in the behavior of the vehicle Ve does not cause a sense of incongruity.
  • the control device estimates the “necessary driving force” when the control for increasing the deceleration force to improve the turning performance is completed, and the upper limit value B based on the estimated driving force.
  • the so-called increase control of the deceleration force is executed when the required driving force decreases to “0” or a predetermined value or less, such as returning the accelerator pedal as the vehicle turns, as described above. It is terminated by an increase in the required driving force such as depression of the accelerator pedal. That is, since the driver is seeking a “positive” driving force, the “necessary driving force” is a driving force required to maintain at least the vehicle speed.
  • the gear ratio after changing the gear ratio increased by turning control by the end of the control is It is desirable that the gear ratio be a value that can obtain a driving force corresponding to the running resistance with the engine torque at that time.
  • step S5 the upper limit value B of the gear ratio is set at the end of the gear ratio increase control. Set to a value based on the running resistance.
  • the value based on the running resistance is not only a value corresponding to the running resistance but also a predetermined value corresponding to the running resistance according to a request such as the characteristics of the vehicle Ve, a vehicle grade, or a request for improving fuel consumption. It is a value obtained by adjusting the value.
  • the running resistance can be estimated by various methods known in the art. That is, the vehicle Ve accelerates or decelerates according to the driving force and the running resistance, and further maintains the vehicle speed. Therefore, the vehicle Ve can be obtained based on, for example, the vehicle speed and the steering angle when turning. Cornering resistance corresponding to the steering angle is generated, and the running resistance can be obtained from the decrease in vehicle speed that exceeds the decrease in vehicle speed due to the cornering resistance. Further, when the engine braking force is generated, the difference between the longitudinal acceleration corresponding to the engine braking force and the actual acceleration actually generated in the vehicle Ve becomes the acceleration due to the running resistance. Based on this, the running resistance can be obtained. Furthermore, it can obtain
  • the control for estimating the driving force corresponding to the running resistance in this way corresponds to the estimation control in the present invention.
  • the upper limit value B of the gear ratio may be set in consideration of the engine speed.
  • the engine braking force that is, the deceleration force increases as the gear ratio increases, and the engine speed also increases. The number increases. And if the engine speed is excessively large, it may be uncomfortable. Accordingly, the upper limit value B of the gear ratio focusing on the deceleration force can be set based on the engine speed. In the control example shown in FIG. 1, the upper limit value of the gear ratio is determined by the engine speed in step S5. B is set.
  • step S6 The upper limit A obtained in step S4 and the upper limit B obtained in step S5 are compared (step S6). Then, a small upper limit value is adopted. Specifically, it is determined whether or not the upper limit value A is smaller than the upper limit value B in step S6. If the determination is affirmative, the upper limit value A is set as the final speed ratio upper limit value (step S7). On the other hand, if a negative determination is made in step S6, the upper limit value B is set as the final gear ratio upper limit value (step S8). The speed ratio by turning control is limited by the final speed ratio upper limit value thus adopted (step S9). Then, the limited transmission gear ratio is output (step S10). That is, when the gear ratio is increased (when downshifting) when the required driving force that can be expressed by the accelerator opening is less than a predetermined value when turning, the gear ratio exceeds the final gear ratio upper limit value. There is nothing.
  • This upper limit value B is a value capable of generating a driving force corresponding to the running resistance estimated when the control for increasing the gear ratio is completed by the turning control. For this reason, for example, even when the accelerator pedal is depressed and the required driving force increases, and the increase control of the gear ratio is terminated, the driving force corresponding to the running resistance is generated without changing the gear ratio. A situation in which the driving force is reduced against the intention of the person or the engine speed is reduced is avoided or suppressed. In addition, since it is considered that the driver intends to continue traveling, the driving state that generates the driving force corresponding to the traveling resistance is not contrary to the driver's intention or does not greatly deviate. Increasing the ratio to the upper limit B does not cause discomfort.
  • the speed change to be set is performed.
  • the ratio is the upper limit value A.
  • the gear ratio during turning control is the upper limit value A, which is smaller than the upper limit value B based on the engine speed. Therefore, for example, when the accelerator pedal is depressed and the required driving force increases, and thus the gear ratio increase control is terminated, the required driving force at that time is a driving force that is higher than the vehicle speed, that is, a driving force corresponding to a running resistance.
  • the gear ratio increases from the upper limit value A to a gear ratio (and engine speed) at which the driving force can be generated.
  • Such an increase in driving force or engine speed is in accordance with the driver's intention that appears as an increase in the accelerator opening, so that there is no sense of incongruity.
  • step S3 if the final gear ratio upper limit value is either the upper limit value A or the upper limit value B, if the gear ratio calculated in step S3 is smaller than the final gear ratio upper limit value, the accelerator pedal is depressed. As a result, the required driving force increases, and as a result, when the control of the gear ratio by turning control is completed, the gear ratio increases to a gear ratio that generates a driving force corresponding to the driving resistance at that time or a driving force higher than that. Be made. Such an increase in driving force or engine speed is in accordance with the driver's intention that appears as an increase in the accelerator opening, so that there is no sense of incongruity.
  • FIG. 2 is a time chart showing changes in the engine speed Ne when the control shown in FIG. 1 is performed.
  • the change in the engine speed Ne is generally indicated by controlling the engine speed Ne toward the target value in the vehicle Ve configured to continuously change the gear ratio. This is because the gear ratio is switched as a result of the control of the engine speed Ne. Since the engine speed can be expressed as a product of the speed corresponding to the vehicle speed such as the output speed of the transmission 6 and the speed ratio, the change in the engine speed Ne shown in FIG. 2 is replaced with the change in the speed ratio. be able to.
  • the accelerator pedal is returned before the corner and the accelerator opening becomes below a predetermined value such as “0”, and in this state, the vehicle enters the corner and the steering angle increases.
  • the turning control is started at time t1 when the steering angle increases, and the driving force change amount or the driving force required during turning is calculated, and the upper limit value A and the upper limit value B described above are calculated.
  • the engine speed Ne is increased so as to generate the calculated driving force, which becomes a gear ratio.
  • the engine speed Ne speed ratio
  • the engine speed Ne speed ratio
  • the speed ratio is limited to the upper limit value B.
  • the driving force (deceleration force) generated in the vehicle Ve becomes smaller than the required value by the turning control.
  • the braking devices 7 to 10 may be operated to increase the deceleration force. In this case, if the brake devices 7 to 10 for the inner wheel (particularly the rear inner wheel) at the time of turning are operated, turning performance can be increased with a small braking force.
  • the upper limit value B is a gear ratio that can estimate the running resistance after passing through a corner or at the end of turning control, and can generate a driving force corresponding to the estimated value. It is intended to continue running. Accordingly, the operating state of the engine 5 capable of generating a driving force corresponding to the estimated running resistance is an operating state within a range assumed by the driver, and therefore the speed ratio is increased to the upper limit value B. There is no particular discomfort.
  • the accelerator opening increases, and accordingly, the shift is controlled by turning control.
  • the ratio increase control ends.
  • the engine speed that is, the gear ratio
  • the driving force required at this time is a driving force equal to or greater than the driving force corresponding to the running resistance.
  • the speed ratio increased by the turning control is a speed ratio determined based on the upper limit value B that can generate the driving force corresponding to the estimated running resistance.
  • the gear ratio obtained based on the vehicle speed or the accelerator opening at that time is such that the driving force corresponding to the running resistance is generated, When the turning control ends, the gear ratio does not change particularly. Further, if the speed change ratio obtained based on the vehicle speed and the accelerator opening is a speed change ratio necessary for accelerating the vehicle Ve, the speed change ratio is increased when the turn control is completed.
  • the said control apparatus when turning control is complete
  • the example shown in FIG. 2 is an example of the vehicle Ve that can continuously change the speed ratio, and therefore the speed ratio or the engine speed Ne limited by the upper limit value B is estimated at the end of the turn control. It almost coincides with the speed ratio or engine speed Ne that generates the driving force corresponding to the travel resistance.
  • the gear ratio that can generate a driving force corresponding to the estimated running resistance is a gear ratio that is a value between predetermined gears. There is. In such a case, the gear position having a value smaller than the calculated gear ratio is selected and set.
  • the driving force set at the time when the turning control is completed is a driving force equal to or higher than the driving force corresponding to the running resistance estimated to occur at that time. This is to prevent a change in driving force against an operation that increases the required driving force. Therefore, more preferably, it is conceivable to set the driving force as close as possible to the driving force intended by the driver, or the speed ratio for generating the driving force or the engine speed during the turning control. That is, the driver who performs agile driving operates the accelerator so as to generate a relatively large driving force at the end of the turning control, and conversely, the driver who performs a so-called mild driving relatively moves at the end of the turning control. There is a tendency to perform an accelerator operation so as to generate a small driving force. It is conceivable that the driving force at the end of the turn control is estimated in consideration of such so-called driving orientation, and the upper limit value B is set based on the estimation result.
  • FIG. 3 is a flowchart for explaining an example of the control, and the example shown here is an example in which the upper limit value B in the control example shown in FIG. 1 is corrected based on the driving orientation.
  • Driving orientation can be determined based on longitudinal acceleration (front-rear G) and longitudinal jerk at the entrance of the corner, synthetic acceleration or rate of change thereof (synthetic jerk), or an on / off signal of a switch for selecting a sports mode. . For example, if the absolute value of the longitudinal acceleration or the jerk is greater than a predetermined threshold during a certain time before the start of steering, it will be before and after the accelerator pedal is depressed (when the accelerator is on).
  • the driving tendency has a strong tendency of sports driving to increase acceleration or front and rear jerk.
  • the absolute values of lateral acceleration and lateral jerk during steering are greater than a predetermined value, the longitudinal acceleration when the accelerator pedal is depressed (when the accelerator is on) or It is determined that the driving tendency has a strong tendency of sports driving to increase the front and rear jerk.
  • Still another example is an example described in JP2013-163514A. The method described in Japanese Patent Application Laid-Open No.
  • 2013-163514 synthesizes the absolute values of the longitudinal acceleration and the lateral acceleration from moment to moment to obtain a combined acceleration to obtain an instantaneous value and hold the instantaneous value, When the newly obtained instantaneous value is larger than the already held instantaneous value, the newly obtained large instantaneous value is held as the instruction value. Then, the state where the sequentially obtained instantaneous value is smaller than the instruction value continues, and the predetermined value is satisfied during that time, the instruction value is decreased. And it determines with the driving
  • the driving orientation may be determined or calculated by a conventionally known method other than the method described above.
  • the upper limit value B calculated in step S5 is corrected based on the data indicating the driving orientation (step S51), and then the process proceeds to step S6.
  • the correction is a correction that increases the upper limit value B as the acceleration or jerk increases, or as the sport mode is selected, in other words, as the driving direction of the sport driving is stronger.
  • the coefficient k may be a value learned during traveling based on a value determined by experiments or simulations.
  • the correction amount determines the characteristics or character of the vehicle
  • the correction amount may be set to a predetermined value in advance in design according to the type, power performance, vehicle speed, steering angle, and the like of the target vehicle Ve. .
  • the upper limit value B is corrected by adding the corrected driving force obtained in this way to the “required driving force” for maintaining the vehicle speed described above.
  • Other control steps in FIG. 3 are the same as those in the example shown in FIG. 1, and therefore, the same reference numerals as those in FIG.
  • the upper limit value of the engine speed Ne or the gear ratio varies depending on the driving orientation and is close to the engine speed Ne or the gear ratio at the end of the turning control. Become. If this is also shown in FIG. 2, it will be indicated by a one-dot chain line or a two-dot chain line. Therefore, the engine speed Ne and the gear ratio, which are limited by the upper limit value B during the turning control, do not feel strange, and the engine speed Ne and the gear ratio do not change with the end of the turning control. Moreover, even if it changes, it does not become a change different from the driver's intention, so that a sense of discomfort can be prevented or suppressed.
  • control based on information relating to a traveling road is known as control for changing the engine speed and the gear ratio in the vehicle Ve without the driver's operation.
  • control for increasing the gear ratio in order to increase engine braking force and control for appropriately changing the gear ratio based on road information obtained by a navigation system are known.
  • the control device according to the present invention executes the control shown in FIG. It is configured.
  • the control example shown in FIG. 4 is obtained by adding a new control step to the control example shown in FIG. 3 described above.
  • the control example shown in FIG. A gear ratio by slope control is calculated (step S11).
  • the uphill / downhill control is increased when it is detected that the vehicle Ve is traveling on the downhill road or the uphill road and it is determined that the braking force or the driving force is necessary. This is control for limiting shift or executing downshift. Therefore, the gear ratio in step S11 may be a control for receiving or reading the gear ratio in the uphill / downhill control executed as another control routine.
  • step S2 the amount of change in the driving force (negative driving force, deceleration force) due to the turning control is calculated as described above, and a shift for obtaining the amount of change (that is, the deceleration force to be set in the turning control).
  • the ratio is obtained based on the transmission ratio by the uphill / downhill control (step S31). More specifically, a speed ratio obtained by adding a speed ratio increased by turning control to a speed ratio increased by uphill / downhill control is obtained.
  • the final speed ratio upper limit value is the upper limit value A or the upper limit value described above in step S4, step S5, step S51, step S6, step S7, and step S8. B is set.
  • the upper limit value B is corrected based on the deceleration at the corner entrance in step S51.
  • the final speed ratio upper limit value set here is an upper limit value for limiting the speed ratio calculated in step S31. That is, when the gear ratio control is performed in the turning control in addition to the gear ratio control in the uphill / downhill control, the longitudinal acceleration or the acceleration obtained by combining the longitudinal acceleration and the lateral acceleration is not uncomfortable, and the turning control is not performed.
  • step S4 step S5, step S51, step S6, step S7 and step S8 is configured to be executed in parallel with the control of step S1, step S11, step S2 and step S31 described above. May be.
  • the gear ratio obtained by the up / down slope control is compared with the final gear ratio upper limit value (step S90).
  • the final speed ratio upper limit value is larger than the speed ratio by the uphill / downhill control
  • the speed ratio at the time of traveling in which the uphill / downhill control and the turn control are executed is limited by the final speed ratio upper limit value (step S91).
  • the speed ratio at the time of traveling in which the uphill / downhill control and the turn control are executed is limited by the speed ratio by the uphill / downhill control (Step S92).
  • step S10 a gear ratio having a value equal to or smaller than the limited gear ratio is output (step S10).
  • Other control steps in FIG. 4 are the same as those in the example shown in FIG. 3, and therefore, the same reference numerals as those in FIG.
  • the gear ratio is further controlled by the turn control in the state where the uphill / downhill control is being executed by performing the control as shown in FIG. 4, the engine speed is excessively increased by the turn control or the turn control is performed. It is possible to prevent or suppress a sense of incongruity such as a shift or engine speed change contrary to the driver's operation at the end. Further, since the transmission ratio by the uphill / downhill control can be ensured, a desired driving force or deceleration force can be obtained, and in addition, the turning performance during the uphill / downhill control can be improved.
  • FIG. 5 is a time chart showing changes in the gear ratio, the engine speed Ne, and the flags for each control when the control shown in FIG. 4 is performed.
  • the example shown here is an example in which downhill control is executed, and it is determined that the vehicle is traveling on a downhill road and the braking force is obtained while traveling at a predetermined accelerator opening and vehicle speed.
  • Downhill control is started (time t11). That is, the downhill control execution flag is turned on, the gear ratio is increased to a predetermined value by downhill control, and the engine speed Ne increases accordingly.
  • the turning control is started (time t12).
  • the turning control execution flag is turned on, and the gear ratio and the engine speed Ne are increased. Since the gear ratio obtained by the turn control or the increase in the engine speed Ne is added to the gear ratio increase by the downhill control, the calculated gear ratio is as shown by a broken line in FIG. 5, for example.
  • the above-described upper limit value A and upper limit value B and the final gear ratio upper limit value based on these are obtained.
  • the final gear ratio by turning control during uphill / downhill control is limited by the final gear ratio upper limit value or the gear ratio by uphill / downhill control.
  • the example shown in FIG. 5 is an example when the final speed ratio upper limit value is larger than the speed ratio by the uphill / downhill control, and therefore the speed ratio and the engine speed Ne when the turn control is executed together with the uphill / downhill control are as follows. It is set as shown by a solid line in FIG. Note that the gear ratio and the engine speed when the turning control is completed change in the same manner as in the example shown in FIG. 2 described above, and are omitted in FIG.
  • the control for estimating the running resistance in step S5 described above corresponds to the estimation control in the present invention, and also corresponds to the running resistance in step S5.
  • the control for obtaining the speed ratio capable of generating the driving force to be generated corresponds to the upper limit value setting control in the present invention.
  • the final speed ratio upper limit value is set with the upper limit value B at the above-described step S9, and the final value at step S10 Control for setting the speed ratio limited by the speed ratio upper limit corresponds to the speed ratio control in the present invention.

Abstract

The objective of the present invention is to eliminate the feeling of discomfort associated with a control for increasing the transmission gear ratio when turning. This vehicle control device (12) performs a control whereby the transmission gear ratio of a transmission (6) connected to the output side of a drive power source (5) is increased so as to increase the deceleration force when a predetermined condition is satisfied, and whereby the increase in the deceleration force is stopped when the condition is no longer satisfied. The vehicle control device is configured so as to perform a transmission gear control (S9, S10) whereby, when the condition is satisfied and the transmission gear ratio is to be increased, the transmission gear ratio is controlled so as to be a value equal to or less than the transmission gear ratio capable of generating the requested drive power when the condition is no longer satisfied.

Description

車両の制御装置Vehicle control device
 この発明は、駆動力源に連結されている変速機の変速比を変化させることにより車両の駆動力あるいは制動力を制御する制御装置に関するものである。 The present invention relates to a control device that controls a driving force or a braking force of a vehicle by changing a gear ratio of a transmission connected to a driving force source.
 車両が旋回走行する際に駆動輪で発生する駆動力を制御することにより車両の挙動を安定させ、あるいは旋回性を向上させるように構成された装置が特開2005-256636号公報に記載されている。この特開2005-256636号公報に記載された装置では、車両が旋回する際にスタビリティファクターの目標値が求められるとともに、ドライバーが要求する基本要求駆動力が求められ、スタビリティファクターの実際値が目標値に追従するように、基本要求駆動力が補正される。 Japanese Patent Application Laid-Open No. 2005-256636 discloses an apparatus configured to stabilize the behavior of a vehicle or improve the turning performance by controlling the driving force generated by the driving wheels when the vehicle turns. Yes. In the device described in Japanese Patent Application Laid-Open No. 2005-256636, a target value of the stability factor is obtained when the vehicle turns, and a basic required driving force requested by the driver is obtained, and the actual value of the stability factor is obtained. The basic required driving force is corrected so as to follow the target value.
 また、旋回時の制動力もしくは駆動力を制御する装置が特開2013-63733号公報に記載されている。この特開2013-63733号公報に記載された装置は、旋回時における車両の挙動を安定させるために制動力もしくは駆動力を制御した場合に、制動力もしくは駆動力の過不足やショックなどによる違和感を抑制することを目的とした装置である。具体的には、操舵角を増大させ、あるいは減少させる際の操作量あるいは操作速度に基づいて、駆動力の変化速度が設定される。その駆動力の変化量および変化速度が大きいほど運転者に違和感が生じやすいから、これら変化量および変化速度により決まる、違和感の生じ難い領域は、変化量と変化速度との一方が小さいほど他方が大きい領域となる。特開2013-63733号公報に記載された装置では、その違和感の生じ難い領域が横加速度が大きいほど拡大される。 Also, a device for controlling the braking force or driving force at the time of turning is described in Japanese Patent Laid-Open No. 2013-63733. The device described in Japanese Patent Laid-Open No. 2013-63733 has a sense of incongruity due to excessive or insufficient braking force or driving force or shock when the braking force or driving force is controlled to stabilize the behavior of the vehicle during turning. It is a device for the purpose of suppressing. Specifically, the change rate of the driving force is set based on the operation amount or the operation speed when the steering angle is increased or decreased. The greater the amount of change and the speed of change in the driving force, the more likely the driver feels uncomfortable. It becomes a large area. In the device described in Japanese Patent Application Laid-Open No. 2013-63733, the region where the uncomfortable feeling is unlikely is enlarged as the lateral acceleration increases.
 車両の制動力や駆動力は変速比によっても変化するから、特開2006-250337号公報に記載された装置では、前方のコーナの大きさに基づいて減速の要否が判断され、また減速する場合の変速比が求められる。減速の要否は、例えば推定減速力とタイヤ摩擦円から求まる限界横力とに基づいて判断され、減速が必要な場合にはその減速度に応じた変速比が求められるから、車両の安定性を確保できる、とされている。 Since the braking force and driving force of the vehicle also change depending on the gear ratio, the device described in Japanese Patent Application Laid-Open No. 2006-250337 determines whether or not deceleration is necessary based on the size of the front corner, and decelerates. In this case, the gear ratio is obtained. The necessity of deceleration is determined based on, for example, the estimated deceleration force and the limit lateral force obtained from the tire friction circle. If deceleration is required, a gear ratio corresponding to the deceleration is obtained. Can be secured.
 上記の各特許公報に記載された装置によれば、旋回性能を向上させるように、あるいは車両の挙動を安定させるように制動力もしくは駆動力が制御される。その旋回の際にアクセルペダルが踏み込まれていないいわゆるアクセル・オフの状態になっていれば、制動力を得るために変速比を増大させる制御が行われる場合がある。旋回走行中に変速比を増大させれば、エンジンなどの駆動力源の回転数が変速比の増大に応じて増大する。 According to the device described in each of the above patent publications, the braking force or driving force is controlled so as to improve the turning performance or stabilize the behavior of the vehicle. If the vehicle is in a so-called accelerator-off state where the accelerator pedal is not depressed during the turn, control for increasing the gear ratio may be performed to obtain a braking force. If the gear ratio is increased during cornering, the rotational speed of a driving force source such as an engine increases with an increase in the gear ratio.
 また、アクセル・オフの状態で旋回走行する際に制動力もしくは減速力を増大させるべく変速比を増大させたとすれば、コーナを抜ける際にアクセルペダルが踏み込まれると、変速比の増大制御が中止されて変速比が低下させられる。変速比が低下すると駆動力源の回転数が低下するから、加速操作されているのにも関わらず、駆動力源の回転数を低下させる制御が実行されることになる。そのために、変速比を増大させて旋回性能や挙動安定性を向上させることができるとしても、運転者には違和感を与えてしまう可能性があり、この点で技術的な改良の余地があった。 Also, if the gear ratio is increased to increase the braking force or deceleration force when turning while the accelerator is off, if the accelerator pedal is depressed when exiting the corner, the gear ratio increase control is canceled. As a result, the gear ratio is reduced. When the gear ratio decreases, the rotational speed of the driving force source decreases. Therefore, control for decreasing the rotational speed of the driving force source is executed despite the acceleration operation. Therefore, even if the gear ratio can be increased to improve turning performance and behavior stability, the driver may feel uncomfortable, and there is room for technical improvement in this regard. .
 この発明は上記の技術的課題に着目してなされたものであり、車両の走行時における挙動を安定させるための制動力もしくは駆動力の制御に伴う違和感を抑制することを目的とするものである。 The present invention has been made paying attention to the above technical problem, and has an object of suppressing a sense of incongruity associated with control of braking force or driving force for stabilizing the behavior of the vehicle during travel. .
 上記の目的を達成するために、この発明は、駆動力源の出力側に連結された変速機の変速比を、予め定めた条件が成立することによって減速力を増大させるように増大させ、前記条件が成立しなくなったことにより前記減速力の増大を終了する制御を行う車両の制御装置において、前記条件が成立することにより前記変速比を増大させる場合の変速比を、前記条件が成立しなくなった際に要求される駆動力を発生させることのできる変速比以下の値に制御する変速比制御を行うように構成されていることを特徴とするものである。 In order to achieve the above object, the present invention increases the speed ratio of the transmission connected to the output side of the driving force source so as to increase the deceleration force when a predetermined condition is satisfied, In a vehicle control apparatus that performs control to end the increase of the deceleration force when the condition is no longer satisfied, the condition is not satisfied when the speed ratio is increased when the condition is satisfied. The speed ratio control is performed to control the speed to a value equal to or less than the speed ratio that can generate the required driving force.
 この発明は、更に、前記条件が成立しなくなった際に要求される駆動力を推定する推定制御と、前記条件が成立することにより前記変速比を増大させる場合の上限値を、前記推定された駆動力を発生させることのできる変速比に基づいて求める上限値設定制御とを更に行うように構成され、かつ前記変速比制御は、前記条件が成立したことにより増大させる変速比を前記上限値設定制御で求められた上限値以下の値に設定する制御とすることができる。 In the present invention, the estimated control for estimating the driving force required when the condition is no longer satisfied, and the upper limit value when the speed ratio is increased by the satisfaction of the condition are estimated. Further, an upper limit value setting control obtained based on a speed ratio capable of generating a driving force is further performed, and the speed ratio control sets a speed ratio to be increased when the condition is satisfied, by setting the upper limit value. It can be set as the control set to the value below the upper limit calculated by control.
 この発明は、前記車両の運転者の運転志向を求め、その運転志向に基づいて前記上限値を補正する補正制御を更に行うように構成されていてよい。 The present invention may be configured to further perform correction control for obtaining the driving orientation of the driver of the vehicle and correcting the upper limit value based on the driving orientation.
 その運転志向は、前記車両の前後加速度と、横加速度と、前後加速度および横加速度を合成した合成加速度と、これらの加速度のいずれかの加速度の変化率であるジャークとの少なくともいずれか一つに基づいて求められ、前記補正制御は、前記運転志向が前記車両に機敏な挙動を生じさせる運転志向が強いほど前記上限値を大きくする制御であってよい。 The driving orientation is at least one of the longitudinal acceleration of the vehicle, the lateral acceleration, the combined acceleration obtained by combining the longitudinal acceleration and the lateral acceleration, and the jerk which is a change rate of any one of these accelerations. The correction control may be obtained based on the control, and the upper limit value may be increased as the driving orientation in which the driving orientation causes the vehicle to be agile.
 さらにこの発明は上述した構成に加えて、前記車両が走行している走行路に関する情報に基づいて前記変速比を増大させる制御を更に実行するように構成され、前記変速比制御は、前記走行路に関する情報に基づいて増大させられた前記変速比に、前記条件の成立によって増大させられた変速比を加算する場合にその加算された後の変速比を前記上限値以下の値に制御するように構成されていてよい。 In addition to the above-described configuration, the present invention is further configured to further execute control for increasing the speed ratio based on information relating to a travel path on which the vehicle is traveling. In the case where the speed ratio increased by the establishment of the condition is added to the speed ratio increased based on the information on the information, the speed ratio after the addition is controlled to a value equal to or less than the upper limit value. It may be configured.
 そして、この発明は上述した構成に加えて、前記条件が成立することによって増大する減速力を制限するように前記変速比の他の上限値を求める他の上限値設定制御を実行するように構成され、前記変速比制御は、前記推定された駆動力を発生させることのできる変速比に基づいて前記上限値設定制御で求められた上限値と、前記他の上限値設定制御で求められた他の上限値のうち大きい値の上限値以下の値に前記変速比を制御するように構成されていてよい。 In addition to the above-described configuration, the present invention is configured to execute another upper limit value setting control for obtaining another upper limit value of the speed ratio so as to limit the deceleration force that increases when the condition is satisfied. The speed ratio control includes an upper limit value obtained by the upper limit value setting control based on a speed ratio capable of generating the estimated driving force, and another value obtained by the other upper limit value setting control. The transmission ratio may be controlled to a value that is equal to or less than a large upper limit value among the upper limit values.
 この発明では、前記推定制御で推定される駆動力は、前記条件が成立しなくなった際の走行抵抗に等しい駆動力であってよい。 In the present invention, the driving force estimated by the estimation control may be a driving force equal to a running resistance when the condition is no longer satisfied.
 この発明における上記の条件は、前記車両の走行中に要求駆動力が予め定めた所定値以下になることを含んでいてよい。 The above condition in the present invention may include that the required driving force becomes equal to or less than a predetermined value while the vehicle is traveling.
 あるいはこの発明における上記の条件は、前記車両が旋回走行する際に要求駆動力が予め定めた所定値以下になることを含んでいてよい。 Alternatively, the above condition in the present invention may include that the required driving force becomes equal to or less than a predetermined value when the vehicle turns.
 この発明によれば、車両の走行中に所定の条件が成立することにより変速比が増大させられて減速力が増大させられる。その変速比の増大制御による変速比は、前記条件が成立しなくなって変速比が戻される際に車両に要求される駆動力を発生させることのできる変速比以下の変速比が設定される。したがって、前記条件が成立しなくなって、一旦増大させた変速比を変化させるとしても、変速比が変わらないか、もしくは僅かに変化する程度であり、その結果、その変速比で得られる駆動力が要求されている駆動力と特には異ならないので、違和感を生じさせることが抑制される。 According to the present invention, when a predetermined condition is satisfied while the vehicle is traveling, the speed ratio is increased and the deceleration force is increased. The speed ratio by the increase control of the speed ratio is set to a speed ratio that is equal to or lower than the speed ratio that can generate the driving force required for the vehicle when the condition is no longer satisfied and the speed ratio is restored. Therefore, even if the above-mentioned condition is not satisfied and the gear ratio once increased is changed, the gear ratio does not change or slightly changes, and as a result, the driving force obtained with the gear ratio is increased. Since it is not particularly different from the required driving force, it is possible to suppress a sense of discomfort.
 また、変速比の上限値を、前記条件が成立しなくなった際に要求される推定駆動力を発生することのできる値に設定すれば、変速比の増大に伴って駆動力源の回転数が増大するとしても、車両の走行を維持するために必要とする駆動力を得るための回転数に近い回転数であるから、運転者が違和感を抱くことを抑制することができる。 Further, if the upper limit value of the gear ratio is set to a value that can generate the estimated driving force required when the above condition is not satisfied, the rotational speed of the driving force source increases as the gear ratio increases. Even if it increases, the rotational speed is close to the rotational speed for obtaining the driving force required to maintain the traveling of the vehicle, so that the driver can be prevented from feeling uncomfortable.
 この発明では、運転者の運転志向を表すデータ、例えば車両の加速度やジャークなどに応じて、前記上限値が補正される。したがって運転者の意図あるいは運転志向を前記上限値に反映させることができ、また運転者の意図あるいは運転志向に応じた減速力や、減速力の増大制御の終了後の駆動力を得ることができる。 In the present invention, the upper limit value is corrected in accordance with data representing the driving orientation of the driver, for example, acceleration or jerk of the vehicle. Accordingly, the driver's intention or driving intention can be reflected in the upper limit value, and the deceleration force according to the driver's intention or driving intention and the driving force after the termination of the increase control of the deceleration force can be obtained. .
 さらに、この発明では、走行路が登降坂路であること、あるいはナビゲーションシステムによって得られた前方道路がワインディング路の連続する道路であることなどの走行路に関する情報に基づいて変速比を増大させる制御が実行されている場合、前記条件の成立によって増大させられる変速比が加算させられる。その加算させられた変速比が前述した上限値に基づいて設定もしくは制限されるから、上記のような違和感を抑制することができる。 Further, according to the present invention, the control for increasing the speed ratio based on the information on the traveling road such as that the traveling road is an uphill / downhill road or the road ahead obtained by the navigation system is a road with a continuous winding road is performed. If it is being executed, a gear ratio that is increased by the establishment of the condition is added. Since the added gear ratio is set or restricted based on the above-described upper limit value, it is possible to suppress such a sense of incongruity.
 そして、この発明では、所定の条件が成立することに伴って変速比を増大させる際の上限値を設定する制御として二つの制御を実行するように構成することができ、その場合、小さい値の上限値に基づいて変速比が制御されるので、変速比が過度に大きくなって違和感となることを抑制することができる。 And in this invention, it can comprise so that two control may be performed as control which sets the upper limit at the time of increasing a gear ratio with predetermined conditions being satisfied, in that case, a small value of Since the gear ratio is controlled based on the upper limit value, it can be suppressed that the gear ratio becomes excessively large and uncomfortable.
 この発明では、上記の条件が成立しなくなって変速比が変更させられるとしても、少なくとも走行抵抗に相当する駆動力を発生させる変速比以下であるため、変速比の低下により駆動力源回転数が低下する違和感を抑制することができる。 In this invention, even if the above condition is not satisfied and the speed ratio is changed, at least the speed ratio is less than the speed ratio that generates the driving force corresponding to the running resistance. A sense of incongruity that decreases can be suppressed.
 上記の条件が、車両の直進走行あるいは旋回走行の際にアクセルペダルが戻されるなど、要求駆動力が所定値以下になることであれば、運転者の意図する減速度や旋回性能を得ることができ、またその際に駆動力源の回転数が過度に増大したり、あるいは駆動要求量が所定値以上に戻った際に駆動力が不足するなどの違和感を抑制できる。 If the above conditions are such that the required driving force falls below a predetermined value, such as when the accelerator pedal is returned when the vehicle is traveling straight or turning, the driver's intended deceleration and turning performance can be obtained. In addition, it is possible to suppress the uncomfortable feeling that the rotational speed of the driving force source excessively increases or the driving force is insufficient when the required driving amount returns to a predetermined value or more.
この発明の制御装置による制御の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of control by the control apparatus of this invention. 図1に示す制御を行った場合のエンジン回転数(変速比)の変化の一例を示すタイムチャートである。It is a time chart which shows an example of the change of the engine speed (speed ratio) at the time of performing control shown in FIG. この発明の制御装置による制御の他の例を説明するためのフローチャートである。It is a flowchart for demonstrating the other example of control by the control apparatus of this invention. この発明の制御装置による制御の更に他の例を説明するためのフローチャートである。It is a flowchart for demonstrating the further another example of control by the control apparatus of this invention. 図4に示す制御を行った場合のエンジン回転数および変速比ならびに降坂制御および旋回制御の実行フラグの変化の一例を示すタイムチャートである。FIG. 6 is a time chart showing an example of changes in engine execution speed and gear ratio, and downhill control and turning control execution flags when the control shown in FIG. 4 is performed. FIG. この発明で制御の対象とする車両の構成および制御系統の一例を示す模式図である。It is a schematic diagram showing an example of a configuration of a vehicle and a control system to be controlled in the present invention.
 この発明を具体例に基づいて説明する。この発明で対象とする車両は、変速比を自動制御によって適宜に変更することのできる変速機を搭載した車両であり、その一例を図6に模式的に示してある。図6に示す車両Veは、左右の前輪1,2が操舵輪、左右の後輪3,4が駆動輪であって、エンジン5が出力する動力により後輪3,4を駆動する後輪駆動車として構成されている。 The present invention will be described based on specific examples. The vehicle targeted by the present invention is a vehicle equipped with a transmission capable of appropriately changing the gear ratio by automatic control, and an example thereof is schematically shown in FIG. The vehicle Ve shown in FIG. 6 is a rear wheel drive in which the left and right front wheels 1 and 2 are steering wheels, the left and right rear wheels 3 and 4 are drive wheels, and the rear wheels 3 and 4 are driven by the power output from the engine 5. It is configured as a car.
 エンジン5は従来の車両に搭載されている内燃機関であり、そのスロットル開度や燃料噴射量あるいは点火時期さらにはバルブタイミングなどを電気的に制御できるように構成されている。このエンジン5の出力側に変速機6が連結されている。この変速機6は、電気的な制御によって変速比を適宜に変更できるいわゆる自動変速機であり、歯車機構を主体にして構成された有段式変速機や、ベルト式あるいはトロイダル型などの無段変速機を採用することができる。また、ハイブリッド車においては、エンジン5が出力した動力をモータ・ジェネレータと出力部材とに分割する差動機構からなる動力分割機構(それぞれ図示せず)がこの発明における変速機に相当する。以下の説明では、無段変速機を搭載した車両やハイブリッド車などの変速比を連続的に変化させることができる車両を例に採って説明する。 The engine 5 is an internal combustion engine mounted on a conventional vehicle, and is configured such that its throttle opening, fuel injection amount, ignition timing, and valve timing can be electrically controlled. A transmission 6 is connected to the output side of the engine 5. This transmission 6 is a so-called automatic transmission that can appropriately change the gear ratio by electrical control, and is a stepped transmission mainly composed of a gear mechanism, a stepless type such as a belt type or a toroidal type. A transmission can be employed. In the hybrid vehicle, a power split mechanism (not shown) including a differential mechanism that splits the power output from the engine 5 into a motor / generator and an output member corresponds to the transmission according to the present invention. In the following description, a vehicle capable of continuously changing a gear ratio such as a vehicle equipped with a continuously variable transmission or a hybrid vehicle will be described as an example.
 各車輪1~4にはブレーキ装置7,8,9,10がそれぞれ設けられている。これらのブレーキ装置7~10は従来知られているブレーキ装置と同様の構成のものであり、運転者によるブレーキ操作によって動作し、また電気的な制御によって動作するように構成されている。そのブレーキ装置7~10を動作させるためのブレーキアクチュエータ11が設けられている。このブレーキアクチュエータ11は、一例として、各ブレーキ装置7~10に油圧を供給し、またその油圧を排出するための装置であって、ソレノイドバルブなどの制御バルブを電気的に制御して、所定のブレーキ装置7~10に対して油圧を給排するように構成されている。 Each wheel 1 to 4 is provided with a brake device 7, 8, 9, 10 respectively. These brake devices 7 to 10 have the same configuration as conventionally known brake devices, and are configured to operate by a brake operation by a driver and to operate by electrical control. A brake actuator 11 for operating the brake devices 7 to 10 is provided. As an example, the brake actuator 11 is a device for supplying hydraulic pressure to each of the brake devices 7 to 10 and discharging the hydraulic pressure. The brake actuator 11 electrically controls a control valve such as a solenoid valve, and performs predetermined control. The brake device 7 to 10 is configured to supply and discharge hydraulic pressure.
 上記のエンジン5および変速機6ならびにブレーキアクチュエータ11などを制御するための電子制御装置(ECU)12が設けられている。この電子制御装置12は、マイクロコンピュータを主体に構成され、入力された各種のデータおよび予め記憶しているデータならびにプログラムによって演算を行い、その演算の結果を制御指令信号としてエンジン5や変速機6あるいはブレーキアクチュエータ11に出力するように構成されている。この電子制御装置12に入力されるデータは車両Veの各部に配置されているセンサからの信号であり、そのセンサの例を挙げると、アクセルペダル(図示せず)の踏み込み角(もしくは踏み込み量あるいはアクセル開度)を検出するアクセルセンサ13、ブレーキペダル(図示せず)の踏み込み角(もしくは踏み込み量)を検出するブレーキセンサ14、ステアリングホイール(図示せず)の操舵角を検出する操舵角センサ15、各車輪1,2,3,4の回転速度(車輪速度)をそれぞれ検出する車輪速センサ16、車両Veの前後方向(図6での上下方向)の加速度(すなわち前後G)を検出する前後加速度センサ17、車両Veの車軸方向(図6での左右方向)すなわち横方向の加速度(すなわち横G)を検出する横加速度センサ18、車両Veのヨーレートを検出するヨーレートセンサ19などである。また、外部から取得したデータを電子制御装置12に入力するように構成することができる。例えばナビゲーションシステムを搭載してある場合には、通信衛星やサインポストあるいは地上FM局などからの道路情報をナビゲーションシステムによって受信し、その情報を電子制御装置12に入力することができる。 An electronic control unit (ECU) 12 is provided for controlling the engine 5, the transmission 6, the brake actuator 11, and the like. The electronic control unit 12 is mainly composed of a microcomputer, and performs calculations based on various types of input data, data stored in advance and programs, and uses the results of the calculations as control command signals for the engine 5 and the transmission 6. Alternatively, it is configured to output to the brake actuator 11. The data input to the electronic control unit 12 is a signal from a sensor disposed in each part of the vehicle Ve. For example, the sensor includes a depression angle (or depression amount or depression amount) of an accelerator pedal (not shown). An accelerator sensor 13 for detecting an accelerator opening), a brake sensor 14 for detecting a depression angle (or a depression amount) of a brake pedal (not shown), and a steering angle sensor 15 for detecting a steering angle of a steering wheel (not shown). , A wheel speed sensor 16 for detecting the rotational speeds (wheel speeds) of the wheels 1, 2, 3 and 4, respectively, and before and after detecting acceleration (ie, longitudinal G in FIG. 6) in the longitudinal direction (vertical direction in FIG. 6) of the vehicle Ve. An acceleration sensor 17 and a lateral acceleration sensor 18 that detects an acceleration of the vehicle Ve in the axle direction (left-right direction in FIG. 6), that is, lateral acceleration (that is, lateral G). And the like yaw rate sensor 19 for detecting a yaw rate of the vehicle Ve. In addition, data acquired from the outside can be input to the electronic control device 12. For example, when a navigation system is installed, road information from a communication satellite, a sign post, a ground FM station, or the like can be received by the navigation system and the information can be input to the electronic control unit 12.
 前記制御装置は、一例として、車両Veの挙動を安定させるために駆動力を制御するように構成されている。上述した図6に示す構成の車両Veにおいては駆動力はエンジン5が出力するから、駆動力の制御は基本的にはアクセル開度に基づいてエンジン5のスロットル開度を変化させることにより行われる。また、アクセル開度が所定値以下の場合、すなわちほぼ「0」の場合には、駆動力をエンジン5によってそれ以上に減少させ、あるいはエンジンブレーキ力(減速力)をエンジン5によってはそれ以上に増大させることができないから、変速比によって駆動力を変化させることになる。すなわち、前記制御装置は、駆動力もしくは減速力の制御をエンジン5あるいは変速機6を制御することにより行うように構成されている。このような変速比によって減速力を増大させて車両の挙動を安定させ、あるいは目標とする挙動を生じさせる制御の一例が、旋回走行する際に減速力を増大させて操舵輪である前輪1,2の接地荷重を増大させ、これにより旋回性能を向上させる制御(旋回制御)である。 As an example, the control device is configured to control the driving force in order to stabilize the behavior of the vehicle Ve. In the vehicle Ve having the configuration shown in FIG. 6 described above, the driving force is output from the engine 5, so that the driving force is basically controlled by changing the throttle opening of the engine 5 based on the accelerator opening. . When the accelerator opening is equal to or less than a predetermined value, that is, approximately “0”, the driving force is further reduced by the engine 5 or the engine braking force (deceleration force) is further increased by the engine 5. Since it cannot be increased, the driving force is changed depending on the gear ratio. That is, the control device is configured to control the driving force or the deceleration force by controlling the engine 5 or the transmission 6. An example of control that stabilizes the behavior of the vehicle by increasing the deceleration force by such a gear ratio, or causes the target behavior, is to increase the deceleration force when turning, and the front wheels 1, which are steered wheels. 2 is a control (turning control) that increases the ground load and thereby improves the turning performance.
 車両の挙動を安定させ、あるいは旋回性能を向上させるための変速比制御や運転者の操作に基づかずに変速比を変化させるそれ以外の変速比制御では、車速やエンジン音などの変化が運転者の意図に関係なく発生することになり、その変化が過大もしくは極端であれば、これが違和感となる。その変速比制御を終了した場合も同様である。前記制御装置は、一例として図1に示す制御を行う。 In speed ratio control to stabilize vehicle behavior or improve turning performance and other speed ratio control to change the speed ratio without being driven by the driver's operation, changes in vehicle speed, engine sound, etc. If the change is excessive or extreme, this is uncomfortable. The same applies when the gear ratio control is terminated. The control device performs the control shown in FIG. 1 as an example.
 図1に示す制御は、例えば前述した電子制御装置12において、車両Veの走行中に所定の短時間ごとに繰り返し実行され、あるいは旋回走行中に所定の短時間ごとに繰り返し実行され、もしくは旋回制御の実行条件が成立したときに繰り返し実行される。先ず、アクセル開度と車速とから変速比が演算される(ステップS1)。変速機6が無段変速機である場合、あるいはモータ・ジェネレータによってエンジン回転数を制御するハイブリッド駆動装置である場合、アクセル開度と車速および予め用意してあるマップとに基づいて要求駆動力が求められ、その要求駆動力と車速とから目標エンジン出力が求められ、その目標エンジン出力を燃費の良い状態で出力する目標エンジン回転数が求められる。ここで、要求駆動力は、その時点の車速の下でのアクセル開度に基づいて求められるから、この発明の制御で使用する要求駆動力はアクセル開度であってもよい。その目標エンジン回転数と車速とから変速比が算出される。また、前記変速機6として有段式自動変速機が使用されている場合には、予め用意されているいわゆる変速線図(変速マップ)に基づいて変速比(変速段)が求められる。 The control shown in FIG. 1 is repeatedly executed every predetermined short time while the vehicle Ve is traveling, for example, in the electronic control device 12 described above, or is repeatedly executed every predetermined short time during turning, or the turn control is performed. It is repeatedly executed when the execution condition is satisfied. First, a gear ratio is calculated from the accelerator opening and the vehicle speed (step S1). When the transmission 6 is a continuously variable transmission or a hybrid drive device that controls the engine speed by a motor / generator, the required driving force is determined based on the accelerator opening, the vehicle speed, and a map prepared in advance. The target engine output is determined from the required driving force and the vehicle speed, and the target engine speed for outputting the target engine output in a state with good fuel consumption is determined. Here, since the required driving force is obtained based on the accelerator opening under the vehicle speed at that time, the required driving force used in the control of the present invention may be the accelerator opening. A gear ratio is calculated from the target engine speed and the vehicle speed. Further, when a stepped automatic transmission is used as the transmission 6, a gear ratio (shift speed) is obtained based on a so-called shift diagram (shift map) prepared in advance.
 また一方、旋回制御による駆動力(負の駆動力である減速力を含む。以下、同じ。)の変化量が演算される(ステップS2)。旋回制御は、車両Veが旋回走行する際に、目標とする走行ラインに沿って車両Veが走行するように駆動力を設定する制御である。その一例は、操舵角度や車速あるいは前後加速度などに基づいて目標スタビリティファクタを求めるとともに、実スタビリティファクタを検出し、実スタビリティファクタが目標スタビリティファクタに一致もしくは追従するように加速度を求め、その加速度を生じさせるように駆動力を設定する制御である。また、特開平5-278488号公報に記載されているように、操舵角度などに基づいて目標ヨーレートを求め、実ヨーレートがその目標ヨーレートに追従するように駆動力を設定する制御であってもよい。ステップS2ではこのような旋回制御による駆動力が求められ、あるいはその駆動力を達成するための駆動力変化量が求められる。 On the other hand, the amount of change in the driving force (including the deceleration force that is a negative driving force; the same applies hereinafter) by turning control is calculated (step S2). The turning control is a control for setting the driving force so that the vehicle Ve travels along a target travel line when the vehicle Ve travels. One example is obtaining the target stability factor based on the steering angle, vehicle speed, longitudinal acceleration, etc., detecting the actual stability factor, and determining the acceleration so that the actual stability factor matches or follows the target stability factor. In this control, the driving force is set so as to generate the acceleration. Further, as described in Japanese Patent Laid-Open No. 5-278488, control may be performed in which a target yaw rate is obtained based on a steering angle and the driving force is set so that the actual yaw rate follows the target yaw rate. . In step S2, the driving force by such turning control is obtained, or the driving force change amount for achieving the driving force is obtained.
 ついで、上記のステップS1で求められた変速比と上記のステップS2で求められた駆動力変化量とを基に旋回制御による変速比が演算される(ステップS3)。旋回走行する場合、前輪に掛かる荷重を大きくすることにより横力が増大し、旋回性能が向上するから、駆動力は前輪に掛かる荷重を増大させるために減少させる。すなわち減速力を増大させる。これは、スロットル開度を小さくしてエンジントルクを減少させることにより行うことができるが、アクセル開度が「0」であるなど予め定めた所定値以下であれば、エンジントルクを更に低下させることができないので、エンジンブレーキ力(減速力)を増大させるために変速比を増大させることになる。したがって、ステップS3では、変速比を変更することによって減速力を増大させる場合に設定するべき変速比が演算される。言い換えれば、ステップS1で求められた変速比では不足する分の変速比が求められ、その不足分をステップS1で求められている変速比に加算した変速比がステップS3で求められる変速比である。 Next, a gear ratio by turning control is calculated based on the gear ratio obtained in step S1 and the driving force change amount obtained in step S2 (step S3). When turning, the lateral force is increased by increasing the load applied to the front wheels, and the turning performance is improved. Therefore, the driving force is decreased to increase the load applied to the front wheels. That is, the deceleration force is increased. This can be done by reducing the throttle opening and reducing the engine torque, but if the accelerator opening is less than a predetermined value such as “0”, the engine torque is further reduced. Therefore, the gear ratio is increased in order to increase the engine braking force (deceleration force). Therefore, in step S3, the speed ratio to be set when the speed reduction force is increased by changing the speed ratio is calculated. In other words, the gear ratio that is insufficient in the gear ratio obtained in step S1 is obtained, and the gear ratio obtained by adding the shortage to the gear ratio obtained in step S1 is the gear ratio obtained in step S3. .
 ステップS3で求められた変速比となるように変速機6を制御すれば、変速比が増大することにより、エンジンブレーキ力すなわち減速力が増大する。また、横加速度が旋回制御による分、増大する。このような加速度(減速度や横加速度)は、旋回制御によって変速比を増大させることによる生じる加速度を、運転者の操作に基づく加速度に上乗せさせたものとなるから、旋回制御によって増大する加速度が大きいと、運転者の操作とそれに伴って生じる加速度とが運転者の意識としては一致しないものとなり、違和感を生じさせる場合がある。そこで、加速度(前後Gもしくは合成加速度)が違和感とならないように変速比についての第1の上限値Aが設定される(ステップS4)。 If the transmission 6 is controlled so that the gear ratio obtained in step S3 is obtained, the engine braking force, that is, the deceleration force is increased by increasing the gear ratio. Further, the lateral acceleration is increased by the turn control. Such acceleration (deceleration and lateral acceleration) is obtained by adding the acceleration generated by increasing the gear ratio by turning control to the acceleration based on the operation of the driver. If it is large, the driver's operation and the acceleration that accompanies the driver's operation will not match the driver's consciousness, which may cause a sense of discomfort. Therefore, the first upper limit value A for the gear ratio is set so that the acceleration (front-rear G or combined acceleration) does not feel uncomfortable (step S4).
 この上限値Aは、この発明における「他の上限値」に相当し、前述した特開2013-63733号公報に記載されている制御によって設定することができる。これを簡単に説明すると、ステアリングホイールやブレーキなどの操作に伴う加速度などの変化量が大きい場合には、その操作に伴う加速度などの変化速度が小さければ、運転者にとっては違和感となりにくい。またその変化量が小さい場合には、その変化速度が大きくても違和感となりにくい。したがって、違和感とならない領域を上記の操作に伴う変化量と変化速度とによって設定することができる。さらに、操舵角や操舵角速度、あるいは横加速度もしくは横加速度の変化率である横ジャークが大きい場合、運転者は機敏な挙動の変化を望んでおり、あるいは機敏な挙動の変化が通常の挙動の変化であると感じている可能性が高い。このような場合には上記の領域を、上記の変化量および変化速度が大きい方に拡大することができる。反対に、操舵角や操舵角速度、あるいは横加速度もしくは横加速度の変化率である横ジャークが小さい場合、運転者はいわゆるマイルドな挙動の変化を望んでおり、あるいはそのような挙動の変化が通常の挙動の変化であると認識している可能性が高い。このような場合には上記の違和感とならない領域は、前記変化量および変化速度が小さい方に縮小したものとなる。このように設定した領域に基づいて、変速比を増大させることに伴う加速度すなわち車両Veの挙動の変化が違和感を生じさせない領域に入るように、変速比の上限値Aが設定される。 This upper limit value A corresponds to “another upper limit value” in the present invention, and can be set by the control described in Japanese Patent Laid-Open No. 2013-63733. This will be briefly explained. When the amount of change such as acceleration accompanying the operation of the steering wheel or brake is large, it is difficult for the driver to feel uncomfortable if the rate of change such as acceleration accompanying the operation is small. When the amount of change is small, it is difficult to feel uncomfortable even if the rate of change is large. Therefore, a region that does not cause a sense of incongruity can be set based on the change amount and the change speed associated with the above operation. In addition, when the lateral jerk, which is the steering angle, steering angular velocity, or lateral acceleration or lateral acceleration change rate, is large, the driver wants agile behavior change, or the agile behavior change is a normal behavior change. There is a high possibility of feeling that. In such a case, the above-described region can be expanded in the direction in which the above-described change amount and change rate are large. Conversely, if the steering angle, steering angular velocity, or lateral jerk, which is the rate of change of lateral acceleration or lateral acceleration, is small, the driver wants a so-called mild behavior change, or such a behavior change is normal. There is a high possibility that it is recognized as a change in behavior. In such a case, the region where the above-mentioned uncomfortable feeling is not reduced is the one in which the change amount and the change speed are smaller. Based on the region set in this way, the upper limit value A of the gear ratio is set so that the acceleration accompanying the increase in the gear ratio, that is, the change in the behavior of the vehicle Ve does not cause a sense of incongruity.
 前記制御装置は、一例として、旋回性能の向上のために減速力を増大させる制御が終了する際に「必要とする駆動力」を推定し、その推定された駆動力に基づいてその上限値Bを求めるように機能する。その減速力のいわゆる増大制御は、前述したように、旋回走行に伴ってアクセルペダルを戻すなど要求駆動力が「0」もしくは所定値以下に低下することにより実行されるから、その制御の終了はアクセルペダルが踏み込まれるなどの要求駆動力の増大により終了させられる。すなわち、運転者が「正」の駆動力を求めていることになるので、上記の「必要とする駆動力」は、少なくとも車速を維持するために必要とする駆動力である。車速を維持するために必要とする駆動力は、走行抵抗(ロード・ロード)に等しい駆動力であるから、旋回制御で増大させた変速比をその制御の終了によって変化させた後の変速比が、その時点のエンジントルクで走行抵抗に相当する駆動力を得られる値の変速比であることが望ましい。 As an example, the control device estimates the “necessary driving force” when the control for increasing the deceleration force to improve the turning performance is completed, and the upper limit value B based on the estimated driving force. To function. The so-called increase control of the deceleration force is executed when the required driving force decreases to “0” or a predetermined value or less, such as returning the accelerator pedal as the vehicle turns, as described above. It is terminated by an increase in the required driving force such as depression of the accelerator pedal. That is, since the driver is seeking a “positive” driving force, the “necessary driving force” is a driving force required to maintain at least the vehicle speed. Since the driving force required to maintain the vehicle speed is a driving force equal to the running resistance (road / load), the gear ratio after changing the gear ratio increased by turning control by the end of the control is It is desirable that the gear ratio be a value that can obtain a driving force corresponding to the running resistance with the engine torque at that time.
 上述したように、旋回制御による変速比の増大制御は、運転者が駆動力を増大させる操作を行うことによって終了するから、その増大制御の終了による変速比およびそれに伴う駆動力の変化は、駆動力やエンジン回転数が少なくとも低下しない変化とすることが望ましい。このような変速比の増大制御の終了の際に設定するべき望ましい変速比およびその変化の態様を考慮して、ステップS5では、変速比の上限値Bを、変速比の増大制御の終了の際の走行抵抗に基づいた値に設定する。ここで、走行抵抗に基づいた値とは、走行抵抗に相当する値だけでなく、車両Veの特性や車格などの要求や燃費向上のための要求などによって走行抵抗に相当する値に所定の値を加減した値である。 As described above, since the increase control of the gear ratio by the turning control is finished when the driver performs an operation to increase the driving force, the change of the gear ratio and the accompanying driving force due to the end of the increasing control is determined by the driving. It is desirable that the force and the engine speed be changed at least so as not to decrease. In consideration of the desirable gear ratio to be set at the end of the gear ratio increase control and the mode of change thereof, in step S5, the upper limit value B of the gear ratio is set at the end of the gear ratio increase control. Set to a value based on the running resistance. Here, the value based on the running resistance is not only a value corresponding to the running resistance but also a predetermined value corresponding to the running resistance according to a request such as the characteristics of the vehicle Ve, a vehicle grade, or a request for improving fuel consumption. It is a value obtained by adjusting the value.
 また、走行抵抗は従来知られている各種の方法で推定することができる。すなわち、駆動力と走行抵抗とに応じて車両Veは加速し、あるいは減速し、さらには車速を維持するから、旋回走行時には例えば車速と操舵角とに基づいて求めることができる。操舵角に応じたコーナリング抵抗が生じ、そのコーナリング抵抗による車速の低下を超える車速の低下から走行抵抗を求めることができる。また、エンジンブレーキ力を発生させた場合には、そのエンジンブレーキ力に相当する前後加速度と実際に車両Veに生じている実加速度との差が走行抵抗による加速度になるから、その加速度の差に基づいて走行抵抗を求めることができる。さらにまた、車速と横加速度とに基づいて求めることができる。このようにして走行抵抗に相当する駆動力を推定する制御がこの発明における推定制御に相当する。 Also, the running resistance can be estimated by various methods known in the art. That is, the vehicle Ve accelerates or decelerates according to the driving force and the running resistance, and further maintains the vehicle speed. Therefore, the vehicle Ve can be obtained based on, for example, the vehicle speed and the steering angle when turning. Cornering resistance corresponding to the steering angle is generated, and the running resistance can be obtained from the decrease in vehicle speed that exceeds the decrease in vehicle speed due to the cornering resistance. Further, when the engine braking force is generated, the difference between the longitudinal acceleration corresponding to the engine braking force and the actual acceleration actually generated in the vehicle Ve becomes the acceleration due to the running resistance. Based on this, the running resistance can be obtained. Furthermore, it can obtain | require based on a vehicle speed and a lateral acceleration. The control for estimating the driving force corresponding to the running resistance in this way corresponds to the estimation control in the present invention.
 また一方、ステップS5では、エンジン回転数を考慮して変速比の上限値Bを設定してよい。要求駆動力が所定値以下の場合すなわちアクセルペダルが戻されているいわゆるアクセル・オフで走行している状態では、変速比の増大に伴ってエンジンブレーキ力すなわち減速力が増大し、併せてエンジン回転数が増大する。そして、エンジン回転数が過度に大きいと違和感となることがある。したがって、減速力に着目した変速比の上限値Bは、エンジン回転数に基づいて設定することも可能であり、図1に示す制御例では、そのステップS5においてエンジン回転数により変速比の上限値Bを設定することとしている。 On the other hand, in step S5, the upper limit value B of the gear ratio may be set in consideration of the engine speed. When the required driving force is less than the predetermined value, that is, when the vehicle is running with the accelerator pedal turned off, so-called accelerator-off, the engine braking force, that is, the deceleration force increases as the gear ratio increases, and the engine speed also increases. The number increases. And if the engine speed is excessively large, it may be uncomfortable. Accordingly, the upper limit value B of the gear ratio focusing on the deceleration force can be set based on the engine speed. In the control example shown in FIG. 1, the upper limit value of the gear ratio is determined by the engine speed in step S5. B is set.
 上記のステップS4で求められた上限値AとステップS5で求められた上限値Bとが比較される(ステップS6)。そして、小さい値の上限値が採用される。具体的には、ステップS6において上限値Aが上限値Bより小さいか否かが判断され、肯定的に判断された場合には上限値Aが最終変速比上限値とされ(ステップS7)、これとは反対にステップS6で否定的に判断された場合には、上限値Bが最終変速比上限値とされる(ステップS8)。このようにして採用された最終変速比上限値によって旋回制御による変速比が制限される(ステップS9)。そして、その制限された変速比が出力される(ステップS10)。すなわち、旋回走行する際にアクセル開度で表すことのできる要求駆動力が所定値以下になることにより変速比を増大させる場合(ダウンシフトする場合)、その変速比は最終変速比上限値を超えることがない。 The upper limit A obtained in step S4 and the upper limit B obtained in step S5 are compared (step S6). Then, a small upper limit value is adopted. Specifically, it is determined whether or not the upper limit value A is smaller than the upper limit value B in step S6. If the determination is affirmative, the upper limit value A is set as the final speed ratio upper limit value (step S7). On the other hand, if a negative determination is made in step S6, the upper limit value B is set as the final gear ratio upper limit value (step S8). The speed ratio by turning control is limited by the final speed ratio upper limit value thus adopted (step S9). Then, the limited transmission gear ratio is output (step S10). That is, when the gear ratio is increased (when downshifting) when the required driving force that can be expressed by the accelerator opening is less than a predetermined value when turning, the gear ratio exceeds the final gear ratio upper limit value. There is nothing.
 したがって、最終変速比上限値が上記の上限値Bとして採用され、かつ上記のステップS3で演算された変速比が上記の上限値B以上であれば、設定される変速比は上限値Bとなる。この上限値Bは、旋回制御により変速比を増大させる制御が終了した場合に推定されている走行抵抗に相当する駆動力を発生させることの可能な値である。そのため、例えばアクセルペダルが踏み込まれて要求駆動力が増大し、これによって変速比の増大制御を終了したとしても、変速比が変化せずに、走行抵抗に相当する駆動力が発生するので、運転者の意図に反して駆動力が低下し、あるいはエンジン回転数が低下するなどの事態が回避もしくは抑制される。また、運転者は走行を継続することを意図していると考えられるので、走行抵抗に相当する駆動力を発生させる駆動状態は運転者の意図に反し、あるいは大きく乖離するものではないから、変速比を上限値Bにまで増大させることが違和感となることはない。 Therefore, if the final speed ratio upper limit value is adopted as the upper limit value B and the speed ratio calculated in step S3 is equal to or higher than the upper limit value B, the speed ratio to be set becomes the upper limit value B. . This upper limit value B is a value capable of generating a driving force corresponding to the running resistance estimated when the control for increasing the gear ratio is completed by the turning control. For this reason, for example, even when the accelerator pedal is depressed and the required driving force increases, and the increase control of the gear ratio is terminated, the driving force corresponding to the running resistance is generated without changing the gear ratio. A situation in which the driving force is reduced against the intention of the person or the engine speed is reduced is avoided or suppressed. In addition, since it is considered that the driver intends to continue traveling, the driving state that generates the driving force corresponding to the traveling resistance is not contrary to the driver's intention or does not greatly deviate. Increasing the ratio to the upper limit B does not cause discomfort.
 また、最終変速比上限値が上記の上限値Aであって、上記のステップS3で演算された変速比がその最終変速比上限値である上記の上限値A以上であれば、設定される変速比は上限値Aとなる。すなわち旋回制御を行っている際の変速比は上限値Aとなり、エンジン回転数に基づく上限値Bより小さい変速比となる。したがって、例えばアクセルペダルが踏み込まれて要求駆動力が増大し、これによって変速比の増大制御を終了すると、その時点の要求駆動力は車速を維持する以上の駆動力すなわち走行抵抗に相当する駆動力以上の駆動力であるから、変速比は上記の上限値Aからその駆動力を発生できる変速比(およびエンジン回転数)に増大する。このような駆動力あるいはエンジン回転数の増大は、アクセル開度の増大として現れている運転者の意図に即するものであるから、違和感となることはない。 Further, if the final gear ratio upper limit value is the upper limit value A and the gear ratio calculated in step S3 is equal to or higher than the upper limit value A which is the final gear ratio upper limit value, the speed change to be set is performed. The ratio is the upper limit value A. In other words, the gear ratio during turning control is the upper limit value A, which is smaller than the upper limit value B based on the engine speed. Therefore, for example, when the accelerator pedal is depressed and the required driving force increases, and thus the gear ratio increase control is terminated, the required driving force at that time is a driving force that is higher than the vehicle speed, that is, a driving force corresponding to a running resistance. Because of the above driving force, the gear ratio increases from the upper limit value A to a gear ratio (and engine speed) at which the driving force can be generated. Such an increase in driving force or engine speed is in accordance with the driver's intention that appears as an increase in the accelerator opening, so that there is no sense of incongruity.
 さらに、最終変速比上限値が上記の上限値Aあるいは上限値Bのいずれであっても、上記のステップS3で演算された変速比が最終変速比上限値より小さければ、アクセルペダルが踏み込まれるなどのことによって要求駆動力が増大し、それに伴って旋回制御による変速比の制御が終了すると、変速比はその時点の走行抵抗に相当する駆動力もしくはそれ以上の駆動力を発生する変速比に増大させられる。このような駆動力あるいはエンジン回転数の増大は、アクセル開度の増大として現れている運転者の意図に即するものであるから、違和感となることはない。 Furthermore, even if the final gear ratio upper limit value is either the upper limit value A or the upper limit value B, if the gear ratio calculated in step S3 is smaller than the final gear ratio upper limit value, the accelerator pedal is depressed. As a result, the required driving force increases, and as a result, when the control of the gear ratio by turning control is completed, the gear ratio increases to a gear ratio that generates a driving force corresponding to the driving resistance at that time or a driving force higher than that. Be made. Such an increase in driving force or engine speed is in accordance with the driver's intention that appears as an increase in the accelerator opening, so that there is no sense of incongruity.
 上記の図1に示す制御を行った場合のエンジン回転数Neの変化を図2にタイムチャートとして示してある。ここで、エンジン回転数Neの変化を示しているのは、変速比を連続的に変化させるように構成された車両Veでは、エンジン回転数Neを目標値に向けて制御するのが一般的であり、エンジン回転数Neの制御の結果として変速比が切り替えられるからである。なお、エンジン回転数は前述した変速機6の出力回転数などの車速に相当する回転数と変速比との積として表せるから、図2に示すエンジン回転数Neの変化は変速比の変化に置き換えることができる。図2に示す例は、コーナの手前でアクセルペダルが戻されてアクセル開度が「0」などの所定値以下になり、その状態でコーナに進入して操舵角が増大し、その後、アクセルペダルが踏み込まれてアクセル開度が増大した場合の例である。操舵角が増大したt1 時点に旋回制御が開始されて駆動力変化量もしくは旋回中に要求される駆動力が演算され、併せて前述した上限値Aおよび上限値Bが演算される。その演算された駆動力を発生するようにエンジン回転数Neが増大させられ、これは変速比となる。 FIG. 2 is a time chart showing changes in the engine speed Ne when the control shown in FIG. 1 is performed. Here, the change in the engine speed Ne is generally indicated by controlling the engine speed Ne toward the target value in the vehicle Ve configured to continuously change the gear ratio. This is because the gear ratio is switched as a result of the control of the engine speed Ne. Since the engine speed can be expressed as a product of the speed corresponding to the vehicle speed such as the output speed of the transmission 6 and the speed ratio, the change in the engine speed Ne shown in FIG. 2 is replaced with the change in the speed ratio. be able to. In the example shown in FIG. 2, the accelerator pedal is returned before the corner and the accelerator opening becomes below a predetermined value such as “0”, and in this state, the vehicle enters the corner and the steering angle increases. This is an example when the accelerator pedal opening is increased due to depression. The turning control is started at time t1 when the steering angle increases, and the driving force change amount or the driving force required during turning is calculated, and the upper limit value A and the upper limit value B described above are calculated. The engine speed Ne is increased so as to generate the calculated driving force, which becomes a gear ratio.
 旋回制御で求められたエンジン回転数Ne(変速比)が図2に破線で示すように上限値Bより大きい場合、エンジン回転数Neすなわち変速比は上限値Bに制限される。このような制限制御を行うことにより車両Veで発生する駆動力(減速力)が、旋回制御による要求値より小さくなる。その不足を補うためには、例えばブレーキ装置7~10を動作させて減速力を増大させればよい。その場合、旋回時における内輪(特に後ろ側の内輪)のブレーキ装置7~10を動作させれば、小さい制動力によって旋回性を高くすることができる。上限値Bは前述したように、コーナを通過した後もしくは旋回制御の終了時における走行抵抗を推定し、その推定値に相当する駆動力を発生させることのできる変速比であり、また運転者は走行を継続することを意図している。したがって、推定された走行抵抗に相当する駆動力を発生することのできるエンジン5の運転状態は運転者が想定している範囲内の運転状態となるから、変速比を上限値Bまで増大しても特に違和感を生じることはない。 When the engine speed Ne (speed ratio) obtained by the turning control is larger than the upper limit value B as shown by the broken line in FIG. 2, the engine speed Ne, that is, the speed ratio is limited to the upper limit value B. By performing such limit control, the driving force (deceleration force) generated in the vehicle Ve becomes smaller than the required value by the turning control. In order to compensate for the shortage, for example, the braking devices 7 to 10 may be operated to increase the deceleration force. In this case, if the brake devices 7 to 10 for the inner wheel (particularly the rear inner wheel) at the time of turning are operated, turning performance can be increased with a small braking force. As described above, the upper limit value B is a gear ratio that can estimate the running resistance after passing through a corner or at the end of turning control, and can generate a driving force corresponding to the estimated value. It is intended to continue running. Accordingly, the operating state of the engine 5 capable of generating a driving force corresponding to the estimated running resistance is an operating state within a range assumed by the driver, and therefore the speed ratio is increased to the upper limit value B. There is no particular discomfort.
 車両Veがコーナの出口に達し、あるいは接近したことにより運転者がアクセルペダルを踏むなどの要求駆動力増大操作を行うと(t2 時点)、アクセル開度が増大し、それに伴って旋回制御による変速比の増大制御が終了する。その結果、エンジン回転数すなわち変速比は、その時点の車速やアクセル開度などに応じたエンジン回転数もしくは変速比に設定される。この時点に要求される駆動力は、走行抵抗に相当する駆動力以上の駆動力である。これに対して旋回制御によって増大させられていた変速比は、推定された走行抵抗に相当する駆動力を発生させることのできる前記上限値Bに基づいて決められた変速比である。したがって、旋回制御の終了によって変速比を変化させるとしても、その時点の車速やアクセル開度などに基づいて求められる変速比が走行抵抗に相当する駆動力を発生させる程度の変速比であれば、旋回制御が終了した時点で、変速比は特には変化しない。また、車速やアクセル開度に基づいて求められる変速比が車両Veを加速させるのに必要な変速比であれば、旋回制御が終了した時点で変速比は増大させられる。前記制御装置によれば、旋回制御が終了した際に、変速比やエンジン回転数さらには駆動力は、少なくとも低下することを抑制するように機能する。言い換えれば、駆動力の増大もしくは維持を意図した運転者の操作に反する変速比などの変化が生じないので、運転者に違和感を抱かさせることが回避もしくは抑制される。 When the vehicle Ve reaches or exits from the corner and the driver performs a required driving force increase operation such as depressing the accelerator pedal (at time t2), the accelerator opening increases, and accordingly, the shift is controlled by turning control. The ratio increase control ends. As a result, the engine speed, that is, the gear ratio, is set to the engine speed or the gear ratio according to the vehicle speed and the accelerator opening at that time. The driving force required at this time is a driving force equal to or greater than the driving force corresponding to the running resistance. On the other hand, the speed ratio increased by the turning control is a speed ratio determined based on the upper limit value B that can generate the driving force corresponding to the estimated running resistance. Therefore, even if the gear ratio is changed by the end of the turn control, if the gear ratio obtained based on the vehicle speed or the accelerator opening at that time is such that the driving force corresponding to the running resistance is generated, When the turning control ends, the gear ratio does not change particularly. Further, if the speed change ratio obtained based on the vehicle speed and the accelerator opening is a speed change ratio necessary for accelerating the vehicle Ve, the speed change ratio is increased when the turn control is completed. According to the said control apparatus, when turning control is complete | finished, a gear ratio, an engine speed, and a driving force function so that it may suppress at least falling. In other words, since a change such as a gear ratio contrary to the operation of the driver intended to increase or maintain the driving force does not occur, it is avoided or suppressed that the driver feels uncomfortable.
 なお、図2に示す例は、変速比を連続的に変化させることができる車両Veの例であり、したがって上限値Bで制限された変速比もしくはエンジン回転数Neが旋回制御の終了時における推定された走行抵抗に相当する駆動力を発生する変速比もしくはエンジン回転数Neにほぼ一致している。しかしながら、有段変速機を搭載した車両では、推定された走行抵抗に相当する駆動力を発生させることのできる変速比が、予め決められている変速段同士の間の値の変速比になる場合がある。このような場合には、演算された変速比より小さい値の方の変速段が選択されて設定される。 The example shown in FIG. 2 is an example of the vehicle Ve that can continuously change the speed ratio, and therefore the speed ratio or the engine speed Ne limited by the upper limit value B is estimated at the end of the turn control. It almost coincides with the speed ratio or engine speed Ne that generates the driving force corresponding to the travel resistance. However, in a vehicle equipped with a stepped transmission, the gear ratio that can generate a driving force corresponding to the estimated running resistance is a gear ratio that is a value between predetermined gears. There is. In such a case, the gear position having a value smaller than the calculated gear ratio is selected and set.
 ところで、旋回制御が終了した時点に設定する駆動力は、その時点に生じることが推定される走行抵抗に相当する駆動力以上の駆動力である。これは、要求駆動力を増大させる操作に反する駆動力の変化が生じないようにするためである。したがって、より好ましくは、運転者の意図した駆動力に対して可及的に近い駆動力もしくはその駆動力を発生する変速比あるいはエンジン回転数を旋回制御中に設定しておくことが考えられる。すなわち、機敏な走行を行う運転者は、旋回制御の終了時に比較的大きい駆動力を発生させるようにアクセル操作し、また反対にいわゆるマイルドな走行を行う運転者は、旋回制御の終了時に比較的小さい駆動力を発生させるようにアクセル操作する傾向がある。このようないわゆる運転志向を考慮して旋回制御の終了時の駆動力を推定し、その推定結果に基づいて上限値Bを設定することが考えられる。 Incidentally, the driving force set at the time when the turning control is completed is a driving force equal to or higher than the driving force corresponding to the running resistance estimated to occur at that time. This is to prevent a change in driving force against an operation that increases the required driving force. Therefore, more preferably, it is conceivable to set the driving force as close as possible to the driving force intended by the driver, or the speed ratio for generating the driving force or the engine speed during the turning control. That is, the driver who performs agile driving operates the accelerator so as to generate a relatively large driving force at the end of the turning control, and conversely, the driver who performs a so-called mild driving relatively moves at the end of the turning control. There is a tendency to perform an accelerator operation so as to generate a small driving force. It is conceivable that the driving force at the end of the turn control is estimated in consideration of such so-called driving orientation, and the upper limit value B is set based on the estimation result.
 図3はその制御の一例を説明するためのフローチャートであって、ここに示す例は、図1に示す制御例における上限値Bを運転志向に基づいて補正するように構成した例である。運転志向は、コーナの入り口における前後加速度(前後G)や前後ジャーク、あるいは合成加速度あるいはその変化率(合成ジャーク)、あるいはスポーツモードを選択するスイッチのオン・オフ信号などに基づいて求めることができる。一例を挙げれば、操舵開始前の一定時間中に、前後加速度または前後ジャークのそれぞれの絶対値が予め定めた閾値より大きくなれば、アクセルペダルが踏み込まれたとき(アクセル・オンのとき)の前後加速度または前後ジャークを大きくするスポーツ走行の傾向が強い運転志向と判定する。他の例を挙げると、操舵中の横加速度、横ジャークのそれぞれの絶対値が予め定めた所定の値より大きくなれば、アクセルペダルが踏み込まれたとき(アクセル・オンのとき)の前後加速度または前後ジャークを大きくするスポーツ走行の傾向が強い運転志向と判定する。さらに他の例として特開2013-163514号公報に記載されている例を挙げることができる。この特開2013-163514号公報に記載された方法は、例えば、時々刻々、前後加速度と横加速度との絶対値を合成して合成加速度を求めて瞬時値とするとともにその瞬時値を保持し、新たに求められた瞬時値が、既に保持されている瞬時値より大きい場合には、新たに求められた大きい値の瞬時値を指示値として保持する。そして、逐次求められている瞬時値が指示値より小さい状態が継続し、その間に所定の条件が成立した場合に、指示値を低下させる。そして、その指示値が大きいほど、スポーツ走行の傾向が強い運転志向と判定する。なお、運転志向は、上述した方法以外に従来知られている方法で判定もしくは算出することとしてもよい。 FIG. 3 is a flowchart for explaining an example of the control, and the example shown here is an example in which the upper limit value B in the control example shown in FIG. 1 is corrected based on the driving orientation. Driving orientation can be determined based on longitudinal acceleration (front-rear G) and longitudinal jerk at the entrance of the corner, synthetic acceleration or rate of change thereof (synthetic jerk), or an on / off signal of a switch for selecting a sports mode. . For example, if the absolute value of the longitudinal acceleration or the jerk is greater than a predetermined threshold during a certain time before the start of steering, it will be before and after the accelerator pedal is depressed (when the accelerator is on). It is determined that the driving tendency has a strong tendency of sports driving to increase acceleration or front and rear jerk. As another example, if the absolute values of lateral acceleration and lateral jerk during steering are greater than a predetermined value, the longitudinal acceleration when the accelerator pedal is depressed (when the accelerator is on) or It is determined that the driving tendency has a strong tendency of sports driving to increase the front and rear jerk. Still another example is an example described in JP2013-163514A. The method described in Japanese Patent Application Laid-Open No. 2013-163514, for example, synthesizes the absolute values of the longitudinal acceleration and the lateral acceleration from moment to moment to obtain a combined acceleration to obtain an instantaneous value and hold the instantaneous value, When the newly obtained instantaneous value is larger than the already held instantaneous value, the newly obtained large instantaneous value is held as the instruction value. Then, the state where the sequentially obtained instantaneous value is smaller than the instruction value continues, and the predetermined value is satisfied during that time, the instruction value is decreased. And it determines with the driving | running | working orientation with a strong tendency of sport running, so that the instruction | indication value is large. The driving orientation may be determined or calculated by a conventionally known method other than the method described above.
 そして、ステップS5で演算された前記上限値Bが、運転志向を表しているデータに基づいて補正され(ステップS51)、ついでステップS6に進む。その補正は、上記の加速度やジャークが大きいほど、またスポーツモードが選択されているほど、言い換えれば、スポーツ走行の運転志向が強いほど、上限値Bの値を大きい値とする補正である。その補正量は、例えば下記の式で求めることができる。
  (補正駆動力)=(コーナ入り口での減速度)×(車両重量)×k
係数kは、実験やシミュレーションなどで決めた値をもとに走行中に学習した値としてよい。また、補正量は、車両の特性もしくは性格を決めるものであるから、対象とする車両Veの種類や動力性能、車速、操舵角などに応じて設計上、予め所定値に定めておいてもよい。このようにして求められる補正駆動力を、前述した車速を維持するために「必要とする駆動力」に加算することにより上限値Bが補正される。図3における他の制御ステップは図1に示す例と同様であるから、図3に図1と同様の参照符号を付してその説明を省略する。
Then, the upper limit value B calculated in step S5 is corrected based on the data indicating the driving orientation (step S51), and then the process proceeds to step S6. The correction is a correction that increases the upper limit value B as the acceleration or jerk increases, or as the sport mode is selected, in other words, as the driving direction of the sport driving is stronger. The correction amount can be obtained by the following equation, for example.
(Corrected driving force) = (Deceleration at the corner entrance) x (vehicle weight) x k
The coefficient k may be a value learned during traveling based on a value determined by experiments or simulations. Further, since the correction amount determines the characteristics or character of the vehicle, the correction amount may be set to a predetermined value in advance in design according to the type, power performance, vehicle speed, steering angle, and the like of the target vehicle Ve. . The upper limit value B is corrected by adding the corrected driving force obtained in this way to the “required driving force” for maintaining the vehicle speed described above. Other control steps in FIG. 3 are the same as those in the example shown in FIG. 1, and therefore, the same reference numerals as those in FIG.
 このような図3に示す制御を行った場合、エンジン回転数Neもしくは変速比の上限値が、運転志向に応じて大小に異なる旋回制御の終了時のエンジン回転数Neもしくは変速比に近い値になる。これを図2に併記すれば、一点鎖線もしくは二点鎖線で示すようになる。したがって、旋回制御中に上限値Bで制限されたエンジン回転数Neや変速比が違和感となることがなく、またエンジン回転数Neや変速比が旋回制御の終了に伴って変化することがなく、また変化するとしても運転者の意図とは異なる変化とはならないので、違和感を防止もしくは抑制することができる。 When such control shown in FIG. 3 is performed, the upper limit value of the engine speed Ne or the gear ratio varies depending on the driving orientation and is close to the engine speed Ne or the gear ratio at the end of the turning control. Become. If this is also shown in FIG. 2, it will be indicated by a one-dot chain line or a two-dot chain line. Therefore, the engine speed Ne and the gear ratio, which are limited by the upper limit value B during the turning control, do not feel strange, and the engine speed Ne and the gear ratio do not change with the end of the turning control. Moreover, even if it changes, it does not become a change different from the driver's intention, so that a sense of discomfort can be prevented or suppressed.
 この発明の実施例による制御装置で実行される更に他の制御例について説明する。車両Veにおけるエンジン回転数や変速比などを運転者の操作によらないで変化させる制御として、上述した旋回制御以外に路面の勾配などの走行路に関する情報に基づく制御が知られている。例えば降坂路を走行している場合にエンジンブレーキ力を増大させるために変速比を増大させる制御やナビゲーションシステムによって得られた道路情報に基づいて変速比を適宜に変化させる制御が知られている。このような走行路に関する制御と前述した旋回制御による変速比もしくはエンジン回転数Neの上限値を設定する制御とが重畳した場合、この発明に係る制御装置は図4に示す制御を実行するように構成されている。 Still another example of control executed by the control device according to the embodiment of the present invention will be described. In addition to the turning control described above, control based on information relating to a traveling road, such as road surface gradient, is known as control for changing the engine speed and the gear ratio in the vehicle Ve without the driver's operation. For example, when traveling on a downhill road, control for increasing the gear ratio in order to increase engine braking force and control for appropriately changing the gear ratio based on road information obtained by a navigation system are known. When such control relating to the travel path and control for setting the speed ratio by the turning control or the upper limit value of the engine speed Ne are superimposed, the control device according to the present invention executes the control shown in FIG. It is configured.
 図4に示す制御例は、前述した図3に示す制御例に新たな制御ステップを追加したものであって、アクセル開度と車速とに基づく変速比の演算(ステップS1)に加えて、登降坂制御による変速比が演算される(ステップS11)。登降坂制御は、従来知られているように、車両Veが降坂路あるいは登坂路を走行していることが検出され、かつ制動力あるいは駆動力が必要であることが判断された場合に、アップシフトを制限し、あるいはダウンシフトを実行する制御である。したがって、ステップS11による変速比は、他の制御ルーチンとして実行されている登降坂制御での変速比を受信し、もしくは読み込む制御であってよい。 The control example shown in FIG. 4 is obtained by adding a new control step to the control example shown in FIG. 3 described above. In addition to calculating the gear ratio based on the accelerator opening and the vehicle speed (step S1), the control example shown in FIG. A gear ratio by slope control is calculated (step S11). As is known in the art, the uphill / downhill control is increased when it is detected that the vehicle Ve is traveling on the downhill road or the uphill road and it is determined that the braking force or the driving force is necessary. This is control for limiting shift or executing downshift. Therefore, the gear ratio in step S11 may be a control for receiving or reading the gear ratio in the uphill / downhill control executed as another control routine.
 ステップS2では、旋回制御による駆動力(負の駆動力。減速力)の変化量が前述したように演算されており、その変化量(すなわち旋回制御で設定するべき減速力)を得るための変速比が、登降坂制御による変速比を基に求められる(ステップS31)。より具体的には、登降坂制御によって増大させられる変速比に、旋回制御によって増大させる変速比を加算して得られる変速比が求められる。 In step S2, the amount of change in the driving force (negative driving force, deceleration force) due to the turning control is calculated as described above, and a shift for obtaining the amount of change (that is, the deceleration force to be set in the turning control). The ratio is obtained based on the transmission ratio by the uphill / downhill control (step S31). More specifically, a speed ratio obtained by adding a speed ratio increased by turning control to a speed ratio increased by uphill / downhill control is obtained.
 そして、図1あるいは図3を参照して説明したのと同様に、ステップS4、ステップS5、ステップS51、ステップS6、ステップS7、ステップS8によって最終変速比上限値が前述した上限値Aもしくは上限値Bに設定される。なお、図4に示す制御例では、ステップS51でコーナの入口での減速度に基づいて上限値Bを補正する。ここで設定される最終変速比上限値は、上記のステップS31で演算された変速比を制限するための上限値である。すなわち、登降坂制御での変速比制御に加えて旋回制御での変速比制御を行った場合に、前後加速度もしくは前後加速度と横加速度とを合成した加速度などが違和感とならず、また旋回制御が終了した際の変速比もしくはエンジン回転数Neの変化が違和感とならないように、登降坂制御および旋回制御を実行中の変速比もしくはエンジン回転数Neを制限するためのものである。なお、これらステップS4、ステップS5、ステップS51、ステップS6、ステップS7ならびにステップS8の制御は、上述したステップS1、ステップS11、ステップS2ならびにステップS31の制御と並行して実行するように構成されていてもよい。 Then, in the same manner as described with reference to FIG. 1 or FIG. 3, the final speed ratio upper limit value is the upper limit value A or the upper limit value described above in step S4, step S5, step S51, step S6, step S7, and step S8. B is set. In the control example shown in FIG. 4, the upper limit value B is corrected based on the deceleration at the corner entrance in step S51. The final speed ratio upper limit value set here is an upper limit value for limiting the speed ratio calculated in step S31. That is, when the gear ratio control is performed in the turning control in addition to the gear ratio control in the uphill / downhill control, the longitudinal acceleration or the acceleration obtained by combining the longitudinal acceleration and the lateral acceleration is not uncomfortable, and the turning control is not performed. This is to limit the speed ratio or the engine speed Ne during the uphill / downhill control and the turn control so that the change in the speed ratio or the engine speed Ne at the end does not cause a sense of incongruity. The control of step S4, step S5, step S51, step S6, step S7 and step S8 is configured to be executed in parallel with the control of step S1, step S11, step S2 and step S31 described above. May be.
 最終変速比上限値が上記の上限値Aもしくは上限値Bに設定された後、登降坂制御による変速比と最終変速比上限値とが比較される(ステップS90)。そして、最終変速比上限値が登降坂制御による変速比より大きい場合には、登降坂制御および旋回制御が実行されている走行時の変速比が最終変速比上限値によって制限される(ステップS91)。これとは反対に登降坂制御による変速比が最終変速比上限値より大きい場合には、登降坂制御および旋回制御が実行されている走行時の変速比が登降坂制御による変速比によって制限される(ステップS92)。すなわち、登降坂制御による変速比と最終変速比上限値とのうち大きい値によって変速比が制限される。そして、その制限された変速比以下の値の変速比が出力される(ステップS10)。図4における他の制御ステップは図3に示す例と同様であるから、図4に図3と同様の参照符号を付してその説明を省略する。 After the final gear ratio upper limit value is set to the upper limit value A or the upper limit value B, the gear ratio obtained by the up / down slope control is compared with the final gear ratio upper limit value (step S90). When the final speed ratio upper limit value is larger than the speed ratio by the uphill / downhill control, the speed ratio at the time of traveling in which the uphill / downhill control and the turn control are executed is limited by the final speed ratio upper limit value (step S91). . On the other hand, when the speed ratio by the uphill / downhill control is larger than the final speed ratio upper limit value, the speed ratio at the time of traveling in which the uphill / downhill control and the turn control are executed is limited by the speed ratio by the uphill / downhill control (Step S92). That is, the speed ratio is limited by a larger value of the speed ratio by the up / down slope control and the final speed ratio upper limit value. Then, a gear ratio having a value equal to or smaller than the limited gear ratio is output (step S10). Other control steps in FIG. 4 are the same as those in the example shown in FIG. 3, and therefore, the same reference numerals as those in FIG.
 したがって、図4に示すように制御することにより、登降坂制御が実行されている状態で旋回制御によって変速比を更に制御する場合、旋回制御によってエンジン回転数が過度に増大したり、旋回制御の終了時に運転者の操作に反する変速もしくはエンジン回転数の変化が生じるなどの違和感を防止もしくは抑制することができる。また、登降坂制御による変速比を確保できるので、所望の駆動力もしくは減速力を得ることができ、これに加えて登降坂制御中の旋回性能を向上させることができる。 Therefore, when the gear ratio is further controlled by the turn control in the state where the uphill / downhill control is being executed by performing the control as shown in FIG. 4, the engine speed is excessively increased by the turn control or the turn control is performed. It is possible to prevent or suppress a sense of incongruity such as a shift or engine speed change contrary to the driver's operation at the end. Further, since the transmission ratio by the uphill / downhill control can be ensured, a desired driving force or deceleration force can be obtained, and in addition, the turning performance during the uphill / downhill control can be improved.
 図4に示す制御を行った場合の変速比、エンジン回転数Neならびに各制御のフラグの変化を図5にタイムチャートとして示してある。ここに示す例は、降坂制御が実行された場合の例であり、所定のアクセル開度および車速で走行している状態で、降坂路を走行していることの判断や制動力が求められていることの判断などが成立すると降坂制御が開始される(t11時点)。すなわち、降坂制御実行フラグがオンとなり、また変速比が降坂制御による所定の値に増大させられ、それに伴ってエンジン回転数Neが増大する。変速比およびエンジン回転数Neが降坂制御による所定の値に増大した状態で、操舵角が増大するなどの変化が検出されると、旋回制御が開始される(t12時点)。すなわち旋回制御実行フラグがオンとなり、また変速比およびエンジン回転数Neが増大させられる。旋回制御によって求められる変速比もしくはエンジン回転数Neの増大分が降坂制御による変速比の増大分に加算させられるから、演算された変速比は、例えば図5に破線で示すようになる。 FIG. 5 is a time chart showing changes in the gear ratio, the engine speed Ne, and the flags for each control when the control shown in FIG. 4 is performed. The example shown here is an example in which downhill control is executed, and it is determined that the vehicle is traveling on a downhill road and the braking force is obtained while traveling at a predetermined accelerator opening and vehicle speed. Downhill control is started (time t11). That is, the downhill control execution flag is turned on, the gear ratio is increased to a predetermined value by downhill control, and the engine speed Ne increases accordingly. When a change such as an increase in the steering angle is detected in a state where the gear ratio and the engine speed Ne are increased to the predetermined values by the downhill control, the turning control is started (time t12). That is, the turning control execution flag is turned on, and the gear ratio and the engine speed Ne are increased. Since the gear ratio obtained by the turn control or the increase in the engine speed Ne is added to the gear ratio increase by the downhill control, the calculated gear ratio is as shown by a broken line in FIG. 5, for example.
 旋回制御が開始された場合、前述した上限値Aおよび上限値Bならびにこれらに基づく最終変速比上限値が求められている。そして、登降坂制御中の旋回制御による最終的な変速比が最終変速比上限値もしくは登降坂制御による変速比で制限される。図5に示す例は、最終変速比上限値が登降坂制御による変速比より大きい場合の例であり、したがって登降坂制御と併せて旋回制御が実行された場合の変速比およびエンジン回転数Neは図5に実線で示すように設定される。なお、旋回制御が終了した場合の変速比やエンジン回転数は前述した図2に示す例と同様に変化するので、図5では省略してある。 When the turning control is started, the above-described upper limit value A and upper limit value B and the final gear ratio upper limit value based on these are obtained. And the final gear ratio by turning control during uphill / downhill control is limited by the final gear ratio upper limit value or the gear ratio by uphill / downhill control. The example shown in FIG. 5 is an example when the final speed ratio upper limit value is larger than the speed ratio by the uphill / downhill control, and therefore the speed ratio and the engine speed Ne when the turn control is executed together with the uphill / downhill control are as follows. It is set as shown by a solid line in FIG. Note that the gear ratio and the engine speed when the turning control is completed change in the same manner as in the example shown in FIG. 2 described above, and are omitted in FIG.
 なお、ここでこの発明と上述した具体例との関係を簡単に説明すると、前述したステップS5において走行抵抗を推定する制御がこの発明における推定制御に相当し、またステップS5でその走行抵抗に相当する駆動力を発生させることのできる変速比を求める制御がこの発明における上限値設定制御に相当し、さらに前述したステップS9で上限値Bで最終変速比上限値を設定しかつステップS10でその最終変速比上限値で制限した変速比を設定する制御がこの発明における変速比制御に相当する。 Here, the relationship between the present invention and the above-described specific example will be briefly described. The control for estimating the running resistance in step S5 described above corresponds to the estimation control in the present invention, and also corresponds to the running resistance in step S5. The control for obtaining the speed ratio capable of generating the driving force to be generated corresponds to the upper limit value setting control in the present invention. Further, the final speed ratio upper limit value is set with the upper limit value B at the above-described step S9, and the final value at step S10 Control for setting the speed ratio limited by the speed ratio upper limit corresponds to the speed ratio control in the present invention.
 1,2…前輪、 3,4…後輪、 5…エンジン、 6…変速機、 7,8,9,10…ブレーキ装置、 11…ブレーキアクチュエータ、 12…電子制御装置(ECU)、 13…アクセルセンサ、 14…ブレーキセンサ、 15…操舵角センサ、 16…車輪速センサ、 17…前後加速度センサ、 18…横加速度センサ、 19…ヨーレートセンサ、 Ve…車両。 1, 2 ... Front wheel, 3, 4 ... Rear wheel, 5 ... Engine, 6 ... Transmission, 7, 8, 9, 10 ... Brake device, 11 ... Brake actuator, 12 ... Electronic control unit (ECU), 13 ... Accelerator Sensor: 14 ... Brake sensor, 15 ... Steering angle sensor, 16 ... Wheel speed sensor, 17 ... Longitudinal acceleration sensor, 18 ... Lateral acceleration sensor, 19 ... Yaw rate sensor, Ve ... Vehicle.

Claims (9)

  1.  駆動力源(5)の出力側に連結された変速機(6)の変速比を、予め定めた条件が成立することによって減速力を増大させるように増大させ、前記条件が成立しなくなったことにより前記減速力の増大を終了する制御を行う車両の制御装置(12)において、
     前記条件が成立することにより前記変速比を増大させる場合の変速比を、前記条件が成立しなくなった際に要求される駆動力を発生させることのできる変速比以下の値に制御する変速比制御(S9)を行うように構成されていることを特徴とする車両の制御装置。
    The transmission ratio of the transmission (6) connected to the output side of the driving force source (5) is increased so as to increase the deceleration force when a predetermined condition is satisfied, and the condition is not satisfied. In the vehicle control device (12) for performing the control to end the increase of the deceleration force by
    Gear ratio control for controlling the gear ratio when the gear ratio is increased when the condition is satisfied to a value equal to or less than the gear ratio capable of generating the driving force required when the condition is not satisfied. A vehicle control device configured to perform (S9).
  2.  請求項1に記載された車両の制御装置(12)において、
     前記条件が成立しなくなった際に要求される駆動力を推定する推定制御(S5)と、
     前記条件が成立することにより前記変速比を増大させる場合の上限値を、前記推定された駆動力を発生させることのできる変速比に基づいて求める上限値設定制御(S5)と
    を更に行い、かつ
     前記変速比制御(S9)は、前記条件が成立したことにより増大させる変速比を前記上限値設定制御(S5)で求められた上限値以下の値に設定する制御である
    ことを特徴とする車両の制御装置。
    In the vehicle control device (12) according to claim 1,
    Estimation control (S5) for estimating a driving force required when the condition is not satisfied;
    Further performing upper limit value setting control (S5) for obtaining an upper limit value when the speed ratio is increased when the condition is satisfied based on a speed ratio capable of generating the estimated driving force; and The speed ratio control (S9) is a control for setting a speed ratio to be increased when the condition is satisfied to a value equal to or lower than the upper limit value obtained in the upper limit value setting control (S5). Control device.
  3.  請求項2に記載の車両の制御装置(12)において、
     前記車両の運転者の運転志向を求め、その運転志向に基づいて前記上限値を補正する補正制御(S51)を更に行うように構成されていることを特徴とする車両の制御装置。
    In the vehicle control device (12) according to claim 2,
    The vehicle control device is further configured to perform correction control (S51) for obtaining a driving orientation of the driver of the vehicle and correcting the upper limit value based on the driving orientation.
  4.  請求項3に記載の車両の制御装置(12)において、
     前記運転志向は、前記車両の前後加速度と、横加速度と、前後加速度および横加速度を合成した合成加速度と、これらの加速度のいずれかの加速度の変化率であるジャークとの少なくともいずれか一つに基づいて求められ、
     前記補正制御(S51)は、前記運転志向が前記車両に機敏な挙動を生じさせる運転志向が強いほど前記上限値を大きくする制御を含む
    ことを特徴とする車両の制御装置。
    In the vehicle control device (12) according to claim 3,
    The driving orientation is at least one of the longitudinal acceleration of the vehicle, the lateral acceleration, the combined acceleration obtained by combining the longitudinal acceleration and the lateral acceleration, and jerk which is a change rate of any of these accelerations. Based on
    The correction control (S51) includes a control for increasing the upper limit value as the driving orientation in which the driving orientation causes agile behavior in the vehicle is stronger.
  5.  請求項2に記載の車両の制御装置(12)において、
     前記車両が走行している走行路に関する情報に基づいて前記変速比を増大させる制御(S31)を更に実行するように構成され、
     前記変速比制御(S91,S92)は、前記走行路に関する情報に基づいて増大させられた前記変速比に、前記条件の成立によって増大させられた変速比を加算する場合にその加算された後の変速比を前記上限値以下の値に制御するように構成されている
    ことを特徴とする車両の制御装置。
    In the vehicle control device (12) according to claim 2,
    It is configured to further execute control (S31) for increasing the speed ratio based on information on a travel route on which the vehicle is traveling,
    The speed ratio control (S91, S92) is performed when the speed ratio increased by the establishment of the condition is added to the speed ratio increased based on the information on the travel path. A vehicle control apparatus configured to control a gear ratio to a value equal to or less than the upper limit value.
  6.  請求項2に記載の車両の制御装置(12)において、
     前記条件が成立することによって増大する減速力を制限するように前記変速比の他の上限値を求める他の上限値設定制御(S4)を実行するように構成され、
     前記変速比制御(S9)は、前記推定された駆動力を発生させることのできる変速比に基づいて前記上限値設定制御(S5)で求められた上限値と、前記他の上限値設定制御(S4)で求められた他の上限値のうち大きい値の上限値以下の値に前記変速比を制御するように構成されている
    ことを特徴とする車両の制御装置。
    In the vehicle control device (12) according to claim 2,
    Another upper limit value setting control (S4) for obtaining another upper limit value of the gear ratio so as to limit the deceleration force that increases when the condition is satisfied,
    The speed ratio control (S9) includes the upper limit value obtained in the upper limit value setting control (S5) based on the speed ratio capable of generating the estimated driving force, and the other upper limit value setting control ( A vehicle control apparatus configured to control the speed ratio to a value equal to or less than a large upper limit value among the other upper limit values obtained in S4).
  7.  請求項2ないし6のいずれか一項に記載の車両の制御装置(12)において、
     前記推定制御(S5)で推定される駆動力は、前記条件が成立しなくなった際の走行抵抗に等しい駆動力であることを特徴とする車両の制御装置。
    In the vehicle control device (12) according to any one of claims 2 to 6,
    The vehicle control apparatus characterized in that the driving force estimated in the estimation control (S5) is a driving force equal to a running resistance when the condition is not satisfied.
  8.  請求項1ないし7のいずれか一項に記載の車両の制御装置(12)において、
     前記条件は、前記車両の走行中に要求駆動力が予め定めた所定値以下になることを含むことを特徴とする車両の制御装置。
    In the vehicle control device (12) according to any one of claims 1 to 7,
    The vehicle control apparatus according to claim 1, wherein the condition includes that the required driving force becomes equal to or less than a predetermined value during traveling of the vehicle.
  9.  請求項1ないし8のいずれか一項に記載の車両の制御装置(12)において、
     前記条件は、前記車両が旋回走行する際に要求駆動力が予め定めた所定値以下になることを含むことを特徴とする車両の制御装置。
    In the vehicle control device (12) according to any one of the preceding claims,
    The condition includes that the required driving force is equal to or less than a predetermined value when the vehicle is turning.
PCT/JP2015/060718 2014-04-15 2015-04-06 Vehicle control device WO2015159750A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-083777 2014-04-15
JP2014083777 2014-04-15

Publications (1)

Publication Number Publication Date
WO2015159750A1 true WO2015159750A1 (en) 2015-10-22

Family

ID=54323961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060718 WO2015159750A1 (en) 2014-04-15 2015-04-06 Vehicle control device

Country Status (1)

Country Link
WO (1) WO2015159750A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7458434B2 (en) 2022-03-29 2024-03-29 本田技研工業株式会社 Mobile object and mobile object control method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09112671A (en) * 1995-10-20 1997-05-02 Nissan Motor Co Ltd Shift control device of continuously variable transmission
JPH10311412A (en) * 1997-05-13 1998-11-24 Daikin Ind Ltd Speed change control device for vehicular transmission
JP2002115756A (en) * 2000-10-06 2002-04-19 Mazda Motor Corp Attitude control device of automobile and comprehensive control device of continuously variable transmission
JP2004346991A (en) * 2003-05-21 2004-12-09 Jatco Ltd Manual speed changing and controlling apparatus of automatic transmission
JP2005297855A (en) * 2004-04-14 2005-10-27 Toyota Motor Corp Deceleration control device of vehicle
JP2013029205A (en) * 2012-10-25 2013-02-07 Nissan Motor Co Ltd Engine brake control device for vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09112671A (en) * 1995-10-20 1997-05-02 Nissan Motor Co Ltd Shift control device of continuously variable transmission
JPH10311412A (en) * 1997-05-13 1998-11-24 Daikin Ind Ltd Speed change control device for vehicular transmission
JP2002115756A (en) * 2000-10-06 2002-04-19 Mazda Motor Corp Attitude control device of automobile and comprehensive control device of continuously variable transmission
JP2004346991A (en) * 2003-05-21 2004-12-09 Jatco Ltd Manual speed changing and controlling apparatus of automatic transmission
JP2005297855A (en) * 2004-04-14 2005-10-27 Toyota Motor Corp Deceleration control device of vehicle
JP2013029205A (en) * 2012-10-25 2013-02-07 Nissan Motor Co Ltd Engine brake control device for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7458434B2 (en) 2022-03-29 2024-03-29 本田技研工業株式会社 Mobile object and mobile object control method

Similar Documents

Publication Publication Date Title
CN102470864B (en) Vehicle control system
JP5126320B2 (en) Vehicle control device
US8972087B2 (en) Vehicle control system
CN102753413B (en) Control device for vehicle
KR101288715B1 (en) Vehicle control device
JP5556523B2 (en) Vehicle control device
US8909386B2 (en) Vehicle control system
JP5671887B2 (en) Vehicle control device
JP6653085B2 (en) Vehicle driving force control device
WO2013046308A1 (en) Vehicle drive force control apparatus
JP6044713B2 (en) Vehicle control device
CN101163618A (en) Driving force control device and driving force control method
CN101492042A (en) Speed control device for vehicle on curves
WO2013030928A1 (en) Vehicle control device
JP2009179247A (en) Motion controller for vehicle
JP5732782B2 (en) Vehicle control device
JP5679067B2 (en) Vehicle control device
JP2014230456A (en) Braking control device for vehicle
JP2013086632A (en) Vehicle control device
WO2015159750A1 (en) Vehicle control device
US20160144855A1 (en) Vibration damping control system for vehicle
JP2014201124A (en) Vehicular braking control device
JP4929196B2 (en) Vehicle motion control device
KR100836292B1 (en) Driving force control method for a four wheel drive hybrid vehicle
JP2017115935A (en) Vehicular shift control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15779389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15779389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP