WO2015159559A1 - Oil separator - Google Patents

Oil separator Download PDF

Info

Publication number
WO2015159559A1
WO2015159559A1 PCT/JP2015/050314 JP2015050314W WO2015159559A1 WO 2015159559 A1 WO2015159559 A1 WO 2015159559A1 JP 2015050314 W JP2015050314 W JP 2015050314W WO 2015159559 A1 WO2015159559 A1 WO 2015159559A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
wall
oil
inflow pipe
shell
Prior art date
Application number
PCT/JP2015/050314
Other languages
French (fr)
Japanese (ja)
Inventor
貴司 森山
村上 泰城
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015532209A priority Critical patent/JP5868557B1/en
Publication of WO2015159559A1 publication Critical patent/WO2015159559A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/02Construction of inlets by which the vortex flow is generated, e.g. tangential admission, the fluid flow being forced to follow a downward path by spirally wound bulkheads, or with slightly downwardly-directed tangential admission
    • B04C5/04Tangential inlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant

Definitions

  • the present invention relates to an oil separator.
  • a circular pipe is used as a discharge pipe for guiding the oil mixed refrigerant discharged from the compressor to the oil separation means. For this reason, the oil flowing through the pipe wall on the inner peripheral side of the oil separation space in the discharge pipe is released at a position away from the inner wall surface of the oil separation space at the downstream end of the discharge pipe in the oil separation space. As a result, oil droplets having a small diameter are difficult to reach the inner wall surface of the oil separation space due to centrifugal force, and flow out to the outside together with the refrigerant. Therefore, there has been a problem that the oil separation efficiency is lowered.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an oil separator that can improve oil separation efficiency.
  • An oil separator includes a container having a cylindrical inner wall surface and an inflow that is connected to the container along a tangential direction of the inner wall surface and flows a mixed fluid mixed with gas and oil into the container.
  • the inflow pipe has a pipe wall and a partition wall or a groove provided in a flow path in the pipe wall, and on the downstream end side of the inflow pipe located inside the container An opening portion is provided in which the tube wall on the central axis side of the inner wall surface is opened, and in the opening portion, the partition wall or the groove is exposed on the central axis side of the inner wall surface. is there.
  • the partition wall or the groove is provided in the inside of the inflow pipe, it becomes easy for oil to flow together and generation of small oil droplets that are difficult to centrifuge can be suppressed. Furthermore, since an open portion is provided on the downstream end side of the inflow pipe with the partition wall or groove exposed to the center axis side of the inner wall surface of the container, the oil flowing into the container from the inflow pipe becomes small oil droplets. Scattering can be suppressed. Therefore, according to the present invention, oil separation efficiency can be improved.
  • FIG. 1 It is a perspective view which shows schematic structure of the oil separator 1 which concerns on Embodiment 1 of this invention. It is a perspective sectional view which notched a part of oil separator 1 concerning Embodiment 1 of the present invention. It is sectional drawing which shows an example of the structure of the inflow pipe 6 in the oil separator 1 which concerns on Embodiment 1 of this invention, and shows the cross section (a) of the piping part 11, and the cross section (b) of the open part 13 collectively. FIG. It is sectional drawing which shows another example of the structure of the inflow pipe 6 in the oil separator 1 which concerns on Embodiment 1 of this invention, and combines the cross section (a) of the piping part 11, and the cross section (b) of the open part 13. FIG.
  • FIG. 3 is a cross-sectional view showing a configuration in which a joint portion between an inflow pipe 6 and a shell 3 is cut perpendicularly to the central axis of the shell 3 in the oil separator 1 according to Embodiment 1 of the present invention.
  • FIG. It is a perspective view which shows the structure of the junction part of the inflow pipe 6 and the shell 3 in the oil separator 1 which concerns on Embodiment 1 of this invention.
  • It is sectional drawing which shows the modification of the structure of the inflow pipe 6 in the oil separator 1 which concerns on Embodiment 1 of this invention, and combines the cross section (a) of the piping part 11, and the cross section (b) of the open part 13.
  • FIG. 6 is a cross-sectional view showing a configuration in which a joint portion between an inflow pipe 6 and a shell 3 in an oil separator 1 according to Embodiment 2 of the present invention is cut perpendicularly to the central axis of the shell 3.
  • FIG. 6 is a cross-sectional view showing a configuration in which a joint portion between an inflow pipe 6 and a shell 3 in an oil separator 1 according to Embodiment 2 of the present invention is cut perpendicularly to the central axis of the shell 3.
  • FIG. 6 is a cross-sectional view showing a configuration in which a joint portion between an inflow pipe 6 and a shell 3 in an oil separator 1 according to Embodiment 3 of the present invention is cut perpendicularly to the central axis of the shell 3.
  • FIG. 6 is a cross-sectional view showing a configuration in which a joint portion between an inflow pipe 6 and a shell 3 in an oil separator 1 according to Embodiment 3 of the present invention is cut perpendicularly to the central axis of the shell 3.
  • FIG. 1 It is sectional drawing which shows the structure of the inflow pipe 6 in the oil separator 1 which concerns on Embodiment 3 of this invention, and is a figure which shows the cross section (a) of the piping part 11, and the cross section (b) of the open part 13 collectively. is there. It is a perspective view which shows the structure of the junction part of the inflow pipe 6 and the shell 3 in the oil separator 1 which concerns on Embodiment 4 of this invention. 7 is a cross-sectional view showing a configuration in which a joint portion between an inflow pipe 6 and a shell 3 in an oil separator 1 according to Embodiment 4 of the present invention is cut perpendicularly to the central axis of the shell 3.
  • FIG. 1 It is sectional drawing which shows the structure of the inflow pipe 6 in the oil separator 1 which concerns on Embodiment 4 of this invention, and is a figure which shows the cross section (a) of the piping part 11, and the cross section (b) of the open part 13 collectively. is there. It is a perspective view which shows the structure of the junction part of the inflow pipe 6 and the shell 3 in the oil separator 1 which concerns on Embodiment 5 of this invention. It is sectional drawing which shows an example of a structure of the inflow pipe 6 in the oil separator 1 which concerns on Embodiment 5 of this invention, and shows the cross section (a) of the piping part 11, and the cross section (b) of the open part 13 collectively.
  • FIG. 1 It is sectional drawing which shows another example of the structure of the inflow pipe 6 in the oil separator 1 which concerns on Embodiment 5 of this invention, and combines the cross section (a) of the piping part 11, and the cross section (b) of the open part 13.
  • FIG. It is sectional drawing which shows the modification of the structure of the inflow pipe 6 in the oil separator 1 which concerns on Embodiment 5 of this invention, and combines the cross section (a) of the piping part 11, and the cross section (b) of the open part 13.
  • FIG. 1 It is sectional drawing which shows the modification of the structure of the inflow pipe 6 in the oil separator 1 which concerns on Embodiment 5 of this invention, and combines the cross section (a) of the piping part 11, and the cross section (b) of the open part 13.
  • FIG. It is a perspective view which shows the structure of the junction part of the inflow pipe 6 and the shell 3 in the oil separator 1 which concerns on Embodiment 6 of this invention.
  • It is sectional drawing which shows the structure which cut
  • FIG. 7 It is a perspective view which shows the structure of the junction part of the inflow pipe 6 and the shell 3 in the oil separator 1 which concerns on Embodiment 7 of this invention. It is sectional drawing which shows the structure which cut
  • FIG. It is sectional drawing which shows the structure of the inflow pipe 6 in the oil separator 1 which concerns on Embodiment 7 of this invention, the cross section (a) of the piping part 11, the cross section (b) of the pipe wall spacing part 23, and the open part 13 It is a figure which shows a cross section (c) collectively.
  • FIG. 9 is a cross-sectional view showing a configuration in which a joint portion between an inflow pipe 6 and a shell 3 in an oil separator 1 according to a modification of Embodiment 7 of the present invention is cut perpendicularly to the central axis of the shell 3.
  • It is sectional drawing which shows the structure of the inflow pipe 6 in the oil separator 1 which concerns on the modification of Embodiment 7 of this invention, the cross section (a) of the piping part 11, the cross section (b) of the pipe wall separation part 23, and open
  • FIG. 1 It is a perspective view which shows the structure of the junction part of the inflow pipe 6 and the shell 3 in the oil separator 1 which concerns on Embodiment 8 of this invention.
  • FIG. 1 It is sectional drawing which shows the structure of the inflow pipe 6 in the oil separator 1 which concerns on Embodiment 8 of this invention, and is a figure which shows the cross section (a) of the piping part 11, and the cross section (b) of the open part 13 collectively. is there.
  • It is sectional drawing which shows the modification of the structure of the inflow pipe 6 in the oil separator 1 which concerns on Embodiment 8 of this invention, and combines the cross section (a) of the piping part 11, and the cross section (b) of the open part 13.
  • Embodiment 1 An oil separator according to Embodiment 1 of the present invention will be described.
  • the oil separator 1 (cyclonic oil separator) according to the present embodiment is one of components of a refrigeration cycle used in, for example, an air conditioner, a refrigerator, a refrigerator, a vending machine, a water heater, and the like. It is.
  • the oil separator 1 is connected to the discharge side of the compressor in the refrigeration cycle, and has a function of separating oil contained in the refrigerant gas discharged from the compressor.
  • the oil separated from the refrigerant gas by the oil separator 1 is returned to the suction side of the compressor through an oil return pipe.
  • FIG. 1 is a perspective view showing a schematic configuration of an oil separator 1 according to the present embodiment.
  • FIG. 2 is a perspective cross-sectional view in which a part of the oil separator 1 according to the present embodiment (shell 3, upper end plate 4, lower end plate 5) is cut away.
  • the dimensional relationship and shape of each component may differ from the actual ones.
  • the positional relationship (for example, up-down relationship etc.) between each structural member in a specification is a thing when installing the oil separator 1 in the state which can be used in principle.
  • the inflow pipe 6 is connected above the outer wall of the shell 3 along the tangential direction (for example, horizontal tangential direction) of the shell 3 (container 2).
  • a gas outflow pipe 7 having a diameter smaller than that of the shell 3 is connected to the upper end plate 4 so as to be coaxial with the shell 3.
  • An oil outflow pipe 8 having a diameter smaller than that of the shell 3 is connected to the lower end plate 5 so as to be coaxial with the shell 3.
  • the inflow pipe 6 of the present example has a tube wall having a flat or elliptical cross-sectional shape, and a partition wall or a groove provided in a flow path in the tube wall.
  • the major axis in the cross section of the inflow pipe 6 is arranged along the inner wall surface of the shell 3 so as to be parallel to the central axis of the shell 3.
  • the inflow pipe 6 is provided on the downstream end side of the pipe portion 11 provided in the section from the outside to the inside of the container 2 and the inflow pipe 6 located inside the container 2, and is provided on the central axis side of the shell 3.
  • the lower end (upstream end) of the gas outflow pipe 7 passes through the upper end plate 4 and is located on the central axis of the inner wall surface of the shell 3.
  • the outer wall surface of at least the portion located inside the container 2 has a cylindrical shape.
  • the space in the container 2 formed between the inner wall surface of the shell 3 located above the lower end portion of the gas outflow pipe 7 and the outer wall surface of the gas outflow pipe 7 is gas and oil flowing in from the inflow pipe 6.
  • Is a revolving part 9 that revolves along the inner wall surface of the shell 3.
  • a space surrounded by the inner wall surface of the shell 3 located below the lower end portion of the gas outflow pipe 7 (a space below the swivel portion 9) is a swivel opening portion 10.
  • a mixed fluid in which gas and oil are mixed flows into the inflow pipe 6 from the outside.
  • the mixed fluid that has flowed into the inflow pipe 6 flows through the inflow pipe 6 and is released to the swivel portion 9 that is a space in the container 2 at the downstream end of the inflow pipe 6 located in the container 2.
  • the gas and oil of the mixed fluid flow downward while swirling the swivel unit 9 around the gas outflow pipe 7.
  • the oil having a relatively large specific gravity moves to the radially outer side of the swivel shaft (inner wall surface side of the shell 3) by centrifugal force.
  • the oil that has moved radially outward reaches the inner wall surface of the shell 3
  • the oil flows along the inner wall surface.
  • the oil flows along the inner wall surface of the shell 3 even when the oil reaches the swivel opening 10 below the swivel unit 9.
  • the gas flows through the space in the swivel unit 9 and then reaches the space in the swivel release unit 10.
  • the oil that has reached the lower end plate 5 flows down the tapered surface of the lower end plate 5 together with the oil that has reached the lower end plate 5 directly from the space of the swivel opening 10 and collects at the upper end of the oil outflow pipe 8. These oils flow in the oil outflow pipe 8 downward as they are and flow out to the outside.
  • the mixed fluid of gas and oil that flows into the container 2 of the oil separator 1 from the inflow pipe 6 includes the gas that flows out from the gas outflow pipe 7 and the oil that flows out from the oil outflow pipe 8 to the outside. And separated.
  • the oil present as oil droplets in the swivel unit 9 or the swirl opening unit 10 is less likely to be separated from the gas because the smaller the oil droplet, the less affected by centrifugal force and gravity.
  • FIG. 3 is a cross-sectional view showing an example of the configuration of the inflow pipe 6 in the present embodiment, and is a view showing both the cross section (a) of the pipe portion 11 and the cross section (b) of the open portion 13.
  • the cross section shown in FIG. 3 for example, a cross section perpendicular to the pipe axis direction (main flow direction)
  • the major axis a and the minor axis b of the inflow pipe 6 are defined so that a> b.
  • the inflow pipe 6 of this example includes a pipe wall 6a having a flat or elliptical cross-sectional shape, and a partition wall 6b provided in a flow path in the pipe wall 6a. Yes.
  • a plurality of flat partition walls 6b parallel to the minor axis b direction and the tube axis direction are arranged in parallel in the major axis a direction.
  • the flow path inside the inflow pipe 6 is partitioned into a plurality of spaces (flow paths) by the partition wall 6b.
  • the cross-sectional shape of the inflow pipe 6 in the piping part 11 is uniform with respect to the pipe axis direction.
  • the cross-sectional shape of the inflow pipe 6 in the open part 13 is uniform with respect to the pipe axis direction. Comparing the cross section of the piping part 11 shown in FIG. 3A with the cross section of the open part 13 shown in FIG.
  • FIG. 4 is a cross-sectional view showing another example of the configuration of the inflow pipe 6 in the present embodiment, and is a view showing a cross section (a) of the pipe portion 11 and a cross section (b) of the open portion 13 together.
  • the inflow pipe 6 of this example includes a pipe wall 6a having a flat or elliptical cross-sectional shape, and a plurality of grooves 6c provided on the inner wall surface of the pipe wall 6a. Yes. Each of the grooves 6c has a rectangular cross-sectional shape.
  • the inflow pipe 6 provided with the partition wall 6b or the groove 6c has a larger surface area on the inner wall surface than the smooth pipe without the partition wall and the groove.
  • the shearing force acting in the direction of stopping the flow received by the oil from the inner wall surface increases.
  • the surface area of an inner wall surface becomes large, the flow velocity of the oil which flows along an inner wall surface will fall.
  • the oil tends to flow together.
  • oil tends to flow together due to the effect of capillary force.
  • FIG. 5 is a cross-sectional view showing a configuration in which a joint portion between the inflow pipe 6 and the shell 3 is cut perpendicularly to the central axis of the shell 3.
  • FIG. 6 is a perspective view showing a configuration of a joint portion between the inflow pipe 6 and the shell 3.
  • the inflow pipe 6 and the shell 3 are configured such that the long axis a (not shown in FIGS. 5 and 6) of the inflow pipe 6 is parallel to the central axis of the shell 3. b is connected so as to be perpendicular to the central axis of the shell 3.
  • the inflow pipe 6 is connected along the tangential direction of the inner wall surface of the shell 3.
  • the outer wall of the downstream end 14 of the inflow pipe 6 is in contact with the inner wall surface of the shell 3. Since the short axis b of the inflow pipe 6 is arranged perpendicularly to the central axis of the shell 3, the oil swirls in the inflow pipe 6 at a position closer to the inner wall surface of the shell 3 than the circular pipe having the same flow rate in the pipe. It is easy to open to the part 9.
  • the oil released to the swivel unit 9 at a position close to the inner wall surface of the shell 3 is likely to reach the inner wall surface of the shell 3 because the radial movement distance due to centrifugal force is shortened. Therefore, the oil separation efficiency is improved.
  • the inflow pipe 6 is provided on the downstream end 14 side of the inflow pipe 6 located inside the container 2 and the pipe portion 11 provided in a section extending from the outside to the inside of the container 2 and a part of the inside of the container 2. And an open portion 13 in which the tube wall 6a on the center axis side (gas outflow pipe 7 side) of the shell 3 is opened. In the open portion 13, the partition wall 6 b (or groove 6 c) is exposed on the center axis side of the shell 3. In the pipe part end part 12 which becomes a boundary between the pipe part 11 and the open part 13, the inner wall surface of the pipe line in the pipe part 11 and the inner wall surface of the pipe line in the open part 13 are continuously connected. Yes.
  • the opening part 13 If the opening part 13 is not provided, the oil is opened directly to the swivel part 9 from the downstream end of the pipe part 11, so that a large flow rate difference occurs between the oil and the surrounding gas flow. For this reason, since the shear force which oil receives from a gas flow becomes strong, oil becomes easy to be divided into small oil droplets. Also, since there is a difference in the surrounding gas flow velocity, the shearing force received by the oil from the surroundings varies and disturbance occurs, so that the oil is easily separated into small oil droplets. Moreover, in the open part 13, the oil whose flow velocity fell and the layer became thick can be received by the partition wall 6b or the groove
  • FIGS. 7 and 8 are cross-sectional views showing modified examples of the configuration of the inflow pipe 6, and are both a cross-section (a) of the pipe portion 11 and a cross-section (b) of the open portion 13.
  • the cross sections of the plurality of spaces partitioned by the partition wall 6b are each circular.
  • the cross-sectional shape of the groove 6 c is a triangular shape
  • the inner wall surface of the conduit of the inflow pipe 6 is a straight wave shape.
  • the inner wall surface of the pipe line of the inflow pipe 6 may have a curved wave shape.
  • FIG. 9 is a cross-sectional view showing a configuration in which the joint portion between the inflow pipe 6 and the shell 3 in the present embodiment is cut perpendicularly to the central axis of the shell 3.
  • symbol is attached
  • the configuration in which the inflow pipe 6 is integrated is illustrated.
  • the inflow pipe 6 in the present embodiment has a configuration in which two grooved plates are combined so that the grooves face each other. .
  • the inflow pipe 6 in the present embodiment has a configuration in which two grooved plates (inner peripheral side grooved plate 15 and outer peripheral side grooved plate 16) are combined and joined.
  • the inner circumferential grooved plate 15 is disposed on the center axis side of the shell 3
  • the outer circumferential grooved plate 16 is disposed on the inner wall surface side of the shell 3.
  • the length in the tube axis direction of the inner circumferential grooved plate 15 is shorter than the length in the tube axis direction of the outer circumferential grooved plate 16.
  • FIG. 10 is a cross-sectional view showing the configuration of the inflow pipe 6 in the present embodiment, and is a view showing the cross section (a) of the pipe portion 11 and the cross section (b) of the open portion 13 together.
  • the inner circumferential grooved plate 15 and the outer circumferential grooved plate 16 are joined by a plane parallel to the major axis a direction and the tube axis direction of the inflow pipe 6.
  • the inner peripheral grooved plate 15 and the outer peripheral grooved plate 16 have the same cross-sectional shape.
  • the structure of the piping part 11 of the inflow pipe 6 after joining is the same as the structure of the piping part 11 of the inflow pipe 6 shown in FIG.
  • the structure of the open part 13 of the inflow pipe 6 after joining is the inflow shown in FIG. 3B except that the height of the partition wall 6b is reduced (in this example, the height is halved).
  • the configuration is the same as that of the open portion 13 of the tube 6.
  • the height of the partition wall 6 b in the open part 13 is constant in the section from the pipe part end 12 to the downstream end 14.
  • the inflow pipe 6 of Embodiment 1 When manufacturing the inflow pipe 6 of Embodiment 1, it is necessary to mold the piping part 11 and the open part 13 in one member, respectively.
  • the inflow pipe 6 of the present embodiment can be manufactured by combining the inner peripheral grooved plate 15 and the outer peripheral grooved plate 16 that can be easily molded. Therefore, according to the present embodiment, in addition to obtaining the same effect as that of the first embodiment, the effect of facilitating the manufacture of the inflow pipe 6 is also obtained.
  • the inflow pipe 6 in the present embodiment includes an outer pipe 17 that forms an outer wall (pipe wall) and has a flat or elliptical cross-sectional shape, and is disposed inside the outer pipe 17.
  • the grooved plate 18 is provided.
  • the length of the outer tube 17 in the tube axis direction is shorter than the length of the grooved plate 18 in the tube axis direction.
  • the grooved plate 18 of this example was erected along the short axis b direction on the bottom surface part 18a and the bottom surface part 18a having a cross-sectional shape extending in the long axis a direction along the inner wall surface of the outer peripheral tube 17.
  • the wall portion 18b functions as a partition wall that partitions the flow path in the inflow pipe 6 into a plurality of spaces.
  • a groove is formed between the adjacent wall portions 18b.
  • the bottom surface portion 18 a constitutes a tube wall of the inflow tube 6 together with the outer peripheral tube 17.
  • two grooved plates (for example, the inner circumferential grooved plate 15 and the outer circumferential grooved plate 16) may be combined, and the outer side may be covered with the outer circumferential tube 17. . Also in this structure, since the outer periphery of the part located outside the container 2 in the inflow pipe 6 is covered with the outer peripheral pipe 17, a sealing process is not required for the joint portion between the two grooved plates. Therefore, in addition to obtaining the same effect as in the second embodiment, the effect of facilitating the manufacture of the inflow pipe 6 is also obtained.
  • FIG. 13 is a perspective view showing a configuration of a joint portion between the inflow pipe 6 and the shell 3 in the present embodiment.
  • FIG. 14 is a cross-sectional view showing a configuration in which the joint portion between the inflow pipe 6 and the shell 3 in this embodiment is cut perpendicularly to the central axis of the shell 3.
  • FIG. 15 is a cross-sectional view showing the configuration of the inflow pipe 6 in the present embodiment, and is a view showing both the cross section (a) of the pipe portion 11 and the cross section (b) of the open portion 13.
  • symbol is attached
  • the inflow pipe 6 in the present embodiment includes an outer pipe 17 that forms an outer wall (pipe wall) and has a flat or elliptical cross-sectional shape, and is disposed inside the outer pipe 17.
  • Partition plate 19 (grooved plate).
  • the partition plate 19 is formed in a linear wave shape (triangular wave shape), and extends in the major axis a direction of the inflow pipe 6 as a whole.
  • the corners (the tops of the waves) of the partition plate 19 are, for example, acute angles, and are alternately in contact with the two inner wall surfaces of the outer peripheral pipe 17 facing each other across the partition plate 19.
  • the partition plate 19 may be formed in a curved wave shape.
  • the partition plate 19 functions as a partition wall that partitions the flow path in the inflow pipe 6 into a plurality of spaces, and the inside of the corner also functions as a groove.
  • the length of the outer peripheral tube 17 in the tube axis direction is shorter than the length of the partition plate 19 in the tube axis direction.
  • the pipe portion 11 including the outer peripheral tube 17 and the partition plate 19 and the open portion 13 including only the partition plate 19 are formed.
  • the partition plate 19 (partition wall) is exposed not only on the central axis side of the shell 3 but also on the inner wall surface side of the shell 3.
  • the flow path is divided on both sides of the partition plate 19, so that the flow path of the open portion 13 exists not only on the central axis side of the shell 3 but also on the inner wall surface side of the shell 3. become. Since the open space of the flow path on the inner wall surface side of the shell 3 in the open portion 13 is narrow, it is difficult for gas and oil to flow. As a result, most of the gas and oil concentrate in the flow path on the central axis side of the shell 3. For this reason, the flow rate of the gas is reduced in the flow path on the inner wall surface side of the shell 3, so that the oil easily flows along the corner (groove).
  • the oil that has flowed through the flow path on the inner wall surface side of the shell 3 is released to the inner wall surface side of the shell 3 at the downstream end 14.
  • the oil scattered in the gas flow in the flow path on the inner wall surface side of the shell 3 immediately reaches the inner wall surface of the shell 3 because the distance from the inner wall surface of the shell 3 is short.
  • the oil separation efficiency is improved by the same action as in the first embodiment.
  • the present embodiment can provide substantially the same effect as in the first embodiment.
  • the partition plate 19 is covered with the outer peripheral pipe 17 in the pipe portion 11, and both surfaces of the partition plate 19 are inside the container 2 in the open portion 13. For this reason, since the partition plate 19 is hard to receive the stress by a static pressure difference, it can be comprised with a thin board. By configuring the partition plate 19 with a thin plate, the reduction in the flow passage cross-sectional area of the inflow pipe 6 due to the thickness of the partition plate 19 is reduced. Therefore, the number of folding of the partition plate 19 is increased and the inner wall area of the inflow pipe 6 is increased. Can be increased. By increasing the inner wall area of the inflow pipe 6, the flow rate of oil flowing along the inner wall surface can be increased and the oil can be collected and released into the container 2, so that the oil separation efficiency is improved.
  • the downstream end 14 of the partition plate 19 is in contact with the inner wall surface of the shell 3 in the open portion 13.
  • the flow path on the central axis side of the shell 3 in the partition plate 19 and the inner wall surface of the shell 3 can be brought into contact with each other at an angle close to parallel, the oil flowing through the flow path of the shell 3 at the downstream end 14 When moving to the inner wall surface, the oil is less likely to be scattered due to the disturbance due to the sudden bending of the flow path. Further, the oil flowing through the flow path on the inner wall surface side of the shell 3 in the partition plate 19 is less likely to be disturbed in the flow because the flow in the direction other than the main flow is reduced. In addition, since the distance between the flow path and the inner wall surface of the shell 3 is reduced, the oil flowing through the flow path easily reaches the inner wall surface of the shell 3.
  • FIG. 16 is a perspective view showing a configuration of a joint portion between the inflow pipe 6 and the shell 3 in the present embodiment.
  • FIG. 17 is a cross-sectional view showing an example of the configuration of the inflow pipe 6 in the present embodiment, and is a view showing both the cross section (a) of the pipe portion 11 and the cross section (b) of the open portion 13.
  • symbol is attached
  • the inflow pipe 6 of the present embodiment has a configuration in which a plurality of circular pipes 20 are arranged in parallel in one direction (a direction parallel to the central axis of the shell 3). And has a flat cross-sectional shape as a whole.
  • the open portion 13 has a structure in which the semicircular portion on the central axis side of the shell 3 is removed in each of the plurality of circular tubes 20 and the semicircular portion 20a on the inner wall surface side of the shell 3 remains. In the open part 13, the semicircular parts 20 a are closely contacted or joined together without any gaps, so that a whole oil receiving tray is obtained.
  • FIG. 18 is a cross-sectional view showing another example of the configuration of the inflow pipe 6 in the present embodiment, and is a view showing a cross section (a) of the pipe portion 11 and a cross section (b) of the open portion 13 together.
  • the inflow pipe 6 of the present example has a configuration in which a plurality of square tubes 21 are joined in parallel in one direction (a direction parallel to the central axis of the shell 3).
  • the open portion 13 has a structure in which one side of the central axis side of the shell 3 is removed from each of the plurality of square tubes 21 and the U-shaped portion 21a formed by the other three sides remains.
  • the same effects as those of the first embodiment can be obtained by the configuration of the present embodiment shown in FIGS.
  • the inflow pipe 6 is configured by using a circular pipe 20 and a square pipe 21 that are relatively easily available and inexpensive mass-produced products. Thereby, since an effect is acquired without using a flat tube or an elliptical tube, the manufacturing cost of the inflow pipe 6 and the oil separator 1 can be reduced.
  • the inflow pipe 6 shown in FIG. 19 has a configuration in which a plurality of circular pipes 20 arranged in one direction are arranged inside an outer peripheral pipe 17 having a flat cross-sectional shape.
  • the open portion 13 has a structure in which a portion on the central axis side of the shell 3 is removed from each of the outer peripheral tube 17 and the plurality of circular tubes 20.
  • the inflow pipe 6 shown in FIG. 19 has a configuration in which a plurality of circular pipes 20 arranged in one direction are arranged inside an outer peripheral pipe 17 having a flat cross-sectional shape.
  • the open portion 13 has a structure in which a portion on the central axis side of the shell 3 is removed from each of the outer peripheral tube 17 and the plurality of circular tubes 20.
  • the piping part 11 of the inflow pipe 6 includes an outer peripheral pipe 17 and a plurality of U-shaped parts 21a, and the open part 13 of the inflow pipe 6 includes only a plurality of U-shaped parts 21a.
  • FIG. 19 and FIG. 20 is a combination of the present embodiment and the third embodiment.
  • the outer pipes 20 or the outer sides of the U-shaped portions 21a of the plurality of square tubes are covered with the outer peripheral pipe 17, thereby joining the pipes (the circular pipes 20 or the U-shaped parts 21a). Processing, joining processing of the shell 3 and the inflow pipe 6, and sealing processing of the inflow pipe 6 are facilitated.
  • FIG. 21 is a perspective view showing a configuration of a joint portion between the inflow pipe 6 and the shell 3 in the present embodiment.
  • FIG. 22 is a cross-sectional view showing a configuration in which the joint portion between the inflow pipe 6 and the shell 3 in this embodiment is cut perpendicularly to the central axis of the shell 3.
  • symbol is attached
  • the open part 13 from the pipe part end 12 to the downstream end 14 is joined to the inner wall surface of the shell 3 (container 2), or the shell 3. It is molded integrally with the inner wall surface. That is, in the present embodiment, a plurality of partition walls 22 are formed in a part of the inner wall surface of the shell 3 in the circumferential direction. Each partition wall 22 is formed in an arc shape along the inner wall surface of the shell 3. In the inflow pipe 6, the wall surface of the partition wall 6 b formed inside the inflow pipe 6 (pipe portion 11) and the wall surface of the partition wall 22 formed in the inner wall surface of the shell 3 are continuously connected to each other. Are joined together.
  • the partition wall 22 formed continuously from the pipe line in the inflow pipe 6 is exposed to the central axis side of the inner wall surface of the shell 3.
  • a plurality of grooves 6 c are provided in the inflow pipe 6, a plurality of grooves corresponding to the grooves 6 c may be provided on the inner wall surface of the shell 3.
  • the inflow pipe 6 is joined so that the wall surface of the groove 6 c formed inside the inflow pipe 6 and the wall surface of the groove formed on the inner wall surface of the shell 3 are continuously connected to each other. .
  • the length of the open portion 13 can be easily increased, a gas flow flowing along the open portion 13, a gas flow flowing on the central axis side of the inner wall surface of the shell 3,
  • the section for decreasing the speed difference can be lengthened. Therefore, the flow velocity of the oil flowing along the inner wall surface at the downstream end 14 of the opening portion 13 decreases and flows together, and the shear force received when the oil is released to the swiveling portion 9 is weakened. The amount of oil can be reduced. Therefore, the oil separation efficiency can be improved.
  • the open part 13 of this example is formed in circular arc shape, the gas and oil which flow through the open part 13 receive centrifugal force similarly to the turning part 9. Therefore, the amount of oil flowing along the inner wall surface of the open portion 13 can be increased, and the oil separation efficiency can be improved.
  • the depth of the groove on the inner wall surface of the shell 3 is gradually decreased toward the downstream end 14 of the opening portion 13.
  • the groove may disappear at the downstream end 14.
  • the bottom face of the groove and the inner wall surface of the shell 3 can be continuously connected. If the oil flowing along the inner wall surface of the shell 3 has a step or a discontinuous surface, the flow is disturbed due to the drift and is likely to be scattered.
  • FIG. 23 is a perspective view showing a configuration of a joint portion between the inflow pipe 6 and the shell 3 in the present embodiment.
  • FIG. 24 is a cross-sectional view showing a configuration in which the joint portion between the inflow pipe 6 and the shell 3 in the present embodiment is cut perpendicularly to the central axis of the shell 3.
  • FIG. 25 is a cross-sectional view showing the configuration of the inflow pipe 6 in the present embodiment.
  • symbol is attached
  • the inflow pipe 6 in the present embodiment has a pipe wall separating portion 23 provided in a section from the outside to the inside of the container 2 (shell 3).
  • the pipe wall separation part 23 is located between the pipe part 11 and the open part 13 in the pipe axis direction of the inflow pipe 6. That is, the piping part 11 is located outside the shell 3, and the opening part 13 is located inside the shell 3.
  • FIG. 26 is a cross-sectional view showing a configuration in which a joint portion between the inflow pipe 6 and the shell 3 is cut perpendicularly to the central axis of the shell 3 in a modification of the present embodiment.
  • FIG. 27 is a cross-sectional view showing the configuration of the inflow pipe 6 in this modification, and shows a cross section (a) of the pipe part 11, a cross section (b) of the pipe wall separating part 23, and a cross section (c) of the open part 13. It is a figure shown collectively.
  • the inflow pipe 6 shown in FIGS. 26 and 27 has a pipe wall separating portion 23 located between the pipe portion 11 and the open portion 13 in the pipe axis direction, like the inflow pipe 6 shown in FIGS. Have.
  • the piping part 11 and the opening part 13 have the same cross-sectional shape as the piping part 11 and the opening part 13 shown in FIGS. 10 (a) and 10 (b). ing.
  • the tube wall separating portion 23 is located on the center axis side of the shell 3, and a separating wall 24 (for example, a tube wall 6 a for a half circumference) opened by the opening portion 13 is a partition wall 6 b. It has the structure spaced apart from. In the present modification, the tube wall separation portion 23 is not expanded with respect to the piping portion 11.
  • the height of the partition wall 6b at the pipe wall separation portion 23 is shortened in the minor axis b direction with respect to the partition wall 6b at the pipe portion 11.
  • the pipe wall separation part 23 has a configuration in which the separation wall 24 (for example, the pipe wall 6a for a half circumference) opened by the opening part 13 is separated from the partition wall 6b.
  • the tube wall separation portion 23 can be formed between the piping portion 11 and the opening portion 13 in the same manner as the configuration shown in FIGS.
  • the oil in the inflow pipe 6 is close to the wall (the pipe wall 6a or the partition wall 6b) in the inflow pipe 6 due to the effects of inertial force, viscous force and surface tension, and tends to flow in a region where the flow is slow.
  • the oil in the tube wall separation portion 23 is along the opposite side of the separation wall 24 in which the gap between the walls is narrowed by forming a groove rather than the separation wall 24 side which is a smooth surface. Easy to flow. Therefore, in the pipe wall separation part 23, the oil flowing along the separation wall 24 decreases and the oil flowing along the facing side of the separation wall 24 increases as it goes downstream.
  • the oil flowing along the pipe wall surface located on the center axis side of the shell 3 is not collected in the pipe wall 6a of the open part 13 at the pipe part end part 12 as it is. It will scatter to the turning part 9.
  • the amount of oil flowing along the separation wall 24 located on the center axis side of the shell 3 can be reduced, the amount of oil scattered on the swivel unit 9 can be reduced. . Therefore, according to the present embodiment, the oil separation efficiency can be improved.
  • FIG. 28 is a perspective view illustrating a configuration of a joint portion between the inflow pipe 6 and the shell 3 in the present embodiment.
  • FIG. 29 is a cross-sectional view showing the configuration of the inflow pipe 6 in the present embodiment, and is a view showing the cross section (a) of the pipe portion 11 and the cross section (b) of the open portion 13 together.
  • symbol is attached
  • the inflow pipe 6 in the present embodiment is not a flat or elliptical pipe but a circular pipe.
  • the inflow pipe 6 includes a pipe wall 6a having a circular cross-sectional shape and a partition wall 6b provided in a flow path in the pipe wall 6a.
  • a plurality of flat partition walls 6b parallel to the tube axis direction are parallel to each other. Comparing the cross section of the piping part 11 shown in FIG. 29 (a) with the cross section of the open part 13 shown in FIG. 29 (b), the pipe part 6 is provided with the pipe wall 6a on the entire outer periphery.
  • the open portion 13 is not provided with a pipe wall 6a corresponding to a half circumference on the left side (the central axis side of the shell 3) in the drawing. Except for this point, the inflow pipe 6 has the same cross-sectional shape in the pipe portion 11 and the open portion 13. Thereby, in the open part 13 located in the shell 3, the pipe line provided with the partition wall 6b is exposed to the center axis side of the shell 3.
  • FIG. 30 is a cross-sectional view showing a modified example of the configuration of the inflow pipe 6 in the present embodiment, and is a view showing a cross section (a) of the pipe portion 11 and a cross section (b) of the open portion 13 together.
  • the inflow pipe 6 of this modification includes an outer pipe 17 that forms an outer wall (pipe wall) and has a circular cross-sectional shape, and a grooved plate 18 that is disposed inside the outer pipe 17. ,have. That is, the inflow pipe 6 of this modification has the same configuration as the inflow pipe 6 of the third embodiment shown in FIGS. 11 and 12 except that the cross-sectional shape is circular.
  • the length of the outer tube 17 in the tube axis direction is shorter than the length of the grooved plate 18 in the tube axis direction.
  • the piping part 11 having the outer tube 17 and the grooved plate 18 and the opening part 13 having only the grooved plate 18 are formed. Yes.
  • the grooved plate 18 is exposed to the center axis side of the shell 3.
  • FIG. 31 is a cross-sectional view showing another modified example of the configuration of the inflow pipe 6 in the present embodiment, and shows a cross-section (a) of the pipe portion 11 and a cross-section (b) of the open portion 13 together. is there.
  • the inflow pipe 6 of the present modification includes an outer pipe 17 that forms an outer wall (pipe wall) and has a circular cross-sectional shape, and a partition plate 19 (groove) disposed inside the outer pipe 17. Board). That is, the inflow pipe 6 of this modification has the same configuration as the inflow pipe 6 of the fourth embodiment shown in FIGS. 14 and 15 except that the cross-sectional shape is circular.
  • the length of the outer peripheral tube 17 in the tube axis direction is shorter than the length of the partition plate 19 in the tube axis direction. Using the difference in length between the outer peripheral tube 17 and the partition plate 19, the pipe portion 11 including the outer peripheral tube 17 and the partition plate 19 and the open portion 13 including only the partition plate 19 are formed. In the opening part 13 located in the shell 3, the partition plate 19 is exposed to the center axis side of the shell 3.
  • the inflow pipe 6 in the present embodiment has a configuration in which the cross-sectional shape of the inflow pipe 6 in the third and fourth embodiments is changed from a flat shape or an elliptical shape to a circular shape.
  • the cross-sectional shape of the inflow pipe 6 in the embodiments other than the third and fourth embodiments is changed to a circular shape. You may have a structure.
  • oil is less likely to be opened at a position near the inner wall surface of the shell 3 at the downstream end 14 of the inflow pipe 6.
  • the oil separation efficiency may be slightly reduced.
  • since the open portion 13 where the grooved plate 18 or the partition plate 19 is exposed on the central axis side of the shell 3 is provided on the downstream end 14 side of the inflow tube 6, It is possible to suppress the oil flowing into the shell 3 from being scattered as small oil droplets. Therefore, according to this Embodiment, compared with the structure described in patent document 1, for example, the separation efficiency of oil can be improved.
  • the processing is facilitated by making the inflow pipe 6 into a circular pipe, the productivity of the inflow pipe 6 and the oil separator 1 can be improved.
  • the strength of the inflow pipe 6 can be increased by using the inflow pipe 6 as a circular pipe, the deformation of the inflow pipe 6 can be made difficult even if the pressure inside the oil separator 1 becomes higher. Therefore, according to the present embodiment, the pressure resistance of the inflow pipe 6 and the oil separator 1 can be improved.
  • the oil separator 1 As described above, the oil separator 1 according to Embodiments 1 to 8 described above is disposed in the container 2 along the tangential direction of the container 2 (shell 3) having a cylindrical inner wall surface and the inner wall surface of the container 2.
  • An inflow pipe 6 for connecting a mixed fluid in which gas and oil are mixed into the container 2, a gas outflow pipe 7 for connecting the gas in the container 2 to the outside, connected to the upper part of the container 2, and the container 2
  • An oil outflow pipe 8 connected to the lower part and allowing oil in the container 2 to flow out to the outside.
  • the inflow pipe 6 includes a pipe wall 6a and a partition wall 6b or a groove provided in a flow path in the pipe wall 6a.
  • an opening portion 13 in which the tube wall 6a on the central axis side of the inner wall surface of the container 2 is opened is provided.
  • the partition wall 6 b or the groove 6 c is exposed on the central axis side of the inner wall surface of the container 2. That.
  • the partition wall 6b or the groove 6c is provided in the inside of the inflow pipe 6, it becomes easy for oil to flow together and generation of small oil droplets that are difficult to centrifuge can be suppressed. Furthermore, the downstream end 14 side of the inflow pipe 6 is provided with an open portion 13 in which the partition wall 6b or the groove 6c is exposed on the central axis side of the inner wall surface of the container 2, so that the inflow pipe 6 enters the container 2. It can suppress that the oil which flowed in is scattered as a small oil droplet. Therefore, the oil separation efficiency can be improved. Moreover, the oil separation efficiency in the oil separator 1 is improved, so that an appropriate amount of oil can be held in the compressor of the refrigeration cycle. For this reason, the lifetime improvement and energy saving of a compressor are realizable.
  • the inflow pipe 6 has a configuration in which two grooved plates (for example, the inner circumferential grooved plate 15 and the outer circumferential grooved plate 16) are joined.
  • the inflow tube 6 can be configured using a plate having a uniform cross-sectional shape in the tube axis direction, the manufacturing process is facilitated.
  • the inflow pipe 6 includes the outer peripheral pipe 17 constituting the pipe wall 6a, and the partition plate 19 or the grooved plate 18 disposed inside the outer peripheral pipe 17. It is what you have.
  • the partition plate 19 has a linear or curved wavy cross-sectional shape.
  • the partition plate 19 can be configured with a thin member, the surface area inside the inflow pipe 6 can be easily increased. Thereby, the separation efficiency of the oil can be further improved, and the manufacturing process of the inflow pipe 6 is facilitated.
  • the inflow pipe 6 has a configuration in which a plurality of pipes (for example, a circular pipe or a square pipe) arranged in parallel in one direction are joined.
  • the inflow pipe 6 can be configured with an inexpensive member.
  • the inflow pipe 6 includes the outer pipe 17 constituting the pipe wall 6a and a plurality of pipes (for example, circles) arranged inside the outer pipe 17 and arranged in parallel in one direction. Tube or square tube).
  • the inflow pipe 6 can be configured with an inexpensive member.
  • the partition wall 22 or the groove is provided on the inner wall surface of the container 2, and the partition wall 22 or the groove provided on the inner wall surface of the container 2. And the partition wall 6b or the groove
  • the partition wall 22 or the groove provided on the inner wall surface of the container 2 is provided in an arc shape along the inner wall surface of the container 2.
  • the tube wall 6a has a flat or elliptical cross-sectional shape, and the long axis a in the cross section of the inflow tube 6 is the inner wall surface of the container 2. It is arranged parallel to the central axis.
  • the pipe wall 6a of the inflow pipe 6 since the pipe wall 6a of the inflow pipe 6 has a flat or elliptical cross-sectional shape, the oil is easily opened at a position close to the inner wall surface of the container 2, so that the oil can be more reliably supplied to the container. 2 can be reached. Moreover, since the pipe wall 6a of the inflow pipe 6 has a flat or elliptical cross-sectional shape, the diameter of the container 2 of the oil separator 1 can be reduced.
  • the productivity and pressure resistance of the inflow pipe 6 and the oil separator 1 can be improved.
  • the inflow pipe 6 has a partition wall 6b, and the inflow pipe 6 includes a pipe wall separating portion 23 positioned on the upstream side of the open portion 13, and And a pipe part 11 located upstream of the pipe wall separation part 23.
  • the flow path in the pipe wall 6a is partitioned by a partition wall 6b.
  • the tube wall 6a (in this example, the separation wall 24) located on the center axis side of the inner wall surface of the container 2 is separated from the partition wall 6b.

Abstract

An oil separator (1) equipped with: a container (2) having a cylindrical inner wall surface; an inflow pipe (6), which is connected to the container (2) along the tangential direction of the inner wall surface of the container (2), and through which a fluid mixture of gas and oil flows into the container (2); a gas outflow pipe (7) through which gas in the container (2) flows to the outside; and an oil outflow pipe (8) through which oil in the container (2) flows to the outside. The inflow pipe (6) has a pipe wall (6a), and partition walls (6b) or grooves (6c) provided in the flow path inside the pipe wall (6a). An open portion (13), where the pipe wall (6a) is opened on the central-axis side of the inner wall surface of the container (2), is provided at the downstream end (14) of the inflow pipe (6) positioned in the interior of the container (2), and at the open portion (13) the partition walls (6b) or the grooves (6c) are exposed on the central-axis side of the inner wall surface of the container (2).

Description

油分離器Oil separator
 本発明は、油分離器に関するものである。 The present invention relates to an oil separator.
 特許文献1には、オイル混合冷媒からオイルを分離し得るように内部にオイル分離空間を有するオイル分離手段と、一端は圧縮機に連結され、他端はオイル分離手段に連結されて圧縮機から吐出されたオイル混合冷媒をオイル分離手段に案内する吐出配管と、吐出配管を通過する冷媒に含まれるオイル粒子の少なくとも一部がオイル液滴状態でオイル分離手段に流入するように吐出配管に形成された液滴形成部と、を有するオイル分離器が記載されている。 Patent Document 1 discloses an oil separation means having an oil separation space inside so that oil can be separated from the oil mixed refrigerant, one end connected to the compressor, and the other end connected to the oil separation means. A discharge pipe that guides the discharged oil-mixed refrigerant to the oil separation means, and a discharge pipe formed so that at least a part of the oil particles contained in the refrigerant that passes through the discharge pipe flows into the oil separation means in the form of oil droplets. And an oil separator having a formed droplet forming portion.
特開2006-322701号公報JP 2006-322701 A
 特許文献1に記載されたオイル分離器では、圧縮機から吐出されたオイル混合冷媒をオイル分離手段に案内する吐出配管として、円管が用いられている。このため、吐出配管のうちオイル分離空間の内周側となる管壁を流れる油は、オイル分離空間内の吐出配管下流端において、オイル分離空間の内壁面から離れた位置で開放される。これにより、径の小さい油滴は、遠心力によってオイル分離空間の内壁面に到達しにくくなり、そのまま冷媒と共に外部に流出してしまう。したがって、油の分離効率が低下してしまうという問題点があった。 In the oil separator described in Patent Document 1, a circular pipe is used as a discharge pipe for guiding the oil mixed refrigerant discharged from the compressor to the oil separation means. For this reason, the oil flowing through the pipe wall on the inner peripheral side of the oil separation space in the discharge pipe is released at a position away from the inner wall surface of the oil separation space at the downstream end of the discharge pipe in the oil separation space. As a result, oil droplets having a small diameter are difficult to reach the inner wall surface of the oil separation space due to centrifugal force, and flow out to the outside together with the refrigerant. Therefore, there has been a problem that the oil separation efficiency is lowered.
 本発明は、上述のような問題点を解決するためになされたものであり、油の分離効率を向上できる油分離器を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an oil separator that can improve oil separation efficiency.
 本発明に係る油分離器は、円筒状の内壁面を有する容器と、前記内壁面の接線方向に沿って前記容器に接続され、ガス及び油が混合した混合流体を前記容器内に流入させる流入管と、前記容器の上部に接続され、前記容器内のガスを外部に流出させるガス流出管と、前記容器の下部に接続され、前記容器内の油を外部に流出させる油流出管と、を備え、前記流入管は、管壁と、前記管壁内の流路に設けられた仕切り壁又は溝と、を有しており、前記容器の内部に位置する前記流入管の下流端側には、前記内壁面の中心軸側の前記管壁が開放された開放部が設けられており、前記開放部では、前記仕切り壁又は前記溝が前記内壁面の中心軸側に露出しているものである。 An oil separator according to the present invention includes a container having a cylindrical inner wall surface and an inflow that is connected to the container along a tangential direction of the inner wall surface and flows a mixed fluid mixed with gas and oil into the container. A pipe, a gas outflow pipe connected to the upper part of the container and flowing out the gas in the container to the outside, and an oil outflow pipe connected to the lower part of the container and flowing out the oil in the container to the outside. The inflow pipe has a pipe wall and a partition wall or a groove provided in a flow path in the pipe wall, and on the downstream end side of the inflow pipe located inside the container An opening portion is provided in which the tube wall on the central axis side of the inner wall surface is opened, and in the opening portion, the partition wall or the groove is exposed on the central axis side of the inner wall surface. is there.
 本発明によれば、流入管の内部に仕切り壁又は溝が設けられていることにより、油が纏まって流れやすくなり、遠心分離しにくい小さな油滴の発生を抑えることができる。さらに、流入管の下流端側には、仕切り壁又は溝が容器の内壁面の中心軸側に露出した開放部が設けられているため、流入管から容器内に流入した油が小さな油滴として飛散することを抑えることができる。したがって、本発明によれば、油の分離効率を向上させることができる。 According to the present invention, since the partition wall or the groove is provided in the inside of the inflow pipe, it becomes easy for oil to flow together and generation of small oil droplets that are difficult to centrifuge can be suppressed. Furthermore, since an open portion is provided on the downstream end side of the inflow pipe with the partition wall or groove exposed to the center axis side of the inner wall surface of the container, the oil flowing into the container from the inflow pipe becomes small oil droplets. Scattering can be suppressed. Therefore, according to the present invention, oil separation efficiency can be improved.
本発明の実施の形態1に係る油分離器1の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the oil separator 1 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る油分離器1の一部を切り欠いた斜視断面図である。It is a perspective sectional view which notched a part of oil separator 1 concerning Embodiment 1 of the present invention. 本発明の実施の形態1に係る油分離器1における流入管6の構成の一例を示す断面図であり、配管部11の断面(a)と開放部13の断面(b)とを併せて示す図である。It is sectional drawing which shows an example of the structure of the inflow pipe 6 in the oil separator 1 which concerns on Embodiment 1 of this invention, and shows the cross section (a) of the piping part 11, and the cross section (b) of the open part 13 collectively. FIG. 本発明の実施の形態1に係る油分離器1における流入管6の構成の別の例を示す断面図であり、配管部11の断面(a)と開放部13の断面(b)とを併せて示す図である。It is sectional drawing which shows another example of the structure of the inflow pipe 6 in the oil separator 1 which concerns on Embodiment 1 of this invention, and combines the cross section (a) of the piping part 11, and the cross section (b) of the open part 13. FIG. 本発明の実施の形態1に係る油分離器1において流入管6とシェル3との接合部をシェル3の中心軸に対して垂直に切断した構成を示す断面図である。3 is a cross-sectional view showing a configuration in which a joint portion between an inflow pipe 6 and a shell 3 is cut perpendicularly to the central axis of the shell 3 in the oil separator 1 according to Embodiment 1 of the present invention. FIG. 本発明の実施の形態1に係る油分離器1における流入管6とシェル3との接合部の構成を示す斜視図である。It is a perspective view which shows the structure of the junction part of the inflow pipe 6 and the shell 3 in the oil separator 1 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る油分離器1における流入管6の構成の変形例を示す断面図であり、配管部11の断面(a)と開放部13の断面(b)とを併せて示す図である。It is sectional drawing which shows the modification of the structure of the inflow pipe 6 in the oil separator 1 which concerns on Embodiment 1 of this invention, and combines the cross section (a) of the piping part 11, and the cross section (b) of the open part 13. FIG. 本発明の実施の形態1に係る油分離器1における流入管6の構成の変形例を示す断面図であり、配管部11の断面(a)と開放部13の断面(b)とを併せて示す図である。It is sectional drawing which shows the modification of the structure of the inflow pipe 6 in the oil separator 1 which concerns on Embodiment 1 of this invention, and combines the cross section (a) of the piping part 11, and the cross section (b) of the open part 13. FIG. 本発明の実施の形態2に係る油分離器1における流入管6とシェル3との接合部をシェル3の中心軸に対して垂直に切断した構成を示す断面図である。6 is a cross-sectional view showing a configuration in which a joint portion between an inflow pipe 6 and a shell 3 in an oil separator 1 according to Embodiment 2 of the present invention is cut perpendicularly to the central axis of the shell 3. FIG. 本発明の実施の形態2に係る油分離器1における流入管6の構成を示す断面図であり、配管部11の断面(a)と開放部13の断面(b)とを併せて示す図である。It is sectional drawing which shows the structure of the inflow pipe 6 in the oil separator 1 which concerns on Embodiment 2 of this invention, and is a figure which shows the cross section (a) of the piping part 11, and the cross section (b) of the open part 13 collectively. is there. 本発明の実施の形態3に係る油分離器1における流入管6とシェル3との接合部をシェル3の中心軸に対して垂直に切断した構成を示す断面図である。6 is a cross-sectional view showing a configuration in which a joint portion between an inflow pipe 6 and a shell 3 in an oil separator 1 according to Embodiment 3 of the present invention is cut perpendicularly to the central axis of the shell 3. FIG. 本発明の実施の形態3に係る油分離器1における流入管6の構成を示す断面図であり、配管部11の断面(a)と開放部13の断面(b)とを併せて示す図である。It is sectional drawing which shows the structure of the inflow pipe 6 in the oil separator 1 which concerns on Embodiment 3 of this invention, and is a figure which shows the cross section (a) of the piping part 11, and the cross section (b) of the open part 13 collectively. is there. 本発明の実施の形態4に係る油分離器1における流入管6とシェル3との接合部の構成を示す斜視図である。It is a perspective view which shows the structure of the junction part of the inflow pipe 6 and the shell 3 in the oil separator 1 which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る油分離器1における流入管6とシェル3との接合部をシェル3の中心軸に対して垂直に切断した構成を示す断面図である。7 is a cross-sectional view showing a configuration in which a joint portion between an inflow pipe 6 and a shell 3 in an oil separator 1 according to Embodiment 4 of the present invention is cut perpendicularly to the central axis of the shell 3. FIG. 本発明の実施の形態4に係る油分離器1における流入管6の構成を示す断面図であり、配管部11の断面(a)と開放部13の断面(b)とを併せて示す図である。It is sectional drawing which shows the structure of the inflow pipe 6 in the oil separator 1 which concerns on Embodiment 4 of this invention, and is a figure which shows the cross section (a) of the piping part 11, and the cross section (b) of the open part 13 collectively. is there. 本発明の実施の形態5に係る油分離器1における流入管6とシェル3との接合部の構成を示す斜視図である。It is a perspective view which shows the structure of the junction part of the inflow pipe 6 and the shell 3 in the oil separator 1 which concerns on Embodiment 5 of this invention. 本発明の実施の形態5に係る油分離器1における流入管6の構成の一例を示す断面図であり、配管部11の断面(a)と開放部13の断面(b)とを併せて示す図である。It is sectional drawing which shows an example of a structure of the inflow pipe 6 in the oil separator 1 which concerns on Embodiment 5 of this invention, and shows the cross section (a) of the piping part 11, and the cross section (b) of the open part 13 collectively. FIG. 本発明の実施の形態5に係る油分離器1における流入管6の構成の別の例を示す断面図であり、配管部11の断面(a)と開放部13の断面(b)とを併せて示す図である。It is sectional drawing which shows another example of the structure of the inflow pipe 6 in the oil separator 1 which concerns on Embodiment 5 of this invention, and combines the cross section (a) of the piping part 11, and the cross section (b) of the open part 13. FIG. 本発明の実施の形態5に係る油分離器1における流入管6の構成の変形例を示す断面図であり、配管部11の断面(a)と開放部13の断面(b)とを併せて示す図である。It is sectional drawing which shows the modification of the structure of the inflow pipe 6 in the oil separator 1 which concerns on Embodiment 5 of this invention, and combines the cross section (a) of the piping part 11, and the cross section (b) of the open part 13. FIG. 本発明の実施の形態5に係る油分離器1における流入管6の構成の変形例を示す断面図であり、配管部11の断面(a)と開放部13の断面(b)とを併せて示す図である。It is sectional drawing which shows the modification of the structure of the inflow pipe 6 in the oil separator 1 which concerns on Embodiment 5 of this invention, and combines the cross section (a) of the piping part 11, and the cross section (b) of the open part 13. FIG. 本発明の実施の形態6に係る油分離器1における流入管6とシェル3との接合部の構成を示す斜視図である。It is a perspective view which shows the structure of the junction part of the inflow pipe 6 and the shell 3 in the oil separator 1 which concerns on Embodiment 6 of this invention. 本発明の実施の形態6に係る油分離器1における流入管6とシェル3との接合部をシェル3の中心軸に対して垂直に切断した構成を示す断面図である。It is sectional drawing which shows the structure which cut | disconnected the junction part of the inflow pipe 6 and the shell 3 in the oil separator 1 which concerns on Embodiment 6 of this invention perpendicularly | vertically with respect to the central axis of the shell 3. FIG. 本発明の実施の形態7に係る油分離器1における流入管6とシェル3との接合部の構成を示す斜視図である。It is a perspective view which shows the structure of the junction part of the inflow pipe 6 and the shell 3 in the oil separator 1 which concerns on Embodiment 7 of this invention. 本発明の実施の形態7に係る油分離器1における流入管6とシェル3との接合部をシェル3の中心軸に対して垂直に切断した構成を示す断面図である。It is sectional drawing which shows the structure which cut | disconnected the junction part of the inflow pipe 6 and the shell 3 in the oil separator 1 which concerns on Embodiment 7 of this invention perpendicularly | vertically with respect to the central axis of the shell 3. FIG. 本発明の実施の形態7に係る油分離器1における流入管6の構成を示す断面図であり、配管部11の断面(a)と管壁離間部23の断面(b)と開放部13の断面(c)とを併せて示す図である。It is sectional drawing which shows the structure of the inflow pipe 6 in the oil separator 1 which concerns on Embodiment 7 of this invention, the cross section (a) of the piping part 11, the cross section (b) of the pipe wall spacing part 23, and the open part 13 It is a figure which shows a cross section (c) collectively. 本発明の実施の形態7の変形例に係る油分離器1における流入管6とシェル3との接合部をシェル3の中心軸に対して垂直に切断した構成を示す断面図である。FIG. 9 is a cross-sectional view showing a configuration in which a joint portion between an inflow pipe 6 and a shell 3 in an oil separator 1 according to a modification of Embodiment 7 of the present invention is cut perpendicularly to the central axis of the shell 3. 本発明の実施の形態7の変形例に係る油分離器1における流入管6の構成を示す断面図であり、配管部11の断面(a)と管壁離間部23の断面(b)と開放部13の断面(c)とを併せて示す図である。It is sectional drawing which shows the structure of the inflow pipe 6 in the oil separator 1 which concerns on the modification of Embodiment 7 of this invention, the cross section (a) of the piping part 11, the cross section (b) of the pipe wall separation part 23, and open | release It is a figure which shows the cross section (c) of the part 13 collectively. 本発明の実施の形態8に係る油分離器1における流入管6とシェル3との接合部の構成を示す斜視図である。It is a perspective view which shows the structure of the junction part of the inflow pipe 6 and the shell 3 in the oil separator 1 which concerns on Embodiment 8 of this invention. 本発明の実施の形態8に係る油分離器1における流入管6の構成を示す断面図であり、配管部11の断面(a)と開放部13の断面(b)とを併せて示す図である。It is sectional drawing which shows the structure of the inflow pipe 6 in the oil separator 1 which concerns on Embodiment 8 of this invention, and is a figure which shows the cross section (a) of the piping part 11, and the cross section (b) of the open part 13 collectively. is there. 本発明の実施の形態8に係る油分離器1における流入管6の構成の変形例を示す断面図であり、配管部11の断面(a)と開放部13の断面(b)とを併せて示す図である。It is sectional drawing which shows the modification of the structure of the inflow pipe 6 in the oil separator 1 which concerns on Embodiment 8 of this invention, and combines the cross section (a) of the piping part 11, and the cross section (b) of the open part 13. FIG. 本発明の実施の形態8に係る油分離器1における流入管6の構成の別の変形例を示す断面図であり、配管部11の断面(a)と開放部13の断面(b)とを併せて示す図である。It is sectional drawing which shows another modification of the structure of the inflow tube 6 in the oil separator 1 which concerns on Embodiment 8 of this invention, and the cross section (a) of the piping part 11 and the cross section (b) of the open part 13 are shown. It is a figure shown collectively.
実施の形態1.
 本発明の実施の形態1に係る油分離器について説明する。本実施の形態に係る油分離器1(サイクロン式油分離器)は、例えば、空気調和装置、冷蔵庫、冷凍機、自動販売機、給湯器等に用いられる冷凍サイクルの構成要素の1つとなるものである。油分離器1は、例えば、冷凍サイクルにおいて圧縮機の吐出側に接続されており、圧縮機から吐出された冷媒ガスに含まれる油を分離する機能を有している。油分離器1で冷媒ガスから分離された油は、油戻し管を介して圧縮機の吸入側に戻される。
Embodiment 1 FIG.
An oil separator according to Embodiment 1 of the present invention will be described. The oil separator 1 (cyclonic oil separator) according to the present embodiment is one of components of a refrigeration cycle used in, for example, an air conditioner, a refrigerator, a refrigerator, a vending machine, a water heater, and the like. It is. For example, the oil separator 1 is connected to the discharge side of the compressor in the refrigeration cycle, and has a function of separating oil contained in the refrigerant gas discharged from the compressor. The oil separated from the refrigerant gas by the oil separator 1 is returned to the suction side of the compressor through an oil return pipe.
 図1は、本実施の形態に係る油分離器1の概略構成を示す斜視図である。図2は、本実施の形態に係る油分離器1の一部(シェル3、上部鏡板4、下部鏡板5)を切り欠いた斜視断面図である。なお、図1及び図2を含む以下の図面では、各構成部材の寸法の関係や形状等が実際のものとは異なる場合がある。また、明細書中における各構成部材同士の位置関係(例えば、上下関係等)は、原則として、油分離器1を使用可能な状態に設置したときのものである。 FIG. 1 is a perspective view showing a schematic configuration of an oil separator 1 according to the present embodiment. FIG. 2 is a perspective cross-sectional view in which a part of the oil separator 1 according to the present embodiment (shell 3, upper end plate 4, lower end plate 5) is cut away. In the following drawings including FIG. 1 and FIG. 2, the dimensional relationship and shape of each component may differ from the actual ones. Moreover, the positional relationship (for example, up-down relationship etc.) between each structural member in a specification is a thing when installing the oil separator 1 in the state which can be used in principle.
 図1及び図2に示すように、油分離器1は容器2を有している。容器2は、内壁の横断面が円形となる筒状のシェル3と、シェル3の上部(軸方向上端)に設けられた上部鏡板4と、シェル3の下部(軸方向下端)に設けられた下部鏡板5と、を備えている。本例では、シェル3は、上下方向(例えば、鉛直上下方向)に中心軸を備えた円筒状の形状を有しており、上部鏡板4は平板状の形状を有しており、下部鏡板5は下方に向かって縮径された円錐テーパ状の形状を有している。容器2は、シェル3、上部鏡板4及び下部鏡板5が互いに接合されることにより一体化した構成を有している。 As shown in FIGS. 1 and 2, the oil separator 1 has a container 2. The container 2 is provided in a cylindrical shell 3 whose inner wall has a circular cross section, an upper end plate 4 provided on the upper portion (the upper end in the axial direction) of the shell 3, and a lower portion (the lower end in the axial direction) of the shell 3. A lower end plate 5. In this example, the shell 3 has a cylindrical shape having a central axis in the vertical direction (for example, vertical vertical direction), the upper end plate 4 has a flat plate shape, and the lower end plate 5. Has a conical taper shape with a diameter reduced downward. The container 2 has a configuration in which the shell 3, the upper end plate 4 and the lower end plate 5 are joined together to be integrated.
 シェル3の外壁のうち上方には、シェル3(容器2)の接線方向(例えば、水平な接線方向)に沿って流入管6が接続されている。上部鏡板4には、シェル3よりも径の小さいガス流出管7が、シェル3と同軸となるように接続されている。下部鏡板5には、シェル3よりも径の小さい油流出管8が、シェル3と同軸になるように接続されている。 The inflow pipe 6 is connected above the outer wall of the shell 3 along the tangential direction (for example, horizontal tangential direction) of the shell 3 (container 2). A gas outflow pipe 7 having a diameter smaller than that of the shell 3 is connected to the upper end plate 4 so as to be coaxial with the shell 3. An oil outflow pipe 8 having a diameter smaller than that of the shell 3 is connected to the lower end plate 5 so as to be coaxial with the shell 3.
 本例の流入管6は、後述するように、扁平状又は楕円状の断面形状を有する管壁と、管壁内の流路に設けられた仕切り壁又は溝と、を有している。流入管6の断面における長軸は、シェル3の中心軸に平行となるようにシェル3の内壁面に沿って配置されている。また、流入管6は、容器2の外部から内部に至る区間に設けられた配管部11と、容器2の内部に位置する流入管6の下流端側に設けられ、シェル3の中心軸側の管壁が開放された開放部13と、を有している。開放部13では、仕切り壁又は溝がシェル3の中心軸側に露出している。 As will be described later, the inflow pipe 6 of the present example has a tube wall having a flat or elliptical cross-sectional shape, and a partition wall or a groove provided in a flow path in the tube wall. The major axis in the cross section of the inflow pipe 6 is arranged along the inner wall surface of the shell 3 so as to be parallel to the central axis of the shell 3. The inflow pipe 6 is provided on the downstream end side of the pipe portion 11 provided in the section from the outside to the inside of the container 2 and the inflow pipe 6 located inside the container 2, and is provided on the central axis side of the shell 3. And an open portion 13 in which the tube wall is opened. In the open portion 13, the partition wall or groove is exposed on the central axis side of the shell 3.
 ガス流出管7の下端部(上流側の端部)は、上部鏡板4を貫通してシェル3の内壁面の中心軸上に位置している。ガス流出管7のうち、少なくとも容器2内部に位置する部分の外壁面は円筒形状となっている。ガス流出管7の下端部よりも上方に位置するシェル3の内壁面と、ガス流出管7の外壁面との間に形成される容器2内の空間は、流入管6から流入したガス及び油をシェル3の内壁面に沿って旋回させる旋回部9となっている。また、ガス流出管7の下端部よりも下方に位置するシェル3の内壁面で囲まれた空間(旋回部9よりも下方の空間)は、旋回開放部10となっている。 The lower end (upstream end) of the gas outflow pipe 7 passes through the upper end plate 4 and is located on the central axis of the inner wall surface of the shell 3. Of the gas outflow pipe 7, the outer wall surface of at least the portion located inside the container 2 has a cylindrical shape. The space in the container 2 formed between the inner wall surface of the shell 3 located above the lower end portion of the gas outflow pipe 7 and the outer wall surface of the gas outflow pipe 7 is gas and oil flowing in from the inflow pipe 6. Is a revolving part 9 that revolves along the inner wall surface of the shell 3. A space surrounded by the inner wall surface of the shell 3 located below the lower end portion of the gas outflow pipe 7 (a space below the swivel portion 9) is a swivel opening portion 10.
 ガス及び油が混合した混合流体(例えば、圧縮機から吐出された高圧ガス冷媒)は、外部から流入管6に流入する。流入管6に流入した混合流体は、流入管6内を流れて、容器2内に位置する流入管6の下流端部で、容器2内の空間である旋回部9に開放される。旋回部9において、混合流体のガス及び油は、ガス流出管7を中心として旋回部9を旋回しつつ下方に流れる。ガス及び油が旋回部9で旋回している間、相対的に比重の大きい油は遠心力により旋回軸の径方向外側(シェル3の内壁面側)へ移動する。径方向外側へ移動した油は、シェル3の内壁面に達すると当該内壁面に沿って流れるようになる。この油は、旋回部9の下方の旋回開放部10に達してもシェル3の内壁面に沿って流れる。一方、ガスは、旋回部9内の空間を流れた後、旋回開放部10内の空間に達する。旋回部9でシェル3の内壁面に達しなかった油は、旋回開放部10において、残存する旋回運動による遠心力と重力の作用により、一部がシェル3の内壁面又は下部鏡板5に達する。残りの油は、ガスと共にガス流出管7の下端部に集まり、ガス流出管7内を上方に向かって流れて外部に流出する。旋回開放部10においてシェル3の内壁面に沿って流れる油は、重力によりそのまま内壁面を流れて下部鏡板5に達する。下部鏡板5に達した油は、旋回開放部10の空間から直接下部鏡板5に達した油と共に、下部鏡板5のテーパ面を流れ落ちて油流出管8の上端部に集まる。これらの油は、そのまま油流出管8内を下方に向かって流れて外部に流出する。 A mixed fluid in which gas and oil are mixed (for example, high-pressure gas refrigerant discharged from the compressor) flows into the inflow pipe 6 from the outside. The mixed fluid that has flowed into the inflow pipe 6 flows through the inflow pipe 6 and is released to the swivel portion 9 that is a space in the container 2 at the downstream end of the inflow pipe 6 located in the container 2. In the swivel unit 9, the gas and oil of the mixed fluid flow downward while swirling the swivel unit 9 around the gas outflow pipe 7. While the gas and oil are swirling in the swivel unit 9, the oil having a relatively large specific gravity moves to the radially outer side of the swivel shaft (inner wall surface side of the shell 3) by centrifugal force. When the oil that has moved radially outward reaches the inner wall surface of the shell 3, the oil flows along the inner wall surface. The oil flows along the inner wall surface of the shell 3 even when the oil reaches the swivel opening 10 below the swivel unit 9. On the other hand, the gas flows through the space in the swivel unit 9 and then reaches the space in the swivel release unit 10. Part of the oil that has not reached the inner wall surface of the shell 3 in the swivel unit 9 reaches the inner wall surface of the shell 3 or the lower end plate 5 in the swirl opening unit 10 due to the centrifugal force and gravity due to the remaining swirl motion. The remaining oil gathers together with the gas at the lower end of the gas outflow pipe 7, flows upward in the gas outflow pipe 7, and flows out to the outside. The oil that flows along the inner wall surface of the shell 3 in the swivel opening 10 flows on the inner wall surface as it is due to gravity and reaches the lower end plate 5. The oil that has reached the lower end plate 5 flows down the tapered surface of the lower end plate 5 together with the oil that has reached the lower end plate 5 directly from the space of the swivel opening 10 and collects at the upper end of the oil outflow pipe 8. These oils flow in the oil outflow pipe 8 downward as they are and flow out to the outside.
 以上のように、流入管6から油分離器1の容器2内に流入したガス及び油の混合流体は、ガス流出管7から外部に流出するガスと、油流出管8から外部に流出する油とに分離される。ガス流出管7からガスと共に流出する油の量が多いほど、油の分離効率は低くなる。旋回部9又は旋回開放部10に油滴として存在する油は、油滴が小さいほど遠心力や重力の影響を受けにくくなるのでガスから分離しにくくなる。 As described above, the mixed fluid of gas and oil that flows into the container 2 of the oil separator 1 from the inflow pipe 6 includes the gas that flows out from the gas outflow pipe 7 and the oil that flows out from the oil outflow pipe 8 to the outside. And separated. The greater the amount of oil flowing out of the gas outflow pipe 7 together with the gas, the lower the oil separation efficiency. The oil present as oil droplets in the swivel unit 9 or the swirl opening unit 10 is less likely to be separated from the gas because the smaller the oil droplet, the less affected by centrifugal force and gravity.
 図3は、本実施の形態における流入管6の構成の一例を示す断面図であり、配管部11の断面(a)と開放部13の断面(b)とを併せて示す図である。図3に示す断面(例えば、管軸方向(主流方向)に垂直な断面)において、a>bとなるように流入管6の長軸a及び短軸bを定義する。図3に示すように、本例の流入管6は、扁平状又は楕円状の断面形状を備える管壁6aと、管壁6a内の流路に設けられた仕切り壁6bと、を有している。本例では、短軸b方向及び管軸方向に平行な平板状の仕切り壁6bが、長軸a方向に複数並列している。流入管6の内部の流路は、仕切り壁6bによって複数の空間(流路)に仕切られている。配管部11における流入管6の断面形状は、管軸方向に対して一様である。また、開放部13における流入管6の断面形状は、管軸方向に対して一様である。図3(a)に示す配管部11の断面と、図3(b)に示す開放部13の断面とを比較すると、配管部11では外周の全周に管壁6aが設けられているのに対し、開放部13では、長軸aに対して図中左側(シェル3の中心軸側)となる半周分の管壁6aが設けられていない。この点を除き、流入管6は、配管部11と開放部13とで同様の断面形状を有している。これにより、開放部13では、仕切り壁6bの設けられた管路がシェル3の中心軸側に露出するようになっている。 FIG. 3 is a cross-sectional view showing an example of the configuration of the inflow pipe 6 in the present embodiment, and is a view showing both the cross section (a) of the pipe portion 11 and the cross section (b) of the open portion 13. In the cross section shown in FIG. 3 (for example, a cross section perpendicular to the pipe axis direction (main flow direction)), the major axis a and the minor axis b of the inflow pipe 6 are defined so that a> b. As shown in FIG. 3, the inflow pipe 6 of this example includes a pipe wall 6a having a flat or elliptical cross-sectional shape, and a partition wall 6b provided in a flow path in the pipe wall 6a. Yes. In this example, a plurality of flat partition walls 6b parallel to the minor axis b direction and the tube axis direction are arranged in parallel in the major axis a direction. The flow path inside the inflow pipe 6 is partitioned into a plurality of spaces (flow paths) by the partition wall 6b. The cross-sectional shape of the inflow pipe 6 in the piping part 11 is uniform with respect to the pipe axis direction. Moreover, the cross-sectional shape of the inflow pipe 6 in the open part 13 is uniform with respect to the pipe axis direction. Comparing the cross section of the piping part 11 shown in FIG. 3A with the cross section of the open part 13 shown in FIG. 3B, the pipe part 11 is provided with the pipe wall 6a on the entire outer periphery. On the other hand, the open portion 13 is not provided with a pipe wall 6a corresponding to a half circumference which is the left side (the central axis side of the shell 3) in the drawing with respect to the long axis a. Except for this point, the inflow pipe 6 has the same cross-sectional shape in the pipe portion 11 and the open portion 13. Thereby, in the open part 13, the pipe line provided with the partition wall 6 b is exposed to the center axis side of the shell 3.
 図4は、本実施の形態における流入管6の構成の別の例を示す断面図であり、配管部11の断面(a)と開放部13の断面(b)とを併せて示す図である。図4に示すように、本例の流入管6は、扁平状又は楕円状の断面形状を有する管壁6aと、管壁6aの内壁面に設けられた複数の溝6cと、を有している。溝6cのそれぞれは、矩形状の断面形状を有している。本例では、溝6cが管軸方向に平行に延伸しているため、配管部11及び開放部13のそれぞれにおける流入管6の断面形状は、管軸方向に対して一様である。図4(a)に示す配管部11の断面と、図4(b)に示す開放部13の断面とを比較すると、配管部11では外周の全周に管壁6aが設けられているのに対し、開放部13では、長軸aに対して図中左側(シェル3の中心軸側)となる半周分の管壁6aが設けられていない。この点を除き、流入管6は、配管部11と開放部13とで同様の断面形状を有している。これにより、開放部13では、溝6cの設けられた管路がシェル3の中心軸側に露出するようになっている。 FIG. 4 is a cross-sectional view showing another example of the configuration of the inflow pipe 6 in the present embodiment, and is a view showing a cross section (a) of the pipe portion 11 and a cross section (b) of the open portion 13 together. . As shown in FIG. 4, the inflow pipe 6 of this example includes a pipe wall 6a having a flat or elliptical cross-sectional shape, and a plurality of grooves 6c provided on the inner wall surface of the pipe wall 6a. Yes. Each of the grooves 6c has a rectangular cross-sectional shape. In this example, since the groove 6c extends parallel to the pipe axis direction, the cross-sectional shape of the inflow pipe 6 in each of the pipe portion 11 and the open portion 13 is uniform with respect to the pipe axis direction. Comparing the cross section of the pipe part 11 shown in FIG. 4A and the cross section of the open part 13 shown in FIG. 4B, the pipe part 6 is provided with the pipe wall 6a on the entire outer periphery. On the other hand, the open portion 13 is not provided with a pipe wall 6a corresponding to a half circumference which is the left side (the central axis side of the shell 3) in the drawing with respect to the long axis a. Except for this point, the inflow pipe 6 has the same cross-sectional shape in the pipe portion 11 and the open portion 13. Thereby, in the open part 13, the conduit provided with the groove 6 c is exposed to the center axis side of the shell 3.
 図3及び図4に示したように仕切り壁6b又は溝6cが設けられた流入管6は、仕切り壁及び溝が設けられていない平滑管と比べて内壁面の表面積が大きくなる。内壁面の表面積が大きくなると、油が内壁面から受ける流れを静止させる方向に働くせん断力が大きくなる。このため、内壁面の表面積が大きくなると、内壁面に沿って流れる油の流速は低下する。流速が低下することにより、油は纏まって流れやすくなる。特に、角部などの内壁面間の距離が近い管路では、毛細管力の効果で油が纏まって流れやすくなる。油が纏まって流れると、遠心分離しにくい小さな油滴の発生が抑えられる。 As shown in FIGS. 3 and 4, the inflow pipe 6 provided with the partition wall 6b or the groove 6c has a larger surface area on the inner wall surface than the smooth pipe without the partition wall and the groove. As the surface area of the inner wall surface increases, the shearing force acting in the direction of stopping the flow received by the oil from the inner wall surface increases. For this reason, when the surface area of an inner wall surface becomes large, the flow velocity of the oil which flows along an inner wall surface will fall. As the flow velocity decreases, the oil tends to flow together. In particular, in a pipe line where the distance between inner wall surfaces such as corners is short, oil tends to flow together due to the effect of capillary force. When oil flows together, the generation of small oil droplets that are difficult to centrifuge is suppressed.
 図5は、流入管6とシェル3との接合部をシェル3の中心軸に対して垂直に切断した構成を示す断面図である。図6は、流入管6とシェル3との接合部の構成を示す斜視図である。図5及び図6に示すように、流入管6とシェル3とは、流入管6の長軸a(図5及び図6では図示せず)がシェル3の中心軸と平行になり、短軸bがシェル3の中心軸と垂直になるように接続される。流入管6は、シェル3の内壁面の接線方向に沿って接続されている。流入管6の下流端14の外壁は、シェル3の内壁面と接している。流入管6の短軸bがシェル3の中心軸と垂直に配置されているため、流入管6では、管内の流量が同じ円管と比べると、シェル3の内壁面に近い位置で油が旋回部9に開放されやすい。シェル3の内壁面に近い位置で旋回部9に開放された油は、遠心力による径方向の移動距離が短くなるため、シェル3の内壁面に到達しやすくなる。したがって、油の分離効率が向上する。 FIG. 5 is a cross-sectional view showing a configuration in which a joint portion between the inflow pipe 6 and the shell 3 is cut perpendicularly to the central axis of the shell 3. FIG. 6 is a perspective view showing a configuration of a joint portion between the inflow pipe 6 and the shell 3. As shown in FIGS. 5 and 6, the inflow pipe 6 and the shell 3 are configured such that the long axis a (not shown in FIGS. 5 and 6) of the inflow pipe 6 is parallel to the central axis of the shell 3. b is connected so as to be perpendicular to the central axis of the shell 3. The inflow pipe 6 is connected along the tangential direction of the inner wall surface of the shell 3. The outer wall of the downstream end 14 of the inflow pipe 6 is in contact with the inner wall surface of the shell 3. Since the short axis b of the inflow pipe 6 is arranged perpendicularly to the central axis of the shell 3, the oil swirls in the inflow pipe 6 at a position closer to the inner wall surface of the shell 3 than the circular pipe having the same flow rate in the pipe. It is easy to open to the part 9. The oil released to the swivel unit 9 at a position close to the inner wall surface of the shell 3 is likely to reach the inner wall surface of the shell 3 because the radial movement distance due to centrifugal force is shortened. Therefore, the oil separation efficiency is improved.
 流入管6は、容器2の外部から内部に至る区間及び容器2の内部の一部の区間に設けられた配管部11と、容器2の内部に位置する流入管6の下流端14側に設けられ、シェル3の中心軸側(ガス流出管7側)の管壁6aが開放された開放部13と、を有している。開放部13では、仕切り壁6b(又は溝6c)がシェル3の中心軸側に露出している。配管部11と開放部13との間の境界となる配管部端部12において、配管部11内の管路の内壁面と開放部13内の管路の内壁面とは連続的に接続されている。これにより、ガスと油とが混合した混合流体が流入管6内を流れている状態において、配管部11内の管路を仕切り壁6bや溝6cなどの内壁面に沿って流れている油は、配管部端部12を過ぎると、内壁面に沿ったまま開放部13の管路を流れる。開放部13で開放される側(シェル3の中心軸側)の仕切り壁6bの内壁面に沿って流れている油の一部は、配管部端部12において、表面張力の作用により、他の内壁面に沿って開放部13を流れる油と合流し、纏まって流れる。開放部13で開放される側の仕切り壁6bの内壁面に沿って流れている油のうち、配管部端部12で他の油と合流しなかった油は、ガス流中に飛散する。配管部端部12において容器2内の旋回部9に開放されたガス流は、シェル3の中心軸側の空間のガス流より高速であるため、速度差により強いせん断力が発生する。これにより、シェル3の中心軸側の空間のガス流がシェル3の内壁面側に引き込まれるため、配管部端部12で旋回部9に開放されたガス流は、開放部13の内壁面に沿うように抑えられる。したがって、ガス流中に飛散している油も、開放部13の内壁面に沿って流れる油と合流しやすくなる。 The inflow pipe 6 is provided on the downstream end 14 side of the inflow pipe 6 located inside the container 2 and the pipe portion 11 provided in a section extending from the outside to the inside of the container 2 and a part of the inside of the container 2. And an open portion 13 in which the tube wall 6a on the center axis side (gas outflow pipe 7 side) of the shell 3 is opened. In the open portion 13, the partition wall 6 b (or groove 6 c) is exposed on the center axis side of the shell 3. In the pipe part end part 12 which becomes a boundary between the pipe part 11 and the open part 13, the inner wall surface of the pipe line in the pipe part 11 and the inner wall surface of the pipe line in the open part 13 are continuously connected. Yes. Thereby, in the state where the mixed fluid in which gas and oil are mixed flows in the inflow pipe 6, the oil flowing along the inner wall surface such as the partition wall 6b and the groove 6c in the pipe portion 11 is After passing through the pipe end 12, the pipe flows through the open portion 13 along the inner wall surface. A part of the oil flowing along the inner wall surface of the partition wall 6b on the side opened by the opening portion 13 (the central axis side of the shell 3) is not It merges with the oil flowing through the opening 13 along the inner wall surface and flows together. Of the oil flowing along the inner wall surface of the partition wall 6b on the side opened by the opening portion 13, the oil that has not merged with the other oil at the pipe portion end portion 12 is scattered in the gas flow. Since the gas flow opened to the swivel unit 9 in the vessel 2 at the pipe end 12 is faster than the gas flow in the space on the central axis side of the shell 3, a strong shearing force is generated due to the speed difference. As a result, the gas flow in the space on the central axis side of the shell 3 is drawn to the inner wall surface side of the shell 3, so that the gas flow released to the swivel portion 9 at the pipe portion end 12 is applied to the inner wall surface of the opening portion 13. It can be held along. Therefore, the oil scattered in the gas flow can easily merge with the oil flowing along the inner wall surface of the open portion 13.
 開放部13に沿ったガス流は、下流に進むに従い、シェル3の中心軸側の空間のガス流との速度差によるせん断力で徐々に流速が低下する。このため、開放部13の内壁面に沿って流れる油は、ガス流から受けるせん断力が減少するとともに流速が低下する。質量流量保存により、開放部13の内壁面に沿って流れる油は、流速が低くなるほど層が厚くなり、纏まって流れるようになる。開放部13の内壁面に沿って纏まって流れる油は、開放部13の下流端14において旋回部9に開放される。油が下流端14で旋回部9に開放される際には、ガス流から受けるせん断力が弱まっているため、小さい油滴として飛散しにくくなる。また、油が纏まることにより重量が増加し、遠心力を強く受けるため、旋回部9においてシェル3の内壁面に到達しやすくなる。これにより、油の分離効率が向上する。 As the gas flow along the open portion 13 proceeds downstream, the flow velocity gradually decreases due to the shear force due to the speed difference from the gas flow in the space on the central axis side of the shell 3. For this reason, the oil flowing along the inner wall surface of the opening 13 has a reduced shearing force from the gas flow and a reduced flow velocity. By storing the mass flow rate, the oil flowing along the inner wall surface of the open portion 13 becomes thicker as the flow velocity becomes lower and flows together. The oil that flows together along the inner wall surface of the opening portion 13 is released to the turning portion 9 at the downstream end 14 of the opening portion 13. When the oil is opened to the swivel unit 9 at the downstream end 14, the shearing force received from the gas flow is weakened, so that it is difficult for the oil to scatter as small oil droplets. Further, since the oil is collected and the weight is increased and the centrifugal force is strongly received, it becomes easy to reach the inner wall surface of the shell 3 at the turning portion 9. Thereby, the separation efficiency of oil improves.
 仮に、開放部13が設けられていないとすると、油が配管部11の下流端から直接、旋回部9に開放されるため、油と周囲のガス流との間に大きな流速の差が生じる。このため、油がガス流から受けるせん断力が強くなるため、油は小さい油滴に分かれやすくなる。また、周囲のガス流速にも差があるため、周囲から油が受けるせん断力がばらつき、じょう乱が生じることにより、油は小さい油滴に分かれやすくなる。また、開放部13では、流速が低下して層が厚くなった油を仕切り壁6b又は溝6cで受けて纏めることができる。このため、開放部13が設けられていないとすると、油が周囲に広がって飛散しやすくなる。 If the opening part 13 is not provided, the oil is opened directly to the swivel part 9 from the downstream end of the pipe part 11, so that a large flow rate difference occurs between the oil and the surrounding gas flow. For this reason, since the shear force which oil receives from a gas flow becomes strong, oil becomes easy to be divided into small oil droplets. Also, since there is a difference in the surrounding gas flow velocity, the shearing force received by the oil from the surroundings varies and disturbance occurs, so that the oil is easily separated into small oil droplets. Moreover, in the open part 13, the oil whose flow velocity fell and the layer became thick can be received by the partition wall 6b or the groove | channel 6c, and can be collected. For this reason, if the opening part 13 is not provided, the oil spreads around and easily scatters.
 管軸方向における開放部13の長さが長いほど、油とガス流との流速差が減少して油が纏まる区間が長くなるため、より高い効果が得られる。また、開放部13では、下流に向かうに従って油が纏まって油膜が厚くなるため、油を受け止めるための仕切り壁6bの高さ又は溝6cの深さを十分確保する必要がある。これらのことにより、開放後に仕切り壁6bの高さが徐々に低くなる構成や、開放後に溝6cの深さが徐々に浅くなる構成(例えば、配管部11の下流端を管軸方向に対して斜めに切断し、テーパ形状とした構成)では、十分な効果が得られない。 As the length of the open portion 13 in the tube axis direction is longer, the difference in flow rate between the oil and the gas flow is reduced, and the section where the oil is collected becomes longer, so that a higher effect can be obtained. Moreover, in the open part 13, since oil gathers and an oil film becomes thick as it goes downstream, it is necessary to ensure the height of the partition wall 6b or the depth of the groove | channel 6c for catching oil. Accordingly, a configuration in which the height of the partition wall 6b is gradually reduced after opening, or a configuration in which the depth of the groove 6c is gradually shallowed after opening (for example, the downstream end of the pipe portion 11 is set to the tube axis direction). A sufficient effect cannot be obtained with a configuration in which the taper is cut obliquely and has a tapered shape.
 図7及び図8は、流入管6の構成の変形例を示す断面図であり、配管部11の断面(a)と開放部13の断面(b)とを併せて示す図である。図7に示す例では、仕切り壁6bによって仕切られた複数の空間の断面がそれぞれ円形となっている。図8に示す例では、溝6cの断面形状が三角形状となっており、流入管6の管路の内壁面が直線的な波状となっている。流入管6の管路の内壁面は、曲線的な波状となっていてもよい。図7及び図8に示したような構成によっても、上記と同様の効果が得られる。 7 and 8 are cross-sectional views showing modified examples of the configuration of the inflow pipe 6, and are both a cross-section (a) of the pipe portion 11 and a cross-section (b) of the open portion 13. In the example shown in FIG. 7, the cross sections of the plurality of spaces partitioned by the partition wall 6b are each circular. In the example shown in FIG. 8, the cross-sectional shape of the groove 6 c is a triangular shape, and the inner wall surface of the conduit of the inflow pipe 6 is a straight wave shape. The inner wall surface of the pipe line of the inflow pipe 6 may have a curved wave shape. The same effects as described above can be obtained by the configuration shown in FIGS.
実施の形態2.
 本発明の実施の形態2に係る油分離器について説明する。図9は、本実施の形態における流入管6とシェル3との接合部をシェル3の中心軸に対して垂直に切断した構成を示す断面図である。なお、実施の形態1と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。実施の形態1では、流入管6を一体とした構成を例示したが、本実施の形態における流入管6は、2つの溝付き板を溝同士が対向するように組み合わせた構成を有している。
Embodiment 2. FIG.
An oil separator according to Embodiment 2 of the present invention will be described. FIG. 9 is a cross-sectional view showing a configuration in which the joint portion between the inflow pipe 6 and the shell 3 in the present embodiment is cut perpendicularly to the central axis of the shell 3. In addition, about the component which has the function and effect | action same as Embodiment 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted. In the first embodiment, the configuration in which the inflow pipe 6 is integrated is illustrated. However, the inflow pipe 6 in the present embodiment has a configuration in which two grooved plates are combined so that the grooves face each other. .
 図9に示すように、本実施の形態における流入管6は、2つの溝付き板(内周側溝付き板15及び外周側溝付き板16)を組み合わせて接合した構成を有している。流入管6とシェル3との接合部において、内周側溝付き板15はシェル3の中心軸側に配置され、外周側溝付き板16はシェル3の内壁面側に配置される。内周側溝付き板15の管軸方向の長さは、外周側溝付き板16の管軸方向の長さよりも短くなっている。内周側溝付き板15及び外周側溝付き板16の長さの差を用いて、内周側溝付き板15及び外周側溝付き板16を備えた配管部11と、外周側溝付き板16のみを備えた開放部13と、が形成されている。 As shown in FIG. 9, the inflow pipe 6 in the present embodiment has a configuration in which two grooved plates (inner peripheral side grooved plate 15 and outer peripheral side grooved plate 16) are combined and joined. At the joint between the inflow pipe 6 and the shell 3, the inner circumferential grooved plate 15 is disposed on the center axis side of the shell 3, and the outer circumferential grooved plate 16 is disposed on the inner wall surface side of the shell 3. The length in the tube axis direction of the inner circumferential grooved plate 15 is shorter than the length in the tube axis direction of the outer circumferential grooved plate 16. Using the difference in length between the inner circumferential grooved plate 15 and the outer circumferential grooved plate 16, only the piping part 11 provided with the inner circumferential grooved plate 15 and the outer circumferential grooved plate 16 and the outer circumferential grooved plate 16 were provided. An opening 13 is formed.
 図10は、本実施の形態における流入管6の構成を示す断面図であり、配管部11の断面(a)と開放部13の断面(b)とを併せて示す図である。図10に示すように、内周側溝付き板15と外周側溝付き板16とは、流入管6の長軸a方向及び管軸方向に平行な面で接合されている。本例では、内周側溝付き板15及び外周側溝付き板16は、同一の断面形状を有している。接合後の流入管6の配管部11の構成は、図3(a)に示した流入管6の配管部11の構成と同様である。また、接合後の流入管6の開放部13の構成は、仕切り壁6bの高さが低くなる(本例では、高さが半分になる)ことを除き、図3(b)に示した流入管6の開放部13の構成と同様である。開放部13における仕切り壁6bの高さは、配管部端部12から下流端14までの区間で一定である。 FIG. 10 is a cross-sectional view showing the configuration of the inflow pipe 6 in the present embodiment, and is a view showing the cross section (a) of the pipe portion 11 and the cross section (b) of the open portion 13 together. As shown in FIG. 10, the inner circumferential grooved plate 15 and the outer circumferential grooved plate 16 are joined by a plane parallel to the major axis a direction and the tube axis direction of the inflow pipe 6. In this example, the inner peripheral grooved plate 15 and the outer peripheral grooved plate 16 have the same cross-sectional shape. The structure of the piping part 11 of the inflow pipe 6 after joining is the same as the structure of the piping part 11 of the inflow pipe 6 shown in FIG. Moreover, the structure of the open part 13 of the inflow pipe 6 after joining is the inflow shown in FIG. 3B except that the height of the partition wall 6b is reduced (in this example, the height is halved). The configuration is the same as that of the open portion 13 of the tube 6. The height of the partition wall 6 b in the open part 13 is constant in the section from the pipe part end 12 to the downstream end 14.
 実施の形態1の流入管6を製造する際には、一つの部材に配管部11及び開放部13をそれぞれ成型する必要がある。これに対し、本実施の形態の流入管6は、容易に成型可能な内周側溝付き板15及び外周側溝付き板16を組み合わせることにより製造できる。したがって、本実施の形態によれば、実施の形態1と同様の効果が得られることに加えて、流入管6の製造が容易になるという効果も得られる。 When manufacturing the inflow pipe 6 of Embodiment 1, it is necessary to mold the piping part 11 and the open part 13 in one member, respectively. On the other hand, the inflow pipe 6 of the present embodiment can be manufactured by combining the inner peripheral grooved plate 15 and the outer peripheral grooved plate 16 that can be easily molded. Therefore, according to the present embodiment, in addition to obtaining the same effect as that of the first embodiment, the effect of facilitating the manufacture of the inflow pipe 6 is also obtained.
実施の形態3.
 本発明の実施の形態3に係る油分離器について説明する。図11は、本実施の形態における流入管6とシェル3との接合部をシェル3の中心軸に対して垂直に切断した構成を示す断面図である。図12は、本実施の形態における流入管6の構成を示す断面図であり、配管部11の断面(a)と開放部13の断面(b)とを併せて示す図である。なお、実施の形態1と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。
Embodiment 3 FIG.
An oil separator according to Embodiment 3 of the present invention will be described. FIG. 11 is a cross-sectional view showing a configuration in which the joint portion between the inflow pipe 6 and the shell 3 in the present embodiment is cut perpendicularly to the central axis of the shell 3. FIG. 12 is a cross-sectional view showing the configuration of the inflow pipe 6 in the present embodiment, and is a view showing both the cross section (a) of the pipe portion 11 and the cross section (b) of the open portion 13. In addition, about the component which has the function and effect | action same as Embodiment 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 図11及び図12に示すように、本実施の形態における流入管6は、外壁(管壁)を構成し扁平状又は楕円状の断面形状を有する外周管17と、外周管17の内部に配置された溝付き板18と、を有している。外周管17の管軸方向の長さは、溝付き板18の管軸方向の長さよりも短くなっている。外周管17及び溝付き板18の長さの差を用いて、外周管17及び溝付き板18を備えた配管部11と、溝付き板18のみを備えた開放部13と、が形成されている。 As shown in FIGS. 11 and 12, the inflow pipe 6 in the present embodiment includes an outer pipe 17 that forms an outer wall (pipe wall) and has a flat or elliptical cross-sectional shape, and is disposed inside the outer pipe 17. The grooved plate 18 is provided. The length of the outer tube 17 in the tube axis direction is shorter than the length of the grooved plate 18 in the tube axis direction. Using the difference in length between the outer tube 17 and the grooved plate 18, the piping part 11 having the outer tube 17 and the grooved plate 18 and the opening part 13 having only the grooved plate 18 are formed. Yes.
 本例の溝付き板18は、外周管17の内壁面に沿って長軸a方向に広がった断面形状を有する底面部18aと、底面部18a上に短軸b方向に沿って立設された複数の壁部18bと、を備える。壁部18bは、流入管6内の流路を複数の空間に仕切る仕切り壁として機能する。隣り合う壁部18b間には、溝が形成されている。また、底面部18aは、外周管17と共に流入管6の管壁を構成する。 The grooved plate 18 of this example was erected along the short axis b direction on the bottom surface part 18a and the bottom surface part 18a having a cross-sectional shape extending in the long axis a direction along the inner wall surface of the outer peripheral tube 17. A plurality of wall portions 18b. The wall portion 18b functions as a partition wall that partitions the flow path in the inflow pipe 6 into a plurality of spaces. A groove is formed between the adjacent wall portions 18b. Further, the bottom surface portion 18 a constitutes a tube wall of the inflow tube 6 together with the outer peripheral tube 17.
 本実施の形態の構成では、流入管6のうち容器2の外側に位置する部分の外周は外周管17で覆われるため、流入管6の構成部材同士の接合部の密閉処理を必要としない。したがって、流入管6の製造が容易になる。 In the configuration of the present embodiment, since the outer periphery of the portion of the inflow pipe 6 located outside the container 2 is covered with the outer peripheral pipe 17, the sealing process of the joint portion between the constituent members of the inflow pipe 6 is not required. Therefore, manufacture of the inflow pipe 6 becomes easy.
 ここで、実施の形態2の構成と同様に2つの溝付き板(例えば、内周側溝付き板15及び外周側溝付き板16)を組み合わせ、さらにその外側を外周管17で覆うようにしてもよい。この構成においても、流入管6のうち容器2の外側に位置する部分の外周は外周管17で覆われるため、2つの溝付き板の接合部に密閉処理を必要としない。したがって、実施の形態2と同様の効果が得られることに加えて、流入管6の製造が容易になるという効果も得られる。 Here, similarly to the configuration of the second embodiment, two grooved plates (for example, the inner circumferential grooved plate 15 and the outer circumferential grooved plate 16) may be combined, and the outer side may be covered with the outer circumferential tube 17. . Also in this structure, since the outer periphery of the part located outside the container 2 in the inflow pipe 6 is covered with the outer peripheral pipe 17, a sealing process is not required for the joint portion between the two grooved plates. Therefore, in addition to obtaining the same effect as in the second embodiment, the effect of facilitating the manufacture of the inflow pipe 6 is also obtained.
実施の形態4.
 本発明の実施の形態4に係る油分離器について説明する。図13は、本実施の形態における流入管6とシェル3との接合部の構成を示す斜視図である。図14は、本実施の形態における流入管6とシェル3との接合部をシェル3の中心軸に対して垂直に切断した構成を示す断面図である。図15は、本実施の形態における流入管6の構成を示す断面図であり、配管部11の断面(a)と開放部13の断面(b)とを併せて示す図である。なお、実施の形態1と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。
Embodiment 4 FIG.
An oil separator according to Embodiment 4 of the present invention will be described. FIG. 13 is a perspective view showing a configuration of a joint portion between the inflow pipe 6 and the shell 3 in the present embodiment. FIG. 14 is a cross-sectional view showing a configuration in which the joint portion between the inflow pipe 6 and the shell 3 in this embodiment is cut perpendicularly to the central axis of the shell 3. FIG. 15 is a cross-sectional view showing the configuration of the inflow pipe 6 in the present embodiment, and is a view showing both the cross section (a) of the pipe portion 11 and the cross section (b) of the open portion 13. In addition, about the component which has the function and effect | action same as Embodiment 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 図13~図15に示すように、本実施の形態における流入管6は、外壁(管壁)を構成し扁平状又は楕円状の断面形状を有する外周管17と、外周管17の内部に配置された仕切り板19(溝付き板)と、を有している。仕切り板19は、直線的な波状(三角波状)に形成されており、全体として流入管6の長軸a方向に延びている。仕切り板19の角部(波の頂部)は例えば鋭角になっており、仕切り板19を挟んで対向する外周管17の2つの内壁面に交互に接触するようになっている。仕切り板19は、曲線的な波状に形成されていてもよい。仕切り板19は、流入管6内の流路を複数の空間に仕切る仕切り壁として機能するとともに、角部の内側は溝としても機能する。外周管17の管軸方向の長さは、仕切り板19の管軸方向の長さよりも短くなっている。外周管17及び仕切り板19の長さの差を用いて、外周管17及び仕切り板19を備えた配管部11と、仕切り板19のみを備えた開放部13と、が形成されている。本実施の形態において、開放部13では、仕切り板19(仕切り壁)が、シェル3の中心軸側だけでなくシェル3の内壁面側にも露出している。 As shown in FIGS. 13 to 15, the inflow pipe 6 in the present embodiment includes an outer pipe 17 that forms an outer wall (pipe wall) and has a flat or elliptical cross-sectional shape, and is disposed inside the outer pipe 17. Partition plate 19 (grooved plate). The partition plate 19 is formed in a linear wave shape (triangular wave shape), and extends in the major axis a direction of the inflow pipe 6 as a whole. The corners (the tops of the waves) of the partition plate 19 are, for example, acute angles, and are alternately in contact with the two inner wall surfaces of the outer peripheral pipe 17 facing each other across the partition plate 19. The partition plate 19 may be formed in a curved wave shape. The partition plate 19 functions as a partition wall that partitions the flow path in the inflow pipe 6 into a plurality of spaces, and the inside of the corner also functions as a groove. The length of the outer peripheral tube 17 in the tube axis direction is shorter than the length of the partition plate 19 in the tube axis direction. Using the difference in length between the outer peripheral tube 17 and the partition plate 19, the pipe portion 11 including the outer peripheral tube 17 and the partition plate 19 and the open portion 13 including only the partition plate 19 are formed. In the present embodiment, in the open portion 13, the partition plate 19 (partition wall) is exposed not only on the central axis side of the shell 3 but also on the inner wall surface side of the shell 3.
 流入管6の開放部13では、仕切り板19を挟んだ両側で流路が分かれるため、開放部13の流路がシェル3の中心軸側だけでなくシェル3の内壁面側にも存在する構造になる。開放部13におけるシェル3の内壁面側の流路は開放される空間が狭いため、ガスと油が流れにくくなっている。これにより、大半のガスと油はシェル3の中心軸側の流路に集中する。そのため、シェル3の内壁面側の流路ではガスの流速が遅くなるため、油が角部(溝)に沿って流れやすくなる。シェル3の内壁面側の流路を流れた油は、下流端14でシェル3の内壁面側に開放される。シェル3の内壁面側の流路でガス流中に飛散した油は、シェル3の内壁面との距離が近いことにより、シェル3の内壁面にすぐに到達する。一方、シェル3の中心軸側の流路では、実施の形態1と同様の作用により、油の分離効率が向上する。これにより、本実施の形態によっても実施の形態1とほぼ同様の効果が得られる。 In the open portion 13 of the inflow pipe 6, the flow path is divided on both sides of the partition plate 19, so that the flow path of the open portion 13 exists not only on the central axis side of the shell 3 but also on the inner wall surface side of the shell 3. become. Since the open space of the flow path on the inner wall surface side of the shell 3 in the open portion 13 is narrow, it is difficult for gas and oil to flow. As a result, most of the gas and oil concentrate in the flow path on the central axis side of the shell 3. For this reason, the flow rate of the gas is reduced in the flow path on the inner wall surface side of the shell 3, so that the oil easily flows along the corner (groove). The oil that has flowed through the flow path on the inner wall surface side of the shell 3 is released to the inner wall surface side of the shell 3 at the downstream end 14. The oil scattered in the gas flow in the flow path on the inner wall surface side of the shell 3 immediately reaches the inner wall surface of the shell 3 because the distance from the inner wall surface of the shell 3 is short. On the other hand, in the flow path on the central axis side of the shell 3, the oil separation efficiency is improved by the same action as in the first embodiment. As a result, the present embodiment can provide substantially the same effect as in the first embodiment.
 仕切り板19は、配管部11では外周管17に覆われており、開放部13ではその両面が容器2の内部にある。このため、仕切り板19は、静圧差による応力を受けにくいため、薄い板で構成することが可能である。仕切り板19を薄い板で構成することにより、仕切り板19の板厚による流入管6の流路断面積の減少が小さくなるため、仕切り板19の折曲げ回数を増やして流入管6の内壁面積を増加させることができる。流入管6の内壁面積を増加させることにより、内壁面に沿って流れる油の流量を増やすことができ、油を纏めて容器2内に開放できるようになるため、油の分離効率が向上する。 The partition plate 19 is covered with the outer peripheral pipe 17 in the pipe portion 11, and both surfaces of the partition plate 19 are inside the container 2 in the open portion 13. For this reason, since the partition plate 19 is hard to receive the stress by a static pressure difference, it can be comprised with a thin board. By configuring the partition plate 19 with a thin plate, the reduction in the flow passage cross-sectional area of the inflow pipe 6 due to the thickness of the partition plate 19 is reduced. Therefore, the number of folding of the partition plate 19 is increased and the inner wall area of the inflow pipe 6 is increased. Can be increased. By increasing the inner wall area of the inflow pipe 6, the flow rate of oil flowing along the inner wall surface can be increased and the oil can be collected and released into the container 2, so that the oil separation efficiency is improved.
 本例では、開放部13において仕切り板19の下流端14がシェル3の内壁面に接している。これにより、仕切り板19におけるシェル3の中心軸側の流路とシェル3の内壁面とを平行に近い角度で接触させることができるため、当該流路を流れる油が下流端14でシェル3の内壁面に移る際に、流路の急な曲がりによる乱れで油が飛散してしまうことが少なくなる。また、仕切り板19におけるシェル3の内壁面側の流路を流れる油も、主流以外の方向の流れが少なくなるため流れに乱れが生じにくくなる。また、当該流路とシェル3の内壁面との距離が近くなるため、当該流路を流れる油がシェル3の内壁面に到達しやすくなる。 In this example, the downstream end 14 of the partition plate 19 is in contact with the inner wall surface of the shell 3 in the open portion 13. Thereby, since the flow path on the central axis side of the shell 3 in the partition plate 19 and the inner wall surface of the shell 3 can be brought into contact with each other at an angle close to parallel, the oil flowing through the flow path of the shell 3 at the downstream end 14 When moving to the inner wall surface, the oil is less likely to be scattered due to the disturbance due to the sudden bending of the flow path. Further, the oil flowing through the flow path on the inner wall surface side of the shell 3 in the partition plate 19 is less likely to be disturbed in the flow because the flow in the direction other than the main flow is reduced. In addition, since the distance between the flow path and the inner wall surface of the shell 3 is reduced, the oil flowing through the flow path easily reaches the inner wall surface of the shell 3.
実施の形態5.
 本発明の実施の形態5に係る油分離器について説明する。図16は、本実施の形態における流入管6とシェル3との接合部の構成を示す斜視図である。図17は、本実施の形態における流入管6の構成の一例を示す断面図であり、配管部11の断面(a)と開放部13の断面(b)とを併せて示す図である。なお、実施の形態1と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。
Embodiment 5 FIG.
An oil separator according to Embodiment 5 of the present invention will be described. FIG. 16 is a perspective view showing a configuration of a joint portion between the inflow pipe 6 and the shell 3 in the present embodiment. FIG. 17 is a cross-sectional view showing an example of the configuration of the inflow pipe 6 in the present embodiment, and is a view showing both the cross section (a) of the pipe portion 11 and the cross section (b) of the open portion 13. In addition, about the component which has the function and effect | action same as Embodiment 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 図16及び図17に示すように、本実施の形態の流入管6は、複数の円管20を一方向(シェル3の中心軸と平行になる方向)に並列させて相互に接合した構成を有しており、全体として扁平状の断面形状を有している。開放部13では、複数の円管20のそれぞれにおいてシェル3の中心軸側の半円部分が除去され、シェル3の内壁面側の半円部分20aが残存した構造となっている。開放部13において、半円部分20a同士を隙間なく密着又は接合させることによって、全体として一つの油の受け皿となる。各半円部分20aにおいて油が纏まって油膜が厚くなり、半円部分20aから油が溢れ出しても、表面張力によって隣接する半円部分20aの油と合流し、纏まって下流端14まで流れるようになる。 As shown in FIGS. 16 and 17, the inflow pipe 6 of the present embodiment has a configuration in which a plurality of circular pipes 20 are arranged in parallel in one direction (a direction parallel to the central axis of the shell 3). And has a flat cross-sectional shape as a whole. The open portion 13 has a structure in which the semicircular portion on the central axis side of the shell 3 is removed in each of the plurality of circular tubes 20 and the semicircular portion 20a on the inner wall surface side of the shell 3 remains. In the open part 13, the semicircular parts 20 a are closely contacted or joined together without any gaps, so that a whole oil receiving tray is obtained. Even if oil is collected in each semicircular portion 20a and the oil film becomes thick, and oil overflows from the semicircular portion 20a, it merges with the oil in the adjacent semicircular portion 20a due to surface tension and flows to the downstream end 14 collectively. become.
 図18は、本実施の形態における流入管6の構成の別の例を示す断面図であり、配管部11の断面(a)と開放部13の断面(b)とを併せて示す図である。図18に示すように、本例の流入管6は、複数の角管21を一方向(シェル3の中心軸と平行な方向)に並列させて相互に接合した構成を有しており、全体として扁平状の断面形状を有している。開放部13では、複数の角管21のそれぞれにおいてシェル3の中心軸側の一辺が除去され、他の三辺で形成されるU字部分21aが残存した構造となっている。 FIG. 18 is a cross-sectional view showing another example of the configuration of the inflow pipe 6 in the present embodiment, and is a view showing a cross section (a) of the pipe portion 11 and a cross section (b) of the open portion 13 together. . As shown in FIG. 18, the inflow pipe 6 of the present example has a configuration in which a plurality of square tubes 21 are joined in parallel in one direction (a direction parallel to the central axis of the shell 3). As a flat cross-sectional shape. The open portion 13 has a structure in which one side of the central axis side of the shell 3 is removed from each of the plurality of square tubes 21 and the U-shaped portion 21a formed by the other three sides remains.
 図16~図18に示した本実施の形態の構成によっても、実施の形態1と同様の効果が得られる。また、流入管6は、比較的入手が容易で安価な量産品がある円管20や角管21を用いて構成されている。これにより、扁平管や楕円管を用いることなく効果が得られるため、流入管6及び油分離器1の製造コストを低減できる。 The same effects as those of the first embodiment can be obtained by the configuration of the present embodiment shown in FIGS. The inflow pipe 6 is configured by using a circular pipe 20 and a square pipe 21 that are relatively easily available and inexpensive mass-produced products. Thereby, since an effect is acquired without using a flat tube or an elliptical tube, the manufacturing cost of the inflow pipe 6 and the oil separator 1 can be reduced.
 図19及び図20は、本実施の形態における流入管6の構成の変形例を示す断面図であり、配管部11の断面(a)と開放部13の断面(b)とを併せて示す図である。図19に示す流入管6は、扁平状の断面形状を有する外周管17の内部に、一方向に並列した複数の円管20が配置された構成を有している。開放部13では、外周管17及び複数の円管20のそれぞれにおいてシェル3の中心軸側の部分が除去された構造となっている。図20に示す流入管6は、扁平状(長方形状)の断面形状を有する外周管17の内部に、角管の一辺(シェル3の中心軸側の一辺)が除去されたU字部分21aが、一方向に並列して複数配置された構成を有している。流入管6の配管部11は、外周管17及び複数のU字部分21aを備えており、流入管6の開放部13は、複数のU字部分21aのみを備えている。 19 and 20 are cross-sectional views showing a modification of the configuration of the inflow pipe 6 in the present embodiment, and are a view showing a cross-section (a) of the pipe portion 11 and a cross-section (b) of the open portion 13 together. It is. The inflow pipe 6 shown in FIG. 19 has a configuration in which a plurality of circular pipes 20 arranged in one direction are arranged inside an outer peripheral pipe 17 having a flat cross-sectional shape. The open portion 13 has a structure in which a portion on the central axis side of the shell 3 is removed from each of the outer peripheral tube 17 and the plurality of circular tubes 20. The inflow pipe 6 shown in FIG. 20 has a U-shaped portion 21a in which one side of the square tube (one side on the central axis side of the shell 3) is removed inside the outer pipe 17 having a flat (rectangular) cross-sectional shape. , A plurality of components arranged in parallel in one direction. The piping part 11 of the inflow pipe 6 includes an outer peripheral pipe 17 and a plurality of U-shaped parts 21a, and the open part 13 of the inflow pipe 6 includes only a plurality of U-shaped parts 21a.
 図19及び図20に示す変形例は、本実施の形態と実施の形態3とを組み合わせた構成である。これらの変形例では、複数の円管20の外側又は複数の角管のU字部分21aの外側を外周管17で覆うことにより、管同士(円管20同士又はU字部分21a同士)の接合処理、シェル3と流入管6との接合処理、及び流入管6の密閉処理が容易になる。 19 and FIG. 20 is a combination of the present embodiment and the third embodiment. In these modified examples, the outer pipes 20 or the outer sides of the U-shaped portions 21a of the plurality of square tubes are covered with the outer peripheral pipe 17, thereby joining the pipes (the circular pipes 20 or the U-shaped parts 21a). Processing, joining processing of the shell 3 and the inflow pipe 6, and sealing processing of the inflow pipe 6 are facilitated.
実施の形態6.
 本発明の実施の形態6に係る油分離器について説明する。図21は、本実施の形態における流入管6とシェル3との接合部の構成を示す斜視図である。図22は、本実施の形態における流入管6とシェル3との接合部をシェル3の中心軸に対して垂直に切断した構成を示す断面図である。なお、実施の形態1と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。
Embodiment 6 FIG.
An oil separator according to Embodiment 6 of the present invention will be described. FIG. 21 is a perspective view showing a configuration of a joint portion between the inflow pipe 6 and the shell 3 in the present embodiment. FIG. 22 is a cross-sectional view showing a configuration in which the joint portion between the inflow pipe 6 and the shell 3 in this embodiment is cut perpendicularly to the central axis of the shell 3. In addition, about the component which has the function and effect | action same as Embodiment 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 図21及び図22に示すように、本実施の形態では、配管部端部12から下流端14までの開放部13が、シェル3(容器2)の内壁面に接合されているか、又はシェル3の内壁面と一体的に成型されている。すなわち、本実施の形態では、シェル3の内壁面のうちの周方向の一部に、複数の仕切り壁22が形成されている。各仕切り壁22は、シェル3の内壁面に沿って円弧状に形成されている。流入管6は、当該流入管6(配管部11)の内部に形成された仕切り壁6bの壁面と、シェル3の内壁面に形成された仕切り壁22の壁面とがそれぞれ連続的に接続されるように接合されている。開放部13では、流入管6内の管路から連続的に形成された仕切り壁22が、シェル3の内壁面の中心軸側に露出した構造となっている。なお、流入管6の内部に複数の溝6cが設けられている場合には、溝6cに対応する複数の溝がシェル3の内壁面に設けられていてもよい。この場合、流入管6は、当該流入管6の内部に形成された溝6cの壁面と、シェル3の内壁面に形成された溝の壁面とがそれぞれ連続的に接続されるように接合される。 As shown in FIGS. 21 and 22, in the present embodiment, the open part 13 from the pipe part end 12 to the downstream end 14 is joined to the inner wall surface of the shell 3 (container 2), or the shell 3. It is molded integrally with the inner wall surface. That is, in the present embodiment, a plurality of partition walls 22 are formed in a part of the inner wall surface of the shell 3 in the circumferential direction. Each partition wall 22 is formed in an arc shape along the inner wall surface of the shell 3. In the inflow pipe 6, the wall surface of the partition wall 6 b formed inside the inflow pipe 6 (pipe portion 11) and the wall surface of the partition wall 22 formed in the inner wall surface of the shell 3 are continuously connected to each other. Are joined together. In the open part 13, the partition wall 22 formed continuously from the pipe line in the inflow pipe 6 is exposed to the central axis side of the inner wall surface of the shell 3. When a plurality of grooves 6 c are provided in the inflow pipe 6, a plurality of grooves corresponding to the grooves 6 c may be provided on the inner wall surface of the shell 3. In this case, the inflow pipe 6 is joined so that the wall surface of the groove 6 c formed inside the inflow pipe 6 and the wall surface of the groove formed on the inner wall surface of the shell 3 are continuously connected to each other. .
 本実施の形態によれば、開放部13の長さを容易に長くすることができるため、開放部13に沿って流れるガス流と、シェル3の内壁面の中心軸側を流れるガス流と、の速度差を減少させるための区間を長くすることができる。そのため、開放部13の下流端14において内壁面に沿って流れる油の流速が低下して纏まって流れるとともに、油が旋回部9に開放される際に受けるせん断力が弱まるため、小さい油滴になる油量を減少させることができる。したがって、油の分離効率を向上させることができる。また、本例の開放部13は円弧状に形成されているため、開放部13を流れるガスと油は、旋回部9と同様に遠心力を受ける。そのため、開放部13の内壁面に沿って流れる油の量をより多くすることができ、油の分離効率を向上させることができる。 According to the present embodiment, since the length of the open portion 13 can be easily increased, a gas flow flowing along the open portion 13, a gas flow flowing on the central axis side of the inner wall surface of the shell 3, The section for decreasing the speed difference can be lengthened. Therefore, the flow velocity of the oil flowing along the inner wall surface at the downstream end 14 of the opening portion 13 decreases and flows together, and the shear force received when the oil is released to the swiveling portion 9 is weakened. The amount of oil can be reduced. Therefore, the oil separation efficiency can be improved. Moreover, since the open part 13 of this example is formed in circular arc shape, the gas and oil which flow through the open part 13 receive centrifugal force similarly to the turning part 9. Therefore, the amount of oil flowing along the inner wall surface of the open portion 13 can be increased, and the oil separation efficiency can be improved.
 ここで、溝6cに対応する溝がシェル3の内壁面に設けられた構成の場合、シェル3の内壁面での溝の深さを開放部13の下流端14に向かうに従って徐々に浅くしていき、下流端14で溝を消失させるようにしてもよい。これにより、溝の底面とシェル3の内壁面とを連続的に接続させることができる。シェル3の内壁面に沿って流れる油は、段差や不連続面があると、偏流により流れが乱れて飛散しやすくなる。上記のように、溝の底面とシェル3の内壁面とを連続的に接続させることにより、油が飛散するのを防止できるため、油の分離効率を向上させることができる。 Here, when the groove corresponding to the groove 6 c is provided on the inner wall surface of the shell 3, the depth of the groove on the inner wall surface of the shell 3 is gradually decreased toward the downstream end 14 of the opening portion 13. The groove may disappear at the downstream end 14. Thereby, the bottom face of the groove and the inner wall surface of the shell 3 can be continuously connected. If the oil flowing along the inner wall surface of the shell 3 has a step or a discontinuous surface, the flow is disturbed due to the drift and is likely to be scattered. As described above, by continuously connecting the bottom surface of the groove and the inner wall surface of the shell 3, it is possible to prevent the oil from being scattered, so that the oil separation efficiency can be improved.
実施の形態7.
 本発明の実施の形態7に係る油分離器について説明する。図23は、本実施の形態における流入管6とシェル3との接合部の構成を示す斜視図である。図24は、本実施の形態における流入管6とシェル3との接合部をシェル3の中心軸に対して垂直に切断した構成を示す断面図である。図25は、本実施の形態における流入管6の構成を示す断面図であり、配管部11の断面(a)と管壁離間部23の断面(b)と開放部13の断面(c)とを併せて示す図である。なお、実施の形態1と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。
Embodiment 7 FIG.
An oil separator according to Embodiment 7 of the present invention will be described. FIG. 23 is a perspective view showing a configuration of a joint portion between the inflow pipe 6 and the shell 3 in the present embodiment. FIG. 24 is a cross-sectional view showing a configuration in which the joint portion between the inflow pipe 6 and the shell 3 in the present embodiment is cut perpendicularly to the central axis of the shell 3. FIG. 25 is a cross-sectional view showing the configuration of the inflow pipe 6 in the present embodiment. The cross section (a) of the pipe portion 11, the cross section (b) of the pipe wall spacing portion 23, and the cross section (c) of the open portion 13. FIG. In addition, about the component which has the function and effect | action same as Embodiment 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 図23及び図24に示すように、本実施の形態における流入管6は、容器2(シェル3)の外部から内部に至る区間に設けられた管壁離間部23を有している。管壁離間部23は、流入管6の管軸方向において配管部11と開放部13との間に位置している。すなわち、配管部11はシェル3の外部に位置しており、開放部13はシェル3の内部に位置している。 As shown in FIGS. 23 and 24, the inflow pipe 6 in the present embodiment has a pipe wall separating portion 23 provided in a section from the outside to the inside of the container 2 (shell 3). The pipe wall separation part 23 is located between the pipe part 11 and the open part 13 in the pipe axis direction of the inflow pipe 6. That is, the piping part 11 is located outside the shell 3, and the opening part 13 is located inside the shell 3.
 図25(a)、(c)に示すように、配管部11及び開放部13は、図3(a)、(b)に示した配管部11及び開放部13と同様の断面形状を有している。管壁離間部23は、図25(b)に示すように、シェル3の中心軸側に位置し開放部13で開放される離間壁24が仕切り壁6bから離間した構成を有している。ここで、離間壁24は管壁6aの一部であり、本例の離間壁24は、シェル3の中心軸側に位置する半周分の管壁6aである。離間壁24の内壁面は、溝のない滑らかな面で構成されている。離間壁24の対面側の管壁6aには、配管部11の管壁6a及び仕切り壁6bに連続的に接続された溝が形成されている。図23~図25に示すように、管壁離間部23は、配管部11に対して短軸b方向(離間壁24側)に拡管されている。これにより、管壁離間部23での短軸cの長さは、配管部11での短軸bよりも拡大されている(a>c>b)。 As shown in FIGS. 25A and 25C, the piping part 11 and the opening part 13 have the same cross-sectional shape as the piping part 11 and the opening part 13 shown in FIGS. 3A and 3B. ing. As shown in FIG. 25 (b), the tube wall separation portion 23 has a configuration in which a separation wall 24 located on the center axis side of the shell 3 and opened by the opening portion 13 is separated from the partition wall 6 b. Here, the separation wall 24 is a part of the tube wall 6 a, and the separation wall 24 in this example is a half-circular tube wall 6 a located on the center axis side of the shell 3. The inner wall surface of the separation wall 24 is a smooth surface without a groove. Grooves continuously connected to the tube wall 6a and the partition wall 6b of the piping part 11 are formed in the tube wall 6a facing the separation wall 24. As shown in FIGS. 23 to 25, the pipe wall spacing portion 23 is expanded in the minor axis b direction (the spacing wall 24 side) with respect to the piping portion 11. Thereby, the length of the short axis c in the pipe wall separation | separation part 23 is expanded rather than the short axis b in the piping part 11 (a> c> b).
 図26は、本実施の形態の変形例における流入管6とシェル3との接合部をシェル3の中心軸に対して垂直に切断した構成を示す断面図である。図27は、本変形例における流入管6の構成を示す断面図であり、配管部11の断面(a)と管壁離間部23の断面(b)と開放部13の断面(c)とを併せて示す図である。図26及び図27に示す流入管6は、図23~図25に示した流入管6と同様に、管軸方向において配管部11と開放部13との間に位置する管壁離間部23を有している。 FIG. 26 is a cross-sectional view showing a configuration in which a joint portion between the inflow pipe 6 and the shell 3 is cut perpendicularly to the central axis of the shell 3 in a modification of the present embodiment. FIG. 27 is a cross-sectional view showing the configuration of the inflow pipe 6 in this modification, and shows a cross section (a) of the pipe part 11, a cross section (b) of the pipe wall separating part 23, and a cross section (c) of the open part 13. It is a figure shown collectively. The inflow pipe 6 shown in FIGS. 26 and 27 has a pipe wall separating portion 23 located between the pipe portion 11 and the open portion 13 in the pipe axis direction, like the inflow pipe 6 shown in FIGS. Have.
 図27(a)、(c)に示すように、配管部11及び開放部13は、図10(a)、(b)に示した配管部11及び開放部13と同様の断面形状を有している。管壁離間部23は、図27(b)に示すように、シェル3の中心軸側に位置し開放部13で開放される離間壁24(例えば、半周分の管壁6a)が仕切り壁6bから離間した構成を有している。本変形例では、管壁離間部23は配管部11に対して拡管されていない。管壁離間部23での仕切り壁6bの高さは、配管部11での仕切り壁6bに対して短軸b方向に短縮されている。これにより、管壁離間部23は、開放部13で開放される離間壁24(例えば、半周分の管壁6a)が仕切り壁6bから離間した構成を有している。本変形例のような構成でも、図23~図25に示した構成と同様に、配管部11と開放部13との間に管壁離間部23を形成できる。 As shown in FIGS. 27 (a) and (c), the piping part 11 and the opening part 13 have the same cross-sectional shape as the piping part 11 and the opening part 13 shown in FIGS. 10 (a) and 10 (b). ing. As shown in FIG. 27 (b), the tube wall separating portion 23 is located on the center axis side of the shell 3, and a separating wall 24 (for example, a tube wall 6 a for a half circumference) opened by the opening portion 13 is a partition wall 6 b. It has the structure spaced apart from. In the present modification, the tube wall separation portion 23 is not expanded with respect to the piping portion 11. The height of the partition wall 6b at the pipe wall separation portion 23 is shortened in the minor axis b direction with respect to the partition wall 6b at the pipe portion 11. Thereby, the pipe wall separation part 23 has a configuration in which the separation wall 24 (for example, the pipe wall 6a for a half circumference) opened by the opening part 13 is separated from the partition wall 6b. Even in the configuration of this modification, the tube wall separation portion 23 can be formed between the piping portion 11 and the opening portion 13 in the same manner as the configuration shown in FIGS.
 流入管6内の油は、慣性力、粘性力及び表面張力の作用により、流入管6内の壁(管壁6a又は仕切り壁6b)に近く、流れが遅い領域に纏まって流れやすい。このため、管壁離間部23の油は、滑らかな面である離間壁24側よりも、溝が形成されることにより壁と壁との隙間が狭くなった離間壁24の対面側に沿って流れやすい。したがって、管壁離間部23では、下流側に進むほど、離間壁24に沿って流れる油が減少し、離間壁24の対面側に沿って流れる油が増加する。管壁離間部23が存在しない場合には、シェル3の中心軸側に位置する管壁面に沿って流れる油は、配管部端部12において開放部13の管壁6aに纏まらずにそのまま旋回部9に飛散することになる。これに対し、本実施の形態では、シェル3の中心軸側に位置する離間壁24に沿って流れる油の量を減らすことができるため、旋回部9に飛散する油の量を減らすことができる。したがって、本実施の形態によれば、油の分離効率を向上させることができる。 The oil in the inflow pipe 6 is close to the wall (the pipe wall 6a or the partition wall 6b) in the inflow pipe 6 due to the effects of inertial force, viscous force and surface tension, and tends to flow in a region where the flow is slow. For this reason, the oil in the tube wall separation portion 23 is along the opposite side of the separation wall 24 in which the gap between the walls is narrowed by forming a groove rather than the separation wall 24 side which is a smooth surface. Easy to flow. Therefore, in the pipe wall separation part 23, the oil flowing along the separation wall 24 decreases and the oil flowing along the facing side of the separation wall 24 increases as it goes downstream. When the pipe wall separation part 23 does not exist, the oil flowing along the pipe wall surface located on the center axis side of the shell 3 is not collected in the pipe wall 6a of the open part 13 at the pipe part end part 12 as it is. It will scatter to the turning part 9. On the other hand, in this embodiment, since the amount of oil flowing along the separation wall 24 located on the center axis side of the shell 3 can be reduced, the amount of oil scattered on the swivel unit 9 can be reduced. . Therefore, according to the present embodiment, the oil separation efficiency can be improved.
実施の形態8.
 本発明の実施の形態8に係る油分離器について説明する。図28は、本実施の形態における流入管6とシェル3との接合部の構成を示す斜視図である。図29は、本実施の形態における流入管6の構成を示す断面図であり、配管部11の断面(a)と開放部13の断面(b)とを併せて示す図である。なお、実施の形態1、3及び4等と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。
Embodiment 8 FIG.
An oil separator according to Embodiment 8 of the present invention will be described. FIG. 28 is a perspective view illustrating a configuration of a joint portion between the inflow pipe 6 and the shell 3 in the present embodiment. FIG. 29 is a cross-sectional view showing the configuration of the inflow pipe 6 in the present embodiment, and is a view showing the cross section (a) of the pipe portion 11 and the cross section (b) of the open portion 13 together. In addition, about the component which has the same function and effect | action as Embodiment 1, 3, 4 etc., the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 図28及び図29に示すように、本実施の形態における流入管6は、扁平状又は楕円状の管ではなく円管で構成されている。具体的には、流入管6は、円形状の断面形状を備える管壁6aと、管壁6a内の流路に設けられた仕切り壁6bと、を有している。本例では、管軸方向に平行な平板状の仕切り壁6bが、互いに平行に複数並列している。図29(a)に示す配管部11の断面と、図29(b)に示す開放部13の断面とを比較すると、配管部11では外周の全周に管壁6aが設けられているのに対し、開放部13では、図中左側(シェル3の中心軸側)となる半周分の管壁6aが設けられていない。この点を除き、流入管6は、配管部11と開放部13とで同様の断面形状を有している。これにより、シェル3内に位置する開放部13では、仕切り壁6bの設けられた管路がシェル3の中心軸側に露出するようになっている。 As shown in FIG. 28 and FIG. 29, the inflow pipe 6 in the present embodiment is not a flat or elliptical pipe but a circular pipe. Specifically, the inflow pipe 6 includes a pipe wall 6a having a circular cross-sectional shape and a partition wall 6b provided in a flow path in the pipe wall 6a. In this example, a plurality of flat partition walls 6b parallel to the tube axis direction are parallel to each other. Comparing the cross section of the piping part 11 shown in FIG. 29 (a) with the cross section of the open part 13 shown in FIG. 29 (b), the pipe part 6 is provided with the pipe wall 6a on the entire outer periphery. On the other hand, the open portion 13 is not provided with a pipe wall 6a corresponding to a half circumference on the left side (the central axis side of the shell 3) in the drawing. Except for this point, the inflow pipe 6 has the same cross-sectional shape in the pipe portion 11 and the open portion 13. Thereby, in the open part 13 located in the shell 3, the pipe line provided with the partition wall 6b is exposed to the center axis side of the shell 3.
 図30は、本実施の形態における流入管6の構成の変形例を示す断面図であり、配管部11の断面(a)と開放部13の断面(b)とを併せて示す図である。図30に示すように、本変形例の流入管6は、外壁(管壁)を構成し円形状の断面形状を有する外周管17と、外周管17の内部に配置された溝付き板18と、を有している。すなわち、本変形例の流入管6は、断面形状が円形であることを除き、図11及び図12に示した実施の形態3の流入管6と同様の構成を有している。外周管17の管軸方向の長さは、溝付き板18の管軸方向の長さよりも短くなっている。外周管17及び溝付き板18の長さの差を用いて、外周管17及び溝付き板18を備えた配管部11と、溝付き板18のみを備えた開放部13と、が形成されている。シェル3内に位置する開放部13では、溝付き板18がシェル3の中心軸側に露出するようになっている。 FIG. 30 is a cross-sectional view showing a modified example of the configuration of the inflow pipe 6 in the present embodiment, and is a view showing a cross section (a) of the pipe portion 11 and a cross section (b) of the open portion 13 together. As shown in FIG. 30, the inflow pipe 6 of this modification includes an outer pipe 17 that forms an outer wall (pipe wall) and has a circular cross-sectional shape, and a grooved plate 18 that is disposed inside the outer pipe 17. ,have. That is, the inflow pipe 6 of this modification has the same configuration as the inflow pipe 6 of the third embodiment shown in FIGS. 11 and 12 except that the cross-sectional shape is circular. The length of the outer tube 17 in the tube axis direction is shorter than the length of the grooved plate 18 in the tube axis direction. Using the difference in length between the outer tube 17 and the grooved plate 18, the piping part 11 having the outer tube 17 and the grooved plate 18 and the opening part 13 having only the grooved plate 18 are formed. Yes. In the open portion 13 located in the shell 3, the grooved plate 18 is exposed to the center axis side of the shell 3.
 図31は、本実施の形態における流入管6の構成の別の変形例を示す断面図であり、配管部11の断面(a)と開放部13の断面(b)とを併せて示す図である。図31に示すように、本変形例の流入管6は、外壁(管壁)を構成し円形状の断面形状を有する外周管17と、外周管17の内部に配置された仕切り板19(溝付き板)と、を有している。すなわち、本変形例の流入管6は、断面形状が円形であることを除き、図14及び図15に示した実施の形態4の流入管6と同様の構成を有している。外周管17の管軸方向の長さは、仕切り板19の管軸方向の長さよりも短くなっている。外周管17及び仕切り板19の長さの差を用いて、外周管17及び仕切り板19を備えた配管部11と、仕切り板19のみを備えた開放部13と、が形成されている。シェル3内に位置する開放部13では、仕切り板19がシェル3の中心軸側に露出するようになっている。 FIG. 31 is a cross-sectional view showing another modified example of the configuration of the inflow pipe 6 in the present embodiment, and shows a cross-section (a) of the pipe portion 11 and a cross-section (b) of the open portion 13 together. is there. As shown in FIG. 31, the inflow pipe 6 of the present modification includes an outer pipe 17 that forms an outer wall (pipe wall) and has a circular cross-sectional shape, and a partition plate 19 (groove) disposed inside the outer pipe 17. Board). That is, the inflow pipe 6 of this modification has the same configuration as the inflow pipe 6 of the fourth embodiment shown in FIGS. 14 and 15 except that the cross-sectional shape is circular. The length of the outer peripheral tube 17 in the tube axis direction is shorter than the length of the partition plate 19 in the tube axis direction. Using the difference in length between the outer peripheral tube 17 and the partition plate 19, the pipe portion 11 including the outer peripheral tube 17 and the partition plate 19 and the open portion 13 including only the partition plate 19 are formed. In the opening part 13 located in the shell 3, the partition plate 19 is exposed to the center axis side of the shell 3.
 このように、本実施の形態における流入管6は、実施の形態3及び4における流入管6の断面形状を扁平状又は楕円状から円形状に変更した構成を有している。また、本実施の形態における流入管6は、実施の形態3及び4以外の実施の形態(例えば、実施の形態1、2、5~7)における流入管6の断面形状を円形状に変更した構成を有していてもよい。 As described above, the inflow pipe 6 in the present embodiment has a configuration in which the cross-sectional shape of the inflow pipe 6 in the third and fourth embodiments is changed from a flat shape or an elliptical shape to a circular shape. In addition, in the inflow pipe 6 in the present embodiment, the cross-sectional shape of the inflow pipe 6 in the embodiments other than the third and fourth embodiments (for example, the first, second, and fifth to seventh embodiments) is changed to a circular shape. You may have a structure.
 本実施の形態では、流入管6が扁平状や楕円状の断面形状を有する構成と比較すると、流入管6の下流端14において油がシェル3の内壁面に近い位置で開放されにくくなるため、油の分離効率がやや低下してしまう場合があり得る。しかしながら、本実施の形態では、溝付き板18又は仕切り板19がシェル3の中心軸側に露出した開放部13が、流入管6の下流端14側に設けられているため、流入管6からシェル3内に流入した油が小さな油滴として飛散してしまうのを抑えることができる。したがって、本実施の形態によれば、例えば特許文献1に記載された構成と比較して、油の分離効率を向上させることができる。 In the present embodiment, compared to the configuration in which the inflow pipe 6 has a flat or elliptical cross-sectional shape, oil is less likely to be opened at a position near the inner wall surface of the shell 3 at the downstream end 14 of the inflow pipe 6. The oil separation efficiency may be slightly reduced. However, in the present embodiment, since the open portion 13 where the grooved plate 18 or the partition plate 19 is exposed on the central axis side of the shell 3 is provided on the downstream end 14 side of the inflow tube 6, It is possible to suppress the oil flowing into the shell 3 from being scattered as small oil droplets. Therefore, according to this Embodiment, compared with the structure described in patent document 1, for example, the separation efficiency of oil can be improved.
 また、本実施の形態によれば、流入管6を円管とすることによって加工が容易になるため、流入管6及び油分離器1の生産性を向上させることができる。 Further, according to the present embodiment, since the processing is facilitated by making the inflow pipe 6 into a circular pipe, the productivity of the inflow pipe 6 and the oil separator 1 can be improved.
 さらに、流入管6を円管とすることによって流入管6の強度を高めることができるため、油分離器1の内部がより高圧になっても流入管6の変形を生じにくくすることができる。したがって、本実施の形態によれば、流入管6及び油分離器1の耐圧性を向上させることができる。 Furthermore, since the strength of the inflow pipe 6 can be increased by using the inflow pipe 6 as a circular pipe, the deformation of the inflow pipe 6 can be made difficult even if the pressure inside the oil separator 1 becomes higher. Therefore, according to the present embodiment, the pressure resistance of the inflow pipe 6 and the oil separator 1 can be improved.
 以上説明したように、上記実施の形態1~8に係る油分離器1は、円筒状の内壁面を有する容器2(シェル3)と、容器2の内壁面の接線方向に沿って容器2に接続され、ガス及び油が混合した混合流体を容器2内に流入させる流入管6と、容器2の上部に接続され、容器2内のガスを外部に流出させるガス流出管7と、容器2の下部に接続され、容器2内の油を外部に流出させる油流出管8と、を備え、流入管6は、管壁6aと、管壁6a内の流路に設けられた仕切り壁6b又は溝6cと、を有しており、容器2の内部に位置する流入管6の下流端14側には、容器2の内壁面の中心軸側の管壁6aが開放された開放部13が設けられており、開放部13では、仕切り壁6b又は溝6cが容器2の内壁面の中心軸側に露出しているものである。 As described above, the oil separator 1 according to Embodiments 1 to 8 described above is disposed in the container 2 along the tangential direction of the container 2 (shell 3) having a cylindrical inner wall surface and the inner wall surface of the container 2. An inflow pipe 6 for connecting a mixed fluid in which gas and oil are mixed into the container 2, a gas outflow pipe 7 for connecting the gas in the container 2 to the outside, connected to the upper part of the container 2, and the container 2 An oil outflow pipe 8 connected to the lower part and allowing oil in the container 2 to flow out to the outside. The inflow pipe 6 includes a pipe wall 6a and a partition wall 6b or a groove provided in a flow path in the pipe wall 6a. 6c, and on the downstream end 14 side of the inflow pipe 6 located inside the container 2, an opening portion 13 in which the tube wall 6a on the central axis side of the inner wall surface of the container 2 is opened is provided. In the open part 13, the partition wall 6 b or the groove 6 c is exposed on the central axis side of the inner wall surface of the container 2. That.
 この構成によれば、流入管6の内部に仕切り壁6b又は溝6cが設けられていることにより、油が纏まって流れやすくなり、遠心分離しにくい小さな油滴の発生を抑えることができる。さらに、流入管6の下流端14側には、仕切り壁6b又は溝6cが容器2の内壁面の中心軸側に露出した開放部13が設けられているため、流入管6から容器2内に流入した油が小さな油滴として飛散することを抑えることができる。したがって、油の分離効率を向上させることができる。また、油分離器1での油の分離効率が向上することにより、冷凍サイクルの圧縮機に適切な量の油を保持させることができる。このため、圧縮機の長寿命化及び省エネルギー化を実現することができる。 According to this configuration, since the partition wall 6b or the groove 6c is provided in the inside of the inflow pipe 6, it becomes easy for oil to flow together and generation of small oil droplets that are difficult to centrifuge can be suppressed. Furthermore, the downstream end 14 side of the inflow pipe 6 is provided with an open portion 13 in which the partition wall 6b or the groove 6c is exposed on the central axis side of the inner wall surface of the container 2, so that the inflow pipe 6 enters the container 2. It can suppress that the oil which flowed in is scattered as a small oil droplet. Therefore, the oil separation efficiency can be improved. Moreover, the oil separation efficiency in the oil separator 1 is improved, so that an appropriate amount of oil can be held in the compressor of the refrigeration cycle. For this reason, the lifetime improvement and energy saving of a compressor are realizable.
 また、上記実施の形態に係る油分離器1において、流入管6は、2つの溝付き板(例えば、内周側溝付き板15及び外周側溝付き板16)を接合した構成を有するものである。 Further, in the oil separator 1 according to the above embodiment, the inflow pipe 6 has a configuration in which two grooved plates (for example, the inner circumferential grooved plate 15 and the outer circumferential grooved plate 16) are joined.
 この構成によれば、管軸方向で一様な断面形状を有する板を用いて流入管6を構成できるため、製造加工が容易になる。 According to this configuration, since the inflow tube 6 can be configured using a plate having a uniform cross-sectional shape in the tube axis direction, the manufacturing process is facilitated.
 また、上記実施の形態に係る油分離器1において、流入管6は、管壁6aを構成する外周管17と、外周管17の内部に配置された仕切り板19又は溝付き板18と、を有するものである。 In the oil separator 1 according to the above embodiment, the inflow pipe 6 includes the outer peripheral pipe 17 constituting the pipe wall 6a, and the partition plate 19 or the grooved plate 18 disposed inside the outer peripheral pipe 17. It is what you have.
 この構成によれば、外周管17と仕切り板19又は溝付き板18との接合部において密閉処理を必要としないため、流入管6の製造加工が容易になる。 According to this configuration, since the sealing process is not required at the joint between the outer peripheral tube 17 and the partition plate 19 or the grooved plate 18, the manufacturing process of the inflow tube 6 is facilitated.
 また、上記実施の形態に係る油分離器1において、仕切り板19は、直線的又は曲線的な波状の断面形状を有しているものである。 Further, in the oil separator 1 according to the above embodiment, the partition plate 19 has a linear or curved wavy cross-sectional shape.
 この構成によれば、仕切り板19を厚さの薄い部材で構成できるため、流入管6内部の表面積を容易に増加させることができる。これにより、油の分離効率をさらに向上できるとともに、流入管6の製造加工が容易になる。 According to this configuration, since the partition plate 19 can be configured with a thin member, the surface area inside the inflow pipe 6 can be easily increased. Thereby, the separation efficiency of the oil can be further improved, and the manufacturing process of the inflow pipe 6 is facilitated.
 また、上記実施の形態に係る油分離器1において、流入管6は、一方向に並列した複数の管(例えば、円管又は角管)を接合した構成を有するものである。 Further, in the oil separator 1 according to the above-described embodiment, the inflow pipe 6 has a configuration in which a plurality of pipes (for example, a circular pipe or a square pipe) arranged in parallel in one direction are joined.
 この構成によれば、安価な部材で流入管6を構成できる。 According to this configuration, the inflow pipe 6 can be configured with an inexpensive member.
 また、上記実施の形態に係る油分離器1において、流入管6は、管壁6aを構成する外周管17と、外周管17の内部に配置され一方向に並列した複数の管(例えば、円管又は角管)と、を有するものである。 In addition, in the oil separator 1 according to the above-described embodiment, the inflow pipe 6 includes the outer pipe 17 constituting the pipe wall 6a and a plurality of pipes (for example, circles) arranged inside the outer pipe 17 and arranged in parallel in one direction. Tube or square tube).
 この構成によれば、安価な部材で流入管6を構成できる。 According to this configuration, the inflow pipe 6 can be configured with an inexpensive member.
 また、上記実施の形態に係る油分離器1において、開放部13では、仕切り壁22又は溝が容器2の内壁面に設けられており、容器2の内壁面に設けられた仕切り壁22又は溝と、管壁6a内の流路に設けられた仕切り壁6b又は溝6cとは、連続的に接続されているものである。また、上記実施の形態に係る油分離器1において、容器2の内壁面に設けられた仕切り壁22又は溝は、容器2の内壁面に沿って円弧状に設けられているものである。 Further, in the oil separator 1 according to the above embodiment, in the open portion 13, the partition wall 22 or the groove is provided on the inner wall surface of the container 2, and the partition wall 22 or the groove provided on the inner wall surface of the container 2. And the partition wall 6b or the groove | channel 6c provided in the flow path in the pipe wall 6a is connected continuously. In the oil separator 1 according to the above embodiment, the partition wall 22 or the groove provided on the inner wall surface of the container 2 is provided in an arc shape along the inner wall surface of the container 2.
 この構成によれば、開放部13の長さを容易に長くすることができるため、油が小さな油滴として飛散することをさらに抑制でき、油の分離効率を向上できる。 According to this configuration, since the length of the open portion 13 can be easily increased, it is possible to further suppress the oil from being scattered as small oil droplets and improve the oil separation efficiency.
 また、上記実施の形態に係る油分離器1において、管壁6aは、扁平状又は楕円状の断面形状を有しており、流入管6の断面における長軸aは、容器2の内壁面の中心軸に平行に配置されているものである。 Further, in the oil separator 1 according to the above embodiment, the tube wall 6a has a flat or elliptical cross-sectional shape, and the long axis a in the cross section of the inflow tube 6 is the inner wall surface of the container 2. It is arranged parallel to the central axis.
 この構成によれば、流入管6の管壁6aが扁平状又は楕円状の断面形状を有することにより、油が容器2の内壁面に近い位置で開放されやすくなるため、より確実に油を容器2の内壁面に到達させることができる。また、流入管6の管壁6aが扁平状又は楕円状の断面形状を有することにより、油分離器1の容器2を小径化することができる。 According to this configuration, since the pipe wall 6a of the inflow pipe 6 has a flat or elliptical cross-sectional shape, the oil is easily opened at a position close to the inner wall surface of the container 2, so that the oil can be more reliably supplied to the container. 2 can be reached. Moreover, since the pipe wall 6a of the inflow pipe 6 has a flat or elliptical cross-sectional shape, the diameter of the container 2 of the oil separator 1 can be reduced.
 また、上記実施の形態に係る油分離器1において、管壁6aは、円形状の断面形状を有しているものである。 Further, in the oil separator 1 according to the above embodiment, the tube wall 6a has a circular cross-sectional shape.
 この構成によれば、流入管6及び油分離器1の生産性及び耐圧性を向上させることができる。 According to this configuration, the productivity and pressure resistance of the inflow pipe 6 and the oil separator 1 can be improved.
 また、上記実施の形態に係る油分離器1において、流入管6は、仕切り壁6bを有しており、流入管6には、開放部13の上流側に位置する管壁離間部23と、管壁離間部23の上流側に位置する配管部11と、が設けられており、配管部11では、管壁6a内の流路が仕切り壁6bによって仕切られており、管壁離間部23では、容器2の内壁面の中心軸側に位置する管壁6a(本例では、離間壁24)が仕切り壁6bから離間しているものである。 Further, in the oil separator 1 according to the above-described embodiment, the inflow pipe 6 has a partition wall 6b, and the inflow pipe 6 includes a pipe wall separating portion 23 positioned on the upstream side of the open portion 13, and And a pipe part 11 located upstream of the pipe wall separation part 23. In the pipe part 11, the flow path in the pipe wall 6a is partitioned by a partition wall 6b. The tube wall 6a (in this example, the separation wall 24) located on the center axis side of the inner wall surface of the container 2 is separated from the partition wall 6b.
 この構成によれば、シェル3の中心軸側に位置する離間壁24に沿って流れる油の量を減らすことができるため、旋回部9に飛散する油の量を減らすことができる。したがって、油の分離効率を向上させることができる。 According to this configuration, since the amount of oil flowing along the separation wall 24 located on the center axis side of the shell 3 can be reduced, the amount of oil scattered on the swivel unit 9 can be reduced. Therefore, the oil separation efficiency can be improved.
 上記の各実施の形態や変形例は、互いに組み合わせて実施することが可能である。 The above embodiments and modifications can be implemented in combination with each other.
 1 油分離器、2 容器、3 シェル、4 上部鏡板、5 下部鏡板、6 流入管、6a 管壁、6b 仕切り壁、6c 溝、7 ガス流出管、8 油流出管、9 旋回部、10 旋回開放部、11 配管部、12 配管部端部、13 開放部、14 下流端、15 内周側溝付き板、16 外周側溝付き板、17 外周管、18 溝付き板、18a 底面部、18b 壁部、19 仕切り板、20 円管、20a 半円部分、21 角管、21a U字部分、22 仕切り壁、23 管壁離間部、24 離間壁、a 長軸、b、c 短軸。 1 oil separator, 2 container, 3 shell, 4 upper end plate, 5 lower end plate, 6 inflow tube, 6a tube wall, 6b partition wall, 6c groove, 7 gas outflow tube, 8 oil outflow tube, 9 swivel unit, 10 swivel Open part, 11 Piping part, 12 Piping part end, 13 Opening part, 14 Downstream end, 15 Inner peripheral grooved plate, 16 Outer peripheral side grooved plate, 17 Outer peripheral pipe, 18 Grooved plate, 18a Bottom surface part, 18b Wall part , 19 partition plate, 20 circular tube, 20a semicircular part, 21 square tube, 21a U-shaped part, 22 partition wall, 23 tube wall separation part, 24 separation wall, a long axis, b, c short axis.

Claims (11)

  1.  円筒状の内壁面を有する容器と、
     前記内壁面の接線方向に沿って前記容器に接続され、ガス及び油が混合した混合流体を前記容器内に流入させる流入管と、
     前記容器の上部に接続され、前記容器内のガスを外部に流出させるガス流出管と、
     前記容器の下部に接続され、前記容器内の油を外部に流出させる油流出管と、
     を備え、
     前記流入管は、管壁と、前記管壁内の流路に設けられた仕切り壁又は溝と、を有しており、
     前記容器の内部に位置する前記流入管の下流端側には、前記内壁面の中心軸側の前記管壁が開放された開放部が設けられており、
     前記開放部では、前記仕切り壁又は前記溝が前記内壁面の中心軸側に露出している油分離器。
    A container having a cylindrical inner wall surface;
    An inflow pipe connected to the container along a tangential direction of the inner wall surface, for allowing a mixed fluid mixed with gas and oil to flow into the container;
    A gas outflow pipe connected to an upper portion of the container and configured to flow out the gas in the container to the outside;
    An oil outflow pipe connected to the lower part of the container and allowing the oil in the container to flow out to the outside;
    With
    The inflow pipe has a pipe wall and a partition wall or a groove provided in a flow path in the pipe wall,
    On the downstream end side of the inflow pipe located inside the container, an open portion in which the pipe wall on the central axis side of the inner wall surface is opened is provided,
    In the open part, the partition wall or the groove is exposed to the central axis side of the inner wall surface.
  2.  前記流入管は、2つの溝付き板を接合した構成を有する請求項1に記載の油分離器。 The oil separator according to claim 1, wherein the inflow pipe has a configuration in which two grooved plates are joined.
  3.  前記流入管は、前記管壁を構成する外周管と、前記外周管の内部に配置された仕切り板又は溝付き板と、を有する請求項1に記載の油分離器。 The oil separator according to claim 1, wherein the inflow pipe includes an outer peripheral pipe constituting the pipe wall, and a partition plate or a grooved plate disposed inside the outer peripheral pipe.
  4.  前記仕切り板は、直線的又は曲線的な波状の断面形状を有している請求項3に記載の油分離器。 The oil separator according to claim 3, wherein the partition plate has a linear or curved wavy cross-sectional shape.
  5.  前記流入管は、一方向に並列した複数の管を接合した構成を有する請求項1に記載の油分離器。 The oil separator according to claim 1, wherein the inflow pipe has a configuration in which a plurality of pipes arranged in parallel in one direction are joined.
  6.  前記流入管は、前記管壁を構成する外周管と、前記外周管の内部に配置され一方向に並列した複数の管と、を有する請求項1に記載の油分離器。 2. The oil separator according to claim 1, wherein the inflow pipe has an outer peripheral pipe constituting the pipe wall and a plurality of pipes arranged in the outer peripheral pipe and arranged in parallel in one direction.
  7.  前記開放部では、前記仕切り壁又は前記溝が前記内壁面に設けられており、
     前記内壁面に設けられた前記仕切り壁又は前記溝と、前記管壁内の流路に設けられた前記仕切り壁又は前記溝とは、連続的に接続されている請求項1~請求項6のいずれか一項に記載の油分離器。
    In the open portion, the partition wall or the groove is provided in the inner wall surface,
    The partition wall or the groove provided in the inner wall surface and the partition wall or the groove provided in the flow path in the tube wall are continuously connected. The oil separator according to any one of the above.
  8.  前記内壁面に設けられた前記仕切り壁又は前記溝は、前記内壁面に沿って円弧状に設けられている請求項7に記載の油分離器。 The oil separator according to claim 7, wherein the partition wall or the groove provided on the inner wall surface is provided in an arc shape along the inner wall surface.
  9.  前記管壁は、扁平状又は楕円状の断面形状を有しており、
     前記流入管の断面における長軸は、前記内壁面の中心軸に平行に配置されている請求項1~請求項8のいずれか一項に記載の油分離器。
    The tube wall has a flat or elliptical cross-sectional shape,
    The oil separator according to any one of claims 1 to 8, wherein a major axis in a cross section of the inflow pipe is disposed in parallel to a central axis of the inner wall surface.
  10.  前記管壁は、円形状の断面形状を有している請求項1~請求項8のいずれか一項に記載の油分離器。 The oil separator according to any one of claims 1 to 8, wherein the pipe wall has a circular cross-sectional shape.
  11.  前記流入管は、前記仕切り壁を有しており、
     前記流入管には、前記開放部の上流側に位置する管壁離間部と、前記管壁離間部の上流側に位置する配管部と、が設けられており、
     前記配管部では、前記管壁内の流路が前記仕切り壁によって仕切られており、
     前記管壁離間部では、前記内壁面の中心軸側に位置する前記管壁が前記仕切り壁から離間している請求項1~請求項10のいずれか一項に記載の油分離器。
    The inflow pipe has the partition wall;
    The inflow pipe is provided with a pipe wall separation part located upstream of the open part, and a pipe part located upstream of the pipe wall separation part,
    In the piping section, the flow path in the tube wall is partitioned by the partition wall,
    The oil separator according to any one of claims 1 to 10, wherein the tube wall located on a central axis side of the inner wall surface is separated from the partition wall at the tube wall separating portion.
PCT/JP2015/050314 2014-04-16 2015-01-08 Oil separator WO2015159559A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015532209A JP5868557B1 (en) 2014-04-16 2015-01-08 Oil separator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014084936 2014-04-16
JP2014-084936 2014-04-16

Publications (1)

Publication Number Publication Date
WO2015159559A1 true WO2015159559A1 (en) 2015-10-22

Family

ID=54323778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050314 WO2015159559A1 (en) 2014-04-16 2015-01-08 Oil separator

Country Status (2)

Country Link
JP (1) JP5868557B1 (en)
WO (1) WO2015159559A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109236613A (en) * 2018-11-19 2019-01-18 西安交通大学 A kind of cyclone type oil-gas separator and separation method
DE102020200775A1 (en) 2020-01-23 2021-07-29 Volkswagen Aktiengesellschaft Gas cyclone oil separator and air conditioning device for a motor vehicle

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471262U (en) * 1977-10-29 1979-05-21
JPS61246539A (en) * 1985-04-25 1986-11-01 Nippon Plast Co Ltd Air flow direction changing device of air conditioner
JPS62204234U (en) * 1986-06-18 1987-12-26
JPH0261453U (en) * 1988-10-31 1990-05-08
JPH05312438A (en) * 1992-03-09 1993-11-22 Daikin Ind Ltd Centrifugal oil separator
JP2000249431A (en) * 1999-02-25 2000-09-14 Mitsubishi Heavy Ind Ltd Oil separator
US6258146B1 (en) * 1999-01-18 2001-07-10 Abb Alstom Power Combustion Inlet duct for admitting flue gases into a cyclone separator
JP2004275800A (en) * 2003-03-12 2004-10-07 Mentec:Kk Cyclone dust collector
JP2007271251A (en) * 2006-03-07 2007-10-18 Takafumi Wada Radiation air conditioning unit
JP2011247575A (en) * 2010-04-26 2011-12-08 Nichirei Kogyo Kk Gas-liquid separator, and refrigerating device including the same
JP2013512102A (en) * 2009-12-04 2013-04-11 ニフコ ユーケー リミテッド Separation system for separating particles of a first fluid from a second fluid stream
JP2013148308A (en) * 2012-01-23 2013-08-01 Hitachi Appliances Inc Oil separator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100619785B1 (en) * 2005-05-16 2006-09-06 엘지전자 주식회사 Oil seperator

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471262U (en) * 1977-10-29 1979-05-21
JPS61246539A (en) * 1985-04-25 1986-11-01 Nippon Plast Co Ltd Air flow direction changing device of air conditioner
JPS62204234U (en) * 1986-06-18 1987-12-26
JPH0261453U (en) * 1988-10-31 1990-05-08
JPH05312438A (en) * 1992-03-09 1993-11-22 Daikin Ind Ltd Centrifugal oil separator
US6258146B1 (en) * 1999-01-18 2001-07-10 Abb Alstom Power Combustion Inlet duct for admitting flue gases into a cyclone separator
JP2000249431A (en) * 1999-02-25 2000-09-14 Mitsubishi Heavy Ind Ltd Oil separator
JP2004275800A (en) * 2003-03-12 2004-10-07 Mentec:Kk Cyclone dust collector
JP2007271251A (en) * 2006-03-07 2007-10-18 Takafumi Wada Radiation air conditioning unit
JP2013512102A (en) * 2009-12-04 2013-04-11 ニフコ ユーケー リミテッド Separation system for separating particles of a first fluid from a second fluid stream
JP2011247575A (en) * 2010-04-26 2011-12-08 Nichirei Kogyo Kk Gas-liquid separator, and refrigerating device including the same
JP2013148308A (en) * 2012-01-23 2013-08-01 Hitachi Appliances Inc Oil separator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109236613A (en) * 2018-11-19 2019-01-18 西安交通大学 A kind of cyclone type oil-gas separator and separation method
CN109236613B (en) * 2018-11-19 2023-04-28 西安交通大学 Cyclone type oil-gas separator and separation method
DE102020200775A1 (en) 2020-01-23 2021-07-29 Volkswagen Aktiengesellschaft Gas cyclone oil separator and air conditioning device for a motor vehicle

Also Published As

Publication number Publication date
JP5868557B1 (en) 2016-02-24
JPWO2015159559A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
US9427689B2 (en) Uniflow centrifugal gas-liquid separator
JP5858187B2 (en) Oil separator
US10207278B2 (en) Centrifugal fluid/particulate separator
JP5439026B2 (en) Gas-liquid separator
JP5868557B1 (en) Oil separator
US11117143B2 (en) Centrifugal filtration device
EP3006864B1 (en) Oil separator and method for manufacturing oil separator
CN105089570B (en) water control device for oil extraction system
JP6527962B2 (en) Multistage axial flow cyclone separator
JP2006266524A (en) Accumulator
JP4063179B2 (en) Oil separator
JP6403061B2 (en) Oil separator
JP7002566B2 (en) Separator and refrigeration cycle equipment
JP2015096781A (en) Oil separator
JP5803639B2 (en) Water separator
JPH05312438A (en) Centrifugal oil separator
JP2012057924A (en) Gas-liquid separator and refrigeration device including the same
EP2741029B1 (en) Oil separator
JP5562879B2 (en) Refrigerant distributor and refrigeration cycle apparatus including the same
US20190126171A1 (en) Gas-liquid separator
JP2020159633A (en) Oil separation device and compressor
JPWO2019064427A1 (en) Oil separator and air conditioner equipped with it
JP2021062324A (en) Gas-liquid separator
JP2014047969A (en) Oil separator
KR20190123827A (en) Cyclone with vortex finder that can change length and diameter

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015532209

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15780748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15780748

Country of ref document: EP

Kind code of ref document: A1