WO2015159310A1 - Amélioration et commande de vapeur surchauffée haute pression directement produite par un champ solaire. description - Google Patents

Amélioration et commande de vapeur surchauffée haute pression directement produite par un champ solaire. description Download PDF

Info

Publication number
WO2015159310A1
WO2015159310A1 PCT/IT2014/000111 IT2014000111W WO2015159310A1 WO 2015159310 A1 WO2015159310 A1 WO 2015159310A1 IT 2014000111 W IT2014000111 W IT 2014000111W WO 2015159310 A1 WO2015159310 A1 WO 2015159310A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
molten salt
tank
solar
power plant
Prior art date
Application number
PCT/IT2014/000111
Other languages
English (en)
Inventor
Roberto PIZZI
Roberto LEHMANN
Pedro AGUILERA
Original Assignee
Technip Italy Spa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technip Italy Spa filed Critical Technip Italy Spa
Priority to PCT/IT2014/000111 priority Critical patent/WO2015159310A1/fr
Publication of WO2015159310A1 publication Critical patent/WO2015159310A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/12Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having two or more accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/006Methods of steam generation characterised by form of heating method using solar heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Definitions

  • the present invention relates to thermodynamic solar and to its integration with a gas turbine generator. More specifically, it relates to a method for operating a combined cycle power plant comprising a gas turbine, a solar field and a high pressure steam turbine, wherein the hot flue gas flowing from the gas turbine enters into a heat recovery unit to heat a molten salt to be used as heat transfer fluid to adjust the flow rate and the temperature of the superheated high pressure steam produced by the solar field depending on the environmental conditions.
  • the sun radiation heats a thermal fluid that may be synthetic oil, molten salt or water.
  • the direct superheated steam generation technologies produce solar energy at less cost when compared with thermal oil and molten salt based technologies .
  • the limit of those technologies is that there is no possibility to provide a thermal storage to compensate fluctuation in the production from the solar field and/or to extend the operation of the power plant after the sunset.
  • any disturbance in the sun radiation may generate important sudden variation in the steam temperature that will negatively affect the proper and safe operation of the steam turbine.
  • the present invention is intended to overcome the above mentioned weakness of the direct high pressure superheated steam generation by integrating the solar with a gas turbine generator.
  • This invention is intended to be applied to an integrated Solar and Combined Cycle Power Plant in case of direct superheated steam generation from the Solar field.
  • the scope is to ensure a proper and stable operation of the Steam Turbine Generator using the steam as motive fluid.
  • the stability of the steam production in quantity and quality affects the operation of the Steam Turbine and depends from the sudden change of the weather conditions .
  • the object of the invention is a method for using the hot flue gases produced by the Gas Turbine to provide an adequate thermal storage of heat transfer fluid (molten salts) to be used to adjust the flow rate and the temperature of the superheated steam produced by the solar field, whenever the sun irradiation changes .
  • heat transfer fluid molten salts
  • ISCC Integrated Solar Combined Cycle
  • the basic elements of said ISCC are: a gas turbine, a high pressure steam turbine, which is connected to a steam generator, and a solar thermal field, that, together with a steam super heater, is provided between the exit of the gas turbine and the inlet of the steam turbine, wherein the hot flue gases flowing from the gas turbine heat up a molten salt that, as heat transfer fluid, is stored in a first storage tank and used to adjust the temperature of the superheated high pressure steam produced by the solar field and to superheat the steam produced by the steam generator. Furthermore the flue gases coming out from the molten salt heating section are used to preheat the water feeding the solar field and the steam generator .
  • the steam generator comprises an economizer section, a vaporization section and a super heater section.
  • the flue gases used to preheat the water feeding the solar field and the steam generator pass first through said economizer section.
  • the solar steam super heater and the super-heater section of the steam generator are directly connected by means of a high pressure steam line to the steam turbine .
  • the steam generator is used to produce additional high pressure steam during unplanned weather perturbations or the total amount of the steam for a limited time after sunset.
  • the molten salt coming out from the solar steam superheater is stored into a second tank and used as heating medium in the steam generator passing first through the vaporizer section and after through the economizer section .
  • the molten salt coming out from the super heater of the steam generator enters the vaporization section jointly with the molten salt pumped from the second storage tank.
  • the cold molten salt coming out from the economizer section of the steam generator is stored into a third tank from where it is pumped to a heat recovery unit connected to the gas turbine.
  • the flow rate of the molten salt from the second tank to the steam generator is automatically controlled by a pressure control valve to maintain the proper pressure of the high pressure steam feeding the steam turbine generator .
  • a hot molten salt line from the output of the second tank, after said control valve, to said third tank through a temperature control valve, to maintain the temperature of the cold molten salt in said third tank always far from its solidification automatically .
  • a cold molten salt line from the output of the third tank to the inlet of the second tank to add cold molten salt under a temperature control valve.
  • a molten salt line from the first tank to add molten salt to second tank by opening a level control valve.
  • system of the present invention make attractive the use of cheaper heat solar collection as the direct steam generation with respect to thermal oil and molten salt.
  • some solar technologies use water as thermal fluid to collect the solar heat, the water is vaporized and superheated to have superheated high pressure steam suitable to be expanded into a steam turbine to generate electricity.
  • Figure 1 shows a basic scheme of an Integrated Solar and Combined Cycle Power Plant according to the invention
  • FIG. 2 shows a preferred simplified embodiment of an ISCC including all features of the invention
  • Figure 3 shows the simplified scheme of Fig.2 with
  • Figure 4 is a graphic of the stored volume inside tank TK-01 and tank TK-02 for normal operation
  • Figure 5 shows the simplified scheme of Fig.2 with Heat and Balance Operation according to operation mode B;
  • Figure 6 shows the Heat and Material Balance according to operation mode C
  • Figure 7 is a graphic of the Stored Volume for Molten Salt Tank in operation mode C;
  • FIG. 8 shows the Heat and Material Balance in Operation Mode D. List of reference numerals
  • first tank to store the hot molten salts
  • pressure control valve to automatically control the flow rate of the molten salt from the tank 26 to the vaporization section 12b of the steam generator 12;
  • temperature control valve to control the temperature of the steam produced by the vaporization section of the steam generator 12 through modulation of the hot molten salt flow rate
  • the solid line is a feed water line for the solar field and the steam generator
  • the dotted line is a cold molten salt line
  • the broken line is a high pressure steam line from solar field
  • the fine line is a high pressure line for the steam turbine
  • the chain line is a hot molten salt line.
  • the combined cycle power plant comprises: a gas turbine 4, a high pressure steam turbine 14, which is connected to a steam generator 12, and a solar thermal field 8, that, together with a steam super heater 10, is provided between the exit of the gas turbine and the inlet of the steam turbine, wherein the hot flue gases flowing from the gas turbine heat up a molten salt that, as heat transfer fluid, is stored in a first storage tank 18 and used to adjust the temperature of the superheated high pressure steam produced by the solar field through the steam super heater 10 and to superheat the steam produced by a steam generator 12.
  • the hot flue gases flowing from the gas turbine 4 enter into a heat recovery unit 6 to heat up a molten salt (a blend of Sodium Nitrate and Potassium Nitrate) from 280 °C to 530 °C.
  • a molten salt a blend of Sodium Nitrate and Potassium Nitrate
  • the flue gases coming out from the molten salt heating section are used to preheat the water feeding the solar field 8 and the steam generator 12 so achieving an acceptable temperature of the flue gases discharged from the stack 58 to the atmosphere.
  • the hot molten salts are stored into the tank 26 and will be used both to adjust the temperature of the superheated high pressure steam produced by the solar field 8 and to superheat the saturated steam produced by the vaporization section 12b of the steam generator 12.
  • the steam generator 12 will be used:
  • the steam produced by the solar field 8 pass through the super heater 10 (shell side) and its temperature is controlled by acting on the control valve 23 modulating the hot molten salt flow rate and in the same way the steam produced by the vaporization section 12b of the steam generator 12 pass through the super heater section 12c and its temperature is controlled by acting on the control valve 30.
  • the molten salt coming out from the solar steam super heater 10 through the line 24 will be stored into the tank 26 and used as heating medium in the steam generator 12 passing first through the vaporizer section 12b and after through the economizer section 12a.
  • the flow rate of the molten salt from the tank 26 to the steam generator 12 on the line 32, is automatically controlled by control valve 28 to maintain the proper pressure of the high pressure steam feeding the steam turbine generator 12.
  • the first is the normal condition during insolation design sun radiation (Operation mode A) ;
  • the second is the condition with the power block receives coldest steam from the solar field but still at the design flow rate (Operation mode B) ;
  • the third is the operation after sunset when the storage is used to operate the power plant at the design output using the heat storage (Operation mode C) ;
  • the flue gases coming out from the gas turbine 4 through line 56 heat the molten salt pumped from the cold storage tank 36 from 280 °C to 530°C.
  • the flue gases outlet from the molten salt heating section 6 heat the boiler feed water from 110 °C (operating temperature of the deaerator) to 225 °C.
  • the solar high pressure steam is produced at a pressure of 112 bar and a temperature of 460 °C and is heated up to 482 °C using the hot molten salt (530 °) .
  • the steam generator 12 is not in operation.
  • the hot molten salt in excess to the one used to heat the solar steam is accumulated into the tank 18 and the molten salt outgoing from the super heater is accumulated into the tank 26.
  • the steam turbine 14 receives steam at stable conditions, 110 bar and 480 °C.
  • the volume of the tank 18 will be adequate to accumulate the hot molten salt produced by the heating system during the day of the year having the maximum insolation.
  • Figure 4 indicates the stored volume inside 18 and TK-02 for this operation mode.
  • the difference with respect to the operation mode A is the temperature of the steam produced in the solar field that is reduced to 400 °C.
  • the steam super heater 10 increases the temperature of the steam to 482 °C so maintaining the same condition at the inlet of the steam turbine 14.
  • the solar steam temperature of 400 °C maintaining the maximum steam flow rate is considered as an extreme design condition for the super heater 10, in fact when temperature decreases it is also expected a decrease of the steam flow rate.
  • the system can also handle high pressure steam at temperature lower than 400 °C up to the saturation provided that the steam flow rate is reduced to match the super heater duty design.
  • the hot molten salt from the tank 18 provides the super heating of the saturated steam produced by the steam generator vaporizer 12b that is using the hot molten salt pumped from tank 26 in combination with the one outgoing from the super heater 10.
  • the steam generator 12 is designed to produce the steam flow rate necessary to operate the steam turbine 14 at design conditions
  • Figure 7 indicates the variation in the stored volume inside the three molten salts 18, 26, and 36 tanks during this operation mode.
  • the operation time in Mode C refers to twelve hours of insolation, less insolation reduces the extension of the operation after sunset.
  • This operation is a combination of the mode B and C with the difference that the flow rate from the solar field 8 is reduced to 60% and the flow rate from the steam generator 12 compensates in order to provide to the steam turbine 14 the design flow rate.
  • This mode of operation reduces the operation time after sunset.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

L'invention concerne un procédé pour faire fonctionner une centrale électrique à cycle combiné comprenant une turbine à gaz, un champ solaire et une turbine à vapeur haute pression, dans laquelle le gaz de combustion chaud s'écoulant de la turbine à gaz entre dans une unité de récupération de chaleur pour chauffer un sel fondu destiné à être utilisé comme fluide de transfert de chaleur afin de régler le débit et la température de la vapeur surchauffée haute pression produite par le champ solaire en fonction des conditions environnementales. Pour mettre ce procédé en oeuvre, on utilise un cycle combiné solaire intégré dans lequel les éléments de base sont : une turbine à gaz, une turbine à vapeur haute pression qui est reliée à un générateur de vapeur, et un champ thermique solaire, qui, conjointement avec un surchauffeur de vapeur d'eau, est situé entre la sortie de la turbine à gaz et l'entrée de la turbine à vapeur. Les gaz de combustion chauds s'écoulant à partir de la turbine à gaz chauffent un sel fondu qui, en tant que fluide de transfert de chaleur, est stocké dans un premier réservoir de stockage et utilisé pour régler la température de la vapeur surchauffée haute pression produite par le champ solaire et pour surchauffer la vapeur produite par le générateur de vapeur. En outre, les gaz de combustion sortant de la partie de chauffage de sel fondu sont utilisés afin de préchauffer l'eau alimentant le champ solaire et le générateur de vapeur.
PCT/IT2014/000111 2014-04-16 2014-04-16 Amélioration et commande de vapeur surchauffée haute pression directement produite par un champ solaire. description WO2015159310A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/IT2014/000111 WO2015159310A1 (fr) 2014-04-16 2014-04-16 Amélioration et commande de vapeur surchauffée haute pression directement produite par un champ solaire. description

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IT2014/000111 WO2015159310A1 (fr) 2014-04-16 2014-04-16 Amélioration et commande de vapeur surchauffée haute pression directement produite par un champ solaire. description

Publications (1)

Publication Number Publication Date
WO2015159310A1 true WO2015159310A1 (fr) 2015-10-22

Family

ID=51205533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IT2014/000111 WO2015159310A1 (fr) 2014-04-16 2014-04-16 Amélioration et commande de vapeur surchauffée haute pression directement produite par un champ solaire. description

Country Status (1)

Country Link
WO (1) WO2015159310A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018060376A1 (fr) * 2016-09-30 2018-04-05 Erk Eckrohrkessel Gmbh Procédé et dispositif de production d'énergie électrique
US11603794B2 (en) 2015-12-30 2023-03-14 Leonard Morgensen Andersen Method and apparatus for increasing useful energy/thrust of a gas turbine engine by one or more rotating fluid moving (agitator) pieces due to formation of a defined steam region

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4409197A1 (de) * 1994-03-17 1995-09-21 Siemens Ag Verfahren und Einrichtung zur solaren Dampferzeugung
US20110127773A1 (en) * 2009-12-01 2011-06-02 General Electric Company System for generation of power using solar energy
US20120102950A1 (en) * 2010-11-02 2012-05-03 Alliance For Sustainable Energy, Llc. Solar thermal power plant with the integration of an aeroderivative turbine
EP2604858A2 (fr) * 2011-12-16 2013-06-19 Hitachi Ltd. Système de génération d'énergie solaire à cycle combiné solaire intégré et système de génération d'énergie à cycle combiné solaire intégré
WO2013185909A1 (fr) * 2012-06-12 2013-12-19 Linde Aktiengesellschaft Procédé d'exploitation d'une centrale électrique ainsi que centrale électrique

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4409197A1 (de) * 1994-03-17 1995-09-21 Siemens Ag Verfahren und Einrichtung zur solaren Dampferzeugung
US20110127773A1 (en) * 2009-12-01 2011-06-02 General Electric Company System for generation of power using solar energy
US20120102950A1 (en) * 2010-11-02 2012-05-03 Alliance For Sustainable Energy, Llc. Solar thermal power plant with the integration of an aeroderivative turbine
EP2604858A2 (fr) * 2011-12-16 2013-06-19 Hitachi Ltd. Système de génération d'énergie solaire à cycle combiné solaire intégré et système de génération d'énergie à cycle combiné solaire intégré
WO2013185909A1 (fr) * 2012-06-12 2013-12-19 Linde Aktiengesellschaft Procédé d'exploitation d'une centrale électrique ainsi que centrale électrique

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11603794B2 (en) 2015-12-30 2023-03-14 Leonard Morgensen Andersen Method and apparatus for increasing useful energy/thrust of a gas turbine engine by one or more rotating fluid moving (agitator) pieces due to formation of a defined steam region
WO2018060376A1 (fr) * 2016-09-30 2018-04-05 Erk Eckrohrkessel Gmbh Procédé et dispositif de production d'énergie électrique

Similar Documents

Publication Publication Date Title
US7640746B2 (en) Method and system integrating solar heat into a regenerative rankine steam cycle
JP5596715B2 (ja) 太陽熱複合発電システム及び太陽熱複合発電方法
US10247174B2 (en) Solar thermal power generation system and solar thermal power generation method
JP6038448B2 (ja) 太陽熱複合発電システム及び太陽熱複合発電方法
JP6340473B2 (ja) 太陽エネルギ及びバイオマスエネルギ一体型発電最適化結合システム
EP3369926B1 (fr) Système de production d'énergie solaire thermique et son procédé de régulation
EP2784028A1 (fr) Système d'intégration d'une centrale de concentration d'énergie solaire et d'une installation de dessalement
US20080034757A1 (en) Method and system integrating solar heat into a regenerative rankine cycle
EP2333409A1 (fr) Générateur de vapeur à récupération de chaleur, procédé pour amplifier le générateur de vapeur à récupération de chaleur, et procédé associé pour générer de l'énergie
EP2871359B1 (fr) Système d'alimentation en vapeur auxiliaire dans des installations d'énergie solaire
EP2757259B1 (fr) Centrale thermoélectrique solaire
EP2765357B1 (fr) Centrale thermique à vapeur avec un système solaire flexible supplémentaire pour intégration flexible d'énergie solaire
JP2019526010A (ja) 蒸気タービン発電設備の出力の適合方法および蒸気タービン発電設備
AU2021234263B2 (en) Renewable power generation system and method
US20150128594A1 (en) Heat Transfer Fluid Flow Rate and Temperature Regulation System
WO2015159310A1 (fr) Amélioration et commande de vapeur surchauffée haute pression directement produite par un champ solaire. description
US9638064B2 (en) Back-up boiler system for a solar thermal power plant based on molten salt technology, a solar thermal power plant and a method for operating a solar thermal power plant
US9399928B2 (en) Steam power plant with heat reservoir and method for operating a steam power plant
JP5638562B2 (ja) 太陽熱利用発電プラントおよびその運転方法
US20150007567A1 (en) Plant and method for increasing the efficiency of electric energy production
JP2021177107A (ja) 石炭火力発電システム
JP2017133500A (ja) 蒸気発電プラントを運転する方法およびこの方法を実施するための蒸気発電プラント
JP7183130B2 (ja) 熱水貯蔵発電システム及び熱水貯蔵発電システムの運転方法
WO2020255692A1 (fr) Centrale de production d'énergie et procédé de stockage d'énergie excédentaire dans une centrale de production d'énergie
SU1084472A1 (ru) Способ разгрузки теплофикационной паротурбинной установки со ступенчатым подогревом сетевой воды

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14739569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14739569

Country of ref document: EP

Kind code of ref document: A1