WO2015159334A1 - Rotating electrical machine - Google Patents

Rotating electrical machine Download PDF

Info

Publication number
WO2015159334A1
WO2015159334A1 PCT/JP2014/060589 JP2014060589W WO2015159334A1 WO 2015159334 A1 WO2015159334 A1 WO 2015159334A1 JP 2014060589 W JP2014060589 W JP 2014060589W WO 2015159334 A1 WO2015159334 A1 WO 2015159334A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
outer peripheral
rotating electrical
electrical machine
permanent magnet
Prior art date
Application number
PCT/JP2014/060589
Other languages
French (fr)
Japanese (ja)
Inventor
野中 剛
荘平 大賀
隆明 石井
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to PCT/JP2014/060589 priority Critical patent/WO2015159334A1/en
Publication of WO2015159334A1 publication Critical patent/WO2015159334A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures

Definitions

  • the disclosed embodiment relates to a rotating electrical machine.
  • Patent Document 1 describes an electric motor including a rotor composed of an inner circumferential rotor and an outer circumferential rotor whose mutual rotation axes are arranged coaxially and whose relative phases can be changed.
  • hydraulic pressure is used for the rotation mechanism that changes the relative phase between the inner circumferential rotor and the outer circumferential rotor. Since the hydraulic pressure changes depending on the load torque and the rotational speed, it is difficult to accurately control the field magnetic flux in every situation, and it is difficult to drive the rotating electrical machine in an optimum operating situation.
  • the present invention has been made in view of such a problem, and an object of the present invention is to provide a rotating electrical machine that can be driven in an optimal driving situation by using a control motor for a mechanism that changes a field magnetic flux.
  • variable field type rotating electrical machine that changes a field magnetic flux, and an outer periphery that includes a plurality of first permanent magnets arranged in a circumferential direction.
  • a side rotor, an inner peripheral rotor that is coaxially disposed inside the outer peripheral rotor and includes a second permanent magnet, and the outer peripheral rotor and the inner peripheral rotor are relatively moved by a control motor.
  • a rotating electrical machine having a rotating mechanism configured to be rotated.
  • variable field type rotating electrical machine that changes a field magnetic flux, and an outer peripheral rotor including a plurality of first permanent magnets arranged in the circumferential direction;
  • An inner circumferential rotor that is coaxially disposed inside the outer circumferential rotor and includes a second permanent magnet, and means for electrically rotating the outer circumferential rotor and the inner circumferential rotor relative to each other.
  • the rotating electric machine can be driven in an optimal operating condition by using the control motor for the mechanism for changing the field magnetic flux.
  • FIG. It is an axial sectional view of the rotating electrical machine according to the second embodiment. It is a cross-sectional view of the rotating electrical machine according to the second embodiment. It is a perspective view showing the structure of a shaft, a slider, and a boss
  • the rotating electrical machine 1 is a variable field type rotating electrical machine capable of changing a field magnetic flux.
  • the rotating electrical machine 1 includes a stator 10, an outer peripheral rotor 20 having a first permanent magnet 21 disposed inside the stator 10, and a second permanent magnet 31.
  • a circumferential rotor 30 and a rotation mechanism 50 having a control motor 53 (see FIG. 5 described later) for relatively rotating the outer circumferential rotor 20 and the inner circumferential rotor 30 are provided.
  • Such a variable field type rotating electrical machine 1 can be suitably used for, for example, a vehicle driving motor or a generator.
  • Rotating electrical machine 1 includes a hollow shaft 2.
  • the shaft 2 is connected to a load side bracket 3 on one axial side (right side in FIG. 1) and a counter load side bracket 4 on the other axial side (left side in FIG. 1) via a load side bearing 5 and an anti load side bearing 6, respectively. And is supported rotatably.
  • a cylindrical frame 7 is integrally provided on the non-load side bracket 4.
  • the anti-load side bracket 4 and the frame 7 may be separated.
  • the anti-load side bracket 4 and the frame 7 are fixed to the load side bracket 3 by frame fastening bolts 8 inserted from the anti-load side.
  • load side refers to the direction in which the shaft 2 protrudes from the rotating electrical machine 1 (right side in FIG. 1)
  • anti-load side refers to the direction opposite to the load side, that is, the rotating electrical machine 1.
  • the direction (left side in FIG. 1) in which the rotation mechanism 50 is disposed is indicated.
  • the stator 10 includes a plurality of (in this example, 12) stator cores 11 that are annularly arranged on the inner peripheral side of the frame 7, and stator windings 12 that are attached to the stator cores 11.
  • Each stator core 11 is fixed to the load side bracket 3 by a bolt 13.
  • the outer circumferential rotor 20 includes an outer circumferential rotor core 22 disposed with a magnetic gap between the stator 10 and a plurality (ten in this example) of the first rotor core 22 provided on the outer circumferential rotor core 22. And a permanent magnet 21.
  • the outer rotor core 22 includes a plurality of (in this example, 10) magnet housing parts 23 (an example of permanent magnet housing parts) that penetrate in the axial direction in a radial direction along the circumferential direction.
  • the inner peripheral side is open.
  • the outer rotor core 22 has a concave connecting portion 24 that is recessed in the radial direction on the outer peripheral side of each magnet housing portion 23.
  • the plurality of first permanent magnets 21 are housed in the magnet housing portion 23 and are arranged radially on the outer circumferential rotor core 22.
  • the magnetic poles facing each other between the two adjacent permanent magnets 21 are the same N poles or S poles, and the N poles and the S poles are alternately arranged in the circumferential direction. It arrange
  • the shaft 2 has a large-diameter portion 2a formed with a through hole 27a through which the first bolt 17 passes in the axial direction.
  • the load-side side plate 15 and the anti-load-side side plate 16 are arranged on both sides in the axial direction of the outer peripheral side rotor 20 and the inner peripheral side rotor 30.
  • the two side plates 15 and 16 hold the outer peripheral rotor 20 and play a role of restricting axial movement by contacting (sliding) with one axial side of the inner peripheral rotor 30.
  • the two side plates 15 and 16 are fixed at the outer peripheral side by the outer peripheral rotor 20 and the second bolt 18, and at the inner peripheral side by the large-diameter portion 2 a of the shaft 2 and the first bolt 17.
  • the side plate 15 on the load side is provided with screw holes 15a and 15b into which the shaft portions of the first bolt 17 and the second bolt 18 are screwed.
  • the side plate 16 on the side opposite to the load is provided with a storage groove 16a (an example of a recess) that prevents the head 18a of the second bolt 18 from being exposed.
  • the outer peripheral rotor core 22 is fixed to the side plates 15 and 16 by two second bolts 18 for each magnetic pole portion 25 of one pole.
  • the inner circumferential rotor 30 is disposed so as to be substantially coaxial inside the outer circumferential rotor 20, and is disposed in a cylindrical shape on the outer circumference of the inner circumferential rotor core 29 and the inner circumferential rotor core 29.
  • the second permanent magnet 31 is provided.
  • the second permanent magnet 31 is a cylindrical permanent magnet in which N poles and S poles having the same number of poles as the outer rotor 20 are alternately magnetized on the outer peripheral surface.
  • the second permanent magnet 31 may be composed of a plurality of permanent magnets divided into the same number as the number of magnetic poles of the outer circumferential rotor 20, or may be a single cylindrical permanent magnet.
  • the inner circumferential side rotor 30 has an axial dimension substantially equal to that of the outer circumferential side rotor 20 and is disposed between the two side plates 15 and 16.
  • O-rings 33 are mounted on both axial sides of the inner circumferential rotor 30 to prevent the filled grease from scattering to the outer circumferential rotor 20 and the like.
  • the rotation mechanism 50 rotates the inner rotor 30 relative to the outer rotor 20.
  • the rotation mechanism 50 includes a cylindrical slider 34 that is attached to the large-diameter portion 2 a of the shaft 2.
  • the rotation mechanism 50 On the outer peripheral surface of the large-diameter portion 2a of the shaft 2, pin through holes 27c through which both ends of the pins 28 provided in the slider 34 penetrate and a plurality of spline portions 27b along the axial direction are formed.
  • the through hole 27a for the first bolt 17 is formed between the spline portions 27b.
  • the pin through hole 27c is provided in the shape of a long hole from the substantially central portion in the axial direction of the large diameter portion 2a to the vicinity of the end portion on the one axial side (obliquely upper right side in FIG. 4).
  • the slider 34 has an axial length that is substantially half of the large-diameter portion 2a of the shaft 2.
  • a plurality of spline portions 34a along the axial direction are formed on the inner peripheral surface of the slider 34, and the pins 28 are fixedly penetrated in the radial direction.
  • the slider 34 attached to the large-diameter portion 2a of the shaft 2 is movable in the axial direction while the rotational operation is restricted by the spline portion 34a engaging the spline portion 27b of the large-diameter portion 2a.
  • the movable range of the slider 34 is restricted by the pin 28 and the pin through hole 27c, and is movable in the axial direction within the range of the axial dimension of the large diameter portion 2a of the shaft 2.
  • a torsion spline portion 34b inclined in the circumferential direction is formed on the outer peripheral surface of the slider 34.
  • the inner circumferential side rotor core 29 has an axial length slightly longer than the large diameter portion 2 a of the shaft 2.
  • a torsion spline portion 31 a that engages with the torsion spline portion 34 b of the slider 34 is formed on the inner peripheral surface of the inner rotor core 29.
  • the inner circumferential rotor core 29 attached to the slider 34 has a predetermined amount in the circumferential direction due to a predetermined amount of movement in the axial direction of the slider 34 when the torsion spline portion 31a engages the torsion spline portion 34b of the slider 34. Rotate.
  • a pin holder 36 that can move in the axial direction together with the pin 28 is installed in the large-diameter portion 2 a of the shaft 2.
  • the pin holder 36 is attached to the distal end portion of the feed male screw 41 of the rotation mechanism 50 via two movable bearings 37.
  • the feed male screw 41 is installed so that the rotation of the shaft 2 is blocked by the movable bearing 37.
  • the movable bearing 37 is, for example, an angular bearing, and the two movable bearings 37 support the axial force acting between the feed male screw 41 and the pin holder 36 by being arranged so that the axial support directions are opposed to each other. Is possible.
  • the movable bearing 37 is held by a bearing holder 38 fixed to the front end portion of the feed male screw 41 by a bolt 39.
  • the base end portion of the feed male screw 41 is engaged with a feed female screw 44 protruding from an annular flange 43 (see FIG. 1).
  • the flange portion 43 is disposed so as to cover the end portion on the opposite side of the shaft 2 and is fixed to the opposite load side bracket 4.
  • Two fixed bearings 45 are provided between the feed female screw 44 and the shaft 2, and the feed female screw 44 is installed so that the rotation of the shaft 2 is blocked by the fixed bearing 45.
  • the fixed bearing 45 is fixed to the feed female screw 44 by a nut 46.
  • the fixed bearing 45 is, for example, an angular bearing, and the two fixed bearings 45 are arranged so that the axial support directions face each other, thereby supporting the axial force acting between the feed female screw 44 and the shaft 2. Is possible.
  • the feed male screw 41 has a polygonal (for example, hexagonal) hole 41a that opens to the anti-load side.
  • the rotating mechanism 50 includes a wheel gear 51 having a polygonal (for example, hexagonal) shaft portion 51 a inserted into the hole 41 a of the feed male screw 41, and a worm meshing with the wheel gear 51.
  • a shaft 52 and a control motor 53 having the worm shaft 52 attached to the output shaft are provided.
  • the wheel gear 51 is rotatably supported on the feed female screw 44 by a bearing 47.
  • the control motor 53 is installed in the rotating electrical machine 1 by being disposed between the cover body 55 attached to the other side in the axial direction of the anti-load side bracket 4 and the anti-load side bracket 4.
  • Rotation mechanism 50 operates as follows. That is, when the worm shaft 52 is driven by the control motor 53, the wheel gear 51 rotates, and the shaft portion 51a of the wheel gear 51 rotates the feed male screw 41. Since the feed male screw 41 meshes with the feed female screw 44, the feed male screw 41 moves in the axial direction by rotation, and the pin holder 36 attached to the tip end portion of the feed male screw 41 by blocking the rotation by the movable bearing 37 moves in the axial direction. As the pin holder 36 moves, the pin 28 moves in the axial direction, and the slider 34 coupled to the pin 28 moves in the axial direction.
  • the inner circumferential rotor 30 splined to the outer periphery of the slider 34 by the torsion spline portion 31a in the twist direction rotates in the circumferential direction. Accordingly, the rotational position of the second permanent magnet 31 on the outer peripheral surface of the inner peripheral rotor 30 in the circumferential direction changes with respect to the first permanent magnet 21 of the outer peripheral rotor 20.
  • the feed male screw 41 and the feed female screw 44 correspond to an example of a feed screw mechanism.
  • FIG. 6 shows the positional relationship of the inner circumferential rotor with respect to the outer circumferential rotor when a weak field state is obtained.
  • the inner rotor 30 has the S pole of the second permanent magnet 31 relative to the N pole magnetic pole portion 25 by the two first permanent magnets 21 of the outer rotor 20. It is in the position to do.
  • the strong field state In the strong field state, it can be operated with high torque and high efficiency, but the efficiency is poor in the low torque state due to the large iron loss. Therefore, for example, by setting the above weak field state in a low torque state, it is possible to operate with high efficiency.
  • FIG. 7 shows the positional relationship of the inner circumferential rotor with respect to the outer circumferential rotor when a medium strength field state is obtained.
  • the inner rotor 30 has a position where the N pole and S pole of the second permanent magnet 31 substantially coincide with the position of the first permanent magnet 21 of the outer rotor 20 ( In other words, the intermediate position between the north pole and the south pole of the second permanent magnet 31 is at a position facing the magnetic pole portion 25 of the outer rotor 20.
  • the second permanent magnet 31 only the magnetic flux q2 from the N pole to the S pole is generated, and the magnetic flux of the first permanent magnet 21 is not drawn to the inner peripheral side.
  • the gap magnetic flux density of the field magnetic flux q1 from the N pole of the outer rotor 20 toward the outer peripheral side is increased as compared with the case shown in FIG. 6 because the magnetic flux of the first permanent magnet 21 is not short-circuited to the inner peripheral side. be able to.
  • the control motor 53 is driven so as to obtain an optimum gap magnetic flux density, and the relative angle between the outer circumferential rotor 20 and the inner circumferential rotor 30 is increased. As a result, the maximum efficiency can be obtained.
  • FIG. 8 shows the positional relationship of the inner rotor with respect to the outer rotor when a strong field state is obtained.
  • the inner rotor 30 has the N pole of the second permanent magnet 31 relative to the N pole magnetic pole portion 25 by the two first permanent magnets 21 of the outer rotor 20. It is in the position to do.
  • the outer peripheral rotor 20 Since the magnetic flux q2 from the N pole of the second permanent magnet 31 of the inner peripheral rotor 30 toward the outer peripheral side is added to the magnetic flux from the N pole of the first permanent magnet 21 toward the outer peripheral side, the outer peripheral rotor 20 The gap magnetic flux density of the field magnetic flux q1 from the N pole toward the outer peripheral side is maximized.
  • FIG. 9 is a graph showing the relationship between the torque and efficiency of the rotating electrical machine in this embodiment and Comparative Examples 1 and 2.
  • Comparative Example 1 is a case where a rotating electrical machine in which the rotor is fixed in a relatively strong field state is operated, and can be operated with high efficiency in a high torque state. However, since the iron loss is large, the efficiency is low in a low torque state. It has become.
  • Comparative Example 2 is a case where a rotating electric machine in which the rotor is fixed in a relatively weak field state is operated, and can be operated with high efficiency in a low torque state. However, since the magnetic force is small, a large torque cannot be produced.
  • the present embodiment by changing the position of the inner rotor 30 with respect to the outer rotor 20, the field of the rotor (the outer rotor 20 and the inner rotor 30) according to the load torque. Since the magnetic flux can be increased or decreased, it is possible to operate with high efficiency from a low torque state to a high torque state.
  • the rotating electrical machine 1 is coaxial with the outer peripheral rotor 20 having the plurality of first permanent magnets 21 arranged in the circumferential direction and the inner periphery of the outer peripheral rotor 20.
  • the rotor 30 is arranged and has an inner peripheral rotor 30 provided with a second permanent magnet 31, and a rotation mechanism 50.
  • the rotation mechanism 50 relatively rotates the outer peripheral rotor 20 and the inner peripheral rotor 30 using the control motor 53. As a result, the field magnetic flux can be accurately controlled regardless of the load torque and the rotational speed. Therefore, the rotary electric machine 1 can be driven in an optimal driving situation.
  • the inner circumferential rotor 30 includes a second permanent magnet 31 disposed in a cylindrical shape on the outer circumferential surface, and a torsional spline portion 31a provided on the inner circumferential surface.
  • the inner circumferential rotor 30 has second permanent magnets 31 arranged in a cylindrical shape on the outer circumferential surface, so that, for example, a plurality of second permanent magnets are formed between the magnets when arranged at a plurality of locations in the circumferential direction. It is possible to eliminate a connecting portion that causes an increase in leakage of magnetic flux. Thereby, since a leakage magnetic flux can be reduced, when increasing a field magnetic flux, a powerful torque can be obtained.
  • the second permanent magnet 31 is a single cylindrical permanent magnet in which N poles and S poles having the same number of poles as the outer peripheral rotor 20 are alternately magnetized on the outer peripheral surface.
  • the outer peripheral rotor 20 has an outer periphery provided with a permanent magnet storage portion 23 for storing the first permanent magnet 21, which has a connecting portion 24 on the outer peripheral side and an opening on the inner peripheral side.
  • a side rotor core 22 is provided.
  • the outer circumferential rotor core 22 is fixed by two second bolts 18 for each pole. Therefore, even if the permanent magnet storage part 23 of the outer peripheral side rotor core 22 is the shape opened to the inner peripheral side, a deformation
  • the shaft 2 including the large-diameter portion 2a in which the through-hole 27a that penetrates the first bolt 17 in the axial direction is formed, and the shafts of the outer peripheral rotor 20 and the inner peripheral rotor 30.
  • Two side plates 15 and 16 which are arranged on both sides in the direction, the outer peripheral side is fixed by the outer peripheral rotor 20 and the second bolt 18, and the inner peripheral side is fixed by the large diameter portion 2 a of the shaft 2 and the first bolt 17.
  • the outer peripheral side rotor 20 can be fixed to the shaft 2.
  • the side plates 15 and 16 are directly fixed to the shaft 2, the radial dimension of the rotating electrical machine 1 can be reduced as compared with the case where other members are interposed between the side plates 15 and 16 and the shaft 2.
  • the inner circumferential rotor 30 is restricted from moving in the axial direction by the two side plates 15 and 16.
  • the outer rotor 20 can be held against a large torque with a simple structure, and the axial movement of the inner rotor 30 can be restricted against a large axial thrust.
  • the side plate 16 has a storage groove 16a for storing the head portion 18a of the second bolt 18, and the side plate 15 is a screw into which the shaft portions of the first bolt 17 and the second bolt 18 are screwed. It has holes 15a and 15b.
  • the structure of the rotor can be simplified as compared with the structure in which the head portion 18a of the second bolt 18 protrudes from the side plate 16 or the shaft portions of the bolts 17 and 18 are screwed into the nut outside the side plate 15.
  • the rotation mechanism 50 is spline-coupled to the inner circumferential side rotor 30 in the torsional direction inside the inner circumferential side rotor 30, and slides on the outer side of the shaft 2 in the axial direction. 2 and a feed screw mechanism (feed male screw 41, feed female screw 44, etc.) configured to move the slider 34 in the axial direction, and the control motor 53 includes the feed screw mechanism. Configured to rotate. As a result, it is possible to realize a mechanism in which the outer peripheral rotor 20 and the inner peripheral rotor 30 are relatively rotated by the control motor 53.
  • the outer peripheral side rotor 20 ⁇ / b> A includes an outer peripheral side rotor core 22 ⁇ / b> A and a plurality of first permanent magnets 21.
  • the outer peripheral side rotor core 22A is the same as the first embodiment described above in that a plurality of magnet housing portions 23 penetrating in the axial direction are provided radially along the circumferential direction, but is housed in each magnet housing portion 23.
  • the first permanent magnet 21 has a connecting portion 24 a on the inner peripheral side.
  • the outer rotor core 22 is fixed to the side plates 15 and 16 by one second bolt 18 for each magnetic pole portion 25.
  • the outer rotor core 22 is different from the first embodiment described above. Similarly, it may be fixed by two second bolts 18.
  • the inner circumferential side rotor 30A is provided on the annular inner circumferential side rotor core 29A and the inner circumferential side rotor core 29A which are arranged with a gap from the outer circumferential side rotor 20, and the outer circumferential side rotor 20 and And a plurality of (in this example, 10) second permanent magnets 32 having the same number of poles.
  • the plurality of second permanent magnets 32 are arranged on the outer peripheral portion of the inner rotor core 29A so as to alternately repeat N-pole and S-pole magnetic poles in the circumferential direction along the circumferential direction.
  • Grooves 42 for reducing leakage magnetic flux are formed on the outer peripheral surface of the inner peripheral rotor core 29A at positions between the second permanent magnets 32.
  • the inner circumferential side rotor core 29 ⁇ / b> A is fixed to the outer circumferential surface of the boss 35.
  • the boss 35 has a spline portion 35b along the axial direction on the outer peripheral surface.
  • a spline portion 29a is formed on the inner peripheral surface of the inner peripheral rotor core 29A along the axial direction to engage with the spline portion 35b of the boss 35.
  • a torsion spline portion 35 a that engages with a torsion spline portion 34 b formed on the outer peripheral surface of the slider 34 is formed on the inner peripheral surface of the boss 35.
  • the boss 35 attached to the slider 34, together with the inner circumferential rotor core 29A, is engaged by a predetermined amount of movement in the axial direction of the slider 34 by engaging the torsion spline portion 35a with the torsion spline portion 34b of the slider 34. Rotate a certain amount in the direction.
  • FIG. 13 shows the positional relationship of the inner circumferential rotor with respect to the outer circumferential rotor when a weak field state is obtained.
  • the inner rotor 30 ⁇ / b> A has the S pole of the second permanent magnet 32 relative to the N pole magnetic pole portion 25 by the two first permanent magnets 21 of the outer rotor 20.
  • FIG. 14 shows the positional relationship of the inner circumferential rotor with respect to the outer circumferential rotor when a medium strength field state is obtained.
  • the inner rotor 30 ⁇ / b> A has a position where the N pole and S pole of the second permanent magnet 32 substantially coincide with the position of the first permanent magnet 21 of the outer rotor 20 ( In other words, the intermediate position between the N pole and the S pole of the second permanent magnet 32 is at a position facing the magnetic pole portion 25 of the outer rotor 20A.
  • the second permanent magnet 32 only the magnetic flux q2 from the N pole to the S pole is generated, and the magnetic flux of the first permanent magnet 21 is not drawn to the inner peripheral side.
  • the gap magnetic flux density of the field magnetic flux q1 from the N pole of the outer rotor 20A toward the outer periphery is increased as compared with the case shown in FIG. 13 because the magnetic flux of the first permanent magnet 21 is not short-circuited to the inner periphery. be able to.
  • FIG. 15 shows the positional relationship of the inner rotor on the outer rotor when a strong field state is obtained.
  • the inner rotor 30 ⁇ / b> A has the N pole of the second permanent magnet 32 relative to the N pole magnetic pole portion 25 by the two first permanent magnets 21 of the outer rotor 20. It is in the position to do.
  • the magnetic flux q2 from the N pole of the second permanent magnet 32 of the inner peripheral rotor 30A toward the outer peripheral side is added to the magnetic flux from the N pole of the first permanent magnet 21 toward the outer peripheral side, the outer peripheral rotor 20A.
  • the gap magnetic flux density of the field magnetic flux q1 from the N pole toward the outer peripheral side is maximized.
  • the rotating electrical machine 1A can be operated with high efficiency from the low torque state to the high torque state. Further, the same effect as that of the first embodiment described above can be obtained.
  • the outer peripheral side rotor 20 ⁇ / b> B and the inner peripheral side rotor 30 ⁇ / b> B are arranged inside the stator 10.
  • the outer circumferential rotor 20B includes an outer circumferential rotor core 22B and a plurality (16 in this example) of first permanent magnets 21 provided on the outer circumferential rotor core 22B.
  • the outer peripheral rotor core 22 ⁇ / b> B includes a plurality of magnet storage portions 23 (an example of a permanent magnet storage portion) for installing the plurality of first permanent magnets 21.
  • the outer peripheral rotor core 22 ⁇ / b> B has a connecting portion 24 on the outer peripheral side of each magnet storage portion 23.
  • a plurality of pairs (eight pairs in this example) of a pair of magnet storage portions 23, 23 arranged substantially in a V shape when viewed from the axial direction are arranged along the circumferential direction. And provided on the outer rotor core 22B.
  • the plurality of pairs of first permanent magnets 21 housed in the magnet housing portion 23 have the same or opposite N poles or S poles of each pair of first permanent magnets 21, and the N poles,
  • the magnetic poles of the S poles are arranged so as to be alternately repeated in the circumferential direction, and the N pole and S pole magnetic pole parts 25 are alternately formed in the circumferential direction on the outer peripheral portion of the outer rotor core 22B.
  • the inner circumferential side rotor 30B has an inner circumferential side rotor core 29B fixed to the boss 35.
  • the inner circumferential side rotor core 29B has a plurality (eight in this example) of gaps 40a that open to the outer circumferential surface, and salient poles 40b that are formed between the gaps 40a. It is preferable that the size of the opening of the gap portion 40 a extends to both ends in the circumferential direction on the inner peripheral side of the two first permanent magnets 21 located between the adjacent magnetic pole portions 25.
  • the inner circumferential rotor 30B When the field magnetic flux is strengthened, as shown in FIG. 17, the inner circumferential rotor 30B is arranged so that the gap 40a of the inner circumferential rotor 30B is substantially opposed to the magnetic pole portion 25 of the outer circumferential rotor 20B. Position. Thereby, since all the field magnetic flux which comes out from the N pole of the 1st permanent magnet 21 of the outer peripheral side rotor 20B can be made to go to an outer peripheral side, the field magnetic flux q1 can be enlarged.
  • the third embodiment described above it is possible to increase or decrease the field magnetic flux of the rotor (the outer peripheral side rotor 20B and the inner peripheral side rotor 30B) with a simple configuration.
  • the rotation mechanism 50 corresponds to an example of means for electrically rotating the outer peripheral side rotor and the inner peripheral side rotor relative to each other.

Abstract

[Problem] To make it possible to perform driving in an optimum operation state by means of using a control motor in a mechanism that changes a field magnetic flux. [Solution] A variable field magnet rotating electrical machine (1) that changes a field magnetic flux has: an outer circumferential-side rotor (20) that is provided with a plurality of first permanent magnets (21), which are disposed in the circumferential direction; an inner circumferential-side rotor (30), which is coaxially disposed on the inner side of the outer circumferential-side rotor (20), and which is provided with a second permanent magnet (31); and a rotating mechanism (50), which is configured so as to relatively rotate the outer circumferential-side rotor (20) and the inner circumferential-side rotor (30) by means of a control motor (53).

Description

回転電機Rotating electric machine
 開示の実施形態は、回転電機に関する。 The disclosed embodiment relates to a rotating electrical machine.
 特許文献1には、互いの回転軸が同軸に配置され、互いの相対位相を変更可能な内周側回転子および外周側回転子からなるロータを備える電動機が記載されている。 Patent Document 1 describes an electric motor including a rotor composed of an inner circumferential rotor and an outer circumferential rotor whose mutual rotation axes are arranged coaxially and whose relative phases can be changed.
特開2008-289212号公報JP 2008-289212 A
 上記従来技術では、内周側回転子と外周側回転子との相対的な位相変更を行う回動機構に油圧を用いる。油圧は負荷トルクや回転速度により変化するので、界磁磁束をあらゆる状況で正確に制御することが難しく、回転電機を最適な運転状況で駆動することが難しいという課題があった。 In the above prior art, hydraulic pressure is used for the rotation mechanism that changes the relative phase between the inner circumferential rotor and the outer circumferential rotor. Since the hydraulic pressure changes depending on the load torque and the rotational speed, it is difficult to accurately control the field magnetic flux in every situation, and it is difficult to drive the rotating electrical machine in an optimum operating situation.
 本発明はこのような問題点に鑑みてなされたものであり、界磁磁束を変化させる機構に制御モータを用いることで、最適な運転状況で駆動することができる回転電機を提供することを目的とする。 The present invention has been made in view of such a problem, and an object of the present invention is to provide a rotating electrical machine that can be driven in an optimal driving situation by using a control motor for a mechanism that changes a field magnetic flux. And
 上記課題を解決するため、本発明の一の観点によれば、界磁磁束を変化させる可変界磁型の回転電機であって、周方向に配置された複数の第1永久磁石を備えた外周側回転子と、前記外周側回転子の内側に同軸に配置され、第2永久磁石を備えた内周側回転子と、前記外周側回転子と前記内周側回転子とを制御モータにより相対的に回動するように構成された回動機構と、を有する回転電機が適用される。 In order to solve the above problems, according to one aspect of the present invention, a variable field type rotating electrical machine that changes a field magnetic flux, and an outer periphery that includes a plurality of first permanent magnets arranged in a circumferential direction. A side rotor, an inner peripheral rotor that is coaxially disposed inside the outer peripheral rotor and includes a second permanent magnet, and the outer peripheral rotor and the inner peripheral rotor are relatively moved by a control motor. And a rotating electrical machine having a rotating mechanism configured to be rotated.
 また、本発明の別の観点によれば、界磁磁束を変化させる可変界磁型の回転電機であって、周方向に配置された複数の第1永久磁石を備えた外周側回転子と、前記外周側回転子の内側に同軸に配置され、第2永久磁石を備えた内周側回転子と、前記外周側回転子と前記内周側回転子とを電気的に相対回動させる手段と、を有する回転電機が適用される。 According to another aspect of the present invention, there is provided a variable field type rotating electrical machine that changes a field magnetic flux, and an outer peripheral rotor including a plurality of first permanent magnets arranged in the circumferential direction; An inner circumferential rotor that is coaxially disposed inside the outer circumferential rotor and includes a second permanent magnet, and means for electrically rotating the outer circumferential rotor and the inner circumferential rotor relative to each other. , A rotating electrical machine having the above is applied.
 本発明によれば、界磁磁束を変化させる機構に制御モータを用いることで、回転電機を最適な運転状況で駆動することができる。 According to the present invention, the rotating electric machine can be driven in an optimal operating condition by using the control motor for the mechanism for changing the field magnetic flux.
第1実施形態に係る回転電機の軸方向断面図である。It is an axial sectional view of the rotating electrical machine according to the first embodiment. 第1実施形態に係る回転電機の横断面図である。It is a cross-sectional view of the rotating electrical machine according to the first embodiment. 回転電機の回転子及び回動機構を表す軸方向断面図である。It is an axial direction sectional view showing the rotor and rotation mechanism of a rotary electric machine. シャフト、スライダ及び内周側回転子の構造を表す斜視図である。It is a perspective view showing the structure of a shaft, a slider, and an inner peripheral side rotor. 回動機構の一部構成を表す説明図である。It is explanatory drawing showing the partial structure of a rotation mechanism. 弱い界磁磁束を得る場合の外周側回転子に対する内周側回転子の位置関係を表す説明図である。It is explanatory drawing showing the positional relationship of the inner peripheral side rotor with respect to the outer peripheral side rotor in the case of obtaining a weak field magnetic flux. 中程度の強さの界磁磁束を得る場合の外周側回転子に対する内周側回転子の位置関係を表す説明図である。It is explanatory drawing showing the positional relationship of the inner peripheral side rotor with respect to the outer peripheral side rotor in the case of obtaining the field magnetic flux of medium intensity | strength. 強い界磁磁束を得る場合の外周側回転子に対する内周側回転子の位置関係を表す説明図である。It is explanatory drawing showing the positional relationship of the inner peripheral side rotor with respect to the outer peripheral side rotor in the case of obtaining a strong field magnetic flux. 回転電機のトルクと効率の関係を実施形態と比較例1,2とで比較して示したグラフである。It is the graph which showed the relationship between the torque and efficiency of a rotary electric machine by comparing with embodiment and Comparative Examples 1 and 2. FIG. 第2実施形態に係る回転電機の軸方向断面図である。It is an axial sectional view of the rotating electrical machine according to the second embodiment. 第2実施形態に係る回転電機の横断面図である。It is a cross-sectional view of the rotating electrical machine according to the second embodiment. シャフト、スライダ及びボスの構造を表す斜視図である。It is a perspective view showing the structure of a shaft, a slider, and a boss | hub. 弱い界磁磁束を得る場合の外周側回転子に対する内周側回転子の位置関係を表す説明図である。It is explanatory drawing showing the positional relationship of the inner peripheral side rotor with respect to the outer peripheral side rotor in the case of obtaining a weak field magnetic flux. 中程度の強さの界磁磁束を得る場合の外周側回転子に対する内周側回転子の位置関係を表す説明図である。It is explanatory drawing showing the positional relationship of the inner peripheral side rotor with respect to the outer peripheral side rotor in the case of obtaining the field magnetic flux of medium intensity | strength. 強い界磁磁束を得る場合の外周側回転子に対する内周側回転子の位置関係を表す説明図である。It is explanatory drawing showing the positional relationship of the inner peripheral side rotor with respect to the outer peripheral side rotor in the case of obtaining a strong field magnetic flux. 第3実施形態において弱い界磁磁束を得る場合の外周側回転子に対する内周側回転子の位置関係を表す説明図である。It is explanatory drawing showing the positional relationship of the inner peripheral side rotor with respect to the outer peripheral side rotor when obtaining a weak field magnetic flux in 3rd Embodiment. 第3実施形態において強い界磁磁束を得る場合の外周側回転子に対する内周側回転子の位置関係を表す説明図である。It is explanatory drawing showing the positional relationship of the inner peripheral side rotor with respect to the outer peripheral side rotor when obtaining a strong field magnetic flux in 3rd Embodiment.
 以下、実施の形態について図面を参照しつつ説明する。なお、以下では、回転電機等の構成の説明の便宜上、上下左右等の方向を適宜使用するが、回転電機等の各構成の位置関係を限定するものではない。 Hereinafter, embodiments will be described with reference to the drawings. In the following, for convenience of description of the configuration of the rotating electrical machine and the like, directions such as up and down, left and right are used as appropriate, but the positional relationship of the components of the rotating electrical machine and the like is not limited.
 <1.第1実施形態>
 まず、図1乃至図5を参照しつつ、第1実施形態に係る回転電機の構成について説明する。
<1. First Embodiment>
First, the configuration of the rotating electrical machine according to the first embodiment will be described with reference to FIGS. 1 to 5.
  (1-1.回転電機の概略構成)
 本実施形態に係る回転電機1は、界磁磁束を変化させることが可能な可変界磁型の回転電機である。図1及び図2に示すように、回転電機1は、固定子10と、固定子10の内側に配置された第1永久磁石21を有する外周側回転子20及び第2永久磁石31を有する内周側回転子30と、外周側回転子20及び内周側回転子30を相対的に回動する制御モータ53(後述の図5参照)を有する回動機構50とを備える。このような可変界磁型の回転電機1は、例えば車両駆動用モータまたは発電機等に好適に使用することができる。
(1-1. Schematic configuration of rotating electric machine)
The rotating electrical machine 1 according to the present embodiment is a variable field type rotating electrical machine capable of changing a field magnetic flux. As shown in FIGS. 1 and 2, the rotating electrical machine 1 includes a stator 10, an outer peripheral rotor 20 having a first permanent magnet 21 disposed inside the stator 10, and a second permanent magnet 31. A circumferential rotor 30 and a rotation mechanism 50 having a control motor 53 (see FIG. 5 described later) for relatively rotating the outer circumferential rotor 20 and the inner circumferential rotor 30 are provided. Such a variable field type rotating electrical machine 1 can be suitably used for, for example, a vehicle driving motor or a generator.
 回転電機1は中空のシャフト2を備える。シャフト2は、軸方向一方側(図1中右側)の負荷側ブラケット3及び軸方向他方側(図1中左側)の反負荷側ブラケット4にそれぞれ負荷側軸受5及び反負荷側軸受6を介して回転自在に支持されている。反負荷側ブラケット4には円筒状のフレーム7が一体に設けられる。なお、反負荷側ブラケット4とフレーム7とを別体としてもよい。反負荷側ブラケット4及びフレーム7は、反負荷側から挿通したフレーム締結ボルト8によって負荷側ブラケット3に固定されている。 Rotating electrical machine 1 includes a hollow shaft 2. The shaft 2 is connected to a load side bracket 3 on one axial side (right side in FIG. 1) and a counter load side bracket 4 on the other axial side (left side in FIG. 1) via a load side bearing 5 and an anti load side bearing 6, respectively. And is supported rotatably. A cylindrical frame 7 is integrally provided on the non-load side bracket 4. The anti-load side bracket 4 and the frame 7 may be separated. The anti-load side bracket 4 and the frame 7 are fixed to the load side bracket 3 by frame fastening bolts 8 inserted from the anti-load side.
 なお、本明細書において「負荷側」とは回転電機1に対してシャフト2が突出する方向(図1中右側)を指し、「反負荷側」とは負荷側の反対方向、すなわち回転電機1に対して回動機構50が配置される方向(図1中左側)を指す。 In this specification, “load side” refers to the direction in which the shaft 2 protrudes from the rotating electrical machine 1 (right side in FIG. 1), and “anti-load side” refers to the direction opposite to the load side, that is, the rotating electrical machine 1. The direction (left side in FIG. 1) in which the rotation mechanism 50 is disposed is indicated.
  (1-2.固定子の構成)
 固定子10は、フレーム7の内周側に環状に配置された複数(この例では12個)の固定子鉄心11と、各固定子鉄心11に装着された固定子巻線12とを備え、各固定子鉄心11はボルト13によって負荷側ブラケット3に固定されている。
(1-2. Structure of stator)
The stator 10 includes a plurality of (in this example, 12) stator cores 11 that are annularly arranged on the inner peripheral side of the frame 7, and stator windings 12 that are attached to the stator cores 11. Each stator core 11 is fixed to the load side bracket 3 by a bolt 13.
  (1-3.外周側回転子の構成)
 外周側回転子20は、固定子10と磁気的空隙を空けて配置された外周側回転子鉄心22と、外周側回転子鉄心22に設けられた複数(この例では10個)の上記第1永久磁石21とを備えている。外周側回転子鉄心22は、軸方向に貫通した複数(この例では10個)の磁石収納部23(永久磁石収納部の一例)を周方向に沿って放射状に備え、各磁石収納部23は、内周側が開口している。また外周側回転子鉄心22は、各磁石収納部23の外周側に径方向に窪んだ凹状の繋ぎ部24を有している。複数の第1永久磁石21は、磁石収納部23に収納され、外周側回転子鉄心22に放射状に配置されている。複数の第1永久磁石21は、隣り合う2つの永久磁石21の向かいあう側の磁極同士が同極のN極又はS極となり、かつそのN極同士、S極同士の磁極が周方向に交互に繰り返されるように配置され、外周側回転子鉄心22の外周部にN極、S極の磁極部25を周方向に交互に形成している。
(1-3. Configuration of outer rotor)
The outer circumferential rotor 20 includes an outer circumferential rotor core 22 disposed with a magnetic gap between the stator 10 and a plurality (ten in this example) of the first rotor core 22 provided on the outer circumferential rotor core 22. And a permanent magnet 21. The outer rotor core 22 includes a plurality of (in this example, 10) magnet housing parts 23 (an example of permanent magnet housing parts) that penetrate in the axial direction in a radial direction along the circumferential direction. The inner peripheral side is open. The outer rotor core 22 has a concave connecting portion 24 that is recessed in the radial direction on the outer peripheral side of each magnet housing portion 23. The plurality of first permanent magnets 21 are housed in the magnet housing portion 23 and are arranged radially on the outer circumferential rotor core 22. In the plurality of first permanent magnets 21, the magnetic poles facing each other between the two adjacent permanent magnets 21 are the same N poles or S poles, and the N poles and the S poles are alternately arranged in the circumferential direction. It arrange | positions so that it may be repeated, and the magnetic pole part 25 of N pole and S pole is formed in the outer peripheral part of the outer peripheral side rotor core 22 by turns in the circumferential direction.
 図3及び図4に示すように、シャフト2は、軸方向に第1ボルト17を貫通させる貫通孔27aが形成された大径部2aを有する。また、図1及び図3に示すように、外周側回転子20及び内周側回転子30の軸方向両側には、負荷側の側板15及び反負荷側の側板16が配置されている。2つの側板15,16は、外周側回転子20を保持すると共に、内周側回転子30の軸方向一方側と接触(摺動)して軸方向移動を規制する役割を果たす。具体的には、2つの側板15,16は、外周側が外周側回転子20と第2ボルト18で固定されると共に、内周側がシャフト2の大径部2aと第1ボルト17で固定されている。負荷側の側板15には、第1ボルト17及び第2ボルト18の軸部が捻じ込まれるねじ孔15a,15bが設けられている。また、反負荷側の側板16には、第2ボルト18の頭部18aの露出を防ぐ収納溝16a(凹部の一例)が設けられている。図2に示すように、外周側回転子鉄心22は1極の磁極部25毎に2本の第2ボルト18により側板15,16に固定されている。 As shown in FIGS. 3 and 4, the shaft 2 has a large-diameter portion 2a formed with a through hole 27a through which the first bolt 17 passes in the axial direction. Further, as shown in FIGS. 1 and 3, the load-side side plate 15 and the anti-load-side side plate 16 are arranged on both sides in the axial direction of the outer peripheral side rotor 20 and the inner peripheral side rotor 30. The two side plates 15 and 16 hold the outer peripheral rotor 20 and play a role of restricting axial movement by contacting (sliding) with one axial side of the inner peripheral rotor 30. Specifically, the two side plates 15 and 16 are fixed at the outer peripheral side by the outer peripheral rotor 20 and the second bolt 18, and at the inner peripheral side by the large-diameter portion 2 a of the shaft 2 and the first bolt 17. Yes. The side plate 15 on the load side is provided with screw holes 15a and 15b into which the shaft portions of the first bolt 17 and the second bolt 18 are screwed. The side plate 16 on the side opposite to the load is provided with a storage groove 16a (an example of a recess) that prevents the head 18a of the second bolt 18 from being exposed. As shown in FIG. 2, the outer peripheral rotor core 22 is fixed to the side plates 15 and 16 by two second bolts 18 for each magnetic pole portion 25 of one pole.
  (1-4.内周側回転子の構成)
 内周側回転子30は、外周側回転子20の内側に実質的に同軸となるように配置され、内周側回転子鉄心29と、内周側回転子鉄心29の外周に円筒状に配置された第2永久磁石31とを備えている。第2永久磁石31は、外周面に外周側回転子20と同じ極数のN極S極を交互に着磁した円筒状の永久磁石である。この第2永久磁石31は、外周側回転子20の磁極数と同数に分割された複数の永久磁石で構成されてもよいし、円筒状の単一の永久磁石としてもよいが、本実施形態では説明の便宜上、図2、図4、図6~図8等に示すように、円筒状の単一の永久磁石を用いる場合を一例として説明する。内周側回転子30は、軸方向寸法が外周側回転子20と実質的に等しく、2つの側板15,16の間に配置されている。内周側回転子30は、軸方向推力が作用した場合には2つの側板15,16の一方とグリスを介して摺動しつつ、軸方向移動を規制される。図3に示すように、内周側回転子30の軸方向両側にはOリング33が装着され、充填されたグリスの外周側回転子20等への飛散を防止している。
(1-4. Configuration of the inner rotor)
The inner circumferential rotor 30 is disposed so as to be substantially coaxial inside the outer circumferential rotor 20, and is disposed in a cylindrical shape on the outer circumference of the inner circumferential rotor core 29 and the inner circumferential rotor core 29. The second permanent magnet 31 is provided. The second permanent magnet 31 is a cylindrical permanent magnet in which N poles and S poles having the same number of poles as the outer rotor 20 are alternately magnetized on the outer peripheral surface. The second permanent magnet 31 may be composed of a plurality of permanent magnets divided into the same number as the number of magnetic poles of the outer circumferential rotor 20, or may be a single cylindrical permanent magnet. For convenience of explanation, a case where a single cylindrical permanent magnet is used will be described as an example, as shown in FIGS. The inner circumferential side rotor 30 has an axial dimension substantially equal to that of the outer circumferential side rotor 20 and is disposed between the two side plates 15 and 16. When the axial thrust is applied, the inner circumferential rotor 30 is restricted from moving in the axial direction while sliding with one of the two side plates 15 and 16 through the grease. As shown in FIG. 3, O-rings 33 are mounted on both axial sides of the inner circumferential rotor 30 to prevent the filled grease from scattering to the outer circumferential rotor 20 and the like.
  (1-5.回動機構の構成)
 回動機構50は、内周側回転子30を外周側回転子20に対し相対回転する。図3及び図4に示すように、回動機構50は、シャフト2の大径部2aに装着される円筒状のスライダ34を備えている。シャフト2の大径部2aの外周面には、スライダ34が備えるピン28の両端が貫通するピン通し孔27cと、軸方向に沿った複数のスプライン部27bとが形成されている。スプライン部27b間に上記第1ボルト17用の上記貫通孔27aが形成されている。ピン通し孔27cは、大径部2aの軸方向略中央部から軸方向一方側(図4中斜め右上側)の端部近傍に亘って長穴状に設けられている。
(1-5. Configuration of rotating mechanism)
The rotation mechanism 50 rotates the inner rotor 30 relative to the outer rotor 20. As shown in FIGS. 3 and 4, the rotation mechanism 50 includes a cylindrical slider 34 that is attached to the large-diameter portion 2 a of the shaft 2. On the outer peripheral surface of the large-diameter portion 2a of the shaft 2, pin through holes 27c through which both ends of the pins 28 provided in the slider 34 penetrate and a plurality of spline portions 27b along the axial direction are formed. The through hole 27a for the first bolt 17 is formed between the spline portions 27b. The pin through hole 27c is provided in the shape of a long hole from the substantially central portion in the axial direction of the large diameter portion 2a to the vicinity of the end portion on the one axial side (obliquely upper right side in FIG. 4).
 スライダ34は、この例ではシャフト2の大径部2aの略半分の軸方向長さを有している。スライダ34には、内周面に軸方向に沿った複数のスプライン部34aが形成されるとともに、径方向にピン28が貫通固定されている。シャフト2の大径部2aに装着されたスライダ34は、スプライン部34aが大径部2aのスプライン部27bに係合することにより、回転動作が規制されつつ軸方向に移動可能となる。このとき、スライダ34の移動可能な範囲はピン28とピン通し孔27cとによって規制され、おおよそシャフト2の大径部2aの軸方向寸法の範囲内で軸方向に移動可能である。スライダ34の外周面には、周方向に傾斜したねじりスプライン部34bが形成されている。 In this example, the slider 34 has an axial length that is substantially half of the large-diameter portion 2a of the shaft 2. A plurality of spline portions 34a along the axial direction are formed on the inner peripheral surface of the slider 34, and the pins 28 are fixedly penetrated in the radial direction. The slider 34 attached to the large-diameter portion 2a of the shaft 2 is movable in the axial direction while the rotational operation is restricted by the spline portion 34a engaging the spline portion 27b of the large-diameter portion 2a. At this time, the movable range of the slider 34 is restricted by the pin 28 and the pin through hole 27c, and is movable in the axial direction within the range of the axial dimension of the large diameter portion 2a of the shaft 2. On the outer peripheral surface of the slider 34, a torsion spline portion 34b inclined in the circumferential direction is formed.
 内周側回転子鉄心29は、シャフト2の大径部2aより若干長い軸方向長さを有している。内周側回転子鉄心29の内周面には、スライダ34のねじりスプライン部34bと係合するねじりスプライン部31aが形成されている。スライダ34に装着された内周側回転子鉄心29は、ねじりスプライン部31aがスライダ34のねじりスプライン部34bに係合することにより、スライダ34の軸方向の所定量の移動により周方向に所定量回転する。 The inner circumferential side rotor core 29 has an axial length slightly longer than the large diameter portion 2 a of the shaft 2. A torsion spline portion 31 a that engages with the torsion spline portion 34 b of the slider 34 is formed on the inner peripheral surface of the inner rotor core 29. The inner circumferential rotor core 29 attached to the slider 34 has a predetermined amount in the circumferential direction due to a predetermined amount of movement in the axial direction of the slider 34 when the torsion spline portion 31a engages the torsion spline portion 34b of the slider 34. Rotate.
 図3に示すように、シャフト2の大径部2a内には、ピン28と共に軸方向に移動可能なピンホルダ36が設置されている。ピンホルダ36は、回動機構50の送り雄ねじ41の先端部に2つの可動軸受37を介して取り付けられる。送り雄ねじ41は、可動軸受37によりシャフト2の回転が遮断されるように設置されている。可動軸受37は例えばアンギュラー軸受であり、2つの可動軸受37は軸方向の支持方向が対向するように配置されることにより、送り雄ねじ41とピンホルダ36との間に作用する軸方向の力を支持可能である。可動軸受37は、ボルト39によって送り雄ねじ41の先端部に固定された軸受ホルダ38に保持されている。送り雄ねじ41の基端部は、環状の鍔部43(図1参照)に突設された送り雌ねじ44に噛み合っている。鍔部43はシャフト2の反負荷側端部を覆うように配置され、反負荷側ブラケット4に固定されている。送り雌ねじ44とシャフト2との間には2つの固定軸受45が設けられており、送り雌ねじ44はこの固定軸受45によりシャフト2の回転が遮断されるように設置されている。固定軸受45は、ナット46によって送り雌ねじ44に固定されている。固定軸受45は例えばアンギュラー軸受であり、2つの固定軸受45は軸方向の支持方向が対向するように配置されることにより、送り雌ねじ44とシャフト2との間に作用する軸方向の力を支持可能である。 As shown in FIG. 3, a pin holder 36 that can move in the axial direction together with the pin 28 is installed in the large-diameter portion 2 a of the shaft 2. The pin holder 36 is attached to the distal end portion of the feed male screw 41 of the rotation mechanism 50 via two movable bearings 37. The feed male screw 41 is installed so that the rotation of the shaft 2 is blocked by the movable bearing 37. The movable bearing 37 is, for example, an angular bearing, and the two movable bearings 37 support the axial force acting between the feed male screw 41 and the pin holder 36 by being arranged so that the axial support directions are opposed to each other. Is possible. The movable bearing 37 is held by a bearing holder 38 fixed to the front end portion of the feed male screw 41 by a bolt 39. The base end portion of the feed male screw 41 is engaged with a feed female screw 44 protruding from an annular flange 43 (see FIG. 1). The flange portion 43 is disposed so as to cover the end portion on the opposite side of the shaft 2 and is fixed to the opposite load side bracket 4. Two fixed bearings 45 are provided between the feed female screw 44 and the shaft 2, and the feed female screw 44 is installed so that the rotation of the shaft 2 is blocked by the fixed bearing 45. The fixed bearing 45 is fixed to the feed female screw 44 by a nut 46. The fixed bearing 45 is, for example, an angular bearing, and the two fixed bearings 45 are arranged so that the axial support directions face each other, thereby supporting the axial force acting between the feed female screw 44 and the shaft 2. Is possible.
 送り雄ねじ41は反負荷側に開口した多角形(例えば六角形)の穴部41aを有する。回動機構50は、図3及び図5に示すように、送り雄ねじ41の穴部41aに挿入した多角形(例えば六角形)のシャフト部51aを有するホイールギヤ51と、ホイールギヤ51に噛み合うウォームシャフト52と、ウォームシャフト52を出力軸に取り付けた制御モータ53とを備える。図1に示すように、ホイールギヤ51は、軸受47により送り雌ねじ44に回転自在に支持されている。制御モータ53は、反負荷側ブラケット4の軸方向他方側に取り付けた蓋体55と反負荷側ブラケット4との間に配置されることによって、回転電機1内に設置されている。 The feed male screw 41 has a polygonal (for example, hexagonal) hole 41a that opens to the anti-load side. As shown in FIGS. 3 and 5, the rotating mechanism 50 includes a wheel gear 51 having a polygonal (for example, hexagonal) shaft portion 51 a inserted into the hole 41 a of the feed male screw 41, and a worm meshing with the wheel gear 51. A shaft 52 and a control motor 53 having the worm shaft 52 attached to the output shaft are provided. As shown in FIG. 1, the wheel gear 51 is rotatably supported on the feed female screw 44 by a bearing 47. The control motor 53 is installed in the rotating electrical machine 1 by being disposed between the cover body 55 attached to the other side in the axial direction of the anti-load side bracket 4 and the anti-load side bracket 4.
 回動機構50は、次のように動作する。すなわち、制御モータ53によりウォームシャフト52が駆動されると、ホイールギヤ51が回転し、ホイールギヤ51のシャフト部51aが送り雄ねじ41を回転する。送り雄ねじ41は、送り雌ねじ44に噛み合っているので回転により軸方向に移動し、送り雄ねじ41の先端部に可動軸受37によって回転を遮断して取り付けられたピンホルダ36を軸方向に移動する。そして、ピンホルダ36の移動に伴いピン28が軸方向に移動し、ピン28に結合されたスライダ34が軸方向に移動する。スライダ34の軸方向の移動により、スライダ34の外周にねじりスプライン部31aによりねじれ方向にスプライン結合された内周側回転子30が周方向に回転する。これにより、内周側回転子30の外周面の第2永久磁石31は、外周側回転子20の第1永久磁石21に対し周方向の回転位置が変化する。なお、送り雄ねじ41及び送り雌ねじ44が送りねじ機構の一例に相当する。 Rotation mechanism 50 operates as follows. That is, when the worm shaft 52 is driven by the control motor 53, the wheel gear 51 rotates, and the shaft portion 51a of the wheel gear 51 rotates the feed male screw 41. Since the feed male screw 41 meshes with the feed female screw 44, the feed male screw 41 moves in the axial direction by rotation, and the pin holder 36 attached to the tip end portion of the feed male screw 41 by blocking the rotation by the movable bearing 37 moves in the axial direction. As the pin holder 36 moves, the pin 28 moves in the axial direction, and the slider 34 coupled to the pin 28 moves in the axial direction. As the slider 34 moves in the axial direction, the inner circumferential rotor 30 splined to the outer periphery of the slider 34 by the torsion spline portion 31a in the twist direction rotates in the circumferential direction. Accordingly, the rotational position of the second permanent magnet 31 on the outer peripheral surface of the inner peripheral rotor 30 in the circumferential direction changes with respect to the first permanent magnet 21 of the outer peripheral rotor 20. The feed male screw 41 and the feed female screw 44 correspond to an example of a feed screw mechanism.
  (1-6.界磁磁束の変化)
 次に、図6乃至図8を参照しつつ、界磁磁束の変化について説明する。図6に、弱い界磁状態を得る場合の外周側回転子に対する内周側回転子の位置関係を示す。この状態では、図6に示すように、内周側回転子30は、第2永久磁石31のS極が外周側回転子20の2つの第1永久磁石21によるN極の磁極部25に相対する位置にある。この場合、外周側回転子20の第1永久磁石21から出る界磁磁束のうちの一部の磁束が、第2永久磁石31の磁束q2により内周側に短絡するので、外周側回転子20のN極から外周側に向かう界磁磁束q1(ギャップ磁束)を弱めることができる。
(1-6. Changes in field magnetic flux)
Next, changes in the field magnetic flux will be described with reference to FIGS. FIG. 6 shows the positional relationship of the inner circumferential rotor with respect to the outer circumferential rotor when a weak field state is obtained. In this state, as shown in FIG. 6, the inner rotor 30 has the S pole of the second permanent magnet 31 relative to the N pole magnetic pole portion 25 by the two first permanent magnets 21 of the outer rotor 20. It is in the position to do. In this case, a part of the magnetic field flux emitted from the first permanent magnet 21 of the outer peripheral rotor 20 is short-circuited to the inner peripheral side by the magnetic flux q2 of the second permanent magnet 31, so that the outer rotor 20 The field magnetic flux q1 (gap magnetic flux) from the N pole toward the outer peripheral side can be weakened.
 なお、強い界磁状態では、高トルク高効率で運転できるが、鉄損が大きいため低トルク状態では効率が悪い。そのため、例えば低トルク状態において上記の弱い界磁状態とすることで、高効率で運転することが可能となる。 In the strong field state, it can be operated with high torque and high efficiency, but the efficiency is poor in the low torque state due to the large iron loss. Therefore, for example, by setting the above weak field state in a low torque state, it is possible to operate with high efficiency.
 図7に、中程度の強さの界磁状態を得る場合の外周側回転子に対する内周側回転子の位置関係を示す。この状態では、図7に示すように、内周側回転子30は、第2永久磁石31のN極、S極が外周側回転子20の第1永久磁石21の位置に略一致する位置(言い換えれば、第2永久磁石31のN極とS極の中間位置が外周側回転子20の磁極部25に相対する位置)にある。この場合、第2永久磁石31についてはN極からS極へ向かう磁束q2が生じるだけで、第1永久磁石21の磁束を内周側に引き込むことがない。つまり、第1永久磁石21の磁束が内周側に短絡しなくなる分、図6に示す場合よりも外周側回転子20のN極から外周側に向かう界磁磁束q1のギャップ磁束密度を増加させることができる。 FIG. 7 shows the positional relationship of the inner circumferential rotor with respect to the outer circumferential rotor when a medium strength field state is obtained. In this state, as shown in FIG. 7, the inner rotor 30 has a position where the N pole and S pole of the second permanent magnet 31 substantially coincide with the position of the first permanent magnet 21 of the outer rotor 20 ( In other words, the intermediate position between the north pole and the south pole of the second permanent magnet 31 is at a position facing the magnetic pole portion 25 of the outer rotor 20. In this case, with respect to the second permanent magnet 31, only the magnetic flux q2 from the N pole to the S pole is generated, and the magnetic flux of the first permanent magnet 21 is not drawn to the inner peripheral side. That is, the gap magnetic flux density of the field magnetic flux q1 from the N pole of the outer rotor 20 toward the outer peripheral side is increased as compared with the case shown in FIG. 6 because the magnetic flux of the first permanent magnet 21 is not short-circuited to the inner peripheral side. be able to.
 例えば図6の場合よりも負荷トルクが大きくなる場合に、最適なギャップ磁束密度になるように制御モータ53を駆動して、外周側回転子20と内周側回転子30の相対角度を増大することで、最大効率を得ることが可能となる。 For example, when the load torque is larger than in the case of FIG. 6, the control motor 53 is driven so as to obtain an optimum gap magnetic flux density, and the relative angle between the outer circumferential rotor 20 and the inner circumferential rotor 30 is increased. As a result, the maximum efficiency can be obtained.
 図8に、強い界磁状態を得る場合の外周側回転子に対する内周側回転子の位置関係を示す。この状態では、図8に示すように、内周側回転子30は、第2永久磁石31のN極が外周側回転子20の2つの第1永久磁石21によるN極の磁極部25に相対する位置にある。この場合、第1永久磁石21のN極から外周側に向かう磁束に、内周側回転子30の第2永久磁石31のN極から外周側に向かう磁束q2が加わるので、外周側回転子20のN極から外周側に向かう界磁磁束q1のギャップ磁束密度は最大となる。 FIG. 8 shows the positional relationship of the inner rotor with respect to the outer rotor when a strong field state is obtained. In this state, as shown in FIG. 8, the inner rotor 30 has the N pole of the second permanent magnet 31 relative to the N pole magnetic pole portion 25 by the two first permanent magnets 21 of the outer rotor 20. It is in the position to do. In this case, since the magnetic flux q2 from the N pole of the second permanent magnet 31 of the inner peripheral rotor 30 toward the outer peripheral side is added to the magnetic flux from the N pole of the first permanent magnet 21 toward the outer peripheral side, the outer peripheral rotor 20 The gap magnetic flux density of the field magnetic flux q1 from the N pole toward the outer peripheral side is maximized.
 この状態では、大きなトルクが出せるだけでなく、トルク定数も大きくなり、鉄損の増加以上に、電流値が下がり銅損を低くできるため、高い効率が得られるようになる。 In this state, not only can a large torque be generated, but also the torque constant increases, and the current value decreases and the copper loss can be reduced more than the increase in iron loss, so that high efficiency can be obtained.
  (1-7.回転電機のトルクと効率の関係)
 図9は、回転電機のトルクと効率の関係を本実施形態と比較例1,2とで比較して示したグラフである。比較例1は、回転子が比較的強い界磁状態に固定された回転電機を運転した場合で、高トルク状態では高効率で運転できるが、鉄損が大きいため、低トルク状態では効率が悪くなっている。比較例2は、回転子が比較的弱い界磁状態に固定された回転電機を運転した場合で、低トルク状態では高効率で運転できるが、磁力が小さいため、大きなトルクは出せない。一方、本実施形態では、外周側回転子20に対する内周側回転子30の位置を変化させることにより、負荷トルクに応じて回転子(外周側回転子20と内周側回転子30)の界磁磁束を増減できるので、低トルク状態から高トルク状態まで高効率で運転することが可能となっている。
(1-7. Relationship between torque and efficiency of rotating electrical machines)
FIG. 9 is a graph showing the relationship between the torque and efficiency of the rotating electrical machine in this embodiment and Comparative Examples 1 and 2. Comparative Example 1 is a case where a rotating electrical machine in which the rotor is fixed in a relatively strong field state is operated, and can be operated with high efficiency in a high torque state. However, since the iron loss is large, the efficiency is low in a low torque state. It has become. Comparative Example 2 is a case where a rotating electric machine in which the rotor is fixed in a relatively weak field state is operated, and can be operated with high efficiency in a low torque state. However, since the magnetic force is small, a large torque cannot be produced. On the other hand, in the present embodiment, by changing the position of the inner rotor 30 with respect to the outer rotor 20, the field of the rotor (the outer rotor 20 and the inner rotor 30) according to the load torque. Since the magnetic flux can be increased or decreased, it is possible to operate with high efficiency from a low torque state to a high torque state.
  (1-8.第1実施形態の効果)
 以上説明したように、第1実施形態に係る回転電機1は、周方向に配置された複数の第1永久磁石21を備えた外周側回転子20と、外周側回転子20の内側に同軸に配置され、第2永久磁石31を備えた内周側回転子30と、回動機構50とを有する。回動機構50は、制御モータ53を用いて外周側回転子20と内周側回転子30とを相対的に回動させる。これにより、負荷トルクや回転速度に関わりなく、界磁磁束を正確に制御することが可能となる。したがって、回転電機1を最適な運転状況で駆動できる。
(1-8. Effects of First Embodiment)
As described above, the rotating electrical machine 1 according to the first embodiment is coaxial with the outer peripheral rotor 20 having the plurality of first permanent magnets 21 arranged in the circumferential direction and the inner periphery of the outer peripheral rotor 20. The rotor 30 is arranged and has an inner peripheral rotor 30 provided with a second permanent magnet 31, and a rotation mechanism 50. The rotation mechanism 50 relatively rotates the outer peripheral rotor 20 and the inner peripheral rotor 30 using the control motor 53. As a result, the field magnetic flux can be accurately controlled regardless of the load torque and the rotational speed. Therefore, the rotary electric machine 1 can be driven in an optimal driving situation.
 また、本実施形態では特に、内周側回転子30は、外周面に円筒状に配置された第2永久磁石31と、内周面に設けられたねじりスプライン部31aと、を有する。内周側回転子30が、外周面に円筒状に配置された第2永久磁石31を有することにより、例えば複数の第2永久磁石を周方向複数箇所に配置した場合に各磁石間に形成される、磁束の洩れの増大を招く繋ぎ部を、なくすことができる。これにより、漏れ磁束を低減することができるので、界磁磁束を強める場合には強力なトルクを得ることができる。 In the present embodiment, in particular, the inner circumferential rotor 30 includes a second permanent magnet 31 disposed in a cylindrical shape on the outer circumferential surface, and a torsional spline portion 31a provided on the inner circumferential surface. The inner circumferential rotor 30 has second permanent magnets 31 arranged in a cylindrical shape on the outer circumferential surface, so that, for example, a plurality of second permanent magnets are formed between the magnets when arranged at a plurality of locations in the circumferential direction. It is possible to eliminate a connecting portion that causes an increase in leakage of magnetic flux. Thereby, since a leakage magnetic flux can be reduced, when increasing a field magnetic flux, a powerful torque can be obtained.
 また、本実施形態では特に、第2永久磁石31は、外周側回転子20と同じ極数のN極S極を外周面に交互に着磁した円筒形の単一の永久磁石である。これにより、内周側回転子30の外周に凹凸や段差がなくなり、ひっかかりがなくなるため、外周側回転子20との隙間を最小となるように設計できる。 In the present embodiment, in particular, the second permanent magnet 31 is a single cylindrical permanent magnet in which N poles and S poles having the same number of poles as the outer peripheral rotor 20 are alternately magnetized on the outer peripheral surface. Thereby, since the unevenness | corrugation and a level | step difference are lose | eliminated in the outer periphery of the inner peripheral side rotor 30, and it does not get caught, it can design so that the clearance gap with the outer peripheral side rotor 20 may become the minimum.
 また、本実施形態では特に、外周側回転子20は、外周側に繋ぎ部24があり内周側に開口した形状である、第1永久磁石21を収納する永久磁石収納部23を備えた外周側回転子鉄心22を有する。これにより、外周側回転子20の永久磁石収納部23に収納された第1永久磁石21の内側に、磁束の洩れの増大を招く繋ぎ部がない構成とすることができる。その結果、界磁磁束を強める場合には強力なトルクを得ることができる。 In this embodiment, in particular, the outer peripheral rotor 20 has an outer periphery provided with a permanent magnet storage portion 23 for storing the first permanent magnet 21, which has a connecting portion 24 on the outer peripheral side and an opening on the inner peripheral side. A side rotor core 22 is provided. Thereby, it can be set as the structure which does not have the connection part which causes the increase in the leakage of magnetic flux inside the 1st permanent magnet 21 accommodated in the permanent magnet accommodating part 23 of the outer peripheral side rotor 20. FIG. As a result, a strong torque can be obtained when the field magnetic flux is increased.
 また、本実施形態では特に、外周側回転子鉄心22は、1極毎に2つの第2ボルト18で固定される。これにより、外周側回転子鉄心22の永久磁石収納部23が内周側に開口した形状であっても、外周側回転子鉄心22の変形を防ぎ、内周側回転子30との隙間を保つことができ、隙間を最小となるように設計できる。 Further, particularly in the present embodiment, the outer circumferential rotor core 22 is fixed by two second bolts 18 for each pole. Thereby, even if the permanent magnet storage part 23 of the outer peripheral side rotor core 22 is the shape opened to the inner peripheral side, a deformation | transformation of the outer peripheral side rotor core 22 is prevented and the clearance gap with the inner peripheral side rotor 30 is maintained. And can be designed to minimize the gap.
 また、本実施形態では特に、軸方向に第1ボルト17を貫通させる貫通孔27aが形成された大径部2aを備えたシャフト2と、外周側回転子20及び内周側回転子30の軸方向両側に配置され、外周側が外周側回転子20と第2ボルト18で固定されると共に、内周側がシャフト2の大径部2aと第1ボルト17で固定された2つの側板15,16と、を有する。これにより、外周側回転子20をシャフト2に固定することができる。また、側板15,16を直接シャフト2に固定するので、側板15,16とシャフト2との間に他の部材が介在する場合に比べて、回転電機1の径方向寸法を小型化できる。 In the present embodiment, in particular, the shaft 2 including the large-diameter portion 2a in which the through-hole 27a that penetrates the first bolt 17 in the axial direction is formed, and the shafts of the outer peripheral rotor 20 and the inner peripheral rotor 30. Two side plates 15 and 16 which are arranged on both sides in the direction, the outer peripheral side is fixed by the outer peripheral rotor 20 and the second bolt 18, and the inner peripheral side is fixed by the large diameter portion 2 a of the shaft 2 and the first bolt 17. Have. Thereby, the outer peripheral side rotor 20 can be fixed to the shaft 2. Further, since the side plates 15 and 16 are directly fixed to the shaft 2, the radial dimension of the rotating electrical machine 1 can be reduced as compared with the case where other members are interposed between the side plates 15 and 16 and the shaft 2.
 また、本実施形態では特に、内周側回転子30は、2つの側板15,16により軸方向移動を規制される。これにより、簡単な構造で、大きなトルクに対し外周側回転子20を保持できると共に、大きな軸方向推力に対し内周側回転子30の軸方向移動を規制することができる。 In the present embodiment, in particular, the inner circumferential rotor 30 is restricted from moving in the axial direction by the two side plates 15 and 16. As a result, the outer rotor 20 can be held against a large torque with a simple structure, and the axial movement of the inner rotor 30 can be restricted against a large axial thrust.
 また、本実施形態では特に、側板16は、第2ボルト18の頭部18aを収納する収納溝16aを有し、側板15は、第1ボルト17及び第2ボルト18の軸部がねじ込まれるねじ孔15a,15bを有する。これにより、第2ボルト18の頭部18aが側板16より出っ張ったり、ボルト17,18の軸部が側板15の外部でナットにねじ込まれる構造に比べて、回転子の構造を簡素化できる。 In the present embodiment, in particular, the side plate 16 has a storage groove 16a for storing the head portion 18a of the second bolt 18, and the side plate 15 is a screw into which the shaft portions of the first bolt 17 and the second bolt 18 are screwed. It has holes 15a and 15b. Thereby, the structure of the rotor can be simplified as compared with the structure in which the head portion 18a of the second bolt 18 protrudes from the side plate 16 or the shaft portions of the bolts 17 and 18 are screwed into the nut outside the side plate 15.
 また、本実施形態では特に、回動機構50は、内周側回転子30の内側で内周側回転子30とねじれ方向にスプライン結合し、シャフト2の外側を軸方向にスライドするようにシャフト2に連結されたスライダ34と、スライダ34を軸方向に移動するように構成された送りねじ機構(送り雄ねじ41及び送り雌ねじ44等)と、を有し、制御モータ53は、上記送りねじ機構を回転するように構成される。これにより、外周側回転子20と内周側回転子30とを制御モータ53により相対的に回動する機構を実現できる。 In the present embodiment, in particular, the rotation mechanism 50 is spline-coupled to the inner circumferential side rotor 30 in the torsional direction inside the inner circumferential side rotor 30, and slides on the outer side of the shaft 2 in the axial direction. 2 and a feed screw mechanism (feed male screw 41, feed female screw 44, etc.) configured to move the slider 34 in the axial direction, and the control motor 53 includes the feed screw mechanism. Configured to rotate. As a result, it is possible to realize a mechanism in which the outer peripheral rotor 20 and the inner peripheral rotor 30 are relatively rotated by the control motor 53.
 <2.第2実施形態>
 次に、図10乃至図12を参照しつつ、第2実施形態に係る回転電機の構成について説明する。なお、図10乃至図12において、図2乃至図4と同様の構成については同一の符号を付して適宜説明を省略又は簡略化する。
<2. Second Embodiment>
Next, the configuration of the rotating electrical machine according to the second embodiment will be described with reference to FIGS. 10 to 12. 10 to 12, the same components as those in FIGS. 2 to 4 are denoted by the same reference numerals, and description thereof will be omitted or simplified as appropriate.
  (2-1.回転電機の構成)
 図10及び図11に示すように、回転電機1Aは、固定子10の内側に外周側回転子20A及び内周側回転子30Aが配置されている。
(2-1. Configuration of rotating electrical machine)
As shown in FIGS. 10 and 11, in the rotating electrical machine 1 </ b> A, the outer peripheral side rotor 20 </ b> A and the inner peripheral side rotor 30 </ b> A are disposed inside the stator 10.
 外周側回転子20Aは、外周側回転子鉄心22Aと、複数の第1永久磁石21とを備えている。外周側回転子鉄心22Aは、軸方向に貫通した複数の磁石収納部23を周方向に沿って放射状に備える点は前述の第1実施形態と同様であるが、各磁石収納部23に収納された第1永久磁石21の内周側に繋ぎ部24aを有する。また、第2実施形態では、外周側回転子鉄心22は、1極の磁極部25毎に1本の第2ボルト18により側板15,16に固定されているが、前述の第1実施形態と同様に、2本の第2ボルト18により固定してもよい。 The outer peripheral side rotor 20 </ b> A includes an outer peripheral side rotor core 22 </ b> A and a plurality of first permanent magnets 21. The outer peripheral side rotor core 22A is the same as the first embodiment described above in that a plurality of magnet housing portions 23 penetrating in the axial direction are provided radially along the circumferential direction, but is housed in each magnet housing portion 23. In addition, the first permanent magnet 21 has a connecting portion 24 a on the inner peripheral side. In the second embodiment, the outer rotor core 22 is fixed to the side plates 15 and 16 by one second bolt 18 for each magnetic pole portion 25. However, the outer rotor core 22 is different from the first embodiment described above. Similarly, it may be fixed by two second bolts 18.
 内周側回転子30Aは、外周側回転子20と間隙を空けて配置された環状の内周側回転子鉄心29Aと、内周側回転子鉄心29Aに設けられ、かつ外周側回転子20と同じ極数の複数(この例では10個)の第2永久磁石32とを備えている。複数の第2永久磁石32は、内周側回転子鉄心29Aの外周部に、周方向に沿ってN極、S極の磁極を周方向に交互に繰り返すように配置されている。内周側回転子鉄心29Aの外周面には、第2永久磁石32同士の間の位置に、漏れ磁束を低減するための溝42が形成されている。 The inner circumferential side rotor 30A is provided on the annular inner circumferential side rotor core 29A and the inner circumferential side rotor core 29A which are arranged with a gap from the outer circumferential side rotor 20, and the outer circumferential side rotor 20 and And a plurality of (in this example, 10) second permanent magnets 32 having the same number of poles. The plurality of second permanent magnets 32 are arranged on the outer peripheral portion of the inner rotor core 29A so as to alternately repeat N-pole and S-pole magnetic poles in the circumferential direction along the circumferential direction. Grooves 42 for reducing leakage magnetic flux are formed on the outer peripheral surface of the inner peripheral rotor core 29A at positions between the second permanent magnets 32.
 内周側回転子鉄心29Aはボス35の外周面に固定されている。図12に示すように、ボス35は、外周面に軸方向に沿ったスプライン部35bを有する。また、内周側回転子鉄心29Aの内周面には、ボス35のスプライン部35bと係合する軸方向に沿ったスプライン部29aが形成されている。ボス35の内周面には、スライダ34の外周面に形成されたねじりスプライン部34bと係合するねじりスプライン部35aが形成されている。スライダ34に装着されたボス35は、内周側回転子鉄心29Aと共に、ねじりスプライン部35aがスライダ34のねじりスプライン部34bに係合することにより、スライダ34の軸方向の所定量の移動により周方向に所定量回転する。 The inner circumferential side rotor core 29 </ b> A is fixed to the outer circumferential surface of the boss 35. As shown in FIG. 12, the boss 35 has a spline portion 35b along the axial direction on the outer peripheral surface. A spline portion 29a is formed on the inner peripheral surface of the inner peripheral rotor core 29A along the axial direction to engage with the spline portion 35b of the boss 35. A torsion spline portion 35 a that engages with a torsion spline portion 34 b formed on the outer peripheral surface of the slider 34 is formed on the inner peripheral surface of the boss 35. The boss 35 attached to the slider 34, together with the inner circumferential rotor core 29A, is engaged by a predetermined amount of movement in the axial direction of the slider 34 by engaging the torsion spline portion 35a with the torsion spline portion 34b of the slider 34. Rotate a certain amount in the direction.
 回転電機1Aのその他の構成は上記第1実施形態の回転電機1と同様であるので、説明を省略する。 Since the other configuration of the rotating electrical machine 1A is the same as that of the rotating electrical machine 1 of the first embodiment, description thereof is omitted.
  (2-2.界磁磁束の変化)
 次に、図13乃至図15を参照しつつ、界磁磁束の変化について説明する。図13に、弱い界磁状態を得る場合の外周側回転子に対する内周側回転子の位置関係を示す。この状態では、図13に示すように、内周側回転子30Aは、第2永久磁石32のS極が外周側回転子20の2つの第1永久磁石21によるN極の磁極部25に相対する位置にある。この場合、外周側回転子20Aの第1永久磁石21から出る界磁磁束のうちの一部の磁束が、第2永久磁石32の磁束q2により内周側に短絡するので、外周側回転子20AのN極から外周側に向かう界磁磁束q1(ギャップ磁束)を弱めることができる。
(2-2. Change in field magnetic flux)
Next, changes in the field magnetic flux will be described with reference to FIGS. FIG. 13 shows the positional relationship of the inner circumferential rotor with respect to the outer circumferential rotor when a weak field state is obtained. In this state, as shown in FIG. 13, the inner rotor 30 </ b> A has the S pole of the second permanent magnet 32 relative to the N pole magnetic pole portion 25 by the two first permanent magnets 21 of the outer rotor 20. Is in a position to In this case, a part of the field magnetic flux emitted from the first permanent magnet 21 of the outer peripheral rotor 20A is short-circuited to the inner peripheral side by the magnetic flux q2 of the second permanent magnet 32, and therefore the outer rotor 20A. The field magnetic flux q1 (gap magnetic flux) from the N pole toward the outer peripheral side can be weakened.
 図14に、中程度の強さの界磁状態を得る場合の外周側回転子に対する内周側回転子の位置関係を示す。この状態では、図14に示すように、内周側回転子30Aは、第2永久磁石32のN極、S極が外周側回転子20の第1永久磁石21の位置に略一致する位置(言い換えれば、第2永久磁石32のN極とS極の中間位置が外周側回転子20Aの磁極部25に相対する位置)にある。この場合、第2永久磁石32についてはN極からS極へ向かう磁束q2が生じるだけで、第1永久磁石21の磁束を内周側に引き込むことがない。つまり、第1永久磁石21の磁束が内周側に短絡しなくなる分、図13に示す場合よりも外周側回転子20AのN極から外周側に向かう界磁磁束q1のギャップ磁束密度を増加させることができる。 FIG. 14 shows the positional relationship of the inner circumferential rotor with respect to the outer circumferential rotor when a medium strength field state is obtained. In this state, as shown in FIG. 14, the inner rotor 30 </ b> A has a position where the N pole and S pole of the second permanent magnet 32 substantially coincide with the position of the first permanent magnet 21 of the outer rotor 20 ( In other words, the intermediate position between the N pole and the S pole of the second permanent magnet 32 is at a position facing the magnetic pole portion 25 of the outer rotor 20A. In this case, with respect to the second permanent magnet 32, only the magnetic flux q2 from the N pole to the S pole is generated, and the magnetic flux of the first permanent magnet 21 is not drawn to the inner peripheral side. That is, the gap magnetic flux density of the field magnetic flux q1 from the N pole of the outer rotor 20A toward the outer periphery is increased as compared with the case shown in FIG. 13 because the magnetic flux of the first permanent magnet 21 is not short-circuited to the inner periphery. be able to.
 図15に、強い界磁状態を得る場合の外周側回転子に対する内周側回転子の位置関係を示す。この状態では、図15に示すように、内周側回転子30Aは、第2永久磁石32のN極が外周側回転子20の2つの第1永久磁石21によるN極の磁極部25に相対する位置にある。この場合、第1永久磁石21のN極から外周側に向かう磁束に、内周側回転子30Aの第2永久磁石32のN極から外周側に向かう磁束q2が加わるので、外周側回転子20AのN極から外周側に向かう界磁磁束q1のギャップ磁束密度は最大となる。 FIG. 15 shows the positional relationship of the inner rotor on the outer rotor when a strong field state is obtained. In this state, as shown in FIG. 15, the inner rotor 30 </ b> A has the N pole of the second permanent magnet 32 relative to the N pole magnetic pole portion 25 by the two first permanent magnets 21 of the outer rotor 20. It is in the position to do. In this case, since the magnetic flux q2 from the N pole of the second permanent magnet 32 of the inner peripheral rotor 30A toward the outer peripheral side is added to the magnetic flux from the N pole of the first permanent magnet 21 toward the outer peripheral side, the outer peripheral rotor 20A. The gap magnetic flux density of the field magnetic flux q1 from the N pole toward the outer peripheral side is maximized.
 以上説明した第2実施形態によっても、外周側回転子20Aに対する内周側回転子30Aの位置を変化させることにより、負荷トルクに応じて回転子(外周側回転子20Aと内周側回転子30A)の界磁磁束を増減することで、低トルク状態から高トルク状態まで高効率で回転電機1Aを運転することができる。また、前述した第1実施形態と同様の効果を得ることができる。 Also in the second embodiment described above, by changing the position of the inner circumferential rotor 30A relative to the outer circumferential rotor 20A, the rotor (the outer circumferential rotor 20A and the inner circumferential rotor 30A is changed according to the load torque. ), The rotating electrical machine 1A can be operated with high efficiency from the low torque state to the high torque state. Further, the same effect as that of the first embodiment described above can be obtained.
 <3.第3実施形態>
 次に、図16及び図17を参照しつつ、第3実施形態に係る回転電機の構成について説明する。なお、図16及び図17において、図2等と同様の構成については同一の符号を付して適宜説明を省略又は簡略化する。
<3. Third Embodiment>
Next, the configuration of the rotating electrical machine according to the third embodiment will be described with reference to FIGS. 16 and 17. 16 and 17, the same components as those in FIG. 2 and the like are denoted by the same reference numerals, and description thereof will be omitted or simplified as appropriate.
  (3-1.回転電機の構成)
 図16に示すように、第3実施形態の回転電機では、固定子10の内側に外周側回転子20B及び内周側回転子30Bが配置されている。外周側回転子20Bは、外周側回転子鉄心22Bと、外周側回転子鉄心22Bに設けられた複数(この例では16個)の第1永久磁石21とを備えている。
(3-1. Configuration of rotating electrical machine)
As shown in FIG. 16, in the rotating electrical machine of the third embodiment, the outer peripheral side rotor 20 </ b> B and the inner peripheral side rotor 30 </ b> B are arranged inside the stator 10. The outer circumferential rotor 20B includes an outer circumferential rotor core 22B and a plurality (16 in this example) of first permanent magnets 21 provided on the outer circumferential rotor core 22B.
 外周側回転子鉄心22Bは、複数の第1永久磁石21を設置するための複数の磁石収納部23(永久磁石収納部の一例)を備えている。外周側回転子鉄心22Bは、各磁石収納部23の外周側に繋ぎ部24を有している。複数の磁石収納部23は、軸方向から見て実質的にV字状に配置された一対の磁石収納部23,23が周方向に沿って複数対(この例では8対)配列されるように、外周側回転子鉄心22Bに設けられている。磁石収納部23に収納された複数対の第1永久磁石21は、各対の第1永久磁石21の互いに向かい合う側の磁極同士が同極のN極又はS極となり、かつそのN極同士、S極同士の磁極が周方向に交互に繰り返されるように配置され、外周側回転子鉄心22Bの外周部に周方向にN極、S極の磁極部25を交互に形成している。 The outer peripheral rotor core 22 </ b> B includes a plurality of magnet storage portions 23 (an example of a permanent magnet storage portion) for installing the plurality of first permanent magnets 21. The outer peripheral rotor core 22 </ b> B has a connecting portion 24 on the outer peripheral side of each magnet storage portion 23. In the plurality of magnet storage portions 23, a plurality of pairs (eight pairs in this example) of a pair of magnet storage portions 23, 23 arranged substantially in a V shape when viewed from the axial direction are arranged along the circumferential direction. And provided on the outer rotor core 22B. The plurality of pairs of first permanent magnets 21 housed in the magnet housing portion 23 have the same or opposite N poles or S poles of each pair of first permanent magnets 21, and the N poles, The magnetic poles of the S poles are arranged so as to be alternately repeated in the circumferential direction, and the N pole and S pole magnetic pole parts 25 are alternately formed in the circumferential direction on the outer peripheral portion of the outer rotor core 22B.
 内周側回転子30Bは、ボス35に固定される内周側回転子鉄心29Bを有する。内周側回転子鉄心29Bは、外周面に開口する複数(この例では8個)の空隙部40aと、空隙部40a同士の間に形成される突極部40bとを有する。空隙部40aの開口の大きさは、隣り合う磁極部25の間に位置する2つの第1永久磁石21の内周側の周方向両端に亘るようにするのが好ましい。 The inner circumferential side rotor 30B has an inner circumferential side rotor core 29B fixed to the boss 35. The inner circumferential side rotor core 29B has a plurality (eight in this example) of gaps 40a that open to the outer circumferential surface, and salient poles 40b that are formed between the gaps 40a. It is preferable that the size of the opening of the gap portion 40 a extends to both ends in the circumferential direction on the inner peripheral side of the two first permanent magnets 21 located between the adjacent magnetic pole portions 25.
  (3-2.界磁磁束の変化)
 本実施形態では、界磁磁束を弱める場合には、図16に示すように、外周側回転子20Bの磁極部25に対し内周側回転子30Bの突極部40bが略相対するように、内周側回転子30Bを位置させる。これにより、外周側回転子20Bの第1永久磁石21のN極から出る界磁磁束のうちの一部の磁束q3が、内周側回転子鉄心29Bにより内周側に短絡するので、外周側回転子20BのN極から外周側に向かう界磁磁束q1を減少させることができる。
(3-2. Change in field magnetic flux)
In the present embodiment, when the field magnetic flux is weakened, as shown in FIG. 16, the salient pole part 40b of the inner rotor 30B is substantially opposed to the magnetic pole part 25 of the outer rotor 20B. The inner circumferential side rotor 30B is positioned. As a result, a part of the magnetic flux q3 out of the field magnetic flux emitted from the N pole of the first permanent magnet 21 of the outer rotor 20B is short-circuited to the inner periphery by the inner rotor core 29B. It is possible to reduce the field magnetic flux q1 from the N pole of the rotor 20B toward the outer peripheral side.
 界磁磁束を強める場合には、図17に示すように、外周側回転子20Bの磁極部25に対し内周側回転子30Bの空隙部40aが略相対するように、内周側回転子30Bを位置させる。これにより、外周側回転子20Bの第1永久磁石21のN極から出る界磁磁束の全てを外周側に向かわせることができるので、界磁磁束q1を大きくすることができる。 When the field magnetic flux is strengthened, as shown in FIG. 17, the inner circumferential rotor 30B is arranged so that the gap 40a of the inner circumferential rotor 30B is substantially opposed to the magnetic pole portion 25 of the outer circumferential rotor 20B. Position. Thereby, since all the field magnetic flux which comes out from the N pole of the 1st permanent magnet 21 of the outer peripheral side rotor 20B can be made to go to an outer peripheral side, the field magnetic flux q1 can be enlarged.
 以上説明した第3実施形態によれば、簡易な構成で回転子(外周側回転子20Bと内周側回転子30B)の界磁磁束を増減することができる。 According to the third embodiment described above, it is possible to increase or decrease the field magnetic flux of the rotor (the outer peripheral side rotor 20B and the inner peripheral side rotor 30B) with a simple configuration.
 以上において、回動機構50が外周側回転子と内周側回転子とを電気的に相対回動させる手段の一例に相当する。 In the above, the rotation mechanism 50 corresponds to an example of means for electrically rotating the outer peripheral side rotor and the inner peripheral side rotor relative to each other.
 また、以上の説明において、「垂直」「平行」「平面」等の記載がある場合には、当該記載は厳密な意味ではない。すなわち、それら「垂直」「平行」「平面」とは、設計上、製造上の公差、誤差が許容され、「実質的に垂直」「実質的に平行」「実質的に平面」という意味である。 In addition, in the above description, when there are descriptions such as “vertical”, “parallel”, and “plane”, the descriptions are not strict. That is, the terms “vertical”, “parallel”, and “plane” are acceptable in design and manufacturing tolerances and errors, and mean “substantially vertical”, “substantially parallel”, and “substantially plane”. .
 また、以上の説明において、外観上の寸法や大きさが「同一」「等しい」「異なる」等の記載がある場合は、当該記載は厳密な意味ではない。すなわち、それら「同一」「等しい」「異なる」とは、設計上、製造上の公差、誤差が許容され、「実質的に同一」「実質的に等しい」「実質的に異なる」という意味である。 In addition, in the above description, when there is a description such as “same”, “equal”, “different”, etc., in terms of external dimensions and size, the description is not strict. That is, the terms “identical”, “equal”, and “different” mean that “tolerance and error in manufacturing are allowed in design and that they are“ substantially identical ”,“ substantially equal ”, and“ substantially different ”. .
 また、以上既に述べた以外にも、上記実施形態による手法を適宜組み合わせて利用しても良い。 In addition to those already described above, the methods according to the above embodiments may be used in appropriate combination.
 その他、一々例示はしないが、上記実施形態は、その趣旨を逸脱しない範囲内において、種々の変更が加えられて実施されるものである。 In addition, although not illustrated one by one, the above-described embodiment is implemented with various modifications within a range not departing from the gist thereof.
 1,1A   回転電機
 2      シャフト
 2a     大径部
 15     側板
 15a    ねじ孔
 15b    ねじ孔
 16     側板
 16a    収納溝(凹部の一例)
 17     第1ボルト
 18     第2ボルト
 18a    頭部
 20     外周側回転子
 20A    外周側回転子
 20B    外周側回転子
 21     第1永久磁石
 22     外周側回転子鉄心
 22A    外周側回転子鉄心
 23     磁石収納部(永久磁石収納部の一例)
 24     繋ぎ部
 27a    貫通孔
 30     内周側回転子
 30A    内周側回転子
 30B    内周側回転子
 31     第2永久磁石
 31a    ねじりスプライン部
 32     第2永久磁石
 34     スライダ
 41     送り雄ねじ(送りねじ機構の一例)
 44     送り雌ねじ(送りねじ機構の一例)
 50     回動機構
 53     制御モータ
DESCRIPTION OF SYMBOLS 1,1A Rotating electrical machine 2 Shaft 2a Large diameter part 15 Side plate 15a Screw hole 15b Screw hole 16 Side plate 16a Storage groove (an example of recessed part)
17 1st bolt 18 2nd bolt 18a head 20 outer circumference side rotor 20A outer circumference side rotor 20B outer circumference side rotor 21 first permanent magnet 22 outer circumference side rotor core 22A outer circumference side rotor core 23 magnet housing (permanent magnet) Example of storage unit)
24 connecting portion 27a through hole 30 inner circumferential side rotor 30A inner circumferential side rotor 30B inner circumferential side rotor 31 second permanent magnet 31a torsion spline portion 32 second permanent magnet 34 slider 41 feed male screw (an example of feed screw mechanism)
44 Female feed screw (an example of feed screw mechanism)
50 Rotating mechanism 53 Control motor

Claims (9)

  1.  界磁磁束を変化させる可変界磁型の回転電機であって、
     周方向に配置された複数の第1永久磁石を備えた外周側回転子と、
     前記外周側回転子の内側に同軸に配置され、第2永久磁石を備えた内周側回転子と、
     前記外周側回転子と前記内周側回転子とを制御モータにより相対的に回動するように構成された回動機構と、
    を有することを特徴とする回転電機。
    A variable field type rotating electric machine that changes a field magnetic flux,
    An outer peripheral rotor including a plurality of first permanent magnets arranged in the circumferential direction;
    An inner circumferential rotor that is coaxially disposed inside the outer circumferential rotor and includes a second permanent magnet;
    A rotation mechanism configured to relatively rotate the outer circumferential rotor and the inner circumferential rotor by a control motor;
    A rotating electric machine comprising:
  2.  前記内周側回転子は、
     外周面に円筒状に配置された1又は複数の前記第2永久磁石と、
     内周面に設けられたねじりスプライン部と、を有する
    ことを特徴とする請求項1に記載の回転電機。
    The inner circumferential rotor is
    One or a plurality of the second permanent magnets arranged in a cylindrical shape on the outer peripheral surface;
    The rotating electrical machine according to claim 1, further comprising: a torsion spline portion provided on an inner peripheral surface.
  3.  前記第2永久磁石は、
     前記外周側回転子と同じ極数のN極S極を外周面に交互に着磁した円筒形の永久磁石である
    ことを特徴とする請求項1又は2に記載の回転電機。
    The second permanent magnet is
    3. The rotating electrical machine according to claim 1, wherein the rotating electrical machine is a cylindrical permanent magnet in which N poles and S poles having the same number of poles as the outer peripheral rotor are alternately magnetized on the outer peripheral surface.
  4.  前記外周側回転子は、
     外周側に繋ぎ部があり内周側に開口した形状である、前記第1永久磁石を収納する永久磁石収納部を備えた外周側回転子鉄心を有する
    ことを特徴とする請求項1乃至3のいずれか1項に記載の回転電機。
    The outer circumferential rotor is
    4. The rotor core according to claim 1, further comprising an outer rotor core provided with a permanent magnet storage portion for storing the first permanent magnet, wherein the outer peripheral side has a connecting portion and is open to the inner periphery. The rotating electrical machine according to any one of claims.
  5.  前記外周側回転子鉄心は、
     1極毎に2つの第2ボルトで固定される
    ことを特徴とする請求項4に記載の回転電機。
    The outer rotor core is
    The rotating electrical machine according to claim 4, wherein the rotating electric machine is fixed by two second bolts for each pole.
  6.  軸方向に第1ボルトを貫通させる貫通孔が形成された大径部を備えたシャフトと、
     前記外周側回転子及び前記内周側回転子の軸方向両側に配置され、外周側が前記外周側回転子と第2ボルトで固定されると共に、内周側が前記シャフトの前記大径部と前記第1ボルトで固定された2つの側板と、
    をさらに有することを特徴とする請求項1乃至5のいずれか1項に記載の回転電機。
    A shaft having a large-diameter portion formed with a through-hole through which the first bolt penetrates in the axial direction;
    The outer peripheral side rotor and the inner peripheral side rotor are disposed on both sides in the axial direction, the outer peripheral side is fixed by the outer peripheral side rotor and the second bolt, and the inner peripheral side is the large diameter portion of the shaft and the first Two side plates fixed with one bolt;
    The rotating electrical machine according to claim 1, further comprising:
  7.  前記内周側回転子は、
     前記2つの側板により軸方向移動を規制される
    ことを特徴とする請求項6に記載の回転電機。
    The inner circumferential rotor is
    The rotary electric machine according to claim 6, wherein axial movement is restricted by the two side plates.
  8.  前記側板は、
     前記第1ボルト及び前記第2ボルトの少なくとも一方の頭部を収納する凹部と、
     前記第1ボルト及び前記第2ボルトの少なくとも一方の軸部がねじ込まれるねじ孔と、を有する
    ことを特徴とする請求項6又は7に記載の回転電機。
    The side plate is
    A recess for housing at least one head of the first bolt and the second bolt;
    The rotating electrical machine according to claim 6, further comprising: a screw hole into which at least one shaft portion of the first bolt and the second bolt is screwed.
  9.  前記回動機構は、
     前記内周側回転子の内側で前記内周側回転子とねじれ方向にスプライン結合し、シャフトの外側を軸方向にスライドするように前記シャフトに連結されたスライダと、
     前記スライダを軸方向に移動するように構成された送りねじ機構と、を有し、
     前記制御モータは、
     前記送りねじ機構を回転するように構成される
    ことを特徴とする請求項1乃至8のいずれか1項に記載の回転電機。
    The rotation mechanism is
    A slider connected to the shaft so as to slide in the axial direction on the outer side of the shaft;
    A feed screw mechanism configured to move the slider in the axial direction;
    The control motor is
    The rotating electrical machine according to any one of claims 1 to 8, wherein the rotating electrical machine is configured to rotate the feed screw mechanism.
PCT/JP2014/060589 2014-04-14 2014-04-14 Rotating electrical machine WO2015159334A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/060589 WO2015159334A1 (en) 2014-04-14 2014-04-14 Rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/060589 WO2015159334A1 (en) 2014-04-14 2014-04-14 Rotating electrical machine

Publications (1)

Publication Number Publication Date
WO2015159334A1 true WO2015159334A1 (en) 2015-10-22

Family

ID=54323586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060589 WO2015159334A1 (en) 2014-04-14 2014-04-14 Rotating electrical machine

Country Status (1)

Country Link
WO (1) WO2015159334A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109597318A (en) * 2017-09-30 2019-04-09 北京柏惠维康科技有限公司 A kind of method and apparatus of robot space registration

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007503199A (en) * 2003-05-30 2007-02-15 ザ ユニヴァーシティ オブ バース Electric motor having a permanent magnet rotor
JP2007159219A (en) * 2005-12-02 2007-06-21 Honda Motor Co Ltd Motor, and method for driving motor
JP2008092701A (en) * 2006-10-03 2008-04-17 Honda Motor Co Ltd Motor
JP2008182875A (en) * 2006-10-26 2008-08-07 Deere & Co Control of dual rotor electromagnetic apparatus
JP2009268173A (en) * 2008-04-22 2009-11-12 Honda Motor Co Ltd Controller for motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007503199A (en) * 2003-05-30 2007-02-15 ザ ユニヴァーシティ オブ バース Electric motor having a permanent magnet rotor
JP2007159219A (en) * 2005-12-02 2007-06-21 Honda Motor Co Ltd Motor, and method for driving motor
JP2008092701A (en) * 2006-10-03 2008-04-17 Honda Motor Co Ltd Motor
JP2008182875A (en) * 2006-10-26 2008-08-07 Deere & Co Control of dual rotor electromagnetic apparatus
JP2009268173A (en) * 2008-04-22 2009-11-12 Honda Motor Co Ltd Controller for motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109597318A (en) * 2017-09-30 2019-04-09 北京柏惠维康科技有限公司 A kind of method and apparatus of robot space registration

Similar Documents

Publication Publication Date Title
US7626298B2 (en) Electric motor and method of driving the same
JP5392323B2 (en) Rotating electric machine
JP2012130086A5 (en)
KR101724787B1 (en) In wheel motor system
TWM541958U (en) Window lifter
JP6327137B2 (en) Rotary actuator
CN106558965A (en) Electric machine and drive mechanism
JP2020072641A (en) Reduction gear and electrical facility
US8598757B2 (en) Magnetic-controlled actuator with auto-locking function for joints of manipulation arm
KR20160147343A (en) A motor structure for variable counter electromotive force
JP6567304B2 (en) Rotating electric machine and hoisting machine
CN204425078U (en) Electric rotating machine
US20130187501A1 (en) Electric motor assembly with electric phasing of rotor segments to reduce back electromotive force
US20120264554A1 (en) Electric motor assembly with movable rotor segments to reduce back electromotive force
WO2015159334A1 (en) Rotating electrical machine
CN111969735B (en) Three-phase motor stator structure and motor
US20190128316A1 (en) Rotor unit and rotor unit manufacturing method
US20140102231A1 (en) Threaded rod reciprocation inner rotor direct drive mechanism
CN204013053U (en) Ball spline spindle motor
GB2574792A (en) Rotationally balanced electric motor with air-core stator coils
WO2015068846A1 (en) Rotary electrical machine
US20090195103A1 (en) Transmission Systems of Continuously Variable Transmission Ratio
EP3713057A1 (en) Electric sander motor
JP4801824B2 (en) Magnetic machine
WO2015151236A1 (en) Rotating electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14889511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP