WO2015157965A1 - 一种面向油田的无线数据远传装置 - Google Patents

一种面向油田的无线数据远传装置 Download PDF

Info

Publication number
WO2015157965A1
WO2015157965A1 PCT/CN2014/075589 CN2014075589W WO2015157965A1 WO 2015157965 A1 WO2015157965 A1 WO 2015157965A1 CN 2014075589 W CN2014075589 W CN 2014075589W WO 2015157965 A1 WO2015157965 A1 WO 2015157965A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
wireless network
data
indicator
processor
Prior art date
Application number
PCT/CN2014/075589
Other languages
English (en)
French (fr)
Inventor
王忠锋
杨志家
黄剑龙
李力刚
Original Assignee
中国科学院沈阳自动化研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院沈阳自动化研究所 filed Critical 中国科学院沈阳自动化研究所
Priority to PCT/CN2014/075589 priority Critical patent/WO2015157965A1/zh
Publication of WO2015157965A1 publication Critical patent/WO2015157965A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/34Signalling channels for network management communication

Definitions

  • the present invention relates to an apparatus for data transmission between a PLC and a WIA wireless network, and more particularly to a wireless data remote transmission apparatus for an oil field. Background technique
  • the back-end management of oilfields has gradually shifted from the previous extensive to informationalization, and gradually strengthened the monitoring of all aspects of oil production and oil transportation.
  • the anti-interference circuit of the RF front-end should be considered when designing the wireless RF module.
  • Commonly used data acquisition devices include wired device data acquisition, microwave technology wireless data acquisition, and satellite communication wireless data acquisition. Due to the wide distribution of oil wells and the relatively long distance between some oil wells and control rooms, the cost of laying communication cables is relatively high, and the communication cables also cause great inconvenience to the staff during field maintenance.
  • the application of microwave technology to data acquisition can solve the problem of laying cables.
  • microwaves use analog technology, they are susceptible to interference around oil wells and reduce the accuracy of data transmission.
  • Microwave technology has obvious advantages in small-scale monitoring. Satellite technology is more resistant to interference and flexible, but satellite communication technology is expensive to transmit.
  • the invention adopts WIA wireless communication technology, and solves the above problems well. Summary of the invention
  • the present invention adopts a combination of wired data transmission and wireless data transmission, and proposes a wireless data remote transmission device for an oil field, which performs two-way data interaction with a field device through an Ethernet port, and then The data format is converted by the processor, and the data is wirelessly interacted with the background through the WIA wireless module.
  • a wireless data remote transmission device for oil field comprising: a processor: connecting with a power circuit, an indicator circuit, an Ethernet interface circuit, a WIA wireless network RF circuit, Converting Ethernet data and WIA wireless network data into a data format;
  • the power circuit is a DC/DC circuit connected to the processor, the indicator circuit, the Ethernet interface circuit, and the WIA wireless network RF circuit, for converting the input voltage into the processor, the indicator circuit, and the Ethernet interface circuit, respectively.
  • WIA wireless network RF circuit operating voltage
  • Indicator circuit connected to the processor for displaying the power status and data transmission and reception status under the control of the processor;
  • Ethernet interface circuit connecting the processor, used for two-way interactive communication between the field device and the processor;
  • WIA wireless network RF circuit Connects to the processor for mutual interaction between the background monitoring center and the processor.
  • the power circuit includes: Bridge circuit: connected between the external input power source and the first low voltage conversion circuit, used to prevent the input voltage from being reversed and burning the internal circuit;
  • the first low voltage conversion circuit converts the external input 7V ⁇ 40V voltage into a 5V voltage
  • Voltage isolation circuit Isolating 5V voltage
  • the second low voltage conversion circuit converts the 5V voltage outputted by the voltage isolation circuit into a 3.3V voltage output for use by the WIA wireless network RF circuit, indicator circuit and Ethernet interface circuit.
  • the indicator circuit includes three indicator lights: a power-on indicator, a wireless network reception status indicator, and a wireless network transmission status indicator;
  • the power-on indicator light is activated after the device is powered on;
  • the wireless network receiving status indicator and the wireless network sending status indicator are respectively connected to the processor, and the status is controlled by the processor.
  • the wireless network receiving status indicator blinks or changes the on/off status
  • the wireless network sending status indicator flashes or changes the on/off status.
  • the power-on indicator is different from the wireless network reception status indicator and the wireless network transmission status indicator.
  • the Ethernet interface circuit includes:
  • the encapsulated Ethernet interface module is respectively connected to the network interface, the processor and the indicator circuit for receiving and transmitting Ethernet data;
  • Network interface connected to the Ethernet interface module, used for lightning protection
  • the electromagnetic protection circuit is connected in series between the data differential lines to perform ESD protection on the differential signal lines of the Ethernet.
  • the WIA wireless network radio frequency circuit has a 220pF coupling capacitor connected in series with the antenna input end and the RF switch receiving end for canceling the clutter signal of about 470MHZ.
  • the WIA wireless network RF circuit adds a filter between the antenna input and the coupling capacitor.
  • Ethernet communication mode is adopted between the field production well and the data transmission is safe and reliable.
  • the external power input part adopts the bridge design, which can effectively prevent the power line from being connected to the device and causing burnout.
  • the functional circuit of the invention adopts a modular design, which is convenient for on-site debugging and post-installation and maintenance.
  • This device is mainly used in the oil recovery device. It is mainly responsible for collecting liquid level information, oil-water interface information and oil-water flow information on the terminal equipment of the oil production device.
  • the main purpose is to use the on-site monitoring system to realize automatic wireless collection of data sources, and then transfer the data to the factory-level real-time database, and perform statistics, analysis and optimization on the obtained data, so as to better ensure the normal operation of the production equipment, Production costs provide important data.
  • the wireless data remote transmission device can be used in a complicated field environment without wiring, which is convenient for installation. It can upload the collected data in the field to the background management center in real time and accurately. It has broad application prospects in the field of oil fields.
  • FIG. 1 is a block diagram of the system of the present invention
  • Figure 2 is a schematic block diagram of the present invention
  • FIG. 3 is a schematic diagram of a power supply circuit of the present invention.
  • FIG. 4 is a schematic diagram of an Ethernet interface circuit of the present invention.
  • Figure 5 is a schematic diagram of a processor circuit of the present invention.
  • FIG. 6 is a schematic diagram of a WIA wireless network radio frequency circuit according to the present invention.
  • Figure 7 is a schematic diagram of the indicator light of the present invention.
  • Figure 8 is a schematic diagram of the ⁇ -type filter circuit. detailed description
  • the invention mainly collects data on liquid level information, oil-water interface information and oil-water flow information of oil production wells in an oil field, and the collection mode is through an Ethernet interface.
  • the collected data is converted into a data format by the processor, and performs two-way data interaction with the background server through the WIA wireless network.
  • the system mainly consists of power circuit, Ethernet interface circuit, processor circuit, WIA wireless network RF circuit, differential data line protection circuit and indicator circuit.
  • the Ethernet interface circuit and the WIA wireless network RF circuit adopt a modular design method.
  • the power circuit schematic As shown in Figure 3, the power circuit schematic.
  • the power circuit uses a wide range of inputs (7V ⁇ 40V), and the power input terminal is connected with a bridge to prevent the external power supply from being positively connected to the device.
  • the power supply of the system In order to improve the stability and anti-interference of the system, the power supply of the system is also isolated, which greatly reduces the influence of external power supply ripple on the system.
  • the low-voltage conversion chip converts the isolated 5V voltage into a 3.3V supply voltage for system operation.
  • the power circuit includes:
  • Bridge circuit It has the function of preventing the input voltage from being connected to the internal circuit.
  • Low-voltage conversion circuit U2 Converts the external input 7V ⁇ 40V voltage to 5V. Electrolytic capacitor and decoupling capacitor are connected between pin 1 of U2 and ground. Inverted diode is connected between pin 2 of U2 and ground. 100uH inductor is connected between pins 2 and 3 of U2, and pin 4 of U2 is connected. The output terminal is connected with an electrolytic capacitor.
  • Voltage Isolation Circuit U1 To reduce the interference of the external power supply to the device, isolate the input voltage used by the device, isolate the 5V voltage, and output it through pin 4 of U1.
  • Low-voltage conversion circuit U6 Convert the input 5V voltage to 3.3V for use by the device, including RF circuit, finger Light circuit, Ethernet circuit, etc.
  • a decoupling capacitor is connected between the pin 3 of the U6 and the ground, and a bile capacitor and a decoupling capacitor are connected between the pins 2 and 4 of the U6 and the ground.
  • the Ethernet interface circuit schematic As shown in Figure 4, the Ethernet interface circuit schematic. This part adopts a modular design method. Devices such as Ethernet chip, Ethernet transformer and crystal oscillator are integrated inside the module. The module is connected with external communication with a single row of pins with a pitch of 2.54mm. The differential communication line between the module and the Ethernet connector has an integrated TVS diode for electromagnetic protection of the differential signal line. The Ethernet connector uses the HR911105A with an integrated Ethernet data communication indicator.
  • the Ethernet interface circuit includes:
  • the encapsulated Ethernet interface modules U4, U4 have pins 1, 2, 3, and 4 connected to the network interface U8. Pins 6 and 7 of U4 are connected to the processor. Pin 4 of U4 is connected to the ground. Pin 4 of U4 is connected to the power ground. The pins 13 and 14 of U4 are connected to the power supply 5V, and the external decoupling capacitor C8 and the bile capacitor C10 are externally filtered. U4 pins 15 and 19 are connected to the indicator of the network interface.
  • Network interfaces U8, U8 pins 1, 2, 3, and 6 are connected to U4. Pins 5, 7, and 8 of U8 are connected to the ground through R4 and R6, and are connected to the power ground through C12. Used for lightning protection.
  • the processor uses STM32fl03 chip, the serial port 0 of the chip is connected to the WIA radio frequency module, and the serial port 1 is connected to the Ethernet communication module.
  • Pins PA2 and PB9 respectively control the state change of the status indicator.
  • the WIA wireless network RF circuit schematic As shown in Figure 6, the WIA wireless network RF circuit schematic. This part of the design is modular in design, and the processor, RF chip, crystal oscillator and peripheral components are packaged in a separate module and externally connected via a double-row 1.27mm pin.
  • the WIA wireless network RF circuit adopts a modular design with an external interface circuit.
  • the external interface of the WIA wireless network RF circuit is shown as U9.
  • the pins 1 and 2 of the U9 are connected to the input power supply 3.3V, and there is a decoupling capacitor C11 and a bile capacitor El between the ground and the ground.
  • U9 pins 13, 16 are in data communication with the processor and have R8 and R9 pull-up resistors between the 3.3v power supply.
  • the pins 27 and 28 of U9 are grounded.
  • the indicator circuit schematic As shown in Figure 7, the indicator circuit schematic.
  • the invention relates to three indicator lights, a system power indicator (red), a WIA wireless network status data transmission indicator (green), and a WIA wireless network status data reception indicator (green).
  • the blinking frequency of the WIA wireless network status data indicator is controlled by the processor.
  • the anti-interference circuit of the RF front-end should be considered when designing the wireless RF module.
  • the present invention adds an electromagnetic anti-interference circuit to the antenna end of the wireless module.
  • a 220pF coupling capacitor is connected in series with the antenna input end and the RF switch receiving end for eliminating 470MHZ. Clutter signal.
  • a ⁇ -type filter is added between the input end of the antenna and the coupling capacitor, and both its input and output exhibit low impedance.
  • the LC-type ⁇ -type filter used in the present invention has an inductance value of 15 ⁇ , and a capacitance value of 9.1pF. , can filter the 480MHZ input frequency clutter very well.
  • the schematic diagram of the n-type filter circuit is shown in Figure 8.

Abstract

本发明涉及一种应用于油田数据采集终端的无线数据远传装置,本发明采用模块化方法进行设计,具体包括:电源模块部分、射频模块部分和以太网模块部分。该装置主要应用在油田的终端采集设备上,例如PLC等,主要负责采集终端设备上的液位信息、油水界面信息和油水流量信息等,并将采集到的信息通过以太网进行协议转换,转换成标准的数据流格式,在通过WIA无线网络进行数据远传,最终将有用信息传到后台服务器的监控中心,建立油厂数据自动采集系统,实现油田的数字化管理。

Description

一种面向油田的无线数据远传装置
技术领域
本发明涉及一种在 PLC和 WIA无线网络之间进行数据传输的装置,具体地说是一种面向 油田的无线数据远传装置。 背景技术
随着数字化油田的兴起,油田的后台管理逐渐由以前的粗放式向信息化过渡,逐步加强 了采油、 输油各个环节的监控。 另外, 由于油田工作环境复杂, 存在各种电机, 电磁干扰影 响比较大, 所以在设计无线射频模块的时候要考虑射频前端的抗干扰电路。
常用的数据采集装置包括有线装置数据采集、微波技术无线数据采集以及卫星通信无线 数据采集。 由于油井分布广泛, 而且有些油井和控制室距离比较远, 在铺设通信线缆时费用 比较高, 而且通信线缆在野外维护时也给工作人员带来巨大不便。微波技术应用到数据采集 中可以解决铺设线缆的问题, 但由于微波是采用模拟技术, 在油井周围易受干扰, 降低数据 传输的准确率, 微波技术在小范围监控具有明显优势。 卫星技术抗干扰能力比较强, 使用灵 活, 但卫星通信技术信号传输的成本昂贵。 本发明采用 WIA无线通信技术, 很好的解决了 以上存在的问题。 发明内容
针对现有技术中存在的上述问题, 本发明采用有线数据传输和无线数据传输相结合的方 式, 提出一种面向油田的无线数据远传装置, 通过以太网口与现场设备进行数据双向交互, 然后通过处理器对数据格式进行转换, 再把数据通过 WIA无线模块与后台进行双向无线交 互。
本发明为实现上述目的所采用的技术方案是:一种面向油田的无线数据远传装置,包括: 处理器: 与电源电路、 指示灯电路、 以太网接口电路、 WIA无线网络射频电路连接, 用 于将以太网数据和 WIA无线网络数据进行数据格式上的相互转换;
电源电路: 为 DC/DC电路, 与处理器、 指示灯电路、 以太网接口电路、 WIA无线网络 射频电路连接, 用于将输入电压分别转换为所述处理器、 指示灯电路、 以太网接口电路、 WIA无线网络射频电路的工作电压;
指示灯电路: 连接处理器, 用于在处理器的控制下显示电源状态和数据收发状态; 以太网接口电路: 连接处理器, 用于现场设备和处理器之间进行数据双向交互通信;
WIA无线网络射频电路: 连接处理器, 用于后台监控中心和处理器之间进行双向数据相 互交互。
所述电源电路包括: 电桥电路: 连接在外部输入电源和第一低压转换电路之间, 用于防止输入电压接反而烧 毁内部电路;
第一低压转换电路: 将外部输入的 7V〜40V电压转换成 5V电压;
电压隔离电路: 将 5V电压进行隔离处理;
第二低压转换电路:将电压隔离电路输出的 5V电压转换成 3.3V电压输出,供所述 WIA 无线网络射频电路、 指示灯电路和以太网接口电路使用。
所述指示灯电路包括 3个指示灯: 电源上电指示灯、 无线网络接收状态指示灯和无线网 络发送状态指示灯;
所述电源上电指示灯在装置上电后启动;
无线网络接收状态指示灯和无线网络发送状态指示灯分别连接处理器, 状态受处理器控 制, 当 WIA无线网络射频电路接收数据时, 无线网络接收状态指示灯闪烁或改变开启 /关闭 状态, 当 WIA无线网络射频电路发送数据时, 无线网络发送状态指示灯闪烁或改变开启 /关 闭状态。
电源上电指示灯与无线网络接收状态指示灯、 无线网络发送状态指示灯的颜色相区别。 所述以太网接口电路包括:
已经封装好的以太网接口模块, 分别与网络接口、 处理器和指示灯电路连接, 用于接收 和发送以太网数据;
网络接口, 连接以太网接口模块, 用于抗雷击保护;
以太网接口模块和网络接口之间的通信数据线上, 串有电磁保护电路, 用于对差分数据 线的电磁保护。
所述电磁保护电路, 串联在数据差分线之间, 对以太网的差分信号线进行 ESD保护。 所述 WIA无线网络射频电路在天线输入端和射频开关接收端串联一个 220pF的耦合电 容, 用于消除 470MHZ左右的杂波信号。
所述 WIA无线网络射频电路在天线输入端和耦合电容之间加一个 型滤波器。
本发明具有以下有益效果及优点:
1. 与后台服务器通信采用无线连接方式,减少布线给工程带来的安全隐患,同时节约施工 成本。
2. 与现场采油井之间采用以太网通信方式, 数据传输安全可靠。
3. 内部采用隔离电源, 减少系统受外界的影响。
4. 外部电源输入部分采用电桥设计, 能够有效防止电源线接反对装置造成的烧毁。
5. 本发明各功能电路采用模块化设计, 便于现场调试以及后期安装维护。
6.本装置主要应用在采油装置上, 主要负责采集采油装置终端设备上的液位信息、 油水 界面信息和油水流量信息等。 主要目的利用现场监控系统, 实现数据源头的自动无线采集, 然后将数据传输到厂级实时数据库, 对取得的数据进行统计、 分析、 优化, 从而能够更好的 保证生产设备的正常运转, 为降低生产成本提供重要数据。 7.该无线数据远传装置, 能够在复杂的现场环境下使用, 无需布线, 为安装带来方便。 能够将现场采集到的数据实时、 准确上传到后台管理中心。 在油田领域有广阔的应用前景。
8.整个数据传输过程安全可靠, 设备建立重传机制, 如果传输的数据受到干扰不符合要 求或有报文丢失, 数据将会被自动丢弃, 重新接收下一包完整数据。 附图说明
图 1为本发明的系统框图;
图 2为本发明的原理框图;
图 3为本发明的电源电路原理图;
图 4为本发明的以太网接口电路原理图;
图 5为本发明的处理器电路原理图;
图 6为本发明的 WIA无线网络射频电路原理图;
图 7为本发明的指示灯原理图;
图 8为 π型滤波器电路原理图。 具体实施方式
下面结合附图及实施方法对本发明做进一步的详细说明。
如图 1所示, 本发明主要对油田中采油井的液位信息、 油水界面信息和油水流量信息等 进行数据采集, 采集方式通过以太网接口。 将采集到的数据通过处理器进行数据格式转换, 在通过 WIA无线网络与后台服务器进行双向数据交互。
如图 2所示, 系统原理图框图。本系统主要由电源电路、 以太网接口电路、处理器电路、 WIA无线网络射频电路、差分数据线保护电路和指示灯电路等。其中以太网接口电路和 WIA 无线网络射频电路采用模块化设计方法。
如图 3所示, 电源电路原理图。 电源电路采用宽范围输入(7V〜40V), 并且电源输入端 接有电桥, 以防外部电源正负接反对装置造成的损坏。 为提高系统的稳定性和抗干扰性, 对 系统的电源还做了隔离处理, 大大降低外界电源纹波对系统的影响。低电压转换芯片将隔离 输出的 5V电压转换成 3.3V电源电压, 供系统工作使用。
电源电路包括:
电桥电路: 具有防止输入电压接反烧毁内部电路的功能。
低压转换电路 U2: 将外部输入的 7V〜40V电压转换成 5V电压。 U2的管脚 1和地之间 接有电解电容和去耦电容, U2的管脚 2和地之间接有反向的二极管, U2的管脚 2和 3之间 接有 lOOuH电感, U2的管脚 4输出端接有电解电容。
电压隔离电路 U1 : 为减少外界电源对本装置的干扰,对本装置使用的输入电压进行隔离 处理, 将 5V电压进行隔离处理后通过 U1的管脚 4进行输出。
低压转换电路 U6: 将输入的 5V电压转换成 3.3V电压供装置使用, 包括射频电路、 指 示灯电路和以太网电路等。 U6的管脚 3与地之间接有去耦电容, U6的管脚 2和 4与地之间 接有胆电容和去耦电容。
如图 4所示, 以太网接口电路原理图。 该部分采用模块化设计方法, 以太网芯片、 以太 网变压器以及晶振等器件均已集成在模块内部, 模块与外部通信连接采用间距 2.54mm的单 排插针。 模块和以太网接头的差分通信线上并有集成的 TVS二极管, 用于对差分信号线的 电磁保护。 以太网接头采用 HR911105A, 内部集成以太网数据通信指示灯。
以太网接口电路包括:
已经封装好的以太网接口模块 U4, U4的管脚 1、 2、 3、 4分别与网络接口 U8连接。 U4 的管脚 6、 7与处理器连接。 U4的管脚 11接大地。 U4的管脚 12接电源地。 U4的管脚 13、 14接电源 5V, 并外接去耦电容 C8和胆电容 C10进行滤波处理。 U4的管脚 15和 19接网络 接口的指示灯。
网络接口 U8, U8的管脚 1、 2、 3、 6分别与 U4相连。 U8的管脚 5、 7、 8通过 R4、 R6 与大地相连, 并通过 C12与电源地相连。 用于抗雷击保护。
以太网接口模块 U4和网络接口 U8之间的通信数据线上, 串有 U7芯片, 用于对差分数 据线的电磁保护。
如图 5所示, 处理器电路原理图, 处理器采用 STM32fl03芯片, 该芯片的串口 0连接到 WIA无线射频模块上, 串口 1连接到以太网通信模块上。 管脚 PA2和 PB9分别对状态指示 灯进行状态变化控制。
如图 6所示, WIA无线网络射频电路原理图。 该部分设计采用模块化设计, 将处理器、 射频芯片、 晶振以及外围器件封装在一个独立的模块内部与外部连接通过一个双排间距 1.27mm的插针进行连接。
WIA无线网络射频电路采用模块化设计,外部留有接口电路。 WIA无线网络射频电路外 部接口如 U9所示, U9的管脚 1、 2接输入电源 3.3V, 并与地之间并有去耦电容 C11和胆电 容 El。 U9的管脚 13、 16与处理器进行数据通信, 并与 3.3v电源之间并有 R8、 R9上拉电 阻。 U9的管脚 27、 28接地。
如图 7所示,指示灯电路原理图。本发明中共涉及三个指示灯,系统电源指示灯(红色), WIA无线网络状态数据发送指示灯 (绿色), WIA无线网络状态数据接收指示灯 (绿色)。 WIA无线网络状态数据指示灯的闪烁频率受处理器控制。
由于油田工作环境复杂, 存在各种电机, 电磁干扰影响比较大, 所以在设计无线射频模 块的时候要考虑射频前端的抗干扰电路。 为解决此问题, 本发明在无线模块的天线端附加了 电磁抗干扰电路, 在不影响信号通路的情况下, 在天线输入端和射频开关接收端串联一个 220pF的耦合电容, 用于消除 470MHZ左右的杂波信号。 同时在天线输入端和耦合电容之间 加一个 π型滤波器, 它的输入和输出都呈现低阻抗, 根据实验仿真本发明所采用的 LC型 π 型滤波器的电感值 15ηΗ, 电容值 9.1pF, 能够很好的对 470MHZ输入频率的杂波进行滤除。 n型滤波器电路原理图如图 8。

Claims

& 禾 U ΐ
1 . 一种面向油田的无线数据远传装置, 其特征在于, 包括:
处理器: 与电源电路、 指示灯电路、 以太网接口电路、 WIA无线网络射频电路连接, 用于将以太网数据和 WIA无线网络数据进行数据格式上的相互转换;
电源电路: 为 DC/DC电路, 与处理器、 指示灯电路、 以太网接口电路、 WIA无线网络 射频电路连接, 用于将输入电压分别转换为所述处理器、 指示灯电路、 以太网接口电路、 WIA无线网络射频电路的工作电压;
指示灯电路: 连接处理器, 用于在处理器的控制下显示电源状态和数据收发状态; 以太网接口电路: 连接处理器, 用于现场设备和处理器之间进行数据双向交互通信;
WIA无线网络射频电路: 连接处理器, 用于后台监控中心和处理器之间进行双向数据 相互交互。
2. 根据权利要求 1所述的面向油田的无线数据远传装置, 其特征在于: 所述电源电路 包括:
电桥电路:连接在外部输入电源和第一低压转换电路之间,用于防止输入电压接反而烧 毁内部电路;
第一低压转换电路: 将外部输入的 7V〜40V电压转换成 5V电压;
电压隔离电路: 将 5V电压进行隔离处理;
第二低压转换电路:将电压隔离电路输出的 5V电压转换成 3.3V电压输出,供所述 WIA 无线网络射频电路、 指示灯电路和以太网接口电路使用。
3. 根据权利要求 1所述的面向油田的无线数据远传装置, 其特征在于: 所述指示灯电 路包括 3个指示灯:电源上电指示灯、无线网络接收状态指示灯和无线网络发送状态指示灯; 所述电源上电指示灯在装置上电后启动;
无线网络接收状态指示灯和无线网络发送状态指示灯分别连接处理器,状态受处理器控 制, 当 WIA无线网络射频电路接收数据时, 无线网络接收状态指示灯闪烁或改变开启 /关闭 状态, 当 WIA无线网络射频电路发送数据时, 无线网络发送状态指示灯闪烁或改变开启 /关 闭状态。
4. 根据权利要求 3所述的面向油田的无线数据远传装置, 其特征在于: 电源上电指示 灯与无线网络接收状态指示灯、 无线网络发送状态指示灯的颜色相区别。
5. 根据权利要求 1所述的面向油田的无线数据远传装置, 其特征在于: 所述以太网接 口电路包括:
已经封装好的以太网接口模块, 分别与网络接口、处理器和指示灯电路连接, 用于接收 和发送以太网数据;
网络接口, 连接以太网接口模块, 用于抗雷击保护;
以太网接口模块和网络接口之间的通信数据线上, 串有电磁保护电路,用于对差分数据 线的电磁保护。
6. 根据权利要求 5所述的面向油田的无线数据远传装置, 其特征在于: 所述电磁保护 电路, 串联在数据差分线之间, 对以太网的差分信号线进行 ESD保护。
7. 根据权利要求 1所述的面向油田的无线数据远传装置, 其特征在于: 所述 WIA无线 网络射频电路在天线输入端和射频开关接收端串联一个 220pF 的耦合电容, 用于消除
470MHZ左右的杂波信号。
8. 根据权利要求 1所述的面向油田的无线数据远传装置, 其特征在于: 所述 WIA无线 网络射频电路在天线输入端和耦合电容之间加一个 型滤波器
PCT/CN2014/075589 2014-04-17 2014-04-17 一种面向油田的无线数据远传装置 WO2015157965A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/075589 WO2015157965A1 (zh) 2014-04-17 2014-04-17 一种面向油田的无线数据远传装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/075589 WO2015157965A1 (zh) 2014-04-17 2014-04-17 一种面向油田的无线数据远传装置

Publications (1)

Publication Number Publication Date
WO2015157965A1 true WO2015157965A1 (zh) 2015-10-22

Family

ID=54323396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/075589 WO2015157965A1 (zh) 2014-04-17 2014-04-17 一种面向油田的无线数据远传装置

Country Status (1)

Country Link
WO (1) WO2015157965A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101582895A (zh) * 2009-06-18 2009-11-18 重庆邮电大学 基于epa的嵌入式工业无线wia-pa网关
CN103049984A (zh) * 2012-12-31 2013-04-17 常州大学 基于Wireless HART通信技术的可燃气体报警仪
CN103152188A (zh) * 2011-12-06 2013-06-12 沈阳中科博微自动化技术有限公司 一种基于国际工业无线标准的网络管理设备
CN103152190A (zh) * 2011-12-06 2013-06-12 沈阳中科博微自动化技术有限公司 一种用于工业物联网与以太网互联的管理系统及实现方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101582895A (zh) * 2009-06-18 2009-11-18 重庆邮电大学 基于epa的嵌入式工业无线wia-pa网关
CN103152188A (zh) * 2011-12-06 2013-06-12 沈阳中科博微自动化技术有限公司 一种基于国际工业无线标准的网络管理设备
CN103152190A (zh) * 2011-12-06 2013-06-12 沈阳中科博微自动化技术有限公司 一种用于工业物联网与以太网互联的管理系统及实现方法
CN103049984A (zh) * 2012-12-31 2013-04-17 常州大学 基于Wireless HART通信技术的可燃气体报警仪

Similar Documents

Publication Publication Date Title
CN204406160U (zh) 一种基于wia无线网络的多通道模拟量采集远程控制器
CN203149372U (zh) 一种基于单片机控制的数字智能M_bus集中器
CN103292839A (zh) 带通信功能的太阳能光伏发电监测系统
CN205375813U (zh) 一种同时具有有线和无线通信的双模通信智能采集系统
CN203086512U (zh) 带通信功能的太阳能光伏发电监测装置
CN105510676A (zh) 一种高压开关设备用小电流信号监测装置
WO2015157965A1 (zh) 一种面向油田的无线数据远传装置
CN204145483U (zh) 一种矿用高压电缆在线绝缘监测设备的无线传输装置
CN204057546U (zh) 电梯信息采集分析仪
CN104483893B (zh) 机床远程监控装置及系统
CN204312134U (zh) 一种矿用监控装置
CN203133582U (zh) 本质安全型多功能信号转换器
CN204154852U (zh) 输配电网故障定位系统
CN210573363U (zh) 一种用于智能制造的边缘计算网关装置
CN208707680U (zh) 一种基于物联网的流量远程监控系统
CN203690936U (zh) 载波通信复合开关
CN209358532U (zh) 一种具备dtu功能通信管理机
CN204945717U (zh) 一种本地集显远程控制终端
CN204178536U (zh) 石油钻井传感器无线通信控制系统
CN204190382U (zh) 新型消弧限压接地补偿及选线装置
CN206822870U (zh) 一种家用消毒柜的控制系统
CN203965920U (zh) 一种列车生产设备故障无线远程监测装置
CN218069004U (zh) 无线火灾声光警报器控制电路及声光警报器
CN217880041U (zh) 一种油田物联网终端rtu装置
CN216387244U (zh) 一种三相智能低压故障传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14889522

Country of ref document: EP

Kind code of ref document: A1