WO2015155316A1 - Verfahren für ein redundantes übertragungssystem mit prp und energieeinsparung - Google Patents

Verfahren für ein redundantes übertragungssystem mit prp und energieeinsparung Download PDF

Info

Publication number
WO2015155316A1
WO2015155316A1 PCT/EP2015/057787 EP2015057787W WO2015155316A1 WO 2015155316 A1 WO2015155316 A1 WO 2015155316A1 EP 2015057787 W EP2015057787 W EP 2015057787W WO 2015155316 A1 WO2015155316 A1 WO 2015155316A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
data
data packet
transmitted
network
Prior art date
Application number
PCT/EP2015/057787
Other languages
English (en)
French (fr)
Original Assignee
Hirschmann Automation And Control Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirschmann Automation And Control Gmbh filed Critical Hirschmann Automation And Control Gmbh
Priority to EP15719973.8A priority Critical patent/EP3130099B1/de
Priority to US15/302,241 priority patent/US20190199485A1/en
Publication of WO2015155316A1 publication Critical patent/WO2015155316A1/de

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/22Arrangements for detecting or preventing errors in the information received using redundant apparatus to increase reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0096Channel splitting in point-to-point links

Definitions

  • the invention relates to a method for operating a transmission system which has a first network and at least one further network, wherein data is exchanged between these at least two networks in that data of the first network are supplied to duplication means, wherein the supplied data is wireless over at least two transmission links be transferred by means of PRP to separating means and forwarded by the separating means to the connected further network, according to the features of the preamble of claim 1.
  • Such known transmission systems are used in safety-critical cases in process plants, stationary or mobile work equipment, such as work vehicles such as cranes or the like.
  • such a transmission system works satisfactorily because of the redundancy of the two transmission links. For example, if a wireless transmission link is disturbed or fails, the at least second transmission link can be used to ensure data transmission from the first to the further network.
  • the transmission of data over two or more transmission paths described above is certainly advantageous in terms of redundancy of data transmission, but this parallel data transmission over at least two transmission links causes increased energy consumption and also leads to higher thermal stress on the components of the transmission system.
  • the invention is therefore based on the object to improve a method for operating a transmission system in terms of energy consumption while maintaining the Redund Expressenschaften under safety-critical aspects.
  • the data is transmitted as data packets over the first data link and, if a data packet has not been transmitted, this data packet is once again transmitted at least over the second transmission link.
  • This has the advantage that data packets are transmitted in succession over the first data link, whereby each time a data packet has been transmitted successfully over the transmission link, this has been acknowledged by the receiver (Separiermitte!) And returned to the sender ⁇ duplicating means). This means for the sender that a renewed shipment of a data packet over the first data link is no longer required.
  • the transmitter Only when a data packet has been sent, but for whatever reason has not arrived at the receiver (for example because of a faulty transmission link), the transmitter is informed by the receiver, who then sends this data packet again at least over the second transmission link, that is, not on the transmission link on which the first transmission should have taken place transmits. That a sent to the transmission line data packet has not arrived at the receiver, this can for example determine after a certain time and then tell the sender that a data packet has failed, so that it again transmits it over the at least second transmission link. If this repeated transmission of the data packet is then detected by the receiver via the second transmission link, the feedback is sent to the transmitter that this data packet, which has been sent out again, has arrived successfully and a renewed transmission of this data packet can be omitted.
  • this data packet when a data packet has not been transmitted, this data packet is once again transmitted not only via the second transmission link but via the at least two transmission links, preferably over exactly two transmission links.
  • This way of transmitting the data packets is on the one hand in terms of redundancy, on the other hand, but in terms of energy conservation of particular importance, since a data packet can be reliably transmitted from the sender to the receiver in any case, but at the same time reduces the number of data packets to be transmitted becomes.
  • FIGS. 2 and 3 illustrate the difference in the number of transmitted data packets between the prior art and the data transmission according to the invention.
  • the retransmission of a data packet takes place more than twice. This ensures that a data packet is transmitted until the data packet sent by the transmitter has also successfully arrived at the receiver.
  • the number of retransmission can be limited. That is, in a further development of the invention, the repeated transmission of a data packet is inhibited if the transmission of this data packet is done without errors. Under the aspect of energy consumption, the number of retransmission of a data packet is seen at 2, 3 or 4. Particularly advantageous is the three times attempting to transmit a data packet, as this represents an advantageous compromise in terms of on the one hand energy consumption and on the other hand in terms of reliability or redundancy and also in terms of the performance of data transmission.
  • the presented method can be carried out on a transmission system, which is shown in FIG.
  • Figure 1 shows a basic arrangement of a transmission system, which has two networks 2, 3, which are to exchange data with each other. This data exchange can take place either unidirectionally from the network 2 to the network 3 (or vice versa), as well as bidirectionally between the two networks 2, 3.
  • the networks 2, 3 may be simple or complex networks, for example in a ring or line topology or the like. However, it is also conceivable that such a network 2, 3 comprises only a single element, such as a sensor, an actuator, a control device or the like.
  • doubling means 4 are present. These doubling means 4 divide the supplied data stream into two data streams. Likewise, the merging of the two data streams takes place after their receipt via separating means 5, wherein the received data streams are forwarded to the network 3 after merging.
  • the transmission of the data between the doubling means and the separating means 5 takes place via two identical or different transmission links 6, 7 wirelessly by means of PRP.
  • the wireless transmission takes place in an advantageous manner via radio, wherein an optical transmission is also conceivable. It is also conceivable that one transmission link 6 is a radio transmission link and the second transmission link 7 is an optical data transmission link.
  • both transmission links 6, 7 are, for example, radio transmission links
  • the data more precisely the data packets, can be transmitted via these two radio transmission links, for example at the same frequency or different frequencies and otherwise the same parameters or different transmission parameters.
  • Similar transmission links 6, 7 are to be preferred in terms of their construction, wherein different transmission links 6, 7 (for example, optical / wireless or different transmission parameters) are preferable in terms of increasing the redundancy.
  • each data packet is transmitted several times over the same transmission link 6, 7 and / or an error correction value is assigned to each data packet.
  • the transmission of the data packets via the transmission links 6, 7 is carried out in a corresponding manner, whereby the separating means 5 (in the case of PRP also referred to as a redundancy box) are evaluated accordingly, optionally processed and supplied as data packets to the further network 3.
  • Figure 1 relates to a unidirectional data transmission from the first network 2 to the other, in particular the second network 3.
  • the Doppeloppungsmittei 4 for dividing the data stream and the separating means 5 are formed for merging the received data stream.
  • further duplication means 4 or separating means 5 can be present in the transmission path between the network 3 and the network 2, resulting in a double structure.
  • the means 4, 5 may also be designed to not only duplicate the supplied data stream, but also to separate the data streams supplied via the transmission paths 6, 7, which also applies to the separating means 5.
  • Figure 2 shows the way of transmitting data packets with devices that work by means of WLAN, ie according to the 802.11 standard. These devices, which use the 802.11 standard, are capable of re-sending data packets at the Layer 2 level to compensate for packet loss.
  • FIG. 2 The manner of retransmission of lost data packets with respect to the layer 2 level is shown in FIG. Here it is shown that if a data packet was not transmitted, this data packet is transmitted once more over the at least two transmission links (upper and lower transmission link in FIG. 2).
  • This manner of data transmission described above can be repeated for the following data packets, depending on whether a data packet has been successfully transmitted or not.
  • the manner of data transmission according to FIG. 3 is of particular interest and particular advantage.
  • the data is first transmitted as data packets over the first (upper) data link. Since the first data packet "1" could not be successful by the sender and receiver, this data packet is again transmitted at least via the second (lower) transmission path, but optionally also via the upper transmission path ", soft transmitted either over the upper transmission path or, preferably, on the lower transmission link, this is foundedgemefdet to the transmitter. This causes it to send another data packet "2" to the upper link, this data packet "2" is transmitted successfully so that thereafter the transmission of the next data packet "3" can be started, because this data packet is "2" on the first link lost, it can be transmitted again on the upper transmission link and / or the lower transmission link.
  • the data packet "3" is lost on the upper transmission link, but is successfully transmitted on the lower transmission link After this has been detected by the receiver and returned to the sender, the latter sends out the next data packet "4". causes. This is successfully transmitted over the first data link, so that a repeated transmission, no matter on which transmission link, can be omitted.
  • the following data packet "6" the same procedure is used as illustrated and described with respect to the data packet "1" in FIG.
  • the number of transmitted data packets, in particular on the lower transmission path is significantly reduced, so that a significantly reduced energy consumption and a lowering of the operating temperature are thereby achieved as well.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Small-Scale Networks (AREA)

Abstract

Verfahren zum Betreiben eines Übertragungssystemes (1), das ein erstes Netzwerk (2) und zumindest ein weiteres Netzwerk (3) aufweist, wobei zwischen diesen zumindest zwei Netzwerken (2, 3) dadurch Daten ausgetauscht werden, dass Daten des ersten Netzwerkes (2) Verdopplungsmitteln (4) zugeführt werden, wobei die zugeführten Daten über zumindest zwei Übertragungsstrecken (6, 7) drahtlos mittels PRP zu Separiermitteln (5) übertragen und von den Separiermitteln (5) an das angeschlossene weitere Netzwerk (3) weitergeleitet werden, dadurch gekennzeichnet, dass die Daten als Datenpakete über die erste Übertragungsstrecke (6) übertragen werden und dann, wenn ein Datenpaket nicht übertragen wurde, dieses Datenpaket noch einmal zumindest über die zweite Übertragungsstrecke (7) übertragen wird.

Description

B E S C H R E I B U N G
Verfahren für ein redundantes Übertragungssystem mit PRP und Energieeinsparung
Die Erfindung betrifft ein Verfahren zum Betreiben eines Übertragungssystems, das ein erstes Netzwerk und zumindest ein weiteres Netzwerk aufweist, wobei zwischen diesen zumindest zwei Netzwerken dadurch Daten ausgetauscht werden, dass Daten des ersten Netzwerkes Verdopplungsmitteln zugeführt werden, wobei die zugeführten Daten über zumindest zwei Übertragungsstrecken drahtlos mittels PRP zu Separiermitteln übertragen und von den Separiermitteln an das angeschlossene weitere Netzwerk weitergeleitet werden, gemäß den Merkmalen des Oberbegriffes des Patentanspruches 1.
Solche bekannten Übertragungssysteme finden Anwendung in sicherheitskritischen Fällen bei verfahrenstechnischen Anlagen, stationären oder mobilen Arbeitseinrichtungen, beispielsweise bei Arbeitsfahrzeugen wie Krane oder dergleichen.
Es ist dabei wichtig, dass Daten zuverlässig von dem ersten Netzwerk zu dem zumindest weiteren Netzwerk übertragen werden. Eine solche sicherheitskritische Datenübertragung ist besonders dann wichtig, wenn die Daten über eine drahtlose Übertragungsstrecke übertragen werden. Hierzu hat es schon eine Verbesserung derart gegeben, dass nicht nur eine Übertragungsstrecke, sondern zumindest zwei, vorzugsweise genau zwei Übertragungsstrecken für diese Sicherheitsanwendung (auch Safety- Anwendung genannt) eingesetzt werden. Eine weitere Verbesserung dieser redundanten Datenübertragung hat dadurch stattgefunden, dass sie drahtlos, das heißt über Funk oder Licht, mitteis des PRP (Parallel Redundancy Protocol), welches ein Layer-2-Redundanzverfahren ist, welches von höheren Schichten unabhängig ist und sich vor allen Dingen für Echtzeit-Ethernet- Mechanismen eignet, eingesetzt wird.
Unter Sicherheitsaspekten arbeitet ein solches Übertragungssystem zwar schon zufriedenstellend, weil Redundanz der beiden Übertragungsstrecken gegeben ist. So kann beispielsweise dann, wenn eine drahtlose Übertragungsstrecke gestört ist oder ausfällt, die zumindest zweite Übertragungsstrecke genutzt werden, um die Datenübertragung von dem ersten zu dem weiteren Netzwerk sicherzustellen.
Dabei ist jedoch nicht auszuschließen, dass trotz dieser Redundanz die Datenübertragung zwischen den beiden Netzwerken unter sicherheitskritischen Aspekten in unzulässiger Weise gestört wird.
Einerseits ist die zuvor beschriebene Übertragung von Daten über zwei oder mehr als zwei Übertrag ungsstrecken unter sicherheitskritischen Aspekten hinsichtlich der Redundanz der Datenübertragung zwar von Vorteil, jedoch verursacht diese parallele Datenübertragung über zumindest zwei Übertragungsstrecken einen erhöhten Energieverbrauch und führt außerdem zu einer höheren thermischen Beanspruchung der Komponenten des Übertragungssystems. Dies führt in nachteiliger Weise zu einer reduzierten Ausdauer der Stromversorgung, insbesondere von Batterien und Akkus, und kann auch die Lebenserwartung der Komponenten des Übertragungssystems deutlich reduzieren, wenn diese unter höheren Temperaturbedingungen betrieben werden.
Bei der Übertragung von Daten über Übertragungsstrecken mittels Funk, wie zum Beispiel WLAN, gestatten es die nach dem Standard 802.11 arbeitenden Geräte eine höhere Verlustrate auf der drahtlosen Übertragungsstrecke dadurch zu kompensieren, dass verloren gegangene Datenpakete auf der Layer-2-Ebene erneut versandt werden. Dabei ist es erforderlich, dass von dem Empfänger der Datenpakete der Empfang eines Datenpaketes erkannt und diese Information an den Sender des Datenpaketes zurückgemeldet wird. Das bedingt jedoch, dass der Versender eines Datenpaketes weiß, ob ein Datenpaket erfolgreich bei dem Empfänger angekommen ist, nachdem es über die Übertragungsstrecke geschickt wurde. Bei dieser Art der Übertragung von Daten bleiben jedoch Redundanzerfordernisse außer Betracht, da nur eine Übertragungsstrecke vorhanden ist.
Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zum Betreiben eines Übertragungssystems hinsichtlich des Energieverbrauches zu verbessern unter gleichzeitiger Beibehaltung der Redundanzeigenschaften unter sicherheitskritischen Aspekten.
Diese Aufgabe ist durch die Merkmale des Patentanspruches 1 gelöst.
Erfindungsgemäß ist vorgesehen, dass die Daten als Datenpakete über die erste Datenstrecke übertragen werden und dann, wenn ein Datenpaket nicht übertragen wurde, dieses Datenpaket noch einmal zumindest über die zweite Übertragungsstrecke übertragen wird. Dies hat den Vorteil, dass Datenpakete über die erste Datenstrecke nacheinander übertragen werden, wobei jedes Mal dann, wenn ein Datenpaket erfolgreich über die Übertragungsstrecke übertragen wurde, dies von dem Empfänger (Separiermitte!) quittiert und an den Sender {Verdopplungsmittel) zurückgemeldet wurde. Das bedeutet für den Sender, dass ein erneuter Versand eins Datenpaketes über die erste Datenstrecke nicht mehr erforderlich ist. Erst dann, wenn ein Datenpaket versandt wurde, aber aus welchen Gründen auch immer nicht beim Empfänger angekommen ist (zum Beispiel aufgrund einer gestörten Übertragungsstrecke), wird dies dem Sender von dem Empfänger mitgeteilt, der daraufhin dieses Datenpaket noch einmal zumindest über die zweite Übertragungsstrecke, also nicht auf der Übertragungsstrecke, auf der die erste Übertragung hätte stattfinden sollen, überträgt. Dass ein auf die Übertragungsstrecke geschicktes Datenpaket nicht beim Empfänger angekommen ist, kann dieser zum Beispiel nach einem gewissen Zeitablauf feststellen und danach dem Sender mitteilen, dass ein Datenpaket ausgeblieben ist, damit dieser es über die zumindest zweite Übertragungsstrecke noch einmal überträgt. Wird dann diese nochmalige Übertragung des Datenpaketes über die zweite Übertragungsstrecke von dem Empfänger festgestellt, erfolgt die Rückmeldung an den Sender, dass dieses nochmals ausgesendete Datenpaket erfolgreich angekommen ist und eine nochmalige Übertragung dieses Datenpaketes unterbleiben kann. Erfolgt hingegen eine nochmalige Übertragung und bleibt auch der Empfang dieses nochmals versendeten Datenpaketes aus, kann auch dies von dem Empfänger an den Sender rückgemeldet werden, damit dieser das Datenpaket, was jetzt schon zweimal nicht erfolgreich übertragen wurde, erneut über die zweite Übertragungsstrecke aussendet. Dieser Vorgang kann so lange wiederholt werden, bis ein Datenpaket erfolgreich von Sender an den Empfänger übertragen worden ist.
Ergänzend dazu ist in Weiterbildung der Erfindung vorgesehen, dass dann, wenn ein Datenpaket nicht übertragen wurde, dieses Datenpaket noch einmal nicht nur über die zweite Übertragungsstrecke, sondern über die zumindest zwei Übertragungsstrecken, vorzugsweise über genau zwei Übertragungsstrecken, übertragen wird. Diese Art und Weise der Übertragung der Datenpakete ist zum einen hinsichtlich der Redundanz, andererseits aber auch hinsichtlich der Energieeinsparung vor besonderer Bedeutung, da ein Datenpaket auf jeden Fall zuverlässig vom Sender an den Empfänger übertragen werden kann, gleichzeitig jedoch die Anzahl der zu übertragenden Datenpakete reduziert wird. An dieser Stelle wird schon auf die Figuren 2 und 3 verwiesen, die den Unterschied hinsichtlich der Anzahl der übertragenen Datenpakete zwischen dem Stand der Technik und der erfindungsgemäßen Datenübertragung verdeutlicht.
In Weiterbildung der Erfindung erfolgt die nochmalige Übertragung eines Datenpaketes mehr als zweimal. Dadurch ist sichergestellt, dass ein Datenpaket so lange übertragen wird, bis das vom Sender ausgesendete Datenpaket auch erfolgreich beim Empfänger angekommen ist. Hinsichtlich der Energieeinsparung kann die Anzahl der nochmaligen Übertragung begrenzt werden. Das heißt, in einer Weiterbildung der Erfindung wird die nochmalige Übertragung eines Datenpaketes unterbunden, wenn die Übertragung dieses Datenpaketes fehlerfrei erfolgt ist. Unter dem Aspekt des Energieverbrauches wird die Anzahl der nochmaligen Übertragung eines Datenpaketes bei 2, 3 oder 4 gesehen. Besonders vorteilhaft ist der dreimalige Versucht der Übertragung eines Datenpaketes, da dies einen vorteilhaften Kompromiss darstellt hinsichtlich einerseits des Energieverbrauches und andererseits hinsichtlich der Zuverlässigkeit bzw. Redundanz und auch hinsichtlich der Performance der Datenübertragung.
Das vorgestellte Verfahren kann auf einem Übertragungssystem, das in der Figur 1 dargestellt ist, durchgeführt werden.
Figur 1 zeigt eine prinzipielle Anordnung eines Übertragungssystems, welches zwei Netzwerke 2, 3 aufweist, die untereinander Daten austauschen sollen. Dieser Datenaustausch kann entweder unidirektional von dem Netzwerk 2 zu dem Netzwerk 3 (oder umgekehrt), genauso aber auch bidirektional zwischen den beiden Netzwerken 2, 3 erfolgen.
Bei den Netzwerken 2, 3 kann es sich um einfache oder komplexe Netzwerke, zum Beispiel in einer Ring- oder Linientopoiogie oder dergleichen, handeln. Es ist aber auch denkbar, dass ein solches Netzwerk 2, 3 nur ein einziges Element wie zum Beispiel einen Sensor, einen Aktor, ein Steuergerät oder dergleichen umfasst.
Um die Daten des Netzwerkes 2 zum Beispiel zu dem Netzwerk 3 zu Übertragen, sind Verdopplungsmittel 4 vorhanden. Diese Verdopplungsmittel 4 teilen den zugeführten Datenstrom in zwei Datenströme auf. Ebenso erfolgt das Zusammenführen der beiden Datenströme nach deren Empfangen über Separiermittel 5, wobei die empfangenen Datenströme nach dem Zusammenführen an das Netzwerk 3 weitergeleitet werden. Die Übertragung der Daten zwischen den Verdopplungsmittel und den Separiermittein 5 erfolgt über zwei gleichartige oder voneinander unterschiedliche Übertragungsstrecken 6, 7 drahtlos mittels PRP. Die Drahtlosübertragung erfolgt in vorteilhafter Weise über Funkt, wobei eine optische Übertragung auch denkbar ist. Auch denkbar ist, dass die eine Übertragungsstrecke 6 eine Funkübertragungsstrecke und die zweite Übertragungsstrecke 7 eine optische Datenübertragungsstrecke ist. Sind beide Übertragungsstrecken 6, 7 zum Beispiel Funkübertragungsstrecken, können die Daten, genauer die Datenpakete, über diese beiden Funkübertragungsstrecken zum Beispiel auf gleicher Frequenz oder unterschiedlichen Frequenzen und ansonsten gleicher Parameter oder voneinander unterschiedlicher Ü bertrag ungsparameter übertragen werden. Gleichartige Übertragungsstrecken 6, 7 sind hinsichtlich ihres Aufbaues zu bevorzugen, wobei voneinander unterschiedliche Übertragungsstrecken 6, 7 (zum Beispiel optisch/Funk bzw. voneinander unterschiedliche Übertragungsparameter) hinsichtlich der Steigerung der Redundanz zu bevorzugen sind.
Nachdem die Daten von dem Erstnetzwerk 2 den Verdopplungsmitteln 4 (bei PRP auch als Redundancy Box bezeichnet) zugeführt worden sind, wird dort veranlasst, dass jedes Datenpaket mehrfach über die gleiche Übertragungsstrecke 6, 7 übertragen wird und/oder jedem Datenpaket ein Fehlerkorrekturwert zugeordnet wird. Anschließend erfolgt in entsprechender Weise die Übertragung der Datenpakete über die Übertragungsstrecken 6, 7, wobei die von den Separiermitteln 5 (im Falle von PRP auch als Redundancy Box bezeichnet) entsprechend ausgewertet, gegebenenfalls aufbereitet und als Datenpakete dem weiteren Netzwerk 3 zugeführt werden.
Die vorstehende Beschreibung der Figur 1 bezieht sich auf eine unidirektionale Datenübertragung von dem Erstnetzwerk 2 zu dem weiteren, insbesondere dem zweiten Netzwerk 3. Hierzu sind die Verdoppiungsmittei 4 zum Aufteilen des Datenstromes und die Separiermittel 5 zum Zusammenführen des empfangenen Datenstromes ausgebildet. Ist auch eine Datenübertragung von dem Netzwerk 3 zu dem Netzwerk 2 gewünscht, können weitere Verdopplungsmittel 4 bzw. Separiermittet 5 in dem Übertragungsweg zwischen dem Netzwerk 3 und dem Netzwerk 2 vorhanden sein, sodass sich ein doppelter Aufbau ergibt. Alternativ dazu können die Ivlittei 4, 5 auch dazu ausgebildet sein, nicht nur den zugeführten Datenstrom zu verdoppein, sondern auch die über die Übertragungsstrecken 6, 7 zugeführten Datenströme zu separieren, was ebenso für die Separiermittel 5 gilt.
Figur 2 zeigt die Art und Weise der Übertragung von Datenpaketen mit Geräten, die mittels WLAN, also nach dem 802.11 -Standard, arbeiten. Diese Geräte, die den 802.11 -Standard benutzen, sind dazu geeignet und ausgebildet, Datenpakete auf der Layer-2-Ebene erneut zu versenden, um Verluste von Datenpaketen auszugleichen.
Die Art und Weise der erneuten Übertragung von verloren gegangenen Datenpaketen bezüglich der Layer-2-Ebene ist in Figur 2 dargestellt. Hier ist dargestellt, dass dann, wenn ein Datenpaket nicht übertragen wurde, dieses Datenpaket noch einmal über die zumindest zwei Übertragungsstrecken (obere und untere Übertragungsstrecke in Figur 2) übertragen wird.
Dabei wird davon ausgegangen, dass das erste Datenpaket„1" über die obere Übertragungsstrecke ausgesandt wurde, jedoch verloren gegangen ist, weshalb es mit X gekennzeichnet ist. Dies veranlasst den Sender, dieses Datenpaket „1" erneut über die obere Übertragungsstrecke zu versenden. Gleichzeitig wird es auch noch einmal über die weitere Übertragungsstrecke (untere Übertragungsstrecke) versandt. Da das obere Datenpaket„1" zuerst beim nicht dargestellten Empfänger angekommen ist, kann das Datenpaket„1" auf der unteren Übertragungsstrecke vom Empfänger verworfen werden. Das Datenpaket „2" wird auf der oberen Übertragungsstrecke ausgesandt und kommt erfolgreich beim Empfänger an, wobei dies vom Empfänger an den Sender rückgemeldet wird und eine nochmalige Aussendung des Datenpaketes „2" auf der oberen Übertragungsstrecke unterbleiben kann. Da es jedoch eine gewisse Zeit erfordert, bis das Datenpaket„2" beim Empfänger angekommen und dieser Empfang von ihm quittiert wurde, hatte der Sender schon die Veranlassung, das Datenpaket„2" auch auf der unteren Übertragungsstrecke zu übertragen. Da es inzwischen über die obere Übertragungsstrecke erfolgreich angekommen ist, konnten die erneut ausgesendeten Datenpakete „2" auf der unteren Übertragungsstrecke verworfen werden. Nachdem Datenpaket„2" erfolgte auf der oberen Übertragungsstrecke die Aussendung eines Datenpaketes „3", weiches verloren ging und erneut auf der oberen Übertragungsstrecke ausgesendet wurde. Da es erneut verloren ging (also insgesamt dreimal lag keine erfolgreiche Datenübertragung vor) wurde die Übertragung des Datenpaketes „3" auf der unteren Übertrag ungsstrecke veranlasst. Dieses ist dann erfolgreich beim Empfänger angekommen, was von diesem quittiert wurde, sodass eine erneute Aussendung des Datenpaketes„3" unterblieb. Danach erfolgte die Aussendung des Datenpaketes „4" auf der oberen Übertragungsstrecke. Da auch hier eine gewisse Zeit erforderlich war, bis es vom Empfänger empfangen und der erfolgreiche Empfang quittiert wurde, wurde es nochmals über die untere Übertragungsstrecke erneut übertragen, wobei diese erneute Übertragung jedoch verworfen werde kann.
Diese zuvor beschriebene Art und Weise der Datenübertragung kann sich für folgende Datenpakete jeweils in Abhängig davon, ob ein Datenpaket erfolgreich übertragen wurde oder nicht, wiederholen.
Da immer eine gewisse Zeit erforderlich ist, um ein vom Sender ausgesendetes Datenpaket über die Übertragungsstrecke zum Empfänger zu Übertragen und auch eine gewisse Zeit erforderlich ist, die der Empfänger benötigt, um den erfolgreichen Empfang an den Sender zurück zu quittieren, kann auch daran gedacht werden, dass ein Datenpaket zunächst über die zweite Übertragungsstrecke übertragen wird. Dies ist in dem Beispielfall gemäß Figur 2 bei dem Datenpaket„5" der Fall. Da hier das zuerst ausgesendete Datenpaket „5" verloren gegangen ist, wird es erneut auf dieser Übertragungsstrecke ausgesandt. Alternativ ist es denkbar, dass es nach dem ersten Versand auf der unteren Übertragungsstrecke auch auf der oberen Übertragungsstrecke erneut ausgesendet wird. Bei dem in Figur 2 gezeigten Fall kommt das auf der unteren Übertragungsstrecke erneut versandte Datenpaket„5" erfolgreich beim Empfänger an, sodass eine erneute Aussendung unterbleibt. Auch bei einem weiteren Datenpaket„6", welches auf die obere Übertragungsstrecke geschickt wurde, geht das zuerst ausgesendete Datenpaket „6" verloren, sodass auf gleiche Art und Weise vorgegangen werden kann, wie es vorstehend zu dem Datenpaket„1" beschrieben worden ist. Aufgrund der in Figur 2 verschiedenen gezeigten Möglichkeiten können also auf der einen und/oder anderen Übertragungsstrecke verloren gegangene Datenpakete erfolgreich zwischen dem Sender und dem Empfänger (also dem Verdopplungsmittel 4 und dem Separiermittel 5 gemäß Figur 1 ) übertragen werden.
Unter Aspekten eines reduzierten Energieverbrauches ist die Art und Weise der Datenübertragung gemäß Figur 3 von besonderem Interesse und besonderem Vorteil.
Bei dieser Methode werden wiederum die Daten als Datenpakete zunächst über die erste (obere) Datenstrecke übertragen. Da das erste Datenpaket„1" nicht erfolgreich vom Sender und Empfänger werden konnte, wird dieses Datenpakt noch einmal zumindest über die zweite (untere) Übertragungsstrecke, optional aber auch über die obere Übertragungsstrecke nochmals übertragen. Wurde vom Empfänger erkannt, dass das Datenpaket„1", weiches entweder über die obere Übertragungsstrecke oder, vorzugsweise, über die untere Übertragungsstrecke erfolgreich übertragen wurde, wird dies an den Sender rückgemefdet. Dies bewirkt, dass er ein weiteres Datenpaket„2" auf die obere Übertragungsstrecke schickt. Dieses Datenpaket „2" wird erfolgreich übertragen, sodass danach die Übertragung des nächsten Datenpaketes„3" gestartet werden kann. Da dieses Datenpaket „2" auf der ersten Übertragungsstrecke verloren geht, kann es erneut auf der oberen Übertragungsstrecke und/oder deren unteren Übertragungsstrecke übertragen werden. In dem Beispielfall gemäß Figur 3 geht das Datenpaket„3" auf der oberen Übertragungsstrecke verloren, wird jedoch auf der unteren Übertragungsstrecke erfolgreich übertragen. Nachdem dies vom Empfänger festgestellt und an den Sender rückgemeldet wurde, wird von diesem die Aussendung des nächsten Datenpaketes„4" veranlasst. Dieses wird erfolgreich über die erste Datenstrecke übertragen, sodass eine nochmalige Übertragung, egal auf welcher Übertragungsstrecke, unterbleiben kann. Gleiches gilt auch für das folgende Datenpaket„5". Bei dem folgenden Datenpaket„6" setzt die gleiche Vorgehensweise ein, wie sie bezüglich des Datenpaketes„1" in Figur 3 dargestellt und beschrieben ist. Wie mit einem Blick auf Figur 3 erkennbar ist, ist die Anzahl der übertragenen Datenpakete, insbesondere auf der unteren Übertragungsstrecke, deutlich reduziert, sodass dadurch auch ein deutlich reduzierter Energieverbrauch und eine Absenkung der Betriebstemperatur erzielt wird. Gleichzeitig ist aber auch erkennbar, dass alle Datenpakete „1" bis „6" zuverlässig von dem Sender (erstes Netzwerk 2) zu dem Empfänger (zweites Netzwerk 3) übertragen worden sind. Durch diese Vorgehensweise werden also Reduzierung des Energieverbrauches, Reduzierung der Betriebstemperatur und redundante Datenübertragung unter sicherheitskritischen Aspekten in besonders vorteilhafter Weise in Einklang gebracht.
Bezugszeichenliste
1. Übertragungssystem
2. Erstes Netzwerk
3. Weiteres Netzwerk
4. Verdopplungsmittel
5. Separiermittel
6. Erste Übertragungsstrecke
7. Zweite Übertragungsstrecke

Claims

P A T E N T A N S P R Ü C H E Verfahren für ein redundantes Übertragungssystem mit P P und Energieeinsparung
1. Verfahren zum Betreiben eines Übertragungssystemes (1), das ein erstes Netzwerk (2) und zumindest ein weiteres Netzwerk (3) aufweist, wobei zwischen diesen zumindest zwei Netzwerken (2, 3) dadurch Daten ausgetauscht werden, dass Daten des ersten Netzwerkes (2) Verdoppiungsmitteln (4) zugeführt werden, wobei die zugeführten Daten über zumindest zwei Übertragungsstrecken (6, 7) drahtlos mittels PRP zu Separiermitteln (5) übertragen und von den Separiermitteln (5) an das angeschlossene weitere Netzwerk (3) weitergeleitet werden, dadurch gekennzeichnet, dass die Daten als Datenpakete über die erste Übertragungsstrecke (6) übertragen werden und dann, wenn ein Datenpaket nicht übertragen wurde, dieses Datenpaket noch einmal zumindest über die zweite Übertragungsstrecke (7) übertragen wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass dann, wenn ein Datenpaket nicht übertragen wurde, dieses Datenpaket noch einmal über die zumindest zwei Übertragungsstrecken (6, 7) übertragen wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die nochmalige Übertragung eines Datenpaketes mehr als zwei Mal erfolgt.
4. Verfahren nach Anspruch 1 , 2 oder 3, dadurch gekennzeichnet, dass die nochmalige Übertagung eines Datenpaketes unterbunden wird, wenn die Übertragung dieses Datenpaketes fehlerfrei erfolgt ist.
PCT/EP2015/057787 2014-04-09 2015-04-09 Verfahren für ein redundantes übertragungssystem mit prp und energieeinsparung WO2015155316A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15719973.8A EP3130099B1 (de) 2014-04-09 2015-04-09 Verfahren für ein redundantes übertragungssystem mit prp und energieeinsparung
US15/302,241 US20190199485A1 (en) 2014-04-09 2015-04-09 Redundant prp transmission system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014206873.8 2014-04-09
DE102014206873 2014-04-09

Publications (1)

Publication Number Publication Date
WO2015155316A1 true WO2015155316A1 (de) 2015-10-15

Family

ID=53008456

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/EP2015/057786 WO2015155315A1 (de) 2014-04-09 2015-04-09 Verfahren für ein redundantes übertragungssystem mit prp und fehlvorhersage
PCT/EP2015/057787 WO2015155316A1 (de) 2014-04-09 2015-04-09 Verfahren für ein redundantes übertragungssystem mit prp und energieeinsparung
PCT/EP2015/057784 WO2015155314A1 (de) 2014-04-09 2015-04-09 Verfahren für ein redundantes übertragungssystem mit prp und mehrfachem datenpaketversand

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/057786 WO2015155315A1 (de) 2014-04-09 2015-04-09 Verfahren für ein redundantes übertragungssystem mit prp und fehlvorhersage

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/057784 WO2015155314A1 (de) 2014-04-09 2015-04-09 Verfahren für ein redundantes übertragungssystem mit prp und mehrfachem datenpaketversand

Country Status (4)

Country Link
US (3) US20190199485A1 (de)
EP (3) EP3130100B1 (de)
DE (3) DE102015206383A1 (de)
WO (3) WO2015155315A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018219488A1 (de) * 2017-05-30 2018-12-06 Diehl Metering Systems Gmbh Verfahren zur übertragung einer information

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016215640A1 (de) * 2016-08-19 2018-02-22 Robert Bosch Gmbh Verfahren, Sensor und Steuergerät zum Übertragen eines Datenpakets von einem Sensor zu einem Steuergerät
US11265208B1 (en) * 2020-12-29 2022-03-01 Honeywell International Inc. Detecting path faults in parallel redundancy protocol communications
EP4354772A1 (de) * 2022-10-11 2024-04-17 Nxp B.V. Netzwerkvorrichtung, kommunikationssystem und verfahren für die netzwerkvorrichtung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060256768A1 (en) * 2005-05-13 2006-11-16 Chan Chi C Method and system for transferring data in a communications network using redundant communication paths
US20130114397A1 (en) * 2011-05-24 2013-05-09 International Business Machines Corporation Soft Error Recovery for Converged Networks

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5933567A (en) * 1993-01-13 1999-08-03 Hitachi America, Ltd. Method and apparatus for controlling the position of the heads of a digital video tape recorder during trick play operation and for recording digital data on a tape
US5805762A (en) * 1993-01-13 1998-09-08 Hitachi America, Ltd. Video recording device compatible transmitter
DE19833292A1 (de) * 1998-07-24 2000-01-27 Dornier Medtech Holding Int Gmbh Verfahren zur kontaktlosen Übertragung von Daten und Vorrichtung zur Durchführung desselben
US7965729B2 (en) * 2001-05-23 2011-06-21 Polytechnic University Transferring data such as files
US7787389B2 (en) * 2001-08-20 2010-08-31 Qualcomm Incorporated Method and system for utilization of an outer decoder in a broadcast services communication system
EP2278718B1 (de) * 2002-06-11 2013-12-18 Digital Fountain, Inc. Dekodieren von Kettenreaktionscodes durch Inaktivierung
US6948104B2 (en) * 2002-06-26 2005-09-20 Microsoft Corporation System and method for transparent electronic data transfer using error correction to facilitate bandwidth-efficient data recovery
US7984174B2 (en) * 2002-11-11 2011-07-19 Supracomm, Tm Inc. Multicast videoconferencing
US7188189B2 (en) * 2003-04-02 2007-03-06 Avaya Technology Corp. System and method to improve the resiliency and performance of enterprise networks by utilizing in-built network redundancy
JP2006086890A (ja) * 2004-09-16 2006-03-30 Fujitsu Ltd ネットワークシステム、データ送信装置、端末装置および同報通信方法
FR2880491A1 (fr) * 2005-01-06 2006-07-07 Thomson Licensing Sa Methode de transmission d'un flux multipoint dans un reseau local et dispositif de connexion implementant la methode
US7653055B2 (en) * 2006-03-31 2010-01-26 Alcatel-Lucent Usa Inc. Method and apparatus for improved multicast streaming in wireless networks
US8358704B2 (en) * 2006-04-04 2013-01-22 Qualcomm Incorporated Frame level multimedia decoding with frame information table
GB2441164A (en) * 2006-08-22 2008-02-27 Iti Scotland Ltd Segmenting packets and providing error check portions for each segment
EP2015501A1 (de) * 2007-07-09 2009-01-14 ABB Technology AG Identifizierung unsachgemäßer Verdrahtung von Vorrichtungen
KR101486372B1 (ko) * 2007-07-25 2015-01-26 엘지전자 주식회사 디지털 방송 시스템 및 데이터 처리 방법
US8392791B2 (en) * 2008-08-08 2013-03-05 George Saliba Unified data protection and data de-duplication in a storage system
CN102036061B (zh) * 2009-09-30 2012-11-21 华为技术有限公司 视频数据传输处理、发送处理方法、装置和网络系统
US8443261B2 (en) * 2009-12-11 2013-05-14 Vmware, Inc. Transparent recovery from hardware memory errors
US8542593B1 (en) * 2010-03-19 2013-09-24 Vucast Media, Inc. System and methods for error tolerant content delivery over multicast channels
WO2011160957A1 (en) * 2010-06-24 2011-12-29 International Business Machines Corporation Isolation of faulty links in a transmission medium
US8862944B2 (en) 2010-06-24 2014-10-14 International Business Machines Corporation Isolation of faulty links in a transmission medium
US8631272B2 (en) * 2011-03-04 2014-01-14 Microsoft Corporation Duplicate-aware disk arrays
EP2759162B1 (de) * 2011-06-10 2020-03-04 Hirschmann Automation and Control GmbH Komplett redundante verbindung und handover bei zellularen industriellen funknetzwerken
DE102011084344A1 (de) * 2011-10-12 2013-04-18 Siemens Aktiengesellschaft Verfahren zur Laufzeitoptimierung bei paketorientierter Mobilfunkübertragung von Datentelegrammen
EP2634973B1 (de) * 2012-02-29 2014-10-01 Siemens Aktiengesellschaft Kommunikationsgerät für ein redundant betreibbares industrielles Kommunikationsnetz und Verfahren zum Betrieb eines Kommunikationsgeräts
WO2014001605A1 (en) * 2012-06-28 2014-01-03 Ant-Advanced Network Technologies Oy Processing and error concealment of digital signals
US9060252B2 (en) * 2012-07-31 2015-06-16 International Business Machines Corporation Rate adaptive transmission of wireless broadcast packets
US9019843B2 (en) * 2012-09-13 2015-04-28 International Business Machines Corporation Utilizing stored data to reduce packet data loss in a mobile data network with data breakout at the edge
RU2527210C1 (ru) * 2013-06-14 2014-08-27 Общество с ограниченной ответственностью "Новые технологии презентаций" Способ и система для передачи данных от веб-сервера клиентским терминальным устройствам посредством локальной беспроводной коммуникационной сети
US9081684B2 (en) * 2013-08-28 2015-07-14 Landis+Gyr Technologies, Llc Data recovery of data symbols received in error
WO2016097459A1 (en) * 2014-12-16 2016-06-23 Metso Automation Oy Redundancy in process control system
KR20170029212A (ko) * 2015-09-07 2017-03-15 (주) 유파인스 이중화 리던던시 기능을 가진 네트워크 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060256768A1 (en) * 2005-05-13 2006-11-16 Chan Chi C Method and system for transferring data in a communications network using redundant communication paths
US20130114397A1 (en) * 2011-05-24 2013-05-09 International Business Machines Corporation Soft Error Recovery for Converged Networks

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018219488A1 (de) * 2017-05-30 2018-12-06 Diehl Metering Systems Gmbh Verfahren zur übertragung einer information
CN110582994A (zh) * 2017-05-30 2019-12-17 代傲表计系统有限公司 用于传输信息的方法

Also Published As

Publication number Publication date
EP3130100B1 (de) 2021-10-20
DE102015206380A1 (de) 2015-10-15
US20190199485A1 (en) 2019-06-27
US20180351702A1 (en) 2018-12-06
US10404416B2 (en) 2019-09-03
US11296834B2 (en) 2022-04-05
EP3130100A1 (de) 2017-02-15
DE102015206382A1 (de) 2015-10-15
EP3130099A1 (de) 2017-02-15
WO2015155315A1 (de) 2015-10-15
US20180262298A1 (en) 2018-09-13
DE102015206383A1 (de) 2015-10-15
WO2015155314A1 (de) 2015-10-15
EP3130097A1 (de) 2017-02-15
EP3130099B1 (de) 2022-12-21

Similar Documents

Publication Publication Date Title
EP3155763B1 (de) Redundante übertragung von datentelegrammen in kommunikationsnetzwerken mit ringförmiger topologie
EP1273147A1 (de) Verfahren zum betreiben eines mobilfunknetzes
EP3130099B1 (de) Verfahren für ein redundantes übertragungssystem mit prp und energieeinsparung
EP2759162B1 (de) Komplett redundante verbindung und handover bei zellularen industriellen funknetzwerken
EP3304790B1 (de) Verfahren für ein redundantes übertragungssystem mit prp und zwischenspeicherung von datenpaketen
EP3673621A1 (de) Verfahren zur übertragung von daten zwischen einer zentralen steuereinrichtung und einer mehrzahl dezentraler geräte und entsprechende vorrichtungen
DE102012209509A1 (de) Sicheres stoßfreies Handover bei zellularen industriellen Funknetzen
EP2431873A1 (de) Kombinierte Unicast/Multicast Softwareübertragung
DE102012210816A1 (de) Datenpaket für eine bidirektionale Übertragung von Datenpaketen bei einer Datenübertragung zwischen einem ersten und einem zweiten Kommunikationsgerät sowie Verfahren zum Übertragen eines solchen Datenpaketes
DE102017130167A1 (de) Verfahren zur Optimierung der Ausfallerkennung von Redundanz-Protokollen mit Testdatenpaketen
DE102011086726A1 (de) Verfahren zur redundanten Kommunikation zwischen einem Nutzer-Terminal und einem Leitsystem-Server
EP2466805B1 (de) Verfahren zur datenübertragung zwischen zwei teilnehmern, wandler zum senden und empfangen von daten und datenübertragungsstrecke
DE102007041621B4 (de) Verfahren und Vorrichtung zur Stabilisierung einer Datenfunkverbindung
EP1615374B1 (de) Verfahren zum Senden und Empfangen von Ereignismeldungen
DE202010018237U1 (de) Wandler zum Senden und Empfangen von Daten und Datenübertragungsstrecke
AT506274B1 (de) Verfahren zum erstellen und versenden wenigstens eines datenpakets sowie verwendung hiefür
EP3185486B1 (de) Verfahren zur übertragung von nachrichten in einem computernetzwerk und computernetzwerk
DE102018221417A1 (de) Verfahren und Netzwerkverteiler zum Melden einer Störung in einem Kommunikationsnetzwerk
EP3361656A1 (de) Einstellung der datenübertragungsrate für einen übertragungspfad innerhalb eines optischen kernnetzes
WO2003026188A2 (de) Verfahren und vorrichtung zur datenübertragung in einem mobilkommunikationsnetz
EP2985948A1 (de) Verfahren zum Austausch von Telegrammen zwischen zwei Kommunikationsteilnehmern

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15719973

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015719973

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015719973

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE