WO2015158094A1 - Clostridium beijerinckii with high stress resistance and uses thereof - Google Patents

Clostridium beijerinckii with high stress resistance and uses thereof Download PDF

Info

Publication number
WO2015158094A1
WO2015158094A1 PCT/CN2014/085468 CN2014085468W WO2015158094A1 WO 2015158094 A1 WO2015158094 A1 WO 2015158094A1 CN 2014085468 W CN2014085468 W CN 2014085468W WO 2015158094 A1 WO2015158094 A1 WO 2015158094A1
Authority
WO
WIPO (PCT)
Prior art keywords
cbei
beijerinckii
medium
clostridium
fermentation
Prior art date
Application number
PCT/CN2014/085468
Other languages
French (fr)
Chinese (zh)
Inventor
郭亭
蚁细苗
谭文兴
张九花
黄玉南
李雨虹
钟映萍
梁达奉
Original Assignee
广州甘蔗糖业研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州甘蔗糖业研究所 filed Critical 广州甘蔗糖业研究所
Publication of WO2015158094A1 publication Critical patent/WO2015158094A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/22Processes using, or culture media containing, cellulose or hydrolysates thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/16Butanols
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/145Clostridium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Abstract

Provided are clostridium beijerinckii with high stress resistance and uses thereof. The clostridium beijerinckii with high stress resistance does not have a Cbei_3304 protein function, so that the clostridium beijerinckii has high stress resistance to toxic substances such as ferulic acid and vanillic acid, also has high stress resistance to toxic substances in an undetoxified saccharide solution obtained through wood fiber acidolysis, and can be well fermented to produce butyl alcohol.

Description

说 明 书 一种高抗逆性拜氏梭菌及其应用 技术领域  Description: A highly resistant strain of Clostridium beijerii and its application
本发明涉及一种高抗逆性拜氏梭菌及其应用, 属于基因工程和发酵工程技术领域。  The invention relates to a high-resistance Clostridium beijerinckii and application thereof, and belongs to the technical field of genetic engineering and fermentation engineering.
背景技术 Background technique
随着化石能源的日益枯竭, 利用可再生的木质纤维质原料 (如玉米芯、 甘蔗渣等)通过 微生物发酵法生产生物能源和生物基化学品, 成为研究的重点和热点之一。 木质纤维原料必 须经过预处理, 得到微生物可发酵的糖, 才能被微生物很好的利用。 然而, 木质纤维原料经 预处理后, 会产生有机酸、 糠醛、 酚类等抑制物, 这些抑制物的除去成本较高、 并对微生物 生长有一定的抑制作用。 因此, 提高微生物的抗逆性尤其重要。  With the depletion of fossil energy sources, the production of bioenergy and bio-based chemicals by microbial fermentation using renewable lignocellulosic materials (such as corn cobs, bagasse, etc.) has become one of the research priorities. The lignocellulosic material must be pretreated to obtain microbial fermentable sugars that can be used well by microorganisms. However, after the pretreatment of the lignocellulosic material, organic acid, furfural, phenolic and the like are produced, and the removal cost of these inhibitors is high, and the microbial growth is inhibited. Therefore, it is especially important to increase the resistance of microorganisms.
丁醇具有能量密度大、 可与汽油任意比混合、 可直接用于内燃机等优点, 丁醇作为新型 可再生的液体能源, 受到广泛的重视。 利用木质纤维原料发酵制备燃料丁醇, 成为研究的热 点之一。 Thaddeus Ezeji等 (Bioresource Technol. 2008, 99: 5915-5922) 利用拜氏梭菌突变株 BA101 , 以 XAD-4 resin脱毒的玉米芯酸解和酶解糖液为底物发酵, 总溶剂产量为 9.30 g/L; 但突变株 BA101不能利用未脱毒的酸解糖液发酵产丁醇。中国专利 ZL 201110020102.6报道: 通过粒子束诱变育种得到的拜氏梭菌 ^ Clostridium beijerinckiO IB4对酚类化合物具有较高的 抗逆性,其能以未脱毒的玉米芯酸解糖液作为碳源,在 2L发酵罐中总溶剂产量和丁醇产量分 别达到了 10.3g/L和 7.1 g L。然而, 郭亭等(J and Microbiol Biotechnol., 2012, 39(3), 401-407) 研究发现, 当玉米芯和甘蔗渣酸解糖液中的酚类化合物的浓度提升到 1.5 g/L以上时, 拜氏梭 菌 Clostridium bei rinckii IB4基本不生长。 Tomas等(Appl Environ Microbiol, 2003, 69(8): 4951-4965 )在丙酮丁醇梭菌中过表达编码热激蛋白的 raESL基因, 使丁醇对菌体细胞的抑 制作用降低了 85%,并最终使产物浓度提高了 33%。 Thaddeus Ezeji等(Biotechnol Bioeng 2007, 97(6): 1460-1469)研究发现有机酸、 糠酸等不影响丁醇的发酵, 而酚类抑制物对丁醇发酵有 明显的抑制效应。 然而, 酚类化合物对微生物生长与发酵的抑制机制比较复杂, 其抑制机理 还不清晰。  Butanol has the advantages of high energy density, can be mixed with gasoline at any ratio, and can be directly used in internal combustion engines. Butanol has received extensive attention as a new renewable liquid energy source. The production of fuel butanol by fermentation of lignocellulosic feedstock has become one of the hot spots of research. Thaddeus Ezeji et al. (Bioresource Technol. 2008, 99: 5915-5922) using the C. beijerincense mutant BA101, XAD-4 resin detoxified corn cob acid hydrolysis and enzymatic hydrolysis of sugar as substrate fermentation, total solvent yield is 9.30 g/L; however, the mutant strain BA101 could not ferment butanol using a non-detoxified acid hydrolysis solution. Chinese patent ZL 201110020102.6 reports: Clostridium beijerinckiO IB4 obtained by particle beam mutagenesis has high resistance to phenolic compounds, and can be used as a carbon source without undetoxified corncob acid solubilized sugar solution. The total solvent yield and butanol production in the 2L fermentor reached 10.3 g/L and 7.1 g L, respectively. However, Guo Ting et al. (J and Microbiol Biotechnol., 2012, 39(3), 401-407) found that when the concentration of phenolic compounds in the corncob and bagasse solubilized sugar solution increased to 1.5 g/L or more At the time, Clostridium bei rinckii IB4 does not grow at all. Tomas et al. (Appl Environ Microbiol, 2003, 69(8): 4951-4965) overexpressed the heat shock protein-containing raESL gene in Clostridium acetobutylicum, reducing the inhibitory effect of butanol on bacterial cells by 85%. Finally, the product concentration was increased by 33%. Thaddeus Ezeji et al. (Biotechnol Bioeng 2007, 97(6): 1460-1469) found that organic acids, citric acid and the like do not affect the fermentation of butanol, while phenolic inhibitors have a significant inhibitory effect on butanol fermentation. However, the inhibition mechanism of phenolic compounds on microbial growth and fermentation is complicated, and the inhibition mechanism is still unclear.
基于此, 木质纤维预处理后的毒素抑制物 (如阿魏酸、 香兰酥等) 严重抑制拜氏梭菌的 生长和发酵性能; 提高拜氏梭菌对酚类化合物等毒素的抗逆性, 是木质纤维原料制备燃料丁 醇产业化必须解决的关键问题之一。  Based on this, the toxin inhibitors (such as ferulic acid, vanillin, etc.) after pretreatment of lignocellulose severely inhibit the growth and fermentation performance of Clostridium beijerincii; improve the resistance of Clostridium beijerinckii to toxins such as phenolic compounds. It is one of the key issues that must be solved in the industrialization of lignosan for the preparation of fuel for lignocellulosic feedstock.
发明内容 说 明 书 为了解决上述问题, 本发明提供一种容易获得的高抗逆性拜氏梭菌, 其对酚类化合物等 毒素具有高抗逆性。 Summary of the invention In order to solve the above problems, the present invention provides a highly resistant, high-resistance Clostridium beijerincii which has high resistance to toxins such as phenolic compounds.
本发明的目的在于提供一种高抗逆性拜氏梭菌。  It is an object of the present invention to provide a highly resistant Clostridium beijerii.
本发明的另一目的在于提供一种高抗逆性拜氏梭菌的构建方法。  Another object of the present invention is to provide a method for constructing a highly resistant strain of Clostridium beijerinckii.
本发明的再一目的在于提供一种高抗逆性拜氏梭菌的应用。  A further object of the present invention is to provide an application of a highly resistant strain of Clostridium beijerinckii.
本发明所采取的技术方案是:  The technical solution adopted by the present invention is:
一种高抗逆性拜氏梭菌, 其缺失正常的 Cbei_3304蛋白功能。  A highly resistant strain of Clostridium beijerii, which lacks the normal Cbei_3304 protein function.
进一步的, 上述高抗逆性拜氏梭菌, 其基因 Cbei_3304不能正常表达。  Further, the above high-resistance Clostridium beijerinckii, the gene Cbei_3304 is not normally expressed.
进一步的, 上述高抗逆性拜氏梭菌, 其基因 Cbei_3304被插入失活。  Further, the above high-resistance Clostridium beijerinckii, the gene Cbei_3304 was inserted and inactivated.
上述一种高抗逆性拜氏梭菌在发酵制备丁醇中的应用。  The use of the above-mentioned high-resistance Clostridium beijerinckii in the fermentation of butanol.
进一步的, 上述应用具体为: 高抗逆性拜氏梭菌以不脱毒的木质纤维酸解糖液为原料直 接发酵制备丁醇。  Further, the above application is specifically as follows: The high-resistance Clostridium beijerincii is directly fermented to prepare butanol by using the non-detoxified lignocellulosic acid solution.
本发明的有益效果是:  The beneficial effects of the invention are:
本发明将拜氏梭菌中编码膜蛋白的 Cbei— 3304基因进行插入失活后, 使得此基因不能正 常表达, 获得 Cbei_3304基因插入失活的重组菌株。 本发明提供了一种简单、 高效的提高拜 氏梭菌抗逆性的方法, 借助此方法得到的重组菌株对毒素物质 (阿魏酸、 香草酸等) 具有较 高抗逆性, 当以未脱毒的甘蔗渣酸解糖液为碳源时,在 2L发酵罐中总溶剂产量和丁醇产量分 别达到了 7.0 g/L和 5.1 g/L, 而同等条件培养的出发菌株基本不生长。利用本发明方法构建的 重组菌株, 其抗逆性强、 丁醇产量高, 是一种适用于甘蔗渣等木质纤维原料发酵生产丁醇的 优良菌种。 In the present invention, the Cbei-3304 gene encoding the membrane protein in Clostridium beijerincii is inactivated, and the gene is not normally expressed, and the recombinant strain in which the Cb ei _3304 gene is inserted and inactivated is obtained. The invention provides a simple and efficient method for improving the resistance of Clostridium beijerincii, and the recombinant strain obtained by the method has high resistance to toxin substances (ferulic acid, vanillic acid, etc.), when When the detoxified bagasse solubilized sugar solution was used as the carbon source, the total solvent yield and butanol yield in the 2L fermenter reached 7.0 g/L and 5.1 g/L, respectively, while the starting strains cultured under the same conditions did not grow at all. The recombinant strain constructed by the method of the invention has strong stress resistance and high yield of butanol, and is an excellent strain suitable for fermenting butanol of lignocellulosic materials such as bagasse.
附图说明 DRAWINGS
图 1为本发明插入失活载体 pWJ的质粒图谱;  Figure 1 is a plasmid map of the inserted inactivation vector pWJ of the present invention;
图 2为本发明使用二型内含子插入失活的机理图;  Figure 2 is a diagram showing the mechanism of inactivation of insertion of a type II intron according to the present invention;
图 3为转化子菌落 PCR电泳图。  Figure 3 is a PCR electrophoresis map of transformant colonies.
具体雄 Specific male
根据下述实施例, 可以更好地理解本发明。 然而, 本领域的技术人员容易理解, 实施例 所描述的具体的物料配比、 工艺条件及其结果仅用于说明本发明, 而不应当也不会限制权利 要求书中所详细描述的本发明。  The invention can be better understood in light of the following examples. However, those skilled in the art will readily appreciate that the specific material ratios, process conditions, and results described in the examples are merely illustrative of the invention and are not intended to limit the invention as described in the claims. .
猫例 1  Cat case 1
一、拜氏梭菌 Cbei_3304基因插入失活突变株的构建 说 明 书 构建拜氏梭菌 Cbei_3304基因插入失活突变株的原理如图 2所示, 具体构建过程包括以 下步骤: I. Construction of the inactivated mutant strain of Clostridium beijerii Cbei_3304 gene insertion The principle of constructing the inactivated mutant strain of Clostridium beijerii Cbei_3304 gene insertion is shown in Figure 2. The specific construction process includes the following steps:
(1) Cbei—3304插入失活载体的构建  (1) Construction of Cbei-3304 insertion inactivation carrier
1 ) 设计内含子  1) Design introns
根据 NCBI数据库收录的拜氏梭菌的 Cbei—3304基因序列 (如 SEQ ID No: 1所示), 借 助软件设计合适的插入基因位点 (http://www.clostron.com) , 选择插入在第 101-102个碱基之 间, 并生成内含子序列, 合成内含子序列 S-101 (其序列如 SEQ ID NO: 2所示), 并设计以 下引物。  According to the Cbei-3304 gene sequence of Clostridium beijerincii (shown as SEQ ID No: 1) included in the NCBI database, the appropriate insertion locus (http://www.clostron.com) was designed by software, and the insertion was selected. Between the 101st and 102th bases, an intron sequence was generated, the intron sequence S-101 (the sequence of which is shown in SEQ ID NO: 2) was synthesized, and the following primers were designed.
克隆引物:  Clone primers:
pWJ-OSC-101-S: 5 '- ggagtgtcgaggatcctcgagataattatccttacacttcgcc -3 ',其序列如 SEQ ID NO: pWJ-OSC-101-S: 5 '- ggagtgtcgaggatcctcgagataattatccttacacttcgcc -3 ', the sequence of which is SEQ ID NO:
3所示; 3;
pWJ-OSC- 101 -A: 5 ' -ggttctcctacagattgtacaaatgtggtgataacagataag-3 ', 其序列如 SEQ ID NO: pWJ-OSC-101-A: 5 '-ggttctcctacagattgtacaaatgtggtgataacagataag-3', the sequence of which is SEQ ID NO:
4所示。 4 is shown.
验证引物:  Verify primers:
Cbei-3304-T-S : 5 '-taaattacctacagcaaaactgtg-3 ' , 序列如 SEQ ID NO: 5所示;  Cbei-3304-T-S : 5 '-taaattacctacagcaaaactgtg-3 ' , the sequence is as shown in SEQ ID NO: 5;
Cbei-3304-T-A: 5 ' -ggaattaagaaccttgaatctatc-3 ' , 序列如 SEQ ID NO: 6所示。  Cbei-3304-T-A: 5 ' -ggaattaagaaccttgaatctatc-3 ' , the sequence is shown as SEQ ID NO: 6.
引物 pWJ-OSC-101-S引入 Xho I酶切位点 (下划线部分),引物 pWJ-OSC-101-A引入 BsrG Primer pWJ-OSC-101-S introduced Xho I restriction site (underlined part), primer pWJ-OSC-101-A introduced BsrG
I酶切位点 (下划线部分)。 I cleavage site (underlined part).
2) Cbei_3304-pWJ-101重组载体构建  2) Construction of Cbei_3304-pWJ-101 recombinant vector
用 Xho I和 BsrG I双酶切载体 pWL pWJ质粒图谱如图 1所示,其序列如 SEQ ID NO: 7 所示。 酶切产物经纯化试剂盒 (Takara ) 纯化后, 与内含子序列 S-101 通过一步克隆 ( ClonExpress)连接。 将一步克隆连接的重组质粒转化到大肠杆菌 E.co/ DH5a, 涂布到含有 50 μ g/ml氨苄霉素抗性 LB平板, 37°C培养 12〜16h,挑取转化子,接到液体含有 50 μ g/ml氨 苄霉素 LB培养基中, 37° (:、 200rpm培养 12h, 提取重组质粒(AXYGEN) , 测序验证, 获得 Cbei_3304-pWJ-101重组载体。  The plasmid pWL pWJ was digested with Xho I and BsrG I as shown in Figure 1, and the sequence is shown in SEQ ID NO: 7. The digested product was purified by a purification kit (Takara) and ligated with the intron sequence S-101 by one-step cloning (ClonExpress). The one-step cloning-ligated recombinant plasmid was transformed into Escherichia coli E.co/DH5a, coated on a LB plate containing 50 μg/ml ampicillin-resistant LB, cultured at 37 ° C for 12 to 16 hours, and the transformant was picked and connected to a liquid. The recombinant plasmid containing 50 μg/ml ampicillin was cultured at 37° (:, 200 rpm for 12 h, and the recombinant plasmid (AXYGEN) was extracted and verified by sequencing to obtain Cbei_3304-pWJ-101 recombinant vector.
3 ) Cbei_3304-pWJ-101重组载体的甲基化  3) Methylation of Cbei_3304-pWJ-101 recombinant vector
制备 E.co/ Top 10/pAN2的化学感受态,将测序成功的 Cbei_3304-pWJ-101重组载体转化 到大肠杆菌 E.coli Top 10, 由于 pAN2质粒具有四环素抗性, 故涂布到含有 50 u g/ml氨苄霉 素和 10 μ g/ml四环素双抗性 LB平板, 37°C培养 12〜16h, 挑取转化子, 接到液体含有 50 μ g/ml氨苄霉素和 lO g/ml 四环素 LB 培养基中, 37°C、 200rpm培养 12h, 提取甲基化的 说 明 书 The chemically competent state of E.co/Top 10/pAN2 was prepared, and the successfully sequenced Cbei_3304-pWJ-101 recombinant vector was transformed into E. coli Top 10. Since the pAN2 plasmid has tetracycline resistance, it was coated to contain 50 ug. /ml ampicillin and 10 μg/ml tetracycline double-resistant LB plate, cultured at 37 °C for 12~16h, picked up transformants, and received liquid containing 50 μg/ml ampicillin and 10 g/ml tetracycline LB In the medium, cultured at 37 ° C, 200 rpm for 12 h, extraction of methylated Description
Cbei_3304-pWJ-101重组载体(pAN2质粒含有一个枯草芽孢杆菌噬菌体基因, 能编码甲基转 移酶, 能实现外源质粒在大肠杆菌中的甲基化), 即 Cbei_3304插入失活载体。 Cbei_3304-pWJ-101 recombinant vector (pAN2 plasmid contains a Bacillus subtilis phage gene encoding methyltransferase, which enables methylation of the foreign plasmid in E. coli), that is, Cbei_3304 inserted into the inactivated vector.
(2) Cbei_3304插入失活载体转化拜氏梭菌 ( ZosinVftVi/M beijerinckii NCIMB 8052) (2) Cbei_3304 insertion of inactivated vector for transformation of Clostridium beijerinckii (ZosinVftVi/M beijerinckii NCIMB 8052)
1 )将 Clostridium beijerinckii NCIMB 8052接种至 CGM培养基(酵母粉 3 g/L, 蛋白胨 5 g L, 可溶性淀粉 10 g/L, 乙酸铵 2 g/L, NaCl 2 g/L, MgS04 -7H20 3 g/L, KH2P04 1 g/L, K2HP04 1 g/L, FeS04 7H20 0.1 g L) 37°C过夜培养,次日以 5%比例接种到 CGM培养基, 37°C 培养 6-8h, 以 10%接种到 YTG培养基(酵母粉 16 g L, 蛋白胨 10 g/L, 葡萄糖 5 g/L, 氯 化钠 5 g/L) 37°C培养 3h, OD600nm=l ; 1) Inoculate Clostridium beijerinckii NCIMB 8052 to CGM medium (yeast powder 3 g/L, peptone 5 g L, soluble starch 10 g/L, ammonium acetate 2 g/L, NaCl 2 g/L, MgS0 4 -7H 2 0 3 g/L, KH 2 P0 4 1 g/L, K 2 HP0 4 1 g/L, FeS0 4 7H 2 0 0.1 g L) overnight culture at 37 ° C, inoculated to CGM medium at a 5% ratio the next day , cultured at 37 ° C for 6-8 h, inoculated with YTG medium (yeast powder 16 g L, peptone 10 g / L, glucose 5 g / L, sodium chloride 5 g / L) at 37 ° C for 3 h. OD 600 nm = l;
2)取 50ml拜氏梭菌菌液, 5000rpm, 4°C离心 10 min,弃上清。在以 ETM缓冲液(270mM 蔗糖, 0.6mM Na2HPO4, 4.4mM Na2HP04, 10mM MgCl2)重悬; 同上离心, 去上清, 再次以 ETM缓冲液重悬, 同上离心, 彻底取上清; 2) Take 50 ml of Clostridium beijerinc's solution, centrifuge at 5000 rpm for 10 min at 4 ° C, and discard the supernatant. Resuspend in ETM buffer (270 mM sucrose, 0.6 mM Na 2 HPO 4 , 4.4 mM Na 2 HP 0 4 , 10 mM MgCl 2 ); centrifuge as above, remove the supernatant, resuspend in ETM buffer again, centrifuge as above, and take it thoroughly. Clearing
3 )以 1ml ET缓冲液(270mM蔗糖, 0.6mM Na2HPO4, 4.4mM Na¾P04重悬, 取 200μ1, 力口入 1 μ g Cbei_3304插入失活载体, 加入 0.2cm预冷的电转杯, 轻轻混匀; 3) Resuspend in 1 ml of ET buffer (270 mM sucrose, 0.6 mM Na 2 HPO 4 , 4.4 mM Na3⁄4P0 4 , take 200 μl, insert 1 μg Cbei_3304 into the inactivated carrier, add 0.2cm pre-cooled electric rotor, light Lightly mix;
4) 使用 MicroPulserTM电转仪电转, 条件为电压 1.8kV, 电阻 200Ω, 电容 2.5 F, 电击 后立刻加入 lmL 2xYTG培养基, 转移到无菌离心管中复苏 2〜3h;  4) Use MicroPulserTM electro-rotary instrument to rotate, the condition is voltage 1.8kV, resistance 200Ω, capacitance 2.5 F, immediately after electric shock, add lmL 2xYTG medium, transfer to sterile centrifuge tube for recovery for 2~3h;
5 )取 200μ1上述菌液,涂布到含有 10 μ§/ηι1红霉素的 CGM 固体培养基,培养 2〜3天。 5) Take 200 μl of the above bacterial solution, apply it to CGM solid medium containing 10 μ § / ηι1 erythromycin, and incubate for 2 to 3 days.
(3) Cbei_3304插入失活突变株的筛选  (3) Screening of Cbei_3304 insertion inactivated mutants
挑取上述步骤 5 )中培养 2〜3天的转化子, 使用引物 Cbei-3304-T-S和 Cbei-3304-T-A对 转化子进行菌落 PCR验证, 筛选出内含子插入基因组的突变株(插入后, PCR扩增出基因条 带电泳图上比野生型大约 lKbp), 如图 3所示, 将正确插入的突变株传代三次, 同时涂布在 含有红霉素抗性和没有红霉素抗性的 CGM 固体培养基上,筛选出敲除质粒丟失的突变株(在 红霉素抗性平板上不能生长的突变株)。  The transformants which were cultured for 2 to 3 days in the above step 5) were picked, and the transformants were subjected to colony PCR verification using the primers Cbei-3304-TS and Cbei-3304-TA, and the mutants in which the intron was inserted into the genome were selected (after insertion). PCR amplification of the gene band electrophoresis map is about 1Kbp larger than the wild type, as shown in Figure 3, the correctly inserted mutant strain was passaged three times, while being coated with erythromycin-resistant and no erythromycin resistance. On the CGM solid medium, a knockout plasmid-missing mutant (a mutant that could not grow on an erythromycin-resistant plate) was selected.
二、 Cbei— 3304插入失活突变株的传代稳定性  2. Passage stability of Cbei-3304 inserted inactivated mutants
将上述构建的 Cbei— 3304基因插入失活的拜氏梭菌突变株在固体培养基上连续转接 7次, 发现所得菌株与出发菌株在形态特征和培养特征上相同, 生长状态良好。 在以葡萄糖为碳源 的发酵培养基中,检测重组菌的传代稳定性,插入失活突变菌传代发酵试验结果如表 1所示。  The Cbei-3304 gene constructed above was inserted into the inactivated C. beijerinckii mutant strain for 7 times on a solid medium, and the obtained strain was found to have the same morphological characteristics and culture characteristics as the starting strain, and the growth state was good. The passage stability of the recombinant strain was examined in a fermentation medium using glucose as a carbon source, and the results of the subculture fermentation test of the inserted inactivated mutant were as shown in Table 1.
表 1不同传代次数的 Cbei— 3304插入失活突变菌的发酵情况  Table 1 Fermentation of Cbei-3304 Inserted Inactivating Mutant by Different Passage Times
Cbei— 3304插入失活突变菌  Cbei-3304 insertion of inactivating mutant
传代次数 丁醇产量 总溶剂产量  Passage times butanol production total solvent yield
(g L) (g L) 说 明 书 (g L) (g L) Instruction manual
1 7.7 11.4 1 7.7 11.4
2 7.5 11.2  2 7.5 11.2
3 7.8 11.6  3 7.8 11.6
4 7.7 11.5  4 7.7 11.5
5 7.6 11.3  5 7.6 11.3
6 7.9 11.7  6 7.9 11.7
7 7.8 11.4  7 7.8 11.4
从实验结果可知, 经过 7次连续传代, 两株突变株的总溶剂产量和丁醇产量较稳定, 具 有较好的传代稳定性, 可作为进一步研究和开发的生产菌株。  From the experimental results, it was found that after 7 consecutive passages, the total solvent yield and butanol yield of the two mutant strains were stable, and had good passage stability, which could be used as a production strain for further research and development.
三、 Cbei— 3304插入失活的拜氏梭菌对模式酚类化合物阿魏酸的髙抗逆性  3. Cbei-3304 insertion of inactivated strain of Clostridium beijerii to the phenolic resistance of the model phenolic compound ferulic acid
培养基配方 (%为质量百分比):  Medium formula (% by mass):
平板培养基: 酵母粉 0.3%, 蛋白胨 0.5%, 可溶性淀粉 1%, 乙酸铵 0.2%, 氯化钠 0.2%, 七水合硫酸镁 0.3%,磷酸二氢钾 0.1%,磷酸氢二钾 0.1%,七水合硫酸亚铁 0.01%,琼脂 1.5%, 其余为水, pH 6。  Plate medium: yeast powder 0.3%, peptone 0.5%, soluble starch 1%, ammonium acetate 0.2%, sodium chloride 0.2%, magnesium sulfate heptahydrate 0.3%, potassium dihydrogen phosphate 0.1%, dipotassium hydrogen phosphate 0.1%, The ferrous sulfate heptahydrate is 0.01%, the agar is 1.5%, and the rest is water, pH 6.
种子培养基: 酵母粉 0.3%, 蛋白胨 0.5%, 可溶性淀粉 1%, 乙酸铵 0.2%, 氯化钠 0.2%, 七水合硫酸镁 0.3%, 磷酸二氢钾 0. 1%, 磷酸氢二钾 0. 1%, 七水合硫酸亚铁 0.01%, 其余为 水, pH 6。  Seed medium: yeast powder 0.3%, peptone 0.5%, soluble starch 1%, ammonium acetate 0.2%, sodium chloride 0.2%, magnesium sulfate heptahydrate 0.3%, potassium dihydrogen phosphate 0. 1%, dipotassium hydrogen phosphate 0 1%, ferrous sulfate heptahydrate 0.01%, the rest is water, pH 6.
发酵培养基: 葡萄糖 3%, 乙酸铵 0.22%, 磷酸二氢钾 0.05%, 磷酸氢二钾 0.05%, 氯化 钠 0.001%, 七水合硫酸镁 0.02%, 七水合硫酸亚铁 0.001%, 一水合硫酸锰 0.001%, 玉米浆 0.1%, 阿魏酸 0.06%, 其余为水, pH 6.6„  Fermentation medium: glucose 3%, ammonium acetate 0.22%, potassium dihydrogen phosphate 0.05%, dipotassium hydrogen phosphate 0.05%, sodium chloride 0.001%, magnesium sulfate heptahydrate 0.02%, ferrous sulfate heptahydrate 0.001%, monohydrate Manganese sulphate 0.001%, corn syrup 0.1%, ferulic acid 0.06%, the rest is water, pH 6.6 „
将上述 Cbei_3304插入失活的拜氏梭菌突变株接种至平板培养基厌氧培养, 培养温度 35 V , 培养时间 12 h。 将平板培养的突变株接种到种子培养基中, 培养温度 35 Ό , 50 mL 肖 特厌氧瓶装液量 30 mL, 充氮气 3min, 培养温度 35 °C, 培养时间 12 h; 将种子接种到发酵培 养基中, 接种量 10%(y/V), 发酵温度 35 °C, 100 mL 肖特厌氧瓶装液量 50 mL, 充氮气 3min, 发酵培养 72 h后, 检测丁醇产量达到了 6.1 g/L, 而同等条件培养的出发菌株 NCIMB 8052基 本不生长。 The Cb ei _3304 inserted into the inactivated C. beijerinckii mutant was inoculated into a plate medium for anaerobic culture at a culture temperature of 35 V and a culture time of 12 h. The plated mutant was inoculated into the seed culture medium at a culture temperature of 35 Ό, 50 mL of Schott's anaerobic bottle volume of 30 mL, nitrogen gas for 3 min, culture temperature of 35 ° C, and culture time of 12 h; seed inoculation into the fermentation In the medium, the inoculum volume was 10% (y/ V ), the fermentation temperature was 35 °C, the 100 mL Schott anaerobic bottle volume was 50 mL, and the nitrogen was filled for 3 min. After fermentation for 72 h, the butanol yield was 6.1 g. /L, and the starting strain NCIMB 8052 cultured under the same conditions did not grow at all.
四、 Cbei— 3304插入失活的拜氏梭菌对模式酚类化合物香草酸的髙抗逆性  4. Cbei-3304 insertion of inactivated strain of Clostridium beijerii on the phenolic resistance of the model phenolic compound vanillic acid
培养基配方 (%为质量百分比):  Medium formula (% by mass):
平板培养基: 同上述 "三"。  Plate medium: Same as the above "three".
种子培养基: 同上述 "三"。 说 明 书 发酵培养基: 葡萄糖 3%, 乙酸铵 0.22%, 磷酸二氢钾 0.05%, 磷酸氢二钾 0.05%, 氯化 钠 0.001%, 七水合硫酸镁 0.02%, 七水合硫酸亚铁 0.001%, 一水合硫酸锰 0.001%, 玉米浆 0.1%, 香草酸 0.05%, 其余为水, pH 6.6。 Seed medium: Same as the above "three". Instructions Fermentation medium: glucose 3%, ammonium acetate 0.22%, potassium dihydrogen phosphate 0.05%, dipotassium hydrogen phosphate 0.05%, sodium chloride 0.001%, magnesium sulfate heptahydrate 0.02%, ferrous sulfate heptahydrate 0.001%, one Manganese sulfate hydrate 0.001%, corn syrup 0.1%, vanillic acid 0.05%, the rest is water, pH 6.6.
将上述 Cbei_3304插入失活的拜氏梭菌突变株接种至平板培养基厌氧培养, 培养温度 35 °C , 培养时间 12 h。 将平板培养的突变株接种到种子培养基中, 培养温度 35°C, 50 mL 肖 特厌氧瓶装液量 30 mL, 充氮气 3min, 培养温度 35 °C, 培养时间 12 h; 将种子接种到发酵培 养基中, 接种量 10%(ν/ν), 发酵温度 35 °C, 100 mL 肖特厌氧瓶装液量 50 mL, 充氮气 3min, 发酵培养 72 h后, 检测丁醇产量达到了 4.6 g/L, 而同等条件培养的出发菌株 NCIMB 8052只 能微弱的生长, 但基本不产丁醇。  The above-mentioned Cbei_3304 inserted into the inactivated C. beijerinckii mutant was inoculated into the plate medium for anaerobic culture at a culture temperature of 35 ° C and a culture time of 12 h. The plated mutant was inoculated into the seed culture medium at a culture temperature of 35 ° C, 50 mL of Schott's anaerobic bottle volume of 30 mL, nitrogen gas for 3 min, culture temperature of 35 ° C, and culture time of 12 h; seed inoculation In the fermentation medium, the inoculum volume was 10% (ν/ν), the fermentation temperature was 35 °C, the 100 mL Schott anaerobic bottle volume was 50 mL, and the nitrogen was filled for 3 min. After fermentation for 72 h, the butanol production was detected to be 4.6. g/L, and the starting strain NCIMB 8052 cultured under the same conditions can only grow weakly, but does not produce butanol.
五、 Cbei— 3304插入失活的拜氏梭菌对甘蔗渣酸解糖液的髙抗逆性  5. Cbei-3304 insertion of inactivated strain of Clostridium beijerinckii against sugarcane residue solubilized sugar solution
本部分内容说明 Cbei— 3304插入失活的拜氏梭菌利用甘蔗渣酸解糖液 (可溶性总酚含量 为 2.4 g L), 在 1L发酵罐中发酵生产丁醇的工艺。  This section describes the process by which Cbei-3304 inserts inactivated C. beijerincii using sugarcane bagasse solubilized sugar solution (soluble total phenolic content of 2.4 g L) to ferment butanol in a 1 L fermentor.
培养基配方 (%为质量百分比):  Medium formula (% by mass):
平板培养基: 同上述 "三"。  Plate medium: Same as the above "three".
种子培养基: 同上述 "三"。  Seed medium: Same as the above "three".
发酵培养基: 乙酸铵 0.22%, 磷酸二氢钾 0.05%, 憐酸氢二钾 0.05%, 氯化钠 0.001%, 七水合硫酸镁 0.02%, 七水合硫酸亚铁 0.001%, 一水合硫酸锰 0.001%, 玉米浆 0.1%, 用未 脱毒的甘蔗渣酸解糖液(总还原糖为 4 %)配置, 其余为水, pH 6.6, 培养基中可溶性总酚含 量为 2.4 g/L。  Fermentation medium: ammonium acetate 0.22%, potassium dihydrogen phosphate 0.05%, dihydrogen potassium dihydrogen peroxide 0.05%, sodium chloride 0.001%, magnesium sulfate heptahydrate 0.02%, ferrous sulfate heptahydrate 0.001%, manganese sulfate monohydrate 0.001 %, corn syrup 0.1%, with non-detoxified bagasse solubilized sugar solution (total reducing sugar is 4%), the rest is water, pH 6.6, the total soluble phenol content in the medium is 2.4 g / L.
将上述 Cbei_3304插入失活的拜氏梭菌突变株接种至平板培养基厌氧培养, 培养温度 35 °C , 培养时间 12 h。将平板培养的突变株接种到种子培养基中, 250 mL 肖特厌氧瓶装液量 150 mL, 充氮气 3min, 培养温度 35 °C, 培养时间 12 h; 将种子接种到装有 1 L发酵培养基的 2L发酵罐中, 接种量 10% (v/v), 发酵温度 35 °C, 连续通入氮气, 流速为 0.3 L/min, 发酵 培养 90 h后, 检测总溶剂产量和丁醇产量分别达到了 3.1 g/L和 2.2 g/L, 而同等条件培养的 出发菌株 NCIMB 8052基本不生长。  The above-mentioned Cbei_3304 inserted into the inactivated C. beijerinckii mutant was inoculated into the plate medium for anaerobic culture at a culture temperature of 35 ° C and a culture time of 12 h. The plated mutant was inoculated into the seed culture medium, 250 mL of Schott's anaerobic bottle was filled with 150 mL, nitrogen was added for 3 min, culture temperature was 35 °C, and culture time was 12 h; seed was inoculated to 1 L fermentation culture. In the 2L fermenter, the inoculum was 10% (v/v), the fermentation temperature was 35 °C, and nitrogen gas was continuously introduced at a flow rate of 0.3 L/min. After 90 h of fermentation, the total solvent yield and butanol yield were measured. Up to 3.1 g/L and 2.2 g/L were achieved, while the starting strain NCIMB 8052 cultured under the same conditions did not grow at all.
六、 Cbei— 3304插入失活的拜氏梭菌对甘蔗渣酸解糖液的髙抗逆性  6. Cbei-3304 insertion of inactivated strain of Clostridium beijerinckii against sugarcane residue solubilized sugar solution
本部分内容说明 Cbei— 3304插入失活的拜氏梭菌利用甘蔗渣酸解糖液 (可溶性总酚含量 为 2.0 g L), 在 2 L发酵罐中发酵生产丁醇的工艺。  This section describes the process by which Cbei-3304 inserts inactivated C. beijerincii using sugarcane bagasse solubilized sugar solution (soluble total phenol content 2.0 g L) to ferment butanol in a 2 L fermentor.
培养基配方 (%为质量百分比):  Medium formula (% by mass):
平板培养基: 同上述 "三"。 说 明 书 种子培养基: 同上述 "三"。 Plate medium: Same as the above "three". Instructions Seed Medium: Same as the above "three".
发酵培养基: 乙酸铵 0.22%, 磷酸二氢钾 0.05%, 磷酸氢二钾 0.05%, 氯化钠 0.001%, 七水合硫酸镁 0.02%, 七水合硫酸亚铁 0.001%, 一水合硫酸锰 0.001%, 玉米浆 0.1%, 用未 脱毒的甘蔗渣酸解糖液 (总还原糖为 3.6%) 配置, 其余为水, pH 6.6, 培养基中可溶性总酚 含量为 2.0 g L。  Fermentation medium: ammonium acetate 0.22%, potassium dihydrogen phosphate 0.05%, dipotassium hydrogen phosphate 0.05%, sodium chloride 0.001%, magnesium sulfate heptahydrate 0.02%, ferrous sulfate heptahydrate 0.001%, manganese sulfate monohydrate 0.001% , corn syrup 0.1%, with undetoxified bagasse acid glycol solution (total reducing sugar 3.6%) configuration, the rest is water, pH 6.6, the total soluble phenol content in the medium is 2.0 g L.
将上述 Cbei_3304插入失活的拜氏梭菌突变株接种至平板培养基厌氧培养, 培养温度 35 Ό , 培养时间 12 h。将平板培养的突变株接种到种子培养基中, 250 mL 肖特厌氧瓶装液量 150 mL, 充氮气 3min, 培养温度 35 °C, 培养时间 12 h; 将种子接种到装有 1 L发酵培养基的 2L发酵罐中, 接种量 10% (v/v), 发酵温度 35 °C, 连续通入氮气, 流速为 0.3 L/min, 发酵 培养 90 h后,检测总溶剂产量和丁醇产量分别达到了 7.0 g/L和 5.1g/L, 而同等条件培养的出 发菌株 NCIMB 8052基本不生长。 The Cb ei _3304 inserted into the inactivated C. beijerinckii mutant was inoculated into a plate medium for anaerobic culture at a culture temperature of 35 Ό and a culture time of 12 h. The plated mutant was inoculated into the seed culture medium, 250 mL of Schott's anaerobic bottle was filled with 150 mL, nitrogen was added for 3 min, culture temperature was 35 °C, and culture time was 12 h; seed was inoculated to 1 L fermentation culture. In the 2L fermenter, the inoculum volume was 10% (v/v), the fermentation temperature was 35 °C, and nitrogen gas was continuously introduced at a flow rate of 0.3 L/min. After 90 h of fermentation, the total solvent yield and butanol yield were measured. The 7.0 g/L and 5.1 g/L were reached, and the starting strain NCIMB 8052 cultured under the same conditions did not grow at all.

Claims

权 利 要 求 书 Claim
1. 一种高抗逆性拜氏梭菌, 其特征在于: 其缺失正常的 Cbei— 3304蛋白功能。 A highly resistant C. beijerinckii which is characterized by the absence of a normal Cbei-3304 protein function.
2. 根据权利要求 1所述的一种高抗逆性拜氏梭菌,其特征在于:其基因 Cbei_3304不能正常 表达。  2. A highly resistant C. beijerinckii according to claim 1, wherein the gene Cbei_3304 is not normally expressed.
3. 根据权利要求 2所述的一种高抗逆性拜氏梭菌,其特征在于:其基因 Cbei_3304被插入失 活。  3. A highly resistant C. beijerinckii according to claim 2, wherein the gene Cbei_3304 is inserted and inactivated.
4. 权利要求 1〜3中任一所述一种高抗逆性拜氏梭菌在发酵制备丁醇中的应用。  The use of a high-resistance Clostridium beijerinckii according to any one of claims 1 to 3 for fermenting butanol.
5. 根据权利要求 4所述的应用, 其特征在于: 权利要求 1所述的高抗逆性拜氏梭菌以不脱 毒的木质纤维酸解糖液为原料直接发酵制备丁醇。  The use according to claim 4, characterized in that the high-resistance C. beijerinckii according to claim 1 is directly fermented to produce butanol from a non-detoxified lignocellulosic acid solution.
PCT/CN2014/085468 2014-04-16 2014-08-29 Clostridium beijerinckii with high stress resistance and uses thereof WO2015158094A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410153818.7A CN103911334B (en) 2014-04-16 2014-04-16 A kind of high resistance to cold and diseases Bai Shi clostridium and application thereof
CN201410153818.7 2014-04-16

Publications (1)

Publication Number Publication Date
WO2015158094A1 true WO2015158094A1 (en) 2015-10-22

Family

ID=51037342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085468 WO2015158094A1 (en) 2014-04-16 2014-08-29 Clostridium beijerinckii with high stress resistance and uses thereof

Country Status (2)

Country Link
CN (1) CN103911334B (en)
WO (1) WO2015158094A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103911334B (en) * 2014-04-16 2016-04-20 广州甘蔗糖业研究所 A kind of high resistance to cold and diseases Bai Shi clostridium and application thereof
CN104894048B (en) * 2015-06-12 2018-03-09 南京工业大学 A kind of method for improving Clostridium beijerinckii forulic acid resistance
CN105567603B (en) * 2016-02-03 2019-08-09 广东省生物工程研究所(广州甘蔗糖业研究所) A method of Clostridium beijerinckii is improved to 4- hydroxycinnamic acid resistance
CN106047754B (en) * 2016-06-07 2019-07-19 广东省生物工程研究所(广州甘蔗糖业研究所) A kind of method and its application improving Clostridium beijerinckii electricity production

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008106430A2 (en) * 2007-02-26 2008-09-04 The Regents Of The University Of California Heterologous expression of extremophile heat shock proteins and chaperones in microorganisms to increase tolerance to toxic compounds
WO2009143455A2 (en) * 2008-05-22 2009-11-26 Microbia, Inc. Engineering resistance to aliphatic alcohols
WO2013144653A1 (en) * 2012-03-30 2013-10-03 The University Of Nottingham Vector
CN103911334A (en) * 2014-04-16 2014-07-09 广州甘蔗糖业研究所 Clostridium beijerinckii with high stress resistance and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102174433B (en) * 2011-01-18 2012-07-04 南京工业大学 Clostridium beijerinckii with high stress resistance and application thereof
CN103667147B (en) * 2013-12-11 2015-07-01 南京工业大学 High ferulic acid stress resistance clostridium beijerinckii and application thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008106430A2 (en) * 2007-02-26 2008-09-04 The Regents Of The University Of California Heterologous expression of extremophile heat shock proteins and chaperones in microorganisms to increase tolerance to toxic compounds
WO2009143455A2 (en) * 2008-05-22 2009-11-26 Microbia, Inc. Engineering resistance to aliphatic alcohols
WO2013144653A1 (en) * 2012-03-30 2013-10-03 The University Of Nottingham Vector
CN103911334A (en) * 2014-04-16 2014-07-09 广州甘蔗糖业研究所 Clostridium beijerinckii with high stress resistance and application thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CAROLINE B.M. ET AL.: "Metabolic Network Reconstruction and Genome scale model of Butanol-Producing Strain Clostridium Beijerinckii NCIMB 8052", BMC SYSTEMS BIOLOGY, vol. 130, no. 5, 16 August 2011 (2011-08-16), pages 1 - 15, XP021109496, ISSN: 1752-0509 *
COPELAND, A. ET AL.: "GenBank Accession Number: ABR35431.1", GENBANK, 28 January 2014 (2014-01-28), XP055231545 *
COPELAND, A. ET AL.: "GenBank Accession Number: CP000721.1", GENBANK, 28 January 2014 (2014-01-28), XP055231591 *

Also Published As

Publication number Publication date
CN103911334B (en) 2016-04-20
CN103911334A (en) 2014-07-09

Similar Documents

Publication Publication Date Title
AU2007316189B2 (en) Process for the biological production of n-Butanol with high yield
US8895272B2 (en) Methods for the economical production of biofuel from biomass
KR101076042B1 (en) Enhanced Ethanol and Butanol Producing Microorganisms and Method for Preparing Ethanol and Butanol Using the Same
US20110236941A1 (en) Recombinant microorganism and methods of production thereof
BRPI0618074A2 (en) thermophilic organisms for converting lignocellulosic biomass to ethanol
KR20030027902A (en) Methods and Compositions for Simultaneous Saccharification and Fermentation
JPH06505875A (en) Ethanol production with recombinant hosts
US20110256600A1 (en) Recombinant Microorganisms and Methods of Use Thereof
Bankar et al. Genetic engineering of Clostridium acetobutylicum to enhance isopropanol-butanol-ethanol production with an integrated DNA-technology approach
Liao et al. The significance of proline on lignocellulose-derived inhibitors tolerance in Clostridium acetobutylicum ATCC 824
US20100143985A1 (en) Method for preparing butanol through butyryl-coa as an intermediate using yeast
Fu et al. Butanol production from Saccharina japonica hydrolysate by engineered Clostridium tyrobutyricum: The effects of pretreatment method and heat shock protein overexpression
WO2015158094A1 (en) Clostridium beijerinckii with high stress resistance and uses thereof
CN105492613B (en) Methods for producing n-propanol and propionic acid using metabolically engineered propionibacteria
Li et al. Simultaneous saccharification and fermentation of hemicellulose to butanol by a non-sporulating Clostridium species
WO2010031793A2 (en) Thermophilic fermentative bacterium producing butanol and/or hydrogen from glycerol
US9206445B2 (en) Biocatalysts with enhanced inhibitor tolerance
US20130224839A1 (en) Recombinant Microorganism and Methods of Production Thereof
US20100330636A1 (en) Process for the biological production of n-butanol with high yield
WO2021129396A1 (en) Recombinant filamentous fungus for producing ethanol, and construction and application thereof
EP2267141A1 (en) Process for the biological production of n-Butanol with high yield
EP2084287B1 (en) Process for the biological production of n-butanol with high yield
US9951359B2 (en) Heat-stable, FE-dependent alcohol dehydrogenase for aldehyde detoxification
WO2014135633A1 (en) Improvement of clostridial butanol production by gene overexpression
CN104894048B (en) A kind of method for improving Clostridium beijerinckii forulic acid resistance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14889231

Country of ref document: EP

Kind code of ref document: A1