WO2015159420A1 - Method for manufacturing hollow body from multilayer sheet and manufacturing system - Google Patents

Method for manufacturing hollow body from multilayer sheet and manufacturing system Download PDF

Info

Publication number
WO2015159420A1
WO2015159420A1 PCT/JP2014/061015 JP2014061015W WO2015159420A1 WO 2015159420 A1 WO2015159420 A1 WO 2015159420A1 JP 2014061015 W JP2014061015 W JP 2014061015W WO 2015159420 A1 WO2015159420 A1 WO 2015159420A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat source
pair
heating
multilayer
sheets
Prior art date
Application number
PCT/JP2014/061015
Other languages
French (fr)
Japanese (ja)
Inventor
真介 後藤
加藤 晴男
淳一 鵜飼
浩司 田村
Original Assignee
株式会社エムジーモールド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エムジーモールド filed Critical 株式会社エムジーモールド
Priority to PCT/JP2014/061015 priority Critical patent/WO2015159420A1/en
Publication of WO2015159420A1 publication Critical patent/WO2015159420A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/10Forming by pressure difference, e.g. vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/14Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor using multilayered preforms or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/26Component parts, details or accessories; Auxiliary operations
    • B29C51/42Heating or cooling

Definitions

  • the present invention relates to a method and system for manufacturing a hollow body made of a multilayer sheet.
  • a twin composite molding method As an example of a method for producing a resin molded product having a hollow structure, a twin composite molding method has been proposed (see Patent Document 1).
  • a pair of resin sheets are opposed to each other in the vertical direction, and the resin sheet is softened by heating with a heat source disposed outside (upper and lower) of these resin sheets, and then a pair of gold sheets Molding that forms a pair of resin sheets along the upper and lower molds by evacuating from the suction holes provided in the mold surface between the molds and injecting compressed air between the pair of resin sheets Is the law.
  • a multilayer sheet having a plurality of functions as the resin sheet constituting the hollow body.
  • a resin-made hollow air duct is used inside the interior panel of a vehicle such as an automobile to connect the air blowing port and the air intake port of an air conditioner or the like.
  • a two-layer structure in which a foamed resin layer that prevents condensation due to temperature differences and abnormal noise due to contact with peripheral devices during vibration and a rigid resin layer with rigidity that can maintain its shape well is proposed (refer patent document 2).
  • a hollow body made of a resin sheet having a multilayer structure as described above is to be manufactured by a conventional molding method, it is configured to heat from the outside of the resin sheet disposed oppositely, and thus is provided at the inner edge.
  • the heating of the bonded portion in other words, the melting of the surface layer portion of the opposing surface may be insufficient, and it is difficult to obtain sufficient bonding strength.
  • the thermal conductivity of each layer of the resin sheet is different or the thickness increases, so the inner layer is not heated sufficiently, and the resin sheet has sufficient followability to the mold. It is difficult to obtain.
  • the drawdown of the resin sheet increases. If the drawdown becomes large, the resin sheet arranged on the upper side cannot follow the upper mold surface of the mold, or the resin sheet arranged on the lower side may come into contact with the heat source during heating. Arise.
  • the present invention has been made in view of the circumstances as described above, and even when a multilayer sheet is used, a higher bonding strength can be obtained than before, and a hollow body that can suppress drawdown during heating can be produced. Methods and manufacturing systems are provided.
  • a method for producing a hollow body made of a multilayer sheet according to the present invention includes a pair of multilayer sheets arranged side by side so as to face each other, heated from the outside by a first heat source, and inside To a second heat source, and a forming step for forming the pair of multilayer sheets that have undergone the heating step.
  • a pair of the multilayer sheets are arranged side by side so as to face each other, heated from the outside by a first heat source, and heated from the inside by a second heat source.
  • An inner high-temperature double-sided heating step in which heating is performed at a temperature higher than one heat source; a single-sided heating step in which the pair of multiphase sheets that have undergone the inner high-temperature double-sided heating step are heated from the outside only by the first heat source; And a molding step of molding the pair of multilayer sheets that have undergone the step.
  • Still another method for producing a hollow body comprising a multilayer sheet according to the present invention comprises a pair of multilayer sheets arranged side by side so as to face each other, heated from the outside by a first heat source and from the inside by a second heat source.
  • An inner high-temperature double-sided heating step in which heating is performed at a temperature higher than one heat source; and the pair of multilayer sheets that have undergone the inner high-temperature double-sided heating step are heated from the outside by the first heat source and from the inside by the second heat source. It includes a double-sided heating step of heating at a temperature of 1 heat source or less and a forming step of forming the pair of multilayer sheets that have undergone the double-sided heating step.
  • the second heat source in the one-side heating step, can be retracted to a position that is laterally removed from the position where the multilayer sheet faces.
  • the second heat source can be disposed closer to the multilayer sheet disposed on the lower side of the pair of multilayer sheets.
  • the hollow body manufacturing system includes a sheet holding mechanism that arranges a pair of multilayer sheets so as to face each other, a first heat source that heats outer surfaces of the pair of multilayer sheets, and the pair of pairs.
  • a heating device having a second heat source for heating the inner surface of the multilayer sheet, a transport mechanism for transporting the pair of multilayer sheets, a molding device having a pair of molding dies, and a control unit,
  • An inner high-temperature double-sided heating process in which the first heat source heats the outer surfaces of the pair of multilayer sheets and the second heat source heats the inner surfaces of the pair of multilayer sheets at a higher temperature than the first heat source; Heating only the outer surfaces of the pair of multilayer sheets, or causing the first heat source to heat the outer surfaces of the pair of multilayer sheets and the second heat source to the pair of multilayer sheets.
  • Double-sided heat treatment for heating the inner surface of the sheet at a temperature lower than the first heat source, and conveying the pair of multilayer sheets heated by the first heat source and the second heat source to the conveying mechanism between the pair of molds.
  • a forming process for causing the forming apparatus to form the pair of multilayer sheets transported by the transport mechanism by the pair of forming dies.
  • the manufacturing system includes a retracting mechanism for retracting the second heat source from a position where the pair of multilayer sheets face each other to a position deviated laterally, and the control unit is configured to perform the one-side heating process, In the heat treatment, the retracting mechanism can be configured to retract the second heat source to a position off the side.
  • the second heat source may be arranged closer to the multilayer sheet disposed on the lower side of the pair of multilayer sheets.
  • the bonding strength of the edges of the pair of multilayer sheets can be improved, and the drawdown during heating can be suppressed.
  • FIG. 1 is a schematic view showing a state in which a pair of two-layer sheets are arranged in a mold in the manufacturing system of FIG.
  • FIG. 1 is a schematic diagram showing a state in which the manufacturing system of FIG.
  • FIG. 1 is a schematic view showing a state where the mold is clamped and compressed in the manufacturing system of FIG. 1.
  • FIG. 1 is a schematic view showing a state in which the mold is opened in the manufacturing system of FIG. Sectional drawing which shows the hollow molded product shape
  • the block diagram which shows the electrical constitution of the manufacturing system of FIG.
  • the flowchart which shows the process which a control part performs in the manufacturing system of FIG.
  • the method for producing a hollow body composed of the multilayer sheet of the present invention for example, from both the outside and inside both sides of the multilayer sheet opposed in the vertical direction, from the outside by the first heat source, and from the inside by the second heat source, Since heating is performed, the entire pair of multilayer sheets is heated to a good state in a short time.
  • the single-sided heating process (process) that heats only from the outside or the double-sided heating process (process) that heats from the outside and heats from the inside to below the outside
  • the entire sheet can be heated, transferability and shaping at the time of molding can be secured.
  • the entire sheet can be heated in a short time as compared to a configuration in which the entire sheet is heated from the outside or slowly from both sides over time, and the inner side from the inner surface layer portion is the sheet. Since it is not overheated until just before the whole is heated, and a certain degree of hardness can be maintained during heating, the drawdown of the multilayer sheet during heating can be reduced. In addition, since the inner joint portion can be surely brought into a good molten state, the joint strength can be increased as compared with the conventional case.
  • the inner second heat source can be retracted to a position deviated laterally from the position where the multilayer sheet faces. This prevents the multilayer sheet from coming into contact with the second heat source disposed in a narrow space between the pair of multilayer sheets even when the multilayer sheet disposed on the upper side of the pair of multilayer sheets is drawn down. Can increase the safety of the device.
  • the inner second heat source may be arranged near the multilayer sheet arranged on the lower side of the pair of multilayer sheets. it can.
  • the heat source is preferably disposed near the multilayer sheet disposed on the lower side. Moreover, when doing in this way, even when the multilayer sheet arrange
  • FIG. 8 is a cross-sectional view showing a two-layer duct 10 (an example of a hollow body).
  • This two-layer duct 10 has a two-layer structure of an outer layer 10A made of foamed resin and an inner layer 10B made of hard resin laminated inside the outer layer 10A.
  • the two-layer duct 10 is formed in a cylindrical body having an air flow passage 10C formed therein.
  • the two-layer duct 10 is manufactured from a two-layer sheet 11.
  • the two-layer sheet 11 is heat-insulating, for example, on one surface side of a foamed resin sheet 12 (constituting the outer layer 10A) such as foamed polyethylene or foamed polypropylene.
  • the two-layer sheet 11 is more rigid than the foamed resin sheet 12 and preferably has a shape as a duct.
  • a hard resin layer 13 such as polyethylene or polypropylene (which constitutes the inner layer 10B) is laminated.
  • the two-layer sheet 11 is obtained by laminating a hard resin layer 13 made of polypropylene having higher rigidity than the foamed resin sheet 12 on one surface side of the foamed resin sheet 12 made of polypropylene and expanded 25 to 40 times. It is composed of The thickness of the foamed resin sheet 12 is greater than the thickness of the hard resin layer 13. For example, the thickness of the foamed resin sheet 12 is set to 5 mm, and the thickness of the hard resin layer 13 is set to about 0.2 to 0.4 mm.
  • This two-layer sheet 11 is manufactured in advance and wound into a roll.
  • the combination of the resin types of these layers can be either the same type or different types.
  • the heat insulating layer can be the inner layer 10B
  • the rigid layer can be the outer layer 10A.
  • FIG. 1 is a schematic view showing the entire manufacturing system 20 of the two-layer duct 10 described above
  • FIG. 9 is a block diagram showing an electrical configuration of the manufacturing system 20.
  • the manufacturing system 20 holds the two-layer sheet 11.
  • the apparatus 40, the cutter 46, the control part 50 which controls each part, the operation part 53, and the display part 54 are provided.
  • the double-layer sheet 11 is conveyed from the left side to the right side in FIG. In the following description, the right side of FIG.
  • the sheet holding mechanism 21 of the manufacturing system 20 includes a number of clamps 22 each having a compression spring 22B attached between a pair of clamping plates 22A and 22A, and a guide 23.
  • the clamp 22 clamps the edge of the two-layer sheet 11 in the pressed state, and in the released state, the pair of sandwiching plates 22A and 22A are separated by the compression spring 22B.
  • the sheet 11 can be arranged between them, or can be pulled out between them.
  • the clamping plate 22 ⁇ / b> A located on the lower side of the multiple clamps 22 is configured as a part of two pairs of transport chains 25 described later.
  • the guide 23 provided along the transport chain 25 is pressed or released.
  • the transport mechanism 24 includes two pairs of annular transport chains 25, a sprocket 26 that is provided behind the heating device 30 and in front of the molding device 40 and hangs the transport chain 25, and a drive motor (not shown) that drives the sprocket 26 to rotate. It has.
  • the transport chain 25 is disposed outside the both edges of the two-layer sheets 11 and 11 that extend in the direction along the transport direction (the left-right direction in FIG. 1) of the two-layer sheet 11 and face the top and bottom. The held two-layer sheet 11 can be transported along the transport direction.
  • the transport chain 25 is movable by driving a drive motor.
  • the transport chain 25 is configured to transport the double-layer sheet 11 from the rear of the heating device 30 to the front of the molding device 40, and then change the direction to return to the rear of the heating device 30.
  • the heating device 30 includes a heating chamber 31 that accommodates a first heat source 32 and a second heat source 33 to be described later. Inside the heating chamber 31, the two-layer sheet 11 held by the clamp 22 is transported. 25 is carried in and passed through.
  • the heating chamber 31 includes a first heating unit 34 and a second heating unit 35 that are provided side by side in the conveyance direction of the double-layer sheet 11 (the left-right direction in FIG. 1).
  • the first heating unit 34 is located between the pair of first heat sources 32, 32 located outside the pair of two-layer sheets 11, 11 that are vertically opposed to each other and the pair of two-layer sheets 11, 11 (inside).
  • a second heat source 33 located therein. More specifically, as shown in FIGS. 1 and 2, a first heat source 32A disposed above the upper two-layer sheet 11A and a first heat source disposed below the lower two-layer sheet 11B. 32B and a second heat source 33 disposed between the upper two-layer sheet 11A and the lower two-layer sheet 11B.
  • the second heating unit includes only a pair of first heat sources 32A and 32B located above and below the pair of two-layer sheets 11 and 11.
  • the first heat source 32 is composed of a plurality of block-shaped medium-wavelength infrared heaters, and these infrared heaters are arranged side by side in a plurality of rows so as to face each other vertically.
  • the plurality of infrared heaters can be individually adjusted in output.
  • the heating irradiation distance from each first heat source 32 to the pair of two-layer sheets 11, 11 conveyed between the upper and lower first heat sources 32, 32 is the upper two layers from the upper first heat source 32 ⁇ / b> A.
  • the distance to the sheet 11A is set to be shorter than the distance from the lower first heat source 32B to the lower two-layer sheet 11B.
  • the heating irradiation distance from the first heat source 32 to the two-layer sheet 11 is 150 mm on the upper side and 250 mm on the lower side.
  • the surface temperature of the first heat source 32 is set to about 400 degrees.
  • the second heat source 33 is preferably one that quickly rises in temperature after the power is turned on, and a carbon heater, a halogen heater, or the like can be used.
  • a carbon heater, a halogen heater, or the like can be used.
  • a plurality of rod-shaped carbon heaters are arranged side by side along the conveying direction of the double-layer sheet 11 (left-right direction in FIG. 1). The plurality of carbon heaters can be individually adjusted in output.
  • the second heat source 33 is disposed near the sheet 11B disposed on the lower side of the pair of two-layer sheets 11A and 11B.
  • the heating irradiation distance from the second heat source 33 to the two-layer sheets 11 and 11 is 150 mm on the upper side and 50 mm on the lower side (see FIG. 2).
  • the surface temperature of the second heat source 33 is set to about 1000 degrees.
  • the upper surface of the lower first heat source 32B and the upper surface of the second heat source 33 of the upper and lower first heat sources 32 and the upper surface of the second heat source 33 are prevented from contacting the heat source of the two-layer sheet 11 when the two-layer sheet 11 is drawn down.
  • a safety net (not shown) is provided.
  • the second heat source 33 is provided with a retraction mechanism 36.
  • the retraction mechanism 36 is configured to move the second heat source 33 in the horizontal direction from the conveyance path of the two-layer sheet 11 after the second heat source 33 is heated by the second heat source 33 and the power is turned off. , Away from the side of the two-layer sheet 11.
  • the second heat source 33 is integrally connected to an opening / closing door 31B that closes an opening 31A provided in the heating chamber 31, and is opened / closed by a driving device such as an air cylinder (not shown) connected to the opening / closing door 31B. At the same time, it can be retracted from the opening 31A to the outside of the heating chamber 31 (see FIG. 3).
  • a draw-down detection sensor (not shown) is installed on the upper surface side of the first heat source 32B and the second heat source 33 on the lower side, and the two-layer sheets 11B and 11A are likely to draw down by heating and come into contact with the heat source. When it becomes, it is set so that the power source of the heat source is automatically turned off.
  • the forming apparatus 40 has a pair of upper and lower vacuum forming dies 41 and 42. Both vacuum forming dies 41, 42 have concave mold surfaces 41A, 42A capable of shaping the duct shape in the double-layer sheet 11, and these mold surfaces 41A, 42A are for vacuuming (not shown). A plurality of suction holes are formed. Further, an air hole (not shown) communicating from the outside is provided between the pair of mold surfaces 41A and 42A, and compressed air can be press-fitted into the molds 41 and 42 in a closed state through the air holes.
  • the control unit 50 includes a central processing unit (hereinafter referred to as CPU) 51 and a memory 52.
  • the memory 52 includes, for example, a ROM, a RAM, and the like, and various programs such as a program for executing each manufacturing process described later are stored in the ROM.
  • the CPU 51 controls each part of the manufacturing apparatus 20 according to a program read from the ROM.
  • the storage medium storing the various programs may be a non-volatile memory such as a CD-ROM, a hard disk device, or a flash memory.
  • the operation unit 53 has a plurality of buttons, and various input operations and setting operations can be performed by the user.
  • the display unit 54 includes a liquid crystal display, a lamp, and the like, and can display various setting screens and operation states of the apparatus.
  • FIG. 10 is a flowchart showing a process performed by the control unit 50 for a first region to be described later of the two-layer duct 10 of the present embodiment.
  • the pair of two-layer sheets 11 and 11 are pulled out from the pair of winding rolls 27 and 27 with the hard resin layers 13 and 13 facing each other in the up-and-down direction, and are vertically moved through the pair of delivery rollers 28 and 28. Send out in parallel in the direction. Further, both edge portions along the conveying direction of the two-layer sheets 11 and 11 are inserted between the clamping plates 22A and 22A of the clamp 22 in the released state, and the conveying chain 25 is slightly advanced to be clamped between the clamping plates 22A and 22A. . Thereby, a pair of two-layer sheet
  • the two-layer sheets 11 and 11 are set so as to be intermittently sent out for each region formed in a forming step described later.
  • the first region, the second region, and the third region will be referred to in order from the front side (the right side in FIG. 1) in the conveyance direction of the double-layer sheet 11.
  • control unit 50 When the user presses the manufacturing start button of the operation unit 53, the control unit 50 performs the process shown in FIG.
  • the control unit 50 activates the transport mechanism 24 to transfer the two-layer sheets 11 and 11 held by the clamp 22 between the first heat sources 32 and 32 and the second heat source 33 in the heating chamber 31, respectively. It is conveyed by. Further, the second heat source 33 is inserted into the heating chamber 31 through the opening 31A (S1).
  • the first heat sources 32A and 32B are always on, and the entire heating chamber 31 has a temperature atmosphere of about 400 degrees.
  • the two-layer sheets 11 and 11 are carried into the heating chamber 31 and the entire first region reaches the first heating unit 34 (between the first heat source 32 and the second heat source 33)
  • the two-layer sheet 11 and 11 are temporarily stopped, and the second heat source 33 is turned on for 6 seconds (inner high temperature double-sided heating step) (S2).
  • the surface layer portion inside the two-layer sheet 11, 11 (hard resin layer 13) is heated so as to be baked by the high-temperature second heat source 33, and is in a good molten state.
  • the second heat source 33 is turned off (S3), the retracting mechanism 36 is activated, and the second heat source 33 is separated from the two-layer sheets 11 and 11 from the opening 31A of the heating chamber 31.
  • the heating by the 1st heat source 32 is continued (one side heating process).
  • the first region of the two-layer sheets 11, 11 After the entire first region of the two-layer sheets 11, 11 reaches the first heating unit 34, the time required for the molding process described later (21 seconds in the present embodiment) has elapsed, and then the two-layer sheets 11, 11 Is again transported forward by the transport chain 25 (S5). As a result, the first region of the two-layer sheets 11, 11 proceeds to the second heating unit 35, and the second region is carried into the first heating unit 34. Then, the first region is made to reach the second heating unit 35, and the second region is made to reach the first heating unit 34, and then temporarily stopped at that position (21 seconds). Accordingly, the first region is further heated only from the outer first heat sources 32A and 32B (one-side heating step).
  • size of the drawdown of the two-layer sheet 11 in these heating processes can be reduced greatly compared with the structure heated only from the outside or the same conditions from the outside and the inside.
  • the second heat source 33 is set to be turned off and at the same time retracted to the side of the two-layer sheet 11. Therefore, even when the two-layer sheet 11 is drawn down, the second heat source 33 is turned off. It does not contact the heat source 33 and is excellent in safety. In addition, since the two-layer sheet 11 and the first heat source 32 below are sufficiently separated from each other, there is a low possibility that they will come into contact even when drawn down.
  • time and temperature when the inner high-temperature double-sided heating step and the single-sided heating step are performed are not particularly defined, and can be arbitrarily set according to the constituent material of the sheet, the thickness of each layer, and the like.
  • the first region of the pair of two-layer sheets 11 and 11 that has been heated by the heating device 30 through the heating process is conveyed to the forming device 40 (S6).
  • the two-layer sheets 11 and 11 are temporarily stopped.
  • the second region has reached the second heating unit 35 and the third region has reached the first heating unit 34.
  • the forming apparatus 40 is activated for the first region of the two-layer sheets 11, 11 that are conveyed and stopped between the pair of open vacuum forming dies 41, 42, and then vacuumed.
  • the molds 41 and 42 are clamped (S7).
  • the parting lines of the vacuum forming dies 41 and 42 are first abutted against the two-layer sheets 11 and 11, and between the upper die 41 and the upper sheet 11 ⁇ / b> A, and between the lower die 42 and the lower sheet 11 ⁇ / b> B.
  • a sealed space is formed between each.
  • the parting lines of the pair of molding dies 41 and 42 are brought closer to each other, but they are pressed against each other and clamped.
  • the shapes of the molding dies 41 and 42 are formed on the two-layer sheets 11 and 11, and the edge portions of both the two-layer sheets 11 and 11 are joined.
  • gas is blown from the air nozzle 45 (blow needles ⁇ 6 to ⁇ 12) between the pair of the two-layer sheets 11 and 11 arranged in the mold surfaces of the molds 41 and 42 (0.4 Mpa to 0). .7 Mpa) to inject compressed air.
  • Arbitrary gases such as air, nitrogen, a carbon dioxide gas, are used as gas.
  • the entire sheet can be warmed up in a short time as compared to the conventional configuration in which the entire sheet is warmed up only from the outside as in the prior art.
  • the inner side of the surface layer of the surface) is not overheated until just before the entire sheet is heated, and a certain degree of hardness can be maintained during heating, so that the drawdown of the two-layer sheet during heating can be reduced.
  • the inner joint portion can be surely brought into a good molten state, sufficient joint strength can be obtained as compared with the conventional case.
  • the second heat source 33 is set to be turned off, and at the same time, retracted to a position away from the side of the two-layer sheet 11, Even when the two-layer sheet 11 is drawn down, it does not come into contact with the second heat source 33 and is excellent in safety.
  • the two-layer sheet 11 and the first heat source 32 below are sufficiently separated from each other, the possibility that they are in contact with each other even when drawn down is safe.
  • the pair of sheets has a two-layer structure including a foamed resin sheet having heat insulation and a hard resin layer having rigidity, and both are made of polypropylene. Polyethylene or the like can also be used. Different types of materials can also be combined. Further, contrary to the above-described embodiment, a configuration may be adopted in which a rigid layer is disposed on the outer layer side and a heat insulating layer is disposed on the inner layer side.
  • the sheet is not limited to a two-layer structure, and may have three or more layers.
  • the medium wavelength infrared heater is used as the first heat source.
  • other types of heaters such as a far infrared heater may be used.
  • the carbon heater is used as the second heat source.
  • other heaters that rise quickly can be used.
  • a halogen heater using tungsten as a filament can be used.
  • the single-sided heating step is performed after the inner high-temperature double-sided heating step, but the double-sided heating step can be performed instead of the single-sided processing step.
  • the second heat source may be a fixed configuration that does not retract.
  • the irradiation distance from the first heat source and the second heat source to the two-layer sheet is not limited to the above embodiment, and can be arbitrarily set depending on the material and thickness of the two-layer sheet. Moreover, it can also be set as the structure which sets the irradiation distance of an upper side and a lower side equally.
  • the transport mechanism and the holding mechanism are not limited to the above embodiment.
  • the second heat source 33 and the open / close door 31B are integrally connected and the open / close door 31B is retracted from the heating chamber 31.
  • the second heat source 33 and the open / close door 31B are separately provided.
  • the opening / closing door 31B may be configured to have only the opening / closing function of the opening 31A, and the second heat source 33 may be directly provided with a retraction mechanism.
  • control unit 50 is configured to execute each step shown in FIG. 10 by one CPU 51.
  • the present invention is not limited to this, and the control unit 50 is configured by a plurality of CPUs.
  • a configuration for executing the steps a configuration for executing each step shown in the figure only by a hardware circuit such as ASIC (Application Specific Integrated Circuit), or a configuration for executing each step shown in the figure by the CPU and the hardware circuit. it can.
  • control unit 50 is configured to execute each process.
  • a configuration in which the user performs the operation by himself / herself may be employed.
  • Double-layer duct 11 Double-layer sheet (multi-layer sheet) DESCRIPTION OF SYMBOLS 12 Outer layer 13 Inner layer 20 Manufacturing system 21 Sheet holding mechanism 24 Conveyance mechanism 30 Heating device 32 First heat source 33 Second heat source 36 Retraction mechanism 40 Molding device 41 Upper die 42 Lower die 50 Control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

Provided are a manufacturing method and a manufacturing system for a hollow body in which adequate bonding strength can be obtained even when using multilayer sheets and draw-down during heating can be limited. A hollow body obtained from multilayer sheets is manufactured using multiple steps including: a high-inside-temperature double-sided heating step for disposing a pair of multilayer sheets next to each other so as to face each other in the vertical direction and heating from the outside using a first heat source while heating from the inside using a second heat source at a higher temperature than the first heat source; a one-sided heating step for heating only from the outside using the first heat source or a double-sided heating step for heating from the outside using the first heat source and heating from the inside using the second heat source at a temperature at or below the first heat source; and a molding step for molding the pair of multilayer sheets that has passed through the high-inside-temperature double-sided heating step and the one-sided heating step or the double-sided heating step.

Description

多層シートからなる中空体の製造方法および製造システムManufacturing method and manufacturing system for hollow body made of multilayer sheet
 本発明は、多層シートからなる中空体の製造方法および製造システムに関する。 The present invention relates to a method and system for manufacturing a hollow body made of a multilayer sheet.
 近年、電気部品や機械部品、自動車の構成部品等において、従来の金属材料に代えて、軽量な中空構造を有する樹脂材料が使用されるようになってきており、その成形品および成形方法が提案されている。 In recent years, resin materials having a lightweight hollow structure have been used in place of conventional metal materials in electrical parts, machine parts, automobile components, etc., and their molded products and molding methods have been proposed. Has been.
 中空構造を有する樹脂成形品の製造方法の一例として、ツインコンポジット成形法が提案されている(特許文献1参照)。この成形法は、例えば一対の樹脂シートを上下方向において対向配置し、これらの樹脂シートの外側(上方および下方)に配した熱源にて加熱することにより樹脂シートを軟化させ、その後、一対の金型間に配して型面に設けた吸引孔より真空引きするとともに、一対の樹脂シート間に圧縮空気を注入することにより、一対の樹脂シートを上下の金型に沿わせて賦形する成形法である。 As an example of a method for producing a resin molded product having a hollow structure, a twin composite molding method has been proposed (see Patent Document 1). In this molding method, for example, a pair of resin sheets are opposed to each other in the vertical direction, and the resin sheet is softened by heating with a heat source disposed outside (upper and lower) of these resin sheets, and then a pair of gold sheets Molding that forms a pair of resin sheets along the upper and lower molds by evacuating from the suction holes provided in the mold surface between the molds and injecting compressed air between the pair of resin sheets Is the law.
 ところで、中空体を構成する樹脂シートとして、最近、複数の機能を備える多層シートを使用することが提案されている。例えば自動車等の車両における内装パネルの内側には、エアコン等の送風口と吸気口とを連通させる樹脂製で中空構造の空気ダクトが使用されているが、その構成材料として、例えば、ダクト内外の温度差による結露の発生や、振動時の周辺機器との接触による異音を防止する発泡樹脂層と、その形状を良好に維持可能な剛性を備える硬質樹脂層とを積層させた二層構造のものが提案されている(特許文献2参照)。 Incidentally, it has recently been proposed to use a multilayer sheet having a plurality of functions as the resin sheet constituting the hollow body. For example, a resin-made hollow air duct is used inside the interior panel of a vehicle such as an automobile to connect the air blowing port and the air intake port of an air conditioner or the like. A two-layer structure in which a foamed resin layer that prevents condensation due to temperature differences and abnormal noise due to contact with peripheral devices during vibration and a rigid resin layer with rigidity that can maintain its shape well The thing is proposed (refer patent document 2).
特開2006-205831号公報JP 2006-205831 A 特開2001-239824号公報JP 2001-239824 A
 しかし、前記のような多層構造の樹脂シートからなる中空体を従来の成形法で製造しようとすると、対向配置された樹脂シートの外側から加熱を行う構成であるため、内側の縁部に設けられた接合部の加熱、換言すると、対向面の表層部分の溶融が不十分となる場合があり、十分な接合強度が得られ難い。また多層構造であるため、樹脂シートの各層による熱伝導率が異なったり、厚みが増す等の理由により、内側の層まで十分に加熱されずに、樹脂シートの金型への追従性が十分に得られ難い。 However, when a hollow body made of a resin sheet having a multilayer structure as described above is to be manufactured by a conventional molding method, it is configured to heat from the outside of the resin sheet disposed oppositely, and thus is provided at the inner edge. In other words, the heating of the bonded portion, in other words, the melting of the surface layer portion of the opposing surface may be insufficient, and it is difficult to obtain sufficient bonding strength. In addition, because of the multilayer structure, the thermal conductivity of each layer of the resin sheet is different or the thickness increases, so the inner layer is not heated sufficiently, and the resin sheet has sufficient followability to the mold. It is difficult to obtain.
 またこれらの問題を解決すべく、加熱温度を上げたり、加熱時間を長くしたりすると、樹脂シートのドローダウンが大きくなる。ドローダウンが大きくなると、上方側に配置された樹脂シートを金型の上型面に沿わせることができなくなったり、下方側に配置された樹脂シートが加熱中に熱源に接触してしまうことも生じる。 Also, in order to solve these problems, if the heating temperature is increased or the heating time is lengthened, the drawdown of the resin sheet increases. If the drawdown becomes large, the resin sheet arranged on the upper side cannot follow the upper mold surface of the mold, or the resin sheet arranged on the lower side may come into contact with the heat source during heating. Arise.
 本発明は、上記のような事情に鑑みてなされたものであって、多層シートを使用した場合でも従来より高い接合強度が得られ、しかも加熱時のドローダウンを抑えることができる中空体の製造方法および製造システムを提供するものである。 The present invention has been made in view of the circumstances as described above, and even when a multilayer sheet is used, a higher bonding strength can be obtained than before, and a hollow body that can suppress drawdown during heating can be produced. Methods and manufacturing systems are provided.
 前記の課題を解決するためになされた本発明に係る多層シートからなる中空体の製造方法は、一対の前記多層シートを対向するように並べて配置し、外側から第1熱源により加熱を行うとともに内側から第2熱源により加熱を行う加熱工程と、前記加熱工程を経た前記一対の多層シートを成形する成形工程とを含むことを特徴とする。 In order to solve the above-mentioned problems, a method for producing a hollow body made of a multilayer sheet according to the present invention includes a pair of multilayer sheets arranged side by side so as to face each other, heated from the outside by a first heat source, and inside To a second heat source, and a forming step for forming the pair of multilayer sheets that have undergone the heating step.
 また他の本発明に係る多層シートからなる中空体の製造方法は、一対の前記多層シートを対向するように並べて配置し、外側から第1熱源により加熱を行うとともに内側から第2熱源により前記第1熱源よりも高温で加熱を行う内側高温両面加熱工程と、前記内側高温両面加熱工程を経た前記一対の多相シートを外側からだけ前記第1熱源により加熱を行う片面加熱工程と、前記片面加熱工程を経た前記一対の多層シートを成形する成形工程とを含むことを特徴とする。 In another method for producing a hollow body comprising a multilayer sheet according to the present invention, a pair of the multilayer sheets are arranged side by side so as to face each other, heated from the outside by a first heat source, and heated from the inside by a second heat source. An inner high-temperature double-sided heating step in which heating is performed at a temperature higher than one heat source; a single-sided heating step in which the pair of multiphase sheets that have undergone the inner high-temperature double-sided heating step are heated from the outside only by the first heat source; And a molding step of molding the pair of multilayer sheets that have undergone the step.
 更に他の本発明に係る多層シートからなる中空体の製造方法は、一対の前記多層シートを対向するように並べて配置し、外側から第1熱源により加熱を行うとともに内側から第2熱源により前記第1熱源よりも高温で加熱を行う内側高温両面加熱工程と、前記内側高温両面加熱工程を経た前記一対の多層シートを外側から前記第1熱源により加熱を行うとともに内側から前記第2熱源により前記第1熱源以下の温度で加熱を行う両面加熱工程と、前記両面加熱工程を経た前記一対の多層シートを成形する成形工程とを含むことを特徴とする。 Still another method for producing a hollow body comprising a multilayer sheet according to the present invention comprises a pair of multilayer sheets arranged side by side so as to face each other, heated from the outside by a first heat source and from the inside by a second heat source. An inner high-temperature double-sided heating step in which heating is performed at a temperature higher than one heat source; and the pair of multilayer sheets that have undergone the inner high-temperature double-sided heating step are heated from the outside by the first heat source and from the inside by the second heat source. It includes a double-sided heating step of heating at a temperature of 1 heat source or less and a forming step of forming the pair of multilayer sheets that have undergone the double-sided heating step.
 前記構成において、片面加熱工程では、第2熱源を多層シートが対向する位置から側方に外れた位置に退避させておく構成とすることができる。 In the above configuration, in the one-side heating step, the second heat source can be retracted to a position that is laterally removed from the position where the multilayer sheet faces.
 また加熱工程、内側高温両面加熱工程および両面加熱工程では、第2熱源は一対の多層シートのうち下側に配置された多層シート寄りに配置することができる。 In the heating process, the inner high-temperature double-sided heating process, and the double-sided heating process, the second heat source can be disposed closer to the multilayer sheet disposed on the lower side of the pair of multilayer sheets.
 また本発明に係る多層シートからなる中空体の製造システムは、一対の多層シートを対向するように並べて配置するシート保持機構と、前記一対の多層シートの外面を加熱する第1熱源、および前記一対の多層シートの内面を加熱する第2熱源を有する加熱装置と、前記一対の多層シートを搬送する搬送機構と、一対の成形型を有する成形装置と、制御部とを備え、前記制御部は、前記第1熱源に前記一対の多層シートの外面を加熱させるとともに前記第2熱源に前記一対の多層シートの内面を前記第1熱源よりも高温で加熱させる内側高温両面加熱処理と、前記第1熱源に前記一対の多層シートの外面だけ加熱させる片面加熱処理、又は前記第1熱源に前記一対の多層シートの外面を加熱させるとともに前記第2熱源に前記一対の多層シートの内面を前記第1熱源以下の温度で加熱させる両面加熱処理と、前記搬送機構に前記第1熱源および前記第2熱源により加熱された前記一対の多層シートを前記一対の成形型間に搬送させる搬送処理と、前記成形装置に前記搬送機構により搬送された前記一対の多層シートを前記一対の成形型により成形させる成形処理とを行わせる構成を有することを特徴とする。 The hollow body manufacturing system according to the present invention includes a sheet holding mechanism that arranges a pair of multilayer sheets so as to face each other, a first heat source that heats outer surfaces of the pair of multilayer sheets, and the pair of pairs. A heating device having a second heat source for heating the inner surface of the multilayer sheet, a transport mechanism for transporting the pair of multilayer sheets, a molding device having a pair of molding dies, and a control unit, An inner high-temperature double-sided heating process in which the first heat source heats the outer surfaces of the pair of multilayer sheets and the second heat source heats the inner surfaces of the pair of multilayer sheets at a higher temperature than the first heat source; Heating only the outer surfaces of the pair of multilayer sheets, or causing the first heat source to heat the outer surfaces of the pair of multilayer sheets and the second heat source to the pair of multilayer sheets. Double-sided heat treatment for heating the inner surface of the sheet at a temperature lower than the first heat source, and conveying the pair of multilayer sheets heated by the first heat source and the second heat source to the conveying mechanism between the pair of molds. And a forming process for causing the forming apparatus to form the pair of multilayer sheets transported by the transport mechanism by the pair of forming dies.
 前記製造システムは、前記第2熱源を前記一対の多層シートが対向する位置から側方に外れた位置に退避させる退避機構を備え、前記制御部は前記片面加熱処理を行う構成であり、当該片面加熱処理では前記退避機構に前記第2熱源を前記側方に外れた位置に退避させる構成とすることができる。 The manufacturing system includes a retracting mechanism for retracting the second heat source from a position where the pair of multilayer sheets face each other to a position deviated laterally, and the control unit is configured to perform the one-side heating process, In the heat treatment, the retracting mechanism can be configured to retract the second heat source to a position off the side.
 また前記製造システムにおいて、前記第2熱源は前記一対の多層シートのうち下側に配置された前記多層シート寄りに配置させる構成とすることもできる。 In the manufacturing system, the second heat source may be arranged closer to the multilayer sheet disposed on the lower side of the pair of multilayer sheets.
 前記した多層シートからなる中空体の製造方法および製造システムによれば、一対の多層シートの縁部の接合強度を向上させることができ、また加熱時のドローダウンを抑えることができる。 According to the above-described method and system for producing a hollow body made of a multilayer sheet, the bonding strength of the edges of the pair of multilayer sheets can be improved, and the drawdown during heating can be suppressed.
本発明に係る多層シートからなる中空体の製造システムを例示する概略側面図The schematic side view which illustrates the manufacturing system of the hollow body which consists of a multilayer sheet concerning the present invention 図1のA-A断面図であって、内側高温両面加熱工程を示す概略図It is AA sectional drawing of FIG. 1, Comprising: The schematic which shows an internal high temperature double-sided heating process 図1の製造システムにおいて第2熱源が退避位置とされた片面加熱工程を示す概略図Schematic showing a single-sided heating process in which the second heat source is in the retracted position in the manufacturing system of FIG. 図1の製造システムにおいて一対の二層シートが金型内に配置された状態を示す概略図FIG. 1 is a schematic view showing a state in which a pair of two-layer sheets are arranged in a mold in the manufacturing system of FIG. 図1の製造システムにおいて型枠に付き当てられるとともに真空引きされた状態を示す概略図FIG. 1 is a schematic diagram showing a state in which the manufacturing system of FIG. 図1の製造システムにおいて型締めされるとともに圧空された状態を示す概略図FIG. 1 is a schematic view showing a state where the mold is clamped and compressed in the manufacturing system of FIG. 1. 図1の製造システムにおいて型開きされた状態を示す概略図FIG. 1 is a schematic view showing a state in which the mold is opened in the manufacturing system of FIG. 図1の製造システムで成形された中空成形品を示す断面図Sectional drawing which shows the hollow molded product shape | molded with the manufacturing system of FIG. 図1の製造システムの電気的構成を示すブロック図The block diagram which shows the electrical constitution of the manufacturing system of FIG. 図1の製造システムにおいて制御部が行なう処理を示すフローチャートThe flowchart which shows the process which a control part performs in the manufacturing system of FIG.
 本発明の多層シートからなる中空体の製造方法では、例えば上下方向に対向配置された多層シートの外側および内側の両面側から、外側からは第1熱源により、また内側からは第2熱源により、加熱が行われるので、一対の多層シート全体が短時間で良好な状態に加熱される。 In the method for producing a hollow body composed of the multilayer sheet of the present invention, for example, from both the outside and inside both sides of the multilayer sheet opposed in the vertical direction, from the outside by the first heat source, and from the inside by the second heat source, Since heating is performed, the entire pair of multilayer sheets is heated to a good state in a short time.
 ここで、中空体を成形し、溶着するのに必要な温度まで一対の多層シートを両面側から内部までじっくり加熱すると、シートが柔らかくなり過ぎて、ドローダウンが大きくなることが懸念される。またドローダウンを抑制するために加熱温度を低く設定すると、成形時の転写性や、接合強度が不足することが懸念される。 Here, if a pair of multilayer sheets is heated slowly from both sides to the temperature required to form and weld the hollow body, there is a concern that the sheets become too soft and the drawdown increases. Further, if the heating temperature is set low in order to suppress the drawdown, there is a concern that the transferability at the time of molding and the bonding strength are insufficient.
 しかし、前記したように、第2熱源による内側からの加熱を、第1熱源による外側からの加熱よりも高温かつ短時間で行う工程・処理(内側高温両面加熱工程・処理)を設けると、内側の特に表層部が第2熱源により焼き付けられるように加熱されるため、接合部が良好な溶融状態となり、高い接合強度を得ることができる。また内側の表層部より内部側は加熱され過ぎることがなく、ある程度の硬度を保つため、ドローダウンを抑制することができる。 However, as described above, when a process / process (inner high-temperature double-sided heating process / process) is performed in which heating from the inside by the second heat source is performed at a higher temperature and in a shorter time than heating from the outside by the first heat source, In particular, since the surface layer portion is heated so as to be baked by the second heat source, the bonded portion is in a good molten state, and high bonding strength can be obtained. Further, the inner side of the inner surface layer portion is not heated too much, and a certain degree of hardness is maintained, so that drawdown can be suppressed.
 一方、内側高温両面加熱工程(処理)に加えて、外側からだけ加熱を行う片面加熱工程(処理)、または外側から加熱を行うとともに内側から外側以下の温度で加熱を行う両面加熱工程(処理)を併せて設けることにより、シート全体を加熱することができるから、成形時の転写性・賦形性を確保することができる。 On the other hand, in addition to the inside high-temperature double-sided heating process (process), the single-sided heating process (process) that heats only from the outside, or the double-sided heating process (process) that heats from the outside and heats from the inside to below the outside In addition, since the entire sheet can be heated, transferability and shaping at the time of molding can be secured.
 このような構成によれば、時間をかけてシート全体を外側からだけ、あるいは、両面からじっくり温める構成と比較して、短時間で全体を温めることができる上、内側の表層部より内部側がシート全体が温まる寸前まで温められ過ぎず、もって加熱中にある程度の硬度を保つことができるから、加熱時における多層シートのドローダウンを軽減させることができる。しかも内側の接合部を確実に良好な溶融状態とすることができるから、従来と比較して接合強度を高めることができる。 According to such a configuration, the entire sheet can be heated in a short time as compared to a configuration in which the entire sheet is heated from the outside or slowly from both sides over time, and the inner side from the inner surface layer portion is the sheet. Since it is not overheated until just before the whole is heated, and a certain degree of hardness can be maintained during heating, the drawdown of the multilayer sheet during heating can be reduced. In addition, since the inner joint portion can be surely brought into a good molten state, the joint strength can be increased as compared with the conventional case.
 前記の構成において、片面加熱工程(処理)を行う際、内側の第2熱源を多層シートが対向する位置から側方に外れた位置に退避させるようにすることができる。このようにすると、一対の多層シートのうち上方側に配置された多層シートがドローダウンした場合でも、一対の多層シート間の狭い空間に配置された第2熱源に多層シートが接触することを防止することができ、装置の安全性が高まる。 In the above configuration, when the single-sided heating step (processing) is performed, the inner second heat source can be retracted to a position deviated laterally from the position where the multilayer sheet faces. This prevents the multilayer sheet from coming into contact with the second heat source disposed in a narrow space between the pair of multilayer sheets even when the multilayer sheet disposed on the upper side of the pair of multilayer sheets is drawn down. Can increase the safety of the device.
 また加熱工程(処理)内側高温両面加熱工程(処理)および両面加熱工程(処理)において、内側の第2熱源は、一対の多層シートのうち下側に配置された多層シート寄りに配置することができる。 Further, in the heating step (treatment), the inner high-temperature double-sided heating step (treatment) and the double-sided heating step (treatment), the inner second heat source may be arranged near the multilayer sheet arranged on the lower side of the pair of multilayer sheets. it can.
 一般的に、熱源から発せられた熱は上方へ流れるため、第2熱源の上側に配置された多層シートと下側に配置された多層シートとを同様の加熱状態とするためには、第2熱源は下側に配置された多層シート寄りに配置することが好ましい。またこのようにした場合、上側に配置された多層シートがドローダウンした場合でも、その多層シートが第2熱源に接触するリスクを軽減することができる。 In general, since heat generated from the heat source flows upward, in order to bring the multilayer sheet disposed on the upper side of the second heat source and the multilayer sheet disposed on the lower side into a similar heating state, The heat source is preferably disposed near the multilayer sheet disposed on the lower side. Moreover, when doing in this way, even when the multilayer sheet arrange | positioned at the upper side draws down, the risk that the multilayer sheet contacts a 2nd heat source can be reduced.
 以下、図1ないし図10を参照しつつ、本発明に係る多層シートからなる中空体の製造方法及び製造システムを、車両に搭載する二層式のダクトに適用した場合について説明する。 Hereinafter, with reference to FIG. 1 to FIG. 10, a case where the manufacturing method and manufacturing system of a hollow body made of a multilayer sheet according to the present invention is applied to a two-layer duct mounted on a vehicle will be described.
 図8は二層式ダクト10(中空体の一例)を示す断面図である。この二層式ダクト10は、発泡樹脂からなる外層10Aと、外層10Aの内側に積層された硬質樹脂からなる内層10Bとの二層構造とされている。この二層式ダクト10は、内部に空気流通路10Cが形成された筒状体に形成されている。 FIG. 8 is a cross-sectional view showing a two-layer duct 10 (an example of a hollow body). This two-layer duct 10 has a two-layer structure of an outer layer 10A made of foamed resin and an inner layer 10B made of hard resin laminated inside the outer layer 10A. The two-layer duct 10 is formed in a cylindrical body having an air flow passage 10C formed therein.
 前記の二層式ダクト10は、二層シート11から製造される。二層シート11は、断熱性を有する例えば発泡ポリエチレンや発泡ポリプロピレン等の発泡樹脂シート12(外層10Aを構成)の一面側に、この発泡樹脂シート12よりも剛性が高く、ダクトとしての形状を好適に維持可能な例えばポリエチレンやポリプロピレン等の硬質樹脂層13(内層10Bを構成)をラミネートしたものから構成されている。 The two-layer duct 10 is manufactured from a two-layer sheet 11. The two-layer sheet 11 is heat-insulating, for example, on one surface side of a foamed resin sheet 12 (constituting the outer layer 10A) such as foamed polyethylene or foamed polypropylene. The two-layer sheet 11 is more rigid than the foamed resin sheet 12 and preferably has a shape as a duct. For example, a hard resin layer 13 such as polyethylene or polypropylene (which constitutes the inner layer 10B) is laminated.
 より具体的には、二層シート11は、ポリプロピレンからなる25~40倍発泡の発泡樹脂シート12の一面側に、この発泡樹脂シート12より剛性が高いポリプロピレンからなる硬質樹脂層13をラミネートしたものから構成されている。発泡樹脂シート12の厚みは硬質樹脂層13の厚みより厚くされている。例えば発砲樹脂シート12の厚みは5mm、硬質樹脂層13の厚みは0.2~0.4mm程度に設定されている。この二層シート11は予め製造されて、ロール状に巻回されている。 More specifically, the two-layer sheet 11 is obtained by laminating a hard resin layer 13 made of polypropylene having higher rigidity than the foamed resin sheet 12 on one surface side of the foamed resin sheet 12 made of polypropylene and expanded 25 to 40 times. It is composed of The thickness of the foamed resin sheet 12 is greater than the thickness of the hard resin layer 13. For example, the thickness of the foamed resin sheet 12 is set to 5 mm, and the thickness of the hard resin layer 13 is set to about 0.2 to 0.4 mm. This two-layer sheet 11 is manufactured in advance and wound into a roll.
 なお、これら各層の樹脂の種類の組み合わせは、同種あるいは異種のいずれの組み合わせとすることもできる。例えば断熱性を有する層(発泡樹脂シート12)を内層10Bに、剛性を有する層(硬質樹脂層13)を外層10Aにすることもできる。 It should be noted that the combination of the resin types of these layers can be either the same type or different types. For example, the heat insulating layer (foamed resin sheet 12) can be the inner layer 10B, and the rigid layer (hard resin layer 13) can be the outer layer 10A.
 図1は前記した二層式ダクト10の製造システム20全体を示す概略図、図9は製造システム20の電気的構成を示すブロック図であって、製造システム20は、二層シート11を保持するシート保持機構21と、保持した二層シート11を搬送するための搬送機構24と、搬送した二層シート11を加熱するための加熱装置30と、加熱した二層シート11を成形するための成形装置40と、カッター46と、各部を制御する制御部50と、操作部53と、表示部54とを備えている。この製造システム20において、二層シート11は、図1中左側から右側に向けて搬送されるようになっている。以下、図1の右側を前方、左側を後方として説明する。 FIG. 1 is a schematic view showing the entire manufacturing system 20 of the two-layer duct 10 described above, and FIG. 9 is a block diagram showing an electrical configuration of the manufacturing system 20. The manufacturing system 20 holds the two-layer sheet 11. Sheet holding mechanism 21, transport mechanism 24 for transporting the held two-layer sheet 11, heating device 30 for heating the transported two-layer sheet 11, and molding for molding the heated two-layer sheet 11 The apparatus 40, the cutter 46, the control part 50 which controls each part, the operation part 53, and the display part 54 are provided. In this manufacturing system 20, the double-layer sheet 11 is conveyed from the left side to the right side in FIG. In the following description, the right side of FIG.
 製造システム20のシート保持機構21は、一対の挟持板22A,22Aの間に圧縮ばね22Bが取り付けられた多数のクランプ22と、ガイド23とを備えている。クランプ22は、図2に示すように、押圧状態において二層シート11の縁部を挟持し、解放状態においては圧縮ばね22Bにより一対の挟持板22A,22Aが離間した状態とされて、二層シート11をそれらの間に配置、あるいはそれらの間から引き抜き可能としている。これら多数のクランプ22のうち下側に位置する挟持板22Aは、後述する二対の搬送チェーン25の一部として構成されている。また搬送チェーン25に沿って設けられたガイド23により、押圧状態、あるいは解放状態とされる。 The sheet holding mechanism 21 of the manufacturing system 20 includes a number of clamps 22 each having a compression spring 22B attached between a pair of clamping plates 22A and 22A, and a guide 23. As shown in FIG. 2, the clamp 22 clamps the edge of the two-layer sheet 11 in the pressed state, and in the released state, the pair of sandwiching plates 22A and 22A are separated by the compression spring 22B. The sheet 11 can be arranged between them, or can be pulled out between them. The clamping plate 22 </ b> A located on the lower side of the multiple clamps 22 is configured as a part of two pairs of transport chains 25 described later. The guide 23 provided along the transport chain 25 is pressed or released.
 搬送機構24は、二対の環状の搬送チェーン25と、加熱装置30の後方および成形装置40の前方に設けられて搬送チェーン25を架けるスプロケット26と、スプロケット26を回転駆動する図示しない駆動モータとを備えている。搬送チェーン25は、二層シート11の搬送方向(図1中左右方向)に沿う方向に延びて上下に対向配置された二層シート11,11の両縁部の外側に配置され、クランプ22に保持された二層シート11を、その搬送方向に沿って搬送可能としている。搬送チェーン25は、駆動モータを駆動することにより、移動可能とされている。また搬送チェーン25は、二層シート11を加熱装置30の後方から成形装置40の前方まで搬送した後、向きを変えて、加熱装置30の後方に戻るようになっている。 The transport mechanism 24 includes two pairs of annular transport chains 25, a sprocket 26 that is provided behind the heating device 30 and in front of the molding device 40 and hangs the transport chain 25, and a drive motor (not shown) that drives the sprocket 26 to rotate. It has. The transport chain 25 is disposed outside the both edges of the two- layer sheets 11 and 11 that extend in the direction along the transport direction (the left-right direction in FIG. 1) of the two-layer sheet 11 and face the top and bottom. The held two-layer sheet 11 can be transported along the transport direction. The transport chain 25 is movable by driving a drive motor. In addition, the transport chain 25 is configured to transport the double-layer sheet 11 from the rear of the heating device 30 to the front of the molding device 40, and then change the direction to return to the rear of the heating device 30.
 加熱装置30は、後述する第1熱源32および第2熱源33を内部に収容する加熱室31を備えており、この加熱室31内を、上記クランプ22により保持された二層シート11が搬送チェーン25により搬入され、通過する構成とされている。 The heating device 30 includes a heating chamber 31 that accommodates a first heat source 32 and a second heat source 33 to be described later. Inside the heating chamber 31, the two-layer sheet 11 held by the clamp 22 is transported. 25 is carried in and passed through.
 加熱室31は、二層シート11の搬送方向(図1の左右方向)に連続して並んで設けられた第1加熱部34および第2加熱部35からなる。第1加熱部34は、上下に対向配置された一対の二層シート11,11の外側に位置する一対の第1熱源32,32と、一対の二層シート11,11の間(内側)に位置する第2熱源33とを備えている。より詳細には、図1および図2に示すように、上方側の二層シート11Aの上方に配置された第1熱源32Aと、下方側の二層シート11Bの下方に配置された第1熱源32Bと、上方側の二層シート11Aと下方側の二層シート11Bとの間に配置された第2熱源33とを備えている。第2加熱部は、一対の二層シート11,11の上方および下方に位置する一対の第1熱源32A,32Bのみを備えている。 The heating chamber 31 includes a first heating unit 34 and a second heating unit 35 that are provided side by side in the conveyance direction of the double-layer sheet 11 (the left-right direction in FIG. 1). The first heating unit 34 is located between the pair of first heat sources 32, 32 located outside the pair of two- layer sheets 11, 11 that are vertically opposed to each other and the pair of two-layer sheets 11, 11 (inside). And a second heat source 33 located therein. More specifically, as shown in FIGS. 1 and 2, a first heat source 32A disposed above the upper two-layer sheet 11A and a first heat source disposed below the lower two-layer sheet 11B. 32B and a second heat source 33 disposed between the upper two-layer sheet 11A and the lower two-layer sheet 11B. The second heating unit includes only a pair of first heat sources 32A and 32B located above and below the pair of two- layer sheets 11 and 11.
 第1熱源32は複数のブロック状の中波長赤外線ヒーターから構成されており、これら複数の赤外線ヒーターが上下対向するように縦横複数列に並べて設置されている。これら複数の赤外線ヒータは、個別に出力調整が可能とされている。また、上下の第1熱源32,32間に搬送される一対の二層シート11,11までの各第1熱源32からの加熱照射距離は、上方側の第1熱源32Aから上方側の二層シート11Aまでの距離が、下方側の第1熱源32Bから下方側の二層シート11Bまでの距離よりも短くなるように設定されている。 The first heat source 32 is composed of a plurality of block-shaped medium-wavelength infrared heaters, and these infrared heaters are arranged side by side in a plurality of rows so as to face each other vertically. The plurality of infrared heaters can be individually adjusted in output. The heating irradiation distance from each first heat source 32 to the pair of two- layer sheets 11, 11 conveyed between the upper and lower first heat sources 32, 32 is the upper two layers from the upper first heat source 32 </ b> A. The distance to the sheet 11A is set to be shorter than the distance from the lower first heat source 32B to the lower two-layer sheet 11B.
 例えば、第1熱源32から二層シート11までの加熱照射距離は、上方側が150mm、下方側が250mmとされている。また第1熱源32の表面温度は、約400度に設定されている。 For example, the heating irradiation distance from the first heat source 32 to the two-layer sheet 11 is 150 mm on the upper side and 250 mm on the lower side. The surface temperature of the first heat source 32 is set to about 400 degrees.
 一方、第2熱源33としては、電源をオンにした後、温度の立ち上がりが速いものが好ましく、カーボンヒーター、ハロゲンヒーター等を使用することができる。具体的には、複数の棒状のカーボンヒーターを二層シート11の搬送方向(図1中左右方向)に沿うように並べて設置している。これら複数のカーボンヒータは、個別に出力調整が可能とされている。 On the other hand, the second heat source 33 is preferably one that quickly rises in temperature after the power is turned on, and a carbon heater, a halogen heater, or the like can be used. Specifically, a plurality of rod-shaped carbon heaters are arranged side by side along the conveying direction of the double-layer sheet 11 (left-right direction in FIG. 1). The plurality of carbon heaters can be individually adjusted in output.
 第2熱源33は、一対の二層シート11A,11Bのうち下側に配置されたシート11B寄りに配置されている。例えば、第2熱源33から二層シート11,11までの加熱照射距離は、上方側は150mm、下方側が50mmとされている(図2参照)。また第2熱源33の表面温度は、約1000度に設定されている。 The second heat source 33 is disposed near the sheet 11B disposed on the lower side of the pair of two- layer sheets 11A and 11B. For example, the heating irradiation distance from the second heat source 33 to the two- layer sheets 11 and 11 is 150 mm on the upper side and 50 mm on the lower side (see FIG. 2). The surface temperature of the second heat source 33 is set to about 1000 degrees.
 なお上下の第1熱源32のうち下側の第1熱源32Bの上面、および第2熱源33の上面には、二層シート11がドローダウンした際に二層シート11の熱源への接触を防止するための図示しない安全網が設けられている。 The upper surface of the lower first heat source 32B and the upper surface of the second heat source 33 of the upper and lower first heat sources 32 and the upper surface of the second heat source 33 are prevented from contacting the heat source of the two-layer sheet 11 when the two-layer sheet 11 is drawn down. A safety net (not shown) is provided.
 第2熱源33には、退避機構36が設けられている。退避機構36は、第2熱源33によって二層シート11に対して加熱が行われ、電源がオフとされた後、第2熱源33を二層シート11の搬送路から水平方向に移動させることにより、二層シート11の側方の離れた位置に遠ざけるものである。第2熱源33は、加熱室31に設けられた開口部31Aを塞ぐ開閉扉31Bと一体的に連結されており、開閉扉31Bに連結された図示しないエアシリンダー等の駆動装置によって、開閉扉31Bとともに開口部31Aから加熱室31の外部に退避可能とされている(図3参照)。 The second heat source 33 is provided with a retraction mechanism 36. The retraction mechanism 36 is configured to move the second heat source 33 in the horizontal direction from the conveyance path of the two-layer sheet 11 after the second heat source 33 is heated by the second heat source 33 and the power is turned off. , Away from the side of the two-layer sheet 11. The second heat source 33 is integrally connected to an opening / closing door 31B that closes an opening 31A provided in the heating chamber 31, and is opened / closed by a driving device such as an air cylinder (not shown) connected to the opening / closing door 31B. At the same time, it can be retracted from the opening 31A to the outside of the heating chamber 31 (see FIG. 3).
 また下方側の第1熱源32B、および第2熱源33の上面側には図示しないドローダウン検知用のセンサが設置されており、二層シート11B,11Aが加熱によりドローダウンして熱源に接触しそうになった際には、自動的に熱源の電源がオフとなるように設定されている。 Also, a draw-down detection sensor (not shown) is installed on the upper surface side of the first heat source 32B and the second heat source 33 on the lower side, and the two- layer sheets 11B and 11A are likely to draw down by heating and come into contact with the heat source. When it becomes, it is set so that the power source of the heat source is automatically turned off.
 成形装置40は、上下一対の真空成形型41,42を有している。両真空成形型41,42は、二層シート11にダクトの形状を賦形可能な凹状の型面41A,42Aを有しており、これらの型面41A,42Aには、図示しない真空引き用の吸引孔が複数個形成されている。さらに一対の型面41A,42A間に外部から連通する図示しない空気孔が設けられており、この空気孔より閉塞状態の成形型41,42内に圧縮空気を圧入できるようになっている。 The forming apparatus 40 has a pair of upper and lower vacuum forming dies 41 and 42. Both vacuum forming dies 41, 42 have concave mold surfaces 41A, 42A capable of shaping the duct shape in the double-layer sheet 11, and these mold surfaces 41A, 42A are for vacuuming (not shown). A plurality of suction holes are formed. Further, an air hole (not shown) communicating from the outside is provided between the pair of mold surfaces 41A and 42A, and compressed air can be press-fitted into the molds 41 and 42 in a closed state through the air holes.
 図9に示すように、制御部50は、中央処理装置(以下、CPUという)51およびメモリ52を有する。メモリ52は、例えばROMやRAM等を有し、ROMには、後述する各製造工程を実行するためのプログラムなど、各種のプログラムが記憶されている。CPU51は、ROMから読み出したプログラムに従って、製造装置20の各部を制御する。なお、上記各種のプログラムが記憶される記憶媒体は、ROMやRAM以外に、CD-ROM、ハードディスク装置、フラッシュメモリなどの不揮発性メモリとすることもできる。 As shown in FIG. 9, the control unit 50 includes a central processing unit (hereinafter referred to as CPU) 51 and a memory 52. The memory 52 includes, for example, a ROM, a RAM, and the like, and various programs such as a program for executing each manufacturing process described later are stored in the ROM. The CPU 51 controls each part of the manufacturing apparatus 20 according to a program read from the ROM. In addition to the ROM and RAM, the storage medium storing the various programs may be a non-volatile memory such as a CD-ROM, a hard disk device, or a flash memory.
 操作部53は複数のボタンを有し、ユーザにより各種の入力操作や設定操作が可能である。表示部54は、液晶ディスプレイやランプ等を有し、各種の設定画面や装置の動作状態等を表示することが可能である。 The operation unit 53 has a plurality of buttons, and various input operations and setting operations can be performed by the user. The display unit 54 includes a liquid crystal display, a lamp, and the like, and can display various setting screens and operation states of the apparatus.
 次に、二層式ダクト10の製造方法を説明する。図10は、本実施形態の二層式ダクト10の、後述する第1領域に対して制御部50が行う処理を示すフローチャートである。 Next, a method for manufacturing the two-layer duct 10 will be described. FIG. 10 is a flowchart showing a process performed by the control unit 50 for a first region to be described later of the two-layer duct 10 of the present embodiment.
 まず、一対の二層シート11,11を、上下方向に硬質樹脂層13,13を対向させた状態で一対の巻回ロール27,27からそれぞれ引き出し、一対の送り出しローラ28,28を介して上下方向において平行となるように送り出す。また二層シート11,11の搬送方向に沿った両縁部を解放状態のクランプ22の挟持板22A,22A間に挿入し、搬送チェーン25を少し進めて、挟持板22A,22A間に挟持させる。これにより、一対の二層シート11,11はそれぞれ上下に対向した緊張状態に保持される。 First, the pair of two- layer sheets 11 and 11 are pulled out from the pair of winding rolls 27 and 27 with the hard resin layers 13 and 13 facing each other in the up-and-down direction, and are vertically moved through the pair of delivery rollers 28 and 28. Send out in parallel in the direction. Further, both edge portions along the conveying direction of the two- layer sheets 11 and 11 are inserted between the clamping plates 22A and 22A of the clamp 22 in the released state, and the conveying chain 25 is slightly advanced to be clamped between the clamping plates 22A and 22A. . Thereby, a pair of two-layer sheet | seats 11 and 11 are each hold | maintained in the tension | tensile_strength state facing up and down.
 二層シート11,11は、後述する成形工程において成形される領域毎に断続的に送り出されるように設定されている。以下説明上、二層シート11の搬送方向の前方側(図1中右側)から順に、第1の領域、第2の領域、第3の領域とよぶこととする。 The two- layer sheets 11 and 11 are set so as to be intermittently sent out for each region formed in a forming step described later. Hereinafter, for the sake of explanation, the first region, the second region, and the third region will be referred to in order from the front side (the right side in FIG. 1) in the conveyance direction of the double-layer sheet 11.
 ユーザが操作部53の製造開始ボタンを押すと、制御部50は、図10に示す処理を行う。 When the user presses the manufacturing start button of the operation unit 53, the control unit 50 performs the process shown in FIG.
 制御部50は、搬送機構24を起動させ、クランプ22により保持された二層シート11,11を、それぞれ加熱室31内の第1熱源32,32と第2熱源33との間に搬送チェーン25により搬送させる。また第2熱源33を開口部31Aから加熱室31内に挿入させる(S1)。 The control unit 50 activates the transport mechanism 24 to transfer the two- layer sheets 11 and 11 held by the clamp 22 between the first heat sources 32 and 32 and the second heat source 33 in the heating chamber 31, respectively. It is conveyed by. Further, the second heat source 33 is inserted into the heating chamber 31 through the opening 31A (S1).
 加熱室31内においては第1熱源32A,32Bは常時オンの状態とされており、加熱室31全体が約400度の温度雰囲気とされている。この加熱室31内に二層シート11,11を搬入させ、第1の領域全体を第1加熱部34(第1熱源32と第2熱源33との間)に到達させた後、二層シート11,11を一旦停止させ、第2熱源33を6秒間だけオンの状態とさせる(内側高温両面加熱工程)(S2)。二層シート11,11の内側(硬質樹脂層13)の表層部分は、高温の第2熱源33によって焼きつけられるように加熱され、良好な溶融状態とされる。 In the heating chamber 31, the first heat sources 32A and 32B are always on, and the entire heating chamber 31 has a temperature atmosphere of about 400 degrees. After the two- layer sheets 11 and 11 are carried into the heating chamber 31 and the entire first region reaches the first heating unit 34 (between the first heat source 32 and the second heat source 33), the two- layer sheet 11 and 11 are temporarily stopped, and the second heat source 33 is turned on for 6 seconds (inner high temperature double-sided heating step) (S2). The surface layer portion inside the two-layer sheet 11, 11 (hard resin layer 13) is heated so as to be baked by the high-temperature second heat source 33, and is in a good molten state.
 その後、第2熱源33をオフの状態とさせ(S3)、退避機構36を起動させて、加熱室31の開口部31Aから、第2熱源33を二層シート11,11から離れた加熱室31外へ退避させる(図3参照)(S4)。なお、第1熱源32による加熱は、継続される(片面加熱工程)。 Thereafter, the second heat source 33 is turned off (S3), the retracting mechanism 36 is activated, and the second heat source 33 is separated from the two- layer sheets 11 and 11 from the opening 31A of the heating chamber 31. Retreating outside (see FIG. 3) (S4). In addition, the heating by the 1st heat source 32 is continued (one side heating process).
 二層シート11,11の第1の領域全体を第1加熱部34に到達させてから、後述する成形工程に要する時間(本実施形態では21秒)が経過した後、二層シート11,11を再び搬送チェーン25により前方側へ搬送させる(S5)。これにより、二層シート11,11の第1の領域は第2加熱部35へと進み、第2の領域が第1加熱部34へ搬入される。そして、第1の領域を第2加熱部35に到達させるとともに、第2の領域を第1加熱部34に到達させた後、同じくその位置に一旦(21秒)停止させる。これにより、第1の領域に対して、外側の第1熱源32A,32Bからだけさらに加熱を行わせる(片面加熱工程)。 After the entire first region of the two- layer sheets 11, 11 reaches the first heating unit 34, the time required for the molding process described later (21 seconds in the present embodiment) has elapsed, and then the two- layer sheets 11, 11 Is again transported forward by the transport chain 25 (S5). As a result, the first region of the two- layer sheets 11, 11 proceeds to the second heating unit 35, and the second region is carried into the first heating unit 34. Then, the first region is made to reach the second heating unit 35, and the second region is made to reach the first heating unit 34, and then temporarily stopped at that position (21 seconds). Accordingly, the first region is further heated only from the outer first heat sources 32A and 32B (one-side heating step).
 なお、これらの加熱工程における二層シート11のドローダウンの大きさは、外側からだけの加熱、あるいは外側および内側から同様の条件で加熱する構成と比較して、大きく軽減させることができる。 In addition, the magnitude | size of the drawdown of the two-layer sheet 11 in these heating processes can be reduced greatly compared with the structure heated only from the outside or the same conditions from the outside and the inside.
 また加熱装置30においては、第2熱源33はオフの状態とされると同時に二層シート11の側方に退避するように設定されているので、二層シート11がドローダウンした場合でも第2熱源33に接触することがなく、安全性に優れる。また二層シート11と下方の第1熱源32とは十分に離れているため、ドローダウンした場合でもこれらが接触する可能性は低い。 In the heating device 30, the second heat source 33 is set to be turned off and at the same time retracted to the side of the two-layer sheet 11. Therefore, even when the two-layer sheet 11 is drawn down, the second heat source 33 is turned off. It does not contact the heat source 33 and is excellent in safety. In addition, since the two-layer sheet 11 and the first heat source 32 below are sufficiently separated from each other, there is a low possibility that they will come into contact even when drawn down.
 なお、内側高温両面加熱工程、および片面加熱工程を行うときの時間や温度等は特に規定されず、シートの構成材料や各層の厚み等に併せて任意に設定することができる。 It should be noted that the time and temperature when the inner high-temperature double-sided heating step and the single-sided heating step are performed are not particularly defined, and can be arbitrarily set according to the constituent material of the sheet, the thickness of each layer, and the like.
 次に、加熱装置30において加熱工程を経て成形可能な温度とされた一対の二層シート11,11の第1の領域を、成形装置40に搬送させる(S6)。そして第1の領域を成形装置40の真空成形型41,42間に到達させたら、二層シート11,11を一旦停止させる。この時、第2の領域は第2加熱部35に到達し、第3の領域は第1加熱部34に到達した状態となっている。 Next, the first region of the pair of two- layer sheets 11 and 11 that has been heated by the heating device 30 through the heating process is conveyed to the forming device 40 (S6). When the first region is reached between the vacuum forming dies 41 and 42 of the forming apparatus 40, the two- layer sheets 11 and 11 are temporarily stopped. At this time, the second region has reached the second heating unit 35 and the third region has reached the first heating unit 34.
 図4に示すように開放状態の一対の真空成形型41,42の間に搬送され、停止された二層シート11,11の第1の領域に対して、成形装置40を起動して、真空成形型41,42を型締めする(S7)。すると、二層シート11,11に対してまず真空成形型41,42のパーティングラインが突き当てられ、上型41と上方側シート11Aとの間、および下型42と下方側シート11Bとの間にそれぞれ密閉空間が形成される。この状態で型面41A,42Aに設けられた複数の吸引孔より真空吸引させると、密閉空間内の空気は排出され、加熱工程により温められた二層シート11,11は、型面に沿った形状に吸引される(図5参照)。 As shown in FIG. 4, the forming apparatus 40 is activated for the first region of the two- layer sheets 11, 11 that are conveyed and stopped between the pair of open vacuum forming dies 41, 42, and then vacuumed. The molds 41 and 42 are clamped (S7). Then, the parting lines of the vacuum forming dies 41 and 42 are first abutted against the two- layer sheets 11 and 11, and between the upper die 41 and the upper sheet 11 </ b> A, and between the lower die 42 and the lower sheet 11 </ b> B. A sealed space is formed between each. In this state, when vacuum suction is performed from a plurality of suction holes provided in the mold surfaces 41A and 42A, the air in the sealed space is discharged, and the two- layer sheets 11 and 11 warmed by the heating process follow the mold surface. Suction into shape (see FIG. 5).
 この時、二層シート11,11がドローダウンしている場合であっても、二層シート11,11の表面には成形型41,42のパーティングラインが当接して密閉空間が形成されているから、密閉空間内の空気は排出されて二層シート11,11を型面41A,42Aに密着させることができる。 At this time, even if the two- layer sheets 11 and 11 are drawn down, the parting lines of the molds 41 and 42 come into contact with the surfaces of the two- layer sheets 11 and 11 to form a sealed space. Therefore, the air in the sealed space is discharged and the two-layer sheets 11 can be brought into close contact with the mold surfaces 41A and 42A.
 そして真空吸引状態を維持させたまま、一対の成形型41,42のパーティングラインをさらに接近させて突き合せ、型締め加圧させる。型締めにより、二層シート11,11に成形型41,42の形状が賦形されるとともに、両二層シート11,11の端縁部が接合される。 Then, while maintaining the vacuum suction state, the parting lines of the pair of molding dies 41 and 42 are brought closer to each other, but they are pressed against each other and clamped. By the mold clamping, the shapes of the molding dies 41 and 42 are formed on the two- layer sheets 11 and 11, and the edge portions of both the two- layer sheets 11 and 11 are joined.
 そして最後に、成形型41,42の型面内に配された一対の前記二層シート11,11間に、空気ノズル45(ブローニードルφ6~φ12)から気体を吹き込ませる(0.4Mpa~0.7Mpa)ことにより、圧縮空気を圧入させる。気体としては、空気、窒素、炭酸ガス等、任意の気体が使用される。これにより、二層シート11,11は成形型41,42に確実に押し付けられるとともに、冷却される(図6参照)。 Finally, gas is blown from the air nozzle 45 (blow needles φ6 to φ12) between the pair of the two- layer sheets 11 and 11 arranged in the mold surfaces of the molds 41 and 42 (0.4 Mpa to 0). .7 Mpa) to inject compressed air. Arbitrary gases, such as air, nitrogen, a carbon dioxide gas, are used as gas. Thereby, the two- layer sheets 11 and 11 are reliably pressed against the molds 41 and 42 and cooled (see FIG. 6).
 このように成形装置40による成形が完了し、縁部が溶着された一対の二層シート11,11の第1の領域が冷却されたら、排気させ(S8)、一対の成形型41,42を開かせる(S9)。以上の成形工程が完了した後、再び搬送チェーン25を駆動させて、二層シート11,11の第1の領域を成形装置40から送り出させる(S10)と、第1の領域はクランプ22から外される。また、二層シート11,11の第2の領域が、一対の成形型41,42間に進められる。そして、送り出された二層シート11,11の成形完了部分(第1の領域)をカッター46により第2の領域から分離(S11)させた後、3次元トムソン刃で余分な周辺部およびバリをトリミングして、二層式ダクト10を得る(図8参照)(S12)。 When the molding by the molding apparatus 40 is completed in this way and the first region of the pair of two- layer sheets 11 and 11 to which the edge portions are welded is cooled (S8), the pair of molding dies 41 and 42 are removed. Open (S9). After the above forming process is completed, when the transport chain 25 is driven again and the first region of the two- layer sheets 11 and 11 is sent out from the forming device 40 (S10), the first region is removed from the clamp 22. Is done. Further, the second region of the two- layer sheets 11 and 11 is advanced between the pair of molds 41 and 42. Then, after the molding completion portion (first region) of the fed two- layer sheets 11 and 11 is separated from the second region by the cutter 46 (S11), excess peripheral portions and burrs are removed with a three-dimensional Thomson blade. Trimming is performed to obtain a two-layer duct 10 (see FIG. 8) (S12).
 このような二層式ダクトの製造方法によれば、従来のように時間をかけてシート全体を外側からだけじっくり温める構成と比較して、短時間で全体を温めることができる上、内側(対向面)の表層部より内部側がシート全体が温まる寸前まで温められ過ぎず、もって加熱中にある程度の硬度を保つことができるから、加熱時における二層シートのドローダウンを軽減させることができる。しかも内側の接合部を確実に良好な溶融状態とすることができるから、従来と比較して充分な接合強度を得ることができる。 According to such a two-layer duct manufacturing method, the entire sheet can be warmed up in a short time as compared to the conventional configuration in which the entire sheet is warmed up only from the outside as in the prior art. The inner side of the surface layer of the surface) is not overheated until just before the entire sheet is heated, and a certain degree of hardness can be maintained during heating, so that the drawdown of the two-layer sheet during heating can be reduced. In addition, since the inner joint portion can be surely brought into a good molten state, sufficient joint strength can be obtained as compared with the conventional case.
 また前記した製造装置20によれば、加熱装置30において、第2熱源33はオフの状態とされると同時に二層シート11の側方の離れた位置に退避するように設定されているので、二層シート11がドローダウンした場合でも第2の熱源33に接触することがなく、安全性に優れる。また二層シート11と下方の第1熱源32とは十分に離れているため、ドローダウンした場合でもこれらが接触する可能性は低く、安全である。 Further, according to the manufacturing apparatus 20 described above, in the heating apparatus 30, the second heat source 33 is set to be turned off, and at the same time, retracted to a position away from the side of the two-layer sheet 11, Even when the two-layer sheet 11 is drawn down, it does not come into contact with the second heat source 33 and is excellent in safety. In addition, since the two-layer sheet 11 and the first heat source 32 below are sufficiently separated from each other, the possibility that they are in contact with each other even when drawn down is safe.
 本発明は図面にしたがって以上説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。 The present invention is not limited to the embodiment described above according to the drawings, and for example, the following embodiment is also included in the technical scope of the present invention.
 (1)前記実施形態では、一対のシートを、断熱性を有する発泡樹脂シートおよび剛性を有する硬質樹脂層からなる二層構造とし、ともにポリプロピレン製としたが、材質は上記ポリプロピレンに限らず、例えばポリエチレン等も使用することができる。また種類の異なる材料を組み合わせることもできる。さらに前記実施形態とは反対に、剛性を有する層を外層側、断熱性を有する層を内層側に配置する構成とすることもできる。 (1) In the above embodiment, the pair of sheets has a two-layer structure including a foamed resin sheet having heat insulation and a hard resin layer having rigidity, and both are made of polypropylene. Polyethylene or the like can also be used. Different types of materials can also be combined. Further, contrary to the above-described embodiment, a configuration may be adopted in which a rigid layer is disposed on the outer layer side and a heat insulating layer is disposed on the inner layer side.
 (2)またシートは二層構造に限らず、三層以上の構成することもできる。 (2) In addition, the sheet is not limited to a two-layer structure, and may have three or more layers.
 (3)前記実施形態では、第1熱源として中波長赤外線ヒーターを使用したが、遠赤外線ヒーター等他の種類のヒーターを使用することもできる。 (3) In the above embodiment, the medium wavelength infrared heater is used as the first heat source. However, other types of heaters such as a far infrared heater may be used.
 (4)前記実施形態では、第2熱源としてカーボンヒーターを使用したが、その他の立ち上がりが早いヒーターを使用することもできる。例えば、フィラメントにタングステンを使用したハロゲンヒーターを使用することができる。 (4) In the above embodiment, the carbon heater is used as the second heat source. However, other heaters that rise quickly can be used. For example, a halogen heater using tungsten as a filament can be used.
 (5)前記実施形態では、内側高温両面加熱工程の後、片面加熱工程を実施したが、片面加工工程に代えて両面加熱工程を実施するようにすることもできる。 (5) In the above embodiment, the single-sided heating step is performed after the inner high-temperature double-sided heating step, but the double-sided heating step can be performed instead of the single-sided processing step.
 (6)第2熱源は退避しない、固定式の構成とすることもできる。 (6) The second heat source may be a fixed configuration that does not retract.
 (7)第1熱源および第2熱源からの二層シートまでの照射距離は、上記実施形態に限らず、二層シートの材料や厚みにより任意に設定することができる。また上方側および下方側の照射距離を等しく設定する構成とすることもできる。 (7) The irradiation distance from the first heat source and the second heat source to the two-layer sheet is not limited to the above embodiment, and can be arbitrarily set depending on the material and thickness of the two-layer sheet. Moreover, it can also be set as the structure which sets the irradiation distance of an upper side and a lower side equally.
 (8)搬送機構、および保持機構は、前記実施形態に限るものではない。 (8) The transport mechanism and the holding mechanism are not limited to the above embodiment.
 (9)前記実施形態では、第2熱源33と開閉扉31Bとを一体的に連結し、開閉扉31Bごと加熱室31から退避させる構成としたが、第2熱源33と開閉扉31Bとを別体の構成とし、開閉扉31Bは開口部31Aの開閉機能だけを有する構成とし、第2熱源33に直接退避機構を設ける構成とすることもできる。 (9) In the above embodiment, the second heat source 33 and the open / close door 31B are integrally connected and the open / close door 31B is retracted from the heating chamber 31. However, the second heat source 33 and the open / close door 31B are separately provided. The opening / closing door 31B may be configured to have only the opening / closing function of the opening 31A, and the second heat source 33 may be directly provided with a retraction mechanism.
 (10)前記実施形態では、制御部50は、1つのCPU51により図10に示す各工程を実行する構成としたが、これに限らず、制御部50は、複数のCPUにより同図に示す各工程を実行する構成、ASIC(Application Specific Integrated Circuit)などのハード回路のみにより同図に示す各工程を実行する構成や、CPUおよびハード回路により同図に示す各工程を実行する構成とすることもできる。 (10) In the above-described embodiment, the control unit 50 is configured to execute each step shown in FIG. 10 by one CPU 51. However, the present invention is not limited to this, and the control unit 50 is configured by a plurality of CPUs. A configuration for executing the steps, a configuration for executing each step shown in the figure only by a hardware circuit such as ASIC (Application Specific Integrated Circuit), or a configuration for executing each step shown in the figure by the CPU and the hardware circuit. it can.
 (11)前記実施形態では、各工程を制御部50に実行させる構成としたが、ユーザが自身で操作して行う構成とすることもできる。 (11) In the above embodiment, the control unit 50 is configured to execute each process. However, a configuration in which the user performs the operation by himself / herself may be employed.
 10 二層式ダクト
 11 二層シート(多層シート)
 12 外層
 13 内層
 20 製造システム
 21 シート保持機構
 24 搬送機構
 30 加熱装置
 32 第1熱源
 33 第2熱源
 36 退避機構
 40 成形装置
 41 上型
 42 下型
 50 制御部
10 Double-layer duct 11 Double-layer sheet (multi-layer sheet)
DESCRIPTION OF SYMBOLS 12 Outer layer 13 Inner layer 20 Manufacturing system 21 Sheet holding mechanism 24 Conveyance mechanism 30 Heating device 32 First heat source 33 Second heat source 36 Retraction mechanism 40 Molding device 41 Upper die 42 Lower die 50 Control unit

Claims (8)

  1.  多層シートからなる中空体の製造方法であって、一対の前記多層シートを対向するように並べて配置し、外側から第1熱源により加熱を行うとともに内側から第2熱源により加熱を行う加熱工程と、前記加熱工程を経た前記一対の多層シートを成形する成形工程とを含むことを特徴とする多層シートからなる中空体の製造方法。 A method for producing a hollow body made of a multilayer sheet, wherein the pair of multilayer sheets are arranged side by side so as to face each other, and heating is performed from the outside by a first heat source and from the inside by a second heat source; and And a forming step of forming the pair of multilayer sheets that have undergone the heating step.
  2.  多層シートからなる中空体の製造方法であって、一対の前記多層シートを対向するように並べて配置し、外側から第1熱源により加熱を行うとともに内側から第2熱源により前記第1熱源よりも高温で加熱を行う内側高温両面加熱工程と、前記内側高温両面加熱工程を経た前記一対の多層シートを外側からだけ前記第1熱源により加熱を行う片面加熱工程と、前記片面加熱工程を経た前記一対の多層シートを成形する成形工程とを含むことを特徴とする多層シートからなる中空体の製造方法。 A method for producing a hollow body made of a multilayer sheet, wherein a pair of multilayer sheets are arranged so as to face each other, heated from the outside by a first heat source, and heated from the inside by a second heat source to a temperature higher than that of the first heat source. An inner high-temperature double-sided heating step for heating at a time, a single-sided heating step for heating the pair of multilayer sheets that have undergone the inner-side high-temperature double-sided heating step by the first heat source only from the outside, The manufacturing method of the hollow body which consists of a multilayer sheet | seat characterized by including the formation process of shape | molding a multilayer sheet | seat.
  3.  多層シートからなる中空体の製造方法であって、一対の前記多層シートを対向するように並べて配置し、外側から第1熱源により加熱を行うとともに内側から第2熱源により前記第1熱源よりも高温で加熱を行う内側高温両面加熱工程と、前記内側高温両面加熱工程を経た前記一対の多層シートを外側から前記第1熱源により加熱を行うとともに内側から前記第2熱源により前記第1熱源以下の温度で加熱を行う両面加熱工程と、前記両面加熱工程を経た前記一対の多層シートを成形する成形工程とを含むことを特徴とする多層シートからなる中空体の製造方法。 A method for producing a hollow body made of a multilayer sheet, wherein a pair of multilayer sheets are arranged so as to face each other, heated from the outside by a first heat source, and heated from the inside by a second heat source to a temperature higher than that of the first heat source. An inner high-temperature double-sided heating step in which heating is performed at a temperature, and the pair of multilayer sheets that have undergone the inner-side high-temperature double-sided heating step are heated from the outside by the first heat source and at a temperature lower than the first heat source by the second heat source from the inside A method for producing a hollow body comprising a multilayer sheet, comprising: a double-sided heating step in which heating is performed, and a molding step in which the pair of multilayer sheets that have undergone the double-sided heating step are molded.
  4.  前記片面加熱工程において、前記第2熱源を前記一対の多層シートが対向する位置から側方に外れた位置に退避させる請求項2記載の多層シートからなる中空体の製造方法。 The method for producing a hollow body made of a multilayer sheet according to claim 2, wherein, in the one-side heating step, the second heat source is retracted to a position deviated laterally from a position where the pair of multilayer sheets face each other.
  5.  前記加熱工程、前記内側高温両面加熱工程および前記両面加熱工程において、前記第2熱源を前記一対の多層シートのうち下側に配置された前記多層シート寄りに配置させる請求項1~4のいずれか一つの項記載の多層シートからなる中空体の製造方法。 5. The method according to claim 1, wherein, in the heating step, the inner high-temperature double-side heating step, and the double-side heating step, the second heat source is disposed closer to the multilayer sheet disposed on the lower side of the pair of multilayer sheets. A method for producing a hollow body comprising a multilayer sheet according to one item.
  6.  多層シートからなる中空体の製造システムであって、一対の多層シートを上下方向において対向するように並べて配置するシート保持機構と、前記一対の多層シートの外面を加熱する第1熱源、および前記一対の多層シートの内面を加熱する第2熱源を有する加熱装置と、前記一対の多層シートを搬送する搬送機構と、一対の成形型を有する成形装置と、制御部とを備え、前記制御部は、前記第1熱源に前記一対の多層シートの外面を加熱させるとともに前記第2熱源に前記一対の多層シートの内面を前記第1熱源よりも高温で加熱させる内側高温両面加熱処理と、前記第1熱源に前記一対の多層シートの外面だけ加熱させる片面加熱処理、又は前記第1熱源に前記一対の多層シートの外面を加熱させるとともに前記第2熱源に前記一対の多層シートの内面を前記第1熱源以下の温度で加熱させる両面加熱処理と、前記搬送機構に前記第1熱源および前記第2熱源により加熱された前記一対の多層シートを前記一対の成形型間に搬送させる搬送処理と、前記成形装置に前記搬送機構により搬送された前記一対の多層シートを前記一対の成形型により成形させる成形処理とを行わせる構成を有することを特徴とする多層シートからなる中空体の製造システム。 A hollow body manufacturing system comprising a multilayer sheet, a sheet holding mechanism for arranging a pair of multilayer sheets so as to face each other in the vertical direction, a first heat source for heating the outer surfaces of the pair of multilayer sheets, and the pair A heating device having a second heat source for heating the inner surface of the multilayer sheet, a transport mechanism for transporting the pair of multilayer sheets, a molding device having a pair of molding dies, and a control unit, An inner high-temperature double-sided heat treatment for causing the first heat source to heat the outer surfaces of the pair of multilayer sheets and causing the second heat source to heat the inner surfaces of the pair of multilayer sheets at a higher temperature than the first heat source; Heating the outer surfaces of the pair of multilayer sheets, or heating the outer surfaces of the pair of multilayer sheets to the first heat source and the pair of heat sources to the second heat source. A double-sided heating process for heating the inner surface of the layer sheet at a temperature equal to or lower than the first heat source, and the pair of multilayer sheets heated by the first heat source and the second heat source on the transport mechanism between the pair of molds. A hollow made of a multilayer sheet characterized by having a configuration in which a conveyance process to convey and a molding process in which the pair of multilayer sheets conveyed by the conveyance mechanism to the molding apparatus are molded by the pair of molds are performed. Body manufacturing system.
  7.  更に前記第2熱源を前記一対の多層シートが対向する位置から側方に外れた位置に退避させる退避機構を備え、前記制御部は、前記片面加熱処理を行わせる構成であり、当該片面加熱処理では前記退避機構に前記第2熱源を前記側方に外れた位置に退避させるようにした請求項6記載の多層シートからなる中空体の製造システム。 And a retraction mechanism for retreating the second heat source from a position where the pair of multi-layer sheets face each other to a side position, and the control unit is configured to perform the one-side heat treatment. Then, the hollow body manufacturing system according to claim 6, wherein the retracting mechanism retracts the second heat source to a position off the side.
  8.  前記第2熱源は、前記一対の多層シートのうち下側に配置された前記多層シート寄りに配置されている請求項6又は7記載の多層シートからなる中空体の製造システム。 The system for producing a hollow body made of a multilayer sheet according to claim 6 or 7, wherein the second heat source is disposed near the multilayer sheet disposed on the lower side of the pair of multilayer sheets.
PCT/JP2014/061015 2014-04-18 2014-04-18 Method for manufacturing hollow body from multilayer sheet and manufacturing system WO2015159420A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/061015 WO2015159420A1 (en) 2014-04-18 2014-04-18 Method for manufacturing hollow body from multilayer sheet and manufacturing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/061015 WO2015159420A1 (en) 2014-04-18 2014-04-18 Method for manufacturing hollow body from multilayer sheet and manufacturing system

Publications (1)

Publication Number Publication Date
WO2015159420A1 true WO2015159420A1 (en) 2015-10-22

Family

ID=54323660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061015 WO2015159420A1 (en) 2014-04-18 2014-04-18 Method for manufacturing hollow body from multilayer sheet and manufacturing system

Country Status (1)

Country Link
WO (1) WO2015159420A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021040056A1 (en) 2019-08-29 2021-03-04 Astellas Pharma Inc. Genetically engineered oncolytic vaccinia viruses and methods of uses thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06114919A (en) * 1992-09-30 1994-04-26 Tsutsunaka Plast Ind Co Ltd Manufacture of synthetic resin hollow molded form
JP2002517333A (en) * 1998-06-10 2002-06-18 フィッシャー アンド ペイケル リミティド Apparatus and method for dual sheet thermoforming
JP2006088363A (en) * 2004-09-21 2006-04-06 Nissan Motor Co Ltd Method and apparatus for molding thermoplastic resin sheet
JP2007112071A (en) * 2005-10-21 2007-05-10 Mitsubishi Engineering Plastics Corp Hollow molded article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06114919A (en) * 1992-09-30 1994-04-26 Tsutsunaka Plast Ind Co Ltd Manufacture of synthetic resin hollow molded form
JP2002517333A (en) * 1998-06-10 2002-06-18 フィッシャー アンド ペイケル リミティド Apparatus and method for dual sheet thermoforming
JP2006088363A (en) * 2004-09-21 2006-04-06 Nissan Motor Co Ltd Method and apparatus for molding thermoplastic resin sheet
JP2007112071A (en) * 2005-10-21 2007-05-10 Mitsubishi Engineering Plastics Corp Hollow molded article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021040056A1 (en) 2019-08-29 2021-03-04 Astellas Pharma Inc. Genetically engineered oncolytic vaccinia viruses and methods of uses thereof

Similar Documents

Publication Publication Date Title
TWI271303B (en) Twin-sheet thermoforming of plastic fuel tanks
KR20120111720A (en) Receptacle manufacturing
JP2014124817A (en) Manufacturing method and manufacturing system of hollow body consisting of multilayer sheets
JP5512956B2 (en) Manufacturing method of packaging bag with zipper
JP5284514B2 (en) Manufacturing method of duct for automobile
WO2015159420A1 (en) Method for manufacturing hollow body from multilayer sheet and manufacturing system
JP2008297936A (en) Duct for automobile
JPH06293072A (en) Welding method and device for non-halogen thermoplastic thin strip
JP5954700B2 (en) Apparatus and method for thermoforming
JP5100207B2 (en) Manufacturing method of duct for automobile
JP5684582B2 (en) Manufacturing method of resin foam molded product and resin foam molded product manufacturing equipment
WO2016051453A1 (en) Process and system for producing hollow object
JP2001287293A (en) Laminated resin molding and manufacturing method for the same
JP2001038798A (en) Thermoforming apparatus, thermoforming method and thermoformed article
JP6657551B2 (en) Method for manufacturing resin molded body
JP2005205910A (en) Vacuum molding device and method for producing two layer sheet element composed of two parts
JP2004531429A (en) Process and apparatus for manufacturing container strips
JP4024671B2 (en) Method for producing foam-interior hollow molded product
WO2020255800A1 (en) Hollow container manufacturing apparatus
JP2014100910A (en) Reinforcing method and reinforcing apparatus
JP4444054B2 (en) Manufacturing method and manufacturing apparatus for composite molded product
US4886187A (en) Plastic container with enhanced insulation
JP2008087171A (en) Manufacturing method of thermoplastic resin molded object
JPH0528653B2 (en)
TW202017749A (en) Manufacturing method of anti-collision partition board preventing breakage and damage when colliding with other items

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14889377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP