WO2015159535A1 - Detection solution, method for preparing same, and biosensing method - Google Patents

Detection solution, method for preparing same, and biosensing method Download PDF

Info

Publication number
WO2015159535A1
WO2015159535A1 PCT/JP2015/002062 JP2015002062W WO2015159535A1 WO 2015159535 A1 WO2015159535 A1 WO 2015159535A1 JP 2015002062 W JP2015002062 W JP 2015002062W WO 2015159535 A1 WO2015159535 A1 WO 2015159535A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
detection
substance
noble metal
detected
Prior art date
Application number
PCT/JP2015/002062
Other languages
French (fr)
Japanese (ja)
Inventor
大塚 尚
敏治 斎木
恵子 江刺家
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2016513640A priority Critical patent/JPWO2015159535A1/en
Publication of WO2015159535A1 publication Critical patent/WO2015159535A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals

Definitions

  • the present invention relates to a detection solution used for biosensing using noble metal nanoparticles, a method for preparing the same, and a biosensing method using the detection solution.
  • Biosensing is performed by detecting a specific binding (specific binding) of a biological substance using a change in an optical or electrical signal.
  • Biosensing for detecting changes in optical signals includes a method of detecting genetic materials such as DNA, RNA, peptide nucleic acids, oligonucleotides, etc. using fluorescent materials or noble metal nanoparticles as labels.
  • the label with a fluorescent substance has a weak signal when the concentration of a substance to be detected (for example, a target gene) is low, and it is difficult to detect with high sensitivity.
  • High-sensitivity detection is possible by methods using amplification such as surface-enhanced Raman (SERS), but it requires many amplification processes and is controlled by chance. Not suitable for measurement.
  • SERS surface-enhanced Raman
  • Patent Document 1 and Patent Document 2 describe the result of using a gold nanoparticle attached with an oligonucleotide having a sequence complementary to a part of the nucleic acid sequence as a probe and hybridizing the oligonucleotide to the nucleic acid.
  • a genetic diagnosis method for detecting a change in coloration of gold nanoparticles obtained by shifting the local plasmon resonance wavelength of gold nanoparticles by a long wavelength is described.
  • the detection sensitivity is equivalent to the fluorescence method, and the detection limit remains at a level of several tens of nM.
  • Non-Patent Document 1 discloses that in a non-crosslinking type agglutination reaction system, surface plasmon is used to accelerate aggregation by suppressing charge repulsion by adding a high concentration of salt (NaCl), and to increase detection sensitivity. A method using a resonance sensor is described.
  • Non-Patent Document 2 in the high-concentration salt addition system described in Non-Patent Document 1, the speeding up and simplification of the aggregation process, and the end group on the side opposite to the bonding part with noble metal particles
  • the mismatch states that for sensitive detection, factors such as the size of the gold nanoparticles, the type of target gene, and the pH of the buffered aqueous solution need to be individually optimized.
  • Non-Patent Document 3 for the purpose of improving detection sensitivity, the presence or absence of hybridization, that is, the presence or absence of a target gene is optically detected by measuring the particle size of gold nanoparticles by the dynamic light scattering (DLS) method.
  • DLS dynamic light scattering
  • Non-Patent Document 4 describes a method using a resonance light scattering correlation spectroscopy (RLSCS) method in order to make it possible to detect light scattering of gold nanoparticles having a small particle diameter with high sensitivity in a non-crosslinking type agglutination reaction system. ing.
  • RSCS resonance light scattering correlation spectroscopy
  • a method of detecting one target gene by hybridization using a plurality of probes is suitable for detecting a target gene having a relatively large number of bases.
  • the length (number of bases) of the target gene to be detected is generally not constant, and FIG. 10 (FIG. 40 of Patent Document 2) applies to any of the methods described in the above-mentioned patent documents and non-patent documents.
  • the gold nanoparticles have different intervals depending on the type of the target gene, and those having a large number of bases are separated from each other even if they are hybridized.
  • the target DNA when measuring a long target gene or the like, it becomes two single particles even when it is hybridized.
  • the structure of the genetic material is not strong, it is twisted or bent during the measurement, so even when the same target gene is used, the interval between the gold nanoparticles is difficult to be constant.
  • Non-Patent Document 2 describes that optimization is performed depending on the type of target gene in a high-concentration salt addition system. However, in a high-concentration salt addition system, aggregation is accelerated while dispersibility is improved. Decrease and accompanying aggregation due to non-specific binding are likely to occur, resulting in low detection sensitivity.
  • the present invention has been made in view of the above circumstances, and has excellent detection sensitivity and accuracy in biosensing for detecting a detection target substance composed of a biological substance contained in a measurement sample using noble metal nanoparticles as a label.
  • An object of the present invention is to provide a novel biosensing method and a detection solution that enables it.
  • the detection liquid of the present invention is a detection liquid used for biosensing for detecting a detection target substance composed of a biological substance, contained in a measurement target sample, using noble metal nanoparticles as a label,
  • a first nanoparticle probe in which a first probe containing a biological substance that specifically binds to a first site of a substance to be detected is immobilized on the surface of the first noble metal nanoparticle;
  • the first part and the second part of the substance to be detected the ends of these parts close to each other;
  • the first probe and the proximal end of the second probe are fixed to the first noble metal nanoparticles and the second noble metal nanoparticles, respectively.
  • the buffered aqueous solution means an aqueous solution generally used for microbial culture, chemical substances, biological material storage, separation, etc., and is used for external factors (such as carbon dioxide in the atmosphere) or internal factors ( It means an aqueous solution in which the pH hardly varies depending on the metabolite of the microorganism itself.
  • the proximal ends of the first probe and the second probe mean the ends of the probes that are bonded to the noble metal nanoparticles.
  • the first probe and the second probe are composed of the first noble metal nanoparticle and the second probe.
  • the noble metal nanoparticles are fixed via a buffer unit that inhibits specific binding to the substance to be detected by amphiphilic surface modification is more preferable. It is preferable that the buffer part has a hydrophilic part at least in part.
  • the surface modification and the hydrophilic part in the buffer part are preferably a polyethylene glycol chain or a sugar chain, and preferably have a base sequence that does not produce a complementary chain with respect to the first and second probes.
  • the amphiphilic surface modification is preferably a self-assembled monolayer having water solubility.
  • the present invention can be preferably applied when the specific binding is hybridization of a nucleic acid.
  • step (C) the presence / absence of the substance to be detected can be detected by gel electrophoresis, a method of detecting by the polarization anisotropic index of scattered light, a method of detecting by local plasmon resonance wavelength shift of noble metal nanoparticles, or a light scattering correlation. It is preferable to carry out by spectroscopic methods.
  • the detection liquid of the present invention comprises a first nanoparticle probe in which a first probe containing a biological substance that specifically binds to a first site of a target substance is fixed to the surface of the first noble metal nanoparticle, A second probe comprising a second probe containing a biological substance that specifically binds to a second site of the detection substance and being immobilized on the surface of the second noble metal nanoparticle, and being dispersed in a buffered aqueous solution; The first part and the second part of the substance to be detected are first bonded so that the ends of the parts close to each other and the base ends of the first probe and the second probe are specifically bound. The probe and the second probe are fixed to the first noble metal nanoparticles and the second noble metal nanoparticles, respectively.
  • the first probe and the second probe are specifically bound to the substance to be detected so that the first noble metal nanoparticle and the second noble metal nanoparticle are close to each other.
  • biosensing with good detection sensitivity and accuracy is performed in biosensing for detecting a substance to be detected, which is a biological substance contained in a sample to be measured, using noble metal nanoparticles as a label. Can do.
  • first nanoparticle probe and the second nanoparticle probe are fixed on the surface with an amphiphilic surface modification having a hydrophobic portion and a hydrophilic portion.
  • the probe In a mode in which the side fixed to the modified noble metal particle is a hydrophobic part, the probe is separated from the surface of the noble metal nanoparticle because the surface of the noble metal nanoparticle surface is hydrophobic, and the probe is located near the surface of the noble metal nanoparticle. Non-specific aggregation caused by entanglement can be suppressed. Therefore, biosensing with high specific binding reaction efficiency and better detection accuracy can be performed.
  • the charged state of the terminal functional group (terminal group) on the side not fixed to the surface-modified noble metal nanoparticles is the same as the charged state of the first and second probes in the buffer solution. Since the end group of the surface modification and the first and second probes repel each other, more effective non-specific aggregation suppression effect and specific binding reaction efficiency improvement effect can be obtained.
  • FIG. 2A is a schematic enlarged view showing an embodiment of the surface of the noble metal nanoparticle.
  • FIG. 1A is a schematic cross-sectional schematic diagram showing the configuration of the detection liquid 1 of the present embodiment.
  • 2A is a schematic cross-sectional schematic diagram showing a preferred embodiment of the first and second noble metal nanoparticle probes P1 and P2 included in the detection liquid 1
  • FIG. 2B is an enlarged schematic schematic diagram of the surface of the noble metal nanoparticle in FIG. 2A. It is.
  • the scale of each part is appropriately changed for easy visual recognition.
  • Biosensing using precious metal nanoparticles as a label is suitable for detection of target genes with a relatively large number of bases, and is conventionally bound to the precious metal nanoparticles even in detection methods based on hybridization of multiple probes.
  • the probe end (base end) is configured to be specifically bound to both ends of the substance to be detected.
  • the present inventors have found that the conventional noble metal nanoparticle probe has a variation in the interval between the gold nanoparticles depending on the number of bases (length) of the target gene, In addition, in the detection of target genes with a large number of bases, the fact that the first noble metal nanoparticles and the second noble metal nanoparticles are easily detected as individual particles is found to be a factor in reducing measurement accuracy and detection sensitivity.
  • the present invention has been completed.
  • Specific binding of biological substances includes antigen-antibody binding, DNA and RNA, complementary binding (hybridization) of nucleic acids such as PNA (Peptide Nucleic Acid, peptide nucleic acid), biotin-avidin binding, antigen-aptamer binding, sugar chain -Lectin binding and the like, and the present invention is applicable to any specific binding.
  • nucleic acids such as PNA (Peptide Nucleic Acid, peptide nucleic acid), biotin-avidin binding, antigen-aptamer binding, sugar chain -Lectin binding and the like, and the present invention is applicable to any specific binding.
  • the noble metal nanoparticles are not particularly limited, and it is preferable to select a noble metal having good coloration characteristics at the wavelength of light used.
  • gold can be preferably used because it exhibits a red color that is easily visible in natural light.
  • the noble metal nanoparticles are gold nanoparticles
  • the hydrophilic biological substance (probe) is a nucleic acid fragment
  • the specific bond is a complementary bond H (hybridization) of a nucleic acid
  • the detection liquid 1 is a detection liquid used for biosensing for detecting a detection target substance made of a biological substance contained in a measurement target sample using noble metal nanoparticles as a label.
  • a second nanoparticle probe P2 in which a second probe 20B containing a biological substance that specifically binds to the second portion 50B of the detection target substance 50 is immobilized on the surface of the second noble metal nanoparticle 10B is buffered aqueous solution. 40 is distributed.
  • the first and second nanoparticle probes P1 and P2 are close to each other in the first part 50A and the second part 50B of the detection target substance 50.
  • the base ends 20Ab and 20Bb of the first probe 20A and the second probe 20B are specifically bound.
  • the first probe 20A and the second probe 20B are fixed to the first noble metal nanoparticles 10A and the second noble metal nanoparticles 10B, respectively.
  • an amphiphilic surface modification 30 having a hydrophobic portion and a hydrophilic portion on the surface of the noble metal nanoparticles 10A and 10B. Is fixed to the surface.
  • the nanoparticle probes P1 and P2 are not limited to such an embodiment.
  • the first portion 50A and the second portion 50B are not adjacent to each other, and some of them are in between.
  • An embodiment comprising a base sequence may be used (second embodiment).
  • FIGS. 1B and 1C show a mode in which the first nanoparticle probe P1 and the second nanoparticle probe P2 that specifically bind to both ends of the detected substance 50 are specifically bound.
  • the specific binding site in is not particularly limited.
  • the first and second nanoparticle probes P1 and P2 are noble metal nanoparticles 10A and 10B having an amphiphilic surface modification 30.
  • the end on the side not fixed to the electrode has a negative charge, and the first and second probes 20A and 20B also have a negative charge.
  • the amphiphilic surface modification 30 has a hydrophobic portion 31 and a hydrophilic portion 32 that are fixed to the gold nanoparticles 10 ⁇ / b> A and 10 ⁇ / b> B.
  • the hydrophobic part 31 which consists of the alkyl group (carbon number 11) whose functional group of the base end 30a is a thiol group
  • the hydrophilic part which consists of polyethylene glycol (carbon number 6) whose end group 30e is a carboxyl group
  • a surface modification 30 formed by ester bonding with 32 is illustrated as an example.
  • FIG. 2B but is shown as a carboxyl group, in a buffered aqueous solution COO - present as.
  • the first probe 20A and the second probe 20B are connected to the first gold nanoparticle 10A and the second gold nanoparticle 10B by the amphiphilic surface modification 30 and the detection target substance 50.
  • Both the base end 30a of the surface modification 30 and the base end 21a of the buffer part 21 fixed to the gold nanoparticle 10A (10B), which are fixed through the buffer part 21 that suppresses inhibition of specific binding of In the embodiment in which is a thiol group, it is already bound to gold.
  • the base end 20Ab (20Bb) of each probe coupled to the buffer portion 21 is the end 50At, 50Bt of the first part 50A and the second part 50B of the detected substance 50 on the side where these parts are close to each other. Specific binding.
  • the size of the gold nanoparticle 10 is not particularly limited as long as it is a size capable of inducing localized plasmon by light irradiation, and each particle size is preferably less than or equal to half of the wavelength of light, and is 10 nm or more and 100 nm. The following is more preferable. Further, when optical detection is performed, the particle diameter is preferably 30 nm or more.
  • the concentration of the gold nanoparticle 10 in the detection liquid 1 is not particularly limited as long as sensitive detection is possible, but is appropriately 0.1 pmol / l or more depending on the concentration (quantitative region) of the non-detection substance to be detected. It is preferable to adjust to the range of 10000 pmol / l or less.
  • FIG. 2B shows a mode in which the buffer part 21 is provided on the base end 20Ab (20Bb) side of the first and second probes 20A (20B), and the buffer part 21 is provided with a thiol group and fixed to the gold nanoparticle 10.
  • the functional group on the side bonded to the gold nanoparticle 10 is not particularly limited as long as it is a functional group capable of binding to the metal of the gold nanoparticle 10, and other than the thiol group, there are a disulfide group, a mercapto group, and the like. Can be mentioned.
  • the method for fixing these functional groups is not particularly limited, and existing techniques can be used.
  • the inventor of the present invention when generating complementary binding H (hybridization) in a close state due to steric hindrance depending on the particle diameter of the gold nanoparticle 10, the proximal end of the probe on the side fixed to the gold nanoparticle 10 It has been found that about 10 to 20 bases of (20Ab, 20Bb) cannot contribute to hybridization, and this may lead to a decrease in hybridization efficiency with the detection target substance 50 and a deterioration in detection limit.
  • the particle size is small, but the amount of scattered light of gold nanoparticles having a particle size equal to or smaller than the wavelength of light, that is, the amount of signal light in optical detection is determined by the Rayleigh scattering law. Therefore, if the particle size is too small, the signal light is buried in noise, and the optical detection sensitivity is greatly deteriorated (see Non-Patent Document 3). Therefore, when performing optical detection, it is preferable that each particle size of the gold nanoparticle 10 (10A, 10B) is 30 nm or more.
  • the gold nanoparticle 10 has a particle size (for example, ⁇ ⁇ 30 nm) at which a sufficient optical signal amount can be obtained, not only steric hindrance becomes a problem, but also the surface area of the particle with respect to the probe 20 is increased. Since it becomes large, the probe 20 is easily adsorbed on the surface of the gold nanoparticle 10, and the reaction efficiency is greatly lowered. Further, there arises a problem that the detection sensitivity is deteriorated due to a nonspecific reaction caused by a plurality of probes being entangled with each other.
  • a particle size for example, ⁇ ⁇ 30 nm
  • the present inventors provide the surface of the gold nanoparticle 10 with an amphiphilic surface modification 30 so that the probe 20 stands up in a brush shape without being adsorbed on the surface. 20 is immobilized on the surface of the gold nanoparticle 10 via the buffer portion 21, thereby preventing the amphiphilic surface modification 30 from inhibiting the specific binding with the substance 50 to be detected, and the nonspecific reaction. And it succeeded in suppressing the deterioration of detection sensitivity and reaction efficiency due to steric hindrance.
  • the buffer part 21 arrange
  • the buffer part 21 has a hydrophilic part at least in part.
  • the hydrophilic part is not particularly limited as long as it can improve dispersibility (water solubility) in a buffered aqueous solution, but is complementary to a polyethylene glycol (PEG) chain, a sugar chain, a hydrophilic polyester, and a probe. Examples thereof include a base sequence that does not generate a chain (for example, T; repeating thymine and enumeration).
  • the length of the buffer part 21 is longer than the thickness of the surface modification 30, and the base ends 20Ab (20Bb) of the first and second probes 20 (A, B) coupled to the buffer part 21 are More preferably, the length is not buried in the surface modification 30. It is preferable that the buffer 21 is appropriately designed in consideration of the particle size of the gold nanoparticles 10A (10B) and the probe length.
  • the surface modification 30 is for suppressing detection of non-specific binding that occurs when the first and second probes 20 ⁇ / b> A (20 ⁇ / b> B) are entangled near the surface 10 s of the gold nanoparticle 10. Therefore, it is preferable that the length of one molecule is shorter than the length of the first and second probes 20A (20B).
  • the chain length is about 7 nm.
  • the thickness (the distance from the surface 10s to the terminal) of the surface modification 30 that provides a good effect is preferably about 3.0 nm.
  • the hydrophobic part 31 is preferably an alkyl group whose base end 30 a is a functional group capable of binding to the gold nanoparticle 10.
  • the functional group at the base end 30a include sulfur compounds such as thiols and disulfides, as in the buffer section 21.
  • a hydrophilic part 32 is provided at the end of the hydrophobic part 31 opposite to the fixed side of the gold nanoparticles 10.
  • the hydrophilic part 32 improves the decrease in dispersibility in the buffered aqueous solution 40 by being covered with the hydrophobic part 31.
  • the gold nanoparticles covered with the highly hydrophobic surface modification 30 and the hydrophobic part 31 have low water solubility, in order to disperse well in the buffering aqueous solution, compatibility with alcohol or the like is required. Although it is necessary to disperse once through a high solvent, there is a high possibility that it will be difficult to perform good sensing due to damage and denaturation of biological substances such as nucleic acids, increasing non-specific aggregation. An increase in non-specific aggregation also causes inactivation of the specific binding reaction, reducing the reaction efficiency of the reaction. In particular, when the alkyl chain of the hydrophobic part has 7 or more carbon atoms, the water solubility (dispersibility) becomes very low due to the high hydrophobicity.
  • the inventor of the present invention uses the surface modification 30 provided with the hydrophilic portion 32 at the end opposite to the fixing side (base end) of the gold nanoparticle 10 of the hydrophobic portion 31, so that the first and the second It has been found that the detection solution has good dispersibility in a buffered aqueous solution and hardly damages a biological material while maintaining the effect of suppressing the entanglement between the probes 20A (20B).
  • biological substances that are entangled in the vicinity of the surface of the gold nanoparticle 10s can be peeled off from the surface to increase the specific reaction efficiency and suppress aggregation due to non-specific binding.
  • the hydrophilic portion 32 is not particularly limited as long as it can improve the dispersibility (water solubility) in a buffered aqueous solution.
  • the hydrophilic portion 32 is not limited to a polyethylene glycol (PEG) chain, a sugar chain, a hydrophilic polyester, or a probe. Examples include a base sequence that does not generate a complementary strand (for example, T; thymine repeats / enumeration), and the like, and those that impart water solubility and that the surface modification 30 can be a self-assembled monolayer are preferable.
  • the end group 30e of the hydrophilic portion 32 is not particularly limited, and examples thereof include a hydroxyl group, a carboxyl group, a phosphoric acid group, and a sulfonic acid group. Even if the terminal group 30e is a functional group that is not an acidic functional group such as a hydroxyl group, it is possible to peel the biological material that is entangled in the vicinity of the surface 10s of the gold nanoparticle, but the first and second probes 20A (20B) ) Cannot be fixed in a brush shape while standing up from the surface.
  • the end group 30e is a functional group having a high ionization tendency to become a negative ion in the buffered aqueous solution, that is, acidic. It is preferably a functional group.
  • PEG since it is a hydroxyl group and not an acidic functional group, it is preferably used after being substituted with the illustrated carboxyl group, sulfonic acid group or the like.
  • the method for fixing these functional groups is not particularly limited, and existing techniques can be used.
  • the surface modification 30 has a functional group of a sulfur compound such as thiols and disulfides at the terminal to be fixed to the gold nanoparticle 10.
  • the functional group of these sulfur compounds is adsorbed spontaneously on the surface of a noble metal such as gold, and alkanethiols and alkane disulfides give a monomolecular-sized ultrathin film (monomolecular film).
  • the aggregate is called a self-assembled monomolecular film because it shows an arrangement depending on the crystal state of the particles and the molecular structure of the adsorbed molecule, and is preferable because it can be easily fixed on the surface of the noble metal.
  • Suitable surface modification 30 includes 20- (11-mercaptoundecanyloxy) -3,6,9,12,15,18-hexaoxaeicosanoic acid (English name: 20- (11-Mercaptoundecanyloxy) -3, 6,9,12,15,18-hexaoxaeicosanoic acid)).
  • the length of this single molecule is about 2.5 nm to 3.0 nm, and the length of the hydrophobic portion 31 is about 1.2 nm.
  • the concentration of the surface modification 30 in the detection solution 1 is not particularly limited as long as sensitive detection is possible, but a range of 10 nmol / l or more and 1000 nmol / l or less is preferable. It is preferable to optimize depending on the particle size and the type of biological material.
  • the detection liquid 1 includes the first probe 20A containing a biological substance that specifically binds to the first portion 50A of the detection target substance 50 and is fixed to the surface of the first noble metal nanoparticle 10A.
  • part 50B of a to-be-detected substance are fixed to the surface of 2nd noble metal nanoparticle 10B, and the 2nd nanoparticle Probe P2 is dispersed in buffered aqueous solution 40,
  • the first part 50A and the second part 50B of the detection target substance are specific to the ends 50At and 50Bt on the side where these parts are close to each other and the base ends 20Ab and 20Bb of the first probe and the second probe
  • the first probe 20A and the second probe 20B are respectively fixed to the first noble metal nanoparticle 10A and the second noble metal nanoparticle 10B so as to be coupled.
  • the first probe 20A and the second probe 20B are specifically bound to the substance to be detected so that the first noble metal nanoparticle 10A and the second noble metal nanoparticle 10B are close to each other.
  • the noble metal nanoparticles 10A and the second noble metal nanoparticles 10B are suppressed from being detected as individual particles, and the difference in the distance between the gold nanoparticles caused by the length (number of bases) of the substance to be detected is minimized. Can be limited.
  • biosensing with good detection sensitivity and accuracy is performed in biosensing for detecting a target gene made of a biological substance contained in a sample to be measured, using noble metal nanoparticles as a label. be able to.
  • FIG. 3A, FIG. 3B, and FIG. 3C are schematic schematic diagrams showing preferred embodiments of steps (A) to (C) of the biosensing method of the present invention.
  • the biosensing method of the present invention uses precious metal nanoparticles as a label, and in biosensing for detecting a detection substance made of a biological substance contained in a measurement sample, A step (A) of preparing the detection solution of the present invention; The sample to be measured and the detection liquid containing the substance to be detected having the first part and the second part are mixed under the condition that the substance to be detected and the first probe and the second probe can form a specific bond. Step (B) to perform, And a step (C) of detecting the presence or absence of a specifically bound detection target substance in the sample to be measured by detecting the label of the noble metal nanoparticles using the solution obtained by the mixing.
  • the substance to be detected is the nucleic acid fragment 50 that binds complementarily to the nucleic acid fragment and the noble metal nanoparticle 10 is a gold nanoparticle will be described as an example.
  • the detection solution 1 of the present invention is prepared.
  • the detection liquid 1 includes a first nanoparticle probe P1 and a second nanoparticle probe P2. Therefore, first, the detection liquid 1 is obtained by preparing each nanoparticle probe and mixing them.
  • a predetermined amount of the buffer aqueous solution 40 is injected into a container such as a beaker, and a plurality of noble metal nanoparticles 10A are added therein (A-1). This step may be performed without heating.
  • the first probe 20A is fixed to the surface of the gold nanoparticle 10A (A-2).
  • the end 50At of the first part 50A of the detected substance 50 on the side close to the second part 50B and the base end 20Ab on the side bound to the gold nanoparticle 10A of the first probe are unique.
  • the proximal end 20Ab of the first probe is functionalized.
  • the functional group of the base end 20Ab is as described above, and when the first probe 20A is fixed to the gold nanoparticle 10A via the buffer part 21, it is fixed to the gold nanoparticle 10A of the buffer part 21. Keep the side functionalized.
  • a known method may be used as a functionalization method.
  • an amphiphilic surface modification 30 having a hydrophobic portion 31 and a hydrophilic portion 32 is applied to the surface of the gold nanoparticle 10A to which the first probe 20A is fixed, and a base end 30a on the hydrophobic portion 31 side. Is fixed to the surface 10s of the gold nanoparticle 10 to obtain the first nanoparticle probe P1 (A-3).
  • the fixing temperature of the surface modification 30 on the gold nanoparticle 10 and the reaction time required for the fixing may be set as appropriate according to the material of the monomolecular film.
  • a second nanoparticle probe P2 is prepared in the same manner as the first nanoparticle probe P1, except that it specifically binds to the second portion 50B of the substance 50 to be detected.
  • first nanoparticle probe P1 and the second nanoparticle probe P2 are mixed, and the first nanoparticle probe P1 and the second nanoparticle probe P2 are dispersed in the buffered aqueous solution 40.
  • Detection liquid 1 is obtained (A-4).
  • ⁇ Process (B)> a sample to be measured is mixed in the detection liquid 1, and complementary binding between the substance to be detected 50 in the sample to be measured and the first and second probes 20A and 20B in the detection liquid 1 is performed. This is a step of carrying out H formation (specific binding) reaction.
  • the formation of a complementary strand (hybridization) between nucleic acids is formed at a temperature slightly lower than the temperature at which a nucleic acid fragment (single strand) can exist as a single strand (melting temperature).
  • the conditions for the specific binding reaction (hybridization) are appropriately set within the range where there is no damage to the nucleic acid fragments that adversely affect the formation of complementary strands and the deterioration of the mode of fixation of each nucleic acid fragment to the gold nanoparticles. can do.
  • FIG. 3B and FIG. 3C show an example of a detection system when a measurement target material containing the target substance 50 is mixed in the detection liquid 1.
  • FIG. 3B is a detection system using the nanoparticle probes P1 and P2 of the first embodiment shown in FIG. 1B, and the nanoparticle probe P1 and the second nanoparticle probe P2 of the detection target substance 50 are specifically bound.
  • the first part 50A and the second part 50B are adjacent to each other.
  • FIG. 3C is a detection system when the nanoparticle probes P1 and P2 of the second embodiment shown in FIG. 1C are used, and the first part 50A and the second part 50B are not adjacent to each other. Is a mode comprising several base sequences.
  • the formation of complementary strands enables the presence of two gold nanoparticles in the form closest to the dimer, and detection of complementary strand formation with good detection sensitivity and detection accuracy in the subsequent step (C). can do.
  • the subsequent step (C) it is possible to detect particles of approximately the same size as a dimer when forming complementary strands.
  • the system shown in FIG. Enables detection close to a mass.
  • the distance between the first gold nanoparticle 10A and the second gold nanoparticle 10B after the formation of the complementary strand is too large, and the detection sensitivity and detection accuracy are greatly reduced.
  • the first nanoparticle probe P1 and the second nanoparticle probe P2 have an amphiphilic surface modification 30 having a hydrophobic portion 31 and a hydrophilic portion 32 on the surface.
  • the aspect in which the side fixed to the noble metal nanoparticles 10A and 10B of the amphiphilic surface modification 30 is the hydrophobic portion 31 has been described.
  • the vicinity of the surface of the noble metal nanoparticle is hydrophobic, it is possible to suppress nonspecific aggregation caused by the probe being separated from the surface of the noble metal nanoparticle and entangled with the probe near the surface of the noble metal nanoparticle. . Therefore, biosensing with high specific binding reaction efficiency and better detection accuracy can be performed.
  • the charged state of the functional group at the end 30e on the side not fixed to the noble metal nanoparticles of the surface modification 30 is the charge of the ends of the first and second probes 20A and 20B in the buffered aqueous solution 40. It was set as the aspect which is the same as a state. In this embodiment, since the end group 30e of the surface modification 30 and the first and second probes 20A and 20B are repelled, more effective non-specific aggregation suppression effect and specific binding reaction efficiency improvement effect Can be obtained.
  • ⁇ Process (C)> by using the mixed solution mixed in the step (B), a gold nanoparticle label is detected to detect complementary strand formation (specific binding) H, and a substance to be detected in a sample to be measured This is a step of detecting the presence or absence of 50.
  • the detection method in step (C) is not particularly limited, and is a method of detecting by gel electrophoresis, polarization anisotropic index of scattered light, a method of detecting by local plasmon resonance wavelength shift of noble metal nanoparticles, or light scattering correlation spectroscopy. It is preferable to implement by.
  • FIG. 4A shows a schematic configuration of the gel electrophoresis apparatus 100 and a schematic top view showing an example of detection of band D in a mode in which the presence / absence of the target substance 50 is detected by gel electrophoresis.
  • the gel electrophoresis apparatus 100 includes a gel matrix 102 installed in a container, and includes a well 101 for dispensing a sample to be detected and a voltage applying unit.
  • the mixed solution prepared in the step (B) is dispensed into the well 101, and electrophoresis is performed by applying a voltage so that the well 101 side is negative.
  • the direction of voltage application is determined by the charged state of the substance to be detected.
  • the mobility changes depending on the molecular weight. Therefore, the heavier one, that is, the one that forms a complementary strand, has a smaller amount of movement and the front side (well Since the single strand moves farther, a band colored in red by irradiating the gold nanoparticles 10 with light having a wavelength capable of inducing plasmons after applying a voltage for a certain period of time. It becomes D, and the presence or absence of specific binding (hybridization), that is, the presence or absence of the substance to be detected can be detected.
  • Identification of each band in band D can be performed by cutting out the band and observing it with a TEM.
  • One gold nanoparticle 10 in which no complementary strand is formed is observed in the most downstream band having higher mobility, and two or three gold nanoparticles 10 are combined as they go upstream, that is, Complementary strand formation is confirmed.
  • the present inventors have used the optical anisotropy detection device 200 whose schematic configuration is shown in FIG. 4B, and anisotropy that appears when substantially isotropic noble metal nanoparticles are hybridized to form a dimer. It has been found that highly sensitive detection is possible by detecting the presence or absence of hybridization.
  • the optical anisotropy detection apparatus 200 includes a transparent sample stage 210 on which a sample (mixed solution) is placed, a laser 230, an irradiation light receiving optical system 220 including a beam splitter 221 and an objective lens 222, and a ⁇ / 2 plate 240. , A polarization beam splitter 250 that separates into P-polarized light and S-polarized light, photodiodes 261 and 262 that detect each polarized light, and an oscilloscope 270 that displays a detection signal.
  • the detection principle by the optical anisotropy detection apparatus 200 will be described with reference to FIG.
  • the scattered light generated by the linearly polarized light E0 irradiated to the isotropic particles has a polarization plane substantially similar to the linearly polarized light E0. have.
  • scattered light generated by linearly polarized light E0 irradiated to a multimer such as a dimer having anisotropy (Plong ⁇ Pshort) is induced in a major axis (Plong direction) direction and a minor axis direction (Pshort direction).
  • Polarization rotation occurs due to different dipole moments. Utilizing this phenomenon, the presence or absence of hybridization can be detected by detecting the presence or absence of rotation of the polarization plane.
  • the detection apparatus shown in FIG. 4B is configured and measured using an inverted microscope (for example, manufactured by Nikon).
  • the semiconductor laser 230 is condensed into the sample S on the sample stage 210 by the objective lens 222 to form a micro spot, and the monomer and dimer particles pass through the micro spot while rotating by the Brownian motion.
  • the scattered light generated by this is condensed by the objective lens 222, and the collected light is separated into orthogonal polarization components by the polarization beam splitter 250.
  • the separated scattered light is received by the photodiodes 261 and 262, respectively, and the time trace of the intensity is displayed on the oscilloscope 270, which is collated with the time trace of the polarization anisotropic index AI expressed by the following formula (1).
  • the presence or absence of hybridization is detected by quantifying the optical anisotropy of the noble metal nanoparticles in the sample.
  • the monomer and dimer particles rotate a sufficient number of times, so that any arrangement can be taken with respect to the polarization direction of the light. Therefore, paying attention to the maximum value of the polarization anisotropy index AI, the presence or absence of a dimer, that is, hybridization is detected from each polarization intensity and its phase shift at the time when the AI value is given.
  • FIG. 6 shows an example of a detection result obtained by the above method when a dimer is present.
  • the upper diagram in FIG. 6 shows the time trace of each polarization intensity detected by the oscilloscope, the lower diagram shows the time change of the AI value, and the time axes of both diagrams match.
  • FIG. 7 shows the result of calculating the polarization anisotropy index AI after measuring the polarization intensity of the actual monomer and dimer by the above method.
  • a trace amount of analyte can be detected in a sample solution of noble metal nanoparticles by light scattering correlation spectroscopy using strong scattered light due to plasmon resonance of noble metal nanoparticles instead of fluorescence in fluorescence correlation spectroscopy. It is also possible to detect from the time constant of the rotational motion at.
  • the autocorrelation functions of the monomer and dimer obtained by light scattering correlation spectroscopy are shown in FIG. 8 (monomer (single) on the left side and dimer on the right side).
  • the rotational diffusion rate of the dimer is theoretically predicted to be about four times that of the monomer, and the difference in the decay time of the autocorrelation function shown in FIG. 8 is considered to reflect that difference. It is done.
  • FIG. 9 shows the results of measuring the polarization intensity of the actual monomer and dimer by light scattering correlation spectroscopy. As shown in FIG. 9, the boundary between the monomer and the dimer is unclear compared to the method using the anisotropic index, but the monomer and the dimer can be distinguished. .
  • the detection liquid 1 and the biosensing method of the present invention are also suitable for an embodiment in which the presence or absence of the substance to be detected 50 is detected by the local plasmon resonance wavelength shift of the noble metal nanoparticles in the step (C).
  • the biosensing method of the present invention performs sensing using the detection liquid of the present invention, the same effect as the detection liquid of the present invention is exhibited.
  • the 1st nanoparticle probe and the 2nd nanoparticle probe which are the aspects from which detection sensitivity and detection accuracy become more favorable are the amphipathic which has a hydrophobic part and a hydrophilic part on the surface.
  • the embodiment in which the surface modification is fixed on the surface has been described, even in the embodiment without such a surface modification, the difference in the distance between the gold nanoparticles is minimized depending on the length (number of bases) of the substance to be detected. Biosensing with good detection sensitivity and accuracy can be implemented.
  • the configuration including the buffer portion has been described.
  • the difference in the interval between the gold nanoparticles is determined depending on the length (base number) of the substance to be detected. Biosensing with good detection sensitivity and accuracy can be implemented.
  • the substance to be detected is a nucleic acid fragment and the specific binding is hybridization of a nucleic acid
  • the present invention is not limited to the configuration, and has already been described. It can be applied to sensing the presence or absence of various specific bonds such as antigen-antibody binding and avidin-biotin binding.
  • terminal group of the detected substance is acidic
  • terminal group 30e of the surface modification 30 examples include an amino group, a quaternary ammonium group, an imidazole group, and a guanidinium group. Is mentioned.

Abstract

[Problem] To improve detection accuracy in biosensing using precious metal nanoparticles as a marker. [Solution] This detection solution (1) is made by dispersing first nanoparticle probes (P1) and second nanoparticle probes (P2) in a buffer aqueous solution (40). Each first nanoparticle probe (P1) is made by fixing, to the surface of a first precious metal nanoparticle (10A), a first probe (20A) including a biological substance that specifically binds to a first section (50A) of a substance to be detected (50). Each second nanoparticle probe (P2) is made by fixing, to the surface of a second precious metal nanoparticle (10B), a second probe (20B) including a biological substance that specifically binds to a second section (50B) of the substance to be detected (50). The first probe (20A) and the second probe (20B) are fixed to the first precious metal nanoparticle (10A) and the second precious metal nanoparticle (10B), respectively, such that the respective base ends (20Ab (20Bb)) of the first probe (20A) and the second probe (20B) specifically bind, respectively, to the respective leading ends (50At (50Bt)) of the first section (50A) and the second section (50B) on the side where the two section are proximal to one another.

Description

検出液とその調製方法、バイオセンシング方法Detection solution and its preparation method, biosensing method
 本発明は、貴金属ナノ粒子を用いたバイオセンシングに使用する検出液とその調製方法、更に、その検出液を用いたバイオセンシング方法に関する。 The present invention relates to a detection solution used for biosensing using noble metal nanoparticles, a method for preparing the same, and a biosensing method using the detection solution.
 バイオセンシングは、生体物質の特異的な結合(特異結合)を、光学的又は電気的な信号の変化を用いて検出することにより行われている。光学的な信号の変化を検出するバイオセンシングには、蛍光物質や貴金属ナノ粒子等を標識として用い、DNAやRNA,ペプチド核酸、オリゴヌクレオチド等の遺伝物質を検出する方法等がある。 Biosensing is performed by detecting a specific binding (specific binding) of a biological substance using a change in an optical or electrical signal. Biosensing for detecting changes in optical signals includes a method of detecting genetic materials such as DNA, RNA, peptide nucleic acids, oligonucleotides, etc. using fluorescent materials or noble metal nanoparticles as labels.
 蛍光物質による標識は、被検出物質(例えば、ターゲット遺伝子)濃度が低い場合に信号が弱く、高感度検出が困難である。表面増強ラマン(SERS)などの増幅を用いる方法により高感度検出が可能であるが、多くの増幅過程を必要とするとともに、偶然性にも支配されるため、バラツキが大きく、医療診断のような定量測定には不向きである。 The label with a fluorescent substance has a weak signal when the concentration of a substance to be detected (for example, a target gene) is low, and it is difficult to detect with high sensitivity. High-sensitivity detection is possible by methods using amplification such as surface-enhanced Raman (SERS), but it requires many amplification processes and is controlled by chance. Not suitable for measurement.
 1990年代後半より、特定の配列を有する核酸断片(オリゴヌクレオチド)を検出するバイオセンシングにおいて、一本鎖の核酸同士の塩基配列が相補的(特異的)である場合に、相補性を持つ塩基対間の水素結合により二本鎖核酸を形成するハイブリダイゼーション法の標識として、貴金属ナノ粒子を用いる方法が精力的に検討されている(特許文献1~2、非特許文献1~4)。かかる方法では、検出する核酸断片と相補鎖を形成する生体物質を表面にブラシ状に担持した貴金属ナノ粒子をプローブとして用いている。 Since the late 1990s, in biosensing for detecting a nucleic acid fragment (oligonucleotide) having a specific sequence, when the base sequences of single-stranded nucleic acids are complementary (specific), complementary base pairs A method using noble metal nanoparticles as a label for a hybridization method for forming a double-stranded nucleic acid by hydrogen bonding between them has been energetically studied ( Patent Documents 1 and 2, Non-Patent Documents 1 to 4). In such a method, noble metal nanoparticles carrying a biological material that forms a complementary strand with a nucleic acid fragment to be detected on a surface are used as a probe.
 例えば、特許文献1,特許文献2には、核酸の配列の一部と相補的な配列を有するオリゴヌクレオチドを付着した金ナノ粒子をプローブとして用い、このオリゴヌクレオチドが核酸に対してハイブリダイズした結果、金ナノ粒子の局在プラズモン共鳴波長が長波長シフトして得られる金ナノ粒子の呈色の変化を検出する遺伝子診断法が記載されている。 For example, Patent Document 1 and Patent Document 2 describe the result of using a gold nanoparticle attached with an oligonucleotide having a sequence complementary to a part of the nucleic acid sequence as a probe and hybridizing the oligonucleotide to the nucleic acid. A genetic diagnosis method for detecting a change in coloration of gold nanoparticles obtained by shifting the local plasmon resonance wavelength of gold nanoparticles by a long wavelength is described.
 しかしながら、これらの方法も、目視による検出であるため検出感度は蛍光法と同等であり検出限界は数十nMレベルにとどまっている。 However, since these methods are also visual detections, the detection sensitivity is equivalent to the fluorescence method, and the detection limit remains at a level of several tens of nM.
 貴金属ナノ粒子を用いたハイブリダイゼーションの有無の検出には、Mirkinらにより進められてきた架橋型凝集反応系と、非特許文献1の筆者であるMaedaらが進めてきた非架橋型凝集反応系とがある。非特許文献1には、非架橋型凝集反応系において、高濃度の塩(NaCl)添加することにより荷電反発を抑制して凝集を迅速化すること、また、検出感度を高めるために、表面プラズモン共鳴センサーを用いる方法が記載されている。 For the detection of the presence or absence of hybridization using noble metal nanoparticles, a cross-linking agglutination reaction system promoted by Mirkin et al. And a non-cross-linking agglutination reaction system promoted by Maeda et al. There is. Non-Patent Document 1 discloses that in a non-crosslinking type agglutination reaction system, surface plasmon is used to accelerate aggregation by suppressing charge repulsion by adding a high concentration of salt (NaCl), and to increase detection sensitivity. A method using a resonance sensor is described.
 更に、Maedaらは、非特許文献2において、非特許文献1に記載の高濃度の塩添加系において、凝集プロセスの迅速化と簡易化、そして貴金属粒子との結合部と反対側の末端基におけるミスマッチを、高感度検出のために、金ナノ粒子のサイズ、ターゲット遺伝子の種類、緩衝水溶液のpH等のファクターを個々に最適化する必要があることを述べている。 Further, Maeda et al., In Non-Patent Document 2, in the high-concentration salt addition system described in Non-Patent Document 1, the speeding up and simplification of the aggregation process, and the end group on the side opposite to the bonding part with noble metal particles The mismatch states that for sensitive detection, factors such as the size of the gold nanoparticles, the type of target gene, and the pH of the buffered aqueous solution need to be individually optimized.
 非特許文献3では、検出感度向上を目的とし、動的光散乱(DLS)法により金ナノ粒子の粒子径を測定することにより、ハイブリダイゼーションの有無、すなわち、ターゲット遺伝子の有無を光学的に検出する方法を提唱している。これは、ターゲット遺伝子が存在する場合、ハイブリダイゼーションにより、その相補鎖を持つ2つの金ナノ粒子が結合し、見かけの粒子径が大きくなることを利用したものであり、著者らは、数pMの検出が可能であると主張している。 In Non-Patent Document 3, for the purpose of improving detection sensitivity, the presence or absence of hybridization, that is, the presence or absence of a target gene is optically detected by measuring the particle size of gold nanoparticles by the dynamic light scattering (DLS) method. Advocates how to do. This is based on the fact that when the target gene is present, two gold nanoparticles having their complementary strands are combined by hybridization to increase the apparent particle size. Claims that detection is possible.
 非特許文献4には、非架橋型凝集反応系において、粒子径の小さな金ナノ粒子の光散乱を感度良く検出可能とするために、共鳴光散乱相関分光(RLSCS)法を用いる方法が記載されている。 Non-Patent Document 4 describes a method using a resonance light scattering correlation spectroscopy (RLSCS) method in order to make it possible to detect light scattering of gold nanoparticles having a small particle diameter with high sensitivity in a non-crosslinking type agglutination reaction system. ing.
特表2004-515208号公報Special table 2004-515208 gazette 特許4347049号公報Japanese Patent No. 4347049
 上記貴金属ナノ粒子を標識としたバイオセンシングにおいて、塩基数の比較的多いターゲット遺伝子の検出には、複数のプローブを用いたハイブリダイゼーションにより1つのターゲット遺伝子を検出する方法が好適である。しかしながら、検出したいターゲット遺伝子の長さ(塩基数)は、一般に一定ではなく、上記特許文献及び非特許文献に記載のいずれの方法を適用しても、図10(特許文献2の図40)に示されるように、ターゲット遺伝子の種類によって、金ナノ粒子の間隔が異なり、塩基数の多いものについては、ハイブリダイズしても、標識となる金ナノ粒子同士が離れてしまう。例えば、金ナノ粒子径 φ=30nmに対しターゲットDNAが30塩基(約10nm)と短い場合は、ハイブリダイゼーションした2つの金ナノ粒子を「一体化した粒子」となるが、通常のウィルスのような長いターゲット遺伝子などを測定する場合、ハイブリダイゼーションした場合にも単独の2つの粒子となる。 In biosensing using the above precious metal nanoparticles as a label, a method of detecting one target gene by hybridization using a plurality of probes is suitable for detecting a target gene having a relatively large number of bases. However, the length (number of bases) of the target gene to be detected is generally not constant, and FIG. 10 (FIG. 40 of Patent Document 2) applies to any of the methods described in the above-mentioned patent documents and non-patent documents. As shown, the gold nanoparticles have different intervals depending on the type of the target gene, and those having a large number of bases are separated from each other even if they are hybridized. For example, when the target DNA is as short as 30 bases (about 10 nm) with respect to the gold nanoparticle diameter φ = 30 nm, it becomes an “integrated particle” of two hybridized gold nanoparticles. When measuring a long target gene or the like, it becomes two single particles even when it is hybridized.
 また、遺伝物質の構造は強固ではないため、測定中に捻れたり、折れ曲がってしまうため、同じターゲット遺伝子を用いた場合でも、金ナノ粒子の間隔は一定となりにくい。 In addition, since the structure of the genetic material is not strong, it is twisted or bent during the measurement, so even when the same target gene is used, the interval between the gold nanoparticles is difficult to be constant.
 従って、金ナノ粒子の間隔の違いにより測定結果が異なるため、上記特許文献及び非特許文献1,2の方法では凝集反応による色の変化があいまいであり、また、非特許文献3,4の方法でも高い測定精度が得られない。非特許文献2では、高濃度の塩添加系においてターゲット遺伝子の種類によって最適化することが記載されているが、高濃度の塩添加系では、凝集の迅速化がなされる一方で、分散性の低下、それに伴う非特異結合による凝集が生じやすく検出感度は低いものとなってしまう。 Therefore, since the measurement results differ depending on the interval of the gold nanoparticles, the method of Patent Document and Non-Patent Documents 1 and 2 is ambiguous in color change due to the agglutination reaction, and the method of Non-Patent Documents 3 and 4 However, high measurement accuracy cannot be obtained. Non-Patent Document 2 describes that optimization is performed depending on the type of target gene in a high-concentration salt addition system. However, in a high-concentration salt addition system, aggregation is accelerated while dispersibility is improved. Decrease and accompanying aggregation due to non-specific binding are likely to occur, resulting in low detection sensitivity.
 また、アガロースゲル等を用いてゲル電気泳動でハイブリダイゼーションの有無を検出する方法においても同様で、同じ2量体においても見かけの粒子サイズが異なってしまうため、ゲルマトリックス中での移動度に差が生じバンド間の区別が不明瞭となる。 The same applies to the method of detecting the presence or absence of hybridization by gel electrophoresis using an agarose gel or the like. Since the apparent particle size differs even in the same dimer, there is a difference in mobility in the gel matrix. And the distinction between bands becomes unclear.
 本発明は、上記事情に鑑みてなされたものであり、貴金属ナノ粒子を標識として、被測定試料中に含まれる、生体物質からなる被検出物質を検出するバイオセンシングにおいて、検出感度及び精度の良好なバイオセンシング方法、及びそれを可能にする検出液を提供することを目的とするものである。 The present invention has been made in view of the above circumstances, and has excellent detection sensitivity and accuracy in biosensing for detecting a detection target substance composed of a biological substance contained in a measurement sample using noble metal nanoparticles as a label. An object of the present invention is to provide a novel biosensing method and a detection solution that enables it.
 本発明の検出液は、貴金属ナノ粒子を標識として、被測定試料中に含まれる、生体物質からなる被検出物質を検出するバイオセンシングに用いる検出液であって、
被検出物質の第1の部位と特異結合する生体物質を含む第1のプローブが第1の貴金属ナノ粒子の表面に固定されてなる第1のナノ粒子プローブと、
被検出物質の第2の部位と特異結合する生体物質を含む第2のプローブが第2の貴金属ナノ粒子の表面に固定されてなる第2のナノ粒子プローブとが緩衝性水溶液に分散されてなり、
被検出物質の第1の部位及び第2の部位の、これらの部位同士が近接する側の末端と、
第1のプローブ及び第2のプローブの基端とが特異結合するように、
第1のプローブと第2のプローブがそれぞれ、第1の貴金属ナノ粒子と第2の貴金属ナノ粒子に固定されてなることを特徴とするものである。
The detection liquid of the present invention is a detection liquid used for biosensing for detecting a detection target substance composed of a biological substance, contained in a measurement target sample, using noble metal nanoparticles as a label,
A first nanoparticle probe in which a first probe containing a biological substance that specifically binds to a first site of a substance to be detected is immobilized on the surface of the first noble metal nanoparticle;
A second nanoparticle probe in which a second probe containing a biological substance that specifically binds to the second site of the substance to be detected is immobilized on the surface of the second noble metal nanoparticle is dispersed in a buffered aqueous solution. ,
The first part and the second part of the substance to be detected, the ends of these parts close to each other;
In order for the first probe and the proximal end of the second probe to specifically bind,
The first probe and the second probe are fixed to the first noble metal nanoparticles and the second noble metal nanoparticles, respectively.
 本明細書において、緩衝性水溶液とは、一般に微生物の培養や化学物質、生体物質の保存、分離等に用いられる水溶液を意味し、外的要因(大気中の二酸化炭素など)あるいは内的要因(微生物自身の代謝産物など)によってほとんどpHが変動しない水溶液を意味する。 In this specification, the buffered aqueous solution means an aqueous solution generally used for microbial culture, chemical substances, biological material storage, separation, etc., and is used for external factors (such as carbon dioxide in the atmosphere) or internal factors ( It means an aqueous solution in which the pH hardly varies depending on the metabolite of the microorganism itself.
 第1のプローブ及び第2のプローブの基端とは、各プローブの貴金属ナノ粒子に結合している側の末端を意味するものとする。 The proximal ends of the first probe and the second probe mean the ends of the probes that are bonded to the noble metal nanoparticles.
 本発明の検出液の好ましい態様としては、第1のナノ粒子プローブ及び第2のナノ粒子プローブが、表面に、疎水性部と親水性部とを有する両親媒性の表面修飾が固定されてなり、この両親媒性の表面修飾の貴金属粒子に固定されている側が、疎水性部となっている態様が挙げられる。 As a preferred embodiment of the detection liquid of the present invention, the first nanoparticle probe and the second nanoparticle probe are fixed with an amphiphilic surface modification having a hydrophobic portion and a hydrophilic portion on the surface. An embodiment in which the side fixed to the amphiphilic surface-modified noble metal particles is a hydrophobic portion can be mentioned.
 かかる態様において、表面修飾の第1の貴金属ナノ粒子及び第2の貴金属ナノ粒子に固定されていない側の末端の官能基の帯電状態は、生体物質の帯電状態と同じであることが好ましい。 In such an embodiment, it is preferable that the charged state of the functional group at the terminal on the side not fixed to the surface-modified first noble metal nanoparticles and the second noble metal nanoparticles is the same as the charged state of the biological material.
 この、表面に、疎水性部と親水性部とを有する両親媒性の表面修飾が固定されてなる態様では、第1のプローブ及び第2のプローブが、第1の貴金属ナノ粒子と第2の貴金属ナノ粒子に、両親媒性の表面修飾により被検出物質との特異結合が阻害されることを抑止する緩衝部を介して固定されてなる態様がより好ましい。緩衝部は、少なくとも一部に親水性部を有していることが好ましい。 In this embodiment in which an amphiphilic surface modification having a hydrophobic part and a hydrophilic part is immobilized on the surface, the first probe and the second probe are composed of the first noble metal nanoparticle and the second probe. An embodiment in which the noble metal nanoparticles are fixed via a buffer unit that inhibits specific binding to the substance to be detected by amphiphilic surface modification is more preferable. It is preferable that the buffer part has a hydrophilic part at least in part.
 表面修飾、及び、緩衝部における親水性部は、ポリエチレングリコール鎖又は糖鎖であることが好ましく、第1及び第2のプローブに対して相補鎖を生じさせない塩基配列を有することが好ましい。 The surface modification and the hydrophilic part in the buffer part are preferably a polyethylene glycol chain or a sugar chain, and preferably have a base sequence that does not produce a complementary chain with respect to the first and second probes.
 また、両親媒性の表面修飾は、水溶性を有する自己組織化単分子膜であることが好ましい。 The amphiphilic surface modification is preferably a self-assembled monolayer having water solubility.
 本発明は、上記特異結合が、核酸のハイブリダイゼーションである場合に好ましく適用することができる。 The present invention can be preferably applied when the specific binding is hybridization of a nucleic acid.
 本発明のバイオセンシング方法は、貴金属ナノ粒子を標識として、被測定試料中に含まれる、生体物質からなる被検出物質を検出するバイオセンシングにおいて、
上記本発明の検出液を調製する工程(A)と、
被検出物質と、第1のプローブ及び第2のプローブとが特異結合を形成しうる条件で、第1の部位と第2の部位を有する被検出物質を含む被測定試料と検出液とを混合する工程(B)と、
この混合により得られた溶液を用いて、貴金属ナノ粒子の標識を検出することにより被測定試料中の特異結合した被検出物質の有無を検出する工程(C)とを有するものである。
The biosensing method of the present invention uses precious metal nanoparticles as a label, and in biosensing for detecting a detection substance made of a biological substance contained in a measurement sample,
A step (A) of preparing the detection solution of the present invention;
The sample to be measured and the detection liquid containing the substance to be detected having the first part and the second part are mixed under the condition that the substance to be detected and the first probe and the second probe can form a specific bond. Step (B) to perform,
And a step (C) of detecting the presence or absence of a specifically bound detection target substance in the sample to be measured by detecting the label of the noble metal nanoparticles using the solution obtained by the mixing.
 工程(C)において、被検出物質の有無の検出は、ゲル電気泳動、散乱光の偏光異方指数により検出する方法、貴金属ナノ粒子の局在プラズモン共鳴波長シフトにより検出する方法、又は光散乱相関分光法により実施することが好ましい。 In step (C), the presence / absence of the substance to be detected can be detected by gel electrophoresis, a method of detecting by the polarization anisotropic index of scattered light, a method of detecting by local plasmon resonance wavelength shift of noble metal nanoparticles, or a light scattering correlation. It is preferable to carry out by spectroscopic methods.
 本発明の検出液は、被検出物質の第1の部位と特異結合する生体物質を含む第1のプローブが第1の貴金属ナノ粒子の表面に固定されてなる第1のナノ粒子プローブと、被検出物質の第2の部位と特異結合する生体物質を含む第2のプローブが第2の貴金属ナノ粒子の表面に固定されてなる第2のナノ粒子プローブとが緩衝性水溶液に分散されてなり、
被検出物質の第1の部位及び第2の部位の、これらの部位同士が近接する側の末端と、第1のプローブ及び第2のプローブの基端とが特異結合するように、第1のプローブと第2のプローブがそれぞれ、第1の貴金属ナノ粒子と第2の貴金属ナノ粒子に固定されてなるものである。かかる検出液によれば、第1の貴金属ナノ粒子と第2の貴金属ナノ粒子とが近接するように第1のプローブと第2のプローブが被検出物質に特異結合するため、第1の貴金属ナノ粒子と第2の貴金属ナノ粒子が個々の粒子として検出されることを抑制し、また、被検出物質の長さ(塩基数)によって生ずる、金ナノ粒子の間隔の違いを最小限にすることができる。従って、本発明によれば、貴金属ナノ粒子を標識として、被測定試料中に含まれる、生体物質からなる被検出物質を検出するバイオセンシングにおいて、検出感度及び精度の良好なバイオセンシングを実施することができる。
The detection liquid of the present invention comprises a first nanoparticle probe in which a first probe containing a biological substance that specifically binds to a first site of a target substance is fixed to the surface of the first noble metal nanoparticle, A second probe comprising a second probe containing a biological substance that specifically binds to a second site of the detection substance and being immobilized on the surface of the second noble metal nanoparticle, and being dispersed in a buffered aqueous solution;
The first part and the second part of the substance to be detected are first bonded so that the ends of the parts close to each other and the base ends of the first probe and the second probe are specifically bound. The probe and the second probe are fixed to the first noble metal nanoparticles and the second noble metal nanoparticles, respectively. According to such a detection solution, the first probe and the second probe are specifically bound to the substance to be detected so that the first noble metal nanoparticle and the second noble metal nanoparticle are close to each other. To suppress the detection of particles and second precious metal nanoparticles as individual particles, and to minimize the difference in the distance between gold nanoparticles caused by the length (number of bases) of the substance to be detected it can. Therefore, according to the present invention, biosensing with good detection sensitivity and accuracy is performed in biosensing for detecting a substance to be detected, which is a biological substance contained in a sample to be measured, using noble metal nanoparticles as a label. Can do.
 また、第1のナノ粒子プローブ及び第2のナノ粒子プローブが、表面に、疎水性部と親水性部とを有する両親媒性の表面修飾が表面に固定されてなり、この両親媒性の表面修飾の貴金属粒子に固定されている側が、疎水性部となっている態様では、貴金属ナノ粒子表面付近が疎水性であるため、プローブが貴金属ナノ粒子表面から離れて、貴金属ナノ粒子表面付近においてプローブが絡まることにより生じる非特異的な凝集を抑制することができる。従って、特異結合反応効率が高く、より検出精度の良好なバイオセンシングを実施することができる。 In addition, the first nanoparticle probe and the second nanoparticle probe are fixed on the surface with an amphiphilic surface modification having a hydrophobic portion and a hydrophilic portion. In a mode in which the side fixed to the modified noble metal particle is a hydrophobic part, the probe is separated from the surface of the noble metal nanoparticle because the surface of the noble metal nanoparticle surface is hydrophobic, and the probe is located near the surface of the noble metal nanoparticle. Non-specific aggregation caused by entanglement can be suppressed. Therefore, biosensing with high specific binding reaction efficiency and better detection accuracy can be performed.
 更に、表面修飾の貴金属ナノ粒子に固定されていない側の末端の官能基(末端基)の帯電状態が、緩衝性水溶液中において、第1及び第2のプローブの帯電状態と同じである態様では、表面修飾の末端基と第1及び第2のプローブとが反発しあうことから、より効果的な、非特異的な凝集抑制効果及び特異結合の反応効率向上効果を得ることができる。 Further, in the aspect in which the charged state of the terminal functional group (terminal group) on the side not fixed to the surface-modified noble metal nanoparticles is the same as the charged state of the first and second probes in the buffer solution. Since the end group of the surface modification and the first and second probes repel each other, more effective non-specific aggregation suppression effect and specific binding reaction efficiency improvement effect can be obtained.
本発明の検出液の構成を示す概略断面模式図Schematic cross-sectional schematic diagram showing the configuration of the detection liquid of the present invention 本発明の検出液に含まれるナノ粒子プローブの第1実施形態の構成を示す模式図The schematic diagram which shows the structure of 1st Embodiment of the nanoparticle probe contained in the detection liquid of this invention. 本発明の検出液に含まれるナノ粒子プローブの第2実施形態の構成を示す模式図The schematic diagram which shows the structure of 2nd Embodiment of the nanoparticle probe contained in the detection liquid of this invention. 本発明の検出液に含まれる貴金属ナノ粒子の好適な態様を示す概略断面模式図。The schematic cross-sectional schematic diagram which shows the suitable aspect of the noble metal nanoparticle contained in the detection liquid of this invention. 図2Aの貴金属ナノ粒子表面の一実施形態を示す拡大概略模式図FIG. 2A is a schematic enlarged view showing an embodiment of the surface of the noble metal nanoparticle. 本発明のバイオセンシング方法の工程(A)の好適な態様を示す概略断面模式図Schematic cross-sectional schematic diagram showing a preferred embodiment of step (A) of the biosensing method of the present invention 本発明のバイオセンシング方法の工程(B)の好適な態様を示す概略断面模式図Schematic cross-sectional schematic diagram showing a preferred embodiment of the step (B) of the biosensing method of the present invention 本発明のバイオセンシング方法の工程(B)の別の好適な態様を示す概略断面模式図Schematic cross-sectional schematic diagram showing another preferred embodiment of step (B) of the biosensing method of the present invention 工程(C)の検出をゲル電気泳動法により実施した場合の検出結果の一例を示す模式図The schematic diagram which shows an example of the detection result at the time of implementing the detection of a process (C) by gel electrophoresis 光偏光計測による検出に用いる装置の概略構成模式図Schematic configuration schematic diagram of the device used for detection by optical polarimetry 金ナノ粒子二量体による散乱光の偏光回転の説明図Illustration of polarization rotation of scattered light by gold nanoparticle dimer 図5の装置を用いて得られた計測結果の一例を示す図The figure which shows an example of the measurement result obtained using the apparatus of FIG. 異方指数を用いた検出例 (粒子形状と異方指数AIとの相関)を示す図Figure showing detection example (correlation between particle shape and anisotropic index AI) using anisotropic index 光散乱相関分光法により得られた単量体及び二量体の自己相関関数Monomer and dimer autocorrelation functions obtained by light scattering correlation spectroscopy. 光散乱相関分光法による検出例(単体と二量体の減衰時間)Example of detection by light scattering correlation spectroscopy (decay time of simple substance and dimer) 特許文献2の図40FIG. 40 of Patent Document 2
「検出液」
 図面を参照して本発明にかかる一実施形態の検出液及びそれを用いたバイオセンシング方法について説明する。図1Aは本実施形態の検出液1の構成を示す概略断面模式図である。図2Aは、検出液1に含まれる第1及び第2の貴金属ナノ粒子プローブP1、P2の好適な態様を示す概略断面模式図,図2Bは、図2Aの貴金属ナノ粒子表面の拡大概略模式図である。本明細書の概略図及び模式図では、視認しやすくするため各部の縮尺は適宜変更して示してある。
"Detection solution"
A detection solution and a biosensing method using the same according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1A is a schematic cross-sectional schematic diagram showing the configuration of the detection liquid 1 of the present embodiment. 2A is a schematic cross-sectional schematic diagram showing a preferred embodiment of the first and second noble metal nanoparticle probes P1 and P2 included in the detection liquid 1, and FIG. 2B is an enlarged schematic schematic diagram of the surface of the noble metal nanoparticle in FIG. 2A. It is. In the schematic diagram and schematic diagram of the present specification, the scale of each part is appropriately changed for easy visual recognition.
 貴金属ナノ粒子を標識として用いたバイオセンシングでは、塩基数の比較的多いターゲット遺伝子の検出に好適である、複数のプローブのハイブリダイゼーションによる検出方法においても、従来、貴金属ナノ粒子側に結合されているプローブ末端(基端)が、被検出物質の両端に特異結合される構成としている。 Biosensing using precious metal nanoparticles as a label is suitable for detection of target genes with a relatively large number of bases, and is conventionally bound to the precious metal nanoparticles even in detection methods based on hybridization of multiple probes. The probe end (base end) is configured to be specifically bound to both ends of the substance to be detected.
 「背景技術」の項においても述べたように、本発明者は、従来の貴金属ナノ粒子プローブの構成では、ターゲット遺伝子の塩基数(長さ)によって、金ナノ粒子の間隔にばらつきを生じること、また、塩基数の多いターゲット遺伝子の検出では、第1の貴金属ナノ粒子と第2の貴金属ナノ粒子が個々の粒子として検出されやすいことが、測定精度や検出感度の低下の要因であることを見出し、本発明を完成させた。 As described in the section of “Background Art”, the present inventors have found that the conventional noble metal nanoparticle probe has a variation in the interval between the gold nanoparticles depending on the number of bases (length) of the target gene, In addition, in the detection of target genes with a large number of bases, the fact that the first noble metal nanoparticles and the second noble metal nanoparticles are easily detected as individual particles is found to be a factor in reducing measurement accuracy and detection sensitivity. The present invention has been completed.
 生体物質の特異結合には、抗原―抗体結合、DNAやRNA、PNA(Peptide Nucleic Acid、ペプチド核酸)等の核酸の相補的結合(ハイブリダイゼーション)、ビオチンーアビジン結合、抗原―アプタマー結合、糖鎖―レクチン結合等があり、本発明はいずれの特異結合にも適用可能である。 Specific binding of biological substances includes antigen-antibody binding, DNA and RNA, complementary binding (hybridization) of nucleic acids such as PNA (Peptide Nucleic Acid, peptide nucleic acid), biotin-avidin binding, antigen-aptamer binding, sugar chain -Lectin binding and the like, and the present invention is applicable to any specific binding.
 また、本発明において、貴金属ナノ粒子は特に制限されず、使用する光の波長において呈色特性の良好な貴金属を選択することが好ましい。中でも金は、自然光において視認しやすい赤色の呈色を示すことから好ましく利用することができる。 In the present invention, the noble metal nanoparticles are not particularly limited, and it is preferable to select a noble metal having good coloration characteristics at the wavelength of light used. Among them, gold can be preferably used because it exhibits a red color that is easily visible in natural light.
 以下、貴金属ナノ粒子が金ナノ粒子であり、親水性の生体物質(プローブ)が核酸断片であり、特異結合が核酸の相補的結合H(ハイブリダイゼーション)である場合を例に説明する。 Hereinafter, a case where the noble metal nanoparticles are gold nanoparticles, the hydrophilic biological substance (probe) is a nucleic acid fragment, and the specific bond is a complementary bond H (hybridization) of a nucleic acid will be described as an example.
 図1Aに示されるように、検出液1は、貴金属ナノ粒子を標識として、被測定試料中に含まれる、生体物質からなる被検出物質を検出するバイオセンシングに用いる検出液であって、図1Bに示される被検出物質50の第1の部位50Aと特異結合する生体物質を含む第1のプローブ20Aが第1の貴金属ナノ粒子10Aの表面に固定されてなる第1のナノ粒子プローブP1と、
被検出物質50の第2の部位50Bと特異結合する生体物質を含む第2のプローブ20Bが第2の貴金属ナノ粒子10Bの表面に固定されてなる第2のナノ粒子プローブP2とが緩衝性水溶液40に分散されてなるものである。
As shown in FIG. 1A, the detection liquid 1 is a detection liquid used for biosensing for detecting a detection target substance made of a biological substance contained in a measurement target sample using noble metal nanoparticles as a label. A first nanoparticle probe P1 in which a first probe 20A containing a biological substance that specifically binds to the first portion 50A of the target substance 50 shown in FIG. 5 is immobilized on the surface of the first noble metal nanoparticle 10A;
A second nanoparticle probe P2 in which a second probe 20B containing a biological substance that specifically binds to the second portion 50B of the detection target substance 50 is immobilized on the surface of the second noble metal nanoparticle 10B is buffered aqueous solution. 40 is distributed.
 第1及び第2のナノ粒子プローブP1,P2は、図1B又は図1Cに示されるように、被検出物質50の第1の部位50A及び第2の部位50Bの、これらの部位同士が近接する側の末端50At,50Btと、
第1のプローブ20A及び第2のプローブ20Bの基端20Ab,20Bbとが特異結合するように、
第1のプローブ20Aと第2のプローブ20Bがそれぞれ、第1の貴金属ナノ粒子10Aと第2の貴金属ナノ粒子10Bに固定されてなる。
As shown in FIG. 1B or FIG. 1C, the first and second nanoparticle probes P1 and P2 are close to each other in the first part 50A and the second part 50B of the detection target substance 50. Side ends 50At, 50Bt;
The base ends 20Ab and 20Bb of the first probe 20A and the second probe 20B are specifically bound.
The first probe 20A and the second probe 20B are fixed to the first noble metal nanoparticles 10A and the second noble metal nanoparticles 10B, respectively.
 また、本実施形態では、第1のナノ粒子プローブP1及び第2のナノ粒子プローブP2において、貴金属ナノ粒子10A,10B表面に、疎水性部と親水性部とを有する両親媒性の表面修飾30が表面に固定されてなる。 Moreover, in this embodiment, in the first nanoparticle probe P1 and the second nanoparticle probe P2, an amphiphilic surface modification 30 having a hydrophobic portion and a hydrophilic portion on the surface of the noble metal nanoparticles 10A and 10B. Is fixed to the surface.
 図1Bに示されるナノ粒子プローブP1及びP2の第1実施形態は、被検出物質50のナノ粒子プローブP1と第2のナノ粒子プローブP2が特異結合する第1の部位50Aと第2の部位50Bとが隣接している態様である。ナノ粒子プローブP1及びP2は、かかる態様に限定されるものではなく、図1Cに示されるように、第1の部位50Aと第2の部位50Bとは隣接しておらず、間にいくつかの塩基配列を備えてなる態様であってもよい(第2実施形態)。 In the first embodiment of the nanoparticle probes P1 and P2 shown in FIG. 1B, the first site 50A and the second site 50B where the nanoparticle probe P1 and the second nanoparticle probe P2 of the detected substance 50 are specifically bound. And are adjacent to each other. The nanoparticle probes P1 and P2 are not limited to such an embodiment. As shown in FIG. 1C, the first portion 50A and the second portion 50B are not adjacent to each other, and some of them are in between. An embodiment comprising a base sequence may be used (second embodiment).
 更に、図1B,図1Cでは、被検出物質50の両末端に特異結合する第1のナノ粒子プローブP1と第2のナノ粒子プローブP2が特異結合する態様について示してあるが、被検出物質50における特異結合部位については特に制限されない。 Further, FIGS. 1B and 1C show a mode in which the first nanoparticle probe P1 and the second nanoparticle probe P2 that specifically bind to both ends of the detected substance 50 are specifically bound. The specific binding site in is not particularly limited.
 また、図2Aに示されるように、本実施形態では、緩衝性水溶液40中において、第1及び第2のナノ粒子プローブP1及びP2は、両親媒性の表面修飾30の貴金属ナノ粒子10A,10Bに固定されていない側の末端が負の電荷を有し、第1及び第2のプローブ20A,20Bも負の電荷を有している。 Further, as shown in FIG. 2A, in this embodiment, in the buffered aqueous solution 40, the first and second nanoparticle probes P1 and P2 are noble metal nanoparticles 10A and 10B having an amphiphilic surface modification 30. The end on the side not fixed to the electrode has a negative charge, and the first and second probes 20A and 20B also have a negative charge.
 両親媒性の表面修飾30は、図2Bに示されるように、金ナノ粒子10A,10Bに固定されている疎水性部31と親水性部32とを有している。図2Bでは、基端30aの官能基がチオール基であるアルキル基(炭素数11)からなる疎水性部31と、末端基30eがカルボキシル基であるポリエチレングリコール(炭素数6)からなる親水性部32とがエステル結合してなる表面修飾30を例に図示してある。なお、図2Bでは、カルボキシル基として示してあるが、緩衝性水溶液中ではCOOとして存在する。 As shown in FIG. 2B, the amphiphilic surface modification 30 has a hydrophobic portion 31 and a hydrophilic portion 32 that are fixed to the gold nanoparticles 10 </ b> A and 10 </ b> B. In FIG. 2B, the hydrophobic part 31 which consists of the alkyl group (carbon number 11) whose functional group of the base end 30a is a thiol group, and the hydrophilic part which consists of polyethylene glycol (carbon number 6) whose end group 30e is a carboxyl group A surface modification 30 formed by ester bonding with 32 is illustrated as an example. In FIG. 2B, but is shown as a carboxyl group, in a buffered aqueous solution COO - present as.
 また、図2Bにおいては、第1のプローブ20A及び第2のプローブ20Bが、第1の金ナノ粒子10Aと第2の金ナノ粒子10Bに、両親媒性の表面修飾30により被検出物質50との特異結合が阻害されることを抑止する緩衝部21を介して固定されてなり、金ナノ粒子10A(10B)に固定された表面修飾30の基端30a及び緩衝部21の基端21aの双方がチオール基である態様において、既に金と結合された状態を示してある。緩衝部21と結合しているそれぞれプローブの基端20Ab(20Bb)が、被検出物質50の第1の部位50A及び第2の部位50Bの、これらの部位同士が近接する側の末端50At,50Btと特異結合する。 In FIG. 2B, the first probe 20A and the second probe 20B are connected to the first gold nanoparticle 10A and the second gold nanoparticle 10B by the amphiphilic surface modification 30 and the detection target substance 50. Both the base end 30a of the surface modification 30 and the base end 21a of the buffer part 21 fixed to the gold nanoparticle 10A (10B), which are fixed through the buffer part 21 that suppresses inhibition of specific binding of In the embodiment in which is a thiol group, it is already bound to gold. The base end 20Ab (20Bb) of each probe coupled to the buffer portion 21 is the end 50At, 50Bt of the first part 50A and the second part 50B of the detected substance 50 on the side where these parts are close to each other. Specific binding.
 金ナノ粒子10の大きさは、光の照射により局在プラズモンを誘起可能な大きさであれば特に制限されず、個々の粒径は光の波長の半分以下であることが好ましく、10nm以上100nm以下であることがより好ましい。さらに光学的検出を行う場合、粒子径は、30nm以上であることが好ましい。 The size of the gold nanoparticle 10 is not particularly limited as long as it is a size capable of inducing localized plasmon by light irradiation, and each particle size is preferably less than or equal to half of the wavelength of light, and is 10 nm or more and 100 nm. The following is more preferable. Further, when optical detection is performed, the particle diameter is preferably 30 nm or more.
 検出液1中の金ナノ粒子10の濃度は、感度の良い検出が可能であれば特に制限されないが、検出したい非検出物質の濃度(定量領域)に応じて、適宜、0.1pmol/l以上10000 pmol/l以下の範囲に調整することが好ましい。 The concentration of the gold nanoparticle 10 in the detection liquid 1 is not particularly limited as long as sensitive detection is possible, but is appropriately 0.1 pmol / l or more depending on the concentration (quantitative region) of the non-detection substance to be detected. It is preferable to adjust to the range of 10000 pmol / l or less.
 図2Bでは、第1及び第2のプローブ20A(20B)の基端20Ab(20Bb)側に緩衝部21を備え、緩衝部21にチオール基を備えて金ナノ粒子10に固定された態様について図示してあるが、金ナノ粒子10と結合する側の官能基は、金ナノ粒子10の金属と結合可能な官能基であれば特に制限されず、チオール基以外では、ジスルフィド基、メルカプト基等が挙げられる。これらの官能基の固定方法としては、特に制限されず既存の技術を利用することができる。 FIG. 2B shows a mode in which the buffer part 21 is provided on the base end 20Ab (20Bb) side of the first and second probes 20A (20B), and the buffer part 21 is provided with a thiol group and fixed to the gold nanoparticle 10. Although it is shown, the functional group on the side bonded to the gold nanoparticle 10 is not particularly limited as long as it is a functional group capable of binding to the metal of the gold nanoparticle 10, and other than the thiol group, there are a disulfide group, a mercapto group, and the like. Can be mentioned. The method for fixing these functional groups is not particularly limited, and existing techniques can be used.
 本発明者は、金ナノ粒子10の粒径によっては立体障害により、近接させた状態で相補的結合H(ハイブリダイゼーション)を生じさせる際、金ナノ粒子10に固定された側のプローブの基端(20Ab、20Bb)の10~20塩基程度がハイブリダイゼーションに寄与できず、これが、被検出物質50とのハイブリダイゼーション効率の低下、および検出限界の悪化を招くことがあることを見出した。 The inventor of the present invention, when generating complementary binding H (hybridization) in a close state due to steric hindrance depending on the particle diameter of the gold nanoparticle 10, the proximal end of the probe on the side fixed to the gold nanoparticle 10 It has been found that about 10 to 20 bases of (20Ab, 20Bb) cannot contribute to hybridization, and this may lead to a decrease in hybridization efficiency with the detection target substance 50 and a deterioration in detection limit.
 立体障害を少なくするためには、粒径は小さい方が好ましいが、光の波長以下の粒径の金ナノ粒子の散乱光量、即ち光学的検出における信号光量は、レイリー散乱の法則により、粒子径の6乗に比例して急激に小さくなるため、粒径が小さすぎると信号光がノイズに埋もれてしまい、光学的な検出感度が大幅に悪化する(非特許文献3を参照)。従って、光学的検出を行う場合、金ナノ粒子10(10A,10B)の個々の粒径は、30nm以上であることが好ましい。 In order to reduce steric hindrance, it is preferable that the particle size is small, but the amount of scattered light of gold nanoparticles having a particle size equal to or smaller than the wavelength of light, that is, the amount of signal light in optical detection is determined by the Rayleigh scattering law. Therefore, if the particle size is too small, the signal light is buried in noise, and the optical detection sensitivity is greatly deteriorated (see Non-Patent Document 3). Therefore, when performing optical detection, it is preferable that each particle size of the gold nanoparticle 10 (10A, 10B) is 30 nm or more.
 一方、金ナノ粒子10の粒径が充分な光学信号量を得られる粒径(例えば、φ≧30nm)である場合、立体障害が問題になるだけでなく、プローブ20に対して粒子の表面積が大きくなるため金ナノ粒子10の表面にプローブ20が吸着しやすく、反応効率が大幅に低下するとともに、複数のプローブ同士が絡み合うことによる非特異反応により検出感度が悪化してしまう問題を生じる。 On the other hand, when the gold nanoparticle 10 has a particle size (for example, φ ≧ 30 nm) at which a sufficient optical signal amount can be obtained, not only steric hindrance becomes a problem, but also the surface area of the particle with respect to the probe 20 is increased. Since it becomes large, the probe 20 is easily adsorbed on the surface of the gold nanoparticle 10, and the reaction efficiency is greatly lowered. Further, there arises a problem that the detection sensitivity is deteriorated due to a nonspecific reaction caused by a plurality of probes being entangled with each other.
 本発明者らは、本実施形態に示すように、金ナノ粒子10の表面に両親媒性の表面修飾30を備えることにより、プローブ20を表面に吸着させずにブラシ状に起立させ、更にプローブ20を、緩衝部21を介して金ナノ粒子10の表面に固定することにより、両親媒性の表面修飾30により被検出物質50との特異結合が阻害されることを抑止して、非特異反応及び立体障害による検出感度及び反応効率の悪化を抑制することに成功した。 As shown in the present embodiment, the present inventors provide the surface of the gold nanoparticle 10 with an amphiphilic surface modification 30 so that the probe 20 stands up in a brush shape without being adsorbed on the surface. 20 is immobilized on the surface of the gold nanoparticle 10 via the buffer portion 21, thereby preventing the amphiphilic surface modification 30 from inhibiting the specific binding with the substance 50 to be detected, and the nonspecific reaction. And it succeeded in suppressing the deterioration of detection sensitivity and reaction efficiency due to steric hindrance.
 緩衝部21は、被検出物質50と相補的なプローブ部分を表面修飾(30)の外側の金ナノ粒子の立体障害を受けにくい場所に配置し、被検出物質50との特異結合が阻害されることを抑止することを可能にするものであるので、表面修飾30の金ナノ粒子10に接する疎水性部31に埋もれないように、少なくとも一部に親水性部を有することが好ましい。 The buffer part 21 arrange | positions the probe part complementary to the to-be-detected substance 50 in the place which is hard to receive the steric hindrance of the gold nanoparticle outside surface modification (30), and a specific binding with the to-be-detected substance 50 is inhibited. In order to prevent this, it is preferable to have a hydrophilic portion at least partially so as not to be buried in the hydrophobic portion 31 in contact with the gold nanoparticle 10 of the surface modification 30.
 かかる親水性部としては、緩衝部21は、少なくとも一部に親水性部を有することが好ましい。親水性部としては、緩衝性水溶液中への分散性(水溶性)を良好にしうるものであれば特に制限されないが、ポリエチレングリコール(PEG)鎖、糖鎖、親水性ポリエステル、プローブに対して相補鎖を生じさせない塩基配列(例えば、T;チミンの繰返し・羅列)等が挙げられる。 As such a hydrophilic part, it is preferable that the buffer part 21 has a hydrophilic part at least in part. The hydrophilic part is not particularly limited as long as it can improve dispersibility (water solubility) in a buffered aqueous solution, but is complementary to a polyethylene glycol (PEG) chain, a sugar chain, a hydrophilic polyester, and a probe. Examples thereof include a base sequence that does not generate a chain (for example, T; repeating thymine and enumeration).
 また、緩衝部21の長さは、表面修飾30の厚みよりも長いことが好ましく、緩衝部21と結合する第1及び第2のプローブ20(A,B)の基端20Ab(20Bb)が、表面修飾30内に埋もれない長さであることがより好ましい。緩衝部21は、金ナノ粒子10A(10B)の粒径およびプローブ長を考慮し、適宜材料設計することが好ましい。 Moreover, it is preferable that the length of the buffer part 21 is longer than the thickness of the surface modification 30, and the base ends 20Ab (20Bb) of the first and second probes 20 (A, B) coupled to the buffer part 21 are More preferably, the length is not buried in the surface modification 30. It is preferable that the buffer 21 is appropriately designed in consideration of the particle size of the gold nanoparticles 10A (10B) and the probe length.
 検出液1において、表面修飾30は、第1及び第2のプローブ20A(20B)が、金ナノ粒子10の表面10s付近で絡まり合うことにより生じる非特異結合の検出を抑制するためのものであるので、第1及び第2のプローブ20A(20B)の長さよりも1分子の長さが短いものであることが好ましい。 In the detection liquid 1, the surface modification 30 is for suppressing detection of non-specific binding that occurs when the first and second probes 20 </ b> A (20 </ b> B) are entangled near the surface 10 s of the gold nanoparticle 10. Therefore, it is preferable that the length of one molecule is shorter than the length of the first and second probes 20A (20B).
 第1及び第2のプローブ20A(20B)が20塩基のオリゴDNAである場合は、その鎖長は7nm前後である。これに対して良好な効果が得られる表面修飾30の厚み(表面10sから末端までの距離)は、3.0nm程度が好ましい。 When the first and second probes 20A (20B) are 20-base oligo DNA, the chain length is about 7 nm. On the other hand, the thickness (the distance from the surface 10s to the terminal) of the surface modification 30 that provides a good effect is preferably about 3.0 nm.
 表面修飾30において、疎水性部31は、基端30aが金ナノ粒子10と結合可能な官能基であるアルキル基であることが好ましい。基端30aの官能基としては、緩衝部21と同様、チオール類やジスルフィド類等の硫黄化合物が挙げられる。 In the surface modification 30, the hydrophobic part 31 is preferably an alkyl group whose base end 30 a is a functional group capable of binding to the gold nanoparticle 10. Examples of the functional group at the base end 30a include sulfur compounds such as thiols and disulfides, as in the buffer section 21.
 疎水性部31の金ナノ粒子10の固定側と反対側の末端には、親水性部32が備えられている。親水性部32は、疎水性部31で覆われることにより緩衝性水溶液40における分散性の低下を改善するものである。 A hydrophilic part 32 is provided at the end of the hydrophobic part 31 opposite to the fixed side of the gold nanoparticles 10. The hydrophilic part 32 improves the decrease in dispersibility in the buffered aqueous solution 40 by being covered with the hydrophobic part 31.
 疎水性の大きい表面修飾30および疎水性部31にて覆われた金ナノ粒子は、水溶性が低くなっているため、緩衝性水溶液中に良好に分散させるためには、アルコール等の相溶性の高い溶媒を一旦介して分散させる必要があるが、これにより、核酸等の生体物質を損傷して変性し、非特異の凝集が増えて良好なセンシングを行うことが難しくなる可能性が高い。非特異的な凝集の増加は特異結合反応の失活をも引き起こし、該反応の反応効率を低下させる。特に、疎水性部のアルキル鎖の炭素数が7以上である場合には疎水性が高いため水溶性(分散性)が非常に低くなる。 Since the gold nanoparticles covered with the highly hydrophobic surface modification 30 and the hydrophobic part 31 have low water solubility, in order to disperse well in the buffering aqueous solution, compatibility with alcohol or the like is required. Although it is necessary to disperse once through a high solvent, there is a high possibility that it will be difficult to perform good sensing due to damage and denaturation of biological substances such as nucleic acids, increasing non-specific aggregation. An increase in non-specific aggregation also causes inactivation of the specific binding reaction, reducing the reaction efficiency of the reaction. In particular, when the alkyl chain of the hydrophobic part has 7 or more carbon atoms, the water solubility (dispersibility) becomes very low due to the high hydrophobicity.
 本発明者は、疎水性部31の金ナノ粒子10の固定側(基端)と反対側の末端に、親水性部32を備えた表面修飾30とすることにより、上記第1及び第2のプローブ20A(20B)同士の絡まりの抑制効果を維持しつつ、緩衝性水溶液中への分散性が良く生体物質へのダメージが殆どない検出液となることを見出している。 The inventor of the present invention uses the surface modification 30 provided with the hydrophilic portion 32 at the end opposite to the fixing side (base end) of the gold nanoparticle 10 of the hydrophobic portion 31, so that the first and the second It has been found that the detection solution has good dispersibility in a buffered aqueous solution and hardly damages a biological material while maintaining the effect of suppressing the entanglement between the probes 20A (20B).
 本実施形態によれば、金ナノ粒子表面10s付近に絡み合って存在する生体物質を該表面から剥がし、特異反応効率を高め、非特異結合による凝集を抑制することができる。 According to the present embodiment, biological substances that are entangled in the vicinity of the surface of the gold nanoparticle 10s can be peeled off from the surface to increase the specific reaction efficiency and suppress aggregation due to non-specific binding.
 親水性部32としては、緩衝性水溶液中への分散性(水溶性)を良好にしうるものであれば特に制限されないが、ポリエチレングリコール(PEG)鎖、糖鎖、親水性ポリエステル、プローブに対して相補鎖を生じさせない塩基配列(例えば、T;チミンの繰返し・羅列)等が挙げられ、水溶性を付与し、且つ、表面修飾30が自己組織化単分子膜となり得るものが好ましい。 The hydrophilic portion 32 is not particularly limited as long as it can improve the dispersibility (water solubility) in a buffered aqueous solution. However, the hydrophilic portion 32 is not limited to a polyethylene glycol (PEG) chain, a sugar chain, a hydrophilic polyester, or a probe. Examples include a base sequence that does not generate a complementary strand (for example, T; thymine repeats / enumeration), and the like, and those that impart water solubility and that the surface modification 30 can be a self-assembled monolayer are preferable.
 親水性部32の末端基30eは特に制限されず、ヒドロキシル基、カルボシキル基、リン酸基、スルホン酸基等が挙げられる。末端基30eがヒドロキシル基等の酸性官能基ではない官能基であっても、金ナノ粒子表面10s付近に絡み合って存在する生体物質を剥がすことはできるが、第1及び第2のプローブ20A(20B)を該表面から立ち上がった状態でブラシ状に固定するには至らない。 The end group 30e of the hydrophilic portion 32 is not particularly limited, and examples thereof include a hydroxyl group, a carboxyl group, a phosphoric acid group, and a sulfonic acid group. Even if the terminal group 30e is a functional group that is not an acidic functional group such as a hydroxyl group, it is possible to peel the biological material that is entangled in the vicinity of the surface 10s of the gold nanoparticle, but the first and second probes 20A (20B) ) Cannot be fixed in a brush shape while standing up from the surface.
 図2A,Bに示されるように、親水性部32の末端基30eが、核酸断片20の緩衝性水溶液中での帯電状態と同じである場合、表面修飾30の表面(30e)と核酸断片20とが反発しあい、核酸断片20がより金ナノ粒子表面10sから遠ざかるべく立ち上がるため、ブラシ状に固定される。その結果、同一配列のみの非特異凝集をより効果的に抑制することができる。 2A and 2B, when the end group 30e of the hydrophilic portion 32 is the same as the charged state in the buffered aqueous solution of the nucleic acid fragment 20, the surface (30e) of the surface modification 30 and the nucleic acid fragment 20 Repel each other, and the nucleic acid fragment 20 rises further away from the gold nanoparticle surface 10s, so that it is fixed in a brush shape. As a result, nonspecific aggregation of only the same sequence can be more effectively suppressed.
 第1及び第2のプローブ20A(20B)の緩衝性水溶液 中での帯電状態は負であることから、末端基30eは緩衝性水溶液中において負イオンになるイオン化傾向が高い官能基、すなわち、酸性官能基であることが好ましい。PEGの場合はヒドロキシル基であり、酸性官能基ではないことから、図示されるカルボキシル基、やスルホン酸基等に置換して用いることが好ましい。これらの官能基の固定方法としては、特に制限されず既存の技術を利用することができる。 Since the charged state of the first and second probes 20A (20B) in the buffered aqueous solution is negative, the end group 30e is a functional group having a high ionization tendency to become a negative ion in the buffered aqueous solution, that is, acidic. It is preferably a functional group. In the case of PEG, since it is a hydroxyl group and not an acidic functional group, it is preferably used after being substituted with the illustrated carboxyl group, sulfonic acid group or the like. The method for fixing these functional groups is not particularly limited, and existing techniques can be used.
 表面修飾30は、上記のように、金ナノ粒子10へ固定する側の末端にチオール類やジスルフィド類等の硫黄化合物の官能基を備えている。これらの硫黄化合物の官能基は、金等の貴金属表面上に自発的に吸着し、アルカンチオール類やアルカンジスルフィド類は、単分子サイズの超薄膜(単分子膜)を与える。また、その集合体は粒子の結晶状態や吸着分子の分子構造に依存した配列を示すことから自己組織化単分子膜と呼ばれており、貴金属表面への固定が容易であり好ましい。 As described above, the surface modification 30 has a functional group of a sulfur compound such as thiols and disulfides at the terminal to be fixed to the gold nanoparticle 10. The functional group of these sulfur compounds is adsorbed spontaneously on the surface of a noble metal such as gold, and alkanethiols and alkane disulfides give a monomolecular-sized ultrathin film (monomolecular film). In addition, the aggregate is called a self-assembled monomolecular film because it shows an arrangement depending on the crystal state of the particles and the molecular structure of the adsorbed molecule, and is preferable because it can be easily fixed on the surface of the noble metal.
 好適な表面修飾30としては、20-(11-メルカプトウンデカンイルオキシ)-3,6,9,12,15,18-ヘキサオキサエイコサン酸(英語名: 20-(11-Mercaptoundecanyloxy)-3,6,9,12,15,18-hexaoxaeicosanoic acid)の自己組織化単分子膜が挙げられる。この単分子の長さは2.5nm~3.0nm程度であり、そのうち疎水性部31長が約1.2nmである。 Suitable surface modification 30 includes 20- (11-mercaptoundecanyloxy) -3,6,9,12,15,18-hexaoxaeicosanoic acid (English name: 20- (11-Mercaptoundecanyloxy) -3, 6,9,12,15,18-hexaoxaeicosanoic acid)). The length of this single molecule is about 2.5 nm to 3.0 nm, and the length of the hydrophobic portion 31 is about 1.2 nm.
 表面修飾30の検出液1中の濃度(単分子の濃度)は、感度の良い検出が可能であれば特に制限されないが、10nmol/l以上1000nmol/l以下の範囲が好ましく、貴金属ナノ粒子の材質や粒子径、および生体物質の種類によって最適化することが好ましい。 The concentration of the surface modification 30 in the detection solution 1 (the concentration of a single molecule) is not particularly limited as long as sensitive detection is possible, but a range of 10 nmol / l or more and 1000 nmol / l or less is preferable. It is preferable to optimize depending on the particle size and the type of biological material.
 以上述べたように、検出液1は、被検出物質50の第1の部位50Aと特異結合する生体物質を含む第1のプローブ20Aが第1の貴金属ナノ粒子10Aの表面に固定されてなる第1のナノ粒子プローブP1と、被検出物質の第2の部位50Bと特異結合する生体物質を含む第2のプローブ20Bが第2の貴金属ナノ粒子10Bの表面に固定されてなる第2のナノ粒子プローブP2とが緩衝性水溶液40に分散されてなり、
被検出物質の第1の部位50A及び第2の部位50Bの、これらの部位同士が近接する側の末端50At,50Btと、第1のプローブ及び第2のプローブの基端20Ab,20Bbとが特異結合するように、第1のプローブ20Aと第2のプローブ20Bがそれぞれ、第1の貴金属ナノ粒子10Aと第2の貴金属ナノ粒子10Bに固定されてなるものである。かかる構成によれば、第1の貴金属ナノ粒子10Aと第2の貴金属ナノ粒子10Bとが近接するように第1のプローブ20Aと第2のプローブ20Bが被検出物質に特異結合するため、第1の貴金属ナノ粒子10Aと第2の貴金属ナノ粒子10Bが個々の粒子として検出されることを抑制し、また、被検出物質の長さ(塩基数)によって生ずる、金ナノ粒子の間隔の違いを最小限にすることができる。
As described above, the detection liquid 1 includes the first probe 20A containing a biological substance that specifically binds to the first portion 50A of the detection target substance 50 and is fixed to the surface of the first noble metal nanoparticle 10A. 1st nanoparticle probe P1 and 2nd probe 20B containing the biological material which bind | bond | couples specifically with 2nd site | part 50B of a to-be-detected substance are fixed to the surface of 2nd noble metal nanoparticle 10B, and the 2nd nanoparticle Probe P2 is dispersed in buffered aqueous solution 40,
The first part 50A and the second part 50B of the detection target substance are specific to the ends 50At and 50Bt on the side where these parts are close to each other and the base ends 20Ab and 20Bb of the first probe and the second probe The first probe 20A and the second probe 20B are respectively fixed to the first noble metal nanoparticle 10A and the second noble metal nanoparticle 10B so as to be coupled. According to this configuration, the first probe 20A and the second probe 20B are specifically bound to the substance to be detected so that the first noble metal nanoparticle 10A and the second noble metal nanoparticle 10B are close to each other. The noble metal nanoparticles 10A and the second noble metal nanoparticles 10B are suppressed from being detected as individual particles, and the difference in the distance between the gold nanoparticles caused by the length (number of bases) of the substance to be detected is minimized. Can be limited.
 従って、検出液1を用いることにより、貴金属ナノ粒子を標識として、被測定試料中に含まれる、生体物質からなるターゲット遺伝子を検出するバイオセンシングにおいて、検出感度及び精度の良好なバイオセンシングを実施することができる。 Therefore, by using the detection liquid 1, biosensing with good detection sensitivity and accuracy is performed in biosensing for detecting a target gene made of a biological substance contained in a sample to be measured, using noble metal nanoparticles as a label. be able to.
「バイオセンシング方法」
 図面を参照して、本発明にかかる一実施形態のバイオセンシング方法について説明する。図3A、図3B、図3Cは本発明のバイオセンシング方法の工程(A)~工程(C)の好適な態様を示す概略模式図である。
"Biosensing method"
With reference to drawings, the biosensing method of one Embodiment concerning this invention is demonstrated. FIG. 3A, FIG. 3B, and FIG. 3C are schematic schematic diagrams showing preferred embodiments of steps (A) to (C) of the biosensing method of the present invention.
 本発明のバイオセンシング方法は、貴金属ナノ粒子を標識として、被測定試料中に含まれる、生体物質からなる被検出物質を検出するバイオセンシングにおいて、
上記本発明の検出液を調製する工程(A)と、
被検出物質と、第1のプローブ及び第2のプローブとが特異結合を形成しうる条件で、第1の部位と第2の部位を有する被検出物質を含む被測定試料と検出液とを混合する工程(B)と、
この混合により得られた溶液を用いて、貴金属ナノ粒子の標識を検出することにより被測定試料中の特異結合した被検出物質の有無を検出する工程(C)とを有するものである。
The biosensing method of the present invention uses precious metal nanoparticles as a label, and in biosensing for detecting a detection substance made of a biological substance contained in a measurement sample,
A step (A) of preparing the detection solution of the present invention;
The sample to be measured and the detection liquid containing the substance to be detected having the first part and the second part are mixed under the condition that the substance to be detected and the first probe and the second probe can form a specific bond. Step (B) to perform,
And a step (C) of detecting the presence or absence of a specifically bound detection target substance in the sample to be measured by detecting the label of the noble metal nanoparticles using the solution obtained by the mixing.
 ここでも、被検出物質が核酸断片と相補的に結合する核酸断片50であり、貴金属ナノ粒子10が金ナノ粒子である場合を例に説明する。 Here, the case where the substance to be detected is the nucleic acid fragment 50 that binds complementarily to the nucleic acid fragment and the noble metal nanoparticle 10 is a gold nanoparticle will be described as an example.
 <工程(A)>
 図3Aに示されるように、工程(A)では上記本発明の検出液1を調製する。検出液1には、第1のナノ粒子プローブP1と第2のナノ粒子プローブP2とが含まれている。従って、まず、それぞれのナノ粒子プローブを調製し、それらを混合することにより検出液1を得る。
<Process (A)>
As shown in FIG. 3A, in the step (A), the detection solution 1 of the present invention is prepared. The detection liquid 1 includes a first nanoparticle probe P1 and a second nanoparticle probe P2. Therefore, first, the detection liquid 1 is obtained by preparing each nanoparticle probe and mixing them.
 まず、ビーカー等の容器に緩衝性水溶液40を所定量注入し、その中に、複数の貴金属ナノ粒子10Aを添加する(A-1)。この工程は、非加熱にて実施してよい。 First, a predetermined amount of the buffer aqueous solution 40 is injected into a container such as a beaker, and a plurality of noble metal nanoparticles 10A are added therein (A-1). This step may be performed without heating.
 次に、第1のプローブ20Aを金ナノ粒子10Aの表面に固定する(A-2)。このとき、被検出物質50の第1の部位50Aの、第2の部位50Bと近接する側の末端50Atと、第1のプローブの金ナノ粒子10Aに結合される側の基端20Abとが特異結合するようにするために、第1のプローブの基端20Abを官能化しておく。基端20Abの官能基については既に述べたとおりであり、第1のプローブ20Aを、緩衝部21を介して金ナノ粒子10Aに固定する場合は、緩衝部21の金ナノ粒子10Aに固定される側を官能化しておく。官能化の方法は公知の方法を用いてよい。 Next, the first probe 20A is fixed to the surface of the gold nanoparticle 10A (A-2). At this time, the end 50At of the first part 50A of the detected substance 50 on the side close to the second part 50B and the base end 20Ab on the side bound to the gold nanoparticle 10A of the first probe are unique. In order to bond, the proximal end 20Ab of the first probe is functionalized. The functional group of the base end 20Ab is as described above, and when the first probe 20A is fixed to the gold nanoparticle 10A via the buffer part 21, it is fixed to the gold nanoparticle 10A of the buffer part 21. Keep the side functionalized. A known method may be used as a functionalization method.
 次に、第1のプローブ20Aが固定された金ナノ粒子10Aの表面に、疎水性部31と親水性部32とを有する両親媒性の表面修飾30を、疎水性部31側の基端30aが金ナノ粒子10の表面10sに固定されるように固定して、第1のナノ粒子プローブP1を得る(A-3)。 Next, an amphiphilic surface modification 30 having a hydrophobic portion 31 and a hydrophilic portion 32 is applied to the surface of the gold nanoparticle 10A to which the first probe 20A is fixed, and a base end 30a on the hydrophobic portion 31 side. Is fixed to the surface 10s of the gold nanoparticle 10 to obtain the first nanoparticle probe P1 (A-3).
 金ナノ粒子10への表面修飾30の固定温度及びその固定に要する反応時間は、単分子膜の材料に応じて適宜設定すればよく、20-(11-メルカプトウンデカンイルオキシ)-3,6,9,12,15,18-ヘキサオキサエイコサン酸の場合は、50℃前後の温度にて3時間程反応させることにより形成することができる。 The fixing temperature of the surface modification 30 on the gold nanoparticle 10 and the reaction time required for the fixing may be set as appropriate according to the material of the monomolecular film. 20- (11-mercaptoundecanyloxy) -3,6, In the case of 9,12,15,18-hexaoxaeicosanoic acid, it can be formed by reacting at about 50 ° C. for about 3 hours.
 次に、被検出物質50の第2の部位50Bと特異結合するようにする以外は第1のナノ粒子プローブP1と同様にして第2のナノ粒子プローブP2を調製する。 Next, a second nanoparticle probe P2 is prepared in the same manner as the first nanoparticle probe P1, except that it specifically binds to the second portion 50B of the substance 50 to be detected.
 最後に、第1のナノ粒子プローブP1と第2のナノ粒子プローブP2とを混合して、緩衝性水溶液40中に第1のナノ粒子プローブP1と第2のナノ粒子プローブP2が分散されてなる検出液1を得る(A-4)。 Finally, the first nanoparticle probe P1 and the second nanoparticle probe P2 are mixed, and the first nanoparticle probe P1 and the second nanoparticle probe P2 are dispersed in the buffered aqueous solution 40. Detection liquid 1 is obtained (A-4).
 <工程(B)>
工程(B)は、検出液1中に被測定試料を混合して、被測定試料中の被検出物質50と、検出液1中の第1及び第2のプローブ20A,20Bとの相補的結合Hの形成(特異結合)反応を実施する工程である。
<Process (B)>
In the step (B), a sample to be measured is mixed in the detection liquid 1, and complementary binding between the substance to be detected 50 in the sample to be measured and the first and second probes 20A and 20B in the detection liquid 1 is performed. This is a step of carrying out H formation (specific binding) reaction.
 核酸同士の相補鎖の形成(ハイブリダイゼーション)は、核酸断片(一本鎖)が一本鎖として存在できる温度(融解温度)よりも若干低い温度条件で形成されることが知られている。工程(B)において、特異結合反応(ハイブリダイゼーション)の条件は、相補鎖の形成へ悪影響を及ぼす核酸断片の損傷及び、各核酸断片の金ナノ粒子への固定態様の悪化がない範囲で適宜設定することができる。 It is known that the formation of a complementary strand (hybridization) between nucleic acids is formed at a temperature slightly lower than the temperature at which a nucleic acid fragment (single strand) can exist as a single strand (melting temperature). In the step (B), the conditions for the specific binding reaction (hybridization) are appropriately set within the range where there is no damage to the nucleic acid fragments that adversely affect the formation of complementary strands and the deterioration of the mode of fixation of each nucleic acid fragment to the gold nanoparticles. can do.
 図3B,図3Cには、検出液1中に被検出物質50を含む被測定資料を混合した際の、検出系の一例を示してある。図3Bは、図1Bに示される第1実施形態のナノ粒子プローブP1及びP2を用いた場合の検出系であり、被検出物質50のナノ粒子プローブP1と第2のナノ粒子プローブP2が特異結合する第1の部位50Aと第2の部位50Bとが隣接している。図3Cは、図1Cに示される第2実施形態のナノ粒子プローブP1,P2を用いた場合の検出系であり、第1の部位50Aと第2の部位50Bとは隣接しておらず、間にいくつかの塩基配列を備えてなる態様である。 FIG. 3B and FIG. 3C show an example of a detection system when a measurement target material containing the target substance 50 is mixed in the detection liquid 1. FIG. 3B is a detection system using the nanoparticle probes P1 and P2 of the first embodiment shown in FIG. 1B, and the nanoparticle probe P1 and the second nanoparticle probe P2 of the detection target substance 50 are specifically bound. The first part 50A and the second part 50B are adjacent to each other. FIG. 3C is a detection system when the nanoparticle probes P1 and P2 of the second embodiment shown in FIG. 1C are used, and the first part 50A and the second part 50B are not adjacent to each other. Is a mode comprising several base sequences.
 図3B,図3Cに示されるように、本発明の検出液1によれば、被検出物質の第1の部位50A及び第2の部位50Bの、これらの部位同士が近接する側の末端50At,50Btと、第1のプローブ及び第2のプローブの基端20Ab,20Bbとが特異結合するため、第1の金ナノ粒子10Aと第2の金ナノ粒子10Bとが最も近接する形で相補鎖が形成される。 As shown in FIGS. 3B and 3C, according to the detection liquid 1 of the present invention, the first portion 50A and the second portion 50B of the substance to be detected, the end 50At, on the side where these portions are close to each other, 50Bt and the base ends 20Ab and 20Bb of the first probe and the second probe are specifically bound, so that the first gold nanoparticle 10A and the second gold nanoparticle 10B are closest to each other in the complementary strand. It is formed.
 従って、相補鎖の形成により最も2量体に近い形で2つの金ナノ粒子が存在させることが可能となり、後工程(C)において良好な検出感度及び検出精度にて、相補鎖の形成を検出することができる。 Therefore, the formation of complementary strands enables the presence of two gold nanoparticles in the form closest to the dimer, and detection of complementary strand formation with good detection sensitivity and detection accuracy in the subsequent step (C). can do.
 図3Bに示される系では、後工程(C)において、相補鎖の形成時には2量体として略同じ大きさの粒子として検出することが可能となり、また図3Cに示される系においても、最も2量体に近い形での検出を可能にする。従来の検出液では、塩基数の長い場合に、相補鎖の形成後の第1の金ナノ粒子10Aと第2の金ナノ粒子10Bとの距離が大きすぎて検出感度及び検出精度が大きく低下したが、本発明によれば、第1の金ナノ粒子10Aと第2の金ナノ粒子10Bが個々の粒子として検出されることを抑制し、その低下を最小限にすることができる。 In the system shown in FIG. 3B, in the subsequent step (C), it is possible to detect particles of approximately the same size as a dimer when forming complementary strands. In the system shown in FIG. Enables detection close to a mass. In the conventional detection solution, when the number of bases is long, the distance between the first gold nanoparticle 10A and the second gold nanoparticle 10B after the formation of the complementary strand is too large, and the detection sensitivity and detection accuracy are greatly reduced. However, according to the present invention, it is possible to suppress detection of the first gold nanoparticles 10A and the second gold nanoparticles 10B as individual particles, and to minimize the decrease thereof.
 また、上記検出液1としては、第1のナノ粒子プローブP1及び第2のナノ粒子プローブP2が、表面に、疎水性部31と親水性部32とを有する両親媒性の表面修飾30が表面に固定されてなり、この両親媒性の表面修飾30の貴金属ナノ粒子10A,10Bに固定されている側が、疎水性部31となっている態様について説明した。かかる態様においては、貴金属ナノ粒子表面付近が疎水性であるため、プローブが貴金属ナノ粒子表面から離れて、貴金属ナノ粒子表面付近においてプローブが絡まることにより生じる非特異的な凝集を抑制することができる。従って、特異結合反応効率が高く、より検出精度の良好なバイオセンシングを実施することができる。 Further, as the detection liquid 1, the first nanoparticle probe P1 and the second nanoparticle probe P2 have an amphiphilic surface modification 30 having a hydrophobic portion 31 and a hydrophilic portion 32 on the surface. The aspect in which the side fixed to the noble metal nanoparticles 10A and 10B of the amphiphilic surface modification 30 is the hydrophobic portion 31 has been described. In this aspect, since the vicinity of the surface of the noble metal nanoparticle is hydrophobic, it is possible to suppress nonspecific aggregation caused by the probe being separated from the surface of the noble metal nanoparticle and entangled with the probe near the surface of the noble metal nanoparticle. . Therefore, biosensing with high specific binding reaction efficiency and better detection accuracy can be performed.
 更に、上記では、表面修飾30の貴金属ナノ粒子に固定されていない側の末端30eの官能基の帯電状態が、緩衝性水溶液40中において、第1及び第2のプローブ20A,20Bの末端の帯電状態と同じである態様とした。かかる態様では、表面修飾30の末端基30eと第1及び第2のプローブ20A,20Bとが反発しあうことから、より効果的な、非特異的な凝集抑制効果及び特異結合の反応効率向上効果を得ることができる。 Furthermore, in the above description, the charged state of the functional group at the end 30e on the side not fixed to the noble metal nanoparticles of the surface modification 30 is the charge of the ends of the first and second probes 20A and 20B in the buffered aqueous solution 40. It was set as the aspect which is the same as a state. In this embodiment, since the end group 30e of the surface modification 30 and the first and second probes 20A and 20B are repelled, more effective non-specific aggregation suppression effect and specific binding reaction efficiency improvement effect Can be obtained.
  <工程(C)>
工程(C)は、工程(B)において混合された混合溶液を用いて、金ナノ粒子標識を検出することにより相補鎖の形成(特異結合)Hを検出し、被測定試料中の被検出物質50の有無を検出する工程である。
<Process (C)>
In the step (C), by using the mixed solution mixed in the step (B), a gold nanoparticle label is detected to detect complementary strand formation (specific binding) H, and a substance to be detected in a sample to be measured This is a step of detecting the presence or absence of 50.
 工程(C)における検出方法は特に制限されず、ゲル電気泳動、散乱光の偏光異方指数により検出する方法、貴金属ナノ粒子の局在プラズモン共鳴波長シフトにより検出する方法、又は光散乱相関分光法により実施することが好ましい。 The detection method in step (C) is not particularly limited, and is a method of detecting by gel electrophoresis, polarization anisotropic index of scattered light, a method of detecting by local plasmon resonance wavelength shift of noble metal nanoparticles, or light scattering correlation spectroscopy. It is preferable to implement by.
 図4Aは、被検出物質50の有無の検出を、ゲル電気泳動により実施する態様について、ゲル電気泳動装置100の概略構成と、バンドDの検出例を示す上面模式図を示したものである。 FIG. 4A shows a schematic configuration of the gel electrophoresis apparatus 100 and a schematic top view showing an example of detection of band D in a mode in which the presence / absence of the target substance 50 is detected by gel electrophoresis.
 ゲル電気泳動装置100は、容器内にゲルマトリックス102が設置されてなり、検出する試料を分注するウェル101と電圧印加手段とを備えている。 The gel electrophoresis apparatus 100 includes a gel matrix 102 installed in a container, and includes a well 101 for dispensing a sample to be detected and a voltage applying unit.
 本実施形態では、工程(B)にて調製した混合溶液をウェル101に分注し、ウェル101側がマイナスとなるように電圧を印加して電気泳動を実施する。電圧印加の際の方向は被検出物質の帯電状態によって決定する。 In this embodiment, the mixed solution prepared in the step (B) is dispensed into the well 101, and electrophoresis is performed by applying a voltage so that the well 101 side is negative. The direction of voltage application is determined by the charged state of the substance to be detected.
 電気泳動では、ゲルマトリックス中を核酸断片又は核酸相補鎖が移動する際、その分子量よって移動度が変化するため、重いもの、すなわち相補鎖を形成しているものほど移動量が少なく手前側(ウェル側)となり、一本鎖はより遠くまで移動するため、一定時間電圧を印加した後に金ナノ粒子10にプラズモンを誘起可能な波長の光を含む光を照射することにより、赤色に呈色したバンドDとなって特異結合(ハイブリダイゼーション)の有無、すなわち、被検出物質の有無を検出することができる。 In electrophoresis, when a nucleic acid fragment or a nucleic acid complementary strand moves in a gel matrix, the mobility changes depending on the molecular weight. Therefore, the heavier one, that is, the one that forms a complementary strand, has a smaller amount of movement and the front side (well Since the single strand moves farther, a band colored in red by irradiating the gold nanoparticles 10 with light having a wavelength capable of inducing plasmons after applying a voltage for a certain period of time. It becomes D, and the presence or absence of specific binding (hybridization), that is, the presence or absence of the substance to be detected can be detected.
 バンドDにおける各バンドの同定は、バンドを切り出してTEM観察することにより実施することができる。より移動度の大きかった最下流のバンドでは相補鎖が形成されていない1個の金ナノ粒子10が観察され、上流側に行くにつれ、金ナノ粒子10が2個、3個結合された、すなわち相補鎖の形成が確認される。 Identification of each band in band D can be performed by cutting out the band and observing it with a TEM. One gold nanoparticle 10 in which no complementary strand is formed is observed in the most downstream band having higher mobility, and two or three gold nanoparticles 10 are combined as they go upstream, that is, Complementary strand formation is confirmed.
 ゲル電気泳動による検出は、比較的高濃度の検体が必要となるため、微量な検体の検出には、より高感度な検出方法により検出する必要がある。本発明者らは、図4Bに概略構成が示される光学異方性検出装置200を用い、略等方性の貴金属ナノ粒子がハイブリダイズされて二量体となることにより出現する異方性を検出することによってハイブリダイゼーションの有無を検出する方法により、高感度な検出が可能となることを見出した。 Since detection by gel electrophoresis requires a sample with a relatively high concentration, detection of a very small amount of sample requires detection by a more sensitive detection method. The present inventors have used the optical anisotropy detection device 200 whose schematic configuration is shown in FIG. 4B, and anisotropy that appears when substantially isotropic noble metal nanoparticles are hybridized to form a dimer. It has been found that highly sensitive detection is possible by detecting the presence or absence of hybridization.
 光学異方性検出装置200は、試料(混合溶液)を設置する透明の試料台210と、レーザ230と、ビームスプリッター221と対物レンズ222とからなる照射受光光学系220と、λ/2板240と、P偏光とS偏光に分離する偏光ビームスプリッタ250と、各偏光をそれぞれ検出するフォトダイオード261,262と、検出信号を表示するオシロスコープ270とから構成されている。 The optical anisotropy detection apparatus 200 includes a transparent sample stage 210 on which a sample (mixed solution) is placed, a laser 230, an irradiation light receiving optical system 220 including a beam splitter 221 and an objective lens 222, and a λ / 2 plate 240. , A polarization beam splitter 250 that separates into P-polarized light and S-polarized light, photodiodes 261 and 262 that detect each polarized light, and an oscilloscope 270 that displays a detection signal.
 光学異方性検出装置200による検出原理を、図5を参照して説明する。図5に示されるように、検体の含まれる試料内に直線偏光E0が入射されると、等方性の粒子に照射された直線偏光E0により生じる散乱光は直線偏光E0と略同様の偏光面を有している。一方、異方性を有する(Plong≠Pshort)二量体等の多量体に照射された直線偏光E0により生じる散乱光は、長軸(Plong方向)方向と短軸方向(Pshort方向)とで誘起される双極子モーメントが異なることに起因して偏光回転を生じる。この現象を利用し、偏光面の回転の有無を検出することにより、ハイブリダイゼーションの有無を検出することができる。 The detection principle by the optical anisotropy detection apparatus 200 will be described with reference to FIG. As shown in FIG. 5, when the linearly polarized light E0 is incident on the sample containing the specimen, the scattered light generated by the linearly polarized light E0 irradiated to the isotropic particles has a polarization plane substantially similar to the linearly polarized light E0. have. On the other hand, scattered light generated by linearly polarized light E0 irradiated to a multimer such as a dimer having anisotropy (Plong ≠ Pshort) is induced in a major axis (Plong direction) direction and a minor axis direction (Pshort direction). Polarization rotation occurs due to different dipole moments. Utilizing this phenomenon, the presence or absence of hybridization can be detected by detecting the presence or absence of rotation of the polarization plane.
 具体的には、倒立顕微鏡(例えば、Nikon社製)等を用いて図4Bに示される検出装置を構成して測定を行う。まず、半導体レーザ230を対物レンズ222にて試料台210上の試料S内に集光して微小スポットを形成し、微小スポットをブラウン運動により回転しながら単量体や二量体粒子が通過することにより生じる散乱光を対物レンズ222にて集光し、集光された光を偏光ビームスプリッタ250で直交する偏光成分に分離する。分離された散乱光をそれぞれフォトダイオード261,262にて受光してオシロスコープ270にその強度の時間トレースを表示させ、それを下記式(1)で表される偏光異方指数AIの時間トレースと照合することにより、試料内の貴金属ナノ粒子の光学異方性を定量化してハイブリダイゼーションの有無を検出する。 Specifically, the detection apparatus shown in FIG. 4B is configured and measured using an inverted microscope (for example, manufactured by Nikon). First, the semiconductor laser 230 is condensed into the sample S on the sample stage 210 by the objective lens 222 to form a micro spot, and the monomer and dimer particles pass through the micro spot while rotating by the Brownian motion. The scattered light generated by this is condensed by the objective lens 222, and the collected light is separated into orthogonal polarization components by the polarization beam splitter 250. The separated scattered light is received by the photodiodes 261 and 262, respectively, and the time trace of the intensity is displayed on the oscilloscope 270, which is collated with the time trace of the polarization anisotropic index AI expressed by the following formula (1). Thus, the presence or absence of hybridization is detected by quantifying the optical anisotropy of the noble metal nanoparticles in the sample.
 微小スポットを通過する際、単量体や二量体の粒子は充分な回数回転するので、光の偏光方向に対してあらゆる配置をとることができる。従って、偏光異方指数AIの最大値に着目し、該AI値を与える時間における各偏光強度及びその位相のずれから、二量体の有無、すなわちハイブリダイゼーションを検出する。 When passing through the microspot, the monomer and dimer particles rotate a sufficient number of times, so that any arrangement can be taken with respect to the polarization direction of the light. Therefore, paying attention to the maximum value of the polarization anisotropy index AI, the presence or absence of a dimer, that is, hybridization is detected from each polarization intensity and its phase shift at the time when the AI value is given.
 図6に、二量体の存在している場合の上記方法による検出結果の一例を示す。図6上図は、オシロスコープにて検出された各偏光強度の時間トレース、下図はAI値の時間変化を示しており、両図の時間軸は一致している。 FIG. 6 shows an example of a detection result obtained by the above method when a dimer is present. The upper diagram in FIG. 6 shows the time trace of each polarization intensity detected by the oscilloscope, the lower diagram shows the time change of the AI value, and the time axes of both diagrams match.
 図6下図において、AIの最大値を破線で囲んである。そのピークの時間における上図のスペクトルでは、x方向の強度Ixが凸部、Iyが凹部となっている(x方向の偏向強度が大きいとy方向の偏向強度が小さくなっている)ことが示されている。これは、二量体が存在していると、その回転により偏光方向も追随して回転することから、位相が逆転することによるものである。
AI=(Ix-Iy)/(Ix+Iy)   ・・・ (1)
(Ixはx方向の散乱光強度,Iyはx方向に直交する散乱光強度,x方向は入射光の偏光方向である)
In the lower diagram of FIG. 6, the maximum value of AI is surrounded by a broken line. The spectrum in the upper graph at the peak time shows that the intensity Ix in the x direction is a convex portion and the concave portion is Iy (the deflection intensity in the y direction is reduced when the deflection intensity in the x direction is large). Has been. This is due to the fact that when the dimer is present, the polarization direction also follows and rotates due to the rotation, so that the phase is reversed.
AI = (Ix−Iy) / (Ix + Iy) (1)
(Ix is the scattered light intensity in the x direction, Iy is the scattered light intensity orthogonal to the x direction, and the x direction is the polarization direction of the incident light)
 実際の単量体と二量体に上記方法による各偏光強度の測定を実施し、偏光異方指数AIを計算した結果を図7に示す。 FIG. 7 shows the result of calculating the polarization anisotropy index AI after measuring the polarization intensity of the actual monomer and dimer by the above method.
 図7に示されるように、異方指数AI=1.3を境に、単量体と二量体とを明確に区別することができる。 As shown in FIG. 7, the monomer and the dimer can be clearly distinguished on the boundary of the anisotropic index AI = 1.3.
 微量な検体の検出は、上記の方法以外に、蛍光相関分光法における蛍光の代わりに、貴金属ナノ粒子のプラズモン共鳴による強い散乱光を用いた光散乱相関分光法により、貴金属ナノ粒子の試料液中での回転運動の時定数から検出することも可能である。 In addition to the above-mentioned method, a trace amount of analyte can be detected in a sample solution of noble metal nanoparticles by light scattering correlation spectroscopy using strong scattered light due to plasmon resonance of noble metal nanoparticles instead of fluorescence in fluorescence correlation spectroscopy. It is also possible to detect from the time constant of the rotational motion at.
 光散乱相関分光法により得られた単量体及び二量体の自己相関関数を図8(左側は単量体(単体)、右側は二量体)に示す。二量体の回転拡散速度は単量体の約4倍程度であることが理論的に予測されており、図8に示される自己相関関数の減衰時間の差はその差を反映したものと考えられる。 The autocorrelation functions of the monomer and dimer obtained by light scattering correlation spectroscopy are shown in FIG. 8 (monomer (single) on the left side and dimer on the right side). The rotational diffusion rate of the dimer is theoretically predicted to be about four times that of the monomer, and the difference in the decay time of the autocorrelation function shown in FIG. 8 is considered to reflect that difference. It is done.
 実際の単量体と二量体に光散乱相関分光法による各偏光強度の測定を実施した結果を図9に示す。図9に示されるように、異方指数を用いた方法に比して単量体と二量体との境界は不明確ではあるが、単量体と二量体とを区別することができる。 FIG. 9 shows the results of measuring the polarization intensity of the actual monomer and dimer by light scattering correlation spectroscopy. As shown in FIG. 9, the boundary between the monomer and the dimer is unclear compared to the method using the anisotropic index, but the monomer and the dimer can be distinguished. .
 更に、検出液1及び本発明のバイオセンシング方法は、工程(C)において、被検出物質50の有無を、貴金属ナノ粒子の局在プラズモン共鳴波長シフトにより検出する態様にも好適である。 Furthermore, the detection liquid 1 and the biosensing method of the present invention are also suitable for an embodiment in which the presence or absence of the substance to be detected 50 is detected by the local plasmon resonance wavelength shift of the noble metal nanoparticles in the step (C).
 本発明のバイオセンシング方法は、上記本発明の検出液を用いてセンシングを行うものであるので、本発明の検出液と同様の効果を奏する。 Since the biosensing method of the present invention performs sensing using the detection liquid of the present invention, the same effect as the detection liquid of the present invention is exhibited.
 (設計変更)
 上記実施形態では、より検出感度及び検出精度が良好となる態様である、第1のナノ粒子プローブ及び第2のナノ粒子プローブが、表面に、疎水性部と親水性部とを有する両親媒性の表面修飾が表面に固定されてなる態様について説明したが、かかる表面修飾を備えていない態様であっても、被検出物質の長さ(塩基数)によって、金ナノ粒子の間隔の違いを最小限にすることができ、検出感度及び精度の良好なバイオセンシングを実施することができる。
(Design changes)
In the said embodiment, the 1st nanoparticle probe and the 2nd nanoparticle probe which are the aspects from which detection sensitivity and detection accuracy become more favorable are the amphipathic which has a hydrophobic part and a hydrophilic part on the surface. Although the embodiment in which the surface modification is fixed on the surface has been described, even in the embodiment without such a surface modification, the difference in the distance between the gold nanoparticles is minimized depending on the length (number of bases) of the substance to be detected. Biosensing with good detection sensitivity and accuracy can be implemented.
 更に、上記実施形態では、緩衝部を備えた構成について説明したが、緩衝部を備えていない態様であっても、被検出物質の長さ(塩基数)によって、金ナノ粒子の間隔の違いを最小限にすることができ、検出感度及び精度の良好なバイオセンシングを実施することができる。 Furthermore, in the above-described embodiment, the configuration including the buffer portion has been described. However, even in an embodiment in which the buffer portion is not provided, the difference in the interval between the gold nanoparticles is determined depending on the length (base number) of the substance to be detected. Biosensing with good detection sensitivity and accuracy can be implemented.
 また、上記実施形態では、被検出物質が核酸断片であり、特異結合が核酸のハイブリダイゼーションである場合を例に説明したが、本発明はその構成に限定されるものではなく、既に述べたような、抗原抗体結合、アビジンービオチン結合等、様々な特異結合の有無のセンシングに適用することができる。 In the above embodiment, the case where the substance to be detected is a nucleic acid fragment and the specific binding is hybridization of a nucleic acid has been described as an example. However, the present invention is not limited to the configuration, and has already been described. It can be applied to sensing the presence or absence of various specific bonds such as antigen-antibody binding and avidin-biotin binding.
被検出物質の末端基が酸性である場合について説明したが、塩基性である場合は、表面修飾30の末端基30eとしては、例えば、アミノ基、第4級アンモニウム基、イミダゾール基、グアニジウム基等が挙げられる。 Although the case where the terminal group of the detected substance is acidic has been described, when the terminal group is basic, examples of the terminal group 30e of the surface modification 30 include an amino group, a quaternary ammonium group, an imidazole group, and a guanidinium group. Is mentioned.

Claims (18)

  1.  貴金属ナノ粒子を標識として、被測定試料中に含まれる、生体物質からなる被検出物質を検出するバイオセンシングに用いる検出液であって、
     前記被検出物質の第1の部位と特異結合する生体物質を含む第1のプローブが第1の前記貴金属ナノ粒子の表面に固定されてなる第1のナノ粒子プローブと、
     前記被検出物質の第2の部位と特異結合する生体物質を含む第2のプローブが第2の前記貴金属ナノ粒子の表面に固定されてなる第2のナノ粒子プローブとが緩衝性水溶液に分散されてなり、
     前記第1の部位及び前記第2の部位の、該部位同士が近接する側の末端と、
    前記第1のプローブ及び前記第2のプローブの基端とが特異結合するように、
    前記第1のプローブと前記第2のプローブがそれぞれ、前記第1の貴金属ナノ粒子と第2の貴金属ナノ粒子に固定されてなる検出液。
    A detection liquid used for biosensing for detecting a detection target substance made of a biological substance contained in a sample to be measured, using noble metal nanoparticles as a label,
    A first nanoparticle probe in which a first probe containing a biological substance that specifically binds to a first site of the substance to be detected is immobilized on the surface of the first noble metal nanoparticle;
    A second probe comprising a second probe containing a biological substance that specifically binds to the second portion of the substance to be detected is immobilized on the surface of the second noble metal nanoparticle and dispersed in a buffered aqueous solution. And
    The ends of the first part and the second part on the side where the parts are close to each other;
    So that the base ends of the first probe and the second probe are specifically bound,
    A detection liquid in which the first probe and the second probe are fixed to the first noble metal nanoparticles and the second noble metal nanoparticles, respectively.
  2.  前記第1のナノ粒子プローブ及び前記第2のナノ粒子プローブは、前記表面に、疎水性部と親水性部とを有する両親媒性の表面修飾が固定されてなり、前記両親媒性の表面修飾の前記粒子に固定されている側が、前記疎水性部である請求項1記載の検出液。 In the first nanoparticle probe and the second nanoparticle probe, an amphiphilic surface modification having a hydrophobic part and a hydrophilic part is fixed to the surface, and the amphiphilic surface modification is performed. The detection liquid according to claim 1, wherein the side fixed to the particles is the hydrophobic part.
  3.  前記表面修飾の前記第1の貴金属ナノ粒子及び前記第2の貴金属ナノ粒子に固定されていない側の末端の官能基の帯電状態が、前記生体物質の帯電状態と同じである請求項2記載の検出液。 The charged state of the functional group on the terminal that is not fixed to the first noble metal nanoparticle and the second noble metal nanoparticle of the surface modification is the same as the charged state of the biological material. Detection liquid.
  4.  前記第1のプローブ及び前記第2のプローブは、前記第1の貴金属ナノ粒子と第2の貴金属ナノ粒子に、前記表面修飾により前記特異結合が阻害されることを抑止する緩衝部を介して固定されてなることを特徴とする請求項1~3いずれか1項記載の検出液。 The first probe and the second probe are fixed to the first noble metal nanoparticle and the second noble metal nanoparticle through a buffer unit that inhibits the specific binding from being inhibited by the surface modification. The detection liquid according to any one of claims 1 to 3, wherein the detection liquid is formed.
  5. 前記親水性部がポリエチレングリコール鎖であることを特徴とする請求項2~4いずれか1項記載の検出液。 The detection liquid according to any one of claims 2 to 4, wherein the hydrophilic part is a polyethylene glycol chain.
  6. 前記親水性部が糖鎖であることを特徴とする請求項2~4いずれか1項記載の検出液。 The detection solution according to any one of claims 2 to 4, wherein the hydrophilic part is a sugar chain.
  7. 前記親水性部が前記第1及び第2のプローブに対して相補鎖を生じさせない塩基配列であることを特徴とする請求項2~4いずれか1項記載の検出液。 The detection solution according to any one of claims 2 to 4, wherein the hydrophilic portion has a base sequence that does not generate a complementary strand with respect to the first and second probes.
  8. 前記両親媒性の表面修飾が、水溶性を有する自己組織化単分子膜であることを特徴とする請求項2~7いずれか1項記載の検出液。 The detection solution according to any one of claims 2 to 7, wherein the amphiphilic surface modification is a self-assembled monolayer having water solubility.
  9.  前記緩衝部が、親水性部を有することを特徴とする請求項4~8いずれか1項記載の検出液。 The detection solution according to any one of claims 4 to 8, wherein the buffer part has a hydrophilic part.
  10.  前記緩衝部の前記親水性部がポリエチレングリコール鎖であることを特徴とする請求項9に記載の検出液。 The detection liquid according to claim 9, wherein the hydrophilic part of the buffer part is a polyethylene glycol chain.
  11.  前記緩衝部の前記親水性部が糖鎖であることを特徴とする請求項9に記載の検出液。 The detection solution according to claim 9, wherein the hydrophilic part of the buffer part is a sugar chain.
  12.  前記緩衝部の前記親水性部が前記第1及び第2のプローブに対して相補鎖を生じさせない塩基配列であることを特徴とする請求項9に記載の検出液。 10. The detection solution according to claim 9, wherein the hydrophilic part of the buffer part has a base sequence that does not generate a complementary strand with respect to the first and second probes.
  13.  前記特異結合が核酸のハイブリダイゼーションであることを特徴とする請求項1~12いずれか1項記載の検出液。 The detection solution according to any one of claims 1 to 12, wherein the specific binding is hybridization of a nucleic acid.
  14.  貴金属ナノ粒子を標識として、被測定試料中に含まれる、生体物質からなる被検出物質を検出するバイオセンシングにおいて、
     前記請求項1~13いずれか1項記載の検出液を調製する工程(A)と、
     前記被検出物質と、前記第1のプローブ及び前記第2のプローブとが前記特異結合を形成しうる条件で、前記第1の部位と前記第2の部位を有する前記被検出物質を含む被測定試料と前記検出液とを混合する工程(B)と、
     該混合により得られた溶液を用いて、前記標識を検出することにより前記被測定試料中の前記特異結合した前記被検出物質の有無を検出する工程(C)とを有することを特徴とするバイオセンシング方法。
    In biosensing for detecting a detection target substance made of a biological substance contained in a sample to be measured, using noble metal nanoparticles as a label,
    The step (A) of preparing the detection solution according to any one of claims 1 to 13;
    A measurement comprising the substance to be detected having the first part and the second part on the condition that the substance to be detected, the first probe, and the second probe can form the specific bond. A step (B) of mixing the sample and the detection liquid;
    A step (C) of detecting the presence or absence of the specifically bound substance to be detected in the sample to be measured by detecting the label using the solution obtained by the mixing. Sensing method.
  15.  前記工程(C)において、前記被検出物質の有無の検出を、ゲル電気泳動により実施することを特徴とする請求項14に記載のバイオセンシング方法。 The biosensing method according to claim 14, wherein in the step (C), the presence or absence of the detection target substance is detected by gel electrophoresis.
  16. 前記工程(C)において、前記被検出物質の有無を、散乱光の偏光異方指数により検出することを特徴とする請求項14に記載のバイオセンシング方法。 The biosensing method according to claim 14, wherein in the step (C), the presence or absence of the substance to be detected is detected by a polarization anisotropic index of scattered light.
  17. 前記工程(C)において、前記被検出物質の有無を、光散乱相関分光法 により検出することを特徴とする請求項14に記載のバイオセンシング方法。 The biosensing method according to claim 14, wherein in the step (C), the presence or absence of the substance to be detected is detected by a light scattering correlation spectroscopy method.
  18. 前記工程(C)において、前記被検出物質の有無を、貴金属ナノ粒子の局在プラズモン共鳴波長シフトにより検出することを特徴とする請求項14に記載のバイオセンシング方法。 The biosensing method according to claim 14, wherein in the step (C), the presence or absence of the substance to be detected is detected by a local plasmon resonance wavelength shift of the noble metal nanoparticles.
PCT/JP2015/002062 2014-04-16 2015-04-14 Detection solution, method for preparing same, and biosensing method WO2015159535A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016513640A JPWO2015159535A1 (en) 2014-04-16 2015-04-14 Detection solution and its preparation method, biosensing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-084249 2014-04-16
JP2014084249 2014-04-16

Publications (1)

Publication Number Publication Date
WO2015159535A1 true WO2015159535A1 (en) 2015-10-22

Family

ID=54323759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002062 WO2015159535A1 (en) 2014-04-16 2015-04-14 Detection solution, method for preparing same, and biosensing method

Country Status (2)

Country Link
JP (1) JPWO2015159535A1 (en)
WO (1) WO2015159535A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000352811A (en) * 1999-06-11 2000-12-19 Nec Corp Laser defect correcting device and method
JP2004069665A (en) * 2002-08-06 2004-03-04 Shinji Katsura Method for fixing one end of dna molecule
JP2005525084A (en) * 2001-10-09 2005-08-25 ナノスフェアー インコーポレイテッド Nanoparticles with oligonucleotides attached and methods of use
JP2007516843A (en) * 2003-10-20 2007-06-28 ザ・レジェンツ・オブ・ザ・ユニバーシティ・オブ・カリフォルニア Nanoscale conversion system for detecting molecular interactions
US20100048424A1 (en) * 2008-08-25 2010-02-25 Sunghoon Kwon Nanoparticle array and method for fabricating the same
JP2010183910A (en) * 2010-05-17 2010-08-26 Sekisui Medical Co Ltd Magnetic particle for fixing nucleic acid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000352811A (en) * 1999-06-11 2000-12-19 Nec Corp Laser defect correcting device and method
JP2005525084A (en) * 2001-10-09 2005-08-25 ナノスフェアー インコーポレイテッド Nanoparticles with oligonucleotides attached and methods of use
JP2004069665A (en) * 2002-08-06 2004-03-04 Shinji Katsura Method for fixing one end of dna molecule
JP2007516843A (en) * 2003-10-20 2007-06-28 ザ・レジェンツ・オブ・ザ・ユニバーシティ・オブ・カリフォルニア Nanoscale conversion system for detecting molecular interactions
US20100048424A1 (en) * 2008-08-25 2010-02-25 Sunghoon Kwon Nanoparticle array and method for fabricating the same
JP2010183910A (en) * 2010-05-17 2010-08-26 Sekisui Medical Co Ltd Magnetic particle for fixing nucleic acid

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHAK CHUN-PONG ET AL.: "DNA hybridization of pathogenicity island of vancomycin-resistant Enterococcus faecalis with discretely functionalized gold nanoparticles in organic solvent mixtures", RSC ADVANCES, vol. 1, 2011, pages 1342 - 1348 *
KANG TAEGYEONG ET AL.: "Optimization of energy transfer between quantum dots and gold nanoparticles in head-to-head configuration for detection of fusion gene", SENSORS AND ACTUATORS B, vol. 188, 2013, pages 729 - 734, XP028735357, ISSN: 0925-4005 *

Also Published As

Publication number Publication date
JPWO2015159535A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
JP6215902B2 (en) Assays using surface enhanced Raman spectroscopy (SERS) active particles
Caro et al. Silver nanoparticles: sensing and imaging applications
US20110165586A1 (en) Detection Method of Bio-Chemical Material Using Surface-Enhanced Raman Scattering
Marotta et al. Limitations of surface enhanced Raman scattering in sensing DNA hybridization demonstrated by label-free DNA oligos as molecular rulers of distance-dependent enhancement
US10351904B2 (en) Composition for detecting nucleic acid and method for detecting nucleic acid using same
Zhang et al. SERS nanotags and their applications in biosensing and bioimaging
Yang et al. Surface-enhanced Raman scattering probing the translocation of DNA and amino acid through plasmonic nanopores
CN101467045A (en) Increased specificity of analyte detection by measurement of bound and unbound labels
JP4444502B2 (en) Nucleic acid sequence identification
Lee et al. Detection of glyphosate by quantitative analysis of fluorescence and single DNA using DNA-labeled fluorescent magnetic core–shell nanoparticles
US20120088232A1 (en) Aptamer-Based Device For Detection Of Cancer Markers And Methods Of Use
EP2913660A1 (en) Method for detecting target particles
WO2007125300A1 (en) Quantum dots which enable luminescence signals to be detected simultaneously with raman signals
Uddayasankar et al. Isolation of monovalent quantum dot–nucleic acid conjugates using magnetic beads
KR20140141880A (en) Interparticle spacing material including nucleic acid structures and use thereof
Liu et al. Using time-shared scanning optical tweezers assisted two-photon fluorescence imaging to establish a versatile CRISPR/Cas12a-mediated biosensor
WO2015159535A1 (en) Detection solution, method for preparing same, and biosensing method
JP5371302B2 (en) Single probe molecular device and single probe molecule fixed metal fine particle
US9551025B2 (en) Nucleic acid structure complex including nucleic acids, Raman-active molecules, and metal particles, method of preparing the same, and method of detecting target material by using the nucleic acid structure complex
JP4099540B2 (en) Biological sample analysis chip and analysis method
Kim et al. Highly sensitive detection of target biomolecules on cell surface using gold nanoparticle conjugated with aptamer probe
KR101957919B1 (en) Biosensors for Diagnosing Corneal Dystrophies and Uses Thereof
Bhowmik et al. Far-Field Spectroscopy and Surface-Enhanced Raman Spectroscopy (SERS)
Languirand et al. Nanoscale Optical Biosensors and Biochips for Cellular Diagnostics
정철환 Multifunctional Surface-enhanced Raman Scattering Nanoprobe and Encoding Materials for Ligand Screening

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15780678

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016513640

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15780678

Country of ref document: EP

Kind code of ref document: A1