WO2015156092A1 - Dielectric film, film capacitor, and dielectric-film-manufacturing device - Google Patents
Dielectric film, film capacitor, and dielectric-film-manufacturing device Download PDFInfo
- Publication number
- WO2015156092A1 WO2015156092A1 PCT/JP2015/058005 JP2015058005W WO2015156092A1 WO 2015156092 A1 WO2015156092 A1 WO 2015156092A1 JP 2015058005 W JP2015058005 W JP 2015058005W WO 2015156092 A1 WO2015156092 A1 WO 2015156092A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polymer
- dielectric
- dielectric constant
- layer
- film
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/44—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
- H01B3/447—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from acrylic compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/44—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
- H01B3/442—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from aromatic vinyl compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/44—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
- H01B3/443—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/44—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
- H01B3/443—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds
- H01B3/445—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds from vinylfluorides or other fluoroethylenic compounds
Definitions
- the present invention relates to a dielectric film, a film capacitor, and a dielectric film manufacturing apparatus.
- the film capacitor includes a laminated film in which a metal foil such as aluminum or a metal deposited film is laminated on a dielectric film, and such a laminated film is further laminated or wound to form a multilayer structure.
- a dielectric film material for a film capacitor constituting such a laminated film polypropylene (PP), polyethylene terephthalate (PET), polyphenylene sulfide (PPS) and the like have been generally employed.
- these dielectric film materials have a low relative dielectric constant of about 2.5 to 3, it is required to reduce the film thickness of the dielectric film in order to increase the capacity of the film capacitor.
- thin dielectric films have problems such as difficulty in production and poor insulation performance, and it is not always easy to reduce the thickness of dielectric films. Further, in recent years, there has been an increasing demand for miniaturization of the film capacitor, and a fundamental countermeasure for improving the dielectric constant of the dielectric film material has been demanded.
- a technique for improving the dielectric constant of a dielectric film material a technique using a fluorine-based resin material having a high dielectric constant such as polyvinylidene fluoride (PVDF) as a dielectric film material has attracted attention.
- PVDF polyvinylidene fluoride
- dielectric loss a tendency of increasing loss of dielectric loss tangent
- PEMA polyethyl methacrylate
- Non-Patent Document 1 Although means for suppressing dielectric loss in a dielectric film has been studied, there is a demand for a dielectric film that exhibits a higher dielectric constant and further reduced dielectric loss.
- an object of the present invention is to provide a dielectric film, a film capacitor, and a dielectric film manufacturing apparatus that achieve both increase in dielectric constant and reduction in dielectric loss.
- the dielectric film according to the present invention has a high dielectric constant polymer having a relative dielectric constant of 4.0 or more at a frequency of 1 kHz as a main chain, and has a relative dielectric constant higher than that of the high dielectric constant polymer.
- a dielectric layer comprising a branched polymer having a low dielectric constant polymer having a small side chain as a side chain, and an alignment-inducing layer comprising a linear polymer having the high dielectric constant polymer as a main chain;
- the branched polymer contained in the dielectric layer and the linear polymer contained in the orientation-inducing layer are uniaxially oriented along the layering direction. .
- the film capacitor according to the present invention has a high dielectric constant polymer having a relative dielectric constant of 4.0 or more at a frequency of 1 kHz as a main chain, and has a low dielectric constant and a high relative dielectric constant smaller than that of the high dielectric constant polymer.
- a dielectric layer comprising a branched polymer having a molecule as a side chain; an alignment-inducing layer comprising a linear polymer having a high dielectric constant polymer as a main chain; and the dielectric layer;
- a dielectric layer comprising a branching polymer contained in the dielectric layer and a linear polymer contained in the orientation-inducing layer uniaxially oriented along the layering direction.
- a pair of first and second electrodes electrically connected to the dielectric film.
- the dielectric film manufacturing apparatus includes a dielectric layer comprising a branched polymer having a high dielectric constant polymer as a main chain and a low dielectric constant polymer as a side chain; An alignment-inducing layer comprising a linear polymer having a dielectric constant polymer as a main chain, the branched polymer contained in the dielectric layer, and the linear polymer contained in the alignment-inducing layer; A dielectric film manufacturing apparatus that manufactures a dielectric film in which a linear polymer is uniaxially oriented along the layering direction, and presses the block including the linear polymer onto the substrate Means for sweeping the pressure-bonded substrate to form the alignment-inducing layer in which the linear polymer is uniaxially oriented along the layering direction; and the branch on the surface of the alignment-inducing layer.
- the branched polymer is uniaxially oriented in the same direction as the linear polymer. Characterized in that it comprises a coating means for forming the dielectric layer.
- the present invention it is possible to provide a dielectric film, a film capacitor, and a dielectric film manufacturing apparatus that achieve both increase in dielectric constant and reduction in dielectric loss.
- (A) is sectional drawing which shows the layer structure of a dielectric film
- (b) is a conceptual diagram which shows the state of a dielectric material layer
- (c) is a conceptual diagram which shows the state of an orientation induction layer. It is a figure which shows the concept of the orientation state of a branched polymer contained in the dielectric film which concerns on this embodiment, and a polarization state.
- (A) is a conceptual diagram which shows the principal chain structure of a branched polymer
- (b) is a conceptual diagram which shows the state with which branched polymer was orientated.
- (A) is sectional drawing which shows the layer structure of a dielectric film
- (b) is a conceptual diagram which shows the state of a dielectric material layer. It is the schematic which shows the structure of the dielectric material film manufacturing apparatus which concerns on this embodiment. It is the schematic which compared the size of the converter to which the film capacitor which concerns on this embodiment is applied with the size of the power converter provided with the film capacitor which concerns on a comparative example. It is a figure which shows the relationship between the dielectric constant and dielectric loss of the dielectric film which concerns on an Example, and the dielectric film which concerns on a comparative example.
- FIG. 1 is a schematic view showing a dielectric film according to an embodiment of the present invention.
- A is sectional drawing which shows the layer structure of a dielectric film
- (b) is a conceptual diagram which shows the state of a dielectric material layer
- (c) is a conceptual diagram which shows the state of an orientation induction layer.
- the dielectric film 1 includes an orientation induction layer 12 and a dielectric layer 13 as shown in FIG.
- a laminated structure in which is sandwiched is shown.
- the dielectric film 1 according to this embodiment is characterized in that the orientation-inducing layer 12 is formed as a base of the dielectric layer 13 in order to align the polymer material contained in the dielectric layer 13. Yes.
- the dielectric film 1 is not limited to the two-layer configuration including the single-layer orientation inducing layer 12 and the single-layer dielectric layer 13 as shown in FIG. 1, but the orientation inducing layer 12 and the dielectric layer 13. And a multi-layer structure in which a plurality of stacked structures are repeatedly stacked.
- the dielectric layer 13 is a layer containing the branched polymer 15 which is a high dielectric material as a main component.
- the branched polymer 15 has a high dielectric constant polymer 16 having a high relative dielectric constant as a main chain and a low dielectric constant polymer 17 having a relative dielectric constant smaller than that of the high dielectric constant polymer 16 constituting the main chain. Has as a chain.
- the dielectric loss is caused by the action of the low dielectric constant polymer 17 constituting the side chain. We are trying to reduce it.
- the high dielectric constant polymer 16 is a polymer obtained by polymerizing a monomer having an electric dipole moment, and the electric dipole moment is rotated in the same direction in each monomer unit by applying an electric field. It is a polymer that exhibits a high relative dielectric constant by being polarized so as to be oriented in the direction.
- the high dielectric constant polymer 16 is a molecular chain constituting the main chain skeleton of the branched polymer 15, and has a branch made of the graft-polymerized low dielectric constant polymer 17 as a side chain. .
- the dielectric layer 13 of the dielectric film 1 has a main chain high-dielectric-constant polymer 16 of the branched polymer 15 in the direction along the dielectric layer 15. Is formed so as to be uniaxially oriented.
- branched polymer 15 having a high dielectric constant polymer 16 as a main chain and a low dielectric constant polymer 17 as a side chain is a main component of the dielectric layer 13, and the branched polymer 15 is uniaxially formed. The reason for orientation will be described.
- FIG. 2 is a conceptual diagram of the orientation state and the polarization state of the branched polymer contained in the dielectric film according to the present embodiment.
- (A) is a conceptual diagram which shows the principal chain structure of a branched polymer
- (b) is a conceptual diagram which shows the state with which branched polymer was orientated.
- FIG. 2A the concept of dielectric polarization generated in the dielectric layer 13 constituting the dielectric film is shown by taking polyvinylidene fluoride as an example.
- the branched polymer 15 has a main chain structure made of polyvinylidene fluoride, which is a high dielectric constant polymer 16, and this main chain structure has a low chain (not shown). It has a molecular structure in which side chains made of dielectric constant polymer 17 are bonded.
- a region where a low dielectric constant polymer 17 (not shown) may exist is indicated by a broken line.
- the monomer vinylidene fluoride (— [CH 2 —CF 2 ] —) constituting the branched polymer 15 is approximately in the direction in which the main chain is oriented, as indicated by an arrow in FIG. It has a dipole moment (electric dipole moment, permanent dipole moment) including orthogonal components.
- polyvinylidene fluoride has a plurality of crystal structures different from each other.
- Polyvinylidene fluoride usually has an ⁇ -phase (type II) crystal structure in the molecular single state, but in the ⁇ -phase, the dipole moment is oriented in the opposite direction between adjacent monomers. Therefore, the relative dielectric constant is as low as about 3 to 4.
- ⁇ phase I type crystal structure
- the dipole moment of the monomer is oriented in substantially the same direction, so that the polarization is large.
- the dielectric constant can be increased by uniaxially orienting the high dielectric constant polymer 16 of the main chain of the branched polymer 15 along the creeping direction of the dielectric layer 13 in the dielectric film 1. And the capacity of the film capacitor can be increased.
- the dielectric loss in the dielectric film 1 is strongly influenced by the residual polarization.
- the polarization state of the high dielectric constant polymer 16 as shown in FIG. 2A can be eliminated by a depolarization operation by molecular rotation around a single bond.
- the electric field formed by these acts as a reversal force. Therefore, when the polarization region is in contact with the electrode, the surface charge is offset by the electrode charge. In this case, since no depolarization force is generated, polarization remains and dielectric hysteresis occurs, leading to an increase in dielectric loss.
- the polarization region is subdivided so that the surface charge is not easily canceled by the electrode charge, thereby reducing the dielectric loss. It becomes possible to plan.
- the dielectric constant of the branched polymer 15 is greatly reduced. Therefore, it is required to reduce the size of the polarization region in order to reduce the dielectric loss while suppressing the introduction of the low dielectric constant polymer 17. This is because the depolarization force is inversely proportional to the polarization region size, and thus the repolarization force is ensured by reducing the polarization region size.
- the branched polymer 15 when the branched polymer 15 is formed into a molecular assembly by forming a film, the branched polymer 15 often exhibits a lamellar structure in which a crystalline region and an amorphous region are mixed. Are often large and non-uniform.
- the branched polymer 15 is arranged so that the high dielectric constant polymer 16 constituting the main chain is oriented in a uniaxial direction to form a molecular assembly.
- the size is reduced, it is possible to achieve both an increase in dielectric constant and a reduction in dielectric loss at a high level.
- the high dielectric constant polymer 16 a polymer having a relative dielectric constant of 4.0 or more at a frequency of 1 kHz measured at room temperature (25 ° C.) can be used.
- the high dielectric constant polymer 16 is more preferably a polymer having a relative dielectric constant of 5.0 or more.
- the number average polymerization degree of the high dielectric constant polymer 16 is preferably 300 or more and 100,000 or less, and more preferably about 800 or more and 50,000 or less.
- the high dielectric constant polymer 16 include fluoropolymer (fluorine resin), nylon, urea resin, polyphenylene sulfide, polyurethane, polyester, vinyl acetate resin, acrylic resin, and epoxy resin. . What is necessary is just to provide desired dielectric property to these polymeric materials by introduce
- the high dielectric constant polymer 16 is preferably a fluorine-based polymer. By using a fluorine-based polymer as the high dielectric constant polymer 16, the dielectric constant per mass can be improved. Two or more high dielectric constant polymers 16 may be used in combination, but it is more preferable to use one kind alone.
- the monomer constituting the high dielectric constant polymer 16 for the fluorine-based polymer, for example, fluoroolefin such as vinyl fluoride, vinylidene fluoride, trifluoroethylene, tetrafluoroethylene, hexafluoropropylene, ethylene, And olefins such as propylene, and perfluoroalkyl vinyl ethers.
- fluoroolefin such as vinyl fluoride, vinylidene fluoride, trifluoroethylene, tetrafluoroethylene, hexafluoropropylene, ethylene, And olefins such as propylene, and perfluoroalkyl vinyl ethers.
- examples of the high dielectric constant polymer 16 include polyvinylidene fluoride (PVDF), polyvinyl fluoride, polytetrafluoroethylene, and vinylidene fluoride-trifluoroethylene containing vinylidene fluoride and trifluoro
- Binary copolymers vinylidene fluoride-trifluoroethylene-tetrafluoroethylene terpolymers containing vinylidene fluoride, trifluoroethylene, and tetrafluoroethylene as monomers, ethylene-tetrafluoroethylene copolymers, Examples thereof include those having a main chain skeleton of vinylidene fluoride-hexafluoropropylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) and the like.
- PFA tetrafluoroalkyl vinyl ether copolymer
- the high dielectric constant polymer 16 includes, among these, polyvinylidene fluoride using vinylidene fluoride as a monomer, and vinylidene fluoride co-polymer containing vinylidene fluoride as a main monomer and other monomers. Polymers are preferred, and polyvinylidene fluoride (PVDF) and vinylidene fluoride-trifluoroethylene binary copolymers are more preferred.
- PVDF polyvinylidene fluoride
- VDF polyvinylidene fluoride-trifluoroethylene binary copolymers
- the high dielectric constant polymer 16 in the dielectric layer 13 it is preferable to use a derivative of the above exemplified monomer as the monomer constituting the high dielectric constant polymer 16. This is because side chains are introduced into the main chain of the high dielectric constant polymer 16 using a derivative having a reactive group as a reaction point.
- the derivative having a reactive group include chlorofluoroethylene, chlorodifluoroethylene, chlorotrifluoroethylene, bromofluoroethylene, bromodifluoroethylene, and bromotrifluoroethylene.
- the low dielectric constant polymer 17 is a polymer that binds as a side chain to the high dielectric constant polymer 16 constituting the main chain of the branched polymer 15. Also, a polymer having a small relative dielectric constant is used. By introducing such a low dielectric constant polymer 17 having a small relative dielectric constant as a side chain, the dielectric loss can be reduced as described above.
- the low dielectric constant polymer 17 it is preferable to use a polymer having a relative dielectric constant of less than 4.0 at a frequency of 1 kHz measured at room temperature (25 ° C.), and a relative dielectric constant of less than 3.0. It is more preferable to use a polymer. Further, a polymer having high compatibility with the high dielectric constant polymer 16 is preferable, and the ratio of the low dielectric constant polymer 17 is preferably 30% by mass or less with respect to the high dielectric constant polymer 16 of the main chain. More preferably, it is around mass%.
- the low dielectric constant molecule 17 include polyolefins such as polyethylene and polypropylene, polymethacrylates such as polymethyl methacrylate (PMMA), polyethyl methacrylate (PEMA), and polybutyl methacrylate, and polymethyl. Examples thereof include polyacrylates such as acrylate, polyethyl acrylate, and polybutyl acrylate, and polyvinyls such as polystyrene (PS) and polyvinyl toluene. Among these, the low dielectric constant polymer 17 is preferably polymethyl methacrylate, polyethyl methacrylate, or polystyrene.
- the low dielectric constant polymer 17 may be a homopolymer or a copolymer, but is preferably a homopolymer.
- orientation induction layer 12 is formed as the base of the dielectric layer 13 having such a configuration.
- FIG. 3 is a schematic view showing a dielectric film according to a comparative example.
- A is sectional drawing which shows the layer structure of a dielectric film
- (b) is a conceptual diagram which shows the state of a dielectric material layer.
- the dielectric film 100 according to the comparative example as shown in FIG. 3A, only the dielectric layer 13 is sandwiched between the first electrode layer 11 and the second electrode layer 14 constituting a pair of electrodes. Has a structure.
- a branch having a high dielectric constant polymer 16 having a high relative dielectric constant as a main chain and a low dielectric constant polymer 17 having a relative dielectric constant smaller than that of the high dielectric constant polymer 16 constituting the main chain as a side chain By using the polymer 15 as the dielectric layer 13 and forming the main chain high dielectric constant polymer 16 to be a molecular assembly oriented in a uniaxial direction, the dielectric constant can be increased and the dielectric loss can be reduced. Both can be achieved. However, it is not easy to form a molecular assembly of the branched polymer 15 having such side chains in the dielectric film manufacturing process, and the dielectric film 100 according to the comparative example shown in FIG.
- the high dielectric constant polymer 16 of the main chain of the branched polymer 15 is often in a state of being oriented in the directions of a plurality of axes.
- the polarization region size is large, steric hindrance in molecular rotation is likely to occur, and it is difficult to eliminate residual polarization during the depolarization operation. Therefore, in the dielectric film 1 according to the present embodiment, the alignment inducing layer 12 is formed in advance as a base of the dielectric layer 13, and the branched polymer 15 of the dielectric layer 13 is favorably uniaxially formed by the alignment inducing layer 12. Orientation is induced in the direction.
- the orientation-inducing layer 12 is a layer containing a linear polymer 18 that is a ferroelectric as a main component.
- the linear polymer 18 is a linear high dielectric constant polymer that does not have a side chain made of a polymer, and has a low dielectric constant polymer as a side chain like the branched polymer 15 described above. It is a polymer different from the graft polymer having 17.
- the alignment-inducing layer 12 of the dielectric film 1 is formed so that such a linear polymer 18 is uniaxially oriented along the layering direction of the orientation-inducing layer 12 as shown in FIG.
- the linear high-order uniaxially oriented in the creeping direction in the orientation inducing layer 12 is performed.
- the branched polymer 16 is oriented in the same direction as the molecule 18.
- a dielectric film in which the branched polymer 15 contained in the dielectric layer 13 and the linear polymer 18 contained in the orientation inducing layer 12 are uniaxially oriented in the same direction along the layering direction. 1 is formed.
- the low dielectric constant polymer 17 is interposed between adjacent uniaxially oriented branched polymers 15. Since the dispersion state is maintained at a predetermined interval, the polarization region is appropriately subdivided, and the dielectric loss can be effectively reduced.
- linear polymer 18 a polymer selected from the same group as the polymer used as the high dielectric constant polymer 16 constituting the main chain of the branched polymer 15 can be used.
- a fluorine-based polymer is preferable, such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene, vinylidene fluoride-trifluoroethylene binary copolymer, or vinylidene fluoride-trifluoroethylene-tetrafluoroethylene ternary.
- PVDF polyvinylidene fluoride
- a copolymer is more preferred.
- the linear polymer 18 is more preferably a polymer of the same type as the high dielectric constant polymer 16 constituting the main chain of the branched polymer 15 contained in the dielectric layer 13.
- the first electrode layer 11 and the second electrode layer 14 may be a thin film electrode layer formed by depositing a metal or a metal foil.
- a metal which comprises the 1st electrode layer 11 and the 2nd electrode layer 14 aluminum, zinc, copper, tin, these alloys etc. are mentioned, for example, Aluminum or aluminum alloy is used suitably.
- FIG. 4 is a schematic diagram showing the configuration of the dielectric film manufacturing apparatus according to this embodiment.
- the dielectric film manufacturing apparatus 50 mainly includes a pressing unit 51, sweeping units 52 and 53, and a coating unit 54.
- the pressing means 51 is a device that presses the supplied polymer pellets (blocks) and presses them against the base material.
- the dielectric film manufacturing apparatus 50 is provided with a heating stage 55 so as to face the pressing means 51.
- the substrate to be conveyed is heated by the heating stage 55, and the polymer pellets to be pressure-bonded to the substrate are heated and softened.
- the temperature at which the substrate is heated is preferably not higher than the melting point of the linear polymer 18, and is preferably not higher than 130 ° C., for example. Within such a temperature range, alteration of the linear polymer 18 can be avoided, and sweeping with good accuracy can be performed.
- polymer pellets polymer pellets formed from linear polymer 18 are supplied.
- the linear polymer 18 (the high dielectric constant polymer of the main chain of the linear polymer 18) can be synthesized using an appropriate polymerization method depending on the type of the polymer.
- the polymerization method include radical polymerization methods such as an emulsion polymerization method, a suspension polymerization method, and a solution polymerization method.
- a base material an appropriate metal substrate, an inorganic substrate, a resin substrate, or the like that can withstand a pressure load can be used, but a glass substrate suitable for orientation is preferably used.
- the sweeping means 52, 53 sweeps the substrate in a direction substantially perpendicular to the direction of pressing by the pressing means 51, and forms the alignment-inducing layer 12 in which the linear polymer 18 is uniaxially oriented along the layering direction. It is.
- the sweeping means 52 and 53 include a movable body 52 on which a base material is placed and a drive mechanism 53 that drives the movement of the movable body 52.
- the movable body 52 is configured by a slat, a belt, a roller, and the like, and the drive mechanism 53 is rotated so that the movable body 52 is sequentially moved.
- the sweep means 52 and 53 also have a function of sequentially transporting the base material and the dielectric film to each step.
- the pressing means 51 presses the polymer pellet containing the linear polymer 18 to the substrate to be conveyed. And the polymer pellet press-bonded to the base material becomes a softened state or a molten state by heating by the heating stage 55. Therefore, the substrate on which the semi-molten polymer pellets containing the linear polymer 18 are pressure-bonded is swept by the sweeping means 52 and 53, and the orientation inducing layer 12 is formed by using a friction transfer method.
- the friction transfer method as the means for forming the orientation induction layer 12 it is possible to form the orientation induction layer 12 in which the linear polymer 18 is well uniaxially oriented along the layering direction. Become.
- the sweep means 52 and 53 since the sweep means 52 and 53 also have the function to convey a base material and a dielectric film, the dielectric film of a roll-to-roll format is also possible. Note that the sweep speed and the pressure bonding load can be adjusted as appropriate. If the film thickness of the alignment induction layer 12 is 10 nm or more, alignment induction can be performed.
- the coating means 54 wet-coats the branched polymer 15 on the surface of the orientation-inducing layer 12 to form the dielectric layer 13 in which the branched polymer 15 is uniaxially oriented in the same direction as the linear polymer 18. It is a device to do.
- a known wet coating apparatus such as a slot die coater, a blade coater, a bar coater, a roll coater, or a gravure coater can be used.
- the branched polymer 15 is obtained by graft polymerizing a low-dielectric polymer 17 having a side chain to a high-dielectric polymer 16 having a main chain synthesized by the same polymerization method as the linear polymer 18 described above. Can be synthesized.
- a method for graft polymerization living radical polymerization is preferably used, and an atom transfer radical polymerization method (ATRP method) performed using a transition metal complex catalyst such as a CuCl / bipyridine complex is particularly preferable.
- ATRP method atom transfer radical polymerization method
- a transition metal complex catalyst such as a CuCl / bipyridine complex
- Examples of the solvent for the branched polymer 15 include N, N-dimethylformamide, diethyl carbonate, 2-pentanone, 3-pentanone, 2-hexanone, 2-heptanone, 3-heptanone, and cyclohexanone.
- An appropriate solvent can be used depending on the case.
- the branched polymer 15 is wet coated on the surface of the orientation inducing layer 12 by the application means 54, so that the orientation of the branched polymer 15 is aligned in the orientation inducing layer 12.
- a linear polymer 18 that is uniaxially oriented along the layer direction, a branched polymer 15 that is induced in the same direction and is included in the dielectric layer 13, and a linear polymer that is included in the alignment-inducing layer 12 The dielectric film 1 in which the molecules 18 are uniaxially oriented in the same direction along the layering direction is manufactured.
- the wet-applied dielectric layer 13 can be dried in an appropriate atmosphere, and the solvent can be removed in any of an inert gas atmosphere such as argon gas and nitrogen gas, and an oxidizing gas atmosphere such as air. Good.
- the dielectric film manufacturing apparatus 50 may further include at least one of a polarization unit, a stretching unit, and a multilayer film forming unit.
- the polarization means is composed of an electric field application device, a magnetic field application device, or the like. By applying such an electric field or magnetic field to the dielectric film in a heated atmosphere by such a polarization means, the high dielectric constant polymer 16 contained in the dielectric film 1 can be brought into a polarized state.
- the branched polymer 15 have a ⁇ -phase crystal structure, the dipole moment is oriented in the direction perpendicular to the layering direction to maximize polarization.
- the dielectric film 1 is further uniaxially stretched in the layering direction by a stretching means, so that the branched polymer 15 included in the dielectric layer 13 and the linear high molecular weight included in the alignment-inducing layer 12 are obtained.
- the molecules 18 can be better oriented and the dielectric loss can be effectively reduced.
- the dielectric film 1 can be thickened by supplying and multilayering the dielectric film 1 formed in the feed block or multi-manifold provided in the multilayer film forming means.
- the dielectric film manufacturing apparatus 50 is configured such that, instead of the pressing means 51 described above, sweeping is performed when an apparatus that presses polymer pellets and presses them against the base material moves relative to the base material.
- the coating means 52 instead of the coating may be performed in a stationary state by a spin coater or the like.
- the dielectric film manufacturing apparatus 50 may further include an electrode forming unit.
- the electrode forming means is composed of a vapor deposition apparatus or the like that vapor-deposits electrodes. After the first electrode layer 11 and the second electrode layer 14 are formed on the surface of the dielectric film 1 by such electrode forming means, the dielectric film 1 is wound, and external electrodes are connected and accommodated in the casing. Thereby, it can be set as the film capacitor 64 provided with the dielectric film 1 and a pair of 1st electrode and 2nd electrode electrically connected to the dielectric film 1.
- FIG. 5 is a schematic diagram comparing the size of the converter to which the film capacitor according to this embodiment is applied with the size of the power converter having the film capacitor according to the comparative example.
- FIG. 5 shows a power converter (inverter) 60 to which a film capacitor 64 including the dielectric film 1 according to the present embodiment is applied, and a film capacitor 61 (film capacitor according to a comparative example) employing conventional polypropylene or the like.
- a power converter 160 is shown.
- the power converter 60 and the power converter 160 each include a common power module 62 and a power distribution board 63.
- the film capacitor 61 occupies nearly 70% of the total volume.
- the capacitor volume can be reduced to about 1/5, and the capacitor cooling system is also small. Can be realized.
- the MMC module multi-level converter
- the dielectric film 1 according to the example in which the dielectric layer 13 was formed on the orientation induction layer 12 was manufactured, and the orientation state of the polymer was analyzed. Moreover, the dielectric constant 1 and the dielectric loss were evaluated about the dielectric film 1 which concerns on an Example.
- Example 10 a powder made of vinylidene fluoride-trifluoroethylene binary copolymer polymer P (VDF-TrFE) (70/30 mol%: manufactured by Piezotech) was compressed to prepare polymer pellets. Subsequently, the orientation-inducing layer 12 was formed by friction transfer of the produced polymer pellets onto a glass substrate heated to 130 ° C. below the melting point of P (VDF-TrFE). For the friction transfer, a friction transfer device “Hot Melt Coating Machine 115A” (manufactured by Imoto Seisakusho Co., Ltd.) was used, and the pressing condition was 10 kgf / cm 2 and the sweep speed was 200 mm / min.
- Hot Melt Coating Machine 115A manufactured by Imoto Seisakusho Co., Ltd.
- the thin film of the obtained orientation inducing layer 12 had a thickness of about 10 nm, and the main chain of P (VDF-TrFE) was uniaxially oriented on the glass substrate surface.
- the orientation state of the polymer is 2D-GIXD (polarization FTIR (Fourier transform infrared absorption method), SEM (scanning electron microscope), electron diffraction of TEM (transmission electron microscope), Spring 8 etc. as a radiation source. Analysis was performed using a very low angle incident X-ray two-dimensional diffraction method.
- VDF-TrFE-CTFE vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene terpolymer polymer P (VDF-TrFE-CTFE) (62/30/8 mol%: manufactured by Piezotech), polyethyl methacrylate (PEMA), was graft polymerized by an atom transfer radical polymerization method (ATRP method).
- the mass ratio of PEMA to P (VDF-TrFE-CTFE) was 20% by mass.
- a branched polymer P (VDF-TrFE-CTFE) -g-PEMA having P (VDF-TrFE-CTFE) as the main chain and PEMA as the side chain was obtained.
- the branched polymer 15 is dissolved in a solvent N, N-dimethylformamide (DMF) so as to have a concentration of 3% by mass, and wet-coated on the orientation-inducing layer 12 to form a dielectric.
- Layer 13 was laminated. The total film thickness of the orientation induction layer 12 and the dielectric layer 13 was 100 nm.
- the orientation state of the polymer in the dielectric layer 13 was analyzed.
- the branched polymer P (VDF-TrFE-CTFE) -g-PEMA is different from P (VDF-TrFE) that is uniaxially oriented in the direction of the thin film of the orientation inducing layer 13. It was confirmed that they were arranged substantially parallel and both were uniaxially oriented in substantially the same direction.
- the side chain PEMA as the low dielectric constant polymer 17 is interposed between the main chain Ps (VDF-TrFE-CTFE) as the high dielectric constant polymer 16, so that the high dielectric constant polymer 16. It was confirmed that P (VDF-TrFE-CTFE) in the main chain as shown in FIG.
- the first electrode layer 11 and the second electrode layer 14 were formed on both surfaces of the dielectric film 1 peeled from the glass substrate, respectively.
- the first electrode layer 11 and the second electrode layer 14 were formed to have a thickness of 50 nm by depositing aluminum.
- the capacitance at each frequency of 100 Hz, 1 kHz, and 10 kHz was measured at room temperature (25 ° C.) and 100 ° C., and the relative dielectric constant and dielectric loss. And asked.
- FIG. 6 is a diagram showing the relationship between the dielectric constant and the dielectric loss of the dielectric film according to the example and the dielectric film according to the comparative example.
- the vertical axis represents the relative dielectric constant
- the horizontal axis represents the dielectric loss (tan ⁇ ).
- the black circle has shown the dielectric film which concerns on an Example
- the white hexagon has shown the dielectric film which concerns on the comparative example which does not have an orientation induction layer.
- White circles, white triangles, and white squares are dielectric films according to comparative examples each having only a dielectric layer containing a branched polymer, both of which are not subjected to stretching treatment and polarization treatment, Each is manufactured by changing the mass ratio of the low dielectric constant polymer.
- the black triangle indicates a dielectric film according to a reference example using polypropylene as a material.
- the relative permittivity and the dielectric loss have different values, but as shown by the broken line, both are the relative permittivity and the dielectric loss.
- the tendency to be a trade-off relationship was shown.
- the dielectric film 1 according to the example achieves a value of about 10 relative dielectric constant as compared with the dielectric films according to these comparative examples, and the dielectric loss is 10 ⁇ 3. It was confirmed that it was reduced to a certain extent. In addition, it was confirmed that although the dielectric loss was at a high level as compared with the dielectric film according to the reference example using polypropylene as a material, the relative dielectric constant achieved a value of about 5 times.
- dielectric films according to the examples were highly compatible with increase in dielectric constant and reduction in dielectric loss.
- This dielectric loss level can be said to be sufficiently low, for example, in the application of a power converter (inverter) used in a frequency band from 100 Hz to 1 kHz.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Laminated Bodies (AREA)
- Graft Or Block Polymers (AREA)
Abstract
The present invention provides a dielectric film with which there is both a reduction in dielectric loss and an increase in relative permittivity, a film capacitor, and a dielectric-film-manufacturing device. A dielectric film (1) includes a dielectric layer (13) and an oriented induction layer (12). The dielectric layer (13) contains a branched polymer (15) in which a high permittivity polymer (16) having a relative permittivity of 4.0 or greater for a frequency of 1 kHz is configured as a main chain and a low permittivity polymer (17) having a relative permittivity lower than that of the high permittivity polymer (16) is configured as a side chain. The oriented induction layer (12) contains a linear polymer (18) in which the high permittivity polymer is configured as a main chain. The branched polymer (15) contained in the dielectric layer (13) and the linear polymer (18) contained in the oriented induction layer (12) are uniaxially oriented along the edgewise direction. In addition, a film capacitor is provided with the dielectric film (1) and a pair of electrodes. A dielectric-film-manufacturing device is provided with a pressing means, a sweeping means, and a coating means.
Description
本発明は、誘電体フィルム、フィルムコンデンサ及び誘電体フィルムの製造装置に関する。
The present invention relates to a dielectric film, a film capacitor, and a dielectric film manufacturing apparatus.
フィルムコンデンサは、誘電体フィルムにアルミニウム等の金属の箔又は金属の蒸着膜が重ねられた積層フィルムを備え、このような積層フィルムが、さらに、重層ないし捲回されて多層状の構造となるように製造されることが多い。このような積層フィルムを構成するフィルムコンデンサ用の誘電体フィルム材料としては、ポリプロピレン(PP)、ポリエチレンテレフタラート(PET)、ポリフェニレンサルファイド(PPS)等が一般に採用されてきた。
The film capacitor includes a laminated film in which a metal foil such as aluminum or a metal deposited film is laminated on a dielectric film, and such a laminated film is further laminated or wound to form a multilayer structure. Are often manufactured. As a dielectric film material for a film capacitor constituting such a laminated film, polypropylene (PP), polyethylene terephthalate (PET), polyphenylene sulfide (PPS) and the like have been generally employed.
これらの誘電体フィルム材料は、比誘電率が2.5~3程度と低いため、フィルムコンデンサの大容量化を実現するにあたっては、誘電体フィルムの膜厚を薄くすることが求められる。ところが、薄膜の誘電体フィルムは、生産が困難であったり、絶縁性能が低かったりする等の課題を抱えており、必ずしも誘電体フィルムの薄膜化は容易ではないのが現状である。さらに、近年では、フィルムコンデンサの小型化の要求も高まっており、誘電体フィルム材料の誘電率を向上させる根本的な対処が求められるようになっている。
Since these dielectric film materials have a low relative dielectric constant of about 2.5 to 3, it is required to reduce the film thickness of the dielectric film in order to increase the capacity of the film capacitor. However, thin dielectric films have problems such as difficulty in production and poor insulation performance, and it is not always easy to reduce the thickness of dielectric films. Further, in recent years, there has been an increasing demand for miniaturization of the film capacitor, and a fundamental countermeasure for improving the dielectric constant of the dielectric film material has been demanded.
誘電体フィルム材料の誘電率を向上させる技術としては、誘電体フィルム材料として、ポリフッ化ビニリデン(PVDF)等の高誘電率を有するフッ素系樹脂材料を用いる技術が注目されている。しかしながら、このように誘電体フィルム材料の誘電率を向上させると、一般的には、誘電正接の損失(以下、誘電損失という。)が増大する傾向が顕れることになる。そこで、フッ素系樹脂材料のような高誘電率の誘電体フィルム材料における、誘電損失を低減する手段として、PVDF系共重合体からなる高誘電率高分子の主鎖に、ポリエチルメタクリレート(PEMA)系重合体等からなる低誘電率高分子を側鎖としてグラフト重合した複合高分子材料を用いる方法が検討されている(非特許文献1参照)。
As a technique for improving the dielectric constant of a dielectric film material, a technique using a fluorine-based resin material having a high dielectric constant such as polyvinylidene fluoride (PVDF) as a dielectric film material has attracted attention. However, when the dielectric constant of the dielectric film material is improved in this way, generally, a tendency of increasing loss of dielectric loss tangent (hereinafter referred to as dielectric loss) appears. Therefore, as a means for reducing dielectric loss in a dielectric film material having a high dielectric constant such as a fluorine resin material, polyethyl methacrylate (PEMA) is added to the main chain of a high dielectric constant polymer made of a PVDF copolymer. A method using a composite polymer material obtained by graft polymerization using a low dielectric constant polymer made of a polymer or the like as a side chain has been studied (see Non-Patent Document 1).
フィルムコンデンサの大容量化を図るためには、電圧耐性を確保することを加味して、誘電率の増大と誘電正接の損失の低減を両立させる対処が必要となる。非特許文献1においては、誘電体フィルムにおける誘電損失を抑制する手段が検討されているものの、より高い誘電率を示すと共に、さらに誘電損失が低減された誘電体フィルムが求められている。
In order to increase the capacity of a film capacitor, it is necessary to take measures to achieve both an increase in dielectric constant and a reduction in loss of dielectric loss tangent, taking into account voltage resistance. In Non-Patent Document 1, although means for suppressing dielectric loss in a dielectric film has been studied, there is a demand for a dielectric film that exhibits a higher dielectric constant and further reduced dielectric loss.
そこで、本発明は、誘電率の増大と誘電損失の低減を両立した誘電体フィルム、フィルムコンデンサ及び誘電体フィルムの製造装置を提供することを目的とする。
Therefore, an object of the present invention is to provide a dielectric film, a film capacitor, and a dielectric film manufacturing apparatus that achieve both increase in dielectric constant and reduction in dielectric loss.
前記課題を解決するために本発明に係る誘電体フィルムは、周波数1kHzにおける比誘電率が4.0以上である高誘電率高分子を主鎖とし、前記高誘電率高分子よりも比誘電率が小さい低誘電率高分子を側鎖とする分枝状高分子を含んでなる誘電体層と、前記高誘電率高分子を主鎖とする直鎖状高分子を含んでなる配向誘導層とを含んでなり、前記誘電体層に含まれる分枝状高分子と、前記配向誘導層に含まれる直鎖状高分子とが、沿層方向に沿って一軸配向していることを特徴とする。
In order to solve the above problems, the dielectric film according to the present invention has a high dielectric constant polymer having a relative dielectric constant of 4.0 or more at a frequency of 1 kHz as a main chain, and has a relative dielectric constant higher than that of the high dielectric constant polymer. A dielectric layer comprising a branched polymer having a low dielectric constant polymer having a small side chain as a side chain, and an alignment-inducing layer comprising a linear polymer having the high dielectric constant polymer as a main chain; The branched polymer contained in the dielectric layer and the linear polymer contained in the orientation-inducing layer are uniaxially oriented along the layering direction. .
また、本発明に係るフィルムコンデンサは、周波数1kHzにおける比誘電率が4.0以上である高誘電率高分子を主鎖とし、前記高誘電率高分子よりも比誘電率が小さい低誘電率高分子を側鎖とする分枝状高分子を含んでなる誘電体層と、前記高誘電率高分子を主鎖とする直鎖状高分子を含んでなる配向誘導層と、前記誘電体層と配向誘導層とを含んでなり、前記誘電体層に含まれる分枝状高分子と、前記配向誘導層に含まれる直鎖状高分子とが、沿層方向に沿って一軸配向している誘電体フィルムと、前記誘電体フィルムに電気的に接続された一対の第1電極及び第2電極とを備えることを特徴とする。
The film capacitor according to the present invention has a high dielectric constant polymer having a relative dielectric constant of 4.0 or more at a frequency of 1 kHz as a main chain, and has a low dielectric constant and a high relative dielectric constant smaller than that of the high dielectric constant polymer. A dielectric layer comprising a branched polymer having a molecule as a side chain; an alignment-inducing layer comprising a linear polymer having a high dielectric constant polymer as a main chain; and the dielectric layer; A dielectric layer comprising a branching polymer contained in the dielectric layer and a linear polymer contained in the orientation-inducing layer uniaxially oriented along the layering direction. And a pair of first and second electrodes electrically connected to the dielectric film.
また、本発明に係る誘電体フィルムの製造装置は、高誘電率高分子を主鎖とし、低誘電率高分子を側鎖とする分枝状高分子を含んでなる誘電体層と、前記高誘電率高分子を主鎖とする直鎖状高分子を含んでなる配向誘導層とを含んでなり、前記誘電体層に含まれる分枝状高分子と、前記配向誘導層に含まれる直鎖状高分子とが、沿層方向に沿って一軸配向している誘電体フィルムを製造する誘電体フィルム製造装置であって、前記直鎖状高分子を含んでなる塊状体を基板に圧着させる押圧手段と、前記圧着させた基板を掃引して、前記直鎖状高分子が沿層方向に沿って一軸配向した前記配向誘導層を形成する掃引手段と、前記配向誘導層の表面に前記分枝状高分子を湿式塗布して、前記分枝状高分子が前記直鎖状高分子と同方向に一軸配向した前記誘電体層を形成する塗布手段とを備えることを特徴とする。
The dielectric film manufacturing apparatus according to the present invention includes a dielectric layer comprising a branched polymer having a high dielectric constant polymer as a main chain and a low dielectric constant polymer as a side chain; An alignment-inducing layer comprising a linear polymer having a dielectric constant polymer as a main chain, the branched polymer contained in the dielectric layer, and the linear polymer contained in the alignment-inducing layer A dielectric film manufacturing apparatus that manufactures a dielectric film in which a linear polymer is uniaxially oriented along the layering direction, and presses the block including the linear polymer onto the substrate Means for sweeping the pressure-bonded substrate to form the alignment-inducing layer in which the linear polymer is uniaxially oriented along the layering direction; and the branch on the surface of the alignment-inducing layer. The branched polymer is uniaxially oriented in the same direction as the linear polymer. Characterized in that it comprises a coating means for forming the dielectric layer.
本発明によれば、誘電率の増大と誘電損失の低減を両立した誘電体フィルム、フィルムコンデンサ及び誘電体フィルムの製造装置を提供することができる。
According to the present invention, it is possible to provide a dielectric film, a film capacitor, and a dielectric film manufacturing apparatus that achieve both increase in dielectric constant and reduction in dielectric loss.
以下、本発明の一実施形態に係る誘電体フィルム、フィルムコンデンサ及び誘電体フィルムの製造装置について説明する。
Hereinafter, a dielectric film, a film capacitor, and a dielectric film manufacturing apparatus according to an embodiment of the present invention will be described.
図1は、本発明の一実施形態に係る誘電体フィルムを示す概略図である。(a)は誘電体フィルムの層構成を示す断面図、(b)は誘電体層の状態を示す概念図、(c)は配向誘導層の状態を示す概念図である。
FIG. 1 is a schematic view showing a dielectric film according to an embodiment of the present invention. (A) is sectional drawing which shows the layer structure of a dielectric film, (b) is a conceptual diagram which shows the state of a dielectric material layer, (c) is a conceptual diagram which shows the state of an orientation induction layer.
本実施形態に係る誘電体フィルム1は、図1に示すように、配向誘導層12と、誘電体層13とを備えている。図1では、一対の電極を構成する第1電極層11と、第2電極層14との間に、配向誘導層12と、強誘電性の高分子材料を誘電体として含む誘電体層13とが挟まれた積層構造が示されている。本実施形態に係る誘電体フィルム1は、誘電体層13に含まれる高分子材料を配向させるために、配向誘導層12を誘電体層13の下地として形成している点に特徴を有している。なお、誘電体フィルム1は、図1に示されるような、単層の配向誘導層12と単層の誘電体層13とからなる2層構成に限られず、配向誘導層12と誘電体層13との積層構造が複数繰り返し積層されてなる複数層構成とされてもよい。
The dielectric film 1 according to the present embodiment includes an orientation induction layer 12 and a dielectric layer 13 as shown in FIG. In FIG. 1, an alignment-inducing layer 12 and a dielectric layer 13 containing a ferroelectric polymer material as a dielectric between a first electrode layer 11 and a second electrode layer 14 constituting a pair of electrodes. A laminated structure in which is sandwiched is shown. The dielectric film 1 according to this embodiment is characterized in that the orientation-inducing layer 12 is formed as a base of the dielectric layer 13 in order to align the polymer material contained in the dielectric layer 13. Yes. The dielectric film 1 is not limited to the two-layer configuration including the single-layer orientation inducing layer 12 and the single-layer dielectric layer 13 as shown in FIG. 1, but the orientation inducing layer 12 and the dielectric layer 13. And a multi-layer structure in which a plurality of stacked structures are repeatedly stacked.
誘電体層13は、高誘電体である分枝状高分子15を主成分として含む層となっている。分枝状高分子15は、比誘電率が高い高誘電率高分子16を主鎖とし、主鎖を構成する高誘電率高分子16よりも比誘電率が小さい低誘電率高分子17を側鎖として有している。誘電体層13においては、主として、主鎖を構成する高誘電率高分子16の作用によって、誘電率の増大を図る一方で、側鎖を構成する低誘電率高分子17の作用によって、誘電損失の低減を図っている。
The dielectric layer 13 is a layer containing the branched polymer 15 which is a high dielectric material as a main component. The branched polymer 15 has a high dielectric constant polymer 16 having a high relative dielectric constant as a main chain and a low dielectric constant polymer 17 having a relative dielectric constant smaller than that of the high dielectric constant polymer 16 constituting the main chain. Has as a chain. In the dielectric layer 13, while increasing the dielectric constant mainly by the action of the high dielectric constant polymer 16 constituting the main chain, the dielectric loss is caused by the action of the low dielectric constant polymer 17 constituting the side chain. We are trying to reduce it.
高誘電率高分子16は、電気双極子モーメントを有する単量体が重合してなる重合体であって、電界の印加によって単量体単位で分子回転し、各電気双極子モーメントが略同方向に配向するように分極することで高い比誘電率を示す高分子である。この高誘電率高分子16は、分枝状高分子15の主鎖骨格を構成する分子鎖であり、側鎖として、グラフト重合された低誘電率高分子17からなる分枝を有している。誘電体フィルム1の誘電体層13は、このような分枝状高分子15の主鎖の高誘電率高分子16が、図1(b)に示すように、誘電体層15の沿層方向に沿って一軸配向するように形成される。
The high dielectric constant polymer 16 is a polymer obtained by polymerizing a monomer having an electric dipole moment, and the electric dipole moment is rotated in the same direction in each monomer unit by applying an electric field. It is a polymer that exhibits a high relative dielectric constant by being polarized so as to be oriented in the direction. The high dielectric constant polymer 16 is a molecular chain constituting the main chain skeleton of the branched polymer 15, and has a branch made of the graft-polymerized low dielectric constant polymer 17 as a side chain. . As shown in FIG. 1B, the dielectric layer 13 of the dielectric film 1 has a main chain high-dielectric-constant polymer 16 of the branched polymer 15 in the direction along the dielectric layer 15. Is formed so as to be uniaxially oriented.
ここで、高誘電率高分子16を主鎖とし、低誘電率高分子17を側鎖として有する分枝状高分子15を誘電体層13の主成分とし、この分枝状高分子15を一軸配向させる理由について説明する。
Here, a branched polymer 15 having a high dielectric constant polymer 16 as a main chain and a low dielectric constant polymer 17 as a side chain is a main component of the dielectric layer 13, and the branched polymer 15 is uniaxially formed. The reason for orientation will be described.
図2は、本実施形態に係る誘電体フィルムに含まれる分岐状高分子の配向状態及び分極状態の概念図である。(a)は分岐状高分子の主鎖構造を示す概念図、(b)は分岐状高分子同士が配向した状態を示す概念図である。図2(a)では、誘電体フィルムを構成する誘電体層13において生じる誘電分極の概念を、ポリフッ化ビニリデンを例にとって示している。
FIG. 2 is a conceptual diagram of the orientation state and the polarization state of the branched polymer contained in the dielectric film according to the present embodiment. (A) is a conceptual diagram which shows the principal chain structure of a branched polymer, (b) is a conceptual diagram which shows the state with which branched polymer was orientated. In FIG. 2A, the concept of dielectric polarization generated in the dielectric layer 13 constituting the dielectric film is shown by taking polyvinylidene fluoride as an example.
分岐状高分子15は、図2(a)に示すように、高誘電率高分子16であるポリフッ化ビニリデンからなる主鎖構造を有しており、この主鎖構造には、不図示の低誘電率高分子17からなる側鎖が結合した分子構造を有している。なお、図2(a)においては、不図示の低誘電率高分子17が存在し得る領域を破線で示している。分岐状高分子15を構成する単量体のフッ化ビニリデン(-[CH2-CF2]-)は、図2(a)に矢印で示すように、主鎖が配向する方向に対して略直交する成分を含む双極子モーメント(電気双極子モーメント、永久双極子モーメント)を有している。
As shown in FIG. 2A, the branched polymer 15 has a main chain structure made of polyvinylidene fluoride, which is a high dielectric constant polymer 16, and this main chain structure has a low chain (not shown). It has a molecular structure in which side chains made of dielectric constant polymer 17 are bonded. In FIG. 2A, a region where a low dielectric constant polymer 17 (not shown) may exist is indicated by a broken line. The monomer vinylidene fluoride (— [CH 2 —CF 2 ] —) constituting the branched polymer 15 is approximately in the direction in which the main chain is oriented, as indicated by an arrow in FIG. It has a dipole moment (electric dipole moment, permanent dipole moment) including orthogonal components.
一般に、ポリフッ化ビニリデンは、互いに異なる複数の結晶構造をとることが知られている。ポリフッ化ビニリデンは、分子単独状態では、通常、α相(II型)の結晶構造となるが、α相においては、隣接する単量体同士の間で双極子モーメントが略反対方向に配向することになるため、比誘電率は3~4程度と低い値を示す。その一方で、分子集合状態では、所定の処理を行うことによって、図2(a)に示すようなβ相(I型)の結晶構造を形成させることが可能である。β相においては、単量体の双極子モーメントが略同方向に配向することになるため、分極が大きい状態となる。よって、このような高誘電率高分子16によって分岐状高分子15の主鎖骨格を構成し、主鎖を適切に配向させることによって、主鎖に対して略直交する方向の分極を増大させることが可能となる。すなわち、誘電体フィルム1における誘電体層13の沿層方向に沿って、分枝状高分子15の主鎖の高誘電率高分子16を一軸配向させることで、誘電率の増大を図ることができ、フィルムコンデンサを大容量化することができる。
In general, it is known that polyvinylidene fluoride has a plurality of crystal structures different from each other. Polyvinylidene fluoride usually has an α-phase (type II) crystal structure in the molecular single state, but in the α-phase, the dipole moment is oriented in the opposite direction between adjacent monomers. Therefore, the relative dielectric constant is as low as about 3 to 4. On the other hand, in the molecular assembly state, it is possible to form a β phase (I type) crystal structure as shown in FIG. In the β phase, the dipole moment of the monomer is oriented in substantially the same direction, so that the polarization is large. Therefore, by forming the main chain skeleton of the branched polymer 15 with such a high dielectric constant polymer 16 and appropriately orienting the main chain, polarization in a direction substantially orthogonal to the main chain can be increased. Is possible. That is, the dielectric constant can be increased by uniaxially orienting the high dielectric constant polymer 16 of the main chain of the branched polymer 15 along the creeping direction of the dielectric layer 13 in the dielectric film 1. And the capacity of the film capacitor can be increased.
一方、誘電体フィルム1における誘電損失については、分極の残留による影響が強く表れることになる。図2(a)に示されるような高誘電率高分子16の分極状態は、単結合周りの分子回転による復極動作によって解消され得るものである。分極領域の上面と下面に表面電荷が現れると、これらが形成する電場が復極力として働くため、分極領域が電極に接するような場合には、表面電荷が電極電荷によって相殺されてしまう。この場合には、復極力が生じないために分極が残留することになり、誘電体ヒステリシスが生じて、誘電損失の増大を招く。そこで、分岐状高分子15の側鎖として低誘電率高分子17を導入することによって、分極領域を細分化し、表面電荷が電極電荷によって相殺され難くなるようにすることで、誘電損失の低減を図ることが可能となる。
On the other hand, the dielectric loss in the dielectric film 1 is strongly influenced by the residual polarization. The polarization state of the high dielectric constant polymer 16 as shown in FIG. 2A can be eliminated by a depolarization operation by molecular rotation around a single bond. When surface charges appear on the upper surface and the lower surface of the polarization region, the electric field formed by these acts as a reversal force. Therefore, when the polarization region is in contact with the electrode, the surface charge is offset by the electrode charge. In this case, since no depolarization force is generated, polarization remains and dielectric hysteresis occurs, leading to an increase in dielectric loss. Therefore, by introducing the low dielectric constant polymer 17 as a side chain of the branched polymer 15, the polarization region is subdivided so that the surface charge is not easily canceled by the electrode charge, thereby reducing the dielectric loss. It becomes possible to plan.
但し、このような低誘電率高分子17を大量に導入すると、分枝状高分子15の誘電率は大きく低下してしまうことになる。よって、低誘電率高分子17の導入を抑えつつ、誘電損失を低減するために、分極領域サイズを縮小することが求められる。復極力は分極領域サイズに反比例することから、分極領域サイズを縮小することによって復極力が確保されるためである。一般には、分岐状高分子15をフィルム化して分子集合とした場合には、分枝状高分子15が、結晶質領域と非晶質領域が混在したラメラ構造を呈することが多く、分極領域サイズが大きく不均一な構造となることが多い。したがって、図2(b)に示すように、分岐状高分子15を、主鎖を構成する高誘電率高分子16が一軸方向に配向するように配列させて分子集合とすることによって、分極領域サイズを縮小させると、誘電率の増大と誘電損失の低減の両立を高い水準で実現することができるようになる。
However, when such a low dielectric constant polymer 17 is introduced in a large amount, the dielectric constant of the branched polymer 15 is greatly reduced. Therefore, it is required to reduce the size of the polarization region in order to reduce the dielectric loss while suppressing the introduction of the low dielectric constant polymer 17. This is because the depolarization force is inversely proportional to the polarization region size, and thus the repolarization force is ensured by reducing the polarization region size. In general, when the branched polymer 15 is formed into a molecular assembly by forming a film, the branched polymer 15 often exhibits a lamellar structure in which a crystalline region and an amorphous region are mixed. Are often large and non-uniform. Therefore, as shown in FIG. 2 (b), the branched polymer 15 is arranged so that the high dielectric constant polymer 16 constituting the main chain is oriented in a uniaxial direction to form a molecular assembly. When the size is reduced, it is possible to achieve both an increase in dielectric constant and a reduction in dielectric loss at a high level.
高誘電率高分子16としては、室温下(25℃)において測定される周波数1kHzにおける比誘電率が4.0以上である高分子を用いることができる。このような比誘電率が高い高誘電率高分子16を誘電体層13に含ませることによって、誘電体フィルム1の誘電率を増大させ、容量を大きく向上させることができる。なお、高誘電率高分子16としては、比誘電率が5.0以上である高分子がより好ましい。また、高誘電率高分子16の数平均重合度は、300以上100000以下が好ましく、800以上50000以下程度がより好ましい。
As the high dielectric constant polymer 16, a polymer having a relative dielectric constant of 4.0 or more at a frequency of 1 kHz measured at room temperature (25 ° C.) can be used. By including such a high dielectric constant polymer 16 having a high relative dielectric constant in the dielectric layer 13, the dielectric constant of the dielectric film 1 can be increased and the capacitance can be greatly improved. The high dielectric constant polymer 16 is more preferably a polymer having a relative dielectric constant of 5.0 or more. The number average polymerization degree of the high dielectric constant polymer 16 is preferably 300 or more and 100,000 or less, and more preferably about 800 or more and 50,000 or less.
高誘電率高分子16としては、具体的には、例えば、フッ素系高分子(フッ素樹脂)、ナイロン、尿素樹脂、ポリフェニレンサルファイド、ポリウレタン、ポリエステル、酢酸ビニル樹脂、アクリル樹脂、エポキシ樹脂等が挙げられる。これらの高分子材料には、必要に応じて極性基を導入することで、所望の誘電性を付与すればよい。高誘電率高分子16としては、これらの中でも、フッ素系高分子が好ましい。高誘電率高分子16としてフッ素系高分子を用いることによって、質量あたりの誘電率を向上させることができる。高誘電率高分子16は、二種以上を併用してもよいが、一種を単独で用いることがより好ましい。
Specific examples of the high dielectric constant polymer 16 include fluoropolymer (fluorine resin), nylon, urea resin, polyphenylene sulfide, polyurethane, polyester, vinyl acetate resin, acrylic resin, and epoxy resin. . What is necessary is just to provide desired dielectric property to these polymeric materials by introduce | transducing a polar group as needed. Among these, the high dielectric constant polymer 16 is preferably a fluorine-based polymer. By using a fluorine-based polymer as the high dielectric constant polymer 16, the dielectric constant per mass can be improved. Two or more high dielectric constant polymers 16 may be used in combination, but it is more preferable to use one kind alone.
高誘電率高分子16を構成する単量体としては、フッ素系高分子については、例えば、フッ化ビニル、フッ化ビニリデン、トリフルオロエチレン、テトラフルオロエチレン、ヘキサフルオロプロピレン等のフルオロオレフィンや、エチレン、プロピレン等のオレフィンや、パーフルオロアルキルビニルエーテル等が挙げられる。すなわち、高誘電率高分子16としては、例えば、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル、ポリテトラフルオロエチレン、単量体としてフッ化ビニリデンとトリフルオロエチレンとを含むフッ化ビニリデン-トリフルオロエチレン二元共重合体、単量体としてフッ化ビニリデンとトリフルオロエチレンとテトラフルオロエチレンとを含むフッ化ビニリデン-トリフルオロエチレン-テトラフルオロエチレン三元共重合体、エチレン-テトラフルオロエチレン共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)等を主鎖骨格とするものが挙げられる。
As the monomer constituting the high dielectric constant polymer 16, for the fluorine-based polymer, for example, fluoroolefin such as vinyl fluoride, vinylidene fluoride, trifluoroethylene, tetrafluoroethylene, hexafluoropropylene, ethylene, And olefins such as propylene, and perfluoroalkyl vinyl ethers. That is, examples of the high dielectric constant polymer 16 include polyvinylidene fluoride (PVDF), polyvinyl fluoride, polytetrafluoroethylene, and vinylidene fluoride-trifluoroethylene containing vinylidene fluoride and trifluoroethylene as monomers. Binary copolymers, vinylidene fluoride-trifluoroethylene-tetrafluoroethylene terpolymers containing vinylidene fluoride, trifluoroethylene, and tetrafluoroethylene as monomers, ethylene-tetrafluoroethylene copolymers, Examples thereof include those having a main chain skeleton of vinylidene fluoride-hexafluoropropylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) and the like.
高誘電率高分子16としては、これらの中でも、フッ化ビニリデンを単量体としたポリフッ化ビニリデン、フッ化ビニリデンを主たる単量体として含むと共に他の単量体をも含むフッ化ビニリデン系共重合体が好ましく、ポリフッ化ビニリデン(PVDF)、フッ化ビニリデン-トリフルオロエチレン二元共重合体がより好ましい。このようなフッ化ビニリデンを単量体とした高分子を用いることによって、誘電率をより大きく向上させることができる。また、外部電圧印加時の残留分極を低減することができるため、誘電損失を有効に低減することができる。
Among these, the high dielectric constant polymer 16 includes, among these, polyvinylidene fluoride using vinylidene fluoride as a monomer, and vinylidene fluoride co-polymer containing vinylidene fluoride as a main monomer and other monomers. Polymers are preferred, and polyvinylidene fluoride (PVDF) and vinylidene fluoride-trifluoroethylene binary copolymers are more preferred. By using such a polymer using vinylidene fluoride as a monomer, the dielectric constant can be further improved. In addition, since the residual polarization when an external voltage is applied can be reduced, the dielectric loss can be effectively reduced.
誘電体層13における高誘電率高分子16については、高誘電率高分子16を構成する単量体として、前記の例示された単量体の誘導体を併用することが好ましい。反応性基を有する誘導体を反応点として、高誘電率高分子16の主鎖に側鎖を導入するためである。反応性基を有する誘導体としては、例えば、クロロフルオロエチレン、クロロジフルオロエチレン、クロロトリフルオロエチレン、ブロモフルオロエチレン、ブロモジフルオロエチレン、ブロモトリフルオロエチレン等が挙げられる。このようなハロゲン化アルキルを併用することによって、主鎖に側鎖をグラフト重合させるためのラジカル反応点を形成することができる。
For the high dielectric constant polymer 16 in the dielectric layer 13, it is preferable to use a derivative of the above exemplified monomer as the monomer constituting the high dielectric constant polymer 16. This is because side chains are introduced into the main chain of the high dielectric constant polymer 16 using a derivative having a reactive group as a reaction point. Examples of the derivative having a reactive group include chlorofluoroethylene, chlorodifluoroethylene, chlorotrifluoroethylene, bromofluoroethylene, bromodifluoroethylene, and bromotrifluoroethylene. By using such an alkyl halide together, a radical reaction point for graft polymerization of the side chain to the main chain can be formed.
低誘電率高分子17としては、分枝状高分子15の主鎖を構成する前記の高誘電率高分子16に側鎖として結合する高分子であって、結合する高誘電率高分子16よりも比誘電率が小さい高分子が用いられる。このような比誘電率が小さい低誘電率高分子17を側鎖として導入することによって、前記のとおり誘電損失の低減を図ることができる。
The low dielectric constant polymer 17 is a polymer that binds as a side chain to the high dielectric constant polymer 16 constituting the main chain of the branched polymer 15. Also, a polymer having a small relative dielectric constant is used. By introducing such a low dielectric constant polymer 17 having a small relative dielectric constant as a side chain, the dielectric loss can be reduced as described above.
低誘電率高分子17としては、室温下(25℃)において測定される周波数1kHzにおける比誘電率が4.0未満である高分子を用いることが好ましく、比誘電率が3.0未満である高分子を用いることがより好ましい。また、高誘電率高分子16との相溶性が高い高分子が好ましく、低誘電率高分子17の比率は、主鎖の高誘電率高分子16に対して、30質量%以下が好ましく、20質量%前後であることがより好ましい。このような比誘電率が低く、高誘電率高分子16との相溶性が高い高分子を用いることによって、分極領域を有効に細分化することができ、誘電損失が確実に低減されるようになる。
As the low dielectric constant polymer 17, it is preferable to use a polymer having a relative dielectric constant of less than 4.0 at a frequency of 1 kHz measured at room temperature (25 ° C.), and a relative dielectric constant of less than 3.0. It is more preferable to use a polymer. Further, a polymer having high compatibility with the high dielectric constant polymer 16 is preferable, and the ratio of the low dielectric constant polymer 17 is preferably 30% by mass or less with respect to the high dielectric constant polymer 16 of the main chain. More preferably, it is around mass%. By using a polymer having such a low relative dielectric constant and high compatibility with the high dielectric constant polymer 16, the polarization region can be effectively subdivided, and the dielectric loss can be reliably reduced. Become.
低誘電率分子17としては、具体的には、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン類や、ポリメチルメタクリレート(PMMA)、ポリエチルメタクリレート(PEMA)、ポリブチルメタクリレート等のポリメタクリレート類や、ポリメチルアクリレート、ポリエチルアクリレート、ポリブチルアクリレート等のポリアクリレート類や、ポリスチレン(PS)、ポリビニルトルエン等のポリビニル類が挙げられる。低誘電率高分子17としては、これらの中でも、ポリメチルメタクリレート、ポリエチルメタクリレート又はポリスチレンが好ましい。低誘電率高分子17としてこれらの高分子を用いることによって、誘電損失を有効に低減することができる。低誘電率高分子17は、二種以上を併用してもよいが、一種を単独で用いることがより好ましい。また、低誘電率高分子17は、単独重合体であっても、共重合体であってもよいが、単独重合体が好ましい。
Specific examples of the low dielectric constant molecule 17 include polyolefins such as polyethylene and polypropylene, polymethacrylates such as polymethyl methacrylate (PMMA), polyethyl methacrylate (PEMA), and polybutyl methacrylate, and polymethyl. Examples thereof include polyacrylates such as acrylate, polyethyl acrylate, and polybutyl acrylate, and polyvinyls such as polystyrene (PS) and polyvinyl toluene. Among these, the low dielectric constant polymer 17 is preferably polymethyl methacrylate, polyethyl methacrylate, or polystyrene. By using these polymers as the low dielectric constant polymer 17, the dielectric loss can be effectively reduced. Two or more low dielectric constant polymers 17 may be used in combination, but it is more preferable to use one kind alone. The low dielectric constant polymer 17 may be a homopolymer or a copolymer, but is preferably a homopolymer.
ここで、このような構成を有する誘電体層13の下地として、配向誘導層12を形成する理由について説明する。
Here, the reason why the orientation induction layer 12 is formed as the base of the dielectric layer 13 having such a configuration will be described.
図3は、比較例に係る誘電体フィルムを示す概略図である。(a)は誘電体フィルムの層構成を示す断面図、(b)は誘電体層の状態を示す概念図である。比較例に係る誘電体フィルム100は、図3(a)に示すように、一対の電極を構成する第1電極層11と、第2電極層14との間に、誘電体層13のみが挟まれた構造を有している。
FIG. 3 is a schematic view showing a dielectric film according to a comparative example. (A) is sectional drawing which shows the layer structure of a dielectric film, (b) is a conceptual diagram which shows the state of a dielectric material layer. In the dielectric film 100 according to the comparative example, as shown in FIG. 3A, only the dielectric layer 13 is sandwiched between the first electrode layer 11 and the second electrode layer 14 constituting a pair of electrodes. Has a structure.
前記のとおり、比誘電率が高い高誘電率高分子16を主鎖とし、主鎖を構成する高誘電率高分子16よりも比誘電率が小さい低誘電率高分子17を側鎖とした分岐状高分子15を誘電体層13に用い、主鎖の高誘電率高分子16が、一軸方向に配向した分子集合となるように形成することによって、誘電率の増大と、誘電損失の低減の両立を図ることができる。しかしながら、誘電体フィルムの製造工程において、このような側鎖を有する分枝状高分子15の分子集合を形成させるのは容易ではなく、図3(b)に示す比較例に係る誘電体フィルム100のように、分枝状高分子15の主鎖の高誘電率高分子16が、複数軸の方向に配向した状態となることが多い。このような誘電体フィルム100では、分極領域サイズが大きく、分子回転における立体障害を生じ易くなって、復極動作に際して分極の残留が解消され難くなる。そこで、本実施形態に係る誘電体フィルム1では、誘電体層13の下地として配向誘導層12をあらかじめ形成し、配向誘導層12によって、誘電体層13の分枝状高分子15が良好に一軸方向に配向誘導されるようにしている。
As described above, a branch having a high dielectric constant polymer 16 having a high relative dielectric constant as a main chain and a low dielectric constant polymer 17 having a relative dielectric constant smaller than that of the high dielectric constant polymer 16 constituting the main chain as a side chain. By using the polymer 15 as the dielectric layer 13 and forming the main chain high dielectric constant polymer 16 to be a molecular assembly oriented in a uniaxial direction, the dielectric constant can be increased and the dielectric loss can be reduced. Both can be achieved. However, it is not easy to form a molecular assembly of the branched polymer 15 having such side chains in the dielectric film manufacturing process, and the dielectric film 100 according to the comparative example shown in FIG. As described above, the high dielectric constant polymer 16 of the main chain of the branched polymer 15 is often in a state of being oriented in the directions of a plurality of axes. In such a dielectric film 100, the polarization region size is large, steric hindrance in molecular rotation is likely to occur, and it is difficult to eliminate residual polarization during the depolarization operation. Therefore, in the dielectric film 1 according to the present embodiment, the alignment inducing layer 12 is formed in advance as a base of the dielectric layer 13, and the branched polymer 15 of the dielectric layer 13 is favorably uniaxially formed by the alignment inducing layer 12. Orientation is induced in the direction.
配向誘導層12は、強誘電体である直鎖状高分子18を主成分として含む層とする。直鎖状高分子18は、高分子からなる側鎖を有さない直鎖状の高誘電率高分子であって、前記の分枝状高分子15のように側鎖として低誘電率高分子17を有するグラフト重合体とは異なる高分子である。誘電体フィルム1の配向誘導層12は、このような直鎖状高分子18が、図1(c)に示すように、配向誘導層12の沿層方向に沿って一軸配向するように形成される。配向誘導層12において、このような立体障害が少ない直鎖状高分子18を用いることによって、配向を誘導する高分子が良好に一軸配向した配向誘導層12を形成し易くすると共に、主鎖が高誘電率高分子である直鎖状高分子18によって、誘電率の増大も図っている。
The orientation-inducing layer 12 is a layer containing a linear polymer 18 that is a ferroelectric as a main component. The linear polymer 18 is a linear high dielectric constant polymer that does not have a side chain made of a polymer, and has a low dielectric constant polymer as a side chain like the branched polymer 15 described above. It is a polymer different from the graft polymer having 17. The alignment-inducing layer 12 of the dielectric film 1 is formed so that such a linear polymer 18 is uniaxially oriented along the layering direction of the orientation-inducing layer 12 as shown in FIG. The By using such a linear polymer 18 with less steric hindrance in the alignment-inducing layer 12, it is easy to form the alignment-inducing layer 12 in which the alignment-inducing polymer is well uniaxially oriented, and the main chain is The linear polymer 18 that is a high dielectric constant polymer also increases the dielectric constant.
このような配向誘導層12上に誘電体層13を形成すると、図1(b)及び(c)に示されるように、配向誘導層12において沿層方向に一軸配向している直鎖状高分子18と同一の方向に、分枝状高分子16が配向するようになる。そして、誘電体層13に含まれる分枝状高分子15と、配向誘導層12に含まれる直鎖状高分子18とが、沿層方向に沿って同一方向に一軸配向している誘電体フィルム1が形成される。そして、誘電体フィルム1の誘電体層13では、図1(b)に示すように、低誘電率高分子17が、一軸配向した隣り合う分枝状高分子15同士の間に介在するように所定の間隔を保って分散した状態となるため、分極領域が適切に細分化され、誘電損失を有効に低減させることができるようになる。
When the dielectric layer 13 is formed on such an orientation inducing layer 12, as shown in FIGS. 1B and 1C, the linear high-order uniaxially oriented in the creeping direction in the orientation inducing layer 12 is performed. The branched polymer 16 is oriented in the same direction as the molecule 18. A dielectric film in which the branched polymer 15 contained in the dielectric layer 13 and the linear polymer 18 contained in the orientation inducing layer 12 are uniaxially oriented in the same direction along the layering direction. 1 is formed. In the dielectric layer 13 of the dielectric film 1, as shown in FIG. 1 (b), the low dielectric constant polymer 17 is interposed between adjacent uniaxially oriented branched polymers 15. Since the dispersion state is maintained at a predetermined interval, the polarization region is appropriately subdivided, and the dielectric loss can be effectively reduced.
直鎖状高分子18としては、前記の分枝状高分子15の主鎖を構成する高誘電率高分子16として用いられる高分子と同種の群から選択されるものを用いることができる。具体的には、フッ素系高分子が好ましく、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン、フッ化ビニリデン-トリフルオロエチレン二元共重合体又はフッ化ビニリデン-トリフルオロエチレン-テトラフルオロエチレン三元共重合体がより好ましい。また、直鎖状高分子18は、誘電体層13に含まれる分枝状高分子15の主鎖を構成する高誘電率高分子16と同種の高分子とすることがより好ましい。
As the linear polymer 18, a polymer selected from the same group as the polymer used as the high dielectric constant polymer 16 constituting the main chain of the branched polymer 15 can be used. Specifically, a fluorine-based polymer is preferable, such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene, vinylidene fluoride-trifluoroethylene binary copolymer, or vinylidene fluoride-trifluoroethylene-tetrafluoroethylene ternary. A copolymer is more preferred. The linear polymer 18 is more preferably a polymer of the same type as the high dielectric constant polymer 16 constituting the main chain of the branched polymer 15 contained in the dielectric layer 13.
第1電極層11及び第2電極層14は、金属が蒸着されることによって形成される薄膜状の電極層であっても、金属箔であってもよい。第1電極層11及び第2電極層14を構成する金属としては、例えば、アルミニウム、亜鉛、銅、錫、これらの合金等が挙げられ、アルミニウム又はアルミニウム合金が好適に用いられる。
The first electrode layer 11 and the second electrode layer 14 may be a thin film electrode layer formed by depositing a metal or a metal foil. As a metal which comprises the 1st electrode layer 11 and the 2nd electrode layer 14, aluminum, zinc, copper, tin, these alloys etc. are mentioned, for example, Aluminum or aluminum alloy is used suitably.
次に、前記の誘電体フィルム1の製造方法及び誘電体フィルム製造装置について説明する。
Next, a method for manufacturing the dielectric film 1 and a dielectric film manufacturing apparatus will be described.
図4は、本実施形態に係る誘電体フィルム製造装置の構成を示す概略図である。
FIG. 4 is a schematic diagram showing the configuration of the dielectric film manufacturing apparatus according to this embodiment.
誘電体フィルム製造装置50は、図4に示すように、主に、押圧手段51と、掃引手段52,53と、塗布手段54とを備えている。
As shown in FIG. 4, the dielectric film manufacturing apparatus 50 mainly includes a pressing unit 51, sweeping units 52 and 53, and a coating unit 54.
押圧手段51は、供給されるポリマーペレット(塊状体)を押圧して基材に圧着させる装置である。なお、誘電体フィルム製造装置50には、押圧手段51に対向するように、加熱ステージ55が備えられている。加熱ステージ55によって、搬送されてくる基材が加熱され、この基材に圧着させるポリマーペレットが加熱軟化されるようになっている。基材を加熱する温度は、直鎖状高分子18の融点以下であることが好ましく、例えば、130℃以下とすることが好ましい。このような温度範囲であれば、直鎖状高分子18の変質を避けることができ、精度が良好な掃引を行うことができる。
The pressing means 51 is a device that presses the supplied polymer pellets (blocks) and presses them against the base material. The dielectric film manufacturing apparatus 50 is provided with a heating stage 55 so as to face the pressing means 51. The substrate to be conveyed is heated by the heating stage 55, and the polymer pellets to be pressure-bonded to the substrate are heated and softened. The temperature at which the substrate is heated is preferably not higher than the melting point of the linear polymer 18, and is preferably not higher than 130 ° C., for example. Within such a temperature range, alteration of the linear polymer 18 can be avoided, and sweeping with good accuracy can be performed.
ポリマーペレットとしては、直鎖状高分子18を成形したポリマーペレットを供給する。直鎖状高分子18(直鎖状高分子18の主鎖の高誘電率高分子)は、高分子の種類に応じて、適宜の重合方法を用いて合成することができる。重合方法としては、例えば、乳化重合法、懸濁重合法、溶液重合法等のラジカル重合法が挙げられる。基材としては、圧着荷重に耐える適宜の金属基板、無機基板、樹脂基板等を用いることができるが、配向に適したガラス基板を用いることが好ましい。
As polymer pellets, polymer pellets formed from linear polymer 18 are supplied. The linear polymer 18 (the high dielectric constant polymer of the main chain of the linear polymer 18) can be synthesized using an appropriate polymerization method depending on the type of the polymer. Examples of the polymerization method include radical polymerization methods such as an emulsion polymerization method, a suspension polymerization method, and a solution polymerization method. As a base material, an appropriate metal substrate, an inorganic substrate, a resin substrate, or the like that can withstand a pressure load can be used, but a glass substrate suitable for orientation is preferably used.
掃引手段52,53は、押圧手段51による押圧の方向と略垂直方向に基材を掃引して、直鎖状高分子18が沿層方向に沿って一軸配向した配向誘導層12を形成する装置である。掃引手段52,53は、基材が載置される可動体52と、可動体52の移動を駆動する駆動機構53とからなっている。例えば、可動体52を、スラット、ベルト、ローラ等で構成し、駆動機構53が回動して、このような可動体52を順次移動させるように装置を構成する。なお、この誘電体フィルム製造装置50では、掃引手段52,53が、基材や誘電体フィルムを各工程に順次搬送する機能も有している。
The sweeping means 52, 53 sweeps the substrate in a direction substantially perpendicular to the direction of pressing by the pressing means 51, and forms the alignment-inducing layer 12 in which the linear polymer 18 is uniaxially oriented along the layering direction. It is. The sweeping means 52 and 53 include a movable body 52 on which a base material is placed and a drive mechanism 53 that drives the movement of the movable body 52. For example, the movable body 52 is configured by a slat, a belt, a roller, and the like, and the drive mechanism 53 is rotated so that the movable body 52 is sequentially moved. In the dielectric film manufacturing apparatus 50, the sweep means 52 and 53 also have a function of sequentially transporting the base material and the dielectric film to each step.
誘電体フィルム1の製造においては、押圧手段51によって、直鎖状高分子18を含んでなるポリマーペレットを搬送されてくる基材に圧着させる。そして、基材に圧着させたポリマーペレットは、加熱ステージ55による加熱で、軟化状態ないし溶融状態となる。そこで、掃引手段52,53によって、直鎖状高分子18を含んでなる半溶融状態のポリマーペレットが圧着された基材を掃引し、摩擦転写法を利用して配向誘導層12を形成する。このように、配向誘導層12の形成手段として摩擦転写法を採用することによって、直鎖状高分子18が沿層方向に沿って良好に一軸配向した配向誘導層12を形成することが可能となる。また、この誘電体フィルム製造装置50では、掃引手段52,53が、基材や誘電体フィルムを搬送する機能も有しているため、ロールツーロール形式による誘電体フィルムの製造も可能である。なお、掃引速度や圧着荷重は、適宜調整して実施することができる。配向誘導層12の膜厚は、10nm以上あれば配向誘導を行わせることが可能である。
In the production of the dielectric film 1, the pressing means 51 presses the polymer pellet containing the linear polymer 18 to the substrate to be conveyed. And the polymer pellet press-bonded to the base material becomes a softened state or a molten state by heating by the heating stage 55. Therefore, the substrate on which the semi-molten polymer pellets containing the linear polymer 18 are pressure-bonded is swept by the sweeping means 52 and 53, and the orientation inducing layer 12 is formed by using a friction transfer method. Thus, by employing the friction transfer method as the means for forming the orientation induction layer 12, it is possible to form the orientation induction layer 12 in which the linear polymer 18 is well uniaxially oriented along the layering direction. Become. Moreover, in this dielectric film manufacturing apparatus 50, since the sweep means 52 and 53 also have the function to convey a base material and a dielectric film, the dielectric film of a roll-to-roll format is also possible. Note that the sweep speed and the pressure bonding load can be adjusted as appropriate. If the film thickness of the alignment induction layer 12 is 10 nm or more, alignment induction can be performed.
塗布手段54は、配向誘導層12の表面に分枝状高分子15を湿式塗布して、分枝状高分子15が直鎖状高分子18と同方向に一軸配向した誘電体層13を形成する装置である。塗布手段54としては、スロットダイコータ、ブレードコータ、バーコータ、ロールコータ、グラビアコータ等の公知の湿式塗布装置を用いることができる。
The coating means 54 wet-coats the branched polymer 15 on the surface of the orientation-inducing layer 12 to form the dielectric layer 13 in which the branched polymer 15 is uniaxially oriented in the same direction as the linear polymer 18. It is a device to do. As the coating means 54, a known wet coating apparatus such as a slot die coater, a blade coater, a bar coater, a roll coater, or a gravure coater can be used.
分枝状高分子15は、前記の直鎖状高分子18と同様の重合方法で合成した主鎖の高誘電率高分子16に、側鎖の低誘電率高分子17をグラフト重合させることによって合成することができる。グラフト重合の方法としては、リビングラジカル重合を用いることが好ましく、CuCl/ビピリジン錯体等の遷移金属錯体触媒を用いて行う原子移動ラジカル重合法(ATRP法)を用いることが特に好ましい。具体的には、非特許文献1に記載の方法を適用することもできる。分枝状高分子15の溶媒としては、例えば、N,N-ジメチルホルムアミド、ジエチルカーボネート、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、3-ヘプタノン、シクロヘキサノン等、高分子の種類に応じて適宜の溶媒を用いることができる。
The branched polymer 15 is obtained by graft polymerizing a low-dielectric polymer 17 having a side chain to a high-dielectric polymer 16 having a main chain synthesized by the same polymerization method as the linear polymer 18 described above. Can be synthesized. As a method for graft polymerization, living radical polymerization is preferably used, and an atom transfer radical polymerization method (ATRP method) performed using a transition metal complex catalyst such as a CuCl / bipyridine complex is particularly preferable. Specifically, the method described in Non-Patent Document 1 can be applied. Examples of the solvent for the branched polymer 15 include N, N-dimethylformamide, diethyl carbonate, 2-pentanone, 3-pentanone, 2-hexanone, 2-heptanone, 3-heptanone, and cyclohexanone. An appropriate solvent can be used depending on the case.
誘電体フィルム1の製造においては、塗布手段54によって、配向誘導層12の表面に分枝状高分子15を湿式塗布することによって、分枝状高分子15の配向が、配向誘導層12において沿層方向に沿って一軸配向した直鎖状高分子18と、同一の方向に誘導されて、誘電体層13に含まれる分枝状高分子15と、配向誘導層12に含まれる直鎖状高分子18とが、沿層方向に沿って同一の方向に一軸配向している誘電体フィルム1が製造される。なお、湿式塗布された誘電体層13は、適宜の雰囲気下乾燥させることができ、アルゴンガス、窒素ガス等の不活性ガス雰囲気、空気中等の酸化性ガス雰囲気のいずれで溶媒除去を行ってもよい。
In the production of the dielectric film 1, the branched polymer 15 is wet coated on the surface of the orientation inducing layer 12 by the application means 54, so that the orientation of the branched polymer 15 is aligned in the orientation inducing layer 12. A linear polymer 18 that is uniaxially oriented along the layer direction, a branched polymer 15 that is induced in the same direction and is included in the dielectric layer 13, and a linear polymer that is included in the alignment-inducing layer 12 The dielectric film 1 in which the molecules 18 are uniaxially oriented in the same direction along the layering direction is manufactured. The wet-applied dielectric layer 13 can be dried in an appropriate atmosphere, and the solvent can be removed in any of an inert gas atmosphere such as argon gas and nitrogen gas, and an oxidizing gas atmosphere such as air. Good.
誘電体フィルム製造装置50は、さらに、分極化手段、延伸手段及び多層フィルム形成手段の少なくとも一つを備えるようにしてもよい。分極化手段は、電場印加装置や、磁場印加装置等で構成される。このような分極化手段によって、加温された雰囲気下、誘電体フィルムに電場又は磁場を印加することで、誘電体フィルム1に含まれる高誘電率高分子16を分極状態とさせることができる。特に、分枝状高分子15を、β相の結晶構造にすることによって、双極子モーメントが沿層方向に垂直な方向に配向して分極が最大化されることになる。また、延伸手段によって、誘電体フィルム1を、さらに沿層方向に一軸延伸処理することによって、誘電体層13に含まれる分枝状高分子15や、配向誘導層12に含まれる直鎖状高分子18を、より良好に配向させることができ、誘電損失を有効に低減することができる。また、多層フィルム形成手段に備えられるフィードブロックやマルチマニホールドに形成された誘電体フィルム1を供給して多層化することによって、誘電体フィルム1を厚膜化することができる。なお、誘電体フィルム製造装置50は、前記の押圧手段51に代えて、ポリマーペレットを押圧して基材に圧着させる装置が基材に対して移動することによって、掃引が行われるように構成したり、前記の塗布手段52に代えて、スピンコータ等によって静止状態で塗布が行われるように構成してもよい。
The dielectric film manufacturing apparatus 50 may further include at least one of a polarization unit, a stretching unit, and a multilayer film forming unit. The polarization means is composed of an electric field application device, a magnetic field application device, or the like. By applying such an electric field or magnetic field to the dielectric film in a heated atmosphere by such a polarization means, the high dielectric constant polymer 16 contained in the dielectric film 1 can be brought into a polarized state. In particular, by making the branched polymer 15 have a β-phase crystal structure, the dipole moment is oriented in the direction perpendicular to the layering direction to maximize polarization. In addition, the dielectric film 1 is further uniaxially stretched in the layering direction by a stretching means, so that the branched polymer 15 included in the dielectric layer 13 and the linear high molecular weight included in the alignment-inducing layer 12 are obtained. The molecules 18 can be better oriented and the dielectric loss can be effectively reduced. Moreover, the dielectric film 1 can be thickened by supplying and multilayering the dielectric film 1 formed in the feed block or multi-manifold provided in the multilayer film forming means. The dielectric film manufacturing apparatus 50 is configured such that, instead of the pressing means 51 described above, sweeping is performed when an apparatus that presses polymer pellets and presses them against the base material moves relative to the base material. Alternatively, instead of the coating means 52, the coating may be performed in a stationary state by a spin coater or the like.
また、誘電体フィルム製造装置50は、さらに、電極形成手段を備えるようにしてもよい。電極形成手段は、電極を蒸着形成する蒸着装置等で構成される。このような電極形成手段によって、誘電体フィルム1の表面に第1電極層11や第2電極層14を形成した後、この誘電体フィルム1を捲回し、外部電極を接続して筺体に収納することで、誘電体フィルム1と、誘電体フィルム1に電気的に接続された一対の第1電極及び第2電極とを備えるフィルムコンデンサ64とすることができる。
Further, the dielectric film manufacturing apparatus 50 may further include an electrode forming unit. The electrode forming means is composed of a vapor deposition apparatus or the like that vapor-deposits electrodes. After the first electrode layer 11 and the second electrode layer 14 are formed on the surface of the dielectric film 1 by such electrode forming means, the dielectric film 1 is wound, and external electrodes are connected and accommodated in the casing. Thereby, it can be set as the film capacitor 64 provided with the dielectric film 1 and a pair of 1st electrode and 2nd electrode electrically connected to the dielectric film 1. FIG.
図5は、本実施形態に係るフィルムコンデンサを適用した変換器のサイズを、比較例に係るフィルムコンデンサを備えた電力変換器のサイズと比較した概略図である。
FIG. 5 is a schematic diagram comparing the size of the converter to which the film capacitor according to this embodiment is applied with the size of the power converter having the film capacitor according to the comparative example.
図5には、本実施形態に係る誘電体フィルム1を備えるフィルムコンデンサ64を適用した電力変換器(インバータ)60と、従来のポリプロピレン等を採用したフィルムコンデンサ61(比較例に係るフィルムコンデンサ)を備えた電力変換器160とが示されている。なお、電力変換器60及び電力変換器160は、それぞれ共通のパワーモジュール62と配電基板63とを備えている。
FIG. 5 shows a power converter (inverter) 60 to which a film capacitor 64 including the dielectric film 1 according to the present embodiment is applied, and a film capacitor 61 (film capacitor according to a comparative example) employing conventional polypropylene or the like. A power converter 160 is shown. The power converter 60 and the power converter 160 each include a common power module 62 and a power distribution board 63.
図5に示すように、使用電圧が1kVを超えるような従来の電力変換器160では、全体積の70%近くをフィルムコンデンサ61が占めている。これに対して、本実施形態に係る誘電体フィルム1を備えるフィルムコンデンサ64を適用した電力変換器60では、コンデンサの体積を約1/5に小型化することができ、コンデンサの冷却系も小型化することが可能となる。ひいては、このような電力変換器60で構成されるMMC(モジュラーマルチレベルコンバータ)を大幅に小型化することができ、発電設備等の設置コストの低減に好適である。
As shown in FIG. 5, in the conventional power converter 160 in which the operating voltage exceeds 1 kV, the film capacitor 61 occupies nearly 70% of the total volume. In contrast, in the power converter 60 to which the film capacitor 64 including the dielectric film 1 according to the present embodiment is applied, the capacitor volume can be reduced to about 1/5, and the capacitor cooling system is also small. Can be realized. As a result, the MMC (modular multi-level converter) composed of such a power converter 60 can be greatly reduced in size, which is suitable for reducing the installation cost of power generation equipment and the like.
以下、本発明の実施例を用いて本発明をより詳細に説明するが、本発明の技術的範囲はこれに限定されるものではない。
Hereinafter, the present invention will be described in more detail using examples of the present invention, but the technical scope of the present invention is not limited thereto.
配向誘導層12上に誘電体層13を形成した実施例に係る誘電体フィルム1を製造し、高分子の配向状態を解析した。また、実施例に係る誘電体フィルム1について比誘電率と誘電損失とを評価した。
The dielectric film 1 according to the example in which the dielectric layer 13 was formed on the orientation induction layer 12 was manufactured, and the orientation state of the polymer was analyzed. Moreover, the dielectric constant 1 and the dielectric loss were evaluated about the dielectric film 1 which concerns on an Example.
[実施例]
はじめに、フッ化ビニリデン-トリフルオロエチレン二元共重合体高分子P(VDF-TrFE)(70/30mol%:ピエゾテック製)からなる粉末を圧縮してポリマーペレットを作製した。続いて、作製したポリマーペレットを、P(VDF-TrFE)の融点以下の130℃に加熱したガラス基板上に、摩擦転写することによって配向誘導層12を形成した。なお、摩擦転写には、摩擦転写装置「ホットメルト塗工機115A」(株式会社井元製作所製)を用い、加圧条件は10kgf/cm2、掃引速度は200mm/minとして行った。得られた配向誘導層12の薄膜は、膜厚約10nmであり、ガラス基板表面にP(VDF-TrFE)の主鎖が一軸配向した状態となっていた。なお、高分子の配向状態は、偏光FTIR(フーリエ変換型赤外吸収法)、SEM(走査電子顕微鏡)、TEM(透過電子顕微鏡)の電子線回折、Spring8等を放射光源とした2D-GIXD(極低角入射X線2次元回折法)等を用いて解析した。 [Example]
First, a powder made of vinylidene fluoride-trifluoroethylene binary copolymer polymer P (VDF-TrFE) (70/30 mol%: manufactured by Piezotech) was compressed to prepare polymer pellets. Subsequently, the orientation-inducinglayer 12 was formed by friction transfer of the produced polymer pellets onto a glass substrate heated to 130 ° C. below the melting point of P (VDF-TrFE). For the friction transfer, a friction transfer device “Hot Melt Coating Machine 115A” (manufactured by Imoto Seisakusho Co., Ltd.) was used, and the pressing condition was 10 kgf / cm 2 and the sweep speed was 200 mm / min. The thin film of the obtained orientation inducing layer 12 had a thickness of about 10 nm, and the main chain of P (VDF-TrFE) was uniaxially oriented on the glass substrate surface. The orientation state of the polymer is 2D-GIXD (polarization FTIR (Fourier transform infrared absorption method), SEM (scanning electron microscope), electron diffraction of TEM (transmission electron microscope), Spring 8 etc. as a radiation source. Analysis was performed using a very low angle incident X-ray two-dimensional diffraction method.
はじめに、フッ化ビニリデン-トリフルオロエチレン二元共重合体高分子P(VDF-TrFE)(70/30mol%:ピエゾテック製)からなる粉末を圧縮してポリマーペレットを作製した。続いて、作製したポリマーペレットを、P(VDF-TrFE)の融点以下の130℃に加熱したガラス基板上に、摩擦転写することによって配向誘導層12を形成した。なお、摩擦転写には、摩擦転写装置「ホットメルト塗工機115A」(株式会社井元製作所製)を用い、加圧条件は10kgf/cm2、掃引速度は200mm/minとして行った。得られた配向誘導層12の薄膜は、膜厚約10nmであり、ガラス基板表面にP(VDF-TrFE)の主鎖が一軸配向した状態となっていた。なお、高分子の配向状態は、偏光FTIR(フーリエ変換型赤外吸収法)、SEM(走査電子顕微鏡)、TEM(透過電子顕微鏡)の電子線回折、Spring8等を放射光源とした2D-GIXD(極低角入射X線2次元回折法)等を用いて解析した。 [Example]
First, a powder made of vinylidene fluoride-trifluoroethylene binary copolymer polymer P (VDF-TrFE) (70/30 mol%: manufactured by Piezotech) was compressed to prepare polymer pellets. Subsequently, the orientation-inducing
次に、フッ化ビニリデン-トリフルオロエチレン-クロロトリフルオロエチレン三元共重合体高分子P(VDF-TrFE-CTFE)(62/30/8mol%:ピエゾテック製)と、ポリエチルメタクリレート(PEMA)とを、原子移動ラジカル重合法(ATRP法)によってグラフト重合させた。なお、P(VDF-TrFE-CTFE)に対するPEMAの質量比は、20質量%とした。その結果、P(VDF-TrFE-CTFE)を主鎖とし、PEMAを側鎖とする分枝状高分子P(VDF-TrFE-CTFE)-g-PEMAが得られた。続いて、この分枝状高分子15を、3質量%の濃度となるように溶媒のN,N-ジメチルホルムアミド(DMF)に溶解させて、配向誘導層12上に湿式塗布して、誘電体層13を積層した。なお、配向誘導層12と誘電体層13とを合わせた膜厚は100nmであった。
Next, a vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene terpolymer polymer P (VDF-TrFE-CTFE) (62/30/8 mol%: manufactured by Piezotech), polyethyl methacrylate (PEMA), Was graft polymerized by an atom transfer radical polymerization method (ATRP method). The mass ratio of PEMA to P (VDF-TrFE-CTFE) was 20% by mass. As a result, a branched polymer P (VDF-TrFE-CTFE) -g-PEMA having P (VDF-TrFE-CTFE) as the main chain and PEMA as the side chain was obtained. Subsequently, the branched polymer 15 is dissolved in a solvent N, N-dimethylformamide (DMF) so as to have a concentration of 3% by mass, and wet-coated on the orientation-inducing layer 12 to form a dielectric. Layer 13 was laminated. The total film thickness of the orientation induction layer 12 and the dielectric layer 13 was 100 nm.
次に、誘電体層13における高分子の配向状態を解析した。その結果、配向誘導層13の薄膜の沿層方向に一軸方向に配向しているP(VDF-TrFE)に対して、分枝状高分子P(VDF-TrFE-CTFE)-g-PEMAが、略平行に配列して、共に略同一の方向に一軸配向していることが確認された。また、高誘電率高分子16である主鎖のP(VDF-TrFE-CTFE)同士の間に、低誘電率高分子17である側鎖のPEMAが介在することによって、高誘電率高分子16である主鎖のP(VDF-TrFE-CTFE)は、概ね一定間隔に離れて分散していることが確認された。
Next, the orientation state of the polymer in the dielectric layer 13 was analyzed. As a result, the branched polymer P (VDF-TrFE-CTFE) -g-PEMA is different from P (VDF-TrFE) that is uniaxially oriented in the direction of the thin film of the orientation inducing layer 13. It was confirmed that they were arranged substantially parallel and both were uniaxially oriented in substantially the same direction. Further, the side chain PEMA as the low dielectric constant polymer 17 is interposed between the main chain Ps (VDF-TrFE-CTFE) as the high dielectric constant polymer 16, so that the high dielectric constant polymer 16. It was confirmed that P (VDF-TrFE-CTFE) in the main chain as shown in FIG.
次に、ガラス基板から剥離した誘電体フィルム1の両面に、それぞれ第1電極層11と第2電極層14とを形成した。第1電極層11と第2電極層14とは、アルミニウムを蒸着させることによって、それぞれ厚さ50nmとして形成した。そして、パラメータアナライザ「HP4284A」(ヒューレットパッカード社製)を使用して、室温(25℃)及び100℃において、周波数100Hz、1kHz及び10kHzのそれぞれにおける静電容量を測定し、比誘電率と誘電損失とを求めた。
Next, the first electrode layer 11 and the second electrode layer 14 were formed on both surfaces of the dielectric film 1 peeled from the glass substrate, respectively. The first electrode layer 11 and the second electrode layer 14 were formed to have a thickness of 50 nm by depositing aluminum. Then, using a parameter analyzer “HP4284A” (manufactured by Hewlett Packard), the capacitance at each frequency of 100 Hz, 1 kHz, and 10 kHz was measured at room temperature (25 ° C.) and 100 ° C., and the relative dielectric constant and dielectric loss. And asked.
図6は、実施例に係る誘電体フィルム及び比較例に係る誘電体フィルムの誘電率と誘電損失との関係を示す図である。図6における、縦軸は比誘電率、横軸は誘電損失(tanδ)を表している。また、黒丸は、実施例に係る誘電体フィルム、白六角は、配向誘導層を有さない比較例に係る誘電体フィルムを示している。白丸、白三角、白四角は、それぞれ、分枝状高分子を含む誘電体層のみを有する比較例に係る誘電体フィルムであって、いずれも延伸処理及び分極処理を施していないものであり、それぞれ低誘電率高分子の質量比を変えて製造したものである。黒三角は、ポリプロピレンを材料とした参考例に係る誘電体フィルムを示している。
FIG. 6 is a diagram showing the relationship between the dielectric constant and the dielectric loss of the dielectric film according to the example and the dielectric film according to the comparative example. In FIG. 6, the vertical axis represents the relative dielectric constant, and the horizontal axis represents the dielectric loss (tan δ). Moreover, the black circle has shown the dielectric film which concerns on an Example, and the white hexagon has shown the dielectric film which concerns on the comparative example which does not have an orientation induction layer. White circles, white triangles, and white squares are dielectric films according to comparative examples each having only a dielectric layer containing a branched polymer, both of which are not subjected to stretching treatment and polarization treatment, Each is manufactured by changing the mass ratio of the low dielectric constant polymer. The black triangle indicates a dielectric film according to a reference example using polypropylene as a material.
図6に示されるように、各比較例に係る誘電体フィルム毎に、比誘電率と誘電損失は異なる値をとっているが、破線で示すように、いずれも比誘電率と誘電損失とはトレードオフの関係となる傾向を示した。これに対して、実施例に係る誘電体フィルム1では、これらの比較例に係る誘電体フィルムと比較して、比誘電率が10程度の値を実現していながら、誘電損失についても10-3程度に低減されていることが確認された。また、ポリプロピレンを材料とした参考例に係る誘電体フィルムと比較して、誘電損失は高い水準にあるものの、比誘電率は約5倍程度の値を達成していることが確認された。このように、実施例に係る誘電体フィルムは、誘電率の増大と誘電損失の低減を高度に両立していることが認められた。この誘電損失の水準は、例えば、100Hzから1kHzの周波数帯で使用される電力用変換器(インバータ)の用途では、十分に低いものであるといえる。
As shown in FIG. 6, for each dielectric film according to each comparative example, the relative permittivity and the dielectric loss have different values, but as shown by the broken line, both are the relative permittivity and the dielectric loss. The tendency to be a trade-off relationship was shown. On the other hand, the dielectric film 1 according to the example achieves a value of about 10 relative dielectric constant as compared with the dielectric films according to these comparative examples, and the dielectric loss is 10 −3. It was confirmed that it was reduced to a certain extent. In addition, it was confirmed that although the dielectric loss was at a high level as compared with the dielectric film according to the reference example using polypropylene as a material, the relative dielectric constant achieved a value of about 5 times. As described above, it was confirmed that the dielectric films according to the examples were highly compatible with increase in dielectric constant and reduction in dielectric loss. This dielectric loss level can be said to be sufficiently low, for example, in the application of a power converter (inverter) used in a frequency band from 100 Hz to 1 kHz.
1 誘電体フィルム
11 第1電極層
12 配向誘導層
13 誘電体層
14 第2電極層
15 分枝状高分子
16 高誘電率高分子
17 低誘電率高分子
18 直鎖状高分子 DESCRIPTION OF SYMBOLS 1Dielectric film 11 1st electrode layer 12 Orientation induction layer 13 Dielectric layer 14 2nd electrode layer 15 Branched polymer 16 High dielectric constant polymer 17 Low dielectric constant polymer 18 Linear polymer
11 第1電極層
12 配向誘導層
13 誘電体層
14 第2電極層
15 分枝状高分子
16 高誘電率高分子
17 低誘電率高分子
18 直鎖状高分子 DESCRIPTION OF SYMBOLS 1
Claims (9)
- 周波数1kHzにおける比誘電率が4.0以上である高誘電率高分子を主鎖とし、前記高誘電率高分子よりも比誘電率が小さい低誘電率高分子を側鎖とする分枝状高分子を含んでなる誘電体層と、前記高誘電率高分子を主鎖とする直鎖状高分子を含んでなる配向誘導層とを含んでなり、前記誘電体層に含まれる分枝状高分子と、前記配向誘導層に含まれる直鎖状高分子とが、沿層方向に沿って一軸配向していることを特徴とする誘電体フィルム。 A branched high chain having a high dielectric constant polymer having a relative dielectric constant of 4.0 or more at a frequency of 1 kHz as a main chain and a low dielectric constant polymer having a relative dielectric constant smaller than that of the high dielectric constant polymer as a side chain. A dielectric layer comprising molecules, and an orientation-inducing layer comprising a linear polymer having the high-dielectric-constant polymer as a main chain, and a branched high layer contained in the dielectric layer. A dielectric film, wherein molecules and a linear polymer contained in the orientation-inducing layer are uniaxially oriented along the layering direction.
- 前記高誘電率高分子が、フッ素系高分子であることを特徴とする請求項1に記載の誘電体フィルム。 The dielectric film according to claim 1, wherein the high dielectric constant polymer is a fluorine-based polymer.
- 前記高誘電率高分子が、ポリフッ化ビニリデン、又は、フッ化ビニリデン系共重合体であることを特徴とする請求項1に記載の誘電体フィルム。 2. The dielectric film according to claim 1, wherein the high dielectric constant polymer is polyvinylidene fluoride or a vinylidene fluoride-based copolymer.
- 前記低誘電率高分子が、前記一軸配向した隣り合う分枝状高分子同士の間に介在していることを特徴とする請求項1に記載の誘電体フィルム。 The dielectric film according to claim 1, wherein the low dielectric constant polymer is interposed between the uniaxially oriented adjacent branched polymers.
- 前記低誘電率高分子が、ポリメチルメタクリレート、ポリエチルメタクリレート又はポリスチレンであることを特徴とする請求項1に記載の誘電体フィルム。 The dielectric film according to claim 1, wherein the low dielectric constant polymer is polymethyl methacrylate, polyethyl methacrylate, or polystyrene.
- 前記低誘電率高分子が、前記高誘電率高分子にグラフト重合によって重合されていることを特徴とする請求項1に記載の誘電体フィルム。 The dielectric film according to claim 1, wherein the low dielectric constant polymer is polymerized to the high dielectric constant polymer by graft polymerization.
- 前記沿層方向に一軸延伸処理されていることを特徴とする請求項1に記載の誘電体フィルム。 The dielectric film according to claim 1, wherein the dielectric film is uniaxially stretched in the layering direction.
- 周波数1kHzにおける比誘電率が4.0以上である高誘電率高分子を主鎖とし、前記高誘電率高分子よりも比誘電率が小さい低誘電率高分子を側鎖とする分枝状高分子を含んでなる誘電体層と、前記高誘電率高分子を主鎖とする直鎖状高分子を含んでなる配向誘導層と、前記誘電体層と配向誘導層とを含んでなり、前記誘電体層に含まれる分枝状高分子と、前記配向誘導層に含まれる直鎖状高分子とが、沿層方向に沿って一軸配向している誘電体フィルムと、前記誘電体フィルムに電気的に接続された一対の第1電極及び第2電極とを備えることを特徴とするフィルムコンデンサ。 A branched high chain having a high dielectric constant polymer having a relative dielectric constant of 4.0 or more at a frequency of 1 kHz as a main chain and a low dielectric constant polymer having a relative dielectric constant smaller than that of the high dielectric constant polymer as a side chain. Comprising a dielectric layer comprising molecules, an alignment-inducing layer comprising a linear polymer having the high dielectric constant polymer as a main chain, the dielectric layer and the alignment-inducing layer, A dielectric film in which a branched polymer contained in the dielectric layer and a linear polymer contained in the orientation-inducing layer are uniaxially oriented along the layering direction; and A film capacitor comprising a pair of first electrodes and second electrodes connected together.
- 高誘電率高分子を主鎖とし、低誘電率高分子を側鎖とする分枝状高分子を含んでなる誘電体層と、前記高誘電率高分子を主鎖とする直鎖状高分子を含んでなる配向誘導層とを含んでなり、前記誘電体層に含まれる分枝状高分子と、前記配向誘導層に含まれる直鎖状高分子とが、沿層方向に沿って一軸配向している誘電体フィルムを製造する誘電体フィルム製造装置であって、前記直鎖状高分子を含んでなる塊状体を基材に圧着させる押圧手段と、前記圧着させた基材を掃引して、前記直鎖状高分子が沿層方向に沿って一軸配向した前記配向誘導層を形成する掃引手段と、前記配向誘導層の表面に前記分枝状高分子を湿式塗布して、前記分枝状高分子が前記直鎖状高分子と同方向に一軸配向した前記誘電体層を形成する塗布手段とを備えることを特徴とする誘電体フィルム製造装置。 A dielectric layer comprising a branched polymer having a high dielectric constant polymer as a main chain and a low dielectric constant polymer as a side chain, and a linear polymer having the high dielectric constant polymer as a main chain The branched polymer contained in the dielectric layer and the linear polymer contained in the orientation-inducing layer are uniaxially oriented along the layering direction. A dielectric film manufacturing apparatus for manufacturing a dielectric film, wherein a pressing means for press-bonding a lump containing the linear polymer to a base material, and sweeping the press-bonded base material Sweeping means for forming the alignment-inducing layer in which the linear polymer is uniaxially oriented along the layering direction; wet-coating the branched polymer on the surface of the alignment-inducing layer; and Coating means for forming the dielectric layer in which the polymer is uniaxially oriented in the same direction as the linear polymer. The dielectric film manufacturing apparatus according to claim.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014078826A JP2015199244A (en) | 2014-04-07 | 2014-04-07 | Dielectric film, film capacitor and production apparatus for dielectric film |
JP2014-078826 | 2014-04-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015156092A1 true WO2015156092A1 (en) | 2015-10-15 |
Family
ID=54287673
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/058005 WO2015156092A1 (en) | 2014-04-07 | 2015-03-18 | Dielectric film, film capacitor, and dielectric-film-manufacturing device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2015199244A (en) |
WO (1) | WO2015156092A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110853801A (en) * | 2019-11-15 | 2020-02-28 | 苏州大学 | Transparent electrode, photovoltaic cell, electronic device and preparation method of transparent electrode |
WO2023049494A1 (en) * | 2021-09-27 | 2023-03-30 | Ionic Materials, Inc. | High molecular weight functionalized polymers for electrochemical cells |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017048307A1 (en) | 2015-09-14 | 2017-03-23 | Polymerplus, Llc | Multicomponent layered dielectric film and uses thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08278411A (en) * | 1995-04-10 | 1996-10-22 | Sumitomo Chem Co Ltd | Production of oriented fluororesin film |
JP2003502856A (en) * | 1999-06-22 | 2003-01-21 | リチウム パワー テクノロジーズ インコーポレイテッド | High energy density metallized film capacitor and method of manufacturing the same |
JP2007142396A (en) * | 2005-11-14 | 2007-06-07 | General Electric Co <Ge> | Film capacitor of improved dielectric characteristics |
-
2014
- 2014-04-07 JP JP2014078826A patent/JP2015199244A/en active Pending
-
2015
- 2015-03-18 WO PCT/JP2015/058005 patent/WO2015156092A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08278411A (en) * | 1995-04-10 | 1996-10-22 | Sumitomo Chem Co Ltd | Production of oriented fluororesin film |
JP2003502856A (en) * | 1999-06-22 | 2003-01-21 | リチウム パワー テクノロジーズ インコーポレイテッド | High energy density metallized film capacitor and method of manufacturing the same |
JP2007142396A (en) * | 2005-11-14 | 2007-06-07 | General Electric Co <Ge> | Film capacitor of improved dielectric characteristics |
Non-Patent Citations (1)
Title |
---|
FANGXIAO GUAN: "Confined Ferroelectric Properties in Poly(vinylidene fluoride-co- chlorotrifluoroethylene)-graft-polystyrene Graft Copolymers for Electric Energy Storage Applications", ADVANCED FUNCTIONAL MATERIALS, vol. 21, no. Issue 16, 23 August 2011 (2011-08-23), pages 3176 - 3188, XP001564463 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110853801A (en) * | 2019-11-15 | 2020-02-28 | 苏州大学 | Transparent electrode, photovoltaic cell, electronic device and preparation method of transparent electrode |
CN110853801B (en) * | 2019-11-15 | 2021-10-22 | 苏州大学 | Transparent electrode, photovoltaic cell, electronic device and preparation method of transparent electrode |
WO2023049494A1 (en) * | 2021-09-27 | 2023-03-30 | Ionic Materials, Inc. | High molecular weight functionalized polymers for electrochemical cells |
Also Published As
Publication number | Publication date |
---|---|
JP2015199244A (en) | 2015-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107925036B (en) | Battery separator | |
US11352469B2 (en) | Fluororesin film | |
TWI659850B (en) | Multilayer heat-resistant separator material and manufacturing method thereof | |
WO2015156092A1 (en) | Dielectric film, film capacitor, and dielectric-film-manufacturing device | |
KR200494839Y1 (en) | Dielectric substrate comprising unsintered polytetrafluoroethylene and method for manufacturing same | |
US11479647B2 (en) | Film including a fluoropolymer | |
EP3327068A1 (en) | Film | |
JP6081581B2 (en) | Back sheet for environmentally friendly photovoltaic module and method for producing the same | |
CN111433940A (en) | Porous film, secondary battery separator, and secondary battery | |
JP7174305B2 (en) | Fluorine resin film, copper-clad laminate and substrate for circuit | |
Gong et al. | All-organic sandwich-structured BOPP/PVDF/BOPP dielectric films with significantly improved energy density and charge–discharge efficiency | |
CN117712620A (en) | Separator for nonaqueous secondary battery and nonaqueous secondary battery | |
Gong et al. | Controllable synthesis and structural design of novel all-organic polymers toward high energy storage dielectrics | |
EP2128190B1 (en) | Carrier film for use in fuel cell production process, and method for production thereof | |
KR20160049851A (en) | Separator of secondary battery using extrusion coating and manufacturing method thereof | |
CN115151989A (en) | Film for thin film capacitor, metal layer laminated film for thin film capacitor, and thin film capacitor | |
US20200362127A1 (en) | Film | |
JP2015083620A (en) | Film capacitor and production device therefor | |
CN118696460A (en) | Metamaterial and laminate | |
CN117616628A (en) | Separator for electrochemical device including porous organic/inorganic composite coating layer and electrochemical device including the same | |
JP3028537B2 (en) | Laminated film | |
TW202413500A (en) | Long fluoropolymer film, metal-clad laminate, and circuit board | |
WO2024019177A1 (en) | Fluororesin film, metal-clad laminate, and circuit substrate | |
CN118872146A (en) | Substrate for metamaterial, metamaterial and laminate | |
JP2020090613A (en) | Polyarylene sulfide film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15776537 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15776537 Country of ref document: EP Kind code of ref document: A1 |