WO2015155842A1 - Optical component and imaging device using same - Google Patents
Optical component and imaging device using same Download PDFInfo
- Publication number
- WO2015155842A1 WO2015155842A1 PCT/JP2014/060218 JP2014060218W WO2015155842A1 WO 2015155842 A1 WO2015155842 A1 WO 2015155842A1 JP 2014060218 W JP2014060218 W JP 2014060218W WO 2015155842 A1 WO2015155842 A1 WO 2015155842A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical component
- zone
- center
- annular
- ring
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B3/02—Simple or compound lenses with non-spherical faces
- G02B3/08—Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
Definitions
- the present invention relates to an optical component used for enlarging the depth of field or enlarging the depth of focus, and an imaging apparatus using the same.
- Patent Document 1 A phase modulation element that modulates the phase of light is arranged in the optical system, and a point spread function (PSF: Point Spread Function, hereinafter referred to as “PSF”) is essentially within a certain distance from the focal point position.
- PSF Point Spread Function
- Patent Document 2 JP 2013-518474 A (Patent Document 2) describes an example in which an axially symmetric phase modulation element having a random one-dimensional profile in the radial direction is used in the above phase modulation element. .
- Patent Document 1 since the phase modulation element that modulates the phase is non-rotationally symmetric with respect to the optical axis, the PSF depends on the amount of deviation (defocus amount) from the in-focus position. There was a problem that the center of gravity moved. In addition, there is a problem that a ghost image having a directivity is generated when a modulation component caused by the phase modulation element is removed from the modulated intermediate image by signal processing. In addition, the PSF also rotates with the rotational shift of the phase modulation element, and there is a problem that the reproduced image deteriorates. Further, the phase modulation element has a problem that a light amount loss occurs because it is necessary to provide a rectangular diaphragm.
- Patent Document 2 describes an example using a phase modulation element that is symmetric with respect to the rotation axis, and has a phase modulation surface that is set using randomness, Uniform PSF independent of defocusing is realized by averaging the randomness.
- Patent Document 2 since the shape of the phase modulation element is determined by a stochastic model using statistical optics, it is necessary to set a relatively large number of ring zones constituting the phase modulation surface, and high dimensional accuracy is required. .
- a PSF peak (hereinafter referred to as “PSF peak”) may occur at a specific position in the optical axis direction due to interference between the annular zones. Since the generation of this PSF peak is not mentioned in the above-mentioned Patent Document 2, there is room for further research.
- the present invention provides an optical component (phase modulation element) capable of reducing the dimensional accuracy required for setting the phase modulation surface and suppressing the occurrence of PSF peaks, and an imaging apparatus using the same. .
- the present invention is an optical component that includes a plurality of annular zones defined by a plurality of concentric circles, and is configured to be rotationally symmetric with respect to the center of the concentric circles.
- a cross-sectional shape in a direction perpendicular to the concentric circle and passing through the center of the concentric circle has a concave or convex surface, and the position of the surface of one of the annular zones and the other The position of the surface of the annular zone is different in a direction perpendicular to the concentric circles.
- the present invention is an imaging apparatus including a plurality of annular zones defined by a plurality of concentric circles and including an optical component configured to be rotationally symmetric with respect to a center of the concentric circles, wherein the annular zones are the concentric circles.
- a cross-sectional shape in a direction perpendicular to the center and passing through the center of the concentric circle has a concave or convex surface, and the position of the surface of one of the annular zones and the other ring
- the position of the surface of the belt includes the optical component that is different in a direction perpendicular to the concentric circle.
- the optical component (phase modulation element) of the present invention capable of reducing the dimensional accuracy required for setting the phase modulation surface and suppressing the occurrence of the PSF peak, and the same An imaging apparatus using the can be provided.
- FIG. 6 is a diagram illustrating a configuration of a modified example (modified examples 1 to 4) of the first embodiment. It is a figure which shows the structure of the phase modulation element of an Example (Example 1 ') in the progress stage which reaches the structure of the phase modulation element which concerns on the present Example 1.
- FIG. It is a figure which shows the structure of the modification (modification 5) of Example 1.
- FIG. It is a figure which shows PSF by a normal imaging optical system.
- FIG. 4 It is a figure which shows PSF by the imaging optical system using the phase modulation element which concerns on Example 1 '(FIG. 4). It is a figure which shows PSF by the imaging optical system using the phase modulation element which concerns on Example 1 (FIG. 2). It is a figure which shows the conditions of the level
- FIG. It is a figure which shows PSF by the imaging optical system using the phase modulation element which concerns on the modification 4 (FIG.3 (d)). It is a figure which shows PSF by the imaging optical system using the phase modulation element which concerns on the modification 5 (FIG. 5). It is the image acquired by the imaging device using the present invention. It is the image acquired by the normal imaging device.
- FIG. 1 is a diagram illustrating a configuration example of the imaging apparatus according to the present embodiment.
- the imaging apparatus 100 according to the first embodiment can be applied to, for example, an AV camera, a mobile phone mounted camera, a portable information terminal mounted camera, an image inspection apparatus, an industrial camera for automatic control, and the like.
- the imaging apparatus 100 includes an optical system 2, an imaging device 3, an A / D converter 4, a RAW buffer memory 5, an image correction unit 6, and an output unit 7.
- the optical system 2 includes a front lens group 23, a rear lens group 24, a diaphragm 22, and a phase modulation element 21.
- the diaphragm 22 is provided between the front lens group 23 and the rear lens group 24 and plays a role of appropriately narrowing the light beam emitted from the subject 1 and transmitted through the optical system 2.
- the phase modulation element 21 is provided in the vicinity of the diaphragm 22.
- the phase modulation element 21 has a configuration as shown in FIG. 2 and later described later, and has a function of modulating the phase of a light beam transmitted through the optical system 2.
- the light beam emitted from the subject 1 and incident on the optical system 2 forms a subject image on the surface of the image sensor 3 by the functions of the front lens group 23 and the rear lens group 24. Due to the effect of the phase modulation of the light beam by the phase modulation element 21, the amount of blur of the subject image is substantially constant over a wide range.
- the image sensor 3 has a plurality of pixels on its surface.
- the subject image formed on the surface of the image sensor 3 is converted into an analog signal for each pixel by the image sensor 3, and further converted into a digital signal by the A / D converter 4, and image data corresponding to the subject image is obtained. Generated.
- the RAW buffer memory 5 stores the image data from the A / D converter 4.
- the image correction unit 6 receives the image data from the RAW buffer memory 5 and performs a correction process for removing the blur of the subject image caused by the phase modulation of the phase modulation element 21.
- the correction processing method may be, for example, a method using a spatial filter.
- the corrected image is supplied to the output unit 7.
- FIG. 100 An image acquired by such an imaging apparatus (imaging apparatus 100 according to the first embodiment) is shown in FIG. It can be seen that the fingerprint of a finger a few cm away from the camera and the letters on the sticker a distance of 5 cm or more from the camera are resolved. It can also be seen that subjects such as test charts at an intermediate distance are also resolved.
- FIG. 13 shows an image acquired by a normal imaging device (imaging device according to the prior art) for comparison with FIG.
- the two-dimensional barcode at a distance of about 10 cm from the camera is in focus, but the image of the finger in front of it and the test chart and sticker behind it are blurred.
- the first embodiment uses the phase modulation element 21 having a plurality of concentric annular zones as the phase modulation element 21 included in the optical system 2 in the imaging apparatus or imaging system having the above-described configuration. The details will be described below with reference to FIGS.
- the phase modulation element 21 has an axisymmetric shape and is composed of a plurality of annular zones.
- FIG. 2 shows a typical configuration example of the first embodiment.
- 2A is a view of the phase modulation element 21 as viewed from the optical axis direction
- FIG. 2B is a cross-sectional view taken along the central axis.
- the optical axis direction is a direction perpendicular to a plurality of concentric circles that define a plurality of annular zones.
- FIG. 3A to 3D show other configuration examples of the first embodiment.
- FIG. 3A is a first modification of the first embodiment (simply referred to as “first modification”)
- FIG. 3B is a second modification of the first embodiment (“modified example”). 2 ”)
- FIG. 3C is a third modification of the first embodiment (referred to as“ third modification ”)
- FIG. 3D is a fourth modification of the first embodiment (“ modified example ”). 4 ”).
- the phase modulation element 21 has a four-zone configuration, but the number of zones in the first embodiment and each modification is not limited to the four-zone. Moreover, although each ring zone is expressed by the same width, it does not necessarily need to be the same width.
- each annular zone has a convex shape or a concave shape
- FIG. 2 (b), FIG. 3 (c), and FIG. FIG. 3A and FIG. 3B show configuration examples in which the surface of each annular zone has a concave shape
- symbols h 1 , h 2 , h 3 , and h 4 indicating the respective heights are shown on the convex portions of the annular zones.
- symbols of h 1 , h 2 , h 3 , and h 4 indicating the respective depths are attached to the concave portions of the annular zones.
- the convex and concave portions of each zone are expressed in the same shape, but are not necessarily in the same shape.
- the step d is provided in the optical axis direction between the annular zones, so that the positions of the surfaces of all adjacent sets of annular zones are different in the optical axis direction.
- the portion indicated by the height or depth h 1 , h 2 , h 3 , h 4 is referred to as the surface of the annular zone, and the boundary with the portion indicated by the step d (that is, h 1 , h 2 , h 3 , and h 4 are positions at 0) is called the position of the surface of the annular zone.
- the position of the surface of the annular zone is different means that the position of the boundary between the surface of the annular zone and the portion indicated by the step d is different. That is, the fact that the position of this boundary is different means that a step d is provided.
- the coordinate axis z is taken in the optical axis direction of the phase modulation element 21, and the step dij between the i-th zone and the j-th zone is defined by Expression (1).
- symbol of the coordinate axis z is as having described in FIG.2 (b), and is i ⁇ j.
- steps d 12 , d 23 , and d 34 shown in FIG. 2B are all positive values.
- the level difference d ij may be a positive value in all (i, j) pairs, or as shown in FIG. 3B.
- All (i, j) pairs may be negative values.
- d 23 is a negative value, but d 12, d 34 is a positive value, thus, a positive or negative value in step d ij may be mixed.
- the step dij is a positive value or a negative value. It is preferable to unify
- FIG. 4 is a diagram illustrating the configuration of the phase modulation element 21 of the embodiment (for convenience, referred to as “Example 1 ′”) at the stage of reaching the configuration of the phase modulation element 21 according to the first embodiment.
- 6 to 8 show the results of calculating the PSF in the imaging optical system.
- the image side NA (Numerical Aperture) was set to 0.3926.
- PSFs were calculated once for each wavelength in 3 nm increments in the range of 405 nm to 705 nm, and the average of these was used as the PSF calculation result.
- FIG. 6 is a PSF in a normal imaging optical system (imaging optical system according to the prior art).
- the horizontal axis indicates the optical axis direction
- FIG. The vertical axis of a) represents the radial direction of the imaging surface
- the luminance represents the intensity of PSF.
- the intensity rapidly decreases.
- FIG. 7 shows an imaging optical system equipped with a phase modulation element 21 (phase modulation element 21 according to Example 1 ′) that is composed of a plurality of annular zones but does not have a step d as shown in FIG. PSF in the system.
- 7A and 7B are the same as those in FIGS. 6A and 6B, and the description thereof is omitted.
- the cause of the peak will be described with reference to FIG.
- the PSF generated by the m-th annular zone of the phase modulation element 21 will be referred to as PSF m
- the PSF generated from all the annular zones will be referred to as a PSF sum.
- the horizontal axis of FIG.7 (c) has shown the optical axis direction, the vertical axis
- FIG. 7C shows a stripe pattern due to a change in luminance, which means that the intensity of the PSF sum is generated by interference between the PSF m .
- FIG. 8 is a PSF in the imaging optical system on which the phase modulation element 21 of Example 1 provided with the step d as shown in FIG. 2 is mounted.
- 8 (a) and 8 (b) are the same as FIG. 6 (a) and FIG. 6 (b), and FIG. 8 (c) is the same as FIG. .
- the PSF is enlarged in the optical axis direction, and no peak is generated.
- the shape of PSF is substantially constant over a wide range in the optical axis direction.
- the step d has an effect of removing the PSF peak. Comparing FIG. 8C with FIG. 7C, it can be seen that the position in the optical axis direction where the intensity of the PSF sum is strong is shifted to the minus side regardless of the wavelength. That is, the PSF peak is driven out of the range where the intensity of the PSF sum is substantially constant.
- FIG. 5 is a diagram illustrating the configuration of the phase modulation element 21 according to the fifth modification example of the first embodiment (denoted as “fifth modification example”).
- z is the position in the optical axis direction
- ⁇ is the radial position of the image plane
- ⁇ is the wavelength
- NA is the image side NA in the imaging optical system
- f ( ⁇ ) is the light on the phase modulation surface of the m-th annular zone.
- n is the refractive index of the phase modulation element 21
- J 0 ( ⁇ ) is a zeroth-order first-type Bessel function
- C is an appropriate constant. Since C is irrelevant in the following description, description thereof is omitted.
- M-th annular zone can be identified by examining the (r m 2 -r m-1 2) / ⁇ h m.
- equation (10) is obtained.
- phase terms are expressed as follows.
- the position z in the optical axis direction where the phases are aligned regardless of the wavelength in the i-th zone and the j-th zone is obtained as follows.
- This z is the appearance position z p of the PSF peak in the optical axis direction. That is,
- the dij satisfying the expression (2) is expressed as follows from the expressions (6) and (14).
- the result shown in FIG. 9A is obtained.
- a step satisfying this condition can be realized, for example, with a size as shown in FIG.
- the PSF previously shown in FIG. 7 is the result of calculation under this condition.
- the first embodiment does not necessarily require that Formula (15) is satisfied for all (i, j) pairs.
- FIG. 3D is a configuration example showing the phase modulation element 21 under this condition.
- FIG. 10 is a PSF in the imaging optical system on which the phase modulation element 21 having the configuration example of FIG.
- the shape of the PSF is substantially constant over a wide range in the optical axis direction.
- the value of peak to peak on the phase modulation surface can be made smaller than in the configuration example of FIG.
- FIG. 5 is a configuration example of the phase modulation element 21 that does not satisfy the formula (15) in the set of the annular zone having the largest contribution to the PSF sum and the second largest annular zone.
- FIG. 11 is a PSF in the imaging optical system on which the phase modulation element 21 having the configuration example of FIG. 5 is mounted.
- the phase modulation element 21 by forming the phase modulation element 21 from a plurality of annular zones and satisfying the above formula (15) for the step d between the annular zones, the occurrence of PSF peaks can be suppressed.
- the upper limit (maximum value) of the step d may be appropriately determined for each product in which the phase modulation element 21 is incorporated.
- the center of gravity of the PSF does not change depending on the defocus amount in principle.
- PSF since PSF is also rotationally symmetric and isotropically expanded, the restored image by signal processing does not have directionality, image degradation due to rotational deviation of the optical axis of the phase modulation element can be suppressed, and the rectangular aperture can be reduced. There is no light loss due to the provision.
- PSF since PSF is also rotationally symmetric, it is possible to reduce the memory for storing the coefficient matrix used for signal processing, and to reduce the size of the signal processing circuit.
- the mold used for the molding also has a rotationally symmetric shape, enabling rotary lathe processing, shortening the processing time, and reducing manufacturing costs.
- the number of ring zones on the phase modulation surface can be set relatively small, the required dimensional accuracy is reduced.
- the above-described effect can also be achieved by the above-described modification 5. That is, it is not necessary to provide a step between all the adjacent annular zones, and the position of the surface of one annular zone and the position of the surface of the other annular zone among the plurality of annular zones constituting the phase modulation element 21 are:
- the above-described effects can be achieved.
- the PSF peak can be suppressed as compared with a normal imaging optical system (prior art).
- the above-described effects can also be achieved by the embodiment (“embodiment 1 ′”) in the progress stage leading to the configuration of the phase modulation element 21 according to the first embodiment. It is also added that it is possible to suppress the PSF peak as compared with a normal imaging optical system (conventional technology).
- this invention is not limited to an above-described Example and each modification, Various modifications are included.
- the above-described embodiments and modifications have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
- a part of the configuration of a certain embodiment or modification can be replaced with the configuration of another embodiment or modification, and the configuration of a certain embodiment or modification can be replaced with that of another embodiment or modification.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
The purpose of the present invention is to provide an optical component (phase modulation element) and an imaging device using the optical component, the optical component capable of reducing the dimensional accuracy required for setting a phase modulation surface and suppressing PSF peaks. In order to add a prescribed blur to an optical image in an imaging device having a function of enlarging the depth of focus, the present invention provides an optical component that is incorporated in the optical system of the imaging device and is characterized by having a plurality of ring segments, with a height difference in the optical axis direction being provided between at least a pair of the ring segments.
Description
本発明は、被写界深度を拡大または焦点深度を拡大するために用いられる光学部品およびそれを使った撮像装置に関する。
The present invention relates to an optical component used for enlarging the depth of field or enlarging the depth of focus, and an imaging apparatus using the same.
本技術分野の背景技術として、例えば、米国特許第5,748,371号(特許文献1)に記載のものが知られている。光の位相を変調する位相変調素子を光学系の中に配置して、点像分布関数(PSF:Point Spread Function、以下、「PSF」という)を合焦点位置からある距離の範囲内で本質的に一定にさせ、被写界深度または焦点深度を拡大する技術が開示されている。
As a background art in this technical field, for example, the one described in US Pat. No. 5,748,371 (Patent Document 1) is known. A phase modulation element that modulates the phase of light is arranged in the optical system, and a point spread function (PSF: Point Spread Function, hereinafter referred to as “PSF”) is essentially within a certain distance from the focal point position. And a technique for expanding the depth of field or the depth of focus is disclosed.
また、特表2013-518474号公報(特許文献2)には、上記位相変調素子において、径方向にランダムな一次元のプロファイルを有し、軸対称な位相変調素子を用いる例が記載されている。
JP 2013-518474 A (Patent Document 2) describes an example in which an axially symmetric phase modulation element having a random one-dimensional profile in the radial direction is used in the above phase modulation element. .
また、これらの先行技術(以下、「従来技術」という)では、位相変調素子により変調したPSFに起因する変調中間画像を信号処理により除去し、被写界深度を拡大する技術が開示されている。
Also, in these prior arts (hereinafter referred to as “prior art”), a technique is disclosed in which a modulated intermediate image caused by a PSF modulated by a phase modulation element is removed by signal processing to expand the depth of field. .
上記従来技術において、上記特許文献1では、位相を変調する位相変調素子が光軸に対して非回転対称であるために、合焦点位置からのずれ量(デフォーカス量)に依存してPSFの重心が移動するという問題があった。
また、信号処理により変調中間画像から位相変調素子に起因する変調分を除去する際に、方向性を持ったゴースト像が発生するという問題があった。
また、位相変調素子の回転ずれに伴い、PSFも回転し、再生画像が劣化するという問題があった。
さらに、上記位相変調素子においては、矩形の絞りを設ける必要があるために、光量損失が発生するという問題があった。 In the above prior art, inPatent Document 1, since the phase modulation element that modulates the phase is non-rotationally symmetric with respect to the optical axis, the PSF depends on the amount of deviation (defocus amount) from the in-focus position. There was a problem that the center of gravity moved.
In addition, there is a problem that a ghost image having a directivity is generated when a modulation component caused by the phase modulation element is removed from the modulated intermediate image by signal processing.
In addition, the PSF also rotates with the rotational shift of the phase modulation element, and there is a problem that the reproduced image deteriorates.
Further, the phase modulation element has a problem that a light amount loss occurs because it is necessary to provide a rectangular diaphragm.
また、信号処理により変調中間画像から位相変調素子に起因する変調分を除去する際に、方向性を持ったゴースト像が発生するという問題があった。
また、位相変調素子の回転ずれに伴い、PSFも回転し、再生画像が劣化するという問題があった。
さらに、上記位相変調素子においては、矩形の絞りを設ける必要があるために、光量損失が発生するという問題があった。 In the above prior art, in
In addition, there is a problem that a ghost image having a directivity is generated when a modulation component caused by the phase modulation element is removed from the modulated intermediate image by signal processing.
In addition, the PSF also rotates with the rotational shift of the phase modulation element, and there is a problem that the reproduced image deteriorates.
Further, the phase modulation element has a problem that a light amount loss occurs because it is necessary to provide a rectangular diaphragm.
上記問題を解決するために、上記特許文献2では、回転軸に対して対称な位相変調素子を利用する例が記載されており、ランダム性を利用して設定される位相変調面を有し、ランダム性の平均化によって、デフォーカスに依存しない均一なPSFを実現している。
In order to solve the above problem, Patent Document 2 describes an example using a phase modulation element that is symmetric with respect to the rotation axis, and has a phase modulation surface that is set using randomness, Uniform PSF independent of defocusing is realized by averaging the randomness.
しかしながら、上記特許文献2では、統計光学による確率モデルにより位相変調素子の形状を決定するため、位相変調面を構成する輪帯数を比較的多く設定する必要があり、高い寸法精度が要求される。そして、特許文献2では、輪帯の設定によっては輪帯間の干渉により光軸方向の特定の位置でPSFのピーク(以下、「PSFピーク」という)が発生する可能性がある。このPSFピークの発生については、上記特許文献2では言及されていないため、更なる研究の余地がある。
However, in Patent Document 2 described above, since the shape of the phase modulation element is determined by a stochastic model using statistical optics, it is necessary to set a relatively large number of ring zones constituting the phase modulation surface, and high dimensional accuracy is required. . In Patent Document 2, depending on the setting of the annular zone, a PSF peak (hereinafter referred to as “PSF peak”) may occur at a specific position in the optical axis direction due to interference between the annular zones. Since the generation of this PSF peak is not mentioned in the above-mentioned Patent Document 2, there is room for further research.
そこで、本発明は、位相変調面の設定に必要とされる寸法精度を低減させるとともに、PSFピークの発生を抑制することのできる光学部品(位相変調素子)およびそれを用いた撮像装置を提供する。
Accordingly, the present invention provides an optical component (phase modulation element) capable of reducing the dimensional accuracy required for setting the phase modulation surface and suppressing the occurrence of PSF peaks, and an imaging apparatus using the same. .
上記目的を達成するため、本発明は、複数の同心円によって画定される複数の輪帯を含み、前記同心円の中心に対して回転対称に構成される光学部品であって、前記輪帯は、前記同心円に垂直な方向で、かつ、前記同心円の中心を通る面での断面形状が凹または凸形状の表面を有し、複数の前記輪帯のうち1つの輪帯の前記表面の位置と他の輪帯の前記表面の位置とが、前記同心円に垂直な方向において異なることを特徴とする。
In order to achieve the above object, the present invention is an optical component that includes a plurality of annular zones defined by a plurality of concentric circles, and is configured to be rotationally symmetric with respect to the center of the concentric circles. A cross-sectional shape in a direction perpendicular to the concentric circle and passing through the center of the concentric circle has a concave or convex surface, and the position of the surface of one of the annular zones and the other The position of the surface of the annular zone is different in a direction perpendicular to the concentric circles.
また、本発明は、複数の同心円によって画定される複数の輪帯を含み、前記同心円の中心に対して回転対称に構成される光学部品を含む撮像装置であって、前記輪帯は、前記同心円に垂直な方向で、かつ、前記同心円の中心を通る面での断面形状が凹または凸形状の表面を有し、複数の前記輪帯のうち1つの輪帯の前記表面の位置と他の輪帯の前記表面の位置とが、前記同心円に垂直な方向において異なる前記光学部品を含むことを特徴とする。
Further, the present invention is an imaging apparatus including a plurality of annular zones defined by a plurality of concentric circles and including an optical component configured to be rotationally symmetric with respect to a center of the concentric circles, wherein the annular zones are the concentric circles. A cross-sectional shape in a direction perpendicular to the center and passing through the center of the concentric circle has a concave or convex surface, and the position of the surface of one of the annular zones and the other ring The position of the surface of the belt includes the optical component that is different in a direction perpendicular to the concentric circle.
本発明の光学部品(位相変調素子)によれば、位相変調面の設定に必要とされる寸法精度を低減させるとともに、PSFピークの発生を抑制することのできる光学部品(位相変調素子)およびそれを用いた撮像装置を提供することができる。
According to the optical component (phase modulation element) of the present invention, the optical component (phase modulation element) capable of reducing the dimensional accuracy required for setting the phase modulation surface and suppressing the occurrence of the PSF peak, and the same An imaging apparatus using the can be provided.
以下、本発明の実施形態について図面を用いて説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(実施例1)
図1は、本実施例に係る撮像装置の一構成例を説明する図である。
本実施例1に係る撮像装置100は、例えば、AVカメラ、携帯電話搭載カメラ、携帯情報端末搭載カメラ、画像検査装置、自動制御用産業カメラ等に適用することができる。 Example 1
FIG. 1 is a diagram illustrating a configuration example of the imaging apparatus according to the present embodiment.
Theimaging apparatus 100 according to the first embodiment can be applied to, for example, an AV camera, a mobile phone mounted camera, a portable information terminal mounted camera, an image inspection apparatus, an industrial camera for automatic control, and the like.
図1は、本実施例に係る撮像装置の一構成例を説明する図である。
本実施例1に係る撮像装置100は、例えば、AVカメラ、携帯電話搭載カメラ、携帯情報端末搭載カメラ、画像検査装置、自動制御用産業カメラ等に適用することができる。 Example 1
FIG. 1 is a diagram illustrating a configuration example of the imaging apparatus according to the present embodiment.
The
撮像装置100は、光学系2、撮像素子3、A/Dコンバータ4、RAWバッファメモリ5、画像補正部6、出力部7を備える。光学系2は、前玉レンズ群23および後玉レンズ群24、絞り22、位相変調素子21を備える。
The imaging apparatus 100 includes an optical system 2, an imaging device 3, an A / D converter 4, a RAW buffer memory 5, an image correction unit 6, and an output unit 7. The optical system 2 includes a front lens group 23, a rear lens group 24, a diaphragm 22, and a phase modulation element 21.
絞り22は、前玉レンズ群23および後玉レンズ群24の間に設けられており、被写体1から発し、光学系2を透過する光束を適切に絞る役割を果たす。位相変調素子21は、絞り22の近傍に設けられている。位相変調素子21は、後述する図2以降に示すような構成をしており、光学系2を透過する光束の位相を変調する機能を持っている。
The diaphragm 22 is provided between the front lens group 23 and the rear lens group 24 and plays a role of appropriately narrowing the light beam emitted from the subject 1 and transmitted through the optical system 2. The phase modulation element 21 is provided in the vicinity of the diaphragm 22. The phase modulation element 21 has a configuration as shown in FIG. 2 and later described later, and has a function of modulating the phase of a light beam transmitted through the optical system 2.
被写体1から発して光学系2に入射した光束は、前玉レンズ群23および後玉レンズ群24の機能により、撮像素子3の面上に被写体像を結像する。位相変調素子21による光束の位相変調の効果により、広い範囲で被写体像のボケ量は略一定となる。
The light beam emitted from the subject 1 and incident on the optical system 2 forms a subject image on the surface of the image sensor 3 by the functions of the front lens group 23 and the rear lens group 24. Due to the effect of the phase modulation of the light beam by the phase modulation element 21, the amount of blur of the subject image is substantially constant over a wide range.
撮像素子3は、その面上に複数の画素を有している。この撮像素子3の面上に結像された被写体像は、撮像素子3により画素ごとにアナログ信号に変換され、さらにA/Dコンバータ4によりデジタル信号に変換されて被写体像に対応した画像データが生成される。
The image sensor 3 has a plurality of pixels on its surface. The subject image formed on the surface of the image sensor 3 is converted into an analog signal for each pixel by the image sensor 3, and further converted into a digital signal by the A / D converter 4, and image data corresponding to the subject image is obtained. Generated.
RAWバッファメモリ5は、A/Dコンバータ4から画像データを格納する。画像補正部6は、RAWバッファメモリ5から画像データを受け取り、位相変調素子21の位相変調に起因する被写体像のボケを除去するための補正処理を施す。補正処理の方法は、例えば、空間フィルタを用いる方法であってもよい。補正後の画像は出力部7に供給される。
The RAW buffer memory 5 stores the image data from the A / D converter 4. The image correction unit 6 receives the image data from the RAW buffer memory 5 and performs a correction process for removing the blur of the subject image caused by the phase modulation of the phase modulation element 21. The correction processing method may be, for example, a method using a spatial filter. The corrected image is supplied to the output unit 7.
このような撮像装置(本実施例1に係る撮像装置100)により取得した画像を図12に示す。カメラから数cmの距離の指の指紋も、カメラから5cm以上の距離の張り紙の文字も解像されていることが分かる。
また、中間の距離にある、テストチャートなどの被写体も解像されていることが分かる。 An image acquired by such an imaging apparatus (imaging apparatus 100 according to the first embodiment) is shown in FIG. It can be seen that the fingerprint of a finger a few cm away from the camera and the letters on the sticker a distance of 5 cm or more from the camera are resolved.
It can also be seen that subjects such as test charts at an intermediate distance are also resolved.
また、中間の距離にある、テストチャートなどの被写体も解像されていることが分かる。 An image acquired by such an imaging apparatus (
It can also be seen that subjects such as test charts at an intermediate distance are also resolved.
図13には、上記図12との比較のため、通常の撮像装置(従来技術に係る撮像装置)で取得した画像を示す。カメラから約10cmの距離の二次元バーコードには合焦しているが、それより手前にある指や、それより奥にあるテストチャートや張り紙などの像はぼけている。
FIG. 13 shows an image acquired by a normal imaging device (imaging device according to the prior art) for comparison with FIG. The two-dimensional barcode at a distance of about 10 cm from the camera is in focus, but the image of the finger in front of it and the test chart and sticker behind it are blurred.
本実施例1は、上記のような構成の撮像装置あるいは撮像システムにおいて、光学系2に含まれる位相変調素子21として、同心円状の複数の輪帯構造を有する位相変調素子21を用いる。以下、この詳細について図2~図3を参照しながら説明する。本実施例1において位相変調素子21は軸対称の形状であり、複数の輪帯から構成されている、
The first embodiment uses the phase modulation element 21 having a plurality of concentric annular zones as the phase modulation element 21 included in the optical system 2 in the imaging apparatus or imaging system having the above-described configuration. The details will be described below with reference to FIGS. In the first embodiment, the phase modulation element 21 has an axisymmetric shape and is composed of a plurality of annular zones.
図2は、本実施例1の代表的な構成例を表したものである。図2(a)は、位相変調素子21を光軸方向から見た図であり、図2(b)は、その中心軸を通る断面での断面図である。なお、光軸方向は、複数の輪帯を画定する複数の同心円に対して垂直な方向である。
FIG. 2 shows a typical configuration example of the first embodiment. 2A is a view of the phase modulation element 21 as viewed from the optical axis direction, and FIG. 2B is a cross-sectional view taken along the central axis. The optical axis direction is a direction perpendicular to a plurality of concentric circles that define a plurality of annular zones.
図3(a)~(d)は、本実施例1の他の構成例を表している。なお、以下では、図3(a)を本実施例1の変形例1(単に、「変形例1」と表記する)、図3(b)を本実施例1の変形例2(「変形例2」と表記する)、図3(c)を本実施例1の変形例3(「変形例3」と表記する)、図3(d)を本実施例1の変形例4(「変形例4」と表記する)と呼ぶ。
3A to 3D show other configuration examples of the first embodiment. In the following, FIG. 3A is a first modification of the first embodiment (simply referred to as “first modification”), and FIG. 3B is a second modification of the first embodiment (“modified example”). 2 ”), FIG. 3C is a third modification of the first embodiment (referred to as“ third modification ”), and FIG. 3D is a fourth modification of the first embodiment (“ modified example ”). 4 ”).
図2および図3において、位相変調素子21は4輪帯の構成となっているが、本実施例1および各変形例の輪帯数は4輪帯に限定されるものではない。また、各輪帯は全て同じ幅で表現しているが、必ずしも同じ幅である必要はない。
2 and 3, the phase modulation element 21 has a four-zone configuration, but the number of zones in the first embodiment and each modification is not limited to the four-zone. Moreover, although each ring zone is expressed by the same width, it does not necessarily need to be the same width.
本実施例1および各変形例において、各輪帯の表面は凸形状、あるいは凹形状をしており、図2(b)、図3(c)、図3(d)は、各輪帯の表面が凸形状の構成例を示しており、図3(a)、図3(b)は、各輪帯の表面が凹形状の構成例を示している。図2(b)、図3(c)、図3(d)においては、各輪帯の凸形状部にそれぞれの高さを示すh1、h2、h3、h4の記号を、図3(a)、図3(b)においては、各輪帯の凹形状部にそれぞれの深さを示すh1、h2、h3、h4の記号を、それぞれ付している。
なお、図2および図3において、各輪帯の凸形状部、凹形状部はそれぞれ同形状で表現されているが、必ずしも同形状である必要はない。 In the first embodiment and each modified example, the surface of each annular zone has a convex shape or a concave shape, and FIG. 2 (b), FIG. 3 (c), and FIG. FIG. 3A and FIG. 3B show configuration examples in which the surface of each annular zone has a concave shape. In FIG. 2B, FIG. 3C, and FIG. 3D, symbols h 1 , h 2 , h 3 , and h 4 indicating the respective heights are shown on the convex portions of the annular zones. In 3 (a) and FIG. 3 (b), symbols of h 1 , h 2 , h 3 , and h 4 indicating the respective depths are attached to the concave portions of the annular zones.
In FIGS. 2 and 3, the convex and concave portions of each zone are expressed in the same shape, but are not necessarily in the same shape.
なお、図2および図3において、各輪帯の凸形状部、凹形状部はそれぞれ同形状で表現されているが、必ずしも同形状である必要はない。 In the first embodiment and each modified example, the surface of each annular zone has a convex shape or a concave shape, and FIG. 2 (b), FIG. 3 (c), and FIG. FIG. 3A and FIG. 3B show configuration examples in which the surface of each annular zone has a concave shape. In FIG. 2B, FIG. 3C, and FIG. 3D, symbols h 1 , h 2 , h 3 , and h 4 indicating the respective heights are shown on the convex portions of the annular zones. In 3 (a) and FIG. 3 (b), symbols of h 1 , h 2 , h 3 , and h 4 indicating the respective depths are attached to the concave portions of the annular zones.
In FIGS. 2 and 3, the convex and concave portions of each zone are expressed in the same shape, but are not necessarily in the same shape.
また、本実施例1においては、輪帯間には光軸方向に段差dが設けられていることにより、隣接する全ての組の輪帯の表面の位置が光軸方向において異なっている。なお、本実施例1において、上記高さまたは深さh1、h2、h3、h4で示される部分を輪帯の表面といい、段差dで示される部分との境目(つまり、h1、h2、h3、h4が0となる位置)のことを輪帯の表面の位置という。このことにより、「輪帯の表面の位置が異なる」ということは、輪帯の表面と段差dで示される部分との境目の位置が異なるということとなる。すなわち、この境目の位置が異なるということは、段差dが設けられているということになる。
Further, in the first embodiment, the step d is provided in the optical axis direction between the annular zones, so that the positions of the surfaces of all adjacent sets of annular zones are different in the optical axis direction. In the first embodiment, the portion indicated by the height or depth h 1 , h 2 , h 3 , h 4 is referred to as the surface of the annular zone, and the boundary with the portion indicated by the step d (that is, h 1 , h 2 , h 3 , and h 4 are positions at 0) is called the position of the surface of the annular zone. Thus, “the position of the surface of the annular zone is different” means that the position of the boundary between the surface of the annular zone and the portion indicated by the step d is different. That is, the fact that the position of this boundary is different means that a step d is provided.
ここで、中心から数えてm番目(m=1,2,・・・輪帯数)の輪帯を第m輪帯と表記することにし、位相変調素子21の半径方向に座標軸rを取り、最外周の座標が1となるように規格化し、中心のr座標をr0(=0)と表し、第m輪帯の外周側端点の座標をrmと表すことにする。また、位相変調素子21の光軸方向に座標軸zを取り、第i輪帯と第j輪帯の段差dijを式(1)で定義する。ただし、座標軸zの符号は、図2(b)に記した通りであり、i<jである。
Here, the m-th zone (m = 1, 2,..., The number of zones) counted from the center is expressed as the m-th zone, and the coordinate axis r is taken in the radial direction of the phase modulation element 21, outermost coordinates normalized to be 1, it represents the r-coordinate of the center r 0 and (= 0), the coordinates of the outer circumferential end point of the m zones to be represented as r m. In addition, the coordinate axis z is taken in the optical axis direction of the phase modulation element 21, and the step dij between the i-th zone and the j-th zone is defined by Expression (1). However, the code | symbol of the coordinate axis z is as having described in FIG.2 (b), and is i <j.
この定義により、図2(b)に示す段差d12、d23、d34はいずれも正の値となる。
With this definition, the steps d 12 , d 23 , and d 34 shown in FIG. 2B are all positive values.
段差dijは、図2(b)、図3(a)に示すように、全ての(i,j)の組で正の値であってもよいし、図3(b)に示すように、全ての(i,j)の組で負の値であってもよい。また、図3(c)では、d23が負の値、d12,d34が正の値となっているが、このように、段差dijに正負の値が混在していてもよい。しかし、製造の難度や画角性能の確保の難度の観点からすると、位相変調面のpeak to peakの値は小さいほうが望ましく、この観点からすると、段差dijは正の値、あるいは負の値だけに統一したほうが望ましい。
As shown in FIGS. 2B and 3A, the level difference d ij may be a positive value in all (i, j) pairs, or as shown in FIG. 3B. , All (i, j) pairs may be negative values. Further, in FIG. 3 (c), d 23 is a negative value, but d 12, d 34 is a positive value, thus, a positive or negative value in step d ij may be mixed. However, from the viewpoint of the difficulty of manufacturing and the difficulty of securing the angle of view performance, it is desirable that the peak to peak value of the phase modulation surface is small. From this viewpoint, the step dij is a positive value or a negative value. It is preferable to unify
また、段差dijは、必ずしも全ての輪帯間に設ける必要はなく、例えば、図3(d)のように、d12=0となる構成であってもよい。
Further, the steps d ij are not necessarily provided between all the annular zones, and may be configured such that d 12 = 0 as shown in FIG. 3D, for example.
次に、図4、図6~図8を用いて、本実施例1における段差dの効果について説明する。
図4は、本実施例1に係る位相変調素子21の構成に至る経過段階における実施例(便宜的に「実施例1´」という)の位相変調素子21の構成を表す図である。
図6~図8は、撮像光学系におけるPSFを計算した結果である。ここで、PSF計算の計算条件について説明する。像側NA(Numerical Aperture)は、0.3926とした。光源は可視光で波長が一様に分布している光源を想定しており、405nm~705nmの範囲で3nm刻みの各波長でPSFを一旦計算し、それらの平均をPSFの計算結果とした。 Next, the effect of the level difference d in the first embodiment will be described with reference to FIGS. 4 and 6 to 8.
FIG. 4 is a diagram illustrating the configuration of the phase modulation element 21 of the embodiment (for convenience, referred to as “Example 1 ′”) at the stage of reaching the configuration of the phase modulation element 21 according to the first embodiment.
6 to 8 show the results of calculating the PSF in the imaging optical system. Here, calculation conditions for PSF calculation will be described. The image side NA (Numerical Aperture) was set to 0.3926. Assuming that the light source is a visible light source with a uniformly distributed wavelength, PSFs were calculated once for each wavelength in 3 nm increments in the range of 405 nm to 705 nm, and the average of these was used as the PSF calculation result.
図4は、本実施例1に係る位相変調素子21の構成に至る経過段階における実施例(便宜的に「実施例1´」という)の位相変調素子21の構成を表す図である。
図6~図8は、撮像光学系におけるPSFを計算した結果である。ここで、PSF計算の計算条件について説明する。像側NA(Numerical Aperture)は、0.3926とした。光源は可視光で波長が一様に分布している光源を想定しており、405nm~705nmの範囲で3nm刻みの各波長でPSFを一旦計算し、それらの平均をPSFの計算結果とした。 Next, the effect of the level difference d in the first embodiment will be described with reference to FIGS. 4 and 6 to 8.
FIG. 4 is a diagram illustrating the configuration of the phase modulation element 21 of the embodiment (for convenience, referred to as “Example 1 ′”) at the stage of reaching the configuration of the phase modulation element 21 according to the first embodiment.
6 to 8 show the results of calculating the PSF in the imaging optical system. Here, calculation conditions for PSF calculation will be described. The image side NA (Numerical Aperture) was set to 0.3926. Assuming that the light source is a visible light source with a uniformly distributed wavelength, PSFs were calculated once for each wavelength in 3 nm increments in the range of 405 nm to 705 nm, and the average of these was used as the PSF calculation result.
図6は、通常の撮像光学系(従来技術に係る撮像光学系)でのPSFである、図6(a)、図6(b)共に横軸は光軸方向を示しており、図6(a)の縦軸は撮像面の半径方向、輝度はPSFの強度を表している。図6(b)は、図6(a)における半径方向位置=0での断面であり、縦軸はPSFの強度を表している。この図から分かるように、通常の撮像光学系でのPSFは光軸方向にずれると、強度が急激に低下する。
FIG. 6 is a PSF in a normal imaging optical system (imaging optical system according to the prior art). In both FIGS. 6A and 6B, the horizontal axis indicates the optical axis direction, and FIG. The vertical axis of a) represents the radial direction of the imaging surface, and the luminance represents the intensity of PSF. FIG. 6B is a cross section at the radial position = 0 in FIG. 6A, and the vertical axis represents the intensity of PSF. As can be seen from this figure, when the PSF in a normal imaging optical system is shifted in the direction of the optical axis, the intensity rapidly decreases.
図7は、図4に示すような、複数の輪帯から構成されてはいるが、段差dをもうけていない位相変調素子21(実施例1´に係る位相変調素子21)を搭載した撮像光学系でのPSFである。図7(a)、図7(b)の読み方は、図6(a)、図6(b)と同じなので説明を省略する。図7(a)、図7(b)を見ると、PSFが光軸方向に拡大されているものの、光軸方向位置=0でピークが立っており、このため、PSFの形状が光軸方向で一定ではなくなっていることが分かる。
FIG. 7 shows an imaging optical system equipped with a phase modulation element 21 (phase modulation element 21 according to Example 1 ′) that is composed of a plurality of annular zones but does not have a step d as shown in FIG. PSF in the system. 7A and 7B are the same as those in FIGS. 6A and 6B, and the description thereof is omitted. 7A and 7B, although the PSF is enlarged in the optical axis direction, a peak is formed at the optical axis direction position = 0. Therefore, the shape of the PSF is in the optical axis direction. It turns out that it is no longer constant.
ここで、図7(c)を用いて、ピークの発生原因を説明する。以後、説明のために必要に応じて、位相変調素子21の、第m輪帯により生成されるPSFをPSFm、全ての輪帯により生成されるPSFをPSF和と表記する。図7(c)の横軸は光軸方向を示しており、縦軸は波長、輝度はPSFの強度を表している。図7(c)には、輝度の変化による縞模様が表れているが、これは各PSFm間の干渉によりPSF和の強度の強弱が発生していることを意味している。光軸方向位置=0以外の光軸方向位置では、PSF和の強度に強弱が発生していても波長方向に平均する操作により強弱が打ち消し合い、平均化後のPSF和の強度は光軸方向に広い範囲で略一定の値となる。しかし、図7(c)を見ると分かるように、光軸方向位置=0では、波長によらずPSF和の強度は強く、平均しても打ち消し合うことがない。これが光軸方向位置=0でピークの発生する原因である。
Here, the cause of the peak will be described with reference to FIG. Hereinafter, for the sake of explanation, the PSF generated by the m-th annular zone of the phase modulation element 21 will be referred to as PSF m , and the PSF generated from all the annular zones will be referred to as a PSF sum. The horizontal axis of FIG.7 (c) has shown the optical axis direction, the vertical axis | shaft represents a wavelength and the brightness | luminance represents the intensity | strength of PSF. FIG. 7C shows a stripe pattern due to a change in luminance, which means that the intensity of the PSF sum is generated by interference between the PSF m . At optical axis direction positions other than optical axis position = 0, even if the intensity of the PSF sum is strong or weak, the strengths cancel each other out by averaging in the wavelength direction, and the intensity of the PSF sum after averaging is equal to the optical axis direction. It becomes a substantially constant value in a wide range. However, as can be seen from FIG. 7C, when the optical axis direction position = 0, the intensity of the PSF sum is strong regardless of the wavelength and does not cancel each other even if averaged. This is the cause of the peak at the optical axis direction position = 0.
図8は、図2に示すような段差dを設けた本実施例1の位相変調素子21を搭載した撮像光学系でのPSFである。図8(a)、図8(b)の読み方は、図6(a)、図6(b)と同じ、図8(c)の読み方は、図7(c)と同じなので説明を省略する。
FIG. 8 is a PSF in the imaging optical system on which the phase modulation element 21 of Example 1 provided with the step d as shown in FIG. 2 is mounted. 8 (a) and 8 (b) are the same as FIG. 6 (a) and FIG. 6 (b), and FIG. 8 (c) is the same as FIG. .
図8では、PSFが光軸方向に拡大され、しかもピークが発生していない。このため、PSFの形状は光軸方向の広い範囲に渡って略一定となっている。このため、本実施例1の位相変調素子21を搭載した撮像光学系では、焦点深度拡大効果を得ることができる。このように、段差dは、PSFピークを除去する効果がある。図8(c)を図7(c)と比較すると、波長によらずPSF和の強度が強くなる光軸方向位置がマイナス側にシフトしていることが分かる。つまり、PSFピークがPSF和の強度が略一定となる範囲の外に追い出されている状態である。
In FIG. 8, the PSF is enlarged in the optical axis direction, and no peak is generated. For this reason, the shape of PSF is substantially constant over a wide range in the optical axis direction. For this reason, in the imaging optical system in which the phase modulation element 21 of Example 1 is mounted, it is possible to obtain a focal depth expansion effect. Thus, the step d has an effect of removing the PSF peak. Comparing FIG. 8C with FIG. 7C, it can be seen that the position in the optical axis direction where the intensity of the PSF sum is strong is shifted to the minus side regardless of the wavelength. That is, the PSF peak is driven out of the range where the intensity of the PSF sum is substantially constant.
次に、段差dの必要量について、図3(d)、図5、図9~図11を用いて説明する。
図5は、本実施例1の変形例5(「変形例5」と表記する)に係る位相変調素子21の構成を表す図である。 Next, the necessary amount of the step d will be described with reference to FIG. 3D, FIG. 5, and FIGS.
FIG. 5 is a diagram illustrating the configuration of the phase modulation element 21 according to the fifth modification example of the first embodiment (denoted as “fifth modification example”).
図5は、本実施例1の変形例5(「変形例5」と表記する)に係る位相変調素子21の構成を表す図である。 Next, the necessary amount of the step d will be described with reference to FIG. 3D, FIG. 5, and FIGS.
FIG. 5 is a diagram illustrating the configuration of the phase modulation element 21 according to the fifth modification example of the first embodiment (denoted as “fifth modification example”).
まず、第i輪帯と第j輪帯の組により発生するPSFピークが除去される条件について説明する。PSFピークの光軸方向の出現位置をzpとする。また、PSF和に対して寄与度が最大となるPSFmを生成する輪帯が、第M輪帯であるとして、PSFMの強度が略一定となる光軸方向の範囲を(zM>z>-zM)とする。すると、式(2)が、PSFピークが除去される条件である。
First, conditions for removing the PSF peak generated by the combination of the i-th zone and the j-th zone will be described. Let z p be the appearance position of the PSF peak in the optical axis direction. Further, assuming that the annular zone that generates PSF m having the maximum contribution to the PSF sum is the M-th annular zone, the range in the optical axis direction in which the intensity of PSF M is substantially constant (z M > z > −z M ). Then, the expression (2) is a condition for removing the PSF peak.
次に、zMを求める方法を説明する。PSFmの複素振幅Ψm(z,ρ)を表す式を(3)に示す。
Next, a method for determining the z M. An expression representing the complex amplitude Ψ m (z, ρ) of PSF m is shown in (3).
ここで、zは光軸方向位置、ρは像面の半径方向位置、λは波長、NAは撮像光学系での像側NA、f(・)は、第m輪帯の位相変調面の光軸方向の座標を表す関数、nは位相変調素子21の屈折率、J0(・)は、0次の第一種ベッセル関数、Cは適当な定数である。なお、Cは以後の説明において無関係なので以後は記載を省略する。
Here, z is the position in the optical axis direction, ρ is the radial position of the image plane, λ is the wavelength, NA is the image side NA in the imaging optical system, and f (·) is the light on the phase modulation surface of the m-th annular zone. A function representing the coordinates in the axial direction, n is the refractive index of the phase modulation element 21, J 0 (·) is a zeroth-order first-type Bessel function, and C is an appropriate constant. Since C is irrelevant in the following description, description thereof is omitted.
式(3)において停留留位相近似解法を適用すると、
Applying the stationary phase approximation method in Equation (3),
となる。この近似解が成立する条件は、
It becomes. The condition for this approximate solution is
であり、この光軸方向の範囲で複素振幅Ψmおよび|Ψm|2で表されるPSFmの強度は略一定の値を取る。したがって、zMは、式(6)のように表される。
The intensity of PSF m represented by complex amplitudes Ψ m and | Ψ m | 2 takes a substantially constant value in the range in the optical axis direction. Therefore, z M is expressed by the equation (6).
また、輪帯毎のPSF和への寄与度の大きさは、式(4)における|Ψm(z,0)|により評価できる。J0(0)=1であり、λ,nは輪帯によらないので、式(7)のようになる。
The magnitude of the contribution to the PSF sum for each ring zone can be evaluated by | Ψ m (z, 0) | in Expression (4). Since J 0 (0) = 1, and λ and n do not depend on the annular zone, Equation (7) is obtained.
である。よって、M番目の輪帯は、(rm
2-rm-1
2)/√hmを調べることによって特定できる。
It is. Thus, M-th annular zone can be identified by examining the (r m 2 -r m-1 2) / √h m.
次に、zpを求める方法を説明する、zpを求めるためには、式(3)を変形して各輪帯の光軸方向における位相の状態を調べる必要がある。以下、式の変形を行う。式(3)において、ρ=0とおき、f(r)=0と近似する。
Next, a method for obtaining z p will be described. In order to obtain z p , it is necessary to examine the state of the phase in the optical axis direction of each annular zone by modifying equation (3). Hereinafter, the equation is modified. In equation (3), ρ = 0 is set, and f (r) = 0 is approximated.
この式(8)において、r2=tと置換すると、
In this equation (8), when r 2 = t is substituted,
この式(9)の積分を実行すると、式(10)のようになる。
When the integration of equation (9) is executed, equation (10) is obtained.
となる。式(10)のうち、expの項が第m輪帯の位相項である。
It becomes. In Expression (10), the term exp is the phase term of the m-th annular zone.
第i輪帯と第j輪帯に、段差dijが設けられているとき、位相項はそれぞれ以下のように表される。
When the step d ij is provided in the i-th zone and the j-th zone, the phase terms are expressed as follows.
第i輪帯と第j輪帯で波長によらず位相が揃う光軸方向の位置zは、次のように求められる。
The position z in the optical axis direction where the phases are aligned regardless of the wavelength in the i-th zone and the j-th zone is obtained as follows.
このzが、PSFピークの光軸方向の出現位置zpである。すなわち、
This z is the appearance position z p of the PSF peak in the optical axis direction. That is,
式(2)を満たすdijは、式(6)、式(14)より次のように表される。
The dij satisfying the expression (2) is expressed as follows from the expressions (6) and (14).
ここで、位相変調素子21が輪帯数4、r1=0.25、r2=0.5、r3=0.75、r4=1、h1=h2=h3=h4=hの条件で、全ての(i,j)の組で式(15)を満たす|dij|を計算すると、図9(a)に示すような結果になる。この条件を満たす段差は、例えば、図9(b)に示すような大きさで実現できる。先に図7で示したPSFは、この条件で計算した結果である。しかしながら、本実施例1は、必ずしも全ての(i,j)の組で式(15)が満たされることを要求するものではない。
Here, the phase modulation element 21 has a ring number of 4, r 1 = 0.25, r 2 = 0.5, r 3 = 0.75, r 4 = 1, h 1 = h 2 = h 3 = h 4. When | d ij | satisfying Expression (15) is calculated for all (i, j) pairs under the condition of = h, the result shown in FIG. 9A is obtained. A step satisfying this condition can be realized, for example, with a size as shown in FIG. The PSF previously shown in FIG. 7 is the result of calculation under this condition. However, the first embodiment does not necessarily require that Formula (15) is satisfied for all (i, j) pairs.
ここで、式(15)を満たす必要のある輪帯の組の条件について説明する、ある(i,j)の組で、zM>z>-zMの範囲でPSFピークが発生する条件になっていたとしても、そのピーク強度がPSF和の強度に比べて充分小さければ、zM>z>-zMの範囲でPSF和の強度の変化は略一定であるとみなすことができる。つまり、第i輪帯と第j輪帯のPSF和への寄与度が小さければ、dijが式(15)を満たさなくても性能に影響を与えない。例えば、位相変調素子21が輪帯数4、r1=0.25、r2=0.5、r3=0.75、r4=1であり、h1=h2=h3=h4のとき、(rm
2-rm-1
2)/√hmの値は、m=1で最小、m=2で2番目に小さな値になる。このとき、d12が式(15)を満たさず、d12=0であっても、ほとんど性能に影響を与えない。図3(d)は、この条件の位相変調素子21を表す構成例である。
Here, the condition of the ring set that needs to satisfy the expression (15) will be described. In a set of (i, j), the condition for generating a PSF peak in the range of z M >z> −z M is set. Even if it is, if the peak intensity is sufficiently smaller than the intensity of the PSF sum, the change in the intensity of the PSF sum can be regarded as substantially constant in the range of z M >z> −z M. That is, if the degree of contribution to the PSF sum of the i-th zone and the j-th zone is small, the performance is not affected even if d ij does not satisfy Expression (15). For example, the phase modulation element 21 has an annular number of 4, r 1 = 0.25, r 2 = 0.5, r 3 = 0.75, r 4 = 1, and h 1 = h 2 = h 3 = h. When 4 , the value of (r m 2 −r m−1 2 ) / √h m is the minimum when m = 1, and the second smallest value when m = 2. At this time, even if d 12 does not satisfy Expression (15) and d 12 = 0, the performance is hardly affected. FIG. 3D is a configuration example showing the phase modulation element 21 under this condition.
図10は、図3(d)の構成例の位相変調素子21を搭載した撮像光学系でのPSFである。計算条件および図の読み方は、図6(b)と同じである。図10では、PSFが光軸方向に拡大されており、しかも、第1輪帯と第2輪帯による輪帯間干渉の影響は小さいので、光軸方向位置=0でピークはほとんど発生していない、このため、PSFの形状は光軸方向の広い範囲に渡って略一定となっている。このため、図3(d)の構成例の位相変調素子21を搭載した撮像光学系では、焦点深度拡大効果を得ることができる。
また、図3(d)の構成例では、図2の構成例に比べて、位相変調面のpeak to peakの値を小さくできる。 FIG. 10 is a PSF in the imaging optical system on which the phase modulation element 21 having the configuration example of FIG. The calculation conditions and how to read the figure are the same as in FIG. In FIG. 10, the PSF is enlarged in the optical axis direction, and the influence of inter-annular interference by the first and second annular zones is small, so that a peak is almost generated at the optical axis direction position = 0. For this reason, the shape of the PSF is substantially constant over a wide range in the optical axis direction. For this reason, in the imaging optical system in which the phase modulation element 21 having the configuration example of FIG.
Further, in the configuration example of FIG. 3D, the value of peak to peak on the phase modulation surface can be made smaller than in the configuration example of FIG.
また、図3(d)の構成例では、図2の構成例に比べて、位相変調面のpeak to peakの値を小さくできる。 FIG. 10 is a PSF in the imaging optical system on which the phase modulation element 21 having the configuration example of FIG. The calculation conditions and how to read the figure are the same as in FIG. In FIG. 10, the PSF is enlarged in the optical axis direction, and the influence of inter-annular interference by the first and second annular zones is small, so that a peak is almost generated at the optical axis direction position = 0. For this reason, the shape of the PSF is substantially constant over a wide range in the optical axis direction. For this reason, in the imaging optical system in which the phase modulation element 21 having the configuration example of FIG.
Further, in the configuration example of FIG. 3D, the value of peak to peak on the phase modulation surface can be made smaller than in the configuration example of FIG.
一方、PSF和への寄与度が大きい輪帯の組では、dijが式(4)を満たさなければ発生するPSFピークの強度は比較的大きく、PSF和が略一定ではなくなってしまう。そのため、少なくともPSF和への寄与度が最大の輪帯と二番目に大きい輪帯の組では、式(15)を満足する必要がある。
On the other hand, in the ring set having a large contribution to the PSF sum, the intensity of the generated PSF peak is relatively large unless dij satisfies the equation (4), and the PSF sum is not substantially constant. Therefore, it is necessary to satisfy Equation (15) at least for the set of the annular zone having the largest contribution to the PSF sum and the second largest annular zone.
図5は、PSF和への寄与度が最大の輪帯と二番目に大きい輪帯の組で、式(15)を満足しない位相変調素子21の構成例である。図5に示す位相変調素子21は、輪帯数4、r1=0.25、r2=0.5、r3=0.75、r4=1であり、またh1=h2=h3=h4なので、(rm
2-rm-1
2)/√hmの値は、m=4で最大、m=3で2番目に大きな値になる。そして、d34=0となっている。
FIG. 5 is a configuration example of the phase modulation element 21 that does not satisfy the formula (15) in the set of the annular zone having the largest contribution to the PSF sum and the second largest annular zone. The phase modulation element 21 shown in FIG. 5 has an annular number 4, r 1 = 0.25, r 2 = 0.5, r 3 = 0.75, r 4 = 1, and h 1 = h 2 = Since h 3 = h 4 , the value of (r m 2 −r m−1 2 ) / √h m is the maximum when m = 4, and the second largest value when m = 3. And d 34 = 0.
図11は、図5の構成例の位相変調素子21を搭載した撮像光学系でのPSFである。計算条件および図の読み方は図6(b)と同じである。図11では、PSFが光軸方向に拡大されているが、光軸方向位置=0で明らかにピークが発生している。
FIG. 11 is a PSF in the imaging optical system on which the phase modulation element 21 having the configuration example of FIG. 5 is mounted. The calculation conditions and how to read the figure are the same as in FIG. In FIG. 11, the PSF is enlarged in the optical axis direction, but a peak is clearly generated at the optical axis direction position = 0.
以上のように、本実施例1および変形例1~4によれば、以下の効果を奏することができる。
As described above, according to the first embodiment and the first to fourth modifications, the following effects can be obtained.
すなわち、位相変調素子21を複数の輪帯から構成するとともに、輪帯間の段差dについて、上記式(15)を満たすようにすることにより、PSFピークの発生を抑制することができる。なお、段差dの上限値(最大値)については、当該位相変調素子21が組み込まれる製品ごとに適宜決めるものであってよい。ただし、当該位相変調素子21の輪帯の数と、段差dの最小値との関係等、位相変調素子21の光学性能の維持の観点から、位相変調素子21の肉厚は薄くすることが望ましい。
That is, by forming the phase modulation element 21 from a plurality of annular zones and satisfying the above formula (15) for the step d between the annular zones, the occurrence of PSF peaks can be suppressed. Note that the upper limit (maximum value) of the step d may be appropriately determined for each product in which the phase modulation element 21 is incorporated. However, it is desirable to reduce the thickness of the phase modulation element 21 from the viewpoint of maintaining the optical performance of the phase modulation element 21 such as the relationship between the number of annular zones of the phase modulation element 21 and the minimum value of the step d. .
さらに、本実施例1および変形例1~4によれば、さらに、下記のような効果を奏する。
すなわち、原理的にデフォーカス量に依存して、PSFの重心が変化することがなくなる。また、PSFも回転対称で等方的に拡がるため、信号処理による復元画像が方向性を持つことがなくなり、位相変調素子の光軸の回転ズレによる画像劣化を抑制することができ、矩形開口を設けることによる光量損失も発生しない。
また、PSFも回転対称になるため、信号処理に用いる係数行列を格納するメモリを削減することができ、信号処理回路を小型化することができる。
さらに、回転対称形状となるため、その成形に用いる金型も回転対称形状となり、回転旋盤加工が可能となり、加工時間の短縮や、製造コストの削減が可能となる。
また、位相変調面の輪帯数を比較的少なく設定することができるため、必要とされる寸法精度が低減される。 Furthermore, according to the first embodiment and the first to fourth modifications, the following effects are further obtained.
That is, the center of gravity of the PSF does not change depending on the defocus amount in principle. In addition, since PSF is also rotationally symmetric and isotropically expanded, the restored image by signal processing does not have directionality, image degradation due to rotational deviation of the optical axis of the phase modulation element can be suppressed, and the rectangular aperture can be reduced. There is no light loss due to the provision.
Further, since PSF is also rotationally symmetric, it is possible to reduce the memory for storing the coefficient matrix used for signal processing, and to reduce the size of the signal processing circuit.
Furthermore, since it has a rotationally symmetric shape, the mold used for the molding also has a rotationally symmetric shape, enabling rotary lathe processing, shortening the processing time, and reducing manufacturing costs.
In addition, since the number of ring zones on the phase modulation surface can be set relatively small, the required dimensional accuracy is reduced.
すなわち、原理的にデフォーカス量に依存して、PSFの重心が変化することがなくなる。また、PSFも回転対称で等方的に拡がるため、信号処理による復元画像が方向性を持つことがなくなり、位相変調素子の光軸の回転ズレによる画像劣化を抑制することができ、矩形開口を設けることによる光量損失も発生しない。
また、PSFも回転対称になるため、信号処理に用いる係数行列を格納するメモリを削減することができ、信号処理回路を小型化することができる。
さらに、回転対称形状となるため、その成形に用いる金型も回転対称形状となり、回転旋盤加工が可能となり、加工時間の短縮や、製造コストの削減が可能となる。
また、位相変調面の輪帯数を比較的少なく設定することができるため、必要とされる寸法精度が低減される。 Furthermore, according to the first embodiment and the first to fourth modifications, the following effects are further obtained.
That is, the center of gravity of the PSF does not change depending on the defocus amount in principle. In addition, since PSF is also rotationally symmetric and isotropically expanded, the restored image by signal processing does not have directionality, image degradation due to rotational deviation of the optical axis of the phase modulation element can be suppressed, and the rectangular aperture can be reduced. There is no light loss due to the provision.
Further, since PSF is also rotationally symmetric, it is possible to reduce the memory for storing the coefficient matrix used for signal processing, and to reduce the size of the signal processing circuit.
Furthermore, since it has a rotationally symmetric shape, the mold used for the molding also has a rotationally symmetric shape, enabling rotary lathe processing, shortening the processing time, and reducing manufacturing costs.
In addition, since the number of ring zones on the phase modulation surface can be set relatively small, the required dimensional accuracy is reduced.
また、上記した変形例5によっても、上記した効果を奏することができる。すなわち、隣接する輪帯間の全てに段差を設ける必要はなく、位相変調素子21を構成する複数の輪帯のうち1つの輪帯の表面の位置と他の輪帯の表面の位置とが、光軸方向において異なるように構成することにより、上記した効果を奏することができる。そして、上記実施例1および変形例1~4には劣るものの、通常の撮像光学系(従来技術)に比べて、PSFピークを抑制することが可能である。
なお、上記実施例1に係る位相変調素子21の構成に至る経過段階における実施例(「実施例1´」)によっても、上記した効果を奏することができる。そして、通常の撮像光学系(従来技術)に比べて、PSFピークを抑制することが可能であることも付け加えておく。 In addition, the above-described effect can also be achieved by the above-describedmodification 5. That is, it is not necessary to provide a step between all the adjacent annular zones, and the position of the surface of one annular zone and the position of the surface of the other annular zone among the plurality of annular zones constituting the phase modulation element 21 are: By configuring differently in the optical axis direction, the above-described effects can be achieved. Although inferior to the first embodiment and the first to fourth modifications, the PSF peak can be suppressed as compared with a normal imaging optical system (prior art).
Note that the above-described effects can also be achieved by the embodiment (“embodiment 1 ′”) in the progress stage leading to the configuration of the phase modulation element 21 according to the first embodiment. It is also added that it is possible to suppress the PSF peak as compared with a normal imaging optical system (conventional technology).
なお、上記実施例1に係る位相変調素子21の構成に至る経過段階における実施例(「実施例1´」)によっても、上記した効果を奏することができる。そして、通常の撮像光学系(従来技術)に比べて、PSFピークを抑制することが可能であることも付け加えておく。 In addition, the above-described effect can also be achieved by the above-described
Note that the above-described effects can also be achieved by the embodiment (“
なお、本発明は、上記した実施例および各変形例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例および各変形例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
また、ある実施例や変形例の構成の一部を他の実施例や変形例の構成に置き換えることが可能であり、また、ある実施例や変形例の構成に他の実施例や変形例の構成を加えることも可能である。また、各実施例や各変形例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to an above-described Example and each modification, Various modifications are included. For example, the above-described embodiments and modifications have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
In addition, a part of the configuration of a certain embodiment or modification can be replaced with the configuration of another embodiment or modification, and the configuration of a certain embodiment or modification can be replaced with that of another embodiment or modification. It is also possible to add a configuration. In addition, it is possible to add, delete, and replace other configurations for a part of the configurations of the embodiments and the modifications.
また、ある実施例や変形例の構成の一部を他の実施例や変形例の構成に置き換えることが可能であり、また、ある実施例や変形例の構成に他の実施例や変形例の構成を加えることも可能である。また、各実施例や各変形例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to an above-described Example and each modification, Various modifications are included. For example, the above-described embodiments and modifications have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
In addition, a part of the configuration of a certain embodiment or modification can be replaced with the configuration of another embodiment or modification, and the configuration of a certain embodiment or modification can be replaced with that of another embodiment or modification. It is also possible to add a configuration. In addition, it is possible to add, delete, and replace other configurations for a part of the configurations of the embodiments and the modifications.
1 被写体
2 光学系
3 撮像素子
4 A/Dコンバータ
5 RAWバッファメモリ
6 画像補正部
7 出力部
21 位相変調素子
22 絞り
23 前玉レンズ群
24 後玉レンズ群
100 撮像装置
DESCRIPTION OFSYMBOLS 1 Subject 2 Optical system 3 Image pick-up element 4 A / D converter 5 RAW buffer memory 6 Image correction part 7 Output part 21 Phase modulation element 22 Aperture 23 Front lens group 24 Rear lens group 100 Imaging device
2 光学系
3 撮像素子
4 A/Dコンバータ
5 RAWバッファメモリ
6 画像補正部
7 出力部
21 位相変調素子
22 絞り
23 前玉レンズ群
24 後玉レンズ群
100 撮像装置
DESCRIPTION OF
Claims (13)
- 複数の同心円によって画定される複数の輪帯を含み、前記同心円の中心に対して回転対称に構成される光学部品であって、
前記輪帯は、前記同心円に垂直な方向で、かつ、前記同心円の中心を通る面での断面形状が凹または凸形状の表面を有し、
複数の前記輪帯のうち1つの輪帯の前記表面の位置と他の輪帯の前記表面の位置とが、前記同心円に垂直な方向において異なることを特徴とする光学部品。 An optical component including a plurality of annular zones defined by a plurality of concentric circles and configured to be rotationally symmetric with respect to a center of the concentric circles;
The annular zone has a concave or convex surface in a cross-sectional shape in a direction perpendicular to the concentric circle and passing through the center of the concentric circle,
An optical component, wherein a position of the surface of one annular zone and a position of the surface of another annular zone are different in a direction perpendicular to the concentric circles. - 請求項1の光学部品であって、
前記輪帯の断面形状が凸形状であることを特徴とする光学部品。 The optical component of claim 1,
An optical component characterized in that a cross-sectional shape of the annular zone is a convex shape. - 請求項1の光学部品であって、
前記輪帯の断面形状が凹形状であることを特徴とする光学部品。 The optical component of claim 1,
An optical component, wherein the annular zone has a concave cross-sectional shape. - 請求項1の光学部品であって、
半径方向の座標を最外周の座標が1となるように規格化し、中心のr座標をr0(=0)、中心から数えてm番目の前記輪帯の外周側端点の座標をrm、前記輪帯の深さあるいは高さをhmとしたときに、(rm 2-rm-1 2)/√hmが最大の前記輪帯と、(rm 2-rm-1 2)/√hmが2番目に大きい前記輪帯の組において、光軸方向に段差が設けられていることを特徴とする光学部品。 The optical component of claim 1,
The coordinates in the radial direction are normalized so that the outermost peripheral coordinate is 1, the central r coordinate is r 0 (= 0), the coordinates of the outer peripheral end point of the m th ring zone counted from the center are r m , the depth or height of the ring-shaped zone is taken as h m, (r m 2 -r m-1 2) / √h m and a maximum of the ring-shaped zone, (r m 2 -r m- 1 2 ) / √h m is in the set of annular second largest, the optical component, wherein the step is provided in the optical axis direction. - 請求項1の光学部品であって、
最も内側の前記輪帯と、中心から数えてi番目の前記輪帯との光軸方向の段差をd1i、最も内側の前記輪帯と、中心から数えてj番目の前記輪帯との光軸方向の段差をd1jと表すとき、どの(d1i,d1j)の組み合わせでも段差の向きが逆向きでないことを特徴とする光学部品。 The optical component of claim 1,
A step in the optical axis direction between the innermost annular zone and the i-th annular zone counted from the center is d 1i , and light from the innermost annular zone and the j-th annular zone counted from the center An optical component characterized in that when the step in the axial direction is expressed as d 1j, the direction of the step is not reversed in any combination of (d 1i , d 1j ). - 請求項1の光学部品であって、
中心から数えてm番目の前記輪帯と、中心から数えてm+1番目の前記輪帯との段差dmm+1の絶対値がmの増加とともに単調増加することを特徴とする光学部品。 The optical component of claim 1,
An optical component characterized in that the absolute value of the step d mm + 1 between the m-th annular zone counted from the center and the (m + 1) -th annular zone counted from the center increases monotonously as m increases. - 請求項1の光学部品であって、
半径方向の座標を最外周の座標が1となるように規格化し、中心のr座標r0(=0)、中心から数えてm番目の輪帯の外周側端点の座標をrm、前記輪帯の深さあるいは高さをhmと表し、(rm 2-rm-1 2)/√hmが最大の前記輪帯が中心から数えてM番目の前記輪帯であるとしたとき、中心から数えてi番目の前記輪帯と、中心から数えてj番目の前記輪帯との光軸方向の段差dijが、
|dij|>|hM・{(rj 2+rj-1 2)-(ri 2+ri-1 2)}/{rM-1・(rM-rM-1)}|
となる(i,j)の組が少なくとも一組あることを特徴とする光学部品。 The optical component of claim 1,
The coordinates in the radial direction are normalized so that the outermost coordinate is 1, the r coordinate r 0 (= 0) of the center, the coordinates of the outer peripheral end point of the m-th ring zone counted from the center are r m , represents the depth or height of the strip and h m, when as the M-th of the annular zone counted from the (r m 2 -r m-1 2) / √h m centered maximum of the ring-shaped zone , A step dij in the optical axis direction between the i-th ring zone counted from the center and the j-th ring zone counted from the center,
| D ij |> | h M · {(r j 2 + r j−1 2 ) − (r i 2 + r i−1 2 )} / {r M−1 · (r M −r M−1 )} |
An optical component characterized in that there is at least one set of (i, j). - 請求項7の光学部品であって、
(rm 2-rm-1 2)/√hmが最大の前記輪帯が、中心から数えてM番目の前記輪帯であるとし、(rm 2-rm-1 2)/√hmが2番目に大きい前記輪帯が中心から数えてN番目の前記輪帯であるとしたとき、この輪帯の組において光軸方向の段差dNMが、
|dNM|>|hM・{(rM 2+rM-1 2)-(rN 2+rN-1 2)}/{rM-1・(rM-rM-1)}|
となることを特徴とする光学部品。 The optical component according to claim 7,
(R m 2 -r m-1 2 ) / √h It is assumed that the ring zone with the largest m is the M-th ring zone counted from the center, and (r m 2 -r m-1 2 ) / √ when the ring-shaped zone large h m is the second is that the N-th of the annular zone counted from the center, step d NM in the optical axis direction in this set of ring-shaped zone,
| D NM |> | h M · {(r M 2 + r M−1 2 ) − (r N 2 + r N−1 2 )} / {r M−1 · (r M −r M−1 )} |
An optical component characterized by - 請求項1の光学部品であって、
(rm 2-rm-1 2)/√hmが最小の前記輪帯と、(rm 2-rm-1 2)/√hmが2番目に小さい前記輪帯との組において、光軸方向に段差が設けられていないことを特徴とする光学部品。 The optical component of claim 1,
(R m 2 -r m-1 2 ) / √h In the set of the ring zone having the smallest m and (r m 2 -r m-1 2 ) / √h m having the second smallest ring zone An optical component having no step in the optical axis direction. - 請求項8の光学部品であって、
全ての(i,j)の組において、光軸方向の段差dijが、
|dij|>|hM・{(rj 2+rj-1 2)-(ri 2+ri-1 2)}/{rM-1・(rM-rM-1)}|
となることを特徴とする光学部品。 The optical component of claim 8,
In all (i, j) pairs, the step d ij in the optical axis direction is
| D ij |> | h M · {(r j 2 + r j−1 2 ) − (r i 2 + r i−1 2 )} / {r M−1 · (r M −r M−1 )} |
An optical component characterized by - 複数の同心円によって画定される複数の輪帯を含み、前記同心円の中心に対して回転対称に構成される光学部品を含む撮像装置であって、
前記輪帯は、前記同心円に垂直な方向で、かつ、前記同心円の中心を通る面での断面形状が凹または凸形状の表面を有し、
複数の前記輪帯のうち1つの輪帯の前記表面の位置と他の輪帯の前記表面の位置とが、前記同心円に垂直な方向において異なる前記光学部品を含むことを特徴とする撮像装置。 An imaging device including a plurality of annular zones defined by a plurality of concentric circles and including an optical component configured to be rotationally symmetric with respect to the center of the concentric circles,
The annular zone has a concave or convex surface in a cross-sectional shape in a direction perpendicular to the concentric circle and passing through the center of the concentric circle,
An imaging apparatus comprising: the optical component in which a position of the surface of one of the plurality of annular zones and a position of the surface of another annular zone are different in a direction perpendicular to the concentric circle. - 請求項11の撮像装置であって、
前記輪帯の断面形状が凸形状である前記光学部品を含むことを特徴とする撮像装置。 The imaging device according to claim 11,
An imaging apparatus comprising the optical component having a convex cross section of the annular zone. - 請求項12の撮像装置であって、
前記輪帯の断面形状が凹形状である前記光学部品を含むことを特徴とする撮像装置。 The imaging apparatus according to claim 12, wherein
An imaging apparatus comprising the optical component having a concave cross-sectional shape of the annular zone.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/060218 WO2015155842A1 (en) | 2014-04-08 | 2014-04-08 | Optical component and imaging device using same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/060218 WO2015155842A1 (en) | 2014-04-08 | 2014-04-08 | Optical component and imaging device using same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015155842A1 true WO2015155842A1 (en) | 2015-10-15 |
Family
ID=54287445
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/060218 WO2015155842A1 (en) | 2014-04-08 | 2014-04-08 | Optical component and imaging device using same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015155842A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018101065A (en) * | 2016-12-21 | 2018-06-28 | 株式会社日立製作所 | Optical component and imaging system using the same |
CN114488472A (en) * | 2020-10-28 | 2022-05-13 | 株式会社日立制作所 | Image pickup optical system, image pickup apparatus, and focal depth enlarging optical system |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0756083A (en) * | 1991-06-19 | 1995-03-03 | At & T Corp | Optical picture system and optical correcting lens |
JP2006147126A (en) * | 2004-10-20 | 2006-06-08 | Hitachi Maxell Ltd | Pickup lens with phase compensating plate and optical pickup device using it |
JP2007122055A (en) * | 2005-10-27 | 2007-05-17 | Samsung Electro-Mechanics Co Ltd | Optical system having multiple curvature lens and manufacturing method thereof |
JP2009217879A (en) * | 2008-03-10 | 2009-09-24 | Juraron Kogyo Kk | Objective lens and optical unit |
WO2011096193A1 (en) * | 2010-02-08 | 2011-08-11 | パナソニック株式会社 | Image pickup lens, image pickup device using same, and portable apparatus equipped with the image pickup device |
WO2012077350A1 (en) * | 2010-12-10 | 2012-06-14 | パナソニック株式会社 | Diffraction-grating lens, and imaging optical system and imaging device using said diffraction-grating lens |
JP2013528828A (en) * | 2010-04-27 | 2013-07-11 | カール ツアイス メディテック アクチエンゲゼルシャフト | Multifocal lens |
-
2014
- 2014-04-08 WO PCT/JP2014/060218 patent/WO2015155842A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0756083A (en) * | 1991-06-19 | 1995-03-03 | At & T Corp | Optical picture system and optical correcting lens |
JP2006147126A (en) * | 2004-10-20 | 2006-06-08 | Hitachi Maxell Ltd | Pickup lens with phase compensating plate and optical pickup device using it |
JP2007122055A (en) * | 2005-10-27 | 2007-05-17 | Samsung Electro-Mechanics Co Ltd | Optical system having multiple curvature lens and manufacturing method thereof |
JP2009217879A (en) * | 2008-03-10 | 2009-09-24 | Juraron Kogyo Kk | Objective lens and optical unit |
WO2011096193A1 (en) * | 2010-02-08 | 2011-08-11 | パナソニック株式会社 | Image pickup lens, image pickup device using same, and portable apparatus equipped with the image pickup device |
JP2013528828A (en) * | 2010-04-27 | 2013-07-11 | カール ツアイス メディテック アクチエンゲゼルシャフト | Multifocal lens |
WO2012077350A1 (en) * | 2010-12-10 | 2012-06-14 | パナソニック株式会社 | Diffraction-grating lens, and imaging optical system and imaging device using said diffraction-grating lens |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018101065A (en) * | 2016-12-21 | 2018-06-28 | 株式会社日立製作所 | Optical component and imaging system using the same |
CN114488472A (en) * | 2020-10-28 | 2022-05-13 | 株式会社日立制作所 | Image pickup optical system, image pickup apparatus, and focal depth enlarging optical system |
CN114488472B (en) * | 2020-10-28 | 2023-07-21 | 株式会社日立制作所 | Imaging optical system, imaging device, and focal depth expansion optical system |
US11933993B2 (en) | 2020-10-28 | 2024-03-19 | Hitachi, Ltd. | Imaging optical system, imaging apparatus and focal-depth extension optical system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6728365B2 (en) | Image processing method, image processing device, imaging device, image processing program, storage medium | |
KR20070057231A (en) | Extended depth of field using a multi-focal length lens with a controlled range of spherical aberration and centrally obscured aperture | |
JP2007122055A (en) | Optical system having multiple curvature lens and manufacturing method thereof | |
JP6392328B2 (en) | Optical component and imaging apparatus using the same | |
JP6786377B2 (en) | Optical components and imaging systems using them | |
JP6834134B2 (en) | Imaging device and information code reader | |
JP2008211679A (en) | Imaging apparatus and method thereof | |
US11178326B2 (en) | Image sensor and electronic device including image sensor | |
JP5390046B2 (en) | Focus expansion optical system and EDoF imaging system | |
US8928780B2 (en) | Adjustment method, adjustment apparatus, method of manufacturing optical system, image pickup apparatus, and method of manufacturing image pickup apparatus | |
JP6286531B2 (en) | Phase filter, imaging optical system, and imaging system | |
JP2015004883A (en) | Image forming optical system, imaging system, and imaging method | |
WO2015155842A1 (en) | Optical component and imaging device using same | |
JP2011151448A (en) | Imaging apparatus and electronic device | |
JP2012217090A (en) | Imaging apparatus, imaging lens unit, and imaging unit | |
JP2014115303A (en) | Focal depth expansion optical system and imaging system | |
US10339665B2 (en) | Positional shift amount calculation apparatus and imaging apparatus | |
JP2020030569A (en) | Image processing method, image processing device, imaging device, lens device, program, and storage medium | |
JP2006094469A (en) | Imaging device and imaging method | |
JP6471031B2 (en) | Phase filter, imaging optical system, and imaging system | |
TW202224413A (en) | Spectral image capturing using infrared light and color light filtering | |
JP6333076B2 (en) | IMAGING DEVICE, IMAGING DEVICE CONTROL METHOD, PROGRAM, AND STORAGE MEDIUM | |
JP2008211678A (en) | Imaging apparatus and method thereof | |
JP2011133593A (en) | Imaging apparatus | |
JP2021097351A5 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14889108 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14889108 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |