WO2015155465A1 - Procédé d'isolation d'un reservoir de fluide combustible relativement a une partie aval de systeme d'alimentation pour turbomachine en cas d'incendie et un tel syseme d'alimentation - Google Patents

Procédé d'isolation d'un reservoir de fluide combustible relativement a une partie aval de systeme d'alimentation pour turbomachine en cas d'incendie et un tel syseme d'alimentation Download PDF

Info

Publication number
WO2015155465A1
WO2015155465A1 PCT/FR2015/050899 FR2015050899W WO2015155465A1 WO 2015155465 A1 WO2015155465 A1 WO 2015155465A1 FR 2015050899 W FR2015050899 W FR 2015050899W WO 2015155465 A1 WO2015155465 A1 WO 2015155465A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
turbomachine
shut
threshold
fire
Prior art date
Application number
PCT/FR2015/050899
Other languages
English (en)
Inventor
Thomas LEPAGE
Antoine Laigle
Matthieu ATTALI
Original Assignee
Snecma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snecma filed Critical Snecma
Priority to US15/302,571 priority Critical patent/US20170022906A1/en
Publication of WO2015155465A1 publication Critical patent/WO2015155465A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/18Lubricating arrangements
    • F01D25/20Lubricating arrangements using lubrication pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/46Emergency fuel control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D37/00Arrangements in connection with fuel supply for power plant
    • B64D37/32Safety measures not otherwise provided for, e.g. preventing explosive conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/232Fuel valves; Draining valves or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/323Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/35Combustors or associated equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/09Purpose of the control system to cope with emergencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention relates to the technical field of turbomachine fluid supply systems. More specifically, the invention relates to the isolation of a fuel fluid reservoir, during a fire in a turbomachine.
  • the turbomachine lubrication systems are configured, in known manner, to circulate an oil flow sufficient to cool the turbomachine in case of fire. This oil flow circulates under the effect of a lubricant supply pump driven by the natural autorotation of the turbomachine when the aircraft is in flight.
  • the regulations in force require that the engine is able to withstand a fire for a minimum period, while avoiding the fire is fueled during this time.
  • the invention aims to at least partially solve the problems encountered in the solutions of the prior art.
  • the subject of the invention is a method of isolating a fuel fluid reservoir relative to a downstream portion of a turbomachine fluid supply system
  • the supply system comprising the tank and a shut-off valve located between the tank and the downstream part,
  • shutoff valve being configured to limit a flow of fluid towards the downstream portion
  • shut-off valve being at least partially open, when a rotational speed of a turbomachine shaft is greater than a first threshold and in the absence of a fire detected in the turbomachine,
  • the isolation method comprising a step of automatically closing the valve when the rotational speed of the shaft is less than the first threshold. Following the step of closing the valve, the method comprises a step of limiting / preventing subsequent opening of the shut-off valve if the rotation speed of the shaft is greater than the first threshold, when a fire was detected during the flight of the turbomachine.
  • the shutoff valve closes automatically and the subsequent opening of the shutoff valve is limited / prevented.
  • shut-off valve remains closed, when a fire has been detected in the turbomachine and the speed of rotation of the shaft is likely to be - or to become - insufficient to properly cool the turbomachine equipment to be powered.
  • the risks of fueling fire with combustible fluid are limited, as well as the need to provide specific fire protection for such equipment.
  • the method and the corresponding supply system therefore make it possible to isolate the fuel fluid reservoir in the event of a fire inside the turbomachine, while limiting the mass and the size of the turbomachine, and in particular respecting the legal requirements for the protection of fires inside a turbomachine.
  • the process can be easily automated by taking mainly into account the presence of a fire or the absence of a fire in the turbomachine.
  • the need for availability of a digital control system is then limited.
  • the shutoff valve is closed when the rotational speed of the shaft is lower than the first threshold.
  • the lubrication chambers are then not supplied with lubricant when the rotational speed of the shaft is lower than the first threshold.
  • the combustible fluid is preferably lubricant, especially oil.
  • the fluid is fuel.
  • the invention may optionally include one or more of the following features combined with one another or not.
  • the subsequent opening of the shut-off valve is preferably limited / prevented until the end of the flight of the turbomachine.
  • the first threshold preferably corresponds to a rotation value of the shaft sufficiently small so that the rotor of the turbomachine does not need to be lubricated, in particular the lubrication chambers.
  • the invention also relates to a turbomachine fluid supply system comprising:
  • a downstream part situated downstream of the reservoir and comprising a fluid supply pump
  • shutoff valve located between the reservoir and the downstream part, the shutoff valve being configured to be open when a rotational speed of a turbomachine shaft is greater than the first threshold and in the absence of a fire detected in the turbine engine.
  • the shut-off valve closes automatically and the subsequent opening of the shut-off valve is limited / prevented when a fire has been detected during of the flight.
  • the shut-off valve comprises in particular a locking device configured to limit / prevent the opening of the shut-off valve.
  • the locking device is configured to limit / prevent the subsequent opening of the shutoff valve if the rotational speed of the shaft is greater than the first threshold, when a fire has been detected during the flight of the turbomachine.
  • the shut-off valve comprises a safety position towards which the shut-off valve is brought back in the absence of control exerted on the shut-off valve, the shut-off valve being closed in the safety position.
  • the shut-off valve is closed or closed with limited intervention of a numerical control system of turbomachine or aircraft, or even without intervention of the digital control system, during the critical event that constitutes a fire.
  • the shut-off valve is preferably hermetically closed in the safety position. Nevertheless, a few residual drops may in particular flow downstream of the shut-off valve due to manufacturing tolerances and mounting of the shut-off valve.
  • the power system and the corresponding method can isolate a turbomachine fuel fluid reservoir in case of fire, while limiting the availability requirements of a digital control system.
  • the locking device comprises a locking element movable between a locking position in which the shut-off valve is locked closed, and an unlocking position in which the shut-off valve is configured to be closed or at least partially open,
  • the locking element being in the locked position in the absence of control exerted on the locking element so that the shut-off valve is in the safety position.
  • the shut-off valve is pneumatically controlled when the locking element is in the unlocking position.
  • the opening and / or closing of the shut-off valve is controlled by a numerical control system of the turbomachine and / or the aircraft, when the locking element is in the locked position.
  • a pneumatically controlled shut-off valve is preferably configured to be supplied with air from a turbomachine module selected in particular from a turbomachine compressor or a turbomachine turbine, the shutoff valve being configured to be open when the air pressure coming from the module exceeds a pressure threshold and the locking element is in the unlocking position.
  • the opening and / or closing of the valve can then be performed without intervention of the numerical control system of turbomachine or aircraft, when the locking element is in the unlocking position.
  • the control of the shut-off valve has the advantage of being little energy-consuming.
  • the compressor is preferably a high pressure turbomachine compressor.
  • the turbine is preferably a turbomachine high pressure turbine.
  • the shut-off valve preferably comprises a piston and a resilient means mechanically connected to the piston being configured to bias the piston in displacement to a first position in which the shut-off valve is closed, from a second position in which the shut-off valve is at least partially open.
  • the locking member in the locking position preferably forms a stop of the piston, so as to prevent the piston from being in the second position.
  • the locking element is configured to move from the locking position to the unlocking position on command of a digital turbomachine or aircraft control system.
  • the locking member preferably has a bevel shape, so as to promote the movement of the piston from the second position to the first position when the locking member is in the locking position. Moreover, the bevel shape of the locking member does not prevent the locking member in the locking position from preventing movement of the piston from the first position to the second position.
  • the invention also relates to a turbomachine lubrication system comprising a supply system as defined above in which the supply system is configured to supply at least one turbomachine lubrication chamber, the lubrication system comprising in addition a lubricant return circuit including a lubricant return pump configured to supply the reservoir with lubricant from the lubrication chamber.
  • the invention finally relates to a turbomachine comprising a feed system and / or a lubrication system as described above.
  • the turbomachine is preferably a turbojet or a turboprop. In a variant, the turbomachine is a helicopter engine.
  • FIG. 1 represents a partial schematic view in longitudinal section of a turbomachine, according to a first embodiment of the invention
  • FIG. 2 represents a partial schematic view of a fluid supply system, according to the first embodiment of the invention
  • FIG. 3 is an enlarged partial schematic view of the shutoff valve of the supply system of Figure 2 in the open position
  • FIG. 4 is an enlarged schematic partial view of the shutoff valve of the supply system of Figure 3 in the closed position
  • FIG. 5 schematically illustrates a method of isolating the reservoir of the feed system of FIG. 2.
  • FIG. 1 represents a turbomachine 1 with double flow and double body.
  • the turbomachine 1 comprises in this order on the flow path of a primary flow A fan 2, a low pressure compressor 4, a high pressure compressor 6, a combustion chamber 16, a high pressure turbine 8 and a low turbine pressure 10.
  • the low pressure compressor 4, the high pressure compressor 6, the high pressure turbine 8 and the low pressure turbine 10 delimit a secondary flow stream of a secondary flow B which bypasses them.
  • the high-pressure compressor 6 and the high-pressure turbine 8 are mechanically connected by a driving shaft 3 of the high-pressure compressor 6, so as to form a high-pressure body of the turbomachine 1.
  • the low-pressure compressor 4 and the low-pressure turbine 10 are mechanically connected by a turbomachine shaft 1, so as to form a low-pressure body of the turbomachine 1.
  • the turbomachine 1 also comprises an intermediate housing 20 which is traversed by radial structural arms 22.
  • One of the structural arms 22 comprises a radial shaft 24 whose radially inner end is mechanically connected by gears to the driving shaft 3 of the high pressure compressor 6.
  • the radially outer end of the radial shaft 24 is mechanically connected by gears to a gearbox 30 configured to serve as an accessory housing of the turbomachine 1.
  • the gearbox 30 is configured to be rotated by the high pressure body.
  • Gearbox 30 is also known as an "accessory gearbox". It includes a plurality of equipment such as a pump 212 lubricant supply, a fuel supply pump, a starter or an electric generator.
  • the turbomachine 1 comprises a lubrication system comprising a supply system 200 and a lubricant return circuit 300 to the lubricant reservoir 201.
  • the supply system 200 is configured to supply at least one turbomachine lubricating chamber 122, 124 from a lubricant reservoir 201.
  • the lubrication chambers 122, 124 typically comprise equipment to be lubricated, for a nominal operation of the turbomachine 1.
  • a lubricant supply shutoff valve 230 from the tank 201 is located between the tank 201 and the lubricating chambers 122, 124. Between the shutoff valve 230 and the lubrication chambers 122, 124, the supply system 200 includes the feed pump 212 lubricant.
  • the lubricant supply pump 212 and the lubricating chambers 122, 124 form a downstream portion 210 of the supply system 200.
  • upstream and downstream directions are defined by the general flow direction of the feed fluid which is lubricant in the first embodiment.
  • the lubricant return circuit 300 includes a lubricant return pump 312 configured to supply the reservoir 201 with lubricant from the lubrication enclosure 122, 124. Between the lubricant return pump 312 and the reservoir 201, the lubricant return circuit 300 includes a heat exchanger 315 configured to cool the lubricant, typically oil, before it returns to the reservoir 201. Heat exchanger 315 thus makes it possible to limit the risks of premature degradation of the lubricant.
  • the shut-off valve 230 comprises a valve 237 configured to limit the flow of fluid 202 from the tank 201 towards the feed pump 212.
  • the valve "T" shaped 237 is connected to one end of an arm 235 of the shutoff valve 230 by a hinge 236.
  • the valve 237 is movable in rotation about the axis 240 of the valve 237, so as to open and / or close the shutoff valve 230.
  • the valve 237 is movable between an extreme open position in which the shut-off valve 230 is open in FIG. 3, and an extreme closed position in which the shut-off valve 230 is closed in FIG. 4. In the position of opening, the valve 237 does not limit the flow of lubricant 204 towards the feed pump 212.
  • the shutoff valve 230 may optionally be partially open, in which case the valve 237 is located between the open position and the closed position.
  • the shutoff valve 230 is an "all or nothing" valve, the open position and the closed position are then in particular the only equilibrium positions of the valve 237.
  • the arm 235 is mechanically connected at its opposite end to that at which the valve 237 is located at a piston 232 delimiting the volume of two chambers 234, 236 of the shut-off valve 230.
  • the piston 232 is movable between a first position PI in which the shutoff valve 230 is closed and the valve 237 in the closed position, and a second position P2 in which the shutoff valve 230 is open and the valve 237 in the open position.
  • the piston 232 is biased towards the first position PI by an elastic means 231 mechanically connected to the piston 232.
  • the resilient means 231 is for example a compression spring which tends to close the shutoff valve 230 or to keep it closed.
  • the piston 232 and the elastic means 231 are located inside a body 239 of the shut-off valve 230, which delimits with the piston the high-pressure chamber 234 and the low-pressure chamber 236 of the shut-off valve 230.
  • the high pressure chamber 234 is fed with compressed air from a turbomachine module 1, selected from the high-pressure compressor 6, the low-pressure compressor 4, the high-pressure turbine 8 and the low-pressure turbine 10.
  • the high pressure chamber 234 is supplied with compressed air according to the arrow 64 by the high pressure compressor 6.
  • Ambient air supplies the low pressure chamber 236.
  • This air comes in particular from the secondary flow B, so that a pressure difference between the low pressure chamber 236 and the high pressure chamber 234 causes the piston 232 to move against the spring acting as an elastic means 231, so as to balance the pressure inside the chambers 234 and 236, provided that the shutoff valve 230 is not locked closed.
  • the shutoff valve 230 is pneumatically controlled, when it is not locked while being closed.
  • the shut-off valve 230 also includes a locking device 40 configured to lock the shut-off valve 230 when the shut-off valve 230 is closed and the shutter 237 is in the closed position.
  • the locking device 40 comprises a locking member 42 movable between a locking position in which the shut-off valve 230 is locked closed, preferably hermetically, and an unlocking position in which the shut-off valve 230 is configured to be closed or at least partially open.
  • the valve 237 can switch from the closed position to the open position, when the locking element 42 is in the unlocking position. Conversely, the valve 237 remains in the closed position, when the locking element 42 is in the locking position.
  • the locking member 42 takes the form of a latch.
  • the locking element 42 preferably serves as a stop for the piston 232, so as to prevent the piston 232 from being in the second position P2, that is to say in particular so as to prevent the shut-off valve 230 from 'open.
  • the locking member 42 has a bevel shape, so as to promote the movement of the piston 232 from the second position P2 to the first position P1 when the locking member 42 is in the locking position.
  • the bevel shape of the locking element 42 does not prevent the locking element 42 in the locking position from preventing the displacement of the piston 232 from the first position PI to the second position P2.
  • the latch 42 in the blocking position is configured to protrude into the low pressure chamber 236 from a through hole 238 formed in the body 239 of the shutoff valve 230.
  • the latch 42 includes in particular a projecting portion 422 configured to engage a flange 233 of the body 239 of the shutoff valve 230, so as to protrude into the low pressure chamber 236, while being designed to prevent movement of the piston 232 to the second position P2.
  • the projecting portion 422 is connected by a rod to a piston 424 of the latch 42 located in a sleeve 41 of the piston 424.
  • the sleeve 41 of the piston 424 comprises a return means 44 of the piston 424 configured to urge the displacement of the piston 424 of so that the locking element 42 is in the locked position in the absence of control exerted on the locking element 42.
  • the latch 42 In unlocking position, the latch 42 does not protrude into the low pressure chamber 236, so as not to hinder the movement of the piston 232 between the first position PI and the second position P2.
  • the latch 42 in the unlocking position compresses a return means 44 in the sleeve 41.
  • the latch-shaped latch member 42 is configured to move from the lock position to the on-demand release position of a turbomachine or aircraft digital control system.
  • the control of the locking element 42 by the digital control system 5 is preferably an "all or nothing" control, the locking position and the unblocking position being the only possible end positions of the locking element 42.
  • the locking position is the only equilibrium position at rest of the locking element 42.
  • the displacement of the latch 42 is also effected as a function of the air inlet 60 coming from the high-pressure compressor 6.
  • the digital control system 5 is also known by the acronym "FADEC” from the English “Full Authority Digital Engine Control”.
  • the digital control system 5 comprises a calculator two-way symmetrical, redundant and full authority engine. This engine calculator is intended to take into account a command from a pilot of the aircraft.
  • the digital control system 5 is configured to instruct a priming electromagnet 50 to urge the latch 42 to move from the lock position to the unlock position.
  • the priming electromagnet 50 is configured to pass air under pressure into the liner 41 of the piston 424, so as to allow the latch 42 to move from the lock position to the unlocking position.
  • the electromagnet 50 is configured to block the inflow of pressurized air according to the arrow 60 in the jacket 41.
  • the return means 44 and the resilient means 231 thus form a safety means for closing the shut-off valve 230.
  • This safety means biases the piston 232 towards the first position PI, in the absence of control of the lock 42 by the digital control system 5.
  • the shutoff valve 230 then comprises a safety position PS in which the shutoff valve 230 is closed.
  • the shut-off valve 230 is returned to its safety position PS in the absence of control, pneumatic and / or from the control system 5, exerted on the shut-off valve 230.
  • the locking element 42 is configured to move from the blocking position to the unlocking position by order of the digital control system 5, when starting the aircraft comprising the turbomachine 1 and in the absence of fire.
  • the shutoff valve 230 opens when the air pressure in the high pressure chamber 234 exceeds a pressure threshold which is greater than the pressure in the low pressure chamber 236.
  • This pressure threshold of the air from the high pressure compressor 6 is determined as a function of a first threshold S rotation speed V of a shaft whose movement is related to the rotational movement of the high-pressure body of the turbomachine 1.
  • this shaft is the radial shaft 24. In a variant, it may be in particular the drive shaft 3 of the high-pressure compressor 6.
  • the first threshold Si is determined so that the lubricant flow da ns the supply system 200 for rotational speed values V greater than the first threshold Si allows efficient cooling of the turbine engine 1 during a fire.
  • the first threshold Si is also determined so that when the rotational speed VR of the radial shaft 24 is lower than the first threshold Si in the absence of fire, the rotor of the turbomachine 1 has little or no need for be lubricated. Moreover, the lubricant present in the reservoir 201 constitutes a combustible fluid which must not supply fire in the turbomachine 1.
  • shutoff valve 230 is configured to be closed when the rotational speed VR of the radial shaft 24 is less than the first threshold Si.
  • the shutoff valve 230 is configured to isolate the lubricant reservoir 201 from the downstream portion 210 of the supply system 200 in case of fire by the implementation of a method of isolating the reservoir 201 which is described with reference in Figure 5.
  • the rotational speed VR of the radial shaft 24 is compared with the first threshold Si during an initialization stage of the process 52.
  • the shut-off circuit 230 is closed, both in the presence and in the absence of a fire detected in the turbomachine 1.
  • the digital control system 5 determines during a step
  • the locking element 42 In the absence of a fire detected, the locking element 42 is held in the unlocking position and the shut-off valve 230 is opened in step 64, due to the arrival of compressed air 60 from the high-pressure compressor 6 when the rotational speed V is greater than the first threshold Si.
  • the lubrication chambers 122, 124 are then substantially properly supplied with lubricant in the absence of 'fire.
  • the shutoff valve 230 is kept open in step 66 only if the rotational speed VR has remained higher than the first threshold Si since the fire was detected.
  • the piston 232 tends to move from the second position P2 to the first position PI when the locking element 42 is in the unlocking position.
  • the locking member 42 switches to the blocking position in step 66, so that the shutoff valve 230 is locked closed.
  • the shutoff valve 230 then remains preferably locked closed by the locking element 42 as a precaution until the end of the flight of the turbomachine 1.
  • the shutoff valve 230 closes automatically and the subsequent opening of the shutoff valve 230 during the flight is limited / prevented.
  • shut-off valve 230 is closed, when the two following conditions are met:
  • the rotational speed VR of the radial shaft 24 is greater than the first threshold Si
  • the rotational speed VR of the radial shaft was lower than the first threshold Si when a fire was detected in the turbomachine 1 during the flight of the turbomachine 1.
  • the invention makes it easier to comply with the regulatory requirements concerning the fire regulation in a turbomachine 1, by limiting in particular the use of bulky specific fire protection and large mass in the turbomachine 1.
  • the risk that the shut-off valve 230 will not close in the event of a fire in the turbomachine 1 is limited by the safety means, formed by the return means 44 and the elastic means 231, which tends to bring the valve back 230 to its safety position PS in which the shutoff valve 230 is closed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Turbines (AREA)

Abstract

L'invention concerne un système d'alimentation (200) en fluide de turbomachine (1) comprenant un réservoir (201) de fluide, une partie aval (210) située en aval du réservoir (201), et une vanne de coupure (230) située entre le réservoir (201) et la partie aval (210). La vanne de coupure (230) est configurée pour être au moins partiellement ouverte lorsqu'une vitesse de rotation d'un arbre de turbomachine est supérieure à un premier seuil et en l'absence d'incendie détecté dans la turbomachine (1). Selon l'invention, la vanne de coupure (230) est fermée, lorsque les deux conditions suivantes sont réunies: la vitesse de rotation de l'arbre est supérieure au premier seuil, et la vitesse de rotation de l'arbre a été inférieure au premier seuil lorsqu'un incendie était détecté dans la turbomachine (1) au cours du vol.

Description

PROCEDE D'ISOLATION D'UN RESERVOIR DE FLUIDE COMBUSTIBLE
RELATIVEMENT A UNE PARTIE AVAL DE SYSTEME D'ALIMENTATION POUR TURBOMACHINE EN CAS D'INCENDIE ET UN TEL SYSEME D'ALIMENTATION
DESCRIPTION
DOMAINE TECHNIQUE
L'invention se rapporte au domaine technique des systèmes d'alimentation en fluide pour turbomachine. Plus précisément, l'invention concerne l'isolation d'un réservoir de fluide combustible, lors d'un incendie dans une turbomachine.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
Les systèmes de lubrification de turbomachine sont configurés, de manière connue, pour laisser circuler un débit d'huile suffisant pour refroidir la turbomachine en cas d'incendie. Ce débit d'huile circule sous l'effet d'une pompe d'alimentation en lubrifiant entraînée par l'autorotation naturelle de la turbomachine lorsque l'avion est en vol.
Cependant lorsque ce débit d'huile est insuffisant pour assurer le refroidissement de la turbomachine lors d'un incendie, il est souvent nécessaire de limiter le débit d'huile en direction d'équipements de la turbomachine et/ou de prévoir une protection spécifique de ces équipements contre les incendies. Les protections spécifiques contre les incendies présentent l'inconvénient d'être préjudiciable en termes de masse et d'encombrement.
Afin de limiter le débit de fluide combustible circulant dans un système de lubrification en cas d'incendie dans une turbomachine, il est connu d'isoler le réservoir d'huile du reste du système de lubrification par une vanne de coupure, passive ou contrôlée par un système de régulation numérique, tant que le feu n'est pas définitivement éteint. Néanmoins, l'utilisation d'une vanne de coupure passive peut être complexe à mettre en œuvre puisqu'elle se traduit souvent par une absence de lubrification de la turbomachine lorsque la turbomachine est arrêtée. Toutefois, le système de régulation numérique de certaines turbomachines ou de certains avions risque de ne pas être disponible pendant un incendie pour commander l'ouverture ou la fermeture d'une vanne de coupure contrôlée.
En outre, la réglementation en vigueur oblige que la turbomachine soit apte à résister à un incendie pendant une durée minimale, tout en évitant que l'incendie ne soit alimenté en combustible pendant ce temps.
II existe donc un besoin d'isoler un réservoir de fluide combustible de turbomachine en cas d'incendie, tout en limitant à la fois les exigences de disponibilité d'un système de régulation numérique, la masse et l'encombrement de la turbomachine.
EXPOSÉ DE L'INVENTION L'invention vise à résoudre au moins partiellement les problèmes rencontrés dans les solutions de l'art antérieur.
A cet égard, l'invention a pour objet un procédé d'isolation d'un réservoir de fluide combustible relativement à une partie aval de système d'alimentation en fluide pour turbomachine,
le système d'alimentation comprenant le réservoir et une vanne de coupure située entre le réservoir et la partie aval,
la vanne de coupure étant configurée pour limiter un débit de fluide en direction de la partie aval,
la vanne de coupure étant au moins partiellement ouverte, lorsqu'une vitesse de rotation d'un arbre de turbomachine est supérieure à un premier seuil et en l'absence d'incendie détecté dans la turbomachine,
le procédé d'isolation comprenant une étape de fermeture automatique de la vanne lorsque la vitesse de rotation de l'arbre est inférieure au premier seuil. Suite à l'étape de fermeture de la vanne, le procédé comprend une étape de limitation/d'empêchement d'ouverture ultérieure de la vanne de coupure si la vitesse de rotation de l'arbre est supérieure au premier seuil, lorsqu'un incendie a été détecté au cours du vol de la turbomachine.
En d'autres termes, lorsque la vitesse de rotation de l'arbre est inférieure au premier seuil et qu'un incendie a été détecté au cours du vol, la vanne de coupure se ferme automatiquement et l'ouverture ultérieure de la vanne de coupure est limitée/empêchée.
La vanne de coupure reste notamment fermée, lorsqu'un incendie a été détecté dans la turbomachine et que la vitesse de rotation de l'arbre risque d'être - ou de redevenir - insuffisante pour refroidir correctement les équipements de turbomachine à alimenter. Ainsi, les risques d'alimenter le feu en fluide combustible sont limités, de même que le besoin de prévoir une protection anti-incendie spécifique pour ces équipements.
Le procédé et le système d'alimentation correspondant permettent donc d'isoler le réservoir de fluide combustible en cas d'incendie à l'intérieur de la turbomachine, tout en limitant la masse, l'encombrement de la turbomachine, et en respectant notamment les exigences légales en matière de protection des incendies à l'intérieur d'une turbomachine.
Par ailleurs, le procédé peut être facilement automatisé en prenant principalement en compte la présence d'un incendie ou l'absence d'un incendie dans la turbomachine. Le besoin de disponibilité d'un système de régulation numérique est alors limité.
La vanne de coupure est fermée lorsque la vitesse de rotation de l'arbre est inférieure au premier seuil. Les enceintes de lubrification ne sont alors pas alimentées en lubrifiant lorsque la vitesse de rotation de l'arbre est inférieure au premier seuil.
Le fluide combustible est de préférence du lubrifiant, en particulier de l'huile. En variante, le fluide est du carburant.
L'invention peut comporter de manière facultative une ou plusieurs des caractéristiques suivantes combinées entre elles ou non. Dans cette configuration, l'ouverture ultérieure de la vanne de coupure est de préférence limitée/empêchée jusqu'à la fin du vol de la turbomachine.
Dans ce cas, le premier seuil correspond préférablement à une valeur de rotation de l'arbre suffisamment faible pour que le rotor de la turbomachine n'ait pas besoin d'être lubrifié, en particulier les enceintes de lubrification.
Avantageusement, un débit de fluide suffisant pour refroidir la turbomachine en cas d'incendie circule dans le système d'alimentation, lorsque la vanne de coupure est ouverte et que la vitesse de rotation de l'arbre est supérieure ou égale au premier seuil.
L'invention porte également sur un système d'alimentation en fluide de turbomachine comprenant :
un réservoir de fluide,
une partie aval située en aval du réservoir et comprenant une pompe d'alimentation en fluide, et
une vanne de coupure située entre le réservoir et la partie aval, la vanne de coupure étant configurée pour être ouverte lorsqu'une vitesse de rotation d'un arbre de turbomachine est supérieure au premier seuil et en l'absence d'incendie détecté dans la turbomachine.
Selon l'invention, lorsque la vitesse de rotation de l'arbre est inférieure au premier seuil, la vanne de coupure se ferme automatiquement et l'ouverture ultérieure de la vanne de coupure est limitée/empêchée lorsqu'un incendie a été détecté au cours du vol.
La vanne de coupure comprend notamment un dispositif de verrouillage configuré pour limiter/empêcher l'ouverture de la vanne de coupure.
Suite à la fermeture de la vanne lorsque la vitesse de rotation de l'arbre est inférieure au premier seuil, le dispositif de verrouillage est configuré pour limiter/empêcher l'ouverture ultérieure de la vanne de coupure si la vitesse de rotation de l'arbre est supérieure au premier seuil, lorsqu'un incendie a été détecté au cours du vol de la turbomachine. Selon une autre forme de réalisation avantageuse, la vanne de coupure comprend une position de sécurité vers laquelle la vanne de coupure est ramenée en l'absence de commande exercée sur la vanne de coupure, la vanne de coupure étant fermée en position de sécurité.
La vanne de coupure est donc fermée ou se ferme avec une intervention limitée d'un système de régulation numérique de turbomachine ou d'aéronef, voire même sans intervention du système de régulation numérique, lors de l'événement critique que constitue un incendie.
La vanne de coupure est de préférence hermétiquement fermée en position de sécurité. Néanmoins, quelques gouttes résiduelles peuvent notamment s'écouler en aval de la vanne de coupure du fait de tolérances de fabrication et de montage de la vanne de coupure.
En outre, il est possible d'éviter de redoubler les commandes de la vanne de coupure par le système de régulation numérique, puisque les commandes de la vanne de coupure par le système de régulation numérique ne sont plus primordiales pour préserver l'intégrité de la turbomachine en cas d'incendie.
Par conséquent, le système d'alimentation et le procédé correspondant permettent d'isoler un réservoir de fluide combustible de turbomachine en cas d'incendie, tout en limitant les exigences de disponibilité d'un système de régulation numérique.
De préférence, le dispositif de verrouillage comprend un élément de verrouillage mobile entre une position de blocage dans laquelle la vanne de coupure est bloquée fermée, et une position de déblocage dans laquelle la vanne de coupure est configurée pour être fermée ou au moins partiellement ouverte,
l'élément de verrouillage étant en position de blocage en l'absence de commande exercée sur l'élément de verrouillage de sorte à ce que la vanne de coupure soit en position de sécurité.
Selon une autre particularité de réalisation, la vanne de coupure est à commande pneumatique lorsque l'élément de verrouillage est en position de déblocage. En variante, l'ouverture et/ou la fermeture de la vanne de coupure est commandée par un système de régulation numérique de la turbomachine et/ou de l'aéronef, lorsque l'élément de verrouillage est en position de blocage.
Une vanne de coupure à commande pneumatique est de préférence configurée pour être alimentée par de l'air en provenance d'un module de turbomachine choisi notamment parmi un compresseur de turbomachine ou une turbine de turbomachine, la vanne de coupure étant configurée pour être ouverte lorsque la pression de l'air en provenance du module dépasse un seuil de pression et que l'élément de verrouillage est en position de déblocage.
L'ouverture et/ou la fermeture de la vanne peuvent alors s'effectuer sans intervention du système de régulation numérique de turbomachine ou d'aéronef, lorsque l'élément de verrouillage est en position de déblocage. La commande de la vanne de coupure présente l'avantage d'être peu consommatrice d'énergie électrique.
Le compresseur est de préférence un compresseur haute pression de turbomachine. De manière similaire, la turbine est de préférence une turbine haute pression de turbomachine.
La vanne de coupure comprend de préférence un piston et un moyen élastique relié mécaniquement au piston en étant configuré pour solliciter le piston en déplacement vers une première position dans laquelle la vanne de coupure est fermée, depuis une deuxième position dans laquelle la vanne de coupure est au moins partiellement ouverte.
L'élément de verrouillage en position de blocage forme de préférence une butée du piston, de sorte à empêcher le piston d'être dans la deuxième position.
Selon une autre forme de réalisation avantageuse, l'élément de verrouillage est configuré pour se déplacer depuis la position de blocage vers la position de déblocage sur commande d'un système de régulation numérique de turbomachine ou d'aéronef.
L'élément de verrouillage présente de préférence une forme de biseau, de sorte à favoriser le déplacement du piston de la deuxième position vers la première position lorsque l'élément de verrouillage est en position de blocage. Par ailleurs, la forme de biseau de l'élément de verrouillage n'empêche pas l'élément de verrouillage en position de blocage d'interdire le déplacement du piston de la première position vers la deuxième position.
L'invention se rapporte aussi à un système de lubrification de turbomachine comprenant un système d'alimentation tel que défini ci-dessus dans lequel le système d'alimentation est configuré pour alimenter au moins une enceinte de lubrification de turbomachine, le système de lubrification comprenant en outre un circuit de retour de lubrifiant comprenant une pompe de retour du lubrifiant configurée pour alimenter le réservoir avec du lubrifiant en provenance de l'enceinte de lubrification.
L'invention concerne enfin une turbomachine comprenant un système d'alimentation et/ou un système de lubrification tel que décrit ci-dessus.
La turbomachine est de préférence un turboréacteur ou un turbopropulseur. En variante, la turbomachine est un moteur d'hélicoptère.
BRÈVE DESCRIPTION DES DESSINS La présente invention sera mieux comprise à la lecture de la description d'exemples de réalisation, donnés à titre purement indicatif et nullement limitatif, en faisant référence aux dessins annexés sur lesquels :
la figure 1 représente une vue schématique partielle en coupe longitudinale de turbomachine, selon un premier mode de réalisation de l'invention ;
la figure 2 représente une vue schématique partielle d'un système d'alimentation en fluide, selon le premier mode de réalisation de l'invention ;
la figure 3 est une vue schématique partielle agrandie de la vanne de coupure du système d'alimentation de la figure 2 en position d'ouverture ;
- la figure 4 est une vue schématique partielle agrandie de la vanne de coupure du système d'alimentation de la figure 3 en position de fermeture ;
la figure 5 illustre de manière schématique un procédé d'isolation du réservoir du système d'alimentation de la figure 2. EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
Des parties identiques, similaires ou équivalentes des différentes figures portent les mêmes références numériques de façon à faciliter le passage d'une figure à l'autre.
La figure 1 représente une turbomachine 1 à double flux et double corps. La turbomachine 1 comprend dans cet ordre sur le chemin d'écoulement d'un flux primaire A une soufflante 2, un compresseur basse pression 4, un compresseur haute pression 6, une chambre de combustion 16, une turbine haute pression 8 et une turbine basse pression 10.
Le compresseur basse pression 4, le compresseur haute pression 6, la turbine haute pression 8 et la turbine basse pression 10 délimitent une veine secondaire d'écoulement d'un flux secondaire B qui les contourne.
Le compresseur haute pression 6 et la turbine haute pression 8 sont reliées mécaniquement par un arbre 3 d'entraînement du compresseur haute pression 6, de sorte à former un corps haute pression de la turbomachine 1. De manière similaire, le compresseur basse pression 4 et la turbine basse pression 10 sont reliées mécaniquement par un arbre de turbomachine 1, de façon à former un corps basse pression de la turbomachine 1.
La turbomachine 1 comporte également un carter intermédiaire 20 qui est traversé par des bras structuraux radiaux 22. Un des bras structuraux 22 comprend un arbre radial 24 dont l'extrémité radialement interne est reliée mécaniquement par des engrenages à l'arbre 3 d'entraînement du compresseur haute pression 6. L'extrémité radialement externe de l'arbre radial 24 est reliée mécaniquement par des engrenages à une boite à engrenages 30 configurée pour servir de boîtier d'accessoires de la turbomachine 1. De ce fait, la boite à engrenages 30 est configurée pour être entraînée en rotation par le corps haute pression.
La boite à engrenages 30 est également connue sous le nom d' « accessory gearbox ». Elle comprend une pluralité d'équipements tels qu'une pompe 212 d'alimentation en lubrifiant, une pompe d'alimentation en carburant, un démarreur ou un générateur électrique.
En référence à la figure 2, la turbomachine 1 comporte un système de lubrification comprenant un système d'alimentation 200 et un circuit de retour de lubrifiant 300 vers le réservoir 201 de lubrifiant. Le système d'alimentation 200 est configuré pour alimenter au moins une enceinte 122, 124 de lubrification de turbomachine 1 à partir d'un réservoir 201 de lubrifiant. Les enceintes de lubrification 122, 124 comprennent de manière classique des équipements à lubrifier, pour un fonctionnement nominal de la turbomachine 1.
Une vanne de coupure 230 d'alimentation en lubrifiant en provenance du réservoir 201 est située entre le réservoir 201 et les enceintes de lubrification 122, 124. Entre la vanne de coupure 230 et les enceintes de lubrification 122, 124, le système d'alimentation 200 comprend la pompe d'alimentation 212 en lubrifiant.
La pompe d'alimentation 212 en lubrifiant et les enceintes de lubrification 122, 124 forment une partie aval 210 du système d'alimentation 200.
Dans le document, les directions « amont » et « aval » sont définies par la direction générale d'écoulement du fluide d'alimentation qui est du lubrifiant dans le premier mode de réalisation.
Le circuit de retour du lubrifiant 300 comporte une pompe de retour 312 du lubrifiant configurée pour alimenter le réservoir 201 avec du lubrifiant en provenance des enceinte 122, 124 de lubrification. Entre la pompe de retour 312 de lubrifiant et le réservoir 201, le circuit de retour du lubrifiant 300 comprend un échangeur de chaleur 315 configuré pour refroidir le lubrifiant, typiquement de l'huile, avant qu'elle retourne dans le réservoir 201. L'échangeur de chaleur 315 permet ainsi de limiter les risques de dégradations prématurées du lubrifiant.
La vanne de coupure 230 comprend un clapet 237 configuré pour limiter l'écoulement de fluide 202 depuis le réservoir 201 en direction de la pompe d'alimentation 212. Le clapet 237 en forme de « T » est relié à une extrémité d'un bras 235 de la vanne de coupure 230 par une articulation 236. Le clapet 237 est mobile en rotation autour de l'axe 240 du clapet 237, de sorte à pouvoir ouvrir et/ou fermer la vanne de coupure 230.
Le clapet 237 est mobile entre une position extrême d'ouverture dans laquelle la vanne de coupure 230 est ouverte à la figure 3, et une position extrême de fermeture dans laquelle la vanne de coupure 230 est fermée à la figure 4. En position d'ouverture, le clapet 237 ne limite pas l'écoulement de lubrifiant 204 en direction de la pompe d'alimentation 212.
La vanne de coupure 230 peut éventuellement être ouverte partiellement, auquel cas le clapet 237 se situe entre la position d'ouverture et la position de fermeture. En variante, la vanne de coupure 230 est une vanne « tout ou rien », la position d'ouverture et la position de fermeture sont alors notamment les seules positions d'équilibre du clapet 237.
Le bras 235 est relié mécaniquement à son extrémité opposée à celle à laquelle se trouve le clapet 237 à un piston 232 délimitant le volume de deux chambres 234, 236 de la vanne de coupure 230. Le piston 232 est mobile entre une première position PI dans laquelle la vanne de coupure 230 est fermée et le clapet 237 en position de fermeture, et une deuxième position P2 dans laquelle la vanne de coupure 230 est ouverte et le clapet 237 en position d'ouverture.
Le piston 232 est sollicité en direction de la première position PI par un moyen élastique 231 relié mécaniquement au piston 232. Le moyen élastique 231 est par exemple un ressort en compression qui tend à fermer la vanne de coupure 230 ou à la maintenir fermée.
Le piston 232 et le moyen élastique 231 sont situés à l'intérieur d'un corps 239 de la vanne de coupure 230, qui délimite avec le piston la chambre haute pression 234 et la chambre basse pression 236 de la vanne de coupure 230.
La chambre haute pression 234 est alimentée par de l'air comprimé en provenance d'un module de turbomachine 1, choisi parmi le compresseur haute pression 6, le compresseur basse pression 4, la turbine haute pression 8 et la turbine basse pression 10. Dans le premier mode de réalisation, la chambre haute pression 234 est alimentée en air comprimé selon la flèche 64 par le compresseur haute pression 6. De l'air ambiant alimente la chambre basse pression 236. Cet air provient notamment du flux secondaire B, de sorte qu'une différence de pression entre la chambre basse pression 236 et la chambre haute pression 234 génère le déplacement du piston 232 à rencontre du ressort servant de moyen élastique 231, de manière à équilibrer la pression à l'intérieur des chambres 234 et 236, sous réserve que la vanne de coupure 230 ne soit pas bloquée fermée. Autrement dit, la vanne de coupure 230 est à commande pneumatique, lorsqu'elle n'est pas verrouillée en étant fermée.
La vanne de coupure 230 comporte également un dispositif de verrouillage 40 configuré pour verrouiller la vanne de coupure 230 lorsque la vanne de coupure 230 est fermée et que le clapet 237 est en position de fermeture.
Le dispositif de verrouillage 40 comprend un élément de verrouillage 42 mobile entre une position de blocage dans laquelle la vanne de coupure 230 est bloquée fermée, de préférence hermétiquement, et une position de déblocage dans laquelle la vanne de coupure 230 est configurée pour être fermée ou au moins partiellement ouverte. En particulier, le clapet 237 peut basculer de la position de fermeture à la position d'ouverture, lorsque l'élément de verrouillage 42 est en position de déblocage. A l'inverse, le clapet 237 reste en position de fermeture, lorsque l'élément de verrouillage 42 est en position de blocage.
Dans le premier mode de réalisation, l'élément de verrouillage 42 prend la forme d'un loquet. L'élément de verrouillage 42 sert de préférence de butée au piston 232, de sorte à empêcher le piston 232 d'être dans la deuxième position P2, c'est-à-dire notamment de sorte à empêcher la vanne de coupure 230 de s'ouvrir. L'élément de verrouillage 42 présente une forme de biseau, de sorte à favoriser le déplacement du piston 232 depuis la deuxième position P2 vers la première position PI lorsque l'élément de verrouillage 42 est en position de blocage. Par ailleurs, la forme de biseau de l'élément de verrouillage 42 n'empêche pas l'élément de verrouillage 42 en position de blocage d'interdire le déplacement du piston 232 de la première position PI vers la deuxième position P2. Le loquet 42 en position de blocage est configuré pour dépasser dans la chambre basse pression 236 depuis un trou traversant 238 réalisé dans le corps 239 de la vanne de coupure 230.
Le loquet 42 comprend notamment une partie en saillie 422 configurée pour engager un rebord 233 du corps 239 de la vanne de coupure 230, de manière à dépasser dans la chambre basse pression 236, tout en étant conçu pour empêcher un déplacement du piston 232 vers la deuxième position P2.
La partie en saillie 422 est reliée par une tige à un piston 424 du loquet 42 situé dans une chemise 41 du piston 424. La chemise 41 du piston 424 comprend un moyen de rappel 44 du piston 424 configuré pour solliciter le déplacement du piston 424 de sorte que l'élément de verrouillage 42 soit en position de blocage en l'absence de commande exercée sur l'élément de verrouillage 42.
En position de déblocage, le loquet 42 ne dépasse pas dans la chambre basse pression 236, de manière à ne pas gêner le déplacement du piston 232 entre la première position PI et la deuxième position P2. Le loquet 42 en position de déblocage comprime un moyen de rappel 44 dans la chemise 41.
L'élément de verrouillage 42 en forme de loquet est configuré pour se déplacer depuis la position de blocage vers la position de déblocage sur commande d'un système de régulation numérique 5 de turbomachine ou d'aéronef.
Afin de limiter les risques de défaillance dans le déplacement de l'élément de verrouillage 42, la commande de l'élément de verrouillage 42 par le système de régulation numérique 5 est de préférence une commande « tout ou rien », la position de blocage et la position de déblocage étant les seules positions finales possibles de l'élément de verrouillage 42. Dans cette configuration, la position de blocage est la seule position d'équilibre au repos de l'élément de verrouillage 42.
Le déplacement du loquet 42 s'effectue aussi en fonction de l'arrivée d'air 60 en provenance du compresseur haute pression 6.
Le système de régulation numérique 5 est également connu sous l'acronyme de « FADEC », de l'anglais « Full Authority Digital Engine Control ». De manière classique, le système de régulation numérique 5 comprend un calculateur moteur à deux voies symétriques, redondantes et à pleine autorité. Ce calculateur moteur est destiné à prendre en compte une commande d'un pilote de l'aéronef.
Dans le premier mode de réalisation, le système de régulation numérique 5 est configuré pour ordonner à un électro-aimant d'amorçage 50 de solliciter le déplacement du loquet 42 depuis la position de blocage vers la position de déblocage. L'électro-aimant d'amorçage 50 est configuré pour faire passer de l'air sous pression dans la chemise 41 du piston 424, de sorte à permettre le déplacement du loquet 42 de la position de blocage vers la position de déblocage. En l'absence de commande exercée par le système de régulation numérique 5 sur l'électroaimant 50, l'électro-aimant 50 est configuré pour bloquer l'arrivée d'air sous pression selon la flèche 60 dans la chemise 41.
Or, en l'absence de commande exercée sur le loquet 42, le moyen de rappel 44 tend à ramener le loquet 42 en position de blocage dans laquelle le moyen de rappel 44 est repos.
Le moyen de rappel 44 et le moyen élastique 231 forment ainsi un moyen de sécurité de fermeture de la vanne de coupure 230. Ce moyen de sécurité sollicite le piston 232 vers la première position PI, en l'absence de commande de l'élément de verrouillage 42 par le système de régulation numérique 5.
La vanne de coupure 230 comprend alors une position de sécurité PS dans laquelle la vanne de coupure 230 est fermée. La vanne de coupure 230 est ramenée vers sa position de sécurité PS en l'absence de commande, pneumatique et/ou en provenance du système de régulation 5, exercée sur la vanne de coupure 230.
L'élément de verrouillage 42 est configuré pour se déplacer depuis la position de blocage vers la position de déblocage sur ordre du système de régulation numérique 5, lors du démarrage de l'aéronef comprenant la turbomachine 1 et en l'absence d'incendie.
Dans ce cas, la vanne de coupure 230 s'ouvre lorsque la pression de l'air dans la chambre haute pression 234 dépasse un seuil de pression qui est supérieur à la pression dans la chambre basse pression 236. Ce seuil de pression de l'air en provenance du compresseur haute pression 6 est déterminé en fonction d'un premier seuil Si de vitesse de rotation V d'un arbre dont le mouvement est lié au mouvement de rotation du corps haute pression de la turbomachine 1. Dans le premier mode de réalisation, cet arbre est l'arbre radial 24. En variante, il peut s'agir notamment de l'arbre d'entraînement 3 du compresseur haute pression 6.
Le premier seuil Si est déterminé de façon à ce que le débit de lubrifiant da ns le système d'alimentation 200 pour des valeurs de vitesse de rotation V supérieures au premier seuil Si permette un refroidissement efficace de la turbomachine 1 lors d'un incendie.
Le premier seuil Si est également déterminé de sorte que lorsque la vitesse de rotation VR de l'arbre radial 24 est inférieure au premier seuil Si en l'absence d'incendie, le rotor de la turbomachine 1 n'ait pas ou peu besoin d'être lubrifié. Par ailleurs, le lubrifiant présent dans le réservoir 201 constitue un fluide combustible qui ne doit pas alimenter d'incendie dans la turbomachine 1.
Par conséquent, la vanne de coupure 230 est configurée pour être fermée lorsque la vitesse de rotation VR de l'arbre radial 24 est inférieure a u premier seuil Si.
La vanne de coupure 230 est configurée pour isoler le réservoir 201 de lubrifiant de la partie aval 210 du système d'alimentation 200 en cas d'incendie par la mise en œuvre d'un procédé d'isolation du réservoir 201 qui est décrit en référence à la figure 5.
Tout d'abord, la vitesse de rotation VR de l'arbre radial 24 est comparée au premier seuil Si au cours d'une éta pe d'initia lisation du procédé 52. Lorsque la vitesse de rotation VR est inférieure au premier seuil Si, la va nne de coupure 230 est fermée, à la fois en présence et en l'absence d'incendie détecté dans la turbomachine 1.
Lorsqu'il est détecté que la vitesse de rotation VR est supérieure au premier seuil Si, le système de régulation numérique 5 détermine au cours d'une étape
54 du procédé d'isolation si un incendie est détecté dans la turbomachine 1, par exem ple suite à une détection d'augmentation anormale de température à l'intérieur de la turbomachine 1 par un capteur de température.
En l'absence d'incendie détecté, l'élément de verrouillage 42 est maintenu en position de déblocage et la vanne de coupure 230 est ouverte à l'étape 64, du fait de l'arrivée d'air 60 comprimé en provenance du compresseur haute pression 6 lorsque la vitesse de rotation V est supérieure au premier seuil Si. Les enceintes de lubrification 122, 124 sont alors sensiblement correctement alimentées en lubrifiant en l'absence d'incendie.
A partir du moment auquel un incendie a été détecté dans la turbomachine 1 au cours du vol de la turbomachine 1, la vanne de coupure 230 est maintenue ouverte à l'étape 66 seulement si la vitesse de rotation VR est restée supérieure au premier seuil Si depuis que l'incendie a été détecté.
A partir du moment auquel un incendie a été détecté dans la turbomachine 1 et que la vitesse de rotation VR devient au moins ponctuellement inférieure au premier seuil Si, le piston 232 tend à se déplacer depuis la deuxième position P2 vers la première position PI lorsque l'élément de verrouillage 42 est en position de déblocage.
Lorsque le piston 232 est arrivé dans la première position PI, l'élément de verrouillage 42 bascule en position de blocage à l'étape 66, de sorte que la vanne de coupure 230 est verrouillée fermée. La vanne de coupure 230 reste alors préférablement verrouillée fermée par l'élément de verrouillage 42 par précaution jusqu'à la fin du vol de la turbomachine 1.
Autrement dit, lorsque la vitesse de rotation VR est inférieure au premier seuil Si et qu'un incendie est détecté dans la turbomachine 1, la vanne de coupure 230 se ferme automatiquement et l'ouverture ultérieure de la vanne de coupure 230 au cours du vol est limitée/empêchée.
Plus généralement, la vanne de coupure 230 est fermée, lorsque les deux conditions suivantes sont réunies :
- la vitesse de rotation VR de l'arbre radial 24 est supérieure au premier seuil Si, et
- la vitesse de rotation VR de l'arbre radial a été inférieure au premier seuil Si lorsqu'un incendie était détecté dans la turbomachine 1 au cours du vol de la turbomachine 1.
L'invention permet de respecter plus facilement les exigences réglementaires concernant la réglementation incendie dans une turbomachine 1, en limitant notamment le recours à des protections spécifiques anti-incendie encombrantes et de masse importante dans la turbomachine 1.
En particulier, le risque que la vanne de coupure 230 ne se ferme pas en cas de feu dans la turbomachine 1 est limité par le moyen de sécurité, formé par le moyen de rappel 44 et le moyen élastique 231, qui tend à ramener la vanne de coupure 230 vers sa position de sécurité PS dans laquelle la vanne de coupure 230 est fermée.
Bien entendu, diverses modifications peuvent être apportées par l'homme du métier à l'invention qui vient d'être décrite sans sortir du cadre de l'exposé de l'invention.

Claims

REVENDICATIONS
1. Procédé d'isolation d'un réservoir (201) de fluide combustible relativement à une partie aval (210) de système d'alimentation (200) en fluide pour turbomachine (1),
le système d'alimentation (200) comprenant le réservoir (201) et une va nne de coupure (230) située entre le réservoir (201) et la partie aval (210), la vanne de coupure (230) étant configurée pour limiter un débit de fluide en direction de la partie aval (210), la vanne de coupure (230) étant au moins partiellement ouverte lorsqu'une vitesse de rotation (V ) d'un arbre (3, 24) de turbomachine est supérieure à un premier seuil (Si) et en l'absence d'incendie détecté dans la turbomachine (1),
le procédé d'isolation comprenant une étape de fermeture automatique de la vanne (230) lorsque la vitesse de rotation (VR) de l'arbre (3, 24) est inférieure au premier seuil (Si),
caractérisé en ce que, suite à l'étape de fermeture de la vanne (230), le procédé comprend une étape de limitation/d'empêchement d'ouverture ultérieure de la vanne de coupure (230) si la vitesse de rotation (VR) de l'arbre est supérieure au premier seuil (Si), lorsqu'un incendie a été détecté au cours du vol de la turbomachine (1).
2. Procédé d'isolation selon la revendication précédente, dans lequel un débit de fluide suffisant pour refroidir la turbomachine (1) en cas d'incendie circule dans le système d'alimentation (200), lorsque la vanne de coupure (230) est ouverte et que la vitesse de rotation (VR) est supérieure ou égale au premier seuil (Si).
3. Système d'alimentation (200) en fluide de turbomachine (1) comprenant :
un réservoir (201) de fluide,
une partie aval (210) située en aval du réservoir (201), comprenant une pompe d'alimentation (212) en fluide, et une vanne de coupure (230) située entre le réservoir (201) et la partie aval (210), la vanne de coupure (230) comprenant un dispositif de verrouillage (40) configuré pour limiter/empêcher l'ouverture de la vanne de coupure (230),
la vanne de coupure (230) étant configurée pour être au moins partiellement ouverte lorsqu'une vitesse de rotation (V ) d'un arbre (3, 24) de turbomachine est supérieure à un premier seuil (Si) et en l'absence d'incendie détecté dans la turbomachine (1),
la vanne de coupure (230) étant configurée pour se fermer automatiquement lorsque la vitesse de rotation (VR) de l'arbre (3, 24) est inférieure au premier seuil (Si),
caractérisé en ce que, suite à la fermeture de la vanne (230) lorsque la vitesse de rotation (VR) de l'arbre (3, 24) est inférieure au premier seuil (Si), le dispositif de verrouillage (40) est configuré pour limiter/empêcher l'ouverture ultérieure de la vanne de coupure (230) si la vitesse de rotation (VR) de l'arbre est supérieure au premier seuil (Si), lorsqu'un incendie a été détecté au cours du vol de la turbomachine (1).
4. Système d'alimentation (200) selon la revendication précédente, dans lequel la vanne de coupure (230) comprend une position de sécurité (PS) vers laquelle la vanne de coupure (230) est ramenée en l'absence de commande exercée sur la vanne de coupure (230), la vanne de coupure (230) étant fermée en position de sécurité (PS).
5. Système d'alimentation (200) selon la revendication précédente, dans lequel le dispositif de verrouillage (40) comprend un élément de verrouillage (42) mobile entre une position de blocage dans laquelle la vanne de coupure (230) est bloquée fermée, et une position de déblocage dans laquelle la vanne de coupure (230) est configurée pour être fermée ou au moins partiellement ouverte,
l'élément de verrouillage (42) étant en position de blocage en l'absence de commande exercée sur l'élément de verrouillage (42) de sorte à ce que la vanne de coupure (230) soit en position de sécurité (PS).
6. Système d'alimentation (200) selon la revendication précédente, dans lequel la vanne de coupure (230) est à commande pneumatique lorsque l'élément de verrouillage (42) est en position de déblocage.
7. Système d'alimentation (200) selon l'une quelconque des revendications 5 et 6, dans lequel l'élément de verrouillage (42) est configuré pour se déplacer depuis la position de blocage vers la position de déblocage sur commande d'un système de régulation numérique (5) de turbomachine ou d'aéronef.
8. Système d'alimentation (200) selon l'une quelconque des revendications 3 à 7, dans lequel la vanne de coupure (230) comprend un piston (232) et un moyen élastique (231) relié mécaniquement au piston (232) en étant configuré pour solliciter le piston (232) en déplacement vers une première position (PI) dans laquelle la vanne de coupure (230) est fermée, depuis une deuxième position (P2) dans laquelle la vanne de coupure (230) est au moins partiellement ouverte.
9. Turbomachine (1) comprenant un système d'alimentation (200) selon l'une quelconque des revendications 3 à 8.
PCT/FR2015/050899 2014-04-08 2015-04-07 Procédé d'isolation d'un reservoir de fluide combustible relativement a une partie aval de systeme d'alimentation pour turbomachine en cas d'incendie et un tel syseme d'alimentation WO2015155465A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/302,571 US20170022906A1 (en) 2014-04-08 2015-04-07 Method for isolating a combustible fluid tank from a downstream portion of a turbomachine supply system in case of a fire, and such a supply system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1453097A FR3019583B1 (fr) 2014-04-08 2014-04-08 Isolation d'un reservoir de fluide combustible relativement a une partie aval de systeme d'alimentation pour turbomachine en cas d'incendie
FR1453097 2014-04-08

Publications (1)

Publication Number Publication Date
WO2015155465A1 true WO2015155465A1 (fr) 2015-10-15

Family

ID=51168115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2015/050899 WO2015155465A1 (fr) 2014-04-08 2015-04-07 Procédé d'isolation d'un reservoir de fluide combustible relativement a une partie aval de systeme d'alimentation pour turbomachine en cas d'incendie et un tel syseme d'alimentation

Country Status (3)

Country Link
US (1) US20170022906A1 (fr)
FR (1) FR3019583B1 (fr)
WO (1) WO2015155465A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3059718A1 (fr) * 2016-12-02 2018-06-08 Safran Aircraft Engines Dispositif hydromecanique de coupure a hysteresis pour systeme de lubrification de turbomachine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015112325A1 (de) * 2015-07-28 2017-02-02 Rolls-Royce Deutschland Ltd & Co Kg Flugtriebwerk mit einer Treibstoffversorgungseinrichtung und mit wenigstens einem einen Hydraulikfluidspeicher umfassenden Hydraulikfluidkreislauf mit einem Wärmetauscher
FR3039591B1 (fr) * 2015-07-31 2017-08-25 Snecma Isolation d'un reservoir de turbomachine d'aeronef en cas d'incendie par fermeture d'une vanne sensible a la liberation d'un agent extincteur
US20180283283A1 (en) * 2017-03-28 2018-10-04 Pratt & Whitney Canada Corp. Aircraft fire safety with oil pump deprime valve

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2402467A (en) * 1944-01-31 1946-06-18 Westinghouse Electric Corp Lubrication control
US2991845A (en) * 1959-04-10 1961-07-11 Westinghouse Electric Corp Lubrication system for a gas turbine engine
EP1936122A1 (fr) * 2006-12-21 2008-06-25 Techspace Aero S.A. Vanne d'isolation du circuit d'huile dans un moteur d'avion
EP2202387A1 (fr) * 2008-12-23 2010-06-30 Techspace Aero S.A. Vanne d'isolation du circuit d'huile sans commande dans un moteur d'avion
FR2960022A1 (fr) * 2010-05-11 2011-11-18 Snecma Circuit et procede d'alimentation en huile de paliers a roulement d'une turbomachine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2341071A (en) * 1942-11-09 1944-02-08 Sutherland Paper Co Machine for use in setting up cellular cartons
US4150654A (en) * 1977-08-11 1979-04-24 Caterpillar Tractor Co Engine and fuel shutdown control
JPS55161923A (en) * 1979-06-01 1980-12-16 Nissan Motor Co Ltd Fuel control device for gas turbine engine
US4245465A (en) * 1979-08-30 1981-01-20 Avco Corporation Gas turbine engine lubrication system including three stage flow control valve
US4367705A (en) * 1981-04-30 1983-01-11 Deere & Company Heat activated fuel shut-off valve actuator
US5632297A (en) * 1995-09-26 1997-05-27 Amcast Industrial Corporation Piston-type thermally or pressure activated relief device
JP5529676B2 (ja) * 2010-08-20 2014-06-25 三菱重工業株式会社 ガスタービン燃焼器の燃料供給系統およびガスタービン燃焼器の燃料供給方法
US20140332703A1 (en) * 2013-05-10 2014-11-13 Hamilton Sundstrand Corporation Adjustment and locking mechanisms

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2402467A (en) * 1944-01-31 1946-06-18 Westinghouse Electric Corp Lubrication control
US2991845A (en) * 1959-04-10 1961-07-11 Westinghouse Electric Corp Lubrication system for a gas turbine engine
EP1936122A1 (fr) * 2006-12-21 2008-06-25 Techspace Aero S.A. Vanne d'isolation du circuit d'huile dans un moteur d'avion
EP2202387A1 (fr) * 2008-12-23 2010-06-30 Techspace Aero S.A. Vanne d'isolation du circuit d'huile sans commande dans un moteur d'avion
FR2960022A1 (fr) * 2010-05-11 2011-11-18 Snecma Circuit et procede d'alimentation en huile de paliers a roulement d'une turbomachine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3059718A1 (fr) * 2016-12-02 2018-06-08 Safran Aircraft Engines Dispositif hydromecanique de coupure a hysteresis pour systeme de lubrification de turbomachine
US10808628B2 (en) 2016-12-02 2020-10-20 Safran Aircraft Engines Hydromechanical cutoff device with hysteresis for a turbomachine lubrification system

Also Published As

Publication number Publication date
FR3019583B1 (fr) 2019-09-13
US20170022906A1 (en) 2017-01-26
FR3019583A1 (fr) 2015-10-09

Similar Documents

Publication Publication Date Title
CA2952914C (fr) Turbomachine comportant un moyen de decouplage d'une soufflante
CA2597939C (fr) Dispositif d'alimentation en carburant d'un moteur a turbine a gaz avec debit de carburant regule
FR3019583B1 (fr) Isolation d'un reservoir de fluide combustible relativement a une partie aval de systeme d'alimentation pour turbomachine en cas d'incendie
EP3559416B1 (fr) Turbomachine comportant un moyen de decouplage d'une soufflante
CA2894226C (fr) Dispositif et procede d'augmentation temporaire de puissance
EP2072782B1 (fr) Vanne de recirculation dans un moteur aeronautique
FR2966507A1 (fr) Dispositif de lubrification avec vanne de derivation
CA2931231A1 (fr) Mat d'evacuation de fluides draines pour un ensemble propulsif
EP2893170B1 (fr) Assemblage avec un dispositif de bouchage d'une ouverture d'une paroi d'enceinte pour l'acces a un arbre rotatif
FR2968041A1 (fr) Dispositif et procede d'alimentation
CA2955739A1 (fr) Systeme d'alimentation en air sous pression installe dans une turbomachine d'aeronef comportant des moyens d'etancheite
EP2949577B1 (fr) Installation motrice multimoteur munie d'un système de secours d'injection de fluide, et aéronef
WO2022189746A1 (fr) Dispositif de calage de pas de pales pour turbomachine et turbomachine le comportant
EP3329108B1 (fr) Isolation d'un reservoir de turbomachine d'aeronef en cas d'incendie par fermeture d'une vanne sensible a la liberation d'un agent extincteur
FR3075863A1 (fr) Turbine de turbomachine comportant un dispositif de limitation de survitesse
FR3075864B1 (fr) Turbomachine comportant une soufflante decouplable d'une turbine par l'intermediaire d'un accouplement curvic rappele elastiquement
FR3059718B1 (fr) Dispositif hydromecanique de coupure a hysteresis pour systeme de lubrification de turbomachine
EP3601765B1 (fr) Dispositif amélioré d'augmentation temporaire de puissance de turbomachine
FR3003544A1 (fr) Dispositif de surveillance et de coupure de l'alimentation en air de pressurisation d'un reservoir de carburant d'aeronef
FR3028887B1 (fr) Procede et circuit de lubrification pour une turbomachine utilisant des moyens electriques
WO2011154641A1 (fr) Dispositif d'alimentation en carburant de moteur d'avion a turbine a gaz
FR3115327A1 (fr) Dispositif d’alimentation en carburant d’une turbomachine d’aeronef
FR3094045A1 (fr) Turbomachine comprenant une conduite de contournement pour des fluides de nettoyage
WO2022117947A1 (fr) Ensemble pour turbomachine d'aeronef comprenant une vanne passive de contournement d'un echangeur de chaleur carburant / huile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15718549

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15302571

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15718549

Country of ref document: EP

Kind code of ref document: A1