WO2015159534A1 - Detection solution and biosensing method using same - Google Patents

Detection solution and biosensing method using same Download PDF

Info

Publication number
WO2015159534A1
WO2015159534A1 PCT/JP2015/002061 JP2015002061W WO2015159534A1 WO 2015159534 A1 WO2015159534 A1 WO 2015159534A1 JP 2015002061 W JP2015002061 W JP 2015002061W WO 2015159534 A1 WO2015159534 A1 WO 2015159534A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
substance
detected
noble metal
solution
Prior art date
Application number
PCT/JP2015/002061
Other languages
French (fr)
Japanese (ja)
Inventor
大塚 尚
敏治 斎木
恵子 江刺家
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2016513639A priority Critical patent/JPWO2015159534A1/en
Publication of WO2015159534A1 publication Critical patent/WO2015159534A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals

Definitions

  • the present invention relates to a detection solution used for biosensing using noble metal nanoparticles and a biosensing method using the detection solution.
  • Biosensing is performed by detecting a specific binding (specific binding) of a biological substance using a change in an optical or electrical signal.
  • Biosensing that detects a change in an optical signal includes a method of detecting a substance to be detected using a radioisotope, a fluorescent substance, a noble metal nanoparticle, or the like as a label.
  • Biosensing using precious metal nanoparticles as a label has been attempted in fields such as immunodiagnostics and gene analysis, as a large-scale measuring device is not required and simple sensing is possible.
  • Patent Document 1 and Non-Patent Document 1 in biosensing for detecting a nucleic acid fragment having a specific sequence, it has complementarity when the base sequences of single-stranded nucleic acids are complementary (specific).
  • a method of using noble metal nanoparticles as a label for a hybridization method in which a double-stranded nucleic acid is formed by hydrogen bonding between base pairs is described.
  • Patent Document 1 uses a noble metal particle to which an oligonucleotide having a sequence complementary to part of a nucleic acid sequence is attached as a probe, and detects a change in color resulting from the hybridization of the oligonucleotide to a nucleic acid. How to do is described.
  • Non-Patent Document 1 describes that the localized plasmon resonance wavelength of gold nanoparticles is shifted by a long wavelength due to the hybridization that occurs when the gold nanoparticles carrying brushes on their surfaces approach each other.
  • a genetic diagnosis method using the change in coloration of gold nanoparticles is described.
  • FIG. 1 of Non-Patent Document 1 two types of DNA probes that form complementary strands with a DNA target (usually complementary to different portions (approximately half each) of the DNA target) are supported on precious metal nanoparticles, respectively. A measurement method is also shown. In this case, the substance to be detected is a DNA target not supported on the noble metal nanoparticles.
  • Patent Document 1 and Non-Patent Document 1 for example, in detection using gel electrophoresis, detection of specific binding (hybridization) such as detection of a plurality of bands in a state before hybridization. There is a problem that the accuracy is low, and the specific binding reaction efficiency is also low.
  • the present invention has been made in view of the above circumstances, and has a high specific binding reaction efficiency in biosensing for detecting a detection target substance made of a biological substance contained in a measurement sample using noble metal nanoparticles as a label. It is an object of the present invention to provide a biosensing method with good detection accuracy and a detection liquid that enables the biosensing method.
  • the detection liquid of the present invention is a detection liquid used for biosensing for detecting a detection target substance composed of a biological substance, contained in a measurement target sample, using noble metal nanoparticles as a label.
  • Noble metal nanoparticles with a probe containing a hydrophilic biological substance that specifically binds to the substance to be detected and an amphiphilic self-assembled monolayer with a hydrophobic part and a hydrophilic part are buffered.
  • the side fixed to the particle is a hydrophobic part, and the functional group at the end of the hydrophilic part has either a positive or negative charge, and the probe is It is fixed to the surface of the noble metal nanoparticles by chemical bonds.
  • the buffered aqueous solution means an aqueous solution generally used for microbial culture, chemical substances, biological material storage, separation, etc., and is used for external factors (such as carbon dioxide in the atmosphere) or internal factors ( It means an aqueous solution in which the pH hardly varies depending on the metabolite of the microorganism itself.
  • a chemical bond is an intermolecular force (inter-ion interaction, hydrogen bond, van der Waals force, hydrophobic interaction, physical adsorption) that is a weak interaction between molecules. It means binding by strong interaction due to electron sharing. Specifically, it means a covalent bond, a coordination bond, an intermetallic bond, and a noble metal-sulfur bond.
  • the charge of the functional group at the end of the hydrophilic portion and the charge of the hydrophilic biological substance are the same type.
  • the hydrophilic part of the self-assembled monolayer is preferably a polyethylene glycol chain or a sugar chain.
  • the detection solution of the present invention is suitable when the biological substance is an antibody, and more preferably when it is a fragmented antibody.
  • the chemical bond with the noble metal nanoparticle may be a bond between the sulfur atom of the disulfide group or thiol group of the fragmented antibody and the noble metal atom on the surface of the noble metal nanoparticle. preferable.
  • the biosensing method of the present invention uses precious metal nanoparticles as a label, and in biosensing for detecting a detection substance made of a biological substance contained in a measurement sample, A detection liquid preparation step for preparing two or more kinds of detection liquids having different specific bindings and having the same kind of functional group charge, A reaction solution preparation step of preparing a reaction solution by mixing two or more kinds of detection solutions prepared in a buffered aqueous solution containing a sample to be measured; A reaction step for specifically binding the biological substance and the substance to be detected of all the probes in the reaction solution; It has a detection step of detecting the presence or absence of a specifically bound detection target substance in the sample to be measured by detecting the label using the reaction solution after completion of the reaction step.
  • the presence / absence of the substance to be detected is preferably detected by gel electrophoresis or an optical detection method described later.
  • the detection liquid of the present invention comprises an amphiphilic self-assembled monolayer (SAM) having a probe containing a hydrophilic biological substance that specifically binds to a target substance made of a biological substance, and a hydrophobic part and a hydrophilic part. ) And noble metal nanoparticles fixed on the surface are dispersed in a buffered aqueous solution.
  • SAM amphiphilic self-assembled monolayer
  • the side fixed to the noble metal nanoparticles is a hydrophobic part
  • the end group of the hydrophilic part is Has either a positive or negative charge
  • the probe is fixed to the surface of the noble metal nanoparticle by a chemical bond.
  • a SAM having either positive or negative charge at the end is provided on the surface of the noble metal nanoparticle, so that nonspecific aggregation due to factors other than specific binding to the detected substance is suppressed. Can do.
  • the probe is strongly fixed to the surface of the noble metal nanoparticle by a chemical bond, there is no fear that the detection limit is deteriorated due to the probe being detached from the surface of the noble metal nanoparticle with time or physical force. Therefore, according to the present invention, biosensing with high specific binding reaction efficiency and good detection accuracy can be performed.
  • the charged state of the terminal functional group (end group) on the side not fixed to the SAM particle is the charged state of the probe containing a hydrophilic biological substance in the buffered aqueous solution.
  • the end group of SAM and the hydrophilic biological substance repel each other, it is possible to obtain a more effective non-specific aggregation suppressing effect and a specific binding reaction efficiency improving effect, Highly accurate biosensing can be performed.
  • FIG. 1B is a schematic enlarged view showing an embodiment of the surface of the noble metal nanoparticle of FIG. 1B.
  • FIGS. I to IV are schematic diagrams showing an embodiment in which an antibody and SAM are bonded to the surface of a noble metal, and show how the binding state changes with time when the antibody is bonded by normal physical bonding.
  • Schematic cross-sectional schematic diagram showing a preferred embodiment of the detection liquid preparation step of the biosensing method of the present invention Schematic cross-sectional schematic diagram showing a preferred embodiment of the mixing step of the biosensing method of the present invention
  • Schematic cross-sectional schematic diagram showing a preferred embodiment of the reaction step and the binding step of the biosensing method of the present invention Schematic configuration schematic diagram of the device used for detection by optical polarimetry Figure showing detection example (correlation between particle shape and anisotropic index AI) using anisotropic index Monomer and dimer autocorrelation functions obtained by light scattering correlation spectroscopy.
  • detection example correlation between particle shape and anisotropic index AI
  • FIG. 1A is a schematic cross-sectional schematic diagram showing the configuration of the detection liquid of the present embodiment
  • the right figure is a schematic diagram showing the configuration of a sample to be measured (sample liquid)
  • FIG. 1B is a diagram of noble metal nanoparticles contained in the detection liquid.
  • FIG. 1C is an enlarged schematic schematic view showing an embodiment of the surface of the noble metal nanoparticle shown in FIG. 1B.
  • the scale of each part is appropriately changed for easy visual recognition.
  • the inventor mainly reduces the detection accuracy and the specific binding reaction efficiency described in the “Background” section. It has been found that the cause is that the noble metal nanoparticles aggregate nonspecifically even when no specific bond is formed with the substance to be detected. Therefore, the present inventor provides a surface modification having either a positive or negative charge at the terminal, so that the surface of the noble metal nanoparticle is positively or negatively charged. It was thought that the non-specific aggregation could be suppressed.
  • the surface modification of the noble metal nanoparticle surface with either positive or negative charge at the terminal is a self-assembled monolayer (SAM), which makes a monomolecular-size ultrathin film (monolayer) a noble metal. It can be easily formed on the nanoparticle surface.
  • SAM self-assembled monolayer
  • the detection liquid 1 is used for biosensing to detect a detection target substance R made of a biological substance contained in the sample 2 to be detected, using the noble metal nanoparticles 10 as a label.
  • the noble metal nanoparticle 10 in which the probe 20 containing the hydrophilic biological material and the amphiphilic SAM 30 are immobilized on the surface 10 s is dispersed in the buffered aqueous solution 40, and the SAM 30 is immobilized on the noble metal nanoparticle 10.
  • the hydrophobic portion 31 and the functional group at the end 30e of the hydrophilic portion 32 has one of positive and negative charges, and the probe 20 is attached to the surface 10s of the noble metal nanoparticle 10 It is fixed by chemical bond Bc. In the present embodiment, as shown in FIGS. 1B and 1C, the probe 20 also has a negative charge.
  • the noble metal nanoparticles 10 are not particularly limited, and it is preferable to select a noble metal having a good coloration property at the wavelength of light used.
  • gold can be preferably used because it exhibits a red color that is easily visible in natural light and can form a strong bond with a thiol group or a disulfide group.
  • the probe 20 containing a hydrophilic biological substance is not particularly limited as long as it is capable of specifically binding to the substance R to be detected and can be bound to the surface 10s of the noble metal nanoparticle 10 by the chemical bond Bc.
  • Specific binding of biological substances includes antigen-antibody binding, DNA and RNA, complementary binding (hybridization) of nucleic acids such as PNA (Peptide Nucleic Acid, peptide nucleic acid), biotin-avidin binding, antigen-aptamer binding, sugar chain -There is lectin binding and the like, and the detection solution 1 can be applied to any specific binding.
  • the constituent atom (sulfur atom) of the functional group at the base end 30 a is bonded to the noble metal nanoparticle 10 and the noble metal atom of the noble metal nanoparticle 10.
  • the side to which 10 is fixed is the hydrophobic portion 31, and the functional group at the end 30 e of the hydrophilic portion 32 has one of positive and negative charges.
  • the hydrophobic part 31 preferably has an alkyl group that is a functional group capable of binding to the noble metal nanoparticles 10 at the base end 30a.
  • the functional group that can easily form a strong bond with the noble metal atom of the noble metal nanoparticle 10 include a thiol group, a disulfide group, and a mercapto group. It is known that the functional groups of these sulfur compounds are spontaneously adsorbed on the surface of a noble metal such as gold, and alkanethiols and alkane disulfides can be SAMs that are ultrathin films of a single molecular size.
  • the method for fixing these functional groups to the surface 10s is not particularly limited, and existing techniques can be used.
  • the hydrophilic portion 32 improves the decrease in dispersibility in the buffered aqueous solution 40 when the surface 10 s of the noble metal nanoparticle 10 is covered with the hydrophobic portion 31.
  • the water solubility of the noble metal nanoparticles 10 is low, so in order to disperse well in the buffering aqueous solution, once through a highly compatible solvent such as alcohol. Need to be distributed.
  • biological substances such as antibodies and nucleic acids are damaged and denatured, and non-specific aggregation is likely to increase, making it difficult to perform good sensing.
  • An increase in non-specific aggregation also causes inactivation of the specific binding reaction, reducing the reaction efficiency of the reaction.
  • the alkyl chain of the hydrophobic part has 7 or more carbon atoms, the water solubility (dispersibility) becomes very low due to the high hydrophobicity.
  • the inventor has a hydrophilic portion 32 at the end opposite to the fixing side (base end 30a) of the gold nanoparticle 10 of the hydrophobic portion 31 and has either positive or negative charge at the end 30e.
  • SAM30 which maintains the effect of suppressing the non-specific aggregation of precious metal nanoparticles, detection with good dispersibility in buffered aqueous solution and almost no damage to biological materials I found it to be liquid.
  • the hydrophilic part 32 is not particularly limited as long as it can improve dispersibility (water solubility) in a buffered aqueous solution, and examples thereof include polyethylene glycol (PEG) chains, sugar chains, and hydrophilic polyesters.
  • PEG polyethylene glycol
  • the end group 30e of the hydrophilic portion 32 is not particularly limited, and examples of the acidic group (negative charge) include a hydroxyl group, a carboxyl group, a phosphoric acid group, and a sulfonic acid group.
  • the basic group (positive charge) examples thereof include an amino group, a quaternary ammonium group, an imidazole group, and a guanidinium group. In any case, a functional group having a high ionization tendency is preferable.
  • the charge of the end group 30e of the hydrophilic portion 32 is in the same charged state so as to repel the probe 20. It is preferably a functional group that can be obtained.
  • the sulfur atom of the disulfide group at the base end 30a is bonded to the noble metal atom of the noble metal nanoparticle 10, and the hydrophobic group 31 composed of an alkyl group (11 carbon atoms), the terminal group Monomolecular film (20- (11-mercaptoundecanyloxy) -3,6,9,12,15) in which the hydrophilic part 32 made of polyethylene glycol (carbon number 6) 30e is a carboxyl group is ester-bonded , 18-hexaoxaeicosanoic acid (English name: 20- (11-Mercaptoundecanyloxy) -3,6,9,12,15,18-hexaoxaeicosanoic acid)).
  • the length of a single molecule is about 2.5 nm to 3.0 nm, and the length of the hydrophobic portion 31 is about 1.2 nm.
  • the length of the hydrophobic portion 31 is about 1.2 nm.
  • FIG. 1C only one molecule is shown in FIG. 1C. Although shown as a carboxyl group in FIG. 1C, it exists as COO 2 ⁇ in the buffered aqueous solution 40.
  • the fixing temperature of the SAM 30 to the noble metal nanoparticle 10 and the reaction time required for the fixing may be appropriately set according to the material of the monomolecular film.
  • the concentration of SAM30 in the detection solution 1 is not particularly limited as long as sensitive detection is possible, but is preferably in the range of 10 nmol / l or more and 1000 nmol / l or less. It is preferable to optimize depending on the diameter and the type of biological material.
  • the present inventor initially made the noble metal nanoparticle surface 10s charged with the SAM 30 having either a positive or negative charge at the terminal, so that the noble metal nanoparticle surface 10s was charged. It was thought that nonspecific aggregation between particles could be suppressed and an effect of improving the reaction efficiency of specific binding could be obtained. However, it has been found that there is a specific binding in which sufficient effects cannot be obtained only by forming such SAM30.
  • the present inventors have examined the mechanism of such a phenomenon, and as a result, even when a substance that is physically adsorbed to the noble metal nanoparticles 10 is used as the probe 20, noble metal nano-particles are used. It has been found that by making the bond to the particle 10 a chemical bond, the non-specific aggregation of the particles can be suppressed without deteriorating the detection limit over time, and the effect of improving the specific binding reaction efficiency can be obtained. It was.
  • SAM is described in the non-patent literature “Kenfumi Tanaka et al., Surface Science Vol. 25, No. 10, pp. 650-655, 2004” and the like, as described in noble metal atoms (gold atoms) and sulfur atoms. It is composed of two steps, ie, the coupling that occurs at a very early stage followed by the dense arrangement (rearrangement) of hydrocarbon chains, and the latter rearrangement involves the van der Waals force and the entropy term related to the enthalpy term.
  • FIG. 3 is a schematic diagram showing stepwise a process for preparing the detection solution 1 by adding a SAM-forming solution to the noble metal nanoparticles 10 to which the antibody 20 is bound by an ordinary method based on the above inference. is there.
  • I is immediately after addition of the SAM forming solution
  • II is immediately after completion of preparation of the detection solution
  • III is at the start of SAM rearrangement
  • IV is after completion of SAM rearrangement.
  • the antibody 20 is firmly bonded to the gold nanoparticle surface 10 s by chemical bonding, thereby suppressing deterioration of the detection limit due to SAM rearrangement and preparing the detection solution. Not only immediately after that, biosensing with high specific binding reaction efficiency and good detection accuracy was made possible (see Examples below).
  • FIG. 1C shows that fragmented antibody F (ab ′) was used as probe 20 and 20- (11-mercaptoundecanyloxy) -3,6,9,12,15,18-hexaoxaeicosanoic acid was used as SAM30.
  • SAM30 The case is an enlarged schematic illustration of the surface 10s of the noble metal nanoparticle.
  • FIG. 2 is a diagram schematically showing the structure of the antibody and its fragmentation treatment.
  • the antibody has a Y-shaped four-chain structure as a basic structure, and consists of two heavy chains and two light chains.
  • the heavy chain and the light chain are connected by a disulfide bond to form a heterodimer, and the heterodimers are further connected by a hinge part including two disulfide bonds to form a Y-shaped heterotetramer.
  • the V-shaped part of the upper half of the Y-shape is called the Fab region (Fab fragment), and the straight part of the lower half is called the Fc region (Fc fragment), and has a paratope Bs at the end of the Fab region.
  • An appropriately fragmented antibody is preferable because it has a disulfide bond and / or a thiol group exposed and can be directly bonded to the surface of the noble metal nanoparticle 10s without using a SAM or the like.
  • a fragmented antibody is digested into two Fab fragments and an Fc fragment by treatment with the proteolytic enzyme papain, and two Fab fragments by treatment with the proteolytic enzyme pepsin. Fragments are broken down into F (ab ′) 2 fragments linked by disulfide bonds and fragmented Fc fragments.
  • the F (ab ′) 2 fragment is decomposed into F (ab ′) fragments, and at the same time, a thiol group is exposed at the terminal.
  • enzymes that produce antibody fragments include ficin, lysyl endopeptidase, V8 protease, bromelain, clostripain, metalloendopeptidase, and activated papain obtained by activating papain.
  • fragmentation by chemical treatment or genetic engineering techniques can also be employed.
  • Antibody fragmentation can be performed by a known method such as K.L. Brogan et al. Analytica Chimica Acta 496 (2003) 73-80.
  • the probe 20 when the probe 20 is an antibody, the probe 20 is a fragmented antibody F (ab ′), and the sulfur atom of the thiol group and the noble metal atom on the surface 10s of the noble metal nanoparticle are chemically bonded. It is bound by Bc.
  • the detection liquid 1 is an amphiphilic substance having the probe 20 including the hydrophilic biological material that specifically binds to the detection target substance R made of the biological material, the hydrophobic portion 31, and the hydrophilic portion 32.
  • a noble metal nanoparticle 10 having a self-assembled monolayer (SAM) 30 fixed on the surface 10s is dispersed in a buffered aqueous solution 40.
  • the amphiphilic SAM 30 is hydrophobic on the side fixed to the noble metal nanoparticle 10.
  • the end portion 30 e of the hydrophilic portion 32 has a positive or negative charge, and the probe 20 is fixed to the surface 10 s of the noble metal nanoparticle 10 by chemical bonding.
  • the SAM30 having either positive or negative charge at the terminal is provided on the surface 10s of the noble metal nanoparticle, so that nonspecific aggregation due to factors other than specific binding to the detection target R is suppressed. can do.
  • the probe 20 is strongly fixed to the noble metal nanoparticle surface 10s by chemical bonding, there is no fear that the detection limit will deteriorate due to the probe coming off the noble metal nanoparticle surface 10s with time or physical force. Therefore, according to the detection liquid 1, biosensing with high specific binding reaction efficiency and good detection accuracy can be performed.
  • Biosensing method The biosensing method of the present invention to be performed using the detection solution of the present invention will be described with reference to FIGS. 4A to 4C.
  • 4A to 4C show examples of configurations in which the amount of the substance R to be detected is detected by labeling with the noble metal nanoparticles 10 by the sandwich method.
  • the substance R to be detected is an antigen and the two types of antibodies 20 (A) and 20 (B) that specifically bind to the antigen are probes will be described as an example.
  • the detection liquid 1 is manufactured by performing the detection liquid preparation steps (A-1) to (A-3) and (B-1) to (B-3). Can do. Since (A-1) to (A-3) and (B-1) to (B-3) have the same process except for the types of probes, (A-1) to (A-3) Only will be described.
  • a predetermined amount of the buffering aqueous solution 40 is injected into a container such as a beaker, and a plurality of noble metal nanoparticles 10 are added therein (A-1).
  • A-1) may be carried out without heating.
  • the size of the noble metal nanoparticle 10 is not particularly limited as long as it is a size capable of inducing localized plasmon by light irradiation, and each particle size is preferably less than or equal to half of the wavelength of light, and is 10 nm or more and 100 nm. The following is more preferable.
  • the concentration of the noble metal nanoparticles 10 in the detection liquid 1 is not particularly limited as long as sensitive detection is possible, but is appropriately 0.1 pmol / l or more depending on the concentration (quantitative region) of the non-detection substance to be detected. It is preferable to adjust to the range of 10000 pmol / l or less.
  • the antibody 20 (A) is immobilized on the surface 10 s of the noble metal nanoparticle 10 by chemical bonding (A-2).
  • the functional group on the side bonded to the noble metal nanoparticle 10 is not particularly limited as long as it is a functional group capable of binding to the metal of the noble metal nanoparticle 10, and examples thereof include a disulfide group and a mercapto group other than the thiol group.
  • a fragmented antibody as the antibody 20 (A)
  • it can be easily bound by the thiol group and disulfide group possessed by the fragmented antibody.
  • the method for fixing these functional groups is not particularly limited, and existing techniques can be used.
  • an amphiphilic SAM 30 having a hydrophobic portion 31 and a hydrophilic portion 32 is formed on the surface 10 s of the noble metal nanoparticle 10 on which the antibody 20 (A) is fixed, and a proximal end 30 a on the hydrophobic portion 31 side is provided.
  • a detection liquid 1a is obtained which is immobilized on the surface 10s of the gold nanoparticle 10 and in which the label A is dispersed in the buffered aqueous solution 40 (A-3).
  • the detection liquid 1b in which the label B is dispersed in the buffered aqueous solution 40 is obtained.
  • reaction solution preparation process a sample 2 to be measured in which a substance to be detected (antigen) R is dispersed in a buffered aqueous solution S is prepared, and the prepared two (or more) detection liquids (1a, 1b) is mixed to prepare a reaction solution 3 (reaction solution preparation step).
  • reaction solution 3 is specifically bound to the biological material of all the probes 20 (A, B) in the reaction solution 3 and the antigen R which is the detection target.
  • the reaction conditions are appropriately set according to the type of antigen-antibody reaction.
  • the noble metal nanoparticle 10 becomes a dimer, and the presence or absence of the substance to be detected (antigen) R can be accurately detected in the subsequent detection step. Can do.
  • the detection step the presence or absence of specific binding is detected by detecting the presence or absence of a noble metal nanoparticle label that has become a dimer using the reaction solution 3 after the reaction in the reaction step.
  • the detection method in the detection step is not particularly limited, the right diagram in FIG. 4C shows a schematic configuration of the gel electrophoresis apparatus 100 with respect to an embodiment in which the presence / absence of the substance to be detected (antigen) R is detected by gel electrophoresis.
  • a schematic top view showing an example of detection of band D is shown.
  • the gel electrophoresis apparatus 100 includes a gel matrix 102 installed in a container, and includes a well 101 for dispensing a sample to be detected and a voltage applying unit.
  • reaction solution 3 after the reaction in the reaction step is dispensed into the well 101, and electrophoresis is performed by applying a voltage so that the well 101 side is negative.
  • the direction of voltage application is determined by the charged state of the substance to be detected.
  • FIG. 8 is a top view photograph of bands detected in Example 1 and Comparative Examples 1 and 2 which will be described later. As shown in the figure, one noble metal nanoparticle 10 in which no specific bond is formed is observed in the downstream band having a higher mobility, and two or three gold nanoparticles 10 are observed as going upstream. The presence of the antigen R can be confirmed.
  • the present inventors use the optical anisotropy detection apparatus 200 whose schematic configuration is shown in FIG. 5, whereby two substantially isotropic noble metal nanoparticles each bind specifically to an antigen to form a dimer. It has been found that highly sensitive detection is possible by detecting the presence or absence of an antigen by detecting the anisotropy that appears.
  • the optical anisotropy detection apparatus 200 includes a transparent sample stage 210 on which a sample (mixed solution) 3 is placed, a laser 230, an irradiation light receiving optical system 220 including a beam splitter 221 and an objective lens 222, and a ⁇ / 2 plate. 240, a polarization beam splitter 250 that separates into P-polarized light and S-polarized light, photodiodes 261 and 262 that detect each polarized light, and an oscilloscope 270 that displays a detection signal.
  • the measurement is performed by configuring the detection apparatus shown in FIG. 5 using an inverted microscope (for example, manufactured by Nikon).
  • the semiconductor laser 230 is condensed in the sample 2 to be measured on the sample stage 210 by the objective lens 222 to form a micro spot, and the monomer and dimer particles are formed while the micro spot is rotated by Brownian motion.
  • Scattered light generated by passing through is collected by the objective lens 222, and the collected light is separated into orthogonal polarization components by the polarization beam splitter 250.
  • the separated scattered light is received by the photodiodes 261 and 262, respectively, and the time trace of the intensity is displayed on the oscilloscope 270, which is collated with the time trace of the polarization anisotropic index AI expressed by the following formula (1).
  • AI (Ix ⁇ Iy) / (Ix + Iy) (1) (Ix is the scattered light intensity in the x direction, Iy is the scattered light intensity orthogonal to the x direction, and the x direction is the polarization direction of the incident light)
  • the monomer and dimer particles rotate a sufficient number of times, so that any arrangement can be taken with respect to the polarization direction of the light. Therefore, paying attention to the maximum value of the polarization anisotropy index AI, the presence or absence of a dimer, that is, the presence or absence of specific binding, is detected from each polarization intensity and its phase shift at the time when the AI value is given.
  • a trace amount of analyte can be detected in a sample solution of noble metal nanoparticles by light scattering correlation spectroscopy using strong scattered light due to plasmon resonance of noble metal nanoparticles instead of fluorescence in fluorescence correlation spectroscopy. It is also possible to detect from the time constant of the rotational motion at.
  • the autocorrelation functions of the monomer and dimer obtained by light scattering correlation spectroscopy are shown in FIG. 7 (monomer (single) on the left side and dimer on the right side).
  • the rotational diffusion rate of the dimer is theoretically predicted to be about 4 times that of the monomer, and the difference in the decay time of the autocorrelation function shown in FIG. 7 is considered to reflect that difference. It is done.
  • the detection liquid 1 and the biosensing method of the present invention are also suitable for an embodiment in which the presence or absence of the substance to be detected R is detected by the local plasmon resonance wavelength shift of the noble metal nanoparticles in the step (D).
  • the biosensing method of the present invention performs sensing using the detection liquid of the present invention, the same effect as the detection liquid of the present invention is exhibited.
  • Example 1 Two reaction containers in which a gold nanocolloid solution having a diameter of 40 nm (0.17 pM gold colloid solution manufactured by Tanaka Kikinzoku) was stored were prepared.
  • anti-hCG monoclonal IgG antibody Anti-hCG 5008 SP-5, Medix Biochemica
  • pepsin and mercaptomethylamine in a sodium acetate buffered aqueous solution in the same manner as KLBrogan et al.
  • the end groups were thiolated, added to a reaction vessel in which the gold nanocolloid solution was stored so as to be 50 pM, and reacted at a temperature of 52 ° C.
  • Detection Solution 1a 20- (11-mercaptoundecanyloxy) -3,6,9,12,15,18-hexaoxaeicosanoic acid reagent (manufactured by Dojindo) was added to a concentration of 50 nM and reacted at a temperature of 52 ° C. for about 3 hours to prepare Detection Solution 1a.
  • an anti-hCG monoclonal IgG antibody Anti-Alpha subunit 6601 SPR-5, Medix Biochemica
  • a detection solution 1b was similarly prepared.
  • an antigen hCG Human chorionic gonadotropin: one of female hormones
  • a sodium acetate buffered aqueous solution is prepared as a measurement sample, and the measurement sample, the detection solution 1a and the detection solution 1b are mixed, and room temperature is obtained. For 8 hours to obtain a reaction solution.
  • Example 2 (Comparative Example 2) Using IgG without fragmentation as the primary antibody and the secondary antibody, it was added to the same gold nanocolloid solution as in Example 1 and allowed to react at a temperature of 52 ° C. for about 1 hour. The antibody was physically adsorbed. Next, a 1% polyethylene glycol + 2% BSA (Bovine serum albumin) aqueous solution was added to the reaction vessel containing the detection solution and the measurement sample and stirred to prepare a detection solution. Subsequent steps were performed in the same manner as in Example 1 to prepare a reaction solution. A reaction solution was prepared in the same manner as in Example 1 except that undecyl mercaptan (English name: Undecyl Mercaptan) was used as the SAM reagent.
  • undecyl mercaptan English name: Undecyl Mercaptan
  • the band position of the monomer of gold nanoparticles and the band position of the dimer are indicated by ⁇ in the right column of each example.
  • Example 1 on the day of detection solution preparation (preparation) and on the next day after the lapse of 24 hours, no dimer band was detected without antigen, and nonspecific binding was not detected. In addition, even in the presence of antigen, it was confirmed that a dimer band could be clearly detected in both cases, and highly accurate sensing could be performed.
  • Comparative Example 1 in which a negatively charged SAM was arranged, it was confirmed that nonspecific binding was well suppressed both on the day of preparation of the detection solution and on the next day.
  • the result was that the dimer of the antigen was well detected on the day of preparation of the detection solution, but not detected the next day.
  • Comparative Example 2 a plurality of bands were detected even without an antigen, causing aggregation due to non-specific binding, resulting in low-precision sensing. As described above, the effectiveness of the present invention was confirmed.

Abstract

[Problem] To improve specific binding reaction efficiency and detection accuracy in biosensing using precious metal nanoparticles as a marker. [Solution] This detection solution (1) is a detection solution (1) used for biosensing that detects, by using precious metal nanoparticles (10) as a marker, a substance to be detected (R) consisting of a biological substance and included in a sample to be measured (2), wherein the precious metal nanoparticles (10) are dispersed in a buffer aqueous solution (40), each precious metal nanoparticle having, fixed to the surface (10s) thereof: a probe (20) including a hydrophilic biological substance which specifically binds to the substance to be detected (R); and an amphiphilic SAM (30) having a hydrophobic part (31) and a hydrophilic part (32). The side of the amphiphilic SAM (30) that is fixed to the particle (10) is the hydrophobic part (31). The probe (20) is fixed to the surface (10s) by a chemical bond (Bc).

Description

検出液及びそれを用いたバイオセンシング方法Detection liquid and biosensing method using the same
 本発明は、貴金属ナノ粒子を用いたバイオセンシングに使用する検出液及びその検出液を用いたバイオセンシング方法に関する。 The present invention relates to a detection solution used for biosensing using noble metal nanoparticles and a biosensing method using the detection solution.
 バイオセンシングは、生体物質の特異的な結合(特異結合)を、光学的又は電気的な信号の変化を用いて検出することにより行われている。光学的な信号の変化を検出するバイオセンシングには、放射性同位元素や蛍光物質,貴金属ナノ粒子等を標識として被検出物質を検出する方法等がある。 Biosensing is performed by detecting a specific binding (specific binding) of a biological substance using a change in an optical or electrical signal. Biosensing that detects a change in an optical signal includes a method of detecting a substance to be detected using a radioisotope, a fluorescent substance, a noble metal nanoparticle, or the like as a label.
 大がかりな測定装置が不要で、簡易なセンシングを可能にするものとして、貴金属ナノ粒子を標識としたバイオセンシングが、免疫診断や、遺伝子解析等の分野において試みられている。例えば、特許文献1及び非特許文献1では、特定の配列を有する核酸断片を検出するバイオセンシングにおいて、一本鎖の核酸同士の塩基配列が相補的(特異的)である場合に相補性を持つ塩基対間の水素結合により二本鎖核酸を形成するハイブリダイゼーション法の標識として、貴金属ナノ粒子を用いる方法が記載されている。 Biosensing using precious metal nanoparticles as a label has been attempted in fields such as immunodiagnostics and gene analysis, as a large-scale measuring device is not required and simple sensing is possible. For example, in Patent Document 1 and Non-Patent Document 1, in biosensing for detecting a nucleic acid fragment having a specific sequence, it has complementarity when the base sequences of single-stranded nucleic acids are complementary (specific). A method of using noble metal nanoparticles as a label for a hybridization method in which a double-stranded nucleic acid is formed by hydrogen bonding between base pairs is described.
 特許文献1には、核酸の配列の一部と相補的な配列を有するオリゴヌクレオチドを付着した貴金属粒子をプローブとして用い、このオリゴヌクレオチドが核酸に対してハイブリダイズした結果として生じる色の変化を検出する方法が記載されている。 Patent Document 1 uses a noble metal particle to which an oligonucleotide having a sequence complementary to part of a nucleic acid sequence is attached as a probe, and detects a change in color resulting from the hybridization of the oligonucleotide to a nucleic acid. How to do is described.
 非特許文献1には、互いに相補的なDNAを、表面にブラシ状に担持した金ナノ粒子同士が接近することにより生じるハイブリダイゼーションにより、金ナノ粒子の局在プラズモン共鳴波長が長波長シフトして、金ナノ粒子の呈色が変化することを利用した遺伝子診断法が記載されている。また、非特許文献1の図1には、DNAターゲットと相補鎖を形成する2種類のDNAプローブ(通常、DNAターゲットの異なる部分(概ね半分ずつ)と相補的)を、それぞれ貴金属ナノ粒子に担持する測定法も示されている。この場合、被検出物質は、貴金属ナノ粒子に担持されていないDNAターゲットである。 Non-Patent Document 1 describes that the localized plasmon resonance wavelength of gold nanoparticles is shifted by a long wavelength due to the hybridization that occurs when the gold nanoparticles carrying brushes on their surfaces approach each other. In addition, a genetic diagnosis method using the change in coloration of gold nanoparticles is described. In FIG. 1 of Non-Patent Document 1, two types of DNA probes that form complementary strands with a DNA target (usually complementary to different portions (approximately half each) of the DNA target) are supported on precious metal nanoparticles, respectively. A measurement method is also shown. In this case, the substance to be detected is a DNA target not supported on the noble metal nanoparticles.
特開2004-515208号公報JP 2004-515208 A
 しかしながら、特許文献1及び非特許文献1の方法では、例えば、ゲル電気泳動法を用いた検出において、ハイブリダイゼーション前の状態で、複数のバンドが検出される等、特異結合(ハイブリダイゼーション)の検出精度が低いという問題があり、更に、特異結合反応効率も低い。 However, in the methods of Patent Document 1 and Non-Patent Document 1, for example, in detection using gel electrophoresis, detection of specific binding (hybridization) such as detection of a plurality of bands in a state before hybridization. There is a problem that the accuracy is low, and the specific binding reaction efficiency is also low.
 本発明は、上記事情に鑑みてなされたものであり、貴金属ナノ粒子を標識として、被測定試料中に含まれる、生体物質からなる被検出物質を検出するバイオセンシングにおいて、特異結合反応効率が高く、検出精度の良好なバイオセンシング方法、及びそれを可能にする検出液を提供することを目的とするものである。 The present invention has been made in view of the above circumstances, and has a high specific binding reaction efficiency in biosensing for detecting a detection target substance made of a biological substance contained in a measurement sample using noble metal nanoparticles as a label. It is an object of the present invention to provide a biosensing method with good detection accuracy and a detection liquid that enables the biosensing method.
 本発明の検出液は、貴金属ナノ粒子を標識として、被測定試料中に含まれる、生体物質からなる被検出物質を検出するバイオセンシングに用いる検出液において、
被検出物質と特異結合する親水性の生体物質を含むプローブと、疎水性部と親水性部とを有する両親媒性の自己組織化単分子膜とが表面に固定された貴金属ナノ粒子が緩衝性水溶液に分散されてなり、
自己組織化単分子膜は、粒子に固定されている側が疎水性部であり、且つ、親水性部の末端の官能基が正又は負のいずれか1種の電荷を有しており、プローブが貴金属ナノ粒子の表面に化学結合により固定されている。
The detection liquid of the present invention is a detection liquid used for biosensing for detecting a detection target substance composed of a biological substance, contained in a measurement target sample, using noble metal nanoparticles as a label.
Noble metal nanoparticles with a probe containing a hydrophilic biological substance that specifically binds to the substance to be detected and an amphiphilic self-assembled monolayer with a hydrophobic part and a hydrophilic part are buffered. Dispersed in an aqueous solution,
In the self-assembled monolayer, the side fixed to the particle is a hydrophobic part, and the functional group at the end of the hydrophilic part has either a positive or negative charge, and the probe is It is fixed to the surface of the noble metal nanoparticles by chemical bonds.
 本明細書において、緩衝性水溶液とは、一般に微生物の培養や化学物質、生体物質の保存、分離等に用いられる水溶液を意味し、外的要因(大気中の二酸化炭素など)あるいは内的要因(微生物自身の代謝産物など)によってほとんどpHが変動しない水溶液を意味する。
 また、化学結合とは、分子同士の弱い相互作用である分子間力(イオン間相互作用、水素結合、ファンデルワールス力、疎水性相互作用、物理吸着)を除く、2つの原子又は分子間における電子の共有による強い相互作用による結合を意味する。具体的には、共有結合、配位結合、金属間結合、貴金属―硫黄間結合を意味するものとする。
In this specification, the buffered aqueous solution means an aqueous solution generally used for microbial culture, chemical substances, biological material storage, separation, etc., and is used for external factors (such as carbon dioxide in the atmosphere) or internal factors ( It means an aqueous solution in which the pH hardly varies depending on the metabolite of the microorganism itself.
A chemical bond is an intermolecular force (inter-ion interaction, hydrogen bond, van der Waals force, hydrophobic interaction, physical adsorption) that is a weak interaction between molecules. It means binding by strong interaction due to electron sharing. Specifically, it means a covalent bond, a coordination bond, an intermetallic bond, and a noble metal-sulfur bond.
 本発明の検出液において、親水性部の末端の官能基の電荷と、親水性の生体物質の電荷が同種であることが好ましい。 In the detection solution of the present invention, it is preferable that the charge of the functional group at the end of the hydrophilic portion and the charge of the hydrophilic biological substance are the same type.
 また、自己組織化単分子膜の親水性部は、ポリエチレングリコール鎖又は糖鎖であることが好ましい。 The hydrophilic part of the self-assembled monolayer is preferably a polyethylene glycol chain or a sugar chain.
 本発明の検出液は、生体物質が抗体である場合に好適であり、断片化された抗体である場合はより好適である。生体物質が断片化された抗体の場合は、貴金属ナノ粒子との化学結合は断片化された抗体の持つジスルフィド基又はチオール基の硫黄原子と貴金属ナノ粒子表面の貴金属原子との結合であることが好ましい。 The detection solution of the present invention is suitable when the biological substance is an antibody, and more preferably when it is a fragmented antibody. In the case of an antibody in which the biological material is fragmented, the chemical bond with the noble metal nanoparticle may be a bond between the sulfur atom of the disulfide group or thiol group of the fragmented antibody and the noble metal atom on the surface of the noble metal nanoparticle. preferable.
 本発明のバイオセンシング方法は、貴金属ナノ粒子を標識として、被測定試料中に含まれる、生体物質からなる被検出物質を検出するバイオセンシングにおいて、
 特異結合が互いに異なり、且つ、官能基の電荷が同種である2種以上の請求項1~7いずれか一項記載の検出液を用意する検出液準備工程と、
 被測定試料を含む緩衝性水溶液中に準備した2種以上の検出液を混合して反応液を調製する反応液調製工程と、
 この反応液中の全てのプローブの生体物質と被検出物質とを特異結合させる反応工程と、
 反応工程終了後の反応液を用いて、標識を検出することにより被測定試料中の特異結合した被検出物質の有無を検出する検出工程を有する。
The biosensing method of the present invention uses precious metal nanoparticles as a label, and in biosensing for detecting a detection substance made of a biological substance contained in a measurement sample,
A detection liquid preparation step for preparing two or more kinds of detection liquids having different specific bindings and having the same kind of functional group charge,
A reaction solution preparation step of preparing a reaction solution by mixing two or more kinds of detection solutions prepared in a buffered aqueous solution containing a sample to be measured;
A reaction step for specifically binding the biological substance and the substance to be detected of all the probes in the reaction solution;
It has a detection step of detecting the presence or absence of a specifically bound detection target substance in the sample to be measured by detecting the label using the reaction solution after completion of the reaction step.
 検出工程において、被検出物質の有無の検出は、ゲル電気泳動や後述する光学的な検出法により実施することが好ましい。 In the detection step, the presence / absence of the substance to be detected is preferably detected by gel electrophoresis or an optical detection method described later.
 本発明の検出液は、生体物質からなる被検出物質と特異結合する親水性の生体物質を含むプローブと、疎水性部と親水性部とを有する両親媒性の自己組織化単分子膜(SAM)とが表面に固定された貴金属ナノ粒子が緩衝性水溶液に分散されてなり、両親媒性のSAMは貴金属ナノ粒子に固定されている側が疎水性部であり、且つ、親水性部の末端基が正又は負のいずれかの電荷を有しており、プローブは貴金属ナノ粒子の表面に化学結合により固定されている。かかる構成では、正又は負のいずかの電荷を末端に有したSAMを貴金属ナノ粒子表面に備えているので、被検出物質との特異結合以外の要因による非特異的な凝集を抑制することができる。また、プローブが貴金属ナノ粒子表面に化学結合により強く固定されているため、経時や物理的な力によりプローブが貴金属ナノ粒子表面から外れて検出限界が劣化する心配もない。従って、本発明によれば、特異結合反応効率が高く、検出精度の良好なバイオセンシングを実施することができる。 The detection liquid of the present invention comprises an amphiphilic self-assembled monolayer (SAM) having a probe containing a hydrophilic biological substance that specifically binds to a target substance made of a biological substance, and a hydrophobic part and a hydrophilic part. ) And noble metal nanoparticles fixed on the surface are dispersed in a buffered aqueous solution. In the amphiphilic SAM, the side fixed to the noble metal nanoparticles is a hydrophobic part, and the end group of the hydrophilic part is Has either a positive or negative charge, and the probe is fixed to the surface of the noble metal nanoparticle by a chemical bond. In such a configuration, a SAM having either positive or negative charge at the end is provided on the surface of the noble metal nanoparticle, so that nonspecific aggregation due to factors other than specific binding to the detected substance is suppressed. Can do. In addition, since the probe is strongly fixed to the surface of the noble metal nanoparticle by a chemical bond, there is no fear that the detection limit is deteriorated due to the probe being detached from the surface of the noble metal nanoparticle with time or physical force. Therefore, according to the present invention, biosensing with high specific binding reaction efficiency and good detection accuracy can be performed.
 更に、本発明の検出液において、SAMの粒子に固定されていない側の末端の官能基(末端基)の帯電状態が、緩衝性水溶液中において、親水性の生体物質を含むプローブの帯電状態と同じである態様では、SAMの末端基と親水性の生体物質とが反発しあうことから、より効果的な、非特異的な凝集抑制効果及び特異結合の反応効率向上効果を得ることができ、高精度なバイオセンシングを実施することができる。 Further, in the detection solution of the present invention, the charged state of the terminal functional group (end group) on the side not fixed to the SAM particle is the charged state of the probe containing a hydrophilic biological substance in the buffered aqueous solution. In the same embodiment, since the end group of SAM and the hydrophilic biological substance repel each other, it is possible to obtain a more effective non-specific aggregation suppressing effect and a specific binding reaction efficiency improving effect, Highly accurate biosensing can be performed.
左図は本発明の検出液の構成を示す概略断面模式図、右図は被測定試料の構成を示す模式図The left figure is a schematic sectional view showing the structure of the detection liquid of the present invention, and the right figure is a schematic diagram showing the structure of the sample to be measured. 本発明の検出液に含まれる貴金属ナノ粒子の好適な態様を示す概略断面模式図。The schematic cross-sectional schematic diagram which shows the suitable aspect of the noble metal nanoparticle contained in the detection liquid of this invention. 図1Bの貴金属ナノ粒子表面の一実施形態を示す拡大概略模式図FIG. 1B is a schematic enlarged view showing an embodiment of the surface of the noble metal nanoparticle of FIG. 1B. 抗体及びその断片化処理後の構成を模式的に示した図Diagram showing the structure of the antibody and its fragmentation treatment I~IVは、貴金属表面に抗体とSAMが結合された態様を示す模式図であり、抗体が通常の物理結合により結合されてなる場合の経時による結合状態の変化の様子を示した図FIGS. I to IV are schematic diagrams showing an embodiment in which an antibody and SAM are bonded to the surface of a noble metal, and show how the binding state changes with time when the antibody is bonded by normal physical bonding. 本発明のバイオセンシング方法の検出液準備工程の好適な態様を示す概略断面模式図Schematic cross-sectional schematic diagram showing a preferred embodiment of the detection liquid preparation step of the biosensing method of the present invention 本発明のバイオセンシング方法の混合工程の好適な態様を示す概略断面模式図Schematic cross-sectional schematic diagram showing a preferred embodiment of the mixing step of the biosensing method of the present invention 本発明のバイオセンシング方法の反応工程と結合工程の好適な態様を示す概略断面模式図Schematic cross-sectional schematic diagram showing a preferred embodiment of the reaction step and the binding step of the biosensing method of the present invention 光偏光計測による検出に用いる装置の概略構成模式図Schematic configuration schematic diagram of the device used for detection by optical polarimetry 異方指数を用いた検出例 (粒子形状と異方指数AIとの相関)を示す図Figure showing detection example (correlation between particle shape and anisotropic index AI) using anisotropic index 光散乱相関分光法により得られた単量体及び二量体の自己相関関数Monomer and dimer autocorrelation functions obtained by light scattering correlation spectroscopy. 実施例1及び比較例1,2のゲル電気泳動法による検出結果を示す図The figure which shows the detection result by the gel electrophoresis method of Example 1 and Comparative Examples 1 and 2.
(検出液)
 図面を参照して本発明にかかる一実施形態の検出液及びその調製方法について説明する。図1A左図は、本実施形態の検出液の構成を示す概略断面模式図、右図は被測定試料(試料液)の構成を示す模式図、図1Bは検出液に含まれる貴金属ナノ粒子の好適な態様を示す概略断面模式図である。図1Cは、図1Bに示される貴金属ナノ粒子表面の一実施形態を示す拡大概略模式図である。本明細書の概略図及び模式図では、視認しやすくするため各部の縮尺は適宜変更して示してある。
(Detection solution)
A detection liquid and a preparation method thereof according to an embodiment of the present invention will be described with reference to the drawings. 1A is a schematic cross-sectional schematic diagram showing the configuration of the detection liquid of the present embodiment, the right figure is a schematic diagram showing the configuration of a sample to be measured (sample liquid), and FIG. 1B is a diagram of noble metal nanoparticles contained in the detection liquid. It is a schematic cross-sectional schematic diagram which shows a suitable aspect. FIG. 1C is an enlarged schematic schematic view showing an embodiment of the surface of the noble metal nanoparticle shown in FIG. 1B. In the schematic diagram and schematic diagram of the present specification, the scale of each part is appropriately changed for easy visual recognition.
 本発明者は、表面にブラシ状に生体物質を担持した貴金属ナノ粒子を用いたバイオセンシングにおいて、「背景技術」の項において述べた検出精度の低下、及び、特異結合反応効率の低下の主な要因が、被検出物質との特異結合を形成しない場合でも、貴金属ナノ粒子同士が非特異的に凝集することであることを見出した。そこで、本発明者は、正又は負のいずかの電荷を末端に有した表面修飾を貴金属ナノ粒子表面に備えることにより、貴金属ナノ粒子表面が正又は負に帯電するため、その電荷反発により上記非特異的な凝集を抑制可能であると考えた。貴金属ナノ粒子表面の、正又は負のいずれかの電荷を末端に有した表面修飾は、自己組織化単分子膜(SAM)とすることにより、単分子サイズの超薄膜(単分子膜)を貴金属ナノ粒子表面に容易に形成可能である。 In the biosensing using the noble metal nanoparticles carrying the biological material in the shape of a brush on the surface, the inventor mainly reduces the detection accuracy and the specific binding reaction efficiency described in the “Background” section. It has been found that the cause is that the noble metal nanoparticles aggregate nonspecifically even when no specific bond is formed with the substance to be detected. Therefore, the present inventor provides a surface modification having either a positive or negative charge at the terminal, so that the surface of the noble metal nanoparticle is positively or negatively charged. It was thought that the non-specific aggregation could be suppressed. The surface modification of the noble metal nanoparticle surface with either positive or negative charge at the terminal is a self-assembled monolayer (SAM), which makes a monomolecular-size ultrathin film (monolayer) a noble metal. It can be easily formed on the nanoparticle surface.
 すなわち、検出液1は、貴金属ナノ粒子10を標識として、被測定試料2中に含まれる、生体物質からなる被検出物質Rを検出するバイオセンシングに用いるものであり、被検出物質Rと特異結合する親水性の生体物質を含むプローブ20と両親媒性のSAM30とが表面10sに固定された貴金属ナノ粒子10が緩衝性水溶液40中に分散されてなり、SAM30は、貴金属ナノ粒子10に固定されている側が疎水性部31であり、且つ、親水性部32の末端30eの官能基が正又は負のいずれか1種の電荷を有しており、プローブ20が貴金属ナノ粒子10の表面10sに化学結合Bcにより固定されている。本実施形態では、図1B、図1Cに示されるように、プローブ20も負の電荷を有している。 That is, the detection liquid 1 is used for biosensing to detect a detection target substance R made of a biological substance contained in the sample 2 to be detected, using the noble metal nanoparticles 10 as a label. The noble metal nanoparticle 10 in which the probe 20 containing the hydrophilic biological material and the amphiphilic SAM 30 are immobilized on the surface 10 s is dispersed in the buffered aqueous solution 40, and the SAM 30 is immobilized on the noble metal nanoparticle 10. The hydrophobic portion 31 and the functional group at the end 30e of the hydrophilic portion 32 has one of positive and negative charges, and the probe 20 is attached to the surface 10s of the noble metal nanoparticle 10 It is fixed by chemical bond Bc. In the present embodiment, as shown in FIGS. 1B and 1C, the probe 20 also has a negative charge.
 検出液1において、貴金属ナノ粒子10は特に制限されず、使用する光の波長において呈色特性の良好な貴金属を選択することが好ましい。中でも金は、自然光において視認しやすい赤色の呈色を示すこと、また、チオール基やジスルフィド基と強い結合を形成しうることから好ましく利用することができる。 In the detection liquid 1, the noble metal nanoparticles 10 are not particularly limited, and it is preferable to select a noble metal having a good coloration property at the wavelength of light used. Among these, gold can be preferably used because it exhibits a red color that is easily visible in natural light and can form a strong bond with a thiol group or a disulfide group.
 親水性の生体物質を含むプローブ20としては、被検出物質Rと特異結合するものであり、貴金属ナノ粒子10の表面10sと化学結合Bcにより結合可能なものであれば特に制限されない。生体物質の特異結合には、抗原―抗体結合、DNAやRNA、PNA(Peptide Nucleic Acid、ペプチド核酸)等の核酸の相補的結合(ハイブリダイゼーション)、ビオチンーアビジン結合、抗原―アプタマー結合、糖鎖―レクチン結合等があり、検出液1はいずれの特異結合にも適用可能である。 The probe 20 containing a hydrophilic biological substance is not particularly limited as long as it is capable of specifically binding to the substance R to be detected and can be bound to the surface 10s of the noble metal nanoparticle 10 by the chemical bond Bc. Specific binding of biological substances includes antigen-antibody binding, DNA and RNA, complementary binding (hybridization) of nucleic acids such as PNA (Peptide Nucleic Acid, peptide nucleic acid), biotin-avidin binding, antigen-aptamer binding, sugar chain -There is lectin binding and the like, and the detection solution 1 can be applied to any specific binding.
 両親媒性のSAM30は、貴金属ナノ粒子10に基端30aの官能基の構成原子(硫黄原子)が貴金属ナノ粒子10の貴金属原子と結合されてなり、SAM30を構成する1分子において、貴金属ナノ粒子10が固定されている側が疎水性部31であり、且つ、親水性部32の末端30eの官能基が正又は負のいずれか1種の電荷を有している。 In the amphiphilic SAM 30, the constituent atom (sulfur atom) of the functional group at the base end 30 a is bonded to the noble metal nanoparticle 10 and the noble metal atom of the noble metal nanoparticle 10. The side to which 10 is fixed is the hydrophobic portion 31, and the functional group at the end 30 e of the hydrophilic portion 32 has one of positive and negative charges.
 疎水性部31としては、基端30aに、貴金属ナノ粒子10と結合可能な官能基であるアルキル基を有することが好ましい。貴金属ナノ粒子10の貴金属原子と強固な結合を容易に形成しうる官能基としては、チオール基やジスルフィド基、メルカプト基が挙げられる。これら硫黄化合物の官能基は、金等の貴金属表面上に自発的に吸着し、アルカンチオール類やアルカンジスルフィド類は、単分子サイズの超薄膜であるSAMとなりうることで知られている。これらの官能基の表面10sへの固定方法としては、特に制限されず既存の技術を利用することができる。 The hydrophobic part 31 preferably has an alkyl group that is a functional group capable of binding to the noble metal nanoparticles 10 at the base end 30a. Examples of the functional group that can easily form a strong bond with the noble metal atom of the noble metal nanoparticle 10 include a thiol group, a disulfide group, and a mercapto group. It is known that the functional groups of these sulfur compounds are spontaneously adsorbed on the surface of a noble metal such as gold, and alkanethiols and alkane disulfides can be SAMs that are ultrathin films of a single molecular size. The method for fixing these functional groups to the surface 10s is not particularly limited, and existing techniques can be used.
 親水性部32は、貴金属ナノ粒子10の表面10sが疎水性部31で覆われることにより緩衝性水溶液40における分散性の低下を改善するものである。疎水性の大きいSAMを用いた場合は、貴金属ナノ粒子10の水溶性が低くなっているため、緩衝性水溶液中に良好に分散させるためには、アルコール等の相溶性の高い溶媒を一旦介して分散させる必要がある。しかしながら、このような処理を行うことにより、抗体や核酸等の生体物質は損傷されて変性し、非特異の凝集が増えて良好なセンシングを行うことが難しくなる可能性が高い。非特異的な凝集の増加は特異結合反応の失活をも引き起こし、該反応の反応効率を低下させる。特に、疎水性部のアルキル鎖の炭素数が7以上である場合には疎水性が高いため水溶性(分散性)が非常に低くなる。 The hydrophilic portion 32 improves the decrease in dispersibility in the buffered aqueous solution 40 when the surface 10 s of the noble metal nanoparticle 10 is covered with the hydrophobic portion 31. In the case of using a highly hydrophobic SAM, the water solubility of the noble metal nanoparticles 10 is low, so in order to disperse well in the buffering aqueous solution, once through a highly compatible solvent such as alcohol. Need to be distributed. However, by performing such treatment, biological substances such as antibodies and nucleic acids are damaged and denatured, and non-specific aggregation is likely to increase, making it difficult to perform good sensing. An increase in non-specific aggregation also causes inactivation of the specific binding reaction, reducing the reaction efficiency of the reaction. In particular, when the alkyl chain of the hydrophobic part has 7 or more carbon atoms, the water solubility (dispersibility) becomes very low due to the high hydrophobicity.
 本発明者は、疎水性部31の金ナノ粒子10の固定側(基端30a)と反対側の末端に親水性部32を備え、末端30eに正又は負のいずれか1種の電荷を有しているSAM30とすることにより、貴金属ナノ粒子同士が非特異的に凝集する現象を抑制する効果を維持しつつ、緩衝性水溶液中への分散性が良く、生体物質へのダメージが殆どない検出液となることを見出した。 The inventor has a hydrophilic portion 32 at the end opposite to the fixing side (base end 30a) of the gold nanoparticle 10 of the hydrophobic portion 31 and has either positive or negative charge at the end 30e. By using SAM30, which maintains the effect of suppressing the non-specific aggregation of precious metal nanoparticles, detection with good dispersibility in buffered aqueous solution and almost no damage to biological materials I found it to be liquid.
 親水性部32としては、緩衝性水溶液中への分散性(水溶性)を良好にしうるものであれば特に制限されないが、ポリエチレングリコール(PEG)鎖、糖鎖、親水性ポリエステル等が挙げられる。 The hydrophilic part 32 is not particularly limited as long as it can improve dispersibility (water solubility) in a buffered aqueous solution, and examples thereof include polyethylene glycol (PEG) chains, sugar chains, and hydrophilic polyesters.
 親水性部32の末端基30eは特に制限されず、酸性基(負電荷)としては、ヒドロキシル基、カルボシキル基、リン酸基、スルホン酸基等が挙げられ、塩基性基(正電荷)としては、例えば、アミノ基、第4級アンモニウム基、イミダゾール基、グアニジウム基等が挙げられる。いずれの場合も、イオン化傾向が高い官能基であることが好ましい。プローブ20が緩衝性水溶液40中において正又は負の電荷を有して帯電している場合は、親水性部32の末端基30eの電荷は、プローブ20と反発し合うように、同じ帯電状態となりうる官能基であることが好ましい。 The end group 30e of the hydrophilic portion 32 is not particularly limited, and examples of the acidic group (negative charge) include a hydroxyl group, a carboxyl group, a phosphoric acid group, and a sulfonic acid group. As the basic group (positive charge), Examples thereof include an amino group, a quaternary ammonium group, an imidazole group, and a guanidinium group. In any case, a functional group having a high ionization tendency is preferable. When the probe 20 is charged with a positive or negative charge in the buffered aqueous solution 40, the charge of the end group 30e of the hydrophilic portion 32 is in the same charged state so as to repel the probe 20. It is preferably a functional group that can be obtained.
 両親媒性のSAM30としては、例えば、基端30aのジスルフィド基の硫黄原子が貴金属ナノ粒子10の貴金属原子と結合されてなり、アルキル基(炭素数11)からなる疎水性部31と、末端基30eがカルボキシル基であるポリエチレングリコール(炭素数6)からなる親水性部32とがエステル結合している単分子膜(20-(11-メルカプトウンデカンイルオキシ)-3,6,9,12,15,18-ヘキサオキサエイコサン酸(英語名: 20-(11-Mercaptoundecanyloxy)-3,6,9,12,15,18-hexaoxaeicosanoic acid))が挙げられる。かかるSAM30の場合、単分子の長さは2.5nm~3.0nm程度であり、そのうち疎水性部31長が約1.2nmである。わかりやすいように図1Cでは1分子のみを図示してある。なお、図1Cでは、カルボキシル基として示してあるが、緩衝性水溶液40中ではCOOとして存在する。 As the amphiphilic SAM 30, for example, the sulfur atom of the disulfide group at the base end 30a is bonded to the noble metal atom of the noble metal nanoparticle 10, and the hydrophobic group 31 composed of an alkyl group (11 carbon atoms), the terminal group Monomolecular film (20- (11-mercaptoundecanyloxy) -3,6,9,12,15) in which the hydrophilic part 32 made of polyethylene glycol (carbon number 6) 30e is a carboxyl group is ester-bonded , 18-hexaoxaeicosanoic acid (English name: 20- (11-Mercaptoundecanyloxy) -3,6,9,12,15,18-hexaoxaeicosanoic acid)). In the case of such SAM 30, the length of a single molecule is about 2.5 nm to 3.0 nm, and the length of the hydrophobic portion 31 is about 1.2 nm. For clarity, only one molecule is shown in FIG. 1C. Although shown as a carboxyl group in FIG. 1C, it exists as COO 2 in the buffered aqueous solution 40.
 貴金属ナノ粒子10へのSAM30の固定温度及びその固定に要する反応時間は、単分子膜の材料に応じて適宜設定すればよく、20-(11-メルカプトウンデカンイルオキシ)-3,6,9,12,15,18-ヘキサオキサエイコサン酸の場合は、50℃前後の温度にて3時間程反応させることにより形成することができる。 The fixing temperature of the SAM 30 to the noble metal nanoparticle 10 and the reaction time required for the fixing may be appropriately set according to the material of the monomolecular film. 20- (11-mercaptoundecanyloxy) -3,6,9, In the case of 12,15,18-hexaoxaeicosanoic acid, it can be formed by reacting at about 50 ° C. for about 3 hours.
 SAM30の検出液1中の濃度(単分子の濃度)は、感度の良い検出が可能であれば特に制限されないが、10nmol/l以上1000nmol/l以下の範囲が好ましく、貴金属ナノ粒子の材質や粒子径、および生体物質の種類によって最適化することが好ましい。 The concentration of SAM30 in the detection solution 1 (single molecule concentration) is not particularly limited as long as sensitive detection is possible, but is preferably in the range of 10 nmol / l or more and 1000 nmol / l or less. It is preferable to optimize depending on the diameter and the type of biological material.
 本発明者は、当初、正又は負のいずれかの電荷を末端に有したSAM30を貴金属ナノ粒子表面10sに備えた構成とすれば、貴金属ナノ粒子表面10sが帯電するため、その電荷反発により上記粒子同士の非特異的な凝集を抑制し、特異結合の反応効率向上効果を得ることができると考えていた。しかしながら、このようなSAM30を形成するだけでは、充分な効果が得られない特異結合があることが判明した。 The present inventor initially made the noble metal nanoparticle surface 10s charged with the SAM 30 having either a positive or negative charge at the terminal, so that the noble metal nanoparticle surface 10s was charged. It was thought that nonspecific aggregation between particles could be suppressed and an effect of improving the reaction efficiency of specific binding could be obtained. However, it has been found that there is a specific binding in which sufficient effects cannot be obtained only by forming such SAM30.
 特異結合の検出を行う生化学分析において、プローブ20と貴金属ナノ粒子10との結合は、その物質それぞれに対して通常好適とされている方法があることが知られている。本発明者の検討の結果、プローブ20が抗体である場合等、貴金属ナノ粒子10への結合を常法により実施すると、その結合が物理吸着となる特異結合において、非特異結合の抑制効果は充分得られるものの、検出限界が経時によって劣化することがわかった。 In biochemical analysis in which specific binding is detected, it is known that there is a method in which the binding between the probe 20 and the noble metal nanoparticle 10 is usually suitable for each of the substances. As a result of the inventor's investigation, when the binding to the noble metal nanoparticle 10 is carried out by a conventional method, such as when the probe 20 is an antibody, the non-specific binding is sufficiently suppressed in the specific binding where the binding becomes physical adsorption. Although obtained, it was found that the detection limit deteriorates with time.
 抗原抗体反応による生化学分析において、貴金属ナノ粒子に抗体を固定させることはこれまでに種々実施されている。抗体の金属への固定は、Fc領域の末端部分の疎水性部分が、他の末端部分に比べて金属膜上に結合されやすいことから、特開2008-197038号公報の段落[0037]に記載されているように、貴金属ナノ粒子と抗体とを緩衝溶液中にて混合し、自然に物理吸着させる方法により通常行われている。 In biochemical analysis by antigen-antibody reaction, immobilization of antibodies on noble metal nanoparticles has been performed in various ways. The fixation of the antibody to the metal is described in paragraph [0037] of Japanese Patent Application Laid-Open No. 2008-197038 because the hydrophobic part of the terminal part of the Fc region is more easily bound on the metal film than the other terminal part. As described above, it is usually performed by a method in which noble metal nanoparticles and an antibody are mixed in a buffer solution and then physically adsorbed.
 しかしながら、通常の物理吸着によりFc末端を貴金属ナノ粒子に結合させた場合、後記する比較例2に示すように、検出液を調製直後の測定では特異結合反応効率が高く、検出精度の良好なバイオセンシングを実施できるが、数時間等の経時後に同様の検出を実施したところ、検出されるべき特異結合を検出することができなかった。 However, when the Fc end is bound to the noble metal nanoparticles by ordinary physical adsorption, as shown in Comparative Example 2 described later, a specific binding reaction efficiency is high in the measurement immediately after the preparation of the detection solution, and the detection accuracy is good. Sensing can be performed, but when similar detection was performed after lapse of several hours or the like, specific binding to be detected could not be detected.
 そこで本発明者らは、かかる現象のメカニズムについて検討を行い、その結果、貴金属ナノ粒子10への結合が常法に於いて物理吸着であるような物質をプローブ20として用いる場合においても、貴金属ナノ粒子10への結合を化学結合とすることにより、上記経時により検出限界を劣化させることなく、上記粒子同士の非特異的な凝集を抑制し、特異結合の反応効率向上効果が得られることを見出した。 Therefore, the present inventors have examined the mechanism of such a phenomenon, and as a result, even when a substance that is physically adsorbed to the noble metal nanoparticles 10 is used as the probe 20, noble metal nano-particles are used. It has been found that by making the bond to the particle 10 a chemical bond, the non-specific aggregation of the particles can be suppressed without deteriorating the detection limit over time, and the effect of improving the specific binding reaction efficiency can be obtained. It was.
 物理吸着により結合されたプローブ20において、経時により検出限界の劣化を生じる原因は、SAMの自己組織化のメカニズムに基づくものであると本発明者は考えている。
 SAMの形成は、非特許文献”田中啓文ら著、表面科学Vol.25,No.10,pp. 650-655,2004”等に記載されているように、貴金属原子(金原子)と硫黄原子等との非常に早い段階に起こる結合と、それに続く炭化水素鎖の稠密配列化(再配列)の二段階からなり、後半の再配列は、エンタルピー項に関わるファンデルワールス力、及び、エントロピー項に関わる疎水化による溶媒排除のために、時間の経過(経時)と共に炭化水素基の結晶化により起こることが知られている。
 本発明者らの考えによれば、かかるSAMの2段階の自己組織化メカニズムにおける再配列により、結合力の弱い物理吸着による結合が解かれて、貴金属ナノ粒子10に結合されている抗体(プローブ)20の絶対量が減るために、検出限界の劣化を生じる。図3は、上記推察に基づいて、抗体20が通常の方法により結合されてなる貴金属ナノ粒子10に、SAM形成溶液を添加して検出液1を調製する工程を段階的に示した模式図である。図3においてIはSAM形成溶液添加直後、IIは検出液調製完了直後、IIIはSAM再配列開始時、IVはSAM再配列完了後である。
The inventor believes that the cause of the deterioration of the detection limit with time in the probe 20 bonded by physical adsorption is based on the mechanism of SAM self-organization.
The formation of SAM is described in the non-patent literature “Kenfumi Tanaka et al., Surface Science Vol. 25, No. 10, pp. 650-655, 2004” and the like, as described in noble metal atoms (gold atoms) and sulfur atoms. It is composed of two steps, ie, the coupling that occurs at a very early stage followed by the dense arrangement (rearrangement) of hydrocarbon chains, and the latter rearrangement involves the van der Waals force and the entropy term related to the enthalpy term. It is known that this occurs due to crystallization of hydrocarbon groups with the passage of time (over time) due to the solvent elimination by hydrophobization related to.
According to the idea of the present inventors, the antibody (probe) bound to the noble metal nanoparticle 10 is released by the rearrangement in the two-step self-assembly mechanism of the SAM and the binding due to the physical adsorption having a weak binding force is released. ) Since the absolute amount of 20 is reduced, the detection limit is deteriorated. FIG. 3 is a schematic diagram showing stepwise a process for preparing the detection solution 1 by adding a SAM-forming solution to the noble metal nanoparticles 10 to which the antibody 20 is bound by an ordinary method based on the above inference. is there. In FIG. 3, I is immediately after addition of the SAM forming solution, II is immediately after completion of preparation of the detection solution, III is at the start of SAM rearrangement, and IV is after completion of SAM rearrangement.
図3のI~IIは、上記した金原子と硫黄原子との結合段階であり、検出液1の調製完了直後のIIでは、金ナノ粒子10の表面は負の電荷を有するSAMが再配列せずに結合されている。この場合、金ナノ粒子10は負に帯電されているため、金ナノ粒子10同士は表面の電荷による反発により、非特異結合による凝集を生じることなく、良好な検出を行うことができる。
 しかしながら、二段階目の再配列が開始されると(図3III)、SAMの再配列によるファンデルワールス力と溶媒排除力により、抗体20と金ナノ粒子表面10sとの弱い物理吸着による結合が切れて、抗体が金ナノ粒子表面10sから剥がされてしまう。その結果、再配列完了後には金ナノ粒子10に結合された抗体の数が減り、検出限界が大幅に劣化する。
3 are the bonding steps of the gold atom and sulfur atom described above. In II immediately after the completion of the preparation of the detection liquid 1, the surface of the gold nanoparticle 10 is rearranged by negatively charged SAM. Without being joined. In this case, since the gold nanoparticles 10 are negatively charged, the gold nanoparticles 10 can be detected satisfactorily without causing aggregation due to non-specific binding due to repulsion due to surface charges.
However, when the rearrangement of the second stage is started (FIG. 3III), the bond due to weak physical adsorption between the antibody 20 and the gold nanoparticle surface 10s is broken by the van der Waals force and the solvent exclusion force due to the SAM rearrangement. Thus, the antibody is peeled off from the gold nanoparticle surface 10s. As a result, after the rearrangement is completed, the number of antibodies bound to the gold nanoparticles 10 is reduced, and the detection limit is greatly deteriorated.
 かかる考察に基づき、検出液1では、抗体20を、金ナノ粒子表面10sに化学結合により強固に結合させる態様とすることにより、SAMの再配列による検出限界の劣化を抑制し、検出液の調製直後のみならず、特異結合反応効率が高く、検出精度の良好なバイオセンシングを可能とした(後記実施例を参照)。 Based on this consideration, in the detection solution 1, the antibody 20 is firmly bonded to the gold nanoparticle surface 10 s by chemical bonding, thereby suppressing deterioration of the detection limit due to SAM rearrangement and preparing the detection solution. Not only immediately after that, biosensing with high specific binding reaction efficiency and good detection accuracy was made possible (see Examples below).
 抗体を化学結合により貴金属ナノ粒子に化学結合させる方法としては、Fc末端にチオール基やジスルフィド基等を付与するなどして官能化してもよいし、抗体を断片化処理により形成される、末端部にジスルフィド基又はチオール基等を備えた断片化抗体を用いてもよい。図1Cは、プローブ20として断片化抗体F(ab’)用い、20-(11-メルカプトウンデカンイルオキシ)-3,6,9,12,15,18-ヘキサオキサエイコサン酸をSAM30として用いた場合について、貴金属ナノ粒子表面10sの拡大模式図示したものである。断片化抗体F(ab’)末端には、抗原(Ant)のエピトープと特異結合するパラトープBsを備えている。 As a method of chemically bonding an antibody to a noble metal nanoparticle by chemical bonding, it may be functionalized by adding a thiol group, a disulfide group or the like to the Fc terminal, or the terminal part formed by fragmentation treatment of the antibody. Alternatively, a fragmented antibody having a disulfide group or a thiol group may be used. FIG. 1C shows that fragmented antibody F (ab ′) was used as probe 20 and 20- (11-mercaptoundecanyloxy) -3,6,9,12,15,18-hexaoxaeicosanoic acid was used as SAM30. The case is an enlarged schematic illustration of the surface 10s of the noble metal nanoparticle. At the end of the fragmented antibody F (ab '), there is a paratope Bs that specifically binds to an epitope of the antigen (Ant).
 図2は、抗体及びその断片化処理後の構成を模式的に示した図である。抗体は、図2の左図に示されるように、Y字型の4本鎖構造を基本構造としており、2つの重鎖と2つの軽鎖とからなる。この重鎖と軽鎖がジスルフィド結合で結びついてヘテロダイマーを形成し、更にこのヘテロダイマー同士が2つのジスルフィド結合を含むヒンジ部により結びついてY字型のヘテロテトラマーを形成している。Y字型の上半分のV字部分をFab領域(Fabフラグメント)、下半分の直線部分をFc領域(Fcフラグメント)といい、Fab領域の先端にはパラトープBsを有している。 FIG. 2 is a diagram schematically showing the structure of the antibody and its fragmentation treatment. As shown in the left diagram of FIG. 2, the antibody has a Y-shaped four-chain structure as a basic structure, and consists of two heavy chains and two light chains. The heavy chain and the light chain are connected by a disulfide bond to form a heterodimer, and the heterodimers are further connected by a hinge part including two disulfide bonds to form a Y-shaped heterotetramer. The V-shaped part of the upper half of the Y-shape is called the Fab region (Fab fragment), and the straight part of the lower half is called the Fc region (Fc fragment), and has a paratope Bs at the end of the Fab region.
 適切に断片化処理された抗体は、ジスルフィド結合及び/又はチオール基が露出されており、貴金属ナノ粒子表面10sとSAM等を介さずに直接結合させることができるため好ましい。図2に示されるように、断片化抗体は、タンパク質分解酵素パパインで処理されることにより、2つのFabフラグメントとFcフラグメントに分解され、またタンパク質分解酵素ペプシンで処理されることにより、2つのFabフラグメントがジスルフィド結合により結合されたF(ab’)フラグメントと断片化されたFcフラグメントに分解される。F(ab’)フラグメントを更に2-メルカプトエチルアミン(2-MEA)等の還元剤で処理することによりF(ab’)フラグメントに分解されると同時に、末端にチオール基が露出される。
 これら以外にも、抗体フラグメントを作製する酵素としては、フィシン,リシルエンドペプチターゼ,V8プロテアーゼ,ブロメライン,クロストリパイン,メタロエンドペプチターゼ,パパインを活性化処理した活性化パパイン等がある。
 上記した酵素を用いた断片化以外にも、化学処理や遺伝子工学的手法による断片化も採用することができる。
An appropriately fragmented antibody is preferable because it has a disulfide bond and / or a thiol group exposed and can be directly bonded to the surface of the noble metal nanoparticle 10s without using a SAM or the like. As shown in FIG. 2, a fragmented antibody is digested into two Fab fragments and an Fc fragment by treatment with the proteolytic enzyme papain, and two Fab fragments by treatment with the proteolytic enzyme pepsin. Fragments are broken down into F (ab ′) 2 fragments linked by disulfide bonds and fragmented Fc fragments. By further treating the F (ab ′) 2 fragment with a reducing agent such as 2-mercaptoethylamine (2-MEA), the F (ab ′) 2 fragment is decomposed into F (ab ′) fragments, and at the same time, a thiol group is exposed at the terminal.
In addition to these, enzymes that produce antibody fragments include ficin, lysyl endopeptidase, V8 protease, bromelain, clostripain, metalloendopeptidase, and activated papain obtained by activating papain.
In addition to the fragmentation using the enzymes described above, fragmentation by chemical treatment or genetic engineering techniques can also be employed.
 抗体の断片化は、例えば、K.L.Brogan et al. Analytica Chimica Acta 496 (2003) 73-80等の公知の方法にて実施することができる。 Antibody fragmentation can be performed by a known method such as K.L. Brogan et al. Analytica Chimica Acta 496 (2003) 73-80.
 図1Cに示されるように、プローブ20が抗体である場合は、プローブ20が断片化抗体F(ab’)であり、チオール基の硫黄原子と、貴金属ナノ粒子表面10sの貴金属原子とが化学結合Bcにより結合されてなる。かかる態様とすることにより、後記実施例1に示すように、経時による検出限界の劣化を生じることなく、粒子同士の非特異的な凝集を抑制し、特異結合の反応効率向上効果が得ることができる。 As shown in FIG. 1C, when the probe 20 is an antibody, the probe 20 is a fragmented antibody F (ab ′), and the sulfur atom of the thiol group and the noble metal atom on the surface 10s of the noble metal nanoparticle are chemically bonded. It is bound by Bc. By adopting such an embodiment, as shown in Example 1 described later, nonspecific aggregation between particles can be suppressed without causing deterioration in detection limit over time, and an effect of improving the reaction efficiency of specific binding can be obtained. it can.
 以上述べたように、検出液1は、生体物質からなる被検出物質Rと特異結合する親水性の生体物質を含むプローブ20と、疎水性部31と親水性部32とを有する両親媒性の自己組織化単分子膜(SAM)30とが表面10sに固定された貴金属ナノ粒子10が緩衝性水溶液40に分散されてなり、両親媒性のSAM30は貴金属ナノ粒子10に固定されている側が疎水性部31であり、且つ、親水性部32の末端基30eが正又は負のいずれかの電荷を有しており、プローブ20は貴金属ナノ粒子10の表面10sに化学結合により固定されている。かかる構成では、正又は負のいずかの電荷を末端に有したSAM30を貴金属ナノ粒子表面10sに備えているので、被検出物質Rとの特異結合以外の要因による非特異的な凝集を抑制することができる。また、プローブ20が貴金属ナノ粒子表面10sに化学結合により強く固定されているため、経時や物理的な力によりプローブが貴金属ナノ粒子表面10sから外れて検出限界が劣化する心配もない。従って、検出液1によれば、特異結合反応効率が高く、検出精度の良好なバイオセンシングを実施することができる。 As described above, the detection liquid 1 is an amphiphilic substance having the probe 20 including the hydrophilic biological material that specifically binds to the detection target substance R made of the biological material, the hydrophobic portion 31, and the hydrophilic portion 32. A noble metal nanoparticle 10 having a self-assembled monolayer (SAM) 30 fixed on the surface 10s is dispersed in a buffered aqueous solution 40. The amphiphilic SAM 30 is hydrophobic on the side fixed to the noble metal nanoparticle 10. The end portion 30 e of the hydrophilic portion 32 has a positive or negative charge, and the probe 20 is fixed to the surface 10 s of the noble metal nanoparticle 10 by chemical bonding. In such a configuration, the SAM30 having either positive or negative charge at the terminal is provided on the surface 10s of the noble metal nanoparticle, so that nonspecific aggregation due to factors other than specific binding to the detection target R is suppressed. can do. In addition, since the probe 20 is strongly fixed to the noble metal nanoparticle surface 10s by chemical bonding, there is no fear that the detection limit will deteriorate due to the probe coming off the noble metal nanoparticle surface 10s with time or physical force. Therefore, according to the detection liquid 1, biosensing with high specific binding reaction efficiency and good detection accuracy can be performed.
 (バイオセンシング方法)
 上記本発明の検出液を用いて、実施する本発明のバイオセンシング方法について、図4A~図4Cを参照して説明する。図4A~図4Cはサンドイッチ法により貴金属ナノ粒子10により標識して被検出物質Rの量を検出する構成の例を示している。
(Biosensing method)
The biosensing method of the present invention to be performed using the detection solution of the present invention will be described with reference to FIGS. 4A to 4C. 4A to 4C show examples of configurations in which the amount of the substance R to be detected is detected by labeling with the noble metal nanoparticles 10 by the sandwich method.
  本実施形態のバイオセンシング方法は、貴金属ナノ粒子10を標識として、被測定試料2中に含まれる、生体物質からなる被検出物質Rを検出するバイオセンシングにおいて、
 特異結合が互いに異なり、且つ、官能基の電荷が同種である2種以上の検出液(1a,1b)を用意する検出液準備工程と、
 緩衝性水溶液中に被測定試料2と準備した2種以上の検出液(1a,1b)を混合して反応液3を調製する反応液調製工程と、
 反応液3中の全てのプローブ20(A,B)の生体物質と被検出物質Rとを特異結合させる反応工程と、
 反応工程終了後の反応液3を用いて、標識を検出することにより被測定試料2中の特異結合した被検出物質Rの有無を検出する検出工程を有する。
In the biosensing method of the present embodiment, in the biosensing for detecting the detection target substance R made of a biological substance contained in the measurement target sample 2 using the noble metal nanoparticles 10 as a label,
A detection liquid preparation step of preparing two or more detection liquids (1a, 1b) having different specific bindings and having the same type of functional group charge;
A reaction solution preparation step of preparing a reaction solution 3 by mixing the sample 2 to be measured and two or more kinds of prepared detection solutions (1a, 1b) in a buffered aqueous solution;
A reaction step of specifically binding the biological substances of all the probes 20 (A, B) in the reaction solution 3 and the substance R to be detected;
It has a detection step of detecting the presence or absence of the specifically bound detection target substance R in the sample 2 to be measured by detecting the label using the reaction solution 3 after completion of the reaction step.
 ここでも、被検出物質Rが抗原であり、この抗原と特異結合する2種の抗体20(A)と20(B)がプローブである場合を例に説明する。 Here, the case where the substance R to be detected is an antigen and the two types of antibodies 20 (A) and 20 (B) that specifically bind to the antigen are probes will be described as an example.
<検出液準備工程>
 検出液1は、図4Aに示されるように、検出液準備工程(A-1)~(A-3),(B-1)~(B-3)の工程を実施することにより製造することができる。(A-1)~(A-3)と(B-1)~(B-3)は、プローブの種類が異なるだけで工程は同じであるので、(A-1)~(A-3)についてのみ説明する。
<Detection solution preparation process>
As shown in FIG. 4A, the detection liquid 1 is manufactured by performing the detection liquid preparation steps (A-1) to (A-3) and (B-1) to (B-3). Can do. Since (A-1) to (A-3) and (B-1) to (B-3) have the same process except for the types of probes, (A-1) to (A-3) Only will be described.
 まず、緩衝性水溶液40をビーカー等の容器に所定の量注入し、更にその中に複数の貴金属ナノ粒子10を添加する(A-1)。(A-1)は非加熱にて実施してよい。
 貴金属ナノ粒子10の大きさは、光の照射により局在プラズモンを誘起可能な大きさであれば特に制限されず、個々の粒径は光の波長の半分以下であることが好ましく、10nm以上100nm以下であることがより好ましい。
First, a predetermined amount of the buffering aqueous solution 40 is injected into a container such as a beaker, and a plurality of noble metal nanoparticles 10 are added therein (A-1). (A-1) may be carried out without heating.
The size of the noble metal nanoparticle 10 is not particularly limited as long as it is a size capable of inducing localized plasmon by light irradiation, and each particle size is preferably less than or equal to half of the wavelength of light, and is 10 nm or more and 100 nm. The following is more preferable.
 検出液1中の貴金属ナノ粒子10の濃度は、感度の良い検出が可能であれば特に制限されないが、検出したい非検出物質の濃度(定量領域)に応じて、適宜、0.1pmol/l以上10000 pmol/l以下の範囲に調整することが好ましい。 The concentration of the noble metal nanoparticles 10 in the detection liquid 1 is not particularly limited as long as sensitive detection is possible, but is appropriately 0.1 pmol / l or more depending on the concentration (quantitative region) of the non-detection substance to be detected. It is preferable to adjust to the range of 10000 pmol / l or less.
 次に、抗体20(A)を貴金属ナノ粒子10の表面10sに化学結合により固定する(A-2)。貴金属ナノ粒子10と結合する側の官能基は、貴金属ナノ粒子10の金属と結合可能な官能基であれば特に制限されず、チオール基以外では、ジスルフィド基、メルカプト基等が挙げられる。抗体20(A)として断片化抗体を用いることにより、断片化抗体の持つチオール基及びジスルフィド基により容易に結合させることができる。これらの官能基の固定方法としては、特に制限されず既存の技術を利用することができる。 Next, the antibody 20 (A) is immobilized on the surface 10 s of the noble metal nanoparticle 10 by chemical bonding (A-2). The functional group on the side bonded to the noble metal nanoparticle 10 is not particularly limited as long as it is a functional group capable of binding to the metal of the noble metal nanoparticle 10, and examples thereof include a disulfide group and a mercapto group other than the thiol group. By using a fragmented antibody as the antibody 20 (A), it can be easily bound by the thiol group and disulfide group possessed by the fragmented antibody. The method for fixing these functional groups is not particularly limited, and existing techniques can be used.
 次に、抗体20(A)が固定された貴金属ナノ粒子10の表面10sに、疎水性部31と親水性部32とを有する両親媒性のSAM30を、疎水性部31側の基端30aが金ナノ粒子10の表面10sに固定されて、標識Aが緩衝性水溶液40中に分散されてなる検出液1aを得る(A-3)。また、同様の工程にて、標識Bが緩衝性水溶液40中に分散されてなる検出液1bを得る。 Next, an amphiphilic SAM 30 having a hydrophobic portion 31 and a hydrophilic portion 32 is formed on the surface 10 s of the noble metal nanoparticle 10 on which the antibody 20 (A) is fixed, and a proximal end 30 a on the hydrophobic portion 31 side is provided. A detection liquid 1a is obtained which is immobilized on the surface 10s of the gold nanoparticle 10 and in which the label A is dispersed in the buffered aqueous solution 40 (A-3). In the same process, the detection liquid 1b in which the label B is dispersed in the buffered aqueous solution 40 is obtained.
<反応液調製工程>
 次に、図4Bに示されるように、緩衝性水溶液S中に被検出物質(抗原)Rが分散されてなる被測定試料2を準備し、準備した2種(以上)の検出液(1a,1b)を混合して反応液3を調製する(反応液調製工程)。
<Reaction solution preparation process>
Next, as shown in FIG. 4B, a sample 2 to be measured in which a substance to be detected (antigen) R is dispersed in a buffered aqueous solution S is prepared, and the prepared two (or more) detection liquids (1a, 1b) is mixed to prepare a reaction solution 3 (reaction solution preparation step).
<反応工程>
 次に、図4C左図に示されるように、得られた反応液3を、反応液3中の全てのプローブ20(A,B)の生体物質と被検出物質である抗原Rとを特異結合させる。反応条件は、抗原抗体反応の種類に応じて適宜好適な条件とする。このように2種の抗体で抗原をサンドイッチ法により検出することにより、貴金属ナノ粒子10が二量体となり、後工程の検出工程にて被検出物質(抗原)Rの有無を精度良く検出することができる。
<Reaction process>
Next, as shown in the left diagram of FIG. 4C, the obtained reaction solution 3 is specifically bound to the biological material of all the probes 20 (A, B) in the reaction solution 3 and the antigen R which is the detection target. Let The reaction conditions are appropriately set according to the type of antigen-antibody reaction. Thus, by detecting the antigen with the two types of antibodies by the sandwich method, the noble metal nanoparticle 10 becomes a dimer, and the presence or absence of the substance to be detected (antigen) R can be accurately detected in the subsequent detection step. Can do.
<検出工程>
 検出工程は、反応工程にて反応後の反応液3を用いて、二量体となった貴金属ナノ粒子標識の有無を検出することにより特異結合の有無を検出し、被測定試料2中の被検出物質Rの有無を検出する工程である。
 検出工程における検出方法は特に制限されないが、図4C右図には、被検出物質(抗原)Rの有無の検出を、ゲル電気泳動により実施する態様について、ゲル電気泳動装置100の概略構成と、バンドDの検出例を示す上面模式図を示してある。
<Detection process>
In the detection step, the presence or absence of specific binding is detected by detecting the presence or absence of a noble metal nanoparticle label that has become a dimer using the reaction solution 3 after the reaction in the reaction step. This is a step of detecting the presence or absence of the detection substance R.
Although the detection method in the detection step is not particularly limited, the right diagram in FIG. 4C shows a schematic configuration of the gel electrophoresis apparatus 100 with respect to an embodiment in which the presence / absence of the substance to be detected (antigen) R is detected by gel electrophoresis. A schematic top view showing an example of detection of band D is shown.
 ゲル電気泳動装置100は、容器内にゲルマトリックス102が設置されてなり、検出する試料を分注するウェル101と電圧印加手段とを備えている。 The gel electrophoresis apparatus 100 includes a gel matrix 102 installed in a container, and includes a well 101 for dispensing a sample to be detected and a voltage applying unit.
 本実施形態では、反応工程にて反応後の反応液3をウェル101に分注し、ウェル101側がマイナスとなるように電圧を印加して電気泳動を実施する。電圧印加の際の方向は被検出物質の帯電状態によって決定する。 In this embodiment, the reaction solution 3 after the reaction in the reaction step is dispensed into the well 101, and electrophoresis is performed by applying a voltage so that the well 101 side is negative. The direction of voltage application is determined by the charged state of the substance to be detected.
 電気泳動では、ゲルマトリックス中を被検出物質や標識等が移動する際、その分子量よって移動度が変化するため、重いもの、すなわち特異結合を形成しているものほど移動量が少なく手前側(ウェル側)となり、一本鎖はより遠くまで移動するため、一定時間電圧を印加した後に貴金属ナノ粒子10にプラズモンを誘起可能な波長の光を含む光を照射することにより、赤色に呈色したバンドDとなって特異結合(抗原抗体反応)の有無、すなわち、被検出物質(抗原)Rの有無を検出することができる。 In electrophoresis, when a substance to be detected or a label moves in a gel matrix, the mobility changes depending on its molecular weight. Since the single strand moves farther, a band colored in red by irradiating the noble metal nanoparticle 10 with light having a wavelength capable of inducing plasmon after applying a voltage for a certain time. It becomes D and the presence or absence of specific binding (antigen-antibody reaction), that is, the presence or absence of the substance to be detected (antigen) R can be detected.
 バンドDにおける各バンドの同定は、バンドを切り出してTEM観察することにより実施することができる。図8は、後記実施例1及び比較例1,比較例2にて検出されたバンドの上面写真である。図示されるように、より移動度の大きかった下流のバンドでは特異結合が形成されていない1個の貴金属ナノ粒子10が観察され、上流側に行くにつれ、金ナノ粒子10が2個、3個と増えていき、抗原Rの有無を確認することができる。 Identification of each band in band D can be performed by cutting out the band and observing it with a TEM. FIG. 8 is a top view photograph of bands detected in Example 1 and Comparative Examples 1 and 2 which will be described later. As shown in the figure, one noble metal nanoparticle 10 in which no specific bond is formed is observed in the downstream band having a higher mobility, and two or three gold nanoparticles 10 are observed as going upstream. The presence of the antigen R can be confirmed.
 ゲル電気泳動による検出は、比較的高濃度の検体が必要となるため、微量な検体の検出には、より高感度な検出方法により検出する必要がある。本発明者らは、図5に概略構成が示される光学異方性検出装置200を用い、2つの略等方性の貴金属ナノ粒子が抗原にそれぞれ特異結合して二量体を形成することにより出現する異方性を検出することによって抗原の有無を検出する方法により、高感度な検出が可能となることを見出した。 Since detection by gel electrophoresis requires a sample with a relatively high concentration, detection of a very small amount of sample requires detection by a more sensitive detection method. The present inventors use the optical anisotropy detection apparatus 200 whose schematic configuration is shown in FIG. 5, whereby two substantially isotropic noble metal nanoparticles each bind specifically to an antigen to form a dimer. It has been found that highly sensitive detection is possible by detecting the presence or absence of an antigen by detecting the anisotropy that appears.
 光学異方性検出装置200は、試料(混合溶液)3を設置する透明の試料台210と、レーザ230と、ビームスプリッター221と対物レンズ222とからなる照射受光光学系220と、λ/2板240と、P偏光とS偏光に分離する偏光ビームスプリッタ250と、各偏光をそれぞれ検出するフォトダイオード261,262と、検出信号を表示するオシロスコープ270とから構成されている。 The optical anisotropy detection apparatus 200 includes a transparent sample stage 210 on which a sample (mixed solution) 3 is placed, a laser 230, an irradiation light receiving optical system 220 including a beam splitter 221 and an objective lens 222, and a λ / 2 plate. 240, a polarization beam splitter 250 that separates into P-polarized light and S-polarized light, photodiodes 261 and 262 that detect each polarized light, and an oscilloscope 270 that displays a detection signal.
具体的には、倒立顕微鏡(例えば、Nikon社製)等を用いて図5に示される検出装置を構成して測定を行う。まず、半導体レーザ230を対物レンズ222にて試料台210上の被測定試料2内に集光して微小スポットを形成し、微小スポットをブラウン運動により回転しながら単量体や二量体粒子が通過することにより生じる散乱光を対物レンズ222にて集光し、集光された光を偏光ビームスプリッタ250で直交する偏光成分に分離する。分離された散乱光をそれぞれフォトダイオード261,262にて受光してオシロスコープ270にその強度の時間トレースを表示させ、それを下記式(1)で表される偏光異方指数AIの時間トレースと照合することにより、試料内の貴金属ナノ粒子の光学異方性を定量化して特異結合(抗原)の有無を検出する。
 AI=(Ix-Iy)/(Ix+Iy)   ・・・ (1)
(Ixはx方向の散乱光強度,Iyはx方向に直交する散乱光強度,x方向は入射光の偏光方向である)
Specifically, the measurement is performed by configuring the detection apparatus shown in FIG. 5 using an inverted microscope (for example, manufactured by Nikon). First, the semiconductor laser 230 is condensed in the sample 2 to be measured on the sample stage 210 by the objective lens 222 to form a micro spot, and the monomer and dimer particles are formed while the micro spot is rotated by Brownian motion. Scattered light generated by passing through is collected by the objective lens 222, and the collected light is separated into orthogonal polarization components by the polarization beam splitter 250. The separated scattered light is received by the photodiodes 261 and 262, respectively, and the time trace of the intensity is displayed on the oscilloscope 270, which is collated with the time trace of the polarization anisotropic index AI expressed by the following formula (1). By doing so, the optical anisotropy of the noble metal nanoparticles in the sample is quantified to detect the presence or absence of specific binding (antigen).
AI = (Ix−Iy) / (Ix + Iy) (1)
(Ix is the scattered light intensity in the x direction, Iy is the scattered light intensity orthogonal to the x direction, and the x direction is the polarization direction of the incident light)
 微小スポットを通過する際、単量体や二量体の粒子は充分な回数回転するので、光の偏光方向に対してあらゆる配置をとることができる。従って、偏光異方指数AIの最大値に着目し、該AI値を与える時間における各偏光強度及びその位相のずれから、二量体の有無、すなわち特異結合の有無を検出する。 When passing through the microspot, the monomer and dimer particles rotate a sufficient number of times, so that any arrangement can be taken with respect to the polarization direction of the light. Therefore, paying attention to the maximum value of the polarization anisotropy index AI, the presence or absence of a dimer, that is, the presence or absence of specific binding, is detected from each polarization intensity and its phase shift at the time when the AI value is given.
実際の単量体と二量体に上記方法による各偏光強度の測定を実施し、偏光異方指数AIを計算した結果を図6に示す。
 図6に示されるように、偏光異方指数AI=1.3を境に、単量体と二量体とを明確に区別することができる。
FIG. 6 shows the result of calculating the polarization anisotropy index AI by measuring the polarization intensity of the actual monomer and dimer by the above method.
As shown in FIG. 6, the monomer and the dimer can be clearly distinguished on the boundary of the polarization anisotropic index AI = 1.3.
 微量な検体の検出は、上記の方法以外に、蛍光相関分光法における蛍光の代わりに、貴金属ナノ粒子のプラズモン共鳴による強い散乱光を用いた光散乱相関分光法により、貴金属ナノ粒子の試料液中での回転運動の時定数から検出することも可能である。 In addition to the above-mentioned method, a trace amount of analyte can be detected in a sample solution of noble metal nanoparticles by light scattering correlation spectroscopy using strong scattered light due to plasmon resonance of noble metal nanoparticles instead of fluorescence in fluorescence correlation spectroscopy. It is also possible to detect from the time constant of the rotational motion at.
 光散乱相関分光法により得られた単量体及び二量体の自己相関関数を図7(左側は単量体(単体)、右側は二量体)に示す。二量体の回転拡散速度は単量体の約4倍程度であることが理論的に予測されており、図7に示される自己相関関数の減衰時間の差はその差を反映したものと考えられる。 The autocorrelation functions of the monomer and dimer obtained by light scattering correlation spectroscopy are shown in FIG. 7 (monomer (single) on the left side and dimer on the right side). The rotational diffusion rate of the dimer is theoretically predicted to be about 4 times that of the monomer, and the difference in the decay time of the autocorrelation function shown in FIG. 7 is considered to reflect that difference. It is done.
 更に、検出液1及び本発明のバイオセンシング方法は、工程(D)において、被検出物質Rの有無を、貴金属ナノ粒子の局在プラズモン共鳴波長シフトにより検出する態様にも好適である。 Furthermore, the detection liquid 1 and the biosensing method of the present invention are also suitable for an embodiment in which the presence or absence of the substance to be detected R is detected by the local plasmon resonance wavelength shift of the noble metal nanoparticles in the step (D).
 本発明のバイオセンシング方法は、上記本発明の検出液を用いてセンシングを行うものであるので、本発明の検出液と同様の効果を奏する。 Since the biosensing method of the present invention performs sensing using the detection liquid of the present invention, the same effect as the detection liquid of the present invention is exhibited.
 以下、本発明の実施例及び比較例を示す。本発明者は、生化学分析に用いる検出液としては、非特異的な凝集抑制効果及び特異結合の反応効率向上効果の双方の効果を安定して得られる必要があると考え、これらの効果について、検出液1の調製直後と24時間経過後(翌日)についての評価を実施した。 Hereinafter, examples and comparative examples of the present invention will be described. The present inventor believes that it is necessary to stably obtain both non-specific aggregation suppressing effect and specific binding reaction efficiency improving effect as a detection solution used for biochemical analysis, and about these effects Evaluation was performed immediately after the preparation of the detection liquid 1 and after 24 hours (next day).
 (実施例1)
 直径40nmの金ナノコロイド溶液(田中貴金属製0.17pM金コロイド溶液)が貯留された反応容器を2つ用意した。また、1次抗体として抗hCGモノクローナルIgG抗体(Anti-hCG 5008 SP-5、Medix Biochemica社)を用い、上記したK.L.Broganらと同様にして、酢酸ナトリウム緩衝性水溶液中にてペプシンと、メルカプトメチルアミンにより断片化してIgGを断片化処理した後、末端基をチオール化し、金ナノコロイド溶液が貯留された反応容器内に50pMとなるように添加し、52℃の温度で約1時間反応させた。次にこの検出液及び測定試料の入った反応容器に、20-(11-メルカプトウンデカンイルオキシ)-3,6,9,12,15,18-ヘキサオキサエイコサン酸 試薬(同仁化学社製)を50nMの濃度となるように添加し、52℃の温度で約3時間反応させて検出液1aを調製した。また、同様にして、2次抗体として抗hCGモノクローナルIgG抗体(Anti-Alpha subunit 6601 SPR-5、Medix Biochemica社)を用い、同様にして検出液1bを調製した。
Example 1
Two reaction containers in which a gold nanocolloid solution having a diameter of 40 nm (0.17 pM gold colloid solution manufactured by Tanaka Kikinzoku) was stored were prepared. In addition, using anti-hCG monoclonal IgG antibody (Anti-hCG 5008 SP-5, Medix Biochemica) as a primary antibody, pepsin and mercaptomethylamine in a sodium acetate buffered aqueous solution in the same manner as KLBrogan et al. After fragmentation by IgG and fragmentation treatment of IgG, the end groups were thiolated, added to a reaction vessel in which the gold nanocolloid solution was stored so as to be 50 pM, and reacted at a temperature of 52 ° C. for about 1 hour. Next, 20- (11-mercaptoundecanyloxy) -3,6,9,12,15,18-hexaoxaeicosanoic acid reagent (manufactured by Dojindo) Was added to a concentration of 50 nM and reacted at a temperature of 52 ° C. for about 3 hours to prepare Detection Solution 1a. Similarly, an anti-hCG monoclonal IgG antibody (Anti-Alpha subunit 6601 SPR-5, Medix Biochemica) was used as a secondary antibody, and a detection solution 1b was similarly prepared.
 次に、測定試料として抗原hCG(Human chorionic gonadotropin:女性ホルモンの一つ)を酢酸ナトリウム緩衝性水溶液中に分散させたものを用意し、測定試料と検出液1a及び検出液1bを混合し、室温にて8時間反応させて反応液とした。 Next, an antigen hCG (Human chorionic gonadotropin: one of female hormones) dispersed in a sodium acetate buffered aqueous solution is prepared as a measurement sample, and the measurement sample, the detection solution 1a and the detection solution 1b are mixed, and room temperature is obtained. For 8 hours to obtain a reaction solution.
(比較例1)
 1次抗体及び2次抗体として、断片化しないままのIgGを用い、他の工程は実施例1と同様にして反応液を調製した。
(Comparative Example 1)
As a primary antibody and a secondary antibody, IgG that was not fragmented was used, and in the other steps, a reaction solution was prepared in the same manner as in Example 1.
(比較例2)
 1次抗体及び2次抗体として、断片化しないままのIgGを用い、実施例1と同様の金ナノコロイド溶液中に添加し、52℃の温度で約1時間反応させ、金ナノコロイドの表面に抗体を物理吸着させた。次にこの検出液及び測定試料の入った反応容器に、1%ポリエチレングリコール+2%BSA(Bovine serum albumin:ウシ血清アルブミン)水溶液を加えて攪拌し検出液を調製した。以降の工程は実施例1と同様にして反応液を調製した。SAM試薬として、ウンデシルメルカプタン(英語名:Undecyl Mercaptan)を用いた以外は実施例1と同様にして反応液を調製した。
(Comparative Example 2)
Using IgG without fragmentation as the primary antibody and the secondary antibody, it was added to the same gold nanocolloid solution as in Example 1 and allowed to react at a temperature of 52 ° C. for about 1 hour. The antibody was physically adsorbed. Next, a 1% polyethylene glycol + 2% BSA (Bovine serum albumin) aqueous solution was added to the reaction vessel containing the detection solution and the measurement sample and stirred to prepare a detection solution. Subsequent steps were performed in the same manner as in Example 1 to prepare a reaction solution. A reaction solution was prepared in the same manner as in Example 1 except that undecyl mercaptan (English name: Undecyl Mercaptan) was used as the SAM reagent.
 (評価)
 実施例1、比較例1,2の各例の反応液について、アガロースゲル電気泳動装置に分注し、175Vの電圧にて15分間電気泳動を実施後に自然光にてそのバンドを観察した。その結果を図8に示す。
(Evaluation)
About the reaction liquid of each example of Example 1 and Comparative Examples 1 and 2, it dispensed to the agarose gel electrophoresis apparatus, the band was observed with natural light after performing electrophoresis for 15 minutes at the voltage of 175V. The result is shown in FIG.
 図8には、わかりやすくするために、各例の右列に●により金ナノ粒子の単量体のバンド位置、二量体のバンド位置を示してある。実施例1では、検出液調製(調液)当日、及び24時間経過後の翌日の両方とも、抗原無しにおいて二量体のバンドは検出されず、非特異結合は検出されなかった。また、抗原有りにおいても、両方とも二量体のバンドがはっきりと検出できたことが確認され、精度の高いセンシングを実施することができた。 In FIG. 8, for easy understanding, the band position of the monomer of gold nanoparticles and the band position of the dimer are indicated by ● in the right column of each example. In Example 1, on the day of detection solution preparation (preparation) and on the next day after the lapse of 24 hours, no dimer band was detected without antigen, and nonspecific binding was not detected. In addition, even in the presence of antigen, it was confirmed that a dimer band could be clearly detected in both cases, and highly accurate sensing could be performed.
 一方、負電荷を有するSAMを配した比較例1では、検出液の調製当日及び翌日共に非特異結合を良好に抑制していることが確認された。一方、抗原がある場合においては、検出液調製当日は抗原の2量体について良好に検出されているが、翌日は検出されないという結果が得られた。比較例2では、抗原無しにおいても、複数のバンドが検出されており、非特異結合による凝集を生じており、精度の低いセンシングとなった。
 以上のようにして、本発明の有効性が確認された。
On the other hand, in Comparative Example 1 in which a negatively charged SAM was arranged, it was confirmed that nonspecific binding was well suppressed both on the day of preparation of the detection solution and on the next day. On the other hand, in the case where the antigen was present, the result was that the dimer of the antigen was well detected on the day of preparation of the detection solution, but not detected the next day. In Comparative Example 2, a plurality of bands were detected even without an antigen, causing aggregation due to non-specific binding, resulting in low-precision sensing.
As described above, the effectiveness of the present invention was confirmed.

Claims (11)

  1.  貴金属ナノ粒子を標識として、被測定試料中に含まれる、生体物質からなる被検出物質を検出するバイオセンシングに用いる検出液であって、
    前記被検出物質と特異結合する親水性の生体物質を含むプローブと、疎水性部と親水性部とを有する両親媒性の自己組織化単分子膜とが表面に固定された前記貴金属ナノ粒子が緩衝性水溶液に分散されてなり、
    前記自己組織化単分子膜は、前記粒子に固定されている側が前記疎水性部であり、且つ、
    前記親水性部の末端の官能基が正又は負のいずれか1種の電荷を有しており、
    前記プローブが前記表面に化学結合により固定されている検出液。
    A detection liquid used for biosensing for detecting a detection target substance made of a biological substance contained in a sample to be measured, using noble metal nanoparticles as a label,
    The noble metal nanoparticles having a probe containing a hydrophilic biological substance that specifically binds to the substance to be detected and an amphiphilic self-assembled monolayer having a hydrophobic part and a hydrophilic part fixed on the surface Dispersed in a buffered aqueous solution,
    In the self-assembled monolayer, the side fixed to the particle is the hydrophobic part, and
    The functional group at the end of the hydrophilic part has either a positive or negative charge,
    A detection solution in which the probe is fixed to the surface by chemical bonding.
  2.  前記親水性部の末端の官能基の電荷と、前記親水性の生体物質の電荷が同種である請求項1に記載の検出液。 The detection liquid according to claim 1, wherein the charge of the functional group at the end of the hydrophilic part is the same as the charge of the hydrophilic biological substance.
  3. 前記親水性部がポリエチレングリコール鎖である請求項1又は2いずれか一項記載の検出液。 The detection liquid according to claim 1, wherein the hydrophilic part is a polyethylene glycol chain.
  4. 前記親水性部が糖鎖である請求項1又は2いずれか一項記載の検出液。 The detection liquid according to claim 1, wherein the hydrophilic part is a sugar chain.
  5.  前記生体物質が抗体である請求項1~4いずれか一項記載の検出液。 The detection liquid according to any one of claims 1 to 4, wherein the biological substance is an antibody.
  6.  前記生体物質が断片化された抗体である請求項1~4いずれか一項記載の検出液。 The detection solution according to any one of claims 1 to 4, wherein the biological material is a fragmented antibody.
  7.  前記化学結合が断片化された抗体の持つジスルフィド基又はチオール基の硫黄原子と前記表面の貴金属原子との結合である請求項1~6いずれか一項記載の検出液。 The detection solution according to any one of claims 1 to 6, wherein the chemical bond is a bond between a sulfur atom of a disulfide group or a thiol group of the fragmented antibody and a noble metal atom on the surface.
  8.  貴金属ナノ粒子を標識として、被測定試料中に含まれる、生体物質からなる被検出物質を検出するバイオセンシングにおいて、
     前記特異結合が互いに異なり、且つ、前記官能基の電荷が同種である2種以上の前記請求項1~7いずれか一項記載の検出液を用意する検出液準備工程と、
     前記被測定試料を含む緩衝性水溶液中に前記2種以上の検出液を混合して反応液を調製する反応液調製工程と、
     該反応液中の全ての前記プローブの生体物質と前記被検出物質とを特異結合させる反応工程と、
     該反応工程後の前記反応液を用いて、前記標識を検出することにより前記被測定試料中の前記特異結合した前記被検出物質の有無を検出する検出工程を有するバイオセンシング方法。
    In biosensing for detecting a detection target substance made of a biological substance contained in a sample to be measured, using noble metal nanoparticles as a label,
    A detection liquid preparation step for preparing two or more detection liquids according to any one of claims 1 to 7, wherein the specific bonds are different from each other, and the functional groups have the same charge.
    A reaction solution preparation step of preparing a reaction solution by mixing the two or more detection solutions in a buffered aqueous solution containing the sample to be measured;
    A reaction step of specifically binding the biological substance of all the probes in the reaction solution and the substance to be detected;
    A biosensing method comprising a detection step of detecting the presence or absence of the specifically bound substance to be detected in the sample to be measured by detecting the label using the reaction solution after the reaction step.
  9.  前記検出工程において、前記被検出物質の有無の検出を、ゲル電気泳動により実施する請求項8に記載のバイオセンシング方法。 The biosensing method according to claim 8, wherein in the detection step, the presence or absence of the substance to be detected is detected by gel electrophoresis.
  10. 前記検出工程において、前記被検出物質の有無を、散乱光の偏光異方指数により検出する請求項8に記載のバイオセンシング方法。 The biosensing method according to claim 8, wherein in the detection step, the presence or absence of the substance to be detected is detected by a polarization anisotropic index of scattered light.
  11. 前記検出工程において、前記被検出物質の有無を、光散乱相関分光法 により検出する請求項8記載のバイオセンシング方法。 The biosensing method according to claim 8, wherein in the detection step, the presence or absence of the substance to be detected is detected by a light scattering correlation spectroscopy method.
PCT/JP2015/002061 2014-04-16 2015-04-14 Detection solution and biosensing method using same WO2015159534A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016513639A JPWO2015159534A1 (en) 2014-04-16 2015-04-14 Detection liquid and biosensing method using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-084248 2014-04-16
JP2014084248 2014-04-16

Publications (1)

Publication Number Publication Date
WO2015159534A1 true WO2015159534A1 (en) 2015-10-22

Family

ID=54323758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002061 WO2015159534A1 (en) 2014-04-16 2015-04-14 Detection solution and biosensing method using same

Country Status (2)

Country Link
JP (1) JPWO2015159534A1 (en)
WO (1) WO2015159534A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004526124A (en) * 2000-06-23 2004-08-26 ミナーヴァ・バイオテクノロジーズ・コーポレーション Rapid and sensitive detection of protein aggregation
JP2005534925A (en) * 2002-08-01 2005-11-17 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Nanoparticles comprising mixed monolayers for specific ligand binding
US20090148863A1 (en) * 2007-11-30 2009-06-11 Xiaohong Nancy Xu Nanoparticle biosensors
JP2009229209A (en) * 2008-03-21 2009-10-08 Shiseido Co Ltd Surface modification method, surface modifying material and analytical method
JP2011516880A (en) * 2008-04-10 2011-05-26 プロバイオン、カンパニー、リミテッド New mass spectrometry signal amplification technology

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004526124A (en) * 2000-06-23 2004-08-26 ミナーヴァ・バイオテクノロジーズ・コーポレーション Rapid and sensitive detection of protein aggregation
JP2005534925A (en) * 2002-08-01 2005-11-17 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Nanoparticles comprising mixed monolayers for specific ligand binding
US20090148863A1 (en) * 2007-11-30 2009-06-11 Xiaohong Nancy Xu Nanoparticle biosensors
JP2009229209A (en) * 2008-03-21 2009-10-08 Shiseido Co Ltd Surface modification method, surface modifying material and analytical method
JP2011516880A (en) * 2008-04-10 2011-05-26 プロバイオン、カンパニー、リミテッド New mass spectrometry signal amplification technology

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKESHITA ET AL.: "Precise discrimination of monomer and dimer particles for highly sensitive sandwich assay with gold nanoparticles", THE 74TH JSAP AUTUMN MEETING KOEN YOKOSHU, 31 August 2013 (2013-08-31), pages 12 - 300 *

Also Published As

Publication number Publication date
JPWO2015159534A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
JP6795733B2 (en) Cobinder-assisted assay
Omidfar et al. New analytical applications of gold nanoparticles as label in antibody based sensors
Wang et al. Mixed monolayers on gold nanoparticle labels for multiplexed surface-enhanced Raman scattering based immunoassays
Smith et al. Optimization of antibody-conjugated magnetic nanoparticles for target preconcentration and immunoassays
US20040053222A1 (en) Nanoparticle polyanion conjugates and methods of use thereof in detecting analytes
JP2005524849A (en) Nanoparticle probes for analyte detection with fingerprints for Raman spectroscopy
Mahmoud et al. Advanced procedures for labeling of antibodies with quantum dots
WO2008053822A1 (en) Method of detecting specific bond reaction of molecule by single molecule fluorometry
Kunushpayeva et al. Sandwich SERS immunoassay of human immunoglobulin on silicon wafer compared to traditional SERS substrate, gold film
TW201221941A (en) Metal particle for surface enhanced raman scattering and molecular sensing
Lee et al. Detection of glyphosate by quantitative analysis of fluorescence and single DNA using DNA-labeled fluorescent magnetic core–shell nanoparticles
Esseghaier et al. One-step assay for optical prostate specific antigen detection using magnetically engineered responsive thin film
Cong et al. Microfluidic droplet-SERS platform for single-cell cytokine analysis via a cell surface bioconjugation strategy
JP2012194013A (en) Immunohistochemical staining method and reaction reagent
US20120058548A1 (en) Detection of biotargets using bioreceptor functionalized nanoparticles
Wen et al. Determination of the absolute number concentration of nanoparticles and the active affinity sites on their surfaces
JP6386591B2 (en) Novel detection method for detection object in sample and detection kit using the same
Chauhan et al. Evanescent wave cavity ring-down spectroscopy based interfacial sensing of prostate-specific antigen
WO2015159534A1 (en) Detection solution and biosensing method using same
JP5205293B2 (en) Antibody-immobilized substrate, and method and use of the antibody-immobilized substrate
JP5024291B2 (en) Fluorescent semiconductor fine particles, method for producing the same, fluorescent labeling agent for biological material using the same, and bioimaging method using the same
Wang et al. Aspects of recent development of immunosensors
ES2399350T3 (en) Fast ELISA
Mitchell et al. Surface plasmon resonance biosensors for highly sensitive detection of small biomolecules
JP2010002393A (en) Detection method of target material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15780400

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016513639

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15780400

Country of ref document: EP

Kind code of ref document: A1