WO2015158158A1 - 一种非开挖钻机的钻头及该钻头的定位方法 - Google Patents

一种非开挖钻机的钻头及该钻头的定位方法 Download PDF

Info

Publication number
WO2015158158A1
WO2015158158A1 PCT/CN2015/000242 CN2015000242W WO2015158158A1 WO 2015158158 A1 WO2015158158 A1 WO 2015158158A1 CN 2015000242 W CN2015000242 W CN 2015000242W WO 2015158158 A1 WO2015158158 A1 WO 2015158158A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
drill bit
probe
antennas
magnetic field
Prior art date
Application number
PCT/CN2015/000242
Other languages
English (en)
French (fr)
Inventor
金键
Original Assignee
黄山金地电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黄山金地电子有限公司 filed Critical 黄山金地电子有限公司
Publication of WO2015158158A1 publication Critical patent/WO2015158158A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B45/00Measuring the drilling time or rate of penetration

Definitions

  • the present invention relates to a drill, and more particularly to a drill for a non-excavation drill, and a method of positioning the drill.
  • non-excavation pipe laying technology is a construction method of using the geotechnical drilling method to lay, repair and replace underground pipelines without digging trenches or destroying large surface layers. technology.
  • the use of non-excavation technology has the advantages of short cycle, low cost, less pollution, good safety performance, etc., and does not affect the normal traffic order.
  • the non-excavation pipe laying technology is widely applied as a horizontally oriented advancing method, which uses a non-excavation guide to guide a drill pipe equipped with a drill bit for orientation advancement.
  • the non-excavation guide includes the real-time working conditions of the drill bit - depth, inclination and hour direction, so that the ground operator can grasp the drilling trajectory in real time to correct the subsequent operation in time to ensure accurate orientation according to the established route.
  • Complete trenchless pipe laying It can be seen that the non-excavation pipe laying technology has high requirements for the accurate measurement of the non-excavation guide.
  • the non-excavation guide is generally composed of three parts: an underground probe, a ground receiver, and a remote display.
  • Conventional trenchless directors use electromagnetic waves detected by antennas that detect underground probes for positioning.
  • Figure 1 is a diagram showing the distribution of the radiated electromagnetic field of the antenna on a vertical plane.
  • the underground probe of the director has a shape of an electromagnetic wave emitted from the signal transmitting antenna 1' on the plane of any one of the antennas 1' as shown in Fig. 1. shape.
  • the magnetic field directions P1 and P2 of the points A1 and A2 are perpendicular to the direction of the axis O1O2 of the antenna 1' (assuming that the direction of the magnetic field at A1 is vertically downward, the direction of the magnetic field at A2 is vertically upward), and the line connecting the two points is parallel to the axis O1O2.
  • the special position point in front of the drill bit (the direction of the magnetic field is vertically downward, assuming A1) is called the front point
  • the special position point behind the drill bit (the direction of the magnetic field is vertically upward, assuming A2) is called the back point.
  • the K line is a line obtained by connecting a series of front points on the magnetic induction line, and the m point is located directly above the probe, and the direction of the magnetic field is parallel to the direction of the axis 1O2 of the antenna 1'.
  • the positioning method of the traditional non-excavation guide is to first find the position of the axis of the probe by using the receiver 2' on the ground, and then find the front point A1 and the back point A2 respectively through the receiving antenna of the receiver 2', and then according to the previous point.
  • the direction of the line A1A2 is obtained by pointing the direction of the axis of the probe to know the direction of advancement of the drill bit.
  • the receiving antenna can calculate the distance between the probe and the receiver 2' according to the received signal strength to obtain the depth of the drill bit in the ground.
  • the remote display 3' synchronously displays the spatial position information of the probe calculated by the receiver 2' for the rig operator to perform the correct guiding operation.
  • a horizontal directional drilling guide positioning method and a locator disclosed in Chinese Patent Application Publication No. CN1769645A (Application No. 200410046887.4) are incorporated.
  • the first technical problem to be solved by the present invention is to provide a drill for a non-excavation drilling machine that facilitates positioning in view of the problems of the prior art described above.
  • a second technical problem to be solved by the present invention is to provide a positioning method for such a drill bit as described above.
  • the technical solution adopted by the present invention to solve the above first technical problem is: a drill bit for a non-excavation drilling rig, wherein the drill bit is provided with a probe, and the probe is provided with an antenna, wherein the antenna There are at least two groups with coaxial settings and the transmission frequencies are different from each other.
  • the antenna is arranged in such a manner that two sets of antennas are disposed in the same probe, and the two sets of antennas are located on the same side or both sides of the probe, thereby facilitating installation and maintenance, less device structure, and failure. The probability is small.
  • the antenna is disposed in such a manner that the probe has two coaxially disposed ones, and each of the probes is provided with a set of antennas, thereby being flexible to install, and two can be determined according to actual conditions of the project.
  • the distance of the antenna makes the measurement accuracy the best (when the antenna is deep in the underground position, if the distance between the two antennas is still close, according to the straight line determined between the two points (the actual measurement is two small areas) and the actual The position may be biased more. Therefore, when the antenna is in a shallower position underground, the distance between the two antennas can be appropriately reduced, and when the antenna is deeper in the underground, the distance between the two antennas can be increased.
  • the technical solution adopted by the present invention to solve the above second technical problem is: a positioning method of the drill bit as described above, wherein the positioning method adopts a non-excavation guiding device, which comprises the following steps:
  • the receiver using the ground of the guiding device first finds a first point perpendicular to the direction of the magnetic field on the magnetic induction line emitted by one of the two sets of antennas;
  • the first point and the second point are the front points, and the magnetic field direction of the first point is vertically upward.
  • the first point and the second point are the back points, and the magnetic field direction of the first point is vertically downward.
  • the invention has the advantages that: by providing two sets of antennas in the drill bit, according to the translational relationship, the distance between the two front points or the two rear points of the two sets of antennas is the same as the distance of the antenna, so During the entire construction process of the drilling, the operator only needs to move a small distance (the distance between the two sets of antennas) to determine the axial direction of the underground probe, the moving distance is small, and the operation is more convenient, fast and safe.
  • FIG. 1 is a schematic diagram of positioning of a prior art guide
  • Figure 2-1 is a schematic view showing a first embodiment of the drill bit of the present invention.
  • FIG. 2-2 is a schematic view of a second embodiment of the drill bit of the present invention.
  • Figure 2-3 is a schematic view showing a third embodiment of the drill bit of the present invention.
  • Figure 3 is a schematic view showing the positioning of the drill bit of the present invention.
  • a drill bit for a non-excavation drilling rig is provided with two sets of antennas having different transmission frequencies, a first antenna 1 and a second antenna 2.
  • the drill bit 3 of the non-excavation guide is disposed in the drill bit, and the two sets of antennas are coaxially arranged in parallel in the probe 3 in the drill bit.
  • the battery compartment 4 is located at the other end of the probe 3:
  • a second embodiment of the drill bit of the present invention differs from the first embodiment in that the battery compartment 4 is located between two sets of antennas:
  • the drill bit is provided with two probes, a first probe 31 and a second probe 32, wherein the first antenna 1 is located in the first probe.
  • the second antenna 2 is located in the second probe 32, and the first probe 31 and the second probe 32 are coaxially disposed, and the two sets of antennas are also kept coaxial.
  • the two sets of antennas are on the same axis and the distance is relatively close, and the center distance between the two sets of antennas is s, then the distribution of the signals transmitted by the two sets of antennas in space is also the translation distance along the axis s. .
  • the front point A of the magnetic field of the first antenna 1 is vertically downward and the rear point B of the magnetic field direction is vertical
  • the front point C of the magnetic field of the second antenna 2 is vertically downward
  • the rear point of the magnetic field direction is vertically upward.
  • the vertical direction in the present invention means that the direction of the magnetic field is perpendicular to the axial direction of the probe. .
  • the positioning method of the drill bit by using the non-excavation guide is:
  • the antenna can calculate the distance between the probe and the receiver to obtain the depth of the drill bit in the ground.
  • the receiving antenna can calculate the distance between the probe and the receiver according to the received signal strength to obtain the depth of the drill bit in the ground. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Earth Drilling (AREA)

Abstract

一种非开挖钻机的钻头,钻头内设置有探棒(3),探棒内设置有天线(1、2),天线具有同轴设置的至少两组并且发射频率互不相同。还公开了一种上述钻头的定位方法。通过在钻头中设置两组天线,根据平移关系,两组天线的两个前点或两个后点的距离与天线的距离相同,因此在钻头钻进的整个施工过程中,操作人员只需要移动一段较小的距离(两组天线之间的距离)就可以确定地下探棒的轴线方向,移动距离少,操作起来更方便、快捷而且安全。

Description

一种非开挖钻机的钻头及该钻头的定位方法 技术领域
本发明涉及一种钻具,尤其是一种非开挖钻机的钻头,以及该钻头的定位方法。
背景技术
随着城市建设的大规模发展,需要在城市中铺设截污管或能源(液化气、天然气等)供应管,较常用的方法是开挖槽来埋管埋线,这会造成环境污染,引起交通堵塞,并且存在施工安全隐患。
因此,目前也已开发使用了非开挖铺管技术,即一种利用岩土钻掘手段,在路面不挖沟、不破坏大面积地表层的情况下,铺设、修复和更换地下管线的施工技术。使用非开挖技术具有周期短、成本低、污染少、安全性能好等优点,而且不会影响正常的交通秩序。
非开挖铺管技术应用较广的为水平导向前进法,其是利用非开挖导向仪引导装有钻头的钻杆进行定向前进来实现。非开挖导向仪包括提供钻头实时的工况-深度、倾角以及钟点方向,让地面的操作人员实时掌握钻孔轨迹以便对后续的操作进行及时的修正,以保证按既定的路线轨迹精确定向,完成非开挖铺管。由此可见,非开挖铺管技术对于非开挖导向仪的精确测量有着很高的要求。
非开挖导向仪一般由地下探棒,地面接收仪,远程显示器三个部分组成。传统的非开挖导向仪是利用检测地下探棒的天线发射电磁波来进行定位的。
图1所示为天线辐射电磁场在垂直面上的分布图,导向仪的地下探棒,其信号发射天线1’发射的电磁波形状在任一过天线1’轴线的平面上具有如图1所示的形状。在其每一根电磁感应线上均存在三个特殊位置点,如图1中所示的A1、A2和探棒正上方的m点。其中A1和A2点的磁场方向P1和P2与天线1’轴线O1O2方向垂直(假设A1处的磁场方向垂直向下,则A2处的磁场方向垂直向上),两点的连线与轴线O1O2平行。在工程上一般将位于钻头前方的特殊位置点(磁场方向垂直向下,假设为A1)称为前点,将位于钻头后方的特殊位置点(磁场方向垂直向上,假设为A2)称为后点。K线为将磁感应线上的一系列前点连接得到的线,m点位于探棒正上方,其磁场方向与天线1’轴线O1O2方向平行。
传统非开挖导向仪的定位方法是首先利用地面的接收仪2’找到探棒轴线位置的正上方,然后通过接收仪2’的接收天线分别找到前点A1和后点A2,再根据前点、后点A1A2的连线方向获得探棒轴线的指向,从而知道钻头的前进方向。利用接收仪2’沿着前点、后点A1A2的连线方向寻找到电磁场方向与探棒轴线方向平行的m点,则m点 的正下方为探棒的位置,接收天线根据接收到的信号强度可以计算出探棒与接收仪2’的距离从而获得钻头在地下的深度。远程显示器3’同步显示接收仪2’计算出的探棒的空间位置信息,供钻机操作人员进行正确的导向操作。具体的定位方法,可以参见公开号为CN1769645A(申请号为200410046887.4)的中国专利申请公开的一种水平定向钻进导向定位方法及定位仪。
从图1中可以看出,随着与探棒轴线垂直距离的增加,需要寻找的前点A1与后点A2之间的距离也快速增加。在钻头钻进的过程中,操作人员需要不断寻找前点A1与后点A2来实时定位钻头的前进方向,因此当探棒在地下较深位置时,来回往复寻找前后点定位的方法将会耗费大量时间,尤其是当钻头位于马路中央的下方时,需要操作人员多次往返于马路两边,在应用过程中存在极大安全隐患。
发明内容
本发明所要解决的第一个技术问题是针对上述现有技术存在的问题,提供一种便于定位的非开挖钻机的钻头。
本发明所要解决的第二个技术问题是提供上述这种钻头的定位方法。
本发明解决上述第一个技术问题所采用的技术方案为:一种非开挖钻机的钻头,所述钻头内设置有探棒,所述探棒内设置有天线,其特征在于,所述天线具有同轴设置的至少两组并且发射频率互不相同。
根据本发明的一个实施例,天线的设置方式为,两组天线设于同一根探棒内,两组天线位于探棒的同侧或两侧,由此安装维护方便,装置结构少,出现故障的概率小。
根据本发明的另一个实施例,天线的设置方式为,所述探棒具有同轴设置的两根,每一根探棒内设置一组天线,由此安装灵活,可以根据工程实际情况确定两天线的距离,使测量精度达到最佳效果(当天线在地下位置较深时,如果两天线距离仍然较近,根据两点(实际测量的都是两个小区域)间确定的直线与实际的位置可能偏差较大。因此当天线在地下较浅位置,可以让两天线距离适当减少,当在地下较深位置可以增加两天线距离)。
本发明解决上述第二个技术问题所采用的技术方案为:一种如上所述的钻头的定位方法,所述定位方法采用非开挖导向仪,其特征在于,包括如下步骤:
(1)利用导向仪地面的接收仪首先寻找到两组天线中其中一组天线发射的磁感应线上磁场方向垂直的第一点;
(2)利用所述接收仪在上述第一点附近寻找另一组天线发射的磁感应线上磁场方向一致的第二点,第一点和第二点之间的距离与两组天线的中心点距离相同;
(3)通过上述第一点和第二点之间的连线方向确定所述探棒轴线的方向;
(4)利用所述接收仪在上述第一点和第二点附近寻找磁场方向与所述轴线平行的第 三点,所述第三点的正下方为所述探棒的位置,从而获得钻头在地下的深度。
如果接收仪在钻头前方某一位置,则第一点和第二点为前点,所述第一点的磁场方向垂直向上。
如果接收仪在钻头后方某一位置,则第一点和第二点为后点,所述第一点的磁场方向垂直向下。
与现有技术相比,本发明的优点在于;通过在钻头中设置两组天线,根据平移关系,两组天线的两个前点或两个后点的距离与天线的距离相同,因此在钻头钻进的整个施工过程中,操作人员只需要移动一段较小的距离(两组天线之间的距离)就可以确定地下探棒的轴线方向,移动距离少,操作起来更方便、快捷而且安全。
附图说明
图1为现有技术的导向仪定位原理图;
图2-1为本发明的钻头的第一个实施例的示意图;
图2-2为本发明的钻头的第二个实施例的示意图;
图2-3为本发明的钻头的第三个实施例的示意图;
图3为本发明钻头的定位原理图。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
如图2-1~图2-3所示,一种非开挖钻机的钻头,其内设置有两组发射频率不同的天线,第一天线1和第二天线2。
如图2-1所示,为本发明钻头的第一个实施例,该钻头内设置有非开挖导向仪的探棒3,两组天线同轴并列的设置在钻头内的探棒3内的一侧,电池仓4则位于探棒3的另一个末端:
如图2-2所示,为本发明钻头的第二个实施例,与第一个实施例不同之处在于,电池仓4位于两组天线之间:
如图2-3所示,为本发明钻头的第三个实施例,该钻头内设有两根探棒,第一探棒31和第二探棒32,其中第一天线1位于第一探棒31内,第二天线2位于第二探棒32内,第一探棒31和第二探棒32同轴设置,两组天线也保持同轴。
由于设置了两组频率不同的天线,两组天线处在同一轴线上且距离较近,两组天线的中心距离为s,则两组天线发射的信号在空间中的分布也是沿轴线平移距离s。根据平移关系,第一天线1的磁场方向垂直向下的前点A和磁场方向垂直向上的后点B、第二天线2的磁场方向垂直向下的前点C和磁场方向垂直向上的后点D也处于同一直线b 上,且该直线b与探棒的轴线O1O2(有两根探棒时,轴线也只有一条)相互不行,参见图3,本发明中所指的垂直是指磁场方向与探棒的轴向垂直。
根据上述位置关系,只需要单独寻找到以上四个特殊位置点中的两个点(两个前点或两个后点)就可以根据两点间的连线确定探棒的轴线方向,此后可根据现有的技术知道钻头的前进方向,确定钻头在地下的深度。
设置两组天线后,采用非开挖导向仪对钻头的定位方法为:
若非开挖导向仪的地面接收仪处在钻头前方某一位置,则
(1)利用接收仪首先寻找到第一天线1的前点A(或第二天线2的前点C),在地面做好标记;
(2)然后在附近寻找到第二天线2的前点C(或第一天线1的前点A),在地面做好标记;
(3)连接两个前点的直线所指向的方向即为探棒轴线的方向;
(4)找到磁场方向与该直线方向平行的点,该点的正下方为探棒的位置(两根探棒时,是否因为两者之间距离很近,可视为同一个位置),接收天线根据接收到的信号强度可以计算出探棒与接收仪的距离从而获得钻头在地下的深度。
相应地,若地面接收仪器处在钻头后方某一位置,则
(1)利用接收仪首先寻找到第一天线1的后点B(或第二天线2的后点D),在地面做好标记;
(2)然后利用接收仪在附近寻找到第二天线2的后点D(或第一天线1的后点B),在地面做好标记;
(3)两个后点间的连线方向就是钻头的轴线方向;
(4)找到磁场方向与该直线方向平行的点,该点的下下方为探棒的位置,接收天线根据接收到的信号强度可以计算出探棒与接收仪的距离从而获得钻头在地下的深度。

Claims (6)

  1. 一种非开挖钻机的钻头,所述钻头内设置有探棒,所述探棒内设置有天线,其特征在于,所述天线具有同轴设置的至少两组并且发射频率互不相同。
  2. 如权利要求1所述的钻头,其特征在于,两组天线设于同一根探棒内,两组天线位于探棒的同侧或两侧。
  3. 如权利要求2所述的钻头,其特征在于,所述探棒具有同轴设置的两根,每一根探棒内设置一组天线。
  4. 一种如权利要求1~3中任一项所述钻头的定位方法,所述定位方法采用非开挖导向仪,其特征在于,包括如下步骤:
    (1)利用导向仪地面的接收仪首先寻找到两组天线中其中一组天线发射的磁感应线上磁场方向垂直的第一点;
    (2)利用所述接收仪在上述第一点附近寻找另一组天线发射的磁感应线上磁场方向一致的第二点,第一点和第二点之间的距离与两组天线的中心点距离相同;
    (3)通过上述第一点和第二点之间的连线方向确定所述探棒轴线的方向;
    (4)利用所述接收仪在上述第一点和第二点附近寻找磁场方向与所述轴线平行的第三点,所述第三点的正下方为所述探棒的位置,从而获得钻头在地下的深度。
  5. 如权利要求4所述的非开挖导向仪定位方法,其特征在于,所述第一点的磁场方向垂直向上。
  6. 如权利要求4所述的非开挖导向仪定位方法,其特征在于,所述第一点的磁场方向垂直向下。
PCT/CN2015/000242 2014-04-16 2015-04-08 一种非开挖钻机的钻头及该钻头的定位方法 WO2015158158A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410153723.5A CN103899251B (zh) 2014-04-16 2014-04-16 一种非开挖钻机的钻头的定位方法
CN201410153723.5 2014-04-16

Publications (1)

Publication Number Publication Date
WO2015158158A1 true WO2015158158A1 (zh) 2015-10-22

Family

ID=50990798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/000242 WO2015158158A1 (zh) 2014-04-16 2015-04-08 一种非开挖钻机的钻头及该钻头的定位方法

Country Status (2)

Country Link
CN (1) CN103899251B (zh)
WO (1) WO2015158158A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112814650A (zh) * 2021-01-05 2021-05-18 四川石油天然气建设工程有限责任公司 定向钻无线探棒的测孔工艺及管道回拖风险评估方法
CN115012915A (zh) * 2022-06-02 2022-09-06 中国石油天然气集团有限公司 基于直导线的磁场定位方法、系统、装置、设备及介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103899251B (zh) * 2014-04-16 2016-04-20 黄山金地电子有限公司 一种非开挖钻机的钻头的定位方法
CN104535060B (zh) * 2014-12-17 2018-03-30 中国神华能源股份有限公司 露天矿钻机作业的定位方法及定位装置
CN106197237B (zh) * 2016-07-22 2019-11-05 黄山金地电子有限公司 一种非开挖导向仪的测量点的判断方法
CN106014385B (zh) * 2016-07-22 2019-05-31 黄山金地电子有限公司 一种非开挖导向仪的导向方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050200496A1 (en) * 2004-03-10 2005-09-15 White Matthew R. High speed data communication protocol for use with EM data telemetry antennae
CN102439260A (zh) * 2008-12-16 2012-05-02 哈利伯顿能源服务公司 方位近钻头电阻率和地质导向方法及系统
CN103266887A (zh) * 2013-05-14 2013-08-28 中国石油集团长城钻探工程有限公司 一种通过无线短传信号测量深电阻率的仪器及其使用方法
CN103477247A (zh) * 2011-04-18 2013-12-25 哈利伯顿能源服务公司 多分量钻井雷达系统和方法
CN103899251A (zh) * 2014-04-16 2014-07-02 黄山金地电子有限公司 一种非开挖钻机的钻头及该钻头的定位方法
CN203905814U (zh) * 2014-04-16 2014-10-29 黄山金地电子有限公司 一种非开挖钻机的钻头

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5764062A (en) * 1996-03-14 1998-06-09 Digital Control Incorporated Technique for establishing and recording a boring tool path using a survey reference level
US6833795B1 (en) * 1999-11-30 2004-12-21 Vermeer Manufacturing Company Underground utility detection system and method employing ground penetrating radar
US7111693B1 (en) * 2002-11-26 2006-09-26 The Charles Machine Works, Inc. System and method for locating and tracking a boring tool
US7647987B2 (en) * 2004-02-26 2010-01-19 The Charles Machine Works, Inc. Multiple antenna system for horizontal directional drilling
CN1769645A (zh) * 2004-11-03 2006-05-10 长沙中联重工科技发展股份有限公司 水平定向钻进导向定位方法及定位仪

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050200496A1 (en) * 2004-03-10 2005-09-15 White Matthew R. High speed data communication protocol for use with EM data telemetry antennae
CN102439260A (zh) * 2008-12-16 2012-05-02 哈利伯顿能源服务公司 方位近钻头电阻率和地质导向方法及系统
CN103477247A (zh) * 2011-04-18 2013-12-25 哈利伯顿能源服务公司 多分量钻井雷达系统和方法
CN103266887A (zh) * 2013-05-14 2013-08-28 中国石油集团长城钻探工程有限公司 一种通过无线短传信号测量深电阻率的仪器及其使用方法
CN103899251A (zh) * 2014-04-16 2014-07-02 黄山金地电子有限公司 一种非开挖钻机的钻头及该钻头的定位方法
CN203905814U (zh) * 2014-04-16 2014-10-29 黄山金地电子有限公司 一种非开挖钻机的钻头

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112814650A (zh) * 2021-01-05 2021-05-18 四川石油天然气建设工程有限责任公司 定向钻无线探棒的测孔工艺及管道回拖风险评估方法
CN115012915A (zh) * 2022-06-02 2022-09-06 中国石油天然气集团有限公司 基于直导线的磁场定位方法、系统、装置、设备及介质

Also Published As

Publication number Publication date
CN103899251A (zh) 2014-07-02
CN103899251B (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
WO2015158158A1 (zh) 一种非开挖钻机的钻头及该钻头的定位方法
US9817148B2 (en) Borehole while drilling electromagnetic tomography advanced detection apparatus and method
CN103076606B (zh) 基于钻孔地质雷达技术的三维精细化成像系统和方法
CN104536008B (zh) 一种凿岩台车炮孔激光测距定位方法
US20150233242A1 (en) Comprehensive advanced geological detection system carried on tunnel boring machine
CN206960676U (zh) 一种地下管线探测装置
CN110196452A (zh) 超常大埋深地下管道探测装置
CN103322989A (zh) 一种动态实时测量顶管机位置和姿态的测量装置及其方法
CN203658603U (zh) 隧道掘进机搭载的综合超前地质探测系统
CN203422091U (zh) 一种动态实时测量顶管机位置和姿态的测量装置
CN102472826A (zh) 用于检测导电、埋入式结构的接近的方法和系统
JP2011202354A (ja) トンネル切羽前方探査装置
CN107861159A (zh) 双电偶源地‑井瞬变电磁探测方法
CN115291200A (zh) 一种基于数字显示的埋深管道定位方法
CN105974472A (zh) 一种基于反射信号的巷道超前探测速度建模方法
CN203905814U (zh) 一种非开挖钻机的钻头
CN209413903U (zh) 长距离曲线顶管自动导向系统
CN211115977U (zh) 一种随钻电磁波方位电阻率测量仪器
US20140196951A1 (en) Positioning method for a drilling head
US20210054729A1 (en) Probe for excavation-free guidance instrument
CN104090304A (zh) 直接对非金属管线远距离探测的方法及系统
CN220185099U (zh) 一种基于双接收器的地下钻头定位系统
CN215867155U (zh) 一种一发三分量无线电波接收装置
CN219737747U (zh) 基于主动声源的地下非金属燃气管道定位装置
CN202787337U (zh) 建筑物基桩施工质量检查验收装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15779776

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15779776

Country of ref document: EP

Kind code of ref document: A1