WO2015156213A1 - Lithium ion secondary battery, method for manufacturing same and apparatus for manufacturing same - Google Patents

Lithium ion secondary battery, method for manufacturing same and apparatus for manufacturing same Download PDF

Info

Publication number
WO2015156213A1
WO2015156213A1 PCT/JP2015/060524 JP2015060524W WO2015156213A1 WO 2015156213 A1 WO2015156213 A1 WO 2015156213A1 JP 2015060524 W JP2015060524 W JP 2015060524W WO 2015156213 A1 WO2015156213 A1 WO 2015156213A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
lithium ion
ion secondary
secondary battery
insulating material
Prior art date
Application number
PCT/JP2015/060524
Other languages
French (fr)
Japanese (ja)
Inventor
高原 洋一
正志 西亀
千恵美 窪田
栄作 二ノ宮
正興 松岡
恭一 森
藤井 武
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to CN201580011782.1A priority Critical patent/CN106063020B/en
Priority to JP2016512692A priority patent/JP6307594B2/en
Publication of WO2015156213A1 publication Critical patent/WO2015156213A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium ion secondary battery and a manufacturing method and manufacturing apparatus thereof, and in particular, a positive electrode, a negative electrode, and a lithium ion secondary battery configured by coating a separator that electrically separates the positive electrode and the negative electrode, and a manufacturing method thereof It relates to a manufacturing apparatus.
  • Lithium ion secondary batteries have the advantages described above, and are therefore widely used in portable electronic devices such as digital cameras, notebook personal computers, and mobile phones. Furthermore, in recent years, research and development of large-sized lithium ion secondary batteries capable of realizing high capacity, high output, and high energy density as electric vehicle batteries and power storage batteries have been promoted.
  • Lithium ion secondary batteries have attracted attention as power sources for such electric vehicles and hybrid vehicles.
  • the lithium ion secondary battery has a high operating voltage and high energy density, sufficient countermeasures against abnormal heat generation due to an internal short circuit or an external short circuit are required.
  • the lithium ion secondary battery is a kind of non-aqueous electrolyte secondary battery, as shown in FIG. 10 showing its operating principle, and is a secondary battery in which lithium ions in the electrolyte solution are responsible for electrical conduction.
  • Lithium metal oxide is used for the positive electrode material (active material)
  • carbon material such as graphite is used for the negative electrode material (active material)
  • an organic solvent such as ethylene carbonate and lithium hexafluorophosphate (LiPF6) are used for the electrolyte. It is the mainstream to use lithium salt.
  • lithium ions exit from the positive electrode and enter the negative electrode during charging, and conversely during discharge, lithium ions exit from the negative electrode and enter the positive electrode.
  • the structure of the lithium ion secondary battery includes, for example, a positive electrode plate coated with a positive electrode material, a negative electrode plate coated with a negative electrode material, and a separator such as a polymer film that prevents contact between the positive electrode plate and the negative electrode plate.
  • the electrode winding body is provided. In the lithium ion secondary battery, the electrode winding body is inserted into the outer can and the electrolyte is injected into the outer can.
  • a positive electrode plate coated with a positive electrode material on a metal foil and a negative electrode plate coated with a negative electrode material on a metal foil are formed in a band shape, and the positive electrode plate and the negative electrode plate formed in a band shape
  • the electrode winding body is formed by winding in a spiral shape through the separator so that the electrode does not directly contact.
  • Patent Document 1 discloses that a positive electrode film and a negative electrode film are separately formed, a separator film is bonded to the negative electrode film, and the positive electrode film is applied to the negative electrode film with a separator.
  • the electrode winding body is formed by laminating the electrode, there are many steps, and the solution-like electric field substance is uniformly injected into the current collector in which a plurality of the electrode winding bodies are stacked.
  • a technique for improving the point that is very difficult and many defective products are generated is disclosed.
  • Patent Document 1 a positive electrode material-containing solution and an electrolytic and insulating substance-containing solution are applied to both surfaces of a positive electrode sheet using a die coater having a solution discharge slit, and a heating process is performed. A positive electrode sheet is formed, and similarly, a negative electrode substance-containing solution and an electrolytic and insulating substance-containing solution are applied to both sides of the negative electrode sheet using a die coater, followed by a heating step.
  • the secondary battery manufacturing method and the secondary battery manufacturing apparatus which form an electrode and laminate
  • the electrode material of the positive electrode or the negative electrode is applied on the surface of the carrier material, and then the insulating material that becomes the separator is applied, thereby improving the production efficiency.
  • the manufacturing apparatus can be made more compact. However, it is not considered that the coverage of the insulating layer due to the coating step at the edge portion of the electrode layer decreases as the electrode layer made of the electrode material becomes thicker.
  • the electrode layer becomes thicker, when the positive electrode or negative electrode electrode material is applied to the carrier material surface and the separator insulating material is applied, the air flow due to the coating step at the edge of the electrode layer The coverage decreases due to the entrainment. As a result, there is a problem that insulation at the periphery of the electrode layer cannot be performed and the risk of short circuit failure is increased.
  • an object of the present invention is to provide a lithium ion secondary battery that can ensure the coverage of the insulating layer at the edge portion of the electrode layer, a manufacturing method thereof, and a manufacturing apparatus thereof.
  • the present invention includes a plurality of means for solving the above-described problems.
  • a lithium ion secondary battery including a positive electrode, a negative electrode, and a separator that electrically separates the positive electrode and the negative electrode is provided.
  • the first insulating material is applied to the electrode substrate supplied at a predetermined speed, on both sides of the electrode material and the electrode material in the direction perpendicular to the supply direction of the electrode substrate.
  • the second insulating material is applied to the surface of the electrode material and the first insulating material, and the applied electrode material and the first and second insulating materials are dried and fixed.
  • the electrode sheet which comprises and the 1st, 2nd insulating material comprises a separator is manufactured.
  • the insulating layer at the edge portion of the electrode layer is used. Since the coverage ratio is improved, short-circuit defects can be reduced even when the electrode layer is thick.
  • FIG. 1 is a configuration diagram of a method for producing a positive electrode sheet of a lithium ion secondary battery in Example 1.
  • FIG. 2 It is a figure explaining the die-coater in Example 1.
  • FIG. 3 is a diagram illustrating a cross section of an electrode of a battery according to Example 1.
  • FIG. 6 is a configuration diagram of a method for producing a positive electrode sheet of a lithium ion secondary battery in Example 2.
  • FIG. It is a figure explaining the die-coater in Example 2.
  • FIG. It is a figure explaining the principle of operation of a lithium ion secondary battery.
  • FIG. 1 is a diagram schematically showing the process.
  • the manufacturing process of a lithium ion secondary battery includes a positive electrode sheet manufacturing process, a negative electrode sheet manufacturing process, a battery cell assembly process, and a battery module assembly process.
  • a slurry material (positive electrode material) is prepared by kneading and preparing various materials as raw materials for the positive electrode material (kneading / mixing). Then, after applying the slurry material to the film-like metal foil and drying (coating), the metal foil coated with the slurry material is subjected to processing such as compression and cutting (processing), and the film-like positive electrode sheet Manufacturing.
  • the negative electrode sheet manufacturing process is different from the positive electrode sheet manufacturing process in various materials used as raw materials, but the procedure until the negative electrode sheet is manufactured is the same.
  • a positive electrode and a negative electrode having a size necessary for the battery cell are cut out from the film-like positive electrode sheet and negative electrode sheet in a process called winding, and the positive electrode sheet and the negative electrode are cut out.
  • a separator having a size necessary for the battery cell is cut out from the film-like separator material for separating the electrode sheet, and the positive electrode and the negative electrode are overlapped with each other with the cut-out separator interposed therebetween (winding). Then, a group of electrode pairs of the positive electrode, the negative electrode, and the separator assembled together is assembled and welded.
  • the battery cell inspection step repeatedly charges and discharges (charges and discharges) the cells of the lithium ion secondary battery created in the cell assembly step, and checks the performance and reliability of the battery cell (for example, the capacity and voltage of the battery cell). (Inspection of current and voltage during charging or discharging) (single cell inspection). Thereby, a battery cell is completed and a battery cell assembly process is complete
  • a battery module assembly process a plurality of battery cells are combined in series to form a battery module, and a charge / discharge control controller is connected to form a battery system (module assembly).
  • module inspection process the battery module assembled in the module assembly process is inspected for performance and reliability (for example, inspection of the capacity and voltage of the battery module, current and voltage during charging or discharging) (module inspection). ).
  • module inspection the battery module assembled in the module assembly process
  • module inspection for example, inspection of the capacity and voltage of the battery module, current and voltage during charging or discharging
  • This invention relates to the manufacturing method and manufacturing apparatus which concern on the coating process in the said positive electrode sheet manufacturing process and the said negative electrode sheet manufacturing process, and the battery manufactured by it.
  • Patent Document 1 a positive electrode sheet or negative electrode sheet disclosed in Patent Document 1, which is a premise of the present invention, is continuously coated with an electrode material, electrolysis, and an insulating material, and then dried and fixed.
  • Patent Document 1 an electrode material, electrolysis, and an insulating material are applied on both surfaces of a carrier material (positive electrode sheet or negative electrode sheet).
  • FIG. 2 shows a configuration diagram of a manufacturing process example in which an electrode material, electrolysis, and an insulating material are applied to one side of a carrier material.
  • FIG. 2 is a configuration diagram of a manufacturing process for manufacturing one side of the positive electrode sheet.
  • the positive electrode substrate 1 is fed from a positive substrate feeding roll 2 and coated with a positive electrode material 5 supplied from a die coater 4 facing the roller 3, and then insulated from a die coater 7 at a position facing the roller 6.
  • Material 8 is applied. And it is dried by passing the drying furnace 9, and is wound up by the winding roll 11 via the roller 10, and a positive electrode sheet is manufactured.
  • both coating layers can be dried and fixed simultaneously through a heating and drying process in a drying furnace, which is efficient.
  • a problem when the electrode layer is thickened This will be described below.
  • FIG. 3 is a diagram for explaining a gap between a nozzle for coating an insulating material, an electrode layer, and an electrode substrate.
  • reference numeral 12 denotes an electrode layer, which shows a cross section of the electrode layer before the insulating material is applied, as viewed from the supply direction of the electrode substrate 14 (positive electrode substrate 1) of the roller 6.
  • the electrode layer is thickened by applying the electrode material, a gap 13 between the electrode layer 12 and the die coater 7 that coats the insulating material, and a gap 15 between the electrode substrate 14 and the die coater 7 that coats the insulating material.
  • the air is entrained at the edge part of the electrode layer (the left and right side parts of the electrode layer 12 in the figure), the coating film of the insulating layer is drained, the coverage is reduced, and the insulation is insufficient.
  • the edge part of the electrode layer the left and right side parts of the electrode layer 12 in the figure
  • FIG. 4 shows a cross section of the electrode when the electrode layer is thickened according to the prior art.
  • the insulating layer 16 is formed by applying an insulating material on the electrode layer 12, but there is no description in Patent Document 1, but at the same time, the width of the electrode layer 12 (of the electrode substrate 14). It is desirable that the insulating layer 16 is also formed on the edge portions of the electrode layer 12 (both left and right portions of the electrode layer 12 in the figure) by applying the insulating material wider than the direction orthogonal to the supply direction. However, in the edge portion of the electrode layer 12, air entrainment occurs when the insulating material is applied, and the defective insulation portion 17 is generated. This varies depending on the composition of the insulating material, but occurs when the electrode layer becomes 50 ⁇ m or more. When a battery is manufactured in this state, a short circuit is likely to occur at the defective insulation portion 17.
  • the implementation of the present invention can improve the coverage of the insulating layer at the edge portion of the electrode layer even when the electrode layer is thick due to the increase in capacity and cost of the lithium ion secondary battery Examples will be described below with reference to the drawings.
  • the positive electrode and the negative electrode are collectively referred to as electrodes.
  • FIG. 5 is a configuration diagram of the manufacturing process of the positive electrode sheet of the lithium ion secondary battery of this example.
  • the positive electrode substrate 1 is fed at a predetermined speed from a positive electrode substrate feed roll 2 which is an electrode substrate feed mechanism, and is coated with a positive electrode material 5 and a first insulating material 19 supplied from a die coater 18 facing the roller 3. It is crafted.
  • FIG. 6 shows the die coater 18 of this embodiment.
  • the positive electrode material 5 is discharged from the slit 24, and the first insulating material 19 is discharged from the slit 25 and the slit 26 provided on both sides of the slit 24.
  • the second insulating material 21 is supplied from the die coater 20 facing the roller 6 downstream thereof.
  • the second insulating material 21 contains a component for precipitating the binder component of the surface layer of the electrode material, and by applying it, the binder of the surface layer of the electrode material is precipitated, so that the electrode material
  • the active material is fixed, and the active material of the electrode layer cannot be mixed into the insulating material.
  • the active material in the electrode is fixed by spraying the spray liquid 23 containing the component for precipitating the binder of the electrode material from the spray nozzle 22, so that the active material in the electrode is fixed and passes through the drying furnace 9.
  • the film is dried and wound on a winding roll 11 which is a winding mechanism via a roller 10 to produce a positive electrode sheet.
  • FIG. 7 shows a cross-sectional view of the electrode according to this example.
  • the first insulating layer 27 is disposed on the electrode layer 12 and on both sides adjacent portions which are edges of the electrode layer 12 (on both sides adjacent to the electrode layer in the direction orthogonal to the supply direction of the electrode substrate 14).
  • the first insulating layer 27 is disposed so as to cover both sides in one direction of the electrode layer in a plane on the electrode substrate, and the electrode layer is formed on the electrode layer 12 (a plane of the electrode layer facing the electrode substrate).
  • the second insulating layer 16 is arranged so as to have a width longer than 12. Thereby, the coverage to the electrode material edge part of an insulating material improves, and a short circuit defect can be reduced.
  • the electrode layer 12 of FIG. 7 is formed by the positive electrode material 5 discharged from the slit 24 of the die coater 18 shown in FIG. 6, and the first insulating material discharged from the slits 25 and 26 of the die coater 18 shown in FIG. 19 forms the first insulating layer 27 of FIG.
  • the die coater 18 is provided with slits for coating the insulating layer on both sides of the slits for coating the electrode layer.
  • the second insulating layer 16 shown in FIG. 7 is formed by the second insulating material 21 discharged from the slit of the die coater 20. Therefore, the length of the slit of the die coater 20 is longer than the length of the slit 24 of the die coater 18, and the width of the second insulating layer 16 in FIG. 7 is longer than that of the electrode layer 12.
  • the second insulating layer 16 does not protrude outside the first insulating layer 27, but may protrude outside the first insulating layer 27. Thereby, the second insulating layer 16 covers the electrode layer 12 so as to protrude to the outside of the first insulating layer 27, so that the coverage of the insulating layer is further improved.
  • the positive electrode material 5 is a mixture of an active material made of nickel, cobalt, and lithium manganate and carbon as a conductive additive, and a binder (binder) made of polyvinylidene fluoride.
  • a slurry kneaded in a solution dissolved in N-methylpyrrolidone (NMP) was used.
  • the first insulating material 19 was a slurry in which silica (SiO 2) powder was kneaded into a solution obtained by dissolving a binder (binder) made of polyvinylidene fluoride in N-methylpyrrolidone (NMP).
  • the second insulating material 21 is a component that deposits a binder (binder) made of silica (SiO2) powder of styrene butadiene rubber, a surface layer of the positive electrode material, or a binder component of the first insulating material.
  • a binder made of silica (SiO2) powder of styrene butadiene rubber, a surface layer of the positive electrode material, or a binder component of the first insulating material.
  • a slurry kneaded in a solution dissolved in one ethanol-added water was used. That is, the solvent of the second insulating material is a solvent for precipitating the binder in the solvent of the electrode material and the solvent of the first insulating material.
  • the spray liquid 23 used the ethanol addition water which is one of the components which precipitate the binder component of positive electrode material.
  • the production of the negative electrode sheet is the same as the production process of FIG. 5.
  • the negative electrode material is composed of a negative electrode active material made of a carbon material (carbon material) and a binder (binder) made of polyvinylidene fluoride with N-methylpyrrolidone (A slurry kneaded in a solution dissolved in (NMP) was used. Moreover, about the 1st insulating material, the 2nd insulating material, and the spray liquid, the same thing as positive electrode sheet manufacture was used.
  • the film thickness of the positive electrode layer indicates the film thickness after drying.
  • the comparative example is a result obtained without supplying the first insulating material 19 of FIG. From Table 1, it can be seen that although the film thickness after drying of the positive electrode layer is 50 ⁇ m or more, a short circuit occurs in the comparative example, but no short circuit occurs in this example.
  • the electrode substrate supplied at a predetermined speed in the method of manufacturing a lithium ion secondary battery including the positive electrode, the negative electrode, and the separator that electrically separates the positive electrode and the negative electrode.
  • the first insulating material is applied to both sides of the electrode material and the electrode material in the direction orthogonal to the supply direction of the electrode substrate, and the coated electrode material and the surface of the first insulating material are coated.
  • the second insulating material is applied, the applied electrode material and the first and second insulating materials are dried and fixed, and the application of the second insulating material is performed between the electrode material and the first insulating material.
  • An electrode sheet is manufactured downstream of the coating, and the electrode material constitutes the positive electrode and the negative electrode, and the first and second insulating materials constitute the separator.
  • an electrode substrate delivery mechanism for delivering an electrode substrate at a predetermined speed, a first slit for applying an electrode material to the electrode substrate, and both sides of the first slit
  • a first die coater having a second slit for coating the provided first insulating material; a third slit longer than the first slit; and the coated electrode material and the first
  • a second die coater for applying a second insulating material to the surface of the insulating material
  • a drying furnace for heating and drying and fixing the electrode material and the first and second insulating materials applied to the electrode substrate
  • a winding mechanism for winding up the electrode substrate to which the electrode material and the first and second insulating materials are fixed.
  • a lithium ion secondary battery including a positive electrode, a negative electrode, and a separator that electrically separates the positive electrode and the negative electrode, wherein the positive electrode and the negative electrode are electrode layers made of an electrode material on a sheet-like electrode substrate.
  • the electrode layer is covered with an insulating layer made of an insulating material that constitutes the separator and constitutes a positive electrode sheet and a negative electrode sheet, respectively, and the positive electrode sheet and the negative electrode sheet are wound.
  • the insulating layer includes a first insulating layer that covers both sides in one direction of the electrode layer in a plane on the electrode substrate, and a second insulating layer that covers a plane of the electrode layer that faces the electrode substrate,
  • the first insulating layer is made of a first insulating material containing a first binder made of polyvinylidene fluoride
  • the second insulating layer is made of a second insulating material containing a second binder made of styrene butadiene rubber. That the lithium-ion secondary battery.
  • FIG. 8 is a configuration diagram of the manufacturing process of the positive electrode sheet of the lithium ion secondary battery of this example.
  • the positive electrode substrate 1 is fed at a predetermined speed from a positive substrate feed roll 2 that is an electrode substrate feed mechanism, and is supplied from a die coater 28 facing the roller 3.
  • Two insulating materials 21 are applied.
  • FIG. 9 shows the die coater 28 of this embodiment.
  • the positive electrode material 5 is discharged from the slit 29, and the first insulating material 19 is discharged from the slits 30 and 31 provided on both sides of the slit 29.
  • the second insulating material 21 is discharged from the slit 32. That is, the die coater 28 is formed by applying the second insulating material 21 to the surfaces of the positive electrode material 5 and the first insulating material 19 discharged from the slits 29, 30, 31.
  • the slit 32 is provided in the front part of the positive electrode substrate in the feed direction. Others are the same as that of Example 1, and a positive electrode sheet is manufactured.
  • the electrode layer 12 of FIG. 7 is formed by the positive electrode material 5 discharged from the slit 29 of the die coater 28 shown in FIG. 9, and the first insulating material 19 discharged from the slits 30 and 31 of the die coater 28 shown in FIG. Then, the first insulating layer 27 of FIG. 7 is formed. 7 is formed by the second insulating material 21 discharged from the slit 32 of the die coater 28 shown in FIG. Therefore, the length of the slit 32 of the die coater 28 is longer than the length of the slit 29, and the width of the second insulating layer 16 in FIG. 7 is longer than that of the electrode layer 12.
  • the length of the slit 32 of the die coater 28 is shorter than the length of the slits 29, 30, 31 added, but may be longer.
  • the thickness of the positive electrode layer indicates the thickness after drying.
  • the comparative example is a result obtained without supplying the first insulating material of FIG. From Table 2, it can be seen that although the film thickness after drying of the positive electrode layer is 50 ⁇ m or more, a short circuit occurs in the comparative example, but no short circuit occurs in this example.
  • the embodiment described above describes an example in which a positive electrode material and first and second insulating materials are coated on one surface of a positive electrode substrate to manufacture a positive electrode sheet.
  • the positive electrode sheet wound around the take-up roll is reversed and the back surface is again applied through the same process. It can be realized by crafting.
  • the negative electrode sheet it is realizable by the same process.
  • the member which gives this shutdown property can also be added as a separator of another member.
  • this separate separator is a separator for providing shutdown properties, it can be made thinner than the separator made of the second insulating material.
  • the lithium ion secondary battery has been described as an example.
  • the technical idea of the present invention is not limited to the lithium ion secondary battery, and the positive electrode, the negative electrode, and the positive electrode It can be widely applied to an electricity storage device (for example, a battery or a capacitor) provided with a separator that electrically separates the negative electrode.
  • the electrode substrate supplied at a predetermined speed in the method of manufacturing a lithium ion secondary battery including the positive electrode, the negative electrode, and the separator that electrically separates the positive electrode and the negative electrode.
  • the first insulating material is applied to both sides of the electrode material and the electrode material in the direction orthogonal to the supply direction of the electrode substrate, and the coated electrode material and the surface of the first insulating material.
  • the second insulating material is applied to the electrode material, and the applied electrode material and the first and second insulating materials are dried and fixed, and the electrode material constitutes the positive electrode and the negative electrode, and the first and second insulating materials are formed.
  • An electrode sheet whose material constitutes a separator is manufactured.
  • a separator is provided as a separate member.
  • the electrode substrate feeding mechanism for feeding the electrode substrate at a predetermined speed, the first slit for applying the electrode material to the electrode substrate, and both sides of the first slit are provided.
  • the second electrode for coating the first insulating material, the first slit, and the second slit provided on the front side of the electrode substrate in the feeding direction of the electrode material and the first insulating material.
  • a die coater having a third slit for coating the surface with the second insulating material, a drying furnace for heating and drying and fixing the electrode material and the first and second insulating materials coated on the electrode substrate; And a winding mechanism for winding up the electrode substrate to which the electrode material and the first and second insulating materials are fixed.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • Positive electrode substrate 2 Positive electrode substrate feed rolls 3, 6, 10: Rollers 4, 7, 18, 20, 28: Die coater 5: Positive electrode material 8: Insulating material 9: Drying furnace 11: Winding roll 12: Electrode layer 13 : Electrode layer and die coater gap 14: electrode substrate 15: electrode substrate and die coater gap 16: second insulating layer 17: poor insulation portion 19: first insulating material 21: second insulating material 22: spraying Nozzle 23: spray liquid 24, 25, 26, 29, 30, 31, 32: slit 27: first insulating layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Cell Separators (AREA)

Abstract

Conventional lithium ion secondary batteries have a problem such that in cases where an insulating material, which forms a separator, is applied onto a coated electrode of a lithium ion secondary battery, the coverage by the insulating material decreases in the edge portion of the electrode layer, thereby increasing the risk of defects due to short circuit. In order to solve the above-described problem, an electrode material and a first insulating material are applied onto an electrode substrate that is fed at a predetermined speed, said first insulating material being applied to portions adjacent to both sides of the electrode material in a direction perpendicular to the feeding direction of the electrode substrate; a second insulating material is applied onto the surfaces of the applied electrode material and first insulating material; and the applied electrode material and first and second insulating materials are dried and affixed according to the present invention. Consequently, the coverage of the edge portion of the electrode layer, which is formed of the electrode material, by the insulating layer is increased, so that short circuit defects can be reduced even in cases where the electrode layer is thick.

Description

リチウムイオン二次電池及びその製造方法と製造装置Lithium ion secondary battery and method and apparatus for manufacturing the same
 本発明は、リチウムイオン二次電池及びその製造方法と製造装置に関し、特に正極、負極及び、正極と負極を電気的に分離するセパレータを塗工により構成するリチウムイオン二次電池及びその製造方法と製造装置に関する。 The present invention relates to a lithium ion secondary battery and a manufacturing method and manufacturing apparatus thereof, and in particular, a positive electrode, a negative electrode, and a lithium ion secondary battery configured by coating a separator that electrically separates the positive electrode and the negative electrode, and a manufacturing method thereof It relates to a manufacturing apparatus.
 携帯電子機器の発達に伴い、これらの携帯電子機器の電力供給源として、繰り返し充電が可能な小型二次電池が使用されている。中でも、エネルギー密度が高く、サイクルライフが長いとともに、自己放電性が低く、かつ、作動電圧が高いリチウムイオン二次電池が注目されている。リチウムイオン二次電池は、上述した利点を有するため、デジタルカメラ、ノート型パーソナルコンピュータ、携帯電話機などの携帯電子機器に多用されている。さらに、近年では、電気自動車用電池や電力貯蔵用電池として、高容量、高出力、かつ、高エネルギー密度を実現できる大型のリチウムイオン二次電池の研究開発が進められている。特に、自動車産業においては、環境問題に対応するため、動力源としてモータを使用する電気自動車や、動力源としてエンジン(内燃機関)とモータとの両方を使用するハイブリッド車の開発が進められている。このような電気自動車やハイブリッド車の電源としてもリチウムイオン二次電池が注目されている。ただし、リチウムイオン二次電池は、作動電圧が高く、エネルギー密度が高いがゆえに、内部短絡や外部短絡などによる異常発熱に対する十分な対策が必要とされている。 With the development of portable electronic devices, small secondary batteries that can be repeatedly charged are used as power supply sources for these portable electronic devices. Among these, lithium ion secondary batteries that have high energy density, long cycle life, low self-discharge property, and high operating voltage are attracting attention. Lithium ion secondary batteries have the advantages described above, and are therefore widely used in portable electronic devices such as digital cameras, notebook personal computers, and mobile phones. Furthermore, in recent years, research and development of large-sized lithium ion secondary batteries capable of realizing high capacity, high output, and high energy density as electric vehicle batteries and power storage batteries have been promoted. In particular, in the automobile industry, in order to cope with environmental problems, development of an electric vehicle that uses a motor as a power source and a hybrid vehicle that uses both an engine (internal combustion engine) and a motor as a power source are in progress. . Lithium ion secondary batteries have attracted attention as power sources for such electric vehicles and hybrid vehicles. However, since the lithium ion secondary battery has a high operating voltage and high energy density, sufficient countermeasures against abnormal heat generation due to an internal short circuit or an external short circuit are required.
 リチウムイオン二次電池は、図10にその動作原理を示すように、非水電解質二次電池の一種で、電解液中のリチウムイオンが電気伝導を担う二次電池である。正極材料(活物質)にはリチウム金属酸化物を用い、負極材料(活物質)にはグラファイトなどの炭素材を用い、電解液には炭酸エチレンなどの有機溶剤とヘキサフルオロリン酸リチウム(LiPF6)といったリチウム塩を用いるのが主流となっている。電池内では充電時にリチウムイオンは正極から出て負極に入り、放電時には逆にリチウムイオンは負極から出て正極に入る。リチウムイオン二次電池の構造は、例えば、正極材料を塗工した正極板と、負極材料を塗工した負極板と、正極板と負極板の接触を防止するポリマフィルムなどのセパレータとを捲回した電極捲回体を備えている。そして、リチウムイオン二次電池では、この電極捲回体が外装缶に挿入されるとともに、外装缶内に電解液が注入されている。つまり、リチウムイオン二次電池では、金属箔に正極材料を塗工した正極板と、金属箔に負極材料を塗工した負極板とが帯状に形成され、帯状に形成された正極板と負極板が直接接触しないように、セパレータを介して断面渦巻状に捲回されて電極捲回体が形成される。 The lithium ion secondary battery is a kind of non-aqueous electrolyte secondary battery, as shown in FIG. 10 showing its operating principle, and is a secondary battery in which lithium ions in the electrolyte solution are responsible for electrical conduction. Lithium metal oxide is used for the positive electrode material (active material), carbon material such as graphite is used for the negative electrode material (active material), and an organic solvent such as ethylene carbonate and lithium hexafluorophosphate (LiPF6) are used for the electrolyte. It is the mainstream to use lithium salt. In the battery, lithium ions exit from the positive electrode and enter the negative electrode during charging, and conversely during discharge, lithium ions exit from the negative electrode and enter the positive electrode. The structure of the lithium ion secondary battery includes, for example, a positive electrode plate coated with a positive electrode material, a negative electrode plate coated with a negative electrode material, and a separator such as a polymer film that prevents contact between the positive electrode plate and the negative electrode plate. The electrode winding body is provided. In the lithium ion secondary battery, the electrode winding body is inserted into the outer can and the electrolyte is injected into the outer can. That is, in a lithium ion secondary battery, a positive electrode plate coated with a positive electrode material on a metal foil and a negative electrode plate coated with a negative electrode material on a metal foil are formed in a band shape, and the positive electrode plate and the negative electrode plate formed in a band shape The electrode winding body is formed by winding in a spiral shape through the separator so that the electrode does not directly contact.
 特開2003-045491号公報(特許文献1)は、正極電極フィルム、負極電極フィルムを個別に形成して、負極電極フィルムにセパレータフィルムを貼り合わせて、該セパレータ付き負極電極フィルムに前記正極電極フィルムを積層して電極捲回体を形成する従来の電極製造方法では工程数が多い点、及び前記電極捲回体を複数枚積層した集電体内に溶液状の電界物質を均一に注入することは非常に困難で不良品の発生が多い点を改善する技術を開示している。すなわち、特許文献1には、正極シート状物の両面に正極電極物質含有溶液と、電解、絶縁物質含有溶液とを、溶液吐出用スリットを有するダイコータを使用して塗布して、加熱工程を経て正極電極シート状物を形成し、同様に、負極シート状物の両面に負極電極物質含有溶液と、電解、絶縁物質含有溶液とを、ダイコータを使用して塗布し、加熱工程を経て負極電極シート状物を形成し、両電極シート状物を積層して電極捲回体を形成する二次電池製造方法および二次電池製造装置を開示している。 Japanese Patent Application Laid-Open No. 2003-054991 (Patent Document 1) discloses that a positive electrode film and a negative electrode film are separately formed, a separator film is bonded to the negative electrode film, and the positive electrode film is applied to the negative electrode film with a separator. In the conventional electrode manufacturing method in which the electrode winding body is formed by laminating the electrode, there are many steps, and the solution-like electric field substance is uniformly injected into the current collector in which a plurality of the electrode winding bodies are stacked. A technique for improving the point that is very difficult and many defective products are generated is disclosed. That is, in Patent Document 1, a positive electrode material-containing solution and an electrolytic and insulating substance-containing solution are applied to both surfaces of a positive electrode sheet using a die coater having a solution discharge slit, and a heating process is performed. A positive electrode sheet is formed, and similarly, a negative electrode substance-containing solution and an electrolytic and insulating substance-containing solution are applied to both sides of the negative electrode sheet using a die coater, followed by a heating step. The secondary battery manufacturing method and the secondary battery manufacturing apparatus which form an electrode and laminate | stack both electrode sheet-like objects and form an electrode winding body are disclosed.
特開2003-045491号公報JP 2003-054991 A
 リチウムイオン二次電池の電極材料の塗工において、特許文献1のようにキャリア材の面に正極や負極の電極材料を塗工した上にセパレータとなる絶縁材料を塗工することで、生産効率の向上、製造装置のコンパクト化を可能とすることができる。しかしながら、電極材料による電極層が厚くなるに従って、電極層のエッジ部分での塗工段差による絶縁層の被覆率が低下する点について考慮されていない。 In the application of the electrode material of the lithium ion secondary battery, as in Patent Document 1, the electrode material of the positive electrode or the negative electrode is applied on the surface of the carrier material, and then the insulating material that becomes the separator is applied, thereby improving the production efficiency. The manufacturing apparatus can be made more compact. However, it is not considered that the coverage of the insulating layer due to the coating step at the edge portion of the electrode layer decreases as the electrode layer made of the electrode material becomes thicker.
 すなわち、電極層が厚くなるに従って、キャリア材の面に正極や負極の電極材料を塗工した上にセパレータとなる絶縁材料を塗工した場合、電極層のエッジ部分での塗工段差による空気の巻き込みにより、被覆率が低下する。その結果、電極層周辺部で絶縁が出来なくなり、短絡不良の危険性が高くなるという問題がある。 That is, as the electrode layer becomes thicker, when the positive electrode or negative electrode electrode material is applied to the carrier material surface and the separator insulating material is applied, the air flow due to the coating step at the edge of the electrode layer The coverage decreases due to the entrainment. As a result, there is a problem that insulation at the periphery of the electrode layer cannot be performed and the risk of short circuit failure is increased.
 そこで、本発明は、電極層エッジ部分での絶縁層の被覆率を確保できるリチウムイオン二次電池及びその製造方法と製造装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a lithium ion secondary battery that can ensure the coverage of the insulating layer at the edge portion of the electrode layer, a manufacturing method thereof, and a manufacturing apparatus thereof.
 上記課題を解決するために、例えば請求の範囲に記載の構成を採用する。本発明は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、正極、負極、および、正極と負極とを電気的に分離するセパレータとを備えたリチウムイオン二次電池の製造方法において、所定速度で供給された電極基板に、電極材料と、電極基板の供給方向に対して直交する方向の電極材料の両側隣接部に第1の絶縁材料を塗工し、塗工された電極材料と第1の絶縁材料の表面に第2の絶縁材料を塗工し、塗工された電極材料と第1、第2の絶縁材料を乾燥・固着させ、電極材料が正極、負極を構成し、第1、第2の絶縁材料がセパレータを構成する電極シートを製造する。 In order to solve the above problems, for example, the configuration described in the claims is adopted. The present invention includes a plurality of means for solving the above-described problems. For example, a lithium ion secondary battery including a positive electrode, a negative electrode, and a separator that electrically separates the positive electrode and the negative electrode is provided. In the manufacturing method, the first insulating material is applied to the electrode substrate supplied at a predetermined speed, on both sides of the electrode material and the electrode material in the direction perpendicular to the supply direction of the electrode substrate. The second insulating material is applied to the surface of the electrode material and the first insulating material, and the applied electrode material and the first and second insulating materials are dried and fixed. The electrode sheet which comprises and the 1st, 2nd insulating material comprises a separator is manufactured.
 本発明によれば、電極基板の面上に電極材料と絶縁材料とを重ねて塗工して同時に乾燥・固着させる電極シートの製造方法を採用する場合に、電極層のエッジ部分の絶縁層の被覆率が向上するため、電極層が厚い場合でも短絡不良を低減することができる。 According to the present invention, when an electrode sheet manufacturing method in which an electrode material and an insulating material are applied on a surface of an electrode substrate and applied at the same time to be dried and fixed, the insulating layer at the edge portion of the electrode layer is used. Since the coverage ratio is improved, short-circuit defects can be reduced even when the electrode layer is thick.
リチウムイオン二次電池が製造されるまでの具体的な工程を模式的に示す図である。It is a figure which shows typically the specific process until a lithium ion secondary battery is manufactured. リチウムイオン二次電池の正極電極シートの片面の製造工程の構成図である。It is a block diagram of the manufacturing process of the single side | surface of the positive electrode sheet of a lithium ion secondary battery. 絶縁材料を塗工するノズルと電極層、電極基板とのギャップを説明する図である。It is a figure explaining the gap of the nozzle which coats an insulating material, an electrode layer, and an electrode substrate. 従来技術による電極層が厚膜化した場合の電極断面を示す図である。It is a figure which shows the electrode cross section when the electrode layer by a prior art is thickened. 実施例1におけるリチウムイオン二次電池の正極電極シートの製造方法の構成図である。1 is a configuration diagram of a method for producing a positive electrode sheet of a lithium ion secondary battery in Example 1. FIG. 実施例1におけるダイコータを説明する図である。It is a figure explaining the die-coater in Example 1. FIG. 実施例1による電池の電極断面を説明する図である。3 is a diagram illustrating a cross section of an electrode of a battery according to Example 1. 実施例2におけるリチウムイオン二次電池の正極電極シートの製造方法の構成図である。6 is a configuration diagram of a method for producing a positive electrode sheet of a lithium ion secondary battery in Example 2. FIG. 実施例2におけるダイコータを説明する図である。It is a figure explaining the die-coater in Example 2. FIG. リチウムイオン二次電池の動作原理を説明する図である。It is a figure explaining the principle of operation of a lithium ion secondary battery.
 まず、本発明に係る、リチウムイオン二次電池が製造されるまでの具体的な工程について、説明する。 First, a specific process until a lithium ion secondary battery according to the present invention is manufactured will be described.
 図1は、その工程を模式的に示す図である。図1に示すように、リチウムイオン二次電池の製造工程は、正極電極シート製造工程と負極電極シート製造工程と電池セルの組立工程と電池モジュールの組立工程とを含んでいる。 FIG. 1 is a diagram schematically showing the process. As shown in FIG. 1, the manufacturing process of a lithium ion secondary battery includes a positive electrode sheet manufacturing process, a negative electrode sheet manufacturing process, a battery cell assembly process, and a battery module assembly process.
 正極電極シート製造工程では、まず、正極材料の原料となる各種材料を混練および調合してスラリー材料(正極材料)を作成する(混練・調合)。そして、フィルム状の金属箔にこのスラリー材料を塗工、乾燥した後(塗工)、スラリー材料が塗工された金属箔に圧縮や切断といった加工を行い(加工)、フィルム状の正極電極シートを製造する。 In the positive electrode sheet manufacturing process, first, a slurry material (positive electrode material) is prepared by kneading and preparing various materials as raw materials for the positive electrode material (kneading / mixing). Then, after applying the slurry material to the film-like metal foil and drying (coating), the metal foil coated with the slurry material is subjected to processing such as compression and cutting (processing), and the film-like positive electrode sheet Manufacturing.
 一方、負極電極シート製造工程では、正極電極シート製造工程とは使用される原料となる各種材料は異なるが、負極電極シートが製造されるまでの手順は同じである。 On the other hand, the negative electrode sheet manufacturing process is different from the positive electrode sheet manufacturing process in various materials used as raw materials, but the procedure until the negative electrode sheet is manufactured is the same.
 その後、電池セル組立工程では、捲回と呼ばれる工程で、上記のフィルム状の正極電極シートおよび負極電極シートから、電池セルに必要な大きさの正極および負極を切り出すとともに、これら正極電極シートと負極電極シートを分離するためのフィルム状のセパレータ材料から電池セルに必要な大きさのセパレータを切り出し、正極および負極に、切り出したセパレータを挟んで重ねて捲き合わせる(捲回)。そして、捲き合わせた正極、負極およびセパレータの電極対の群を組み立てて溶接する。その後、溶接したこれら電極対の群を、電解液が注入(注液)された電池缶内に配置した後、電池缶を完全に密閉し(封口)、電池セルを作成する。電池セル検査工程は、セル組立工程にて作成されたリチウムイオン二次電池のセルを繰り返し充放電し(充放電)、この電池セルの性能および信頼性に関する検査(例えば、電池セルの容量や電圧、充電または放電時の電流や電圧等の検査)を行う(単電池検査)。これにより、電池セルが完成し、電池セル組立工程が終了する(単電池)。 Thereafter, in the battery cell assembly process, a positive electrode and a negative electrode having a size necessary for the battery cell are cut out from the film-like positive electrode sheet and negative electrode sheet in a process called winding, and the positive electrode sheet and the negative electrode are cut out. A separator having a size necessary for the battery cell is cut out from the film-like separator material for separating the electrode sheet, and the positive electrode and the negative electrode are overlapped with each other with the cut-out separator interposed therebetween (winding). Then, a group of electrode pairs of the positive electrode, the negative electrode, and the separator assembled together is assembled and welded. Thereafter, the group of welded electrode pairs is placed in a battery can into which an electrolytic solution has been injected (injected), and then the battery can is completely sealed (sealed) to form a battery cell. The battery cell inspection step repeatedly charges and discharges (charges and discharges) the cells of the lithium ion secondary battery created in the cell assembly step, and checks the performance and reliability of the battery cell (for example, the capacity and voltage of the battery cell). (Inspection of current and voltage during charging or discharging) (single cell inspection). Thereby, a battery cell is completed and a battery cell assembly process is complete | finished (single cell).
 次に、電池モジュール組立工程では、電池セルを複数個直列に組み合わせて電池モジュールを構成し、さらに、充/放電制御用コントローラを接続して電池システムを構成する(モジュール組立)。その後、モジュール検査工程において、モジュール組立工程において組み立てられた電池モジュールの性能及び信頼性に関する検査(例えば、電池モジュールの容量や電圧、充電または放電時の電流や電圧等の検査)を行う(モジュール検査)。これにより、電池モジュールが完成する(電池モジュール)。 Next, in the battery module assembly process, a plurality of battery cells are combined in series to form a battery module, and a charge / discharge control controller is connected to form a battery system (module assembly). Thereafter, in the module inspection process, the battery module assembled in the module assembly process is inspected for performance and reliability (for example, inspection of the capacity and voltage of the battery module, current and voltage during charging or discharging) (module inspection). ). Thereby, a battery module is completed (battery module).
 本発明は、前記正極電極シート製造工程、及び、前記負極電極シート製造工程における塗工工程に係わる製造方法及び製造装置と、それにより製造した電池に関する。 This invention relates to the manufacturing method and manufacturing apparatus which concern on the coating process in the said positive electrode sheet manufacturing process and the said negative electrode sheet manufacturing process, and the battery manufactured by it.
 次に、本発明の前提となる、特許文献1に開示されている、正極シート状物、または負極シート状物に電極物質、および電解、絶縁物質を連続して塗工して、乾燥・固着させる一連の製造工程について図面を用いて説明する。特許文献1ではキャリア材(正極シート状物、または負極シート状物)の両面に電極物質、および電解、絶縁物質を塗工しているが、簡単のために、本実施例の比較例として、キャリア材の片面に電極物質、および電解、絶縁物質を塗工する製造工程例の構成図を図2に示す。 Next, a positive electrode sheet or negative electrode sheet disclosed in Patent Document 1, which is a premise of the present invention, is continuously coated with an electrode material, electrolysis, and an insulating material, and then dried and fixed. A series of manufacturing steps to be performed will be described with reference to the drawings. In Patent Document 1, an electrode material, electrolysis, and an insulating material are applied on both surfaces of a carrier material (positive electrode sheet or negative electrode sheet). For simplicity, as a comparative example of this example, FIG. 2 shows a configuration diagram of a manufacturing process example in which an electrode material, electrolysis, and an insulating material are applied to one side of a carrier material.
 図2は、正極電極シートの片面を製造している製造工程の構成図である。正極基板1は、正極基板送り出しロール2から送り出され、ローラ3に対抗するダイコータ4から供給される正極材料5が塗工され、続いて、ローラ6と対抗した位置のダイコータ7から供給される絶縁材料8が塗工される。そして、乾燥炉9を通過することで乾燥され、ローラ10を介して、巻き取りロール11に巻き取られ、正極電極シートが製造される。 FIG. 2 is a configuration diagram of a manufacturing process for manufacturing one side of the positive electrode sheet. The positive electrode substrate 1 is fed from a positive substrate feeding roll 2 and coated with a positive electrode material 5 supplied from a die coater 4 facing the roller 3, and then insulated from a die coater 7 at a position facing the roller 6. Material 8 is applied. And it is dried by passing the drying furnace 9, and is wound up by the winding roll 11 via the roller 10, and a positive electrode sheet is manufactured.
 以上のように、スラリー状の正極材料と絶縁材料を重ねて塗工した後、乾燥炉による加熱・乾燥工程を経て、両方の塗膜層を同時に乾燥、固着させることが出来て効率がよい。しかし、電極層が厚膜化された場合に問題点がある。以下これについて説明する。 As described above, after coating the slurry-like positive electrode material and the insulating material in layers, both coating layers can be dried and fixed simultaneously through a heating and drying process in a drying furnace, which is efficient. However, there is a problem when the electrode layer is thickened. This will be described below.
 図3は、絶縁材料を塗工するノズルと電極層、電極基板とのギャップを説明する図である。図3において、12は電極層であり、ローラ6の電極基板14(正極基板1)の供給方向から見た、絶縁材料が塗工される前の電極層断面を示している。電極材料の塗工による電極層が厚膜化された場合、電極層12と絶縁材料を塗工するダイコータ7とのギャップ13と、電極基板14と絶縁材料を塗工するダイコータ7とのギャップ15との差が大きくなり、電極層のエッジ部分(図の電極層12の左右の両側部分)で空気を巻き込み、絶縁層の塗膜の液切れが発生し、被覆率が低下し、絶縁不足となる。 FIG. 3 is a diagram for explaining a gap between a nozzle for coating an insulating material, an electrode layer, and an electrode substrate. In FIG. 3, reference numeral 12 denotes an electrode layer, which shows a cross section of the electrode layer before the insulating material is applied, as viewed from the supply direction of the electrode substrate 14 (positive electrode substrate 1) of the roller 6. When the electrode layer is thickened by applying the electrode material, a gap 13 between the electrode layer 12 and the die coater 7 that coats the insulating material, and a gap 15 between the electrode substrate 14 and the die coater 7 that coats the insulating material. And the air is entrained at the edge part of the electrode layer (the left and right side parts of the electrode layer 12 in the figure), the coating film of the insulating layer is drained, the coverage is reduced, and the insulation is insufficient. Become.
 図4に、従来技術による、電極層が厚膜化した場合の電極断面を示す。図4において、電極層12の上に絶縁材料を塗工することで絶縁層16が形成されるが、特許文献1には一切記載がないが、同時に、電極層12の幅(電極基板14の供給方向に対して直交する方向)よりも広めに絶縁材料を塗工することで電極層12のエッジ部分(図の電極層12の左右の両側部分)も絶縁層16を形成させることが望ましい。しかし、電極層12のエッジ部分において、絶縁材料の塗工時に空気の巻き込みが発生し、絶縁不良部17が発生する。これは、絶縁材料の組成によっても変化するが、電極層が50μm以上になると発生し、この状態で電池を製造した場合、絶縁不良部17で短絡が発生しやすくなる。 FIG. 4 shows a cross section of the electrode when the electrode layer is thickened according to the prior art. In FIG. 4, the insulating layer 16 is formed by applying an insulating material on the electrode layer 12, but there is no description in Patent Document 1, but at the same time, the width of the electrode layer 12 (of the electrode substrate 14). It is desirable that the insulating layer 16 is also formed on the edge portions of the electrode layer 12 (both left and right portions of the electrode layer 12 in the figure) by applying the insulating material wider than the direction orthogonal to the supply direction. However, in the edge portion of the electrode layer 12, air entrainment occurs when the insulating material is applied, and the defective insulation portion 17 is generated. This varies depending on the composition of the insulating material, but occurs when the electrode layer becomes 50 μm or more. When a battery is manufactured in this state, a short circuit is likely to occur at the defective insulation portion 17.
 よって、これらの問題を解決するために、リチウムイオン二次電池の高容量化や低コスト化に伴い電極層が厚い場合でも電極層エッジ部分での絶縁層の被覆率を向上できる本発明の実施例を、以下、図面を用いて説明する。なお、正極、負極を総称して以降、電極と称す。 Therefore, in order to solve these problems, the implementation of the present invention can improve the coverage of the insulating layer at the edge portion of the electrode layer even when the electrode layer is thick due to the increase in capacity and cost of the lithium ion secondary battery Examples will be described below with reference to the drawings. Hereinafter, the positive electrode and the negative electrode are collectively referred to as electrodes.
図5は、本実施例のリチウムイオン二次電池の正極電極シートの製造工程の構成図である。図5において、正極基板1は、電極基板送出機構である正極基板送り出しロール2から所定速度で送り出され、ローラ3に対向するダイコータ18から供給される正極材料5と第1の絶縁材料19が塗工される。 FIG. 5 is a configuration diagram of the manufacturing process of the positive electrode sheet of the lithium ion secondary battery of this example. In FIG. 5, the positive electrode substrate 1 is fed at a predetermined speed from a positive electrode substrate feed roll 2 which is an electrode substrate feed mechanism, and is coated with a positive electrode material 5 and a first insulating material 19 supplied from a die coater 18 facing the roller 3. It is crafted.
 図6に本実施例のダイコータ18を示す。図6において、正極材料5はスリット24から吐出され、第1の絶縁材料19がスリット24の両側に設けられたスリット25とスリット26から吐出される。 FIG. 6 shows the die coater 18 of this embodiment. In FIG. 6, the positive electrode material 5 is discharged from the slit 24, and the first insulating material 19 is discharged from the slit 25 and the slit 26 provided on both sides of the slit 24.
 次いで、図5において、その下流において、第2の絶縁材料21が、ローラ6に対向するダイコータ20から供給される。第2の絶縁材料21は、電極材料の表面層のバインダ成分を析出させる成分を含有しており、それが塗工されることで、電極材料の表面層のバインダが析出することで電極材料の活物質が固定され、電極層の活物質は絶縁材料に混入することが出来なくなる。そして、噴霧ノズル22より電極材料のバインダを析出させる成分を含有する噴霧液23を噴霧することで、電極材料内部のバインダが析出することで電極内の活物質が固定され、乾燥炉9を通過することで乾燥され、ローラ10を介して、巻回機構である巻き取りロール11に巻き取られ、正極電極シートが製造される。 Next, in FIG. 5, the second insulating material 21 is supplied from the die coater 20 facing the roller 6 downstream thereof. The second insulating material 21 contains a component for precipitating the binder component of the surface layer of the electrode material, and by applying it, the binder of the surface layer of the electrode material is precipitated, so that the electrode material The active material is fixed, and the active material of the electrode layer cannot be mixed into the insulating material. Then, the active material in the electrode is fixed by spraying the spray liquid 23 containing the component for precipitating the binder of the electrode material from the spray nozzle 22, so that the active material in the electrode is fixed and passes through the drying furnace 9. Then, the film is dried and wound on a winding roll 11 which is a winding mechanism via a roller 10 to produce a positive electrode sheet.
 図7に本実施例による電極の断面図を示す。電極基板14の上に電極層12と電極層12のエッジである両側隣接部(電極基板14の供給方向に対して直交する方向の電極層の両側隣接部)に第1の絶縁層27が配置され、第1の絶縁層27が電極基板上の平面内で電極層の一方向の両側側面を覆うように配置され、電極層12の上部(電極層の電極基板に対抗する平面)に電極層12より幅が長くなるように第2の絶縁層16が配置されている。これにより、絶縁材料の電極材料エッジ部への被覆率が向上し、短絡不良を低減できる。すなわち、図6に示すダイコータ18のスリット24から吐出される正極材料5によって、図7の電極層12が形成され、図6に示すダイコータ18のスリット25、26から吐出される第1の絶縁材料19によって、図7の第1の絶縁層27が形成される。言い換えれば、ダイコータ18は、電極層塗工用のスリットの両側に絶縁層塗工用のスリットを設けている。そして、ダイコータ20のスリットから吐出される第2の絶縁材料21によって、図7の第2の絶縁層16が形成される。よって、ダイコータ20のスリットの長さは、ダイコータ18のスリット24の長さより長くなっており、図7の第2の絶縁層16は電極層12より幅が長くなっている。 FIG. 7 shows a cross-sectional view of the electrode according to this example. On the electrode substrate 14, the first insulating layer 27 is disposed on the electrode layer 12 and on both sides adjacent portions which are edges of the electrode layer 12 (on both sides adjacent to the electrode layer in the direction orthogonal to the supply direction of the electrode substrate 14). The first insulating layer 27 is disposed so as to cover both sides in one direction of the electrode layer in a plane on the electrode substrate, and the electrode layer is formed on the electrode layer 12 (a plane of the electrode layer facing the electrode substrate). The second insulating layer 16 is arranged so as to have a width longer than 12. Thereby, the coverage to the electrode material edge part of an insulating material improves, and a short circuit defect can be reduced. That is, the electrode layer 12 of FIG. 7 is formed by the positive electrode material 5 discharged from the slit 24 of the die coater 18 shown in FIG. 6, and the first insulating material discharged from the slits 25 and 26 of the die coater 18 shown in FIG. 19 forms the first insulating layer 27 of FIG. In other words, the die coater 18 is provided with slits for coating the insulating layer on both sides of the slits for coating the electrode layer. Then, the second insulating layer 16 shown in FIG. 7 is formed by the second insulating material 21 discharged from the slit of the die coater 20. Therefore, the length of the slit of the die coater 20 is longer than the length of the slit 24 of the die coater 18, and the width of the second insulating layer 16 in FIG. 7 is longer than that of the electrode layer 12.
 なお、図7において、第2の絶縁層16は、第1の絶縁層27の外側まで出ないようにしているが、第1の絶縁層27の外側まではみ出すようにしてかまわない。これにより、第2の絶縁層16は、第1の絶縁層27の外側まではみ出すようにして電極層12を覆うので、より絶縁層の被覆率は向上する。 In FIG. 7, the second insulating layer 16 does not protrude outside the first insulating layer 27, but may protrude outside the first insulating layer 27. Thereby, the second insulating layer 16 covers the electrode layer 12 so as to protrude to the outside of the first insulating layer 27, so that the coverage of the insulating layer is further improved.
 本実施例では、正極電極シート製造に関して、正極材料5は、ニッケル・コバルト・マンガン酸リチウムからなる活物質と導電助剤としてのカーボンを混合し、ポリフッ化ビニリデンからなる結着材(バインダ)をNメチルピロリドン(NMP)に溶解させた溶液に混練したスラリーを用いた。また、第1の絶縁材料19は、シリカ(SiO2)の粉体をポリフッ化ビニリデンからなる結着材(バインダ)をNメチルピロリドン(NMP)に溶解させた溶液に混練したスラリーを用いた。また、第2の絶縁材料21は、シリカ(SiO2)の粉体をスチレンブタジエンゴムからなる結着材(バインダ)を、正極材料の表面層あるいは第1の絶縁材料のバインダ成分を析出させる成分の一つであるエタノール添加水に溶解させた溶液に混練したスラリーを用いた。すなわち、第2の絶縁材料の溶剤は、電極材料の溶剤と第1の絶縁材料の溶剤中のバインダを析出させる溶剤である。また、噴霧液23は、正極材料のバインダ成分を析出させる成分の一つであるエタノール添加水を用いた。 In this example, regarding the production of the positive electrode sheet, the positive electrode material 5 is a mixture of an active material made of nickel, cobalt, and lithium manganate and carbon as a conductive additive, and a binder (binder) made of polyvinylidene fluoride. A slurry kneaded in a solution dissolved in N-methylpyrrolidone (NMP) was used. The first insulating material 19 was a slurry in which silica (SiO 2) powder was kneaded into a solution obtained by dissolving a binder (binder) made of polyvinylidene fluoride in N-methylpyrrolidone (NMP). The second insulating material 21 is a component that deposits a binder (binder) made of silica (SiO2) powder of styrene butadiene rubber, a surface layer of the positive electrode material, or a binder component of the first insulating material. A slurry kneaded in a solution dissolved in one ethanol-added water was used. That is, the solvent of the second insulating material is a solvent for precipitating the binder in the solvent of the electrode material and the solvent of the first insulating material. Moreover, the spray liquid 23 used the ethanol addition water which is one of the components which precipitate the binder component of positive electrode material.
 なお、負極電極シート製造に関して、図5の製造工程と同様となり、負極材料は、炭素材料(カーボン材料)からなる負極活物質と、ポリフッ化ビニリデンからなる結着材(バインダ)をNメチルピロリドン(NMP)に溶解させた溶液に混練したスラリーを用いた。また、第1の絶縁材料、第2の絶縁材料、噴霧液については、正極電極シート製造と同様のものを用いた。 The production of the negative electrode sheet is the same as the production process of FIG. 5. The negative electrode material is composed of a negative electrode active material made of a carbon material (carbon material) and a binder (binder) made of polyvinylidene fluoride with N-methylpyrrolidone ( A slurry kneaded in a solution dissolved in (NMP) was used. Moreover, about the 1st insulating material, the 2nd insulating material, and the spray liquid, the same thing as positive electrode sheet manufacture was used.
 本実施例における電極材料層と絶縁材料層の被覆率の評価は、ラミネート型電池を作成し、電解液を注入する前の状態で加圧し、抵抗値の低下の有無で短絡を判断した。その結果を表1にまとめた。 In the evaluation of the coverage ratio of the electrode material layer and the insulating material layer in this example, a laminate type battery was prepared, pressurized in a state before injecting the electrolytic solution, and a short circuit was determined based on whether or not the resistance value decreased. The results are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1において、正極層の膜厚は乾燥後の膜厚を示している。また、比較例は、図5の第1の絶縁材料19を供給せずに実施した結果である。表1から、正極層の乾燥後膜厚が50μm以上で比較例では短絡が発生しているが、本実施例では短絡は発生していないことがわかる。 In Table 1, the film thickness of the positive electrode layer indicates the film thickness after drying. Further, the comparative example is a result obtained without supplying the first insulating material 19 of FIG. From Table 1, it can be seen that although the film thickness after drying of the positive electrode layer is 50 μm or more, a short circuit occurs in the comparative example, but no short circuit occurs in this example.
 以上説明したように、本実施例は、正極、負極、および、正極と負極とを電気的に分離するセパレータとを備えたリチウムイオン二次電池の製造方法において、所定速度で供給された電極基板に、電極材料と、電極基板の供給方向に対して直交する方向の電極材料の両側隣接部に第1の絶縁材料を塗工し、塗工された電極材料と第1の絶縁材料の表面に第2の絶縁材料を塗工し、塗工された電極材料と第1、第2の絶縁材料を乾燥・固着させ、第2の絶縁材料の塗工は、電極材料と第1の絶縁材料の塗工の下流で行い、電極材料が正極、負極を構成し、第1、第2の絶縁材料がセパレータを構成する電極シートを製造する。 As described above, in this embodiment, the electrode substrate supplied at a predetermined speed in the method of manufacturing a lithium ion secondary battery including the positive electrode, the negative electrode, and the separator that electrically separates the positive electrode and the negative electrode. The first insulating material is applied to both sides of the electrode material and the electrode material in the direction orthogonal to the supply direction of the electrode substrate, and the coated electrode material and the surface of the first insulating material are coated. The second insulating material is applied, the applied electrode material and the first and second insulating materials are dried and fixed, and the application of the second insulating material is performed between the electrode material and the first insulating material. An electrode sheet is manufactured downstream of the coating, and the electrode material constitutes the positive electrode and the negative electrode, and the first and second insulating materials constitute the separator.
 また、リチウムイオン二次電池の製造装置において、電極基板を所定速度で送り出す電極基板送出機構と、電極基板に、電極材料を塗工するための第1のスリットと、第1のスリットの両側に設けた第1の絶縁材料を塗工するための第2のスリットを有する第1のダイコータと、第1のスリットよりも長い第3のスリットを有し、塗工された電極材料と第1の絶縁材料の表面に第2の絶縁材料を塗工する第2のダイコータと、電極基板に塗工された電極材料と第1、第2の絶縁材料を加熱して、乾燥・固着させる乾燥炉と、電極材料と第1、第2の絶縁材料が固着された電極基板を巻き取る巻回機構とを備える構成とする。 Further, in a lithium ion secondary battery manufacturing apparatus, an electrode substrate delivery mechanism for delivering an electrode substrate at a predetermined speed, a first slit for applying an electrode material to the electrode substrate, and both sides of the first slit A first die coater having a second slit for coating the provided first insulating material; a third slit longer than the first slit; and the coated electrode material and the first A second die coater for applying a second insulating material to the surface of the insulating material; a drying furnace for heating and drying and fixing the electrode material and the first and second insulating materials applied to the electrode substrate; And a winding mechanism for winding up the electrode substrate to which the electrode material and the first and second insulating materials are fixed.
 また、正極、負極、および、正極と負極とを電気的に分離するセパレータとを備えたリチウムイオン二次電池であって、正極および負極はシート状の電極基板上に電極材料からなる電極層で構成され、セパレータを構成する絶縁材料からなる絶縁層で前記電極層が覆われて、それぞれ正極電極シート、負極電極シートを構成し、正極電極シートおよび負極電極シートが巻回されて構成されており、絶縁層は、電極基板上の平面内で電極層の一方向の両側側面を覆う第1の絶縁層と、電極層の電極基板に対抗する平面を覆う第2の絶縁層とからなり、第1の絶縁層は、ポリフッ化ビニリデンからなる第1のバインダを含む第1の絶縁材料からなり、第2の絶縁層は、スチレンブタジエンゴムからなる第2のバインダを含む第2の絶縁材料からなるリチウムイオン二次電池とする。 A lithium ion secondary battery including a positive electrode, a negative electrode, and a separator that electrically separates the positive electrode and the negative electrode, wherein the positive electrode and the negative electrode are electrode layers made of an electrode material on a sheet-like electrode substrate. The electrode layer is covered with an insulating layer made of an insulating material that constitutes the separator and constitutes a positive electrode sheet and a negative electrode sheet, respectively, and the positive electrode sheet and the negative electrode sheet are wound. The insulating layer includes a first insulating layer that covers both sides in one direction of the electrode layer in a plane on the electrode substrate, and a second insulating layer that covers a plane of the electrode layer that faces the electrode substrate, The first insulating layer is made of a first insulating material containing a first binder made of polyvinylidene fluoride, and the second insulating layer is made of a second insulating material containing a second binder made of styrene butadiene rubber. That the lithium-ion secondary battery.
 これにより、絶縁材料の電極層エッジ部への被覆率が向上し、短絡不良を低減できるという効果がある。 This improves the coverage of the insulating material on the edge of the electrode layer and has the effect of reducing short-circuit defects.
 本実施例は、実施例1において、正極材料5と第1の絶縁材料19を供給するダイコータ18と、第2の絶縁材料21を供給するダイコータ20を、1つのダイコータで行う実施例について説明する。 In the present embodiment, an embodiment in which the die coater 18 that supplies the positive electrode material 5 and the first insulating material 19 and the die coater 20 that supplies the second insulating material 21 in the first embodiment are performed by one die coater will be described. .
 図8は、本実施例のリチウムイオン二次電池の正極電極シートの製造工程の構成図である。図8において、正極基板1は、電極基板送出機構である正極基板送り出しロール2から所定速度で送り出され、ローラ3に対向するダイコータ28から供給される正極材料5と第1の絶縁材料19と第2の絶縁材料21が塗工される。 FIG. 8 is a configuration diagram of the manufacturing process of the positive electrode sheet of the lithium ion secondary battery of this example. In FIG. 8, the positive electrode substrate 1 is fed at a predetermined speed from a positive substrate feed roll 2 that is an electrode substrate feed mechanism, and is supplied from a die coater 28 facing the roller 3. Two insulating materials 21 are applied.
 図9に本実施例のダイコータ28を示す。図9において、正極材料5はスリット29から吐出され、第1の絶縁材料19がスリット29の両側に設けられたスリット30とスリット31から吐出される。そして、第2の絶縁材料21がスリット32から吐出される。すなわち、ダイコータ28は、スリット29、30、31から吐出される正極材料5と第1の絶縁材料19の表面に第2の絶縁材料21を塗工するために、スリット29、30、31の上部、言い換えれば正極基板の送り方向前部、にスリット32を設けている。他は、実施例1と同様であり、正極電極シートが製造される。 FIG. 9 shows the die coater 28 of this embodiment. In FIG. 9, the positive electrode material 5 is discharged from the slit 29, and the first insulating material 19 is discharged from the slits 30 and 31 provided on both sides of the slit 29. Then, the second insulating material 21 is discharged from the slit 32. That is, the die coater 28 is formed by applying the second insulating material 21 to the surfaces of the positive electrode material 5 and the first insulating material 19 discharged from the slits 29, 30, 31. In other words, the slit 32 is provided in the front part of the positive electrode substrate in the feed direction. Others are the same as that of Example 1, and a positive electrode sheet is manufactured.
 図9に示すダイコータ28のスリット29から吐出される正極材料5によって、図7の電極層12が形成され、図9に示すダイコータ28のスリット30、31から吐出される第1の絶縁材料19によって、図7の第1の絶縁層27が形成される。そして、図9に示すダイコータ28のスリット32から吐出される第2の絶縁材料21によって、図7の第2の絶縁層16が形成される。よって、ダイコータ28のスリット32の長さは、スリット29の長さより長くなっており、図7の第2の絶縁層16は電極層12より幅が長くなっている。 The electrode layer 12 of FIG. 7 is formed by the positive electrode material 5 discharged from the slit 29 of the die coater 28 shown in FIG. 9, and the first insulating material 19 discharged from the slits 30 and 31 of the die coater 28 shown in FIG. Then, the first insulating layer 27 of FIG. 7 is formed. 7 is formed by the second insulating material 21 discharged from the slit 32 of the die coater 28 shown in FIG. Therefore, the length of the slit 32 of the die coater 28 is longer than the length of the slit 29, and the width of the second insulating layer 16 in FIG. 7 is longer than that of the electrode layer 12.
 なお、図9において、ダイコータ28のスリット32の長さは、スリット29、30、31を足した長さよりも短くなっているが、長くても良い。これにより、図7における、第2の絶縁層16は、第1の絶縁層27の外側まではみ出すようにして電極層12を覆うので、より絶縁層の被覆率は向上する。 In FIG. 9, the length of the slit 32 of the die coater 28 is shorter than the length of the slits 29, 30, 31 added, but may be longer. Thereby, since the second insulating layer 16 in FIG. 7 covers the electrode layer 12 so as to protrude outside the first insulating layer 27, the coverage of the insulating layer is further improved.
 本実施例における電極材料層と絶縁材料層の被覆率の評価は、ラミネート型電池を作成し、電解液を注入する前の状態で加圧し、抵抗値の低下の有無で短絡を判断した。その結果を表2にまとめた。 In the evaluation of the coverage ratio of the electrode material layer and the insulating material layer in this example, a laminate type battery was prepared, pressurized in a state before injecting the electrolytic solution, and a short circuit was determined based on whether or not the resistance value decreased. The results are summarized in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2において、正極層の膜厚は乾燥後の膜厚を示している。また、比較例は、図5の第1の絶縁材料を供給せずに実施した結果である。表2から、正極層の乾燥後膜厚が50μm以上で比較例では短絡が発生しているが、本実施例では短絡は発生していないことがわかる。 In Table 2, the thickness of the positive electrode layer indicates the thickness after drying. Further, the comparative example is a result obtained without supplying the first insulating material of FIG. From Table 2, it can be seen that although the film thickness after drying of the positive electrode layer is 50 μm or more, a short circuit occurs in the comparative example, but no short circuit occurs in this example.
 以上、説明した実施例は、正極基板の片面に正極材料、および第1、第2の絶縁材料を塗工して、正極電極シートを製造する例を記載した。正極基板の両面に正極材料、および第1、第2の絶縁材料を塗工する場合には、巻き取りロールに巻き取られた正極電極シートを反転させて、再度同一の工程を経て裏面を塗工することで実現できる。また、負極電極シートを製造する場合も、同様の工程で実現できる。 As described above, the embodiment described above describes an example in which a positive electrode material and first and second insulating materials are coated on one surface of a positive electrode substrate to manufacture a positive electrode sheet. When coating the positive electrode material and the first and second insulating materials on both surfaces of the positive electrode substrate, the positive electrode sheet wound around the take-up roll is reversed and the back surface is again applied through the same process. It can be realized by crafting. Moreover, also when manufacturing a negative electrode sheet, it is realizable by the same process.
 また、第2の絶縁材料21にポリプロピレンやポリエチレンの微粒子を混合したスラリーを用いることで、ショート等による温度上昇時のシャットダウン性を持たせることもできる。また、このシャットダウン性を持たせる部材を別部材のセパレータとして追加することもできる。なお、この別部材のセパレータはシャットダウン性を持たせるためのセパレータであるので、第2の絶縁材料によるセパレータよりも薄くすることが可能である。 Further, by using a slurry in which the second insulating material 21 is mixed with fine particles of polypropylene or polyethylene, it is possible to provide a shutdown property when the temperature rises due to a short circuit or the like. Moreover, the member which gives this shutdown property can also be added as a separator of another member. In addition, since this separate separator is a separator for providing shutdown properties, it can be made thinner than the separator made of the second insulating material.
 また、前記実施例では、リチウムイオン二次電池を例に挙げて説明したが、本発明の技術的思想は、リチウムイオン二次電池に限定されるものではなく、正極、負極、および、正極と負極とを電気的に分離するセパレータとを備える蓄電デバイス(例えば、電池やキャパシタなど)に幅広く適用することができる。 In the above-described embodiments, the lithium ion secondary battery has been described as an example. However, the technical idea of the present invention is not limited to the lithium ion secondary battery, and the positive electrode, the negative electrode, and the positive electrode It can be widely applied to an electricity storage device (for example, a battery or a capacitor) provided with a separator that electrically separates the negative electrode.
 以上説明したように、本実施例は、正極、負極、および、正極と負極とを電気的に分離するセパレータとを備えたリチウムイオン二次電池の製造方法において、所定速度で供給された電極基板に、電極材料と、電極基板の供給方向に対して直交する方向の前記電極材料の両側隣接部に第1の絶縁材料を塗工し、塗工された電極材料と第1の絶縁材料の表面に第2の絶縁材料を塗工し、塗工された電極材料と第1、第2の絶縁材料を乾燥・固着させ、電極材料が前記正極、負極を構成し、第1、第2の絶縁材料がセパレータを構成する電極シートを製造する。 As described above, in this embodiment, the electrode substrate supplied at a predetermined speed in the method of manufacturing a lithium ion secondary battery including the positive electrode, the negative electrode, and the separator that electrically separates the positive electrode and the negative electrode. The first insulating material is applied to both sides of the electrode material and the electrode material in the direction orthogonal to the supply direction of the electrode substrate, and the coated electrode material and the surface of the first insulating material The second insulating material is applied to the electrode material, and the applied electrode material and the first and second insulating materials are dried and fixed, and the electrode material constitutes the positive electrode and the negative electrode, and the first and second insulating materials are formed. An electrode sheet whose material constitutes a separator is manufactured.
 また、第1、第2の絶縁材料で構成するセパレータ以外に、さらに別部材でセパレータを設ける構成とする。 Further, in addition to the separators made of the first and second insulating materials, a separator is provided as a separate member.
 また、リチウムイオン二次電池の製造装置において、電極基板を所定速度で送り出す電極基板送出機構と、電極基板に電極材料を塗工するための第1のスリットと第1のスリットの両側に設けた第1の絶縁材料を塗工するための第2のスリットと第1のスリットと第2のスリットの電極基板の送り方向前部に設けた前記塗工された電極材料と第1の絶縁材料の表面に第2の絶縁材料を塗工する第3のスリットを有するダイコータと、電極基板に塗工された電極材料と第1、第2の絶縁材料を加熱して、乾燥・固着させる乾燥炉と、電極材料と第1、第2の絶縁材料が固着された電極基板を巻き取る巻回機構とを備える構成とする。 Also, in the lithium ion secondary battery manufacturing apparatus, the electrode substrate feeding mechanism for feeding the electrode substrate at a predetermined speed, the first slit for applying the electrode material to the electrode substrate, and both sides of the first slit are provided. The second electrode for coating the first insulating material, the first slit, and the second slit provided on the front side of the electrode substrate in the feeding direction of the electrode material and the first insulating material. A die coater having a third slit for coating the surface with the second insulating material, a drying furnace for heating and drying and fixing the electrode material and the first and second insulating materials coated on the electrode substrate; And a winding mechanism for winding up the electrode substrate to which the electrode material and the first and second insulating materials are fixed.
 これにより、絶縁材料の電極層エッジ部への被覆率が向上し、短絡不良を低減できるという効果がある。 This improves the coverage of the insulating material on the edge of the electrode layer and has the effect of reducing short-circuit defects.
 以上説明したように、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。  As described above, the present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment. *
1:正極基板
2:正極基板送り出しロール
3,6,10:ローラ
4,7,18,20,28:ダイコータ
5:正極材料
8:絶縁材料
9:乾燥炉
11:巻き取りロール
12:電極層
13:電極層とダイコータとのギャップ
14:電極基板
15:電極基板とダイコータとのギャップ
16:第2の絶縁層
17:絶縁不良部
19:第1の絶縁材料
21:第2の絶縁材料
22:噴霧ノズル
23:噴霧液
24,25,26,29,30,31,32:スリット
27:第1の絶縁層
1: Positive electrode substrate 2: Positive electrode substrate feed rolls 3, 6, 10: Rollers 4, 7, 18, 20, 28: Die coater 5: Positive electrode material 8: Insulating material 9: Drying furnace 11: Winding roll 12: Electrode layer 13 : Electrode layer and die coater gap 14: electrode substrate 15: electrode substrate and die coater gap 16: second insulating layer 17: poor insulation portion 19: first insulating material 21: second insulating material 22: spraying Nozzle 23: spray liquid 24, 25, 26, 29, 30, 31, 32: slit 27: first insulating layer

Claims (10)

  1.  正極、負極、および、正極と負極とを電気的に分離するセパレータとを備えたリチウムイオン二次電池の製造方法において、
    所定速度で供給された電極基板に、電極材料と、前記電極基板の供給方向に対して直交する方向の前記電極材料の両側隣接部に第1の絶縁材料を塗工し、
    前記塗工された電極材料と第1の絶縁材料の表面に第2の絶縁材料を塗工し、
    前記塗工された電極材料と第1、第2の絶縁材料を乾燥・固着させ、
    前記電極材料が前記正極、負極を構成し、前記第1、第2の絶縁材料が前記セパレータを構成する電極シートを製造することを特徴とするリチウムイオン二次電池の製造方法。
    In a method for producing a lithium ion secondary battery comprising a positive electrode, a negative electrode, and a separator that electrically separates the positive electrode and the negative electrode,
    A first insulating material is applied to the electrode substrate supplied at a predetermined speed to both sides of the electrode material and the electrode material in a direction perpendicular to the supply direction of the electrode substrate,
    Applying a second insulating material to the surfaces of the coated electrode material and the first insulating material;
    Drying and fixing the coated electrode material and the first and second insulating materials;
    A method for producing a lithium ion secondary battery, wherein the electrode material constitutes the positive electrode and the negative electrode, and the first and second insulating materials constitute an electrode sheet constituting the separator.
  2.  請求項1に記載のリチウムイオン二次電池の製造方法であって、
    前記第2の絶縁材料の塗工は、前記電極材料と第1の絶縁材料の塗工の下流で行うことを特徴とするリチウムイオン二次電池の製造方法。
    It is a manufacturing method of the lithium ion secondary battery according to claim 1,
    The method of manufacturing a lithium ion secondary battery, wherein the application of the second insulating material is performed downstream of the application of the electrode material and the first insulating material.
  3.  請求項1に記載のリチウムイオン二次電池の製造方法であって、
    前記第1、第2の絶縁材料で構成するセパレータ以外に、さらに別部材でセパレータを設けることを特徴とするリチウムイオン二次電池の製造方法。
    It is a manufacturing method of the lithium ion secondary battery according to claim 1,
    A method of manufacturing a lithium ion secondary battery, wherein a separator is provided as a separate member in addition to the separators made of the first and second insulating materials.
  4.  請求項2に記載のリチウムイオン二次電池の製造方法であって、
    前記第1、第2の絶縁材料で構成するセパレータ以外に、さらに別部材でセパレータを設けることを特徴とするリチウムイオン二次電池の製造方法。
    It is a manufacturing method of the lithium ion secondary battery according to claim 2,
    A method of manufacturing a lithium ion secondary battery, wherein a separator is provided as a separate member in addition to the separators made of the first and second insulating materials.
  5.  請求項1に記載のリチウムイオン二次電池の製造方法であって、
    前記第2の絶縁材料の溶剤は、前記電極材料の溶剤と前記第1の絶縁材料の溶剤中のバインダを析出させる溶剤であることを特徴とするリチウムイオン二次電池の製造方法。
    It is a manufacturing method of the lithium ion secondary battery according to claim 1,
    The method of manufacturing a lithium ion secondary battery, wherein the solvent of the second insulating material is a solvent for precipitating a binder in the solvent of the electrode material and the solvent of the first insulating material.
  6.  電極基板を所定速度で送り出す電極基板送出機構と、
    前記電極基板に、電極材料を塗工するための第1のスリットと、該第1のスリットの両側に設けた第1の絶縁材料を塗工するための第2のスリットを有する第1のダイコータと、
    前記第1のスリットよりも長い第3のスリットを有し、前記塗工された電極材料と第1の絶縁材料の表面に第2の絶縁材料を塗工する第2のダイコータと、
    前記電極基板に塗工された電極材料と第1、第2の絶縁材料を加熱して、乾燥・固着させる乾燥炉と、
    前記電極材料と第1、第2の絶縁材料が固着された前記電極基板を巻き取る巻回機構とを備えることを特徴とするリチウムイオン二次電池の製造装置。
    An electrode substrate delivery mechanism for delivering the electrode substrate at a predetermined speed;
    A first die coater having a first slit for applying an electrode material to the electrode substrate and a second slit for applying a first insulating material provided on both sides of the first slit. When,
    A second die coater having a third slit longer than the first slit and applying a second insulating material to the surface of the coated electrode material and the first insulating material;
    A drying furnace for heating and drying and fixing the electrode material and the first and second insulating materials applied to the electrode substrate;
    An apparatus for manufacturing a lithium ion secondary battery, comprising: a winding mechanism that winds up the electrode substrate to which the electrode material and the first and second insulating materials are fixed.
  7.  請求項6に記載のリチウムイオン二次電池の製造装置であって、
    前記第1のダイコータと第2のダイコータに代えて、
    前記電極基板に電極材料を塗工するための第1のスリットと、該第1のスリットの両側に設けた第1の絶縁材料を塗工するための第2のスリットと、前記第1のスリットと第2のスリットの前記電極基板の送り方向前部に設けた前記塗工された電極材料と第1の絶縁材料の表面に第2の絶縁材料を塗工する第3のスリットを有する第3のダイコータを備えることを特徴とするリチウムイオン二次電池の製造装置。
    It is a manufacturing apparatus of the lithium ion secondary battery according to claim 6,
    Instead of the first die coater and the second die coater,
    A first slit for applying an electrode material to the electrode substrate; a second slit for applying a first insulating material provided on both sides of the first slit; and the first slit And a third slit having a second slit applied to the surface of the coated electrode material and the first insulating material provided in the forward direction of the electrode substrate in the second slit. An apparatus for producing a lithium ion secondary battery comprising: a die coater.
  8.  請求項6に記載のリチウムイオン二次電池の製造装置であって、
    前記第2の絶縁材料の溶剤は、前記電極材料の溶剤と前記第1の絶縁材料の溶剤中のバインダを析出させる溶剤であることを特徴とするリチウムイオン二次電池の製造装置。
    It is a manufacturing apparatus of the lithium ion secondary battery according to claim 6,
    The apparatus for producing a lithium ion secondary battery, wherein the solvent of the second insulating material is a solvent for precipitating a binder in the solvent of the electrode material and the solvent of the first insulating material.
  9.  正極、負極、および、正極と負極とを電気的に分離するセパレータとを備えたリチウムイオン二次電池であって、
    前記正極および負極はシート状の電極基板上に電極材料からなる電極層で構成され、前記セパレータを構成する絶縁材料からなる絶縁層で前記電極層が覆われて、それぞれ正極電極シート、負極電極シートを構成し、該正極電極シートおよび負極電極シートが巻回されて構成されており、
    前記絶縁層は、前記電極基板上の平面内で前記電極層の一方向の両側側面を覆う第1の絶縁層と、前記電極層の前記電極基板に対抗する平面を覆う第2の絶縁層とからなり、
    前記第1の絶縁層は、第1のバインダを含む第1の絶縁材料からなり、
    前記第2の絶縁層は、第2のバインダを含む第2の絶縁材料からなることを特徴とするリチウムイオン二次電池。
    A lithium ion secondary battery comprising a positive electrode, a negative electrode, and a separator that electrically separates the positive electrode and the negative electrode,
    The positive electrode and the negative electrode are composed of an electrode layer made of an electrode material on a sheet-like electrode substrate, and the electrode layer is covered with an insulating layer made of an insulating material constituting the separator. The positive electrode sheet and the negative electrode sheet are wound and configured,
    The insulating layer includes a first insulating layer that covers both side surfaces in one direction of the electrode layer in a plane on the electrode substrate, and a second insulating layer that covers a plane of the electrode layer that faces the electrode substrate. Consists of
    The first insulating layer is made of a first insulating material including a first binder,
    The lithium ion secondary battery, wherein the second insulating layer is made of a second insulating material including a second binder.
  10. 請求項9に記載のリチウムイオン二次電池であって、
    前記第1のバインダは、ポリフッ化ビニリデンからなるバインダであり、前記第2のバインダは、スチレンブタジエンゴムからなるバインダであることを特徴とするリチウムイオン二次電池。
    The lithium ion secondary battery according to claim 9,
    The lithium ion secondary battery, wherein the first binder is a binder made of polyvinylidene fluoride, and the second binder is a binder made of styrene butadiene rubber.
PCT/JP2015/060524 2014-04-09 2015-04-02 Lithium ion secondary battery, method for manufacturing same and apparatus for manufacturing same WO2015156213A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580011782.1A CN106063020B (en) 2014-04-09 2015-04-02 Lithium secondary battery and its manufacturing method and manufacturing device
JP2016512692A JP6307594B2 (en) 2014-04-09 2015-04-02 Lithium ion secondary battery and method and apparatus for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-080173 2014-04-09
JP2014080173 2014-04-09

Publications (1)

Publication Number Publication Date
WO2015156213A1 true WO2015156213A1 (en) 2015-10-15

Family

ID=54287789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060524 WO2015156213A1 (en) 2014-04-09 2015-04-02 Lithium ion secondary battery, method for manufacturing same and apparatus for manufacturing same

Country Status (3)

Country Link
JP (1) JP6307594B2 (en)
CN (1) CN106063020B (en)
WO (1) WO2015156213A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017212097A (en) * 2016-05-25 2017-11-30 日本電気株式会社 Method for manufacturing electrode and method for inspecting electrode
JP2020072007A (en) * 2018-10-31 2020-05-07 トヨタ自動車株式会社 Electrode plate, cell using the same, manufacturing method of electrode plate, manufacturing method of cell using electrode plate, and die head
JP7404327B2 (en) 2021-12-03 2023-12-25 プライムアースEvエナジー株式会社 Method for manufacturing positive electrode plate of secondary battery and secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220067279A (en) * 2020-11-17 2022-05-24 주식회사 엘지에너지솔루션 Insulation evaluation method of overlay electrode

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227136A (en) * 2006-02-23 2007-09-06 Matsushita Electric Ind Co Ltd Power storage device
JP2007242575A (en) * 2006-03-13 2007-09-20 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte solution secondary battery
JP2008021644A (en) * 2006-06-16 2008-01-31 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2011243351A (en) * 2010-05-17 2011-12-01 Hitachi Maxell Energy Ltd Flat-shaped nonaqueous battery
JP2012099385A (en) * 2010-11-04 2012-05-24 Konica Minolta Holdings Inc Electrode with heat-resistant porous layer, manufacturing method thereof, and secondary battery
JP2013069495A (en) * 2011-09-21 2013-04-18 Hitachi Ltd Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery, and method of manufacturing electrode for nonaqueous electrolyte secondary battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1018775B1 (en) * 1997-02-28 2007-01-03 Asahi Kasei EMD Corporation Nonaqueous secondary battery and method for manufacturing the same
JP2001155717A (en) * 1999-11-26 2001-06-08 Matsushita Electric Ind Co Ltd Method of fabricating electric battery electrode plate
JP4201619B2 (en) * 2003-02-26 2008-12-24 三洋電機株式会社 Nonaqueous electrolyte secondary battery and method for producing electrode used therefor
JP2014029806A (en) * 2012-07-31 2014-02-13 Nissan Motor Co Ltd Electrode and method and device for manufacturing the same
JP5875487B2 (en) * 2012-08-29 2016-03-02 株式会社日立製作所 Manufacturing method and manufacturing apparatus for lithium ion secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227136A (en) * 2006-02-23 2007-09-06 Matsushita Electric Ind Co Ltd Power storage device
JP2007242575A (en) * 2006-03-13 2007-09-20 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte solution secondary battery
JP2008021644A (en) * 2006-06-16 2008-01-31 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2011243351A (en) * 2010-05-17 2011-12-01 Hitachi Maxell Energy Ltd Flat-shaped nonaqueous battery
JP2012099385A (en) * 2010-11-04 2012-05-24 Konica Minolta Holdings Inc Electrode with heat-resistant porous layer, manufacturing method thereof, and secondary battery
JP2013069495A (en) * 2011-09-21 2013-04-18 Hitachi Ltd Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery, and method of manufacturing electrode for nonaqueous electrolyte secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017212097A (en) * 2016-05-25 2017-11-30 日本電気株式会社 Method for manufacturing electrode and method for inspecting electrode
JP2020072007A (en) * 2018-10-31 2020-05-07 トヨタ自動車株式会社 Electrode plate, cell using the same, manufacturing method of electrode plate, manufacturing method of cell using electrode plate, and die head
KR20200049640A (en) 2018-10-31 2020-05-08 도요타 지도샤(주) Electrode sheet, battery incorporating the electrode sheet, method for manufacturing the electrode sheet, method for manufacturing the battery incorporating the electrode sheet, and die head
JP7155881B2 (en) 2018-10-31 2022-10-19 トヨタ自動車株式会社 Electrode plate, battery using same, method for manufacturing electrode plate, method for manufacturing battery using same, die head
US11695120B2 (en) 2018-10-31 2023-07-04 Toyota Jidosha Kabushiki Kaisha Electrode sheet, battery incorporating the electrode sheet, method for manufacturing the electrode sheet, method for manufacturing the battery incorporating the electrode sheet, and die head
US11695121B2 (en) 2018-10-31 2023-07-04 Toyota Jidosha Kabushiki Kaisha Electrode sheet, battery incorporating the electrode sheet, method for manufacturing the electrode sheet, method for manufacturing the battery incorporating the electrode sheet, and die head
US11811067B2 (en) 2018-10-31 2023-11-07 Toyota Jidosha Kabushiki Kaisha Die head and die coater
JP7404327B2 (en) 2021-12-03 2023-12-25 プライムアースEvエナジー株式会社 Method for manufacturing positive electrode plate of secondary battery and secondary battery

Also Published As

Publication number Publication date
CN106063020A (en) 2016-10-26
CN106063020B (en) 2019-05-03
JPWO2015156213A1 (en) 2017-06-29
JP6307594B2 (en) 2018-04-04

Similar Documents

Publication Publication Date Title
JP5875487B2 (en) Manufacturing method and manufacturing apparatus for lithium ion secondary battery
JP5652682B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
WO2014136714A1 (en) Non-aqueous electrolyte secondary battery
WO2014155808A1 (en) Method for manufacturing and device for manufacturing lithium ion battery
JP6038813B2 (en) Electrode manufacturing method and non-aqueous electrolyte battery manufacturing method
KR20070015039A (en) Manufacturing method of electrode, manufacturing device using its manufacturing method and battery using electrode produced by the manufacturing method
JP6300619B2 (en) Method and apparatus for manufacturing electrode plate of lithium ion secondary battery
JP6779052B2 (en) Separator powder, separator slurry, lithium-ion battery and its manufacturing method
JP6307594B2 (en) Lithium ion secondary battery and method and apparatus for manufacturing the same
WO2015045533A1 (en) Lithium-ion secondary battery manufacturing method, lithium-ion secondary battery manufacturing device, and lithium-ion secondary battery
JP2007280687A (en) Electrode for battery
CN108365164B (en) Method for manufacturing battery
WO2018016112A1 (en) Secondary battery and production method therefor
JP5929630B2 (en) Method for producing lithium ion secondary battery
JP2014116080A (en) Electricity storage device and method for manufacturing electricity storage device
JP6021775B2 (en) Lithium ion secondary battery manufacturing method and lithium ion secondary battery manufacturing apparatus
WO2020238226A1 (en) Battery and battery pack
JP6510304B2 (en) Method of manufacturing lithium ion secondary battery
WO2013098969A1 (en) Method for producing electrode and method for producing non-aqueous electrolyte battery
WO2017130493A1 (en) Powder for separators, slurry for separators, lithium ion battery and method for manufacturing same
JP2015069797A (en) Method and apparatus for manufacturing lithium ion secondary battery, and lithium ion secondary battery
JP2017084678A (en) Lithium ion battery manufacturing method and manufacturing device
CN114975877B (en) Method for manufacturing electrode for secondary battery
CN114975876B (en) Method for manufacturing electrode for secondary battery
JP2012069279A (en) Electrode cutting device and electrode manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15776127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016512692

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15776127

Country of ref document: EP

Kind code of ref document: A1