WO2015154357A1 - 防止网络节点老化的方法、装置及系统 - Google Patents

防止网络节点老化的方法、装置及系统 Download PDF

Info

Publication number
WO2015154357A1
WO2015154357A1 PCT/CN2014/084377 CN2014084377W WO2015154357A1 WO 2015154357 A1 WO2015154357 A1 WO 2015154357A1 CN 2014084377 W CN2014084377 W CN 2014084377W WO 2015154357 A1 WO2015154357 A1 WO 2015154357A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
control plane
interaction information
detection function
information
Prior art date
Application number
PCT/CN2014/084377
Other languages
English (en)
French (fr)
Inventor
付志涛
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP14888669.0A priority Critical patent/EP3131233A4/en
Priority to US15/303,363 priority patent/US10153947B2/en
Publication of WO2015154357A1 publication Critical patent/WO2015154357A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/12Discovery or management of network topologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • H04L45/026Details of "hello" or keep-alive messages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/64Routing or path finding of packets in data switching networks using an overlay routing layer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/28Flow control; Congestion control in relation to timing considerations

Definitions

  • the present invention relates to a Resource Reservation Protocol-Traffic Engineer (RSVP-TE) smooth restart in a data network communication (GraceM Restart,
  • RSVP-TE Resource Reservation Protocol-Traffic Engineer
  • the technical field in particular, relates to a method, device and system for preventing aging of network nodes. Background technique
  • RSVP-TE is a traffic engineering technology based on Multiple Protocol Label Switching (MPLS).
  • the RSVP-TE traffic engineering technology implements traffic forwarding in the TE (Traffic Engineer) tunnel through information distribution, path calculation, signaling interaction, and traffic forwarding.
  • the RSVP-TE-based GR technology provides an application of Non-Stop Forwarding (NSF) for traffic.
  • NSF Non-Stop Forwarding
  • the network with the GR technology can recover the control plane information of the node device through the neighbor node device of the node device when the control plane of the node device fails, and the forwarding information of the node device is restored in its control plane information. Phases can also be retained to ensure the forwarding of traffic.
  • the implementation of the GR technology is based on the Hello detection. One of the purposes of the Hello detection is to detect that the neighbor node device has restarted. The usage rules and extension functions of the Hello detection are introduced in RFC3209, RFC3473, and RFC5063.
  • the interaction of Hello detection in the GR technology process is as follows: 1. If the three nodes R1, R2, and R3 support GR technology, establish a normal Hello neighbor between R1 and R2, R2 and R3. Relationships, and the restart time of the Hello message is exchanged by the Hello message. 2. When the R2 control plane is restarted, R1 and R3 cannot receive the Hello message sent by R2 for a period of time. R1 and R3 consider R2. The control plane restart may occur, and the R2 control plane restart timer is enabled. R1 and R3 both suppress sending refresh messages to R2. 3. After the control plane of R2 is restarted, send Hello packets to R1 and R3, and at Hello. The packet carries the recovery time.
  • the source instance is inconsistent with the source instance before the restart, and carries the recovery time
  • R1 and R3 confirms that R2 has restarted, and R1 and R3 will help R2 recover the control plane information before restarting during this recovery time.
  • the disadvantage of the way that the neighboring node restores the control plane information before the restart is: If the R2 is closed, the neighboring nodes R1 and R3 of R2 sense that the Hello packet of R2 is lost.
  • the protocol of RFC3473 states that R1 and R3 need to wait for a period of time, which is the restart time, while R1 and R3 suppress the sending of refresh messages to R2.
  • R2 does not have a control plane restart, just exit Hello detection. During the period when R1 and R3 wait for R2 to restart, neither R1 nor R3 will send a refresh message to R2, thus causing aging of R2.
  • an embodiment of the present invention provides a method for preventing aging of a network node, where the method includes:
  • the method further includes:
  • the method further includes:
  • the method further comprises the steps of:
  • the method further includes the steps of:
  • the sending of the refresh information to the first node is resumed.
  • the step of determining that the control plane of the first node does not fail but exiting the Hello detection function, and continuing to send the refresh information to the first node includes:
  • the method further includes the following steps:
  • An embodiment of the present invention further provides an apparatus for preventing aging of a network node, where the apparatus includes: an analyzing module, configured to analyze whether a control plane of the first node is out of a Hello detection function because a fault occurs;
  • Adding a module configured to add a specific identifier to the first interaction information, where the first node does not fail but exits the Hello detection function, where the specific identifier is used to indicate The control plane has not failed but has exited the state of the Hello detection function;
  • a first sending module configured to send the first interaction information to a second node adjacent to the first node, where the second node determines, by using the specific identifier, that the control plane of the first node is not A failure occurred but the Hello detection function was exited and the refresh information was sent to the first node.
  • the device further comprises:
  • a receiving module configured to receive second interaction information from the third node that includes the specific identifier
  • Determining a module configured to determine, according to the second interaction information, that the control plane of the third node has not failed but exits the Hello detection function
  • the embodiment of the invention further provides a system for preventing aging of a network node, the system comprising: at least two nodes, the node comprising the foregoing device for preventing aging of a network node.
  • Embodiments of the present invention also provide a computer program comprising program instructions that, when executed by a device that prevents aging of a network node, cause the device to perform the method described above.
  • Embodiments of the present invention also provide a carrier carrying the above computer program.
  • the embodiment of the present invention exits the Hello detection function by analyzing whether the control plane of the first node is faulty; and adding a specific identifier to the first interaction information when the fault does not occur but exits the Hello detection function, where The specific identifier is used to indicate that the control plane has not failed but exits the state of the Hello detection function; and the first interaction information is sent to the second node adjacent to the first node, for the second node to pass The specific identifier determines that the control plane of the first node has not failed but exits the Hello detection function and continues to send refresh information to the first node.
  • the second node determines that the control plane of the first node does not fail but exits the Hello detection function, and continues to the The first node sends the refresh information to prevent the first node from starting the restart timer, and stops sending the refresh information to the first node, thereby avoiding aging of the first node.
  • 1 is a schematic flowchart of a first embodiment of a method for preventing aging of a network node according to the present invention
  • 2 is a schematic diagram of node distribution of a network structure
  • FIG. 3 is a schematic diagram of a standard format of a Capability object in an RS VP Hello exchange message between network nodes according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a format of a Capability object in an RS VP Hello exchange message between network nodes according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of the refinement process of step S12 in FIG. 1;
  • FIG. 6 is a schematic diagram of a second embodiment of a method for preventing aging of a network node according to the present invention
  • FIG. 7 is a schematic diagram of a functional module of a first embodiment of a device for preventing aging of a network node according to the present invention
  • a schematic diagram of the functional modules of the second embodiment The implementation, functional features, and advantages of the present invention will be further described with reference to the accompanying drawings. Preferred embodiment of the invention
  • FIG. 1 is a schematic flow chart of a first embodiment of a method for preventing aging of a network node according to the present invention.
  • Analyzing whether the control plane of the first node exits the Hello detection function because of a failure Analyzing whether the control plane of the first node exits the Hello detection function because of a failure; adding a specific identifier to the first interaction information if the control plane of the first node does not fail but exits the Hello detection function.
  • the specific identifier is used to indicate that the control plane has not failed but exits the Hello detection function, and the first interaction information is sent to the second node adjacent to the first node, for the second
  • the node determines, by the specific identifier, that the control plane of the first node has not failed but exits the Hello detection function, and continues to send the refresh information to the first node.
  • Step S1 l analyzing whether the control plane of the first node has failed and exiting the Hello detection function
  • the network is composed of nodes, and each of the interconnected nodes is a neighboring node.
  • each node in the network can send a Hello message by enabling the Hello detection function.
  • the message is given to its neighbor node device to inform its neighbor node device of its restart time.
  • a control plane of a node is restarted, the control plane information before the restart can be restored by the neighbor base device to ensure the forwarding of service traffic.
  • the main body of the method for preventing the aging of the network node in the embodiment of the present invention may be the first node, or may be a control device communicatively connected to each node.
  • the first node is an execution entity, and the first node analyzes whether the control plane of the first node exits the Hello detection function because a failure occurs.
  • step S12 if the control plane of the first node does not fail but exits the Hello detection function, the specific identifier is added to the first interaction information, where the specific identifier is used to indicate that the control plane has not failed but Exited the status of the Hello detection function;
  • Step S13 Send the first interaction information to a second node that is adjacent to the first node, so that the second node determines, by using the specific identifier, that the control plane of the first node does not fail but exits.
  • the Hello detection function continues to send refresh information to the first node.
  • the first node when the control plane of the first node does not fail but exits the Hello detection function, the first node constructs first interaction information, where the first interaction information includes a specific identifier, and the specific Indicates the state that the control plane has not failed but has exited the Hello detection function, and this corresponds to the state where the first node is in the control plane but has failed the Hello detection function. Transmitting the first interaction information including the specific identifier to a second node device adjacent thereto. When the second node detects and receives the first interaction information from the first node, the second node analyzes whether the first interaction information includes the specific identifier, that is, analyzes the location where the first interaction information is sent. Whether the first node device has no control plane failure but exits the Hello detection function.
  • the second node When the first interaction information includes the specific identifier, that is, the control plane of the first node does not fail but exits the Hello detection function, the second node continues to send the refresh information to the first node. , thereby preventing aging of the first node.
  • the second node may be a neighboring device of the first node, or may be multiple neighboring devices of the first node.
  • the first node may receive the second interaction information that includes the specific identifier from the third node, and determine, according to the second interaction information, that the control plane of the third node does not fail but retreat
  • the Hello detection function is sent out; the refresh information is sent to the third node, where the specific identifier is used to indicate that the control plane of the third node has not failed but has exited the state of the Hello detection function.
  • the third node may be another neighbor node of the first node other than the second node, or may be a second node.
  • a network architecture consisting of three nodes R1, R2, and R3, R1, R2, and R3 all have GR functions, R1 and R2 are neighbor node devices, and R2 and R3 are neighbor node devices.
  • R1 and R2 and R2 and R3 send the preset type of interaction information at intervals of the first preset time to inform the other node of the restart time of each control plane.
  • the control plane information before the restart can be restored through its neighbor node devices R1 and R3.
  • the R2 control plane does not fail but the Hello detection function is turned off
  • R2 constructs an interaction information, and adds a specific identifier to the interaction information, where the specific identifier corresponds to the content that the Hello detection function is turned off.
  • the interactive message takes the Hello message as an example.
  • the Hello message includes the Capability object.
  • Figure 3 is a schematic diagram of the standard format of the Capability object.
  • Figure 5 the format of the Capability object is extended.
  • the extended Capability object reserves a Bit field D.
  • the default value of the field D is 0:
  • the value of the field D in the Capability object of the Hello message is changed to 1
  • the Hello message whose value of the field D is changed to 1 is sent to R1 and R3, R1 and
  • R3 detects and receives the Hello message whose value of the field D is changed to 1, it determines that the control plane of R2 has not failed but closes/quits the Hello detection.
  • R1 and R3 do not start the restart timer waiting function, and continue.
  • R2 When R2 re-enables the Hello detection of the GR, the R2 initiates a Hello message with the normal format of the hello message, that is, the hello message with the field D value of 0, to establish a normal Hello relationship with R1 and R2. Similarly, R2 can also determine whether R1 or R3 does not fail on the control plane based on the value of the field D sent by R1 or R3, but exits the Hello detection function to decide whether to continue sending refresh messages to R1 or R3, thereby preventing aging of R2. .
  • the Hello detection function is exited by analyzing whether the control plane of the first node is faulty; when a failure occurs but the Hello detection function is exited, the specific identifier is added to the first interaction information, where The specific identifier is used to indicate that the control plane has not failed but exits the state of the Hello detection function; sending the first interaction information to the first node And a second node of the neighbor, so that the second node determines, by the specific identifier, that the control plane of the first node does not fail but exits the Hello detection function, and continues to send the refresh information to the first node.
  • the second node determines that the control plane of the first node does not fail but exits the Hello detection function, and continues to the The first node sends the refresh information to prevent the first node from starting the restart timer, and stops sending the refresh information to the first node, thereby avoiding aging of the first node.
  • the step of determining that the control plane of the first node does not fail but exiting the Hello detection function, and continuing to send the refresh message to the first node further includes:
  • the first node that receives the first interaction information sent by the first node includes the specific identifier
  • determining that the specific identifier corresponds to the first node is to be in the second pre- The content of the preset type interaction information is stopped when the time arrives, or the content that the first node has stopped sending the preset type interaction information.
  • the second node determines that the specific identifier corresponds to the content that the first node will stop transmitting the preset type interaction information when the second preset time arrives, the second node starts timing, when the second preset time arrives, And when the preset type interaction information sent by the first node is not received, the second node determines that the control plane of the first node does not fail but exits the Hello detection function, and continues to the first node.
  • Sending the refresh information when it is determined that the specific identifier corresponds to the content that the first node has stopped sending the preset type interaction information, the second node determines that the control plane of the first node does not fail but exits Hello.
  • the detecting function continues to send refresh information to the first node.
  • the second preset time may be a suitable time interval set by a user such as 30s or IMin.
  • the method further includes the steps of:
  • Step S17 When detecting and receiving that the first interaction information sent by the first node does not include the specific identifier, analyzing whether the preset sent by the first node is received in the first preset time Type interaction information;
  • Step S18 When the preset type interaction information sent by the first node is not received in the first preset time, determine that the control plane of the first node is faulty, and stop sending the refresh information to the first node. .
  • the second node when the second node detects and receives that the first interaction information sent by the first node does not include the specific identifier, that is, the first node does not exit the Hello detection function.
  • the second node analyzes whether the preset type interaction information sent by the first node is detected and received in the first preset time, that is, the second node analyzes in the first preset time. Whether information of the state of the control plane sent by the first node is received.
  • the preset type interaction information corresponds to the content of the control plane state, and the content of the control plane state includes the control plane restart time, the control plane recovery time, and the like, and is different according to different states of the control plane; the first preset time
  • the period for sending preset type interaction information between nodes may be an appropriate time interval arbitrarily set by a user such as 10s or 20s.
  • the content of the first node control plane state includes a recovery time
  • the first node control plane state is Content restart time.
  • the second node When the second node does not detect and receive the preset type interaction information sent by the first node in the first preset time, determining that the control plane of the first node is faulty, or the first The control plane of the node is in a restart state, and the sending of the refresh information to the first node is stopped.
  • the first node After restarting the control plane, the first node sends preset type interaction information to its neighboring second node to notify the control node state information of the first node of the second node adjacent thereto, and by using the The second node restores control plane information of the first node. As shown in FIG.
  • FIG. 7 it is a schematic diagram of a function module of a first embodiment of a device for preventing aging of a network node, and the device includes: an analysis module 10, an adding module 20, and a first sending module 30.
  • the analyzing module 10 is configured to analyze whether the control plane of the first node exits the Hello detection function because a fault occurs;
  • the network is composed of nodes, and each interconnected node is a neighbor node.
  • each node in the network can enable Hello detection and send Hello.
  • the packet is sent to its neighbor node device to inform its neighbor node device of its restart time.
  • the control plane of the node is restarted, the control plane information before the restart can be restored by the neighbor base device to ensure the forwarding of service traffic.
  • the first node analyzes whether a failure has occurred and exits the Hello detection function before sending the interaction information to its neighboring second node.
  • the adding module 20 is configured to add a specific identifier to the first interaction information when the control plane of the first node does not fail but exits the Hello detection function, where the specific identifier is used to indicate the control. The state where the face has not failed but has exited the Hello detection function;
  • the first sending module 30 is configured to send the first interaction information to a second node adjacent to the first node, so that the second node determines, by using the specific identifier, the control of the first node The face does not fail but exits the Hello detection function and continues to send refresh information to the first node.
  • the first node when the control plane of the first node does not fail but exits the Hello detection function, the first node constructs first interaction information, where the first interaction information includes a specific identifier, and the specific And indicating that the control plane of the first node does not fail but exits the Hello detection function, and the corresponding node is in a state that the control node does not fail but exits the Hello detection function. Transmitting the first interaction information including the specific identifier to a second node device adjacent thereto. When detecting, by the second node, the first interaction information from the first node, analyzing whether the first interaction information includes the specific identifier, that is, analyzing the first node device Whether the control plane has not failed but has exited the Hello detection function.
  • the second node When the first interaction information includes the specific identifier, that is, the control plane of the first node does not fail but exits the Hello detection function, the second node continues to send the refresh information to the first node. , thereby preventing aging of the first node.
  • the second node may be a neighboring device of the first node, or may be multiple neighboring devices of the first node.
  • the embodiment of the present invention provides a second embodiment of a device for preventing aging of a network node. Referring to FIG. 8, the device may further include: a receiving module 40, a determining module 50, and a second sending module 60.
  • the receiving module 40 is configured to receive second interaction information from the third node that includes the specific identifier;
  • the determining module 50 is configured to determine, according to the second interaction information, that the control plane of the third node does not fail but exits the Hello detection function;
  • the second sending module 60 is configured to continue to send the refresh information to the third node, where the specific identifier is used to indicate that the control plane of the third node has not failed but exits the Hello detection function.
  • the third node may be another neighbor node of the first node other than the second node, or may be a second node.
  • the second sending module 60 may be the same module as the first sending module 30, or may be different modules.
  • a network architecture consisting of three nodes R1, R2, and R3, R1, R2, and R3 each have a GR function, R1 and R2 are neighbor node devices, and R2 and R3 are neighbor node devices.
  • R1 and R2 and R2 and R3 send the preset type of interaction information by the first preset time interval to inform the other node of the restart time of the respective control planes.
  • the control plane information before the restart can be restored through its neighbor node devices R1 and R3.
  • the R2 control plane does not fail but the Hello detection function is disabled, R2 constructs an interaction information, and adds a specific identifier to the interaction information, where the specific identifier corresponds to the content that the Hello detection function is closed.
  • the Hello message is used as an example.
  • the Hello message includes the Capability object, refer to Figure 3, which is the standard format diagram of the Capability object.
  • Figure 4 the extended format of the Capability object, and the extended Capability object.
  • a bit field D is reserved. In the normal Hello message, the default value of the field D is 0. When R2 turns off/out the Hello detection function, the value of the field D in the Capability object of the Hello message is changed to 1.
  • the Hello packet whose value of the field D is changed to 1 is sent to R1 and R3.
  • R1 and R3 detect and receive the Hello packet whose value of the field D is changed to 1, it is determined that the control plane of R2 has not failed. Close/exit Hello detection, R1 and R3 do not enable the restart timer wait function, and continue to send a refresh message to R2.
  • R2 re-enables the Hello detection of the GR, R2 initiates a Hello packet with the normal format, that is, the Hello packet with the field D value of 0, to establish a normal Hello relationship with R1 and R2.
  • R2 can also be sent according to R1 or R3.
  • the value of the field D is included to determine whether R1 or R3 has failed the control plane but exits the Hello detection function to determine whether to continue sending a refresh message to R1 or R3, thereby preventing aging of R2.
  • the Hello detection function is exited by analyzing whether the control plane of the first node is faulty; when a failure occurs but the Hello detection function is exited, the specific identifier is added to the first interaction information, where The specific identifier is used to indicate that the control plane has not failed but exits the state of the Hello detection function; and the first interaction information is sent to the second node adjacent to the first node, so that the second node passes the The specific identifier determines that the control plane of the first node has not failed but exits the Hello detection function and continues to send refresh information to the first node.
  • the second node determines that the control plane of the first node does not fail but exits the Hello detection function, and continues to the The first node sends the refresh information to prevent the first node from starting the restart timer, and stops sending the refresh information to the first node, thereby avoiding aging of the first node.
  • the determining module 50 is further configured to determine whether the specific identifier corresponds to the first node to be at the second preset time. Stop sending the content of the preset type interactive information when it arrives;
  • the second sending module 60 is further configured to determine that the specific identifier corresponds to the content that the first node stops sending the preset type interaction information when the second preset time arrives, when the second preset time arrives. Determining that the control plane of the first node does not fail but exits the Hello detection function, and continues to send the refresh information to the first node;
  • the specific identifier corresponds to the content that the first node has stopped sending the preset type interaction information
  • the first node that receives the first interaction information sent by the first node includes the specific identifier, determining that the specific identifier corresponds to the first node is in the first When the preset time arrives, the content of the preset type interaction information is stopped, or the content that the first node has stopped sending the preset type interaction information.
  • the second preset time may be a suitable time interval set by a user such as 30s, IMin, or the like.
  • the analyzing module 10 may be further configured to: when detecting and receiving that the first interaction information sent by the first node does not include the specific identifier, analyzing whether the first Preset type interaction information sent by a node;
  • the second sending module 60 may be further configured to: when the preset type interaction information sent by the first node is not received within the first preset time, determine that the control plane of the first node is faulty, and stop Sending refresh information to the first node.
  • the second node when the second node detects and receives that the first interaction information sent by the first node does not include the specific identifier, that is, the first node does not exit the Hello detection function.
  • the second node analyzes whether the preset type interaction information sent by the first node is detected and received in the first preset time, that is, the second node analyzes in the first preset time. Whether information of the state of the control plane sent by the first node is received.
  • the preset type interaction information corresponds to the content of the control plane state, and the content of the control plane state includes the control plane restart time, the control plane recovery time, and the like, and is different according to different states of the control plane; the first preset time is The period for sending preset type interaction information between nodes may be an appropriate time interval arbitrarily set by a user such as 10s or 20s.
  • the content of the first node control plane state includes a recovery time, and when the control plane is in a normal running state, the first node control plane state is Content restart time.
  • the second node When the second node does not detect and receive the preset type interaction information sent by the first node in the first preset time, determining that the control plane of the first node is faulty, or the first The control plane of the node is in a restart state, and the sending of the refresh information to the first node is stopped.
  • the first node After restarting the control plane, the first node sends preset type interaction information to its neighboring second node to notify the control node state information of the first node of the second node adjacent thereto, and by using the The second node restores control plane information of the first node.
  • the embodiment of the invention further provides a system for preventing node aging, the system comprising a plurality of nodes, And the nodes in the system include the devices for preventing node aging in the above embodiments.
  • the system includes two nodes: a first node and a second node, and the first node and the second node each include: an analysis module 10, an adding module 20, a first sending module 30, a receiving module 40, and determining Module 50 and second transmitting module 60.
  • an analysis module 10 an adding module 20
  • a first sending module 30 a receiving module 40
  • determining Module 50 and second transmitting module 60 For the function of each module, refer to the foregoing detailed description of the device for preventing node aging, and details are not described herein again.
  • Embodiments of the present invention also provide a computer program comprising program instructions that, when executed by a device that prevents aging of a network node, cause the device to perform the method described above.
  • Embodiments of the present invention also provide a carrier carrying the above computer program.
  • the serial numbers of the embodiments of the present invention are merely for the description, and do not represent the advantages and disadvantages of the embodiments.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • a storage medium such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • a terminal device which may be a cell phone, a computer, a server, or a network device, etc.
  • the restart timer is started, and the sending of the refresh information to the first node is stopped, thereby preventing the aging of the first node.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明实施例公开了一种防止网络节点老化的方法、装置和系统,该方法包括:分析第一节点的控制面是否是因为发生了故障而退出了Hello检测功能;在所述第一节点的控制面未发生故障但退出了Hello检测功能的情况下,添加特定标识至第一交互信息中,其中,所述特定标识用于指示控制面未发生故障但退出了Hello检测功能的状态;将所述第一交互信息发送至与所述第一节点相邻的第二节点,以供所述第二节点通过所述特定标识确定所述第一节点的控制面未发生故障但退出了Hello检测功能,并继续向所述第一节点发送刷新信息。

Description

防止网络节点老化的方法、 装置及系统 技术领域
本发明涉及数据网络通信中的基于流量工程的资源预留协议(Resource Reservation Protocol-Traffic Engineer, RSVP-TE )平滑重启 (GraceM Restart,
GR)技术领域, 尤其涉及防止网络节点老化的方法、 装置及系统。 背景技术
RSVP-TE是一种基于多协议标签交换( Multiple protocol Label Switching, MPLS ) 的流量工程技术。 RSVP-TE流量工程技术通过信息发布、 路径计算、 信令交互、 流量的转发来实现业务流量在 TE ( Traffic Engineer, 流量工程) 隧道中的转发。 基于 RSVP-TE的 GR技术提供了一种业务流量的不间断转发 (Non-Stop Forwarding, NSF)的应用。 拥有该 GR技术的网络, 在有节点设备的 控制面发生故障时, 可以通过该节点设备的邻居节点设备恢复该节点设备的 控制面信息,且该节点设备的转发信息在其控制面信息的恢复阶段也能保留, 以保证业务流量的转发。 GR技术的实现是建立在 Hello检测的基础上, Hello 检测的目的之一是为了感知到邻居节点设备发生了重启, 在 RFC3209 , RFC3473 , RFC5063中均介绍了 Hello检测的使用规则和扩展功能。
如图 1所示, Hello检测在 GR技术过程中的交互以及作用如下: 1、如果 Rl、 R2和 R3三个节点都支持 GR技术, 在 R1和 R2, R2和 R3之间建立正常的 Hello 邻居关系, 并通过 Hello报文交互了各自的重启时间 (Restart time); 2、 在 R2发 生控制面重启时, R1和 R3在一段时间内接收不到 R2发送的 Hello报文, R1和 R3认为 R2可能发生了控制面重启, 开启 R2控制面重启定时器, 同时 R1和 R3 均抑制向 R2发送刷新消息; 3、待 R2的控制面重启好之后,向 R1和 R3发送 Hello 报文, 且在 Hello报文中携带了恢复时间 (Recovery time) , R1和 R3接收到该携 带有恢复时间的 Hello报文后, 因为源 instance (实例)和重启前的源 instance 不一致, 且携带了恢复时间, R1和 R3确认 R2发生了重启, R1和 R3会在该恢 复时间内帮助 R2恢复其重启前的控制面信息。
这种帮助邻居节点恢复重启前控制面信息的方式的缺陷在于: 若 R2关闭 了 Hello检测, 则 R2的邻居节点 R1和 R3感知到 R2的 Hello报文丟失, 按照 RFC3473的协议说明 , R1和 R3需要等待一段时间 , 这个时间为重启时间 (Restart time), 同时 R1和 R3抑制向 R2发送刷新消息。 然而, 实际上 R2并未发 生控制面重启, 只是退出 Hello检测。 在 R1和 R3等待 R2重启的时间段内, 因 R1和 R3均不会向 R2发送刷新消息, 故, 导致了 R2的老化。
上述内容仅用于辅助理解本发明的技术方案, 并不代表承认上述内容是 现有技术。 发明内容
本发明实施例的主要目的为提供防止网络节点老化的方法、装置及系统, 有效防止网络节点的老化。 为实现上述目的, 本发明实施例提供一种防止网络节点老化的方法, 该 方法包括:
分析第一节点的控制面是否是因为发生了故障而退出了 Hello检测功能; 在所述第一节点的控制面未发生故障但退出了 Hello检测功能的情况下, 添加特定标识至第一交互信息中, 其中, 所述特定标识用于指示控制面未发 生故障但退出了 Hello检测功能的状态;
将所述第一交互信息发送至与所述第一节点相邻的第二节点, 以供第二 节点通过所述特定标识确定所述第一节点的控制面未发生故障但退出了 Hello检测功能, 并继续向所述第一节点发送刷新信息。
较佳地, 该方法还包括:
接收来自第三节点的、 包含所述特定标识的第二交互信息;
根据所述第二交互信息 , 确定所述第三节点的控制面未发生故障但退出 了 Hello检测功能;
继续向所述第三节点发送刷新信息。
较佳地, 所述在将所述第一交互信息发送至与所述第一节点相邻的第二 节点的步骤之后, 该方法还包括:
接收包含所述特定标识的所述第一交互信息;
根据所述第一交互信息 , 确定所述第一节点的控制面未发生故障但退出 了 Hello检测功能; 继续向所述第一节点发送刷新信息。
较佳地, 该方法还包括步骤:
在侦测并接收到所述第一交互信息不包含特定标识时, 分析在第一预设 时间内是否接收到来自所述第一节点的预设类型交互信息;
在第一预设时间内未接收到来自所述第一节点的预设类型交互信息时, 确定所述第一节点的控制面发生故障, 停止向所述第一节点发送刷新信息。
较佳地, 所述确定所述第一节点的控制面发生故障, 停止向所述第一节 点发送刷新信息的步骤之后, 该方法还包括步骤:
在侦测并接收到来自所述第一节点的预设类型交互信息时, 恢复向所述 第一节点发送刷新信息。
较佳地,所述确定所述第一节点的控制面未发生故障但退出了 Hello检测 功能, 继续向所述第一节点发送刷新信息的步骤包括:
确定所述特定标识是否对应为所述第一节点将在第二预设时间到达时停 止发送预设类型交互信息的内容;
确定所述特定标识对应为所述第一节点将在第二预设时间到达时停止发 送预设类型交互信息的内容, 在第二预设时间到达时, 确定所述第一节点的 控制面未发生故障但退出了 Hello检测功能,继续向所述第一节点发送刷新信 息。
较佳地, 所述确定所述特定标识是否对应为所述第一节点将在第二预设 时间到达时停止发送预设类型交互信息的内容的步骤之后, 该方法还包括步 骤:
在确定所述特定标识对应为所述第一节点已经停止发送预设类型交互信 息的内容, 确定所述第一节点的控制面未发生故障但退出了 Hello检测功能, 继续向所述第一节点发送刷新信息。 本发明实施例还提供一种防止网络节点老化的装置, 该装置包括: 分析模块, 其设置为分析第一节点的控制面是否是因为发生了故障而退 出了 Hello检测功能;
添加模块,其设置为在所述第一节点未发生故障但退出了 Hello检测功能 的情况下, 添加特定标识至第一交互信息中, 其中, 所述特定标识用于指示 控制面未发生故障但退出了 Hello检测功能的状态; 以及
第一发送模块, 其设置为将所述第一交互信息发送至与所述第一节点相 邻的第二节点, 以供第二节点通过所述特定标识确定所述第一节点的控制面 未发生故障但退出了 Hello检测功能, 并继续向所述第一节点发送刷新信息。
较佳地, 该装置还包括:
接收模块, 其设置为接收来自第三节点的、 包含所述特定标识的第二交 互信息;
确定模块, 其设置为根据所述第二交互信息, 确定所述第三节点的控制 面未发生故障但退出了 Hello检测功能; 以及
第二发送模块, 其设置为继续向所述第三节点发送刷新信息。 本发明实施例还提出一种防止网络节点老化的系统, 该系统包括: 至少 两个节点, 所述节点包括上述的防止网络节点老化的装置。
本发明实施例还提出一种计算机程序, 包括程序指令, 当该程序指令被 防止网络节点老化的装置执行时, 使得该装置可执行上面所述的方法。
本发明实施例还提出一种载有上述计算机程序的载体。 本发明实施例通过分析第一节点的控制面是否是因为发生了故障而退出 了 Hello检测功能; 在未发生故障但退出了 Hello检测功能的情况时, 添加特 定标识至第一交互信息中, 其中, 所述特定标识用于指示控制面未发生故障 但退出了 Hello检测功能的状态;将所述第一交互信息发送至与所述第一节点 相邻的第二节点, 以供第二节点通过所述特定标识确定所述第一节点的控制 面未发生故障但退出了 Hello检测功能, 并继续向所述第一节点发送刷新信 息。 所述第二节点在接收到的所述第一节点发送的第一交互信息包含所述特 定标识时, 确定所述第一节点的控制面未发生故障但退出了 Hello检测功能, 继续向所述第一节点发送刷新信息, 以防止所述第一节点开启重启定时器, 停止向所述第一节点发送刷新信息, 进而避免所述第一节点的老化。 附图概述
图 1为本发明防止网络节点老化的方法第一实施例的流程示意图; 图 2为一网络结构的节点分布示意图;
图 3为本发明实施例网络节点间 RS VP Hello交互报文中 Capability对象的 标准格式示意图;
图 4为本发明实施例网络节点间 RS VP Hello交互报文中 Capability对象扩 展后的格式示意图;
图 5为图 1中步骤 S12的细化流程示意图;
图 6为本发明防止网络节点老化的方法第二实施例的流程示意图; 图 7为本发明防止网络节点老化的装置第一实施例的功能模块示意图; 图 8为本发明防止网络节点老化的装置第二实施例的功能模块示意图。 本发明目的的实现、 功能特点及优点将结合实施例, 参照附图做进一步 说明。 本发明的较佳实施方式
应当理解, 此处所描述的具体实施例仅仅用以解释本发明, 并不用于限 定本发明。 在不冲突的情况下, 本发明实施例及实施例中的特征可以相互任 意组合。
如图 1所示, 为本发明防止网络节点老化的方法第一实施例的流程示意 图。
需要强调的是: 图 1所示流程图仅为一个较佳实施例, 本领域的技术人 员当知, 任何围绕本发明思想构建的实施例都不应脱离于如下技术方案涵盖 的范围:
分析第一节点的控制面是否是因为发生了故障而退出了 Hello检测功能; 在所述第一节点的控制面未发生故障但退出了 Hello检测功能的情况下,添加 特定标识至第一交互信息中, 其中所述特定标识用于指示控制面未发生故障 但退出了 Hello检测功能的状态,将所述第一交互信息发送至与所述第一节点 相邻的第二节点, 以供第二节点通过所述特定标识确定所述第一节点的控制 面未发生故障但退出了 Hello检测功能, 并继续向所述第一节点发送刷新信 息。
以下是本实施例逐步实现防止网络节点老化的具体步骤: 步骤 Sl l ,分析第一节点的控制面是否发生了故障且退出了 Hello检测功 能;
在本实施例中, 网络由各个节点组成, 每个互联的节点之间互为邻居节 点, 当每个节点均具有 GR功能时, 该网络中的各个节点均可通过开启 Hello 检测功能发送 Hello报文给其邻居节点设备,以告知其邻居节点设备其重启时 间, 在有节点的控制面发生重启时, 可以通过邻居基点设备恢复重启前的控 制面信息, 以确保业务流量的转发。 执行本发明实施例防止网络节点老化的 方法的主体可以是第一节点, 也还可以是与各个节点通信连接的控制设备。 本实施例优选为第一节点为执行主体, 所述第一节点分析第一节点的控制面 是否是因为发生了故障而退出了 Hello检测功能。
步骤 S12,在所述第一节点的控制面未发生故障但退出了 Hello检测功能 的情况下, 添加特定标识至第一交互信息中, 其中, 所述特定标识用于指示 控制面未发生故障但退出了 Hello检测功能的状态;
步骤 S13 , 将所述第一交互信息发送至与所述第一节点相邻的第二节点, 以供第二节点通过所述特定标识确定所述第一节点的控制面未发生故障但退 出了 Hello检测功能, 并继续向所述第一节点发送刷新信息。
在本实施例中,当所述第一节点的控制面未发生故障但退出了 Hello检测 功能时, 所述第一节点构建第一交互信息, 所述第一交互信息包含特定标识, 所述特定标识对应控制面未发生故障但退出了 Hello检测功能的状态,且此处 对应为第一节点处于控制面未发生故障但退出了 Hello检测功能的状态。将所 述包含所述特定标识的所述第一交互信息发送给与其相邻的第二节点设备。 所述第二节点在侦测并接收到来自所述第一节点的第一交互信息时, 分析所 述第一交互信息是否包含所述特定标识, 即, 分析发送所述第一交互信息的 所述第一节点设备是否控制面未发生故障但退出了 Hello检测功能。
在所述第一交互信息包含所述特定标识时, 即, 所述第一节点的控制面 未发生故障但退出了 Hello了检测功能,所述第二节点继续向所述第一节点发 送刷新信息, 进而防止了所述第一节点的老化。 其中, 所述第二节点可以是 所述第一节点的一个邻居设备, 也可以是所述第一节点的多个邻居设备。 同 样, 也可以是第一节点接收来自第三节点的、 包含所述特定标识的第二交互 信息; 根据所述第二交互信息, 确定所述第三节点的控制面未发生故障但退 出了 Hello检测功能; 继续向所述第三节点发送刷新信息,此处所述特定标识 用于指示所述第三节点的控制面未发生故障但退出了 Hello检测功能的状态。 所述第三节点可以是处第二节点以外的所述第一节点的其他邻居节点, 也可 以是第二节点。
参考图 2, 为由 Rl、 R2和 R3三个节点组成的一个网络架构, Rl、 R2 和 R3均具有 GR功能, R1和 R2互为邻居节点设备, R2和 R3互为邻居节点 设备。 R1和 R2及 R2和 R3之间通过间隔第一预设时间发送预设类型的交互 信息来告知对方节点各自控制面的重启时间。在 R2发生控制面重启时,可以 通过其邻居节点设备 R1及 R3来恢复重启前的控制面信息。 当 R2控制面未 发生故障但关闭 Hello检测功能时, R2构建一个交互信息, 并向所述交互信 息添加特定标识,所述特定标识对应为 Hello检测功能关闭的内容。所述交互 消息以 Hello报文为例, R1与 R2及 R2与 R3之间用于交互的 RSVP Hello报 文 的 格 式 为 :<Hello Message>: :=<Common
Header>[<INTEGRITY>]<HELLO>[<RESTART_CAP>] [CAPABILITY] , Hello 报文包括 Capability (性能)对象。 参考图 3 , 为 Capability对象的标准格式示 意图, 参考图 5, 为 Capability对象扩展后的格式示意图, 扩展后的 Capability 对象预留一个 Bit字段 D, 在正常 Hello报文中, 该字段 D默认值为 0, 当 R2 关闭 /退出 Hello检测功能时,将 Hello报文的 Capability对象中的该字段 D的 值修改为 1 , 将字段 D的值修改为 1的 Hello报文发送给 R1及 R3 , R1及 R3 在侦测并接收到该字段 D的值修改为 1的 Hello报文时,确定 R2的控制面未 发生故障但关闭 /退出了 Hello检测, R1及 R3不开启重启定时器等待功能, 同时继续给 R2发送刷新消息。 在 R2重新开启 GR的 Hello检测时, R2主动 向 R1和 R3发起正常格式的 Hello报文, 即字段 D值为 0的 Hello报文, 以 与 R1和 R2建立正常的 Hello关系。 同样 R2也可以根据 R1或者 R3发送来 的包括字段 D值来判断 R1或 R3是否控制面未发生故障但退出了 Hello检测 功能, 来决定是否继续向 R1或者 R3发送刷新消息, 进而防止 R2的老化。
本实施例通过分析第一节点的控制面是否是因为发生了故障而退出了 Hello检测功能; 在未发生故障但退出了 Hello检测功能的情况时, 添加特定 标识至第一交互信息中, 其中, 所述特定标识用于指示控制面未发生故障但 退出了 Hello检测功能的状态;将所述第一交互信息发送至与所述第一节点相 邻的第二节点, 以供第二节点通过所述特定标识确定所述第一节点的控制面 未发生故障但退出了 Hello检测功能, 并继续向所述第一节点发送刷新信息。 所述第二节点在接收到的所述第一节点发送的第一交互信息包含所述特定标 识时,确定所述第一节点的控制面未发生故障但退出了 Hello检测功能,继续 向所述第一节点发送刷新信息, 以防止所述第一节点开启重启定时器, 停止 向所述第一节点发送刷新信息, 进而避免所述第一节点的老化。
进一步地, 参考图 5 , 所述确定所述第一节点的控制面未发生故障但退 出了 Hello检测功能, 继续向所述第一节点发送刷新消息的步骤还包括:
514 ,确定所述特定标识是否对应为所述第一节点将在第二预设时间到达 时停止发送预设类型交互信息的内容;
515 ,确定所述特定标识对应为所述第一节点将在第二预设时间到达时停 止发送预设类型交互信息的内容, 并在第二预设时间到达时, 确定所述第一 节点的控制面未发生故障但退出了 Hello检测功能,继续向所述第一节点发送 刷新信息;
S16,在确定所述特定标识对应为所述第一节点已经停止发送预设类型交 互信息的内容时,确定所述第一节点的控制面未发生故障但退出了 Hello检测 功能, 继续向所述第一节点发送刷新信息。
在本实施例中, 所述第二节点在接收到所述第一节点发送来的第一交互 信息包含所述特定标识时, 确定所述特定标识对应为所述第一节点将在第二 预设时间到达时停止发送预设类型交互信息的内容, 还是对应为所述第一节 点已经停止发送预设类型交互信息的内容。 所述第二节点在确定所述特定标 识对应为所述第一节点将在第二预设时间到达时停止发送预设类型交互信息 的内容时, 开始计时, 当第二预设时间到达时, 且未接收到所述第一节点发 送来的预设类型交互信息时, 所述第二节点确定所述第一节点的控制面未发 生故障但退出了 Hello检测功能,继续向所述第一节点发送刷新信息; 在确定 所述特定标识对应为所述第一节点已经停止发送预设类型交互信息的内容 时,所述第二节点确定所述第一节点的控制面未发生故障但退出了 Hello检测 功能,继续向所述第一节点发送刷新信息。所述第二预设时间可以为 30s、 IMin 等用户设置的合适的时间间隔。 通过分析所述特定标识对应的内容, 有效防 止在所述第一节点的控制面未发生故障时, 所述第二节点停止向所述第一节 点发送刷新信息的技术问题, 进而有效避免了所述第一节点的老化。 如图 6所述, 为本发明防止网络节点老化的方法第二实施例的流程示意 图。
基于上述第一实施例, 该方法还包括步骤:
步骤 S17 , 在侦测并接收到所述第一节点发送来的第一交互信息不包含 所述特定标识时, 分析在第一预设时间内是否接收到所述第一节点发送来的 预设类型交互信息;
步骤 S18 , 在第一预设时间内未接收到所述第一节点发送来的预设类型 交互信息时, 确定所述第一节点的控制面发生故障, 停止向所述第一节点发 送刷新信息。
在本实施例中, 所述第二节点在侦测并接收到所述第一节点发送来的第 一交互信息不包含所述特定标识时, 即,在所述第一节点未退出 Hello检测功 能时, 所述第二节点分析在第一预设时间内是否侦测并接收到所述第一节点 发送来的预设类型交互信息, 即, 所述第二节点分析在第一预设时间内是否 接收到所述第一节点发送来的控制面状态的信息。 该预设类型交互信息对应 为控制面状态的内容, 所述控制面状态的内容包括控制面重启时间、 控制面 恢复时间等内容, 根据控制面的不同状态而不同; 所述第一预设时间为节点 间发送预设类型交互信息的周期, 可以是 10s、 20s等用户任意设置的合适的 时间间隔。 以所述第一节点为例, 当所述第一节点控制面重启时, 所述第一 节点控制面状态的内容包括恢复时间, 控制面正常运行状态时, 所述第一节 点控制面状态的内容重启时间。 所述第二节点在第一预设时间内未侦测并接 收到所述第一节点发送来的预设类型交互信息时, 确定所述第一节点的控制 面发生故障, 或所述第一节点的控制面处于重启状态, 停止向所述第一节点 发送刷新信息。 所述第一节点在重启控制面之后, 向其相邻的第二节点发送 预设类型交互信息, 以告知与其相邻的第二节点所述第一节点的控制面状态 信息, 并通过所述第二节点恢复第一节点的控制面信息。 如图 7所示, 为本发明防止网络节点老化的装置第一实施例的功能模块 示意图, 该装置包括: 分析模块 10、 添加模块 20及第一发送模块 30。 所述分析模块 10, 设置为分析第一节点的控制面是否是因为发生了故障 而退出了 Hello检测功能;
在本实施例中, 网络由各个节点组成, 每个互联的节点之间互为邻居节 点, 当每个节点均具有 GR功能时, 该网络中的各个节点均可通过开启 Hello 检测功能并发送 Hello报文给其邻居节点设备,以告知其邻居节点设备其重启 时间, 并在有节点的控制面发生重启时, 可以通过邻居基点设备恢复重启前 的控制面信息, 以确保业务流量的转发。 第一节点在向其相邻的第二节点发 送交互信息之前, 分析是否发生了故障且退出了 Hello检测功能。
所述添加模块 20, 设置为在所述第一节点的控制面未发生故障但退出了 Hello检测功能的情况下, 添加特定标识至第一交互信息中, 其中, 所述特定 标识用于指示控制面未发生故障但退出了 Hello检测功能的状态;
所述第一发送模块 30 , 设置为将所述第一交互信息发送至与所述第一节 点相邻的第二节点, 以供第二节点通过所述特定标识确定所述第一节点的控 制面未发生故障但退出了 Hello检测功能,并继续向所述第一节点发送刷新信 息。
在本实施例中,当所述第一节点的控制面未发生故障但退出了 Hello检测 功能时, 所述第一节点构建第一交互信息, 所述第一交互信息包含特定标识, 所述特定标识对应所述第一节点的控制面未发生故障但退出了 Hello检测功 能的状态,且此处对应为第一节点处于控制面未发生故障但退出了 Hello检测 功能的状态。 将所述包含所述特定标识的所述第一交互信息发送给与其相邻 的第二节点设备。 所述第二节点在侦测并接收到来自所述第一节点的所述第 一交互信息时, 分析所述第一交互信息是否包含所述特定标识, 即, 分析所 述交第一节点设备是否控制面未发生故障但退出了 Hello检测功能。
在所述第一交互信息包含所述特定标识时, 即, 所述第一节点的控制面 未发生故障但退出了 Hello了检测功能,所述第二节点继续向所述第一节点发 送刷新信息, 进而防止了所述第一节点的老化。 其中, 所述第二节点可以是 所述第一节点的一个邻居设备, 也可以是所述第一节点的多个邻居设备。 本发明实施例提出防止网络节点老化的装置第二实施例, 参考图 8, 该 装置还可以包括: 接收模块 40, 确定模块 50及第二发送模块 60, 所述接收模块 40, 设置为接收来自第三节点的、 包含所述特定标识的第 二交互信息;
所述确定模块 50, 设置为根据所述第二交互信息, 确定所述第三节点的 控制面未发生故障但退出了 Hello检测功能;
所述第二发送模块 60, 设置为继续向所述第三节点发送刷新信息, 此处 所述特定标识用于指示所述第三节点的控制面未发生故障但退出了 Hello检 测功能的状态。 所述第三节点可以是处第二节点以外的所述第一节点的其他 邻居节点, 也可以是第二节点。 所述第二发送模块 60可以是与所述第一发送 模块 30为同一模块, 也可以是分别为不同的模块。
以下具体应用示例来描述本发明实施例的技术方案:
参考图 2, 为由 Rl、 R2和 R3三个节点组成的一个网络架构, Rl、 R2 和 R3均具有 GR功能, R1和 R2互为邻居节点设备, R2和 R3互为邻居节点 设备。 R1和 R2及 R2和 R3之间通过间隔第一预设时间发送预设类型的交互 信息来告知对方节点各自控制面的重启时间。在 R2发生控制面重启时,可以 通过其邻居节点设备 R1及 R3来恢复重启前的控制面信息。 当 R2控制面未 发生故障但关闭 Hello检测功能时, R2构建一个交互信息, 并向所述交互信 息添加特定标识,所述特定标识对应为 Hello检测功能关闭的内容。所述交互 消息以 Hello报文为例, R1与 R2及 R2与 R3之间用于交互的 RSVP Hello报 文 的 格 式 为 : <Hello Message> : : =<Common Header>[<INTEGRITY>]<HELLO>[<RESTART_CAP>] [CAPABILITY] , Hello 报文包括 Capability (性能)对象, 参考图 3 , 为 Capability对象的标准格式示 意图, 参考图 4, 为 Capability对象扩展后的格式示意图, 扩展后的 Capability 对象预留一个 Bit字段 D, 在正常 Hello报文中, 该字段 D默认值为 0, 当 R2 关闭 /退出 Hello检测功能时,将 Hello报文的 Capability对象中的该字段 D的 值修改为 1 , 将字段 D的值修改为 1的 Hello报文发送给 R1及 R3 , R1及 R3 在侦测并接收到该字段 D的值修改为 1的 Hello报文时,确定 R2的控制面未 发生故障但关闭 /退出了 Hello检测, R1及 R3不开启重启定时器等待功能, 同时继续给 R2发送刷新消息。 在 R2重新开启 GR的 Hello检测时, R2主动 向 R1和 R3发起正常格式的 Hello报文, 即字段 D值为 0的 Hello报文, 以 与 R1和 R2建立正常的 Hello关系。 同样 R2也可以根据 R1或者 R3发送来 的包括字段 D值来判断 R1或 R3是否控制面未发生故障但退出了 Hello检测 功能, 来决定是否继续向 R1或者 R3发送刷新消息, 进而防止 R2的老化。
本实施例通过分析第一节点的控制面是否是因为发生了故障而退出了 Hello检测功能; 在未发生故障但退出了 Hello检测功能的情况时, 添加特定 标识至第一交互信息中, 其中, 所述特定标识用于指示控制面未发生故障但 退出了 Hello检测功能的状态;将所述第一交互信息发送至与所述第一节点相 邻的第二节点, 以供第二节点通过所述特定标识确定所述第一节点的控制面 未发生故障但退出了 Hello检测功能, 并继续向所述第一节点发送刷新信息。 所述第二节点在接收到的所述第一节点发送的第一交互信息包含所述特定标 识时,确定所述第一节点的控制面未发生故障但退出了 Hello检测功能,继续 向所述第一节点发送刷新信息, 以防止所述第一节点开启重启定时器, 停止 向所述第一节点发送刷新信息, 进而避免所述第一节点的老化。
当所述防止节点老化的装置为第二节点中的防止节点老化的装置时, 所 述确定模块 50, 还设置为确定所述特定标识是否对应为所述第一节点将在第 二预设时间到达时停止发送预设类型交互信息的内容;
所述第二发送模块 60, 还设置为确定所述特定标识对应为所述第一节点 将在第二预设时间到达时停止发送预设类型交互信息的内容, 在第二预设时 间到达时, 确定所述第一节点的控制面未发生故障但退出了 Hello检测功能, 继续向所述第一节点发送刷新信息;
在确定所述特定标识对应为所述第一节点已经停止发送预设类型交互信 息的内容时, 确定所述第一节点的控制面未发生故障但退出了 Hello检测功 能, 继续向所述第一节点发送刷新信息。
在本实施例中, 所述第二节点在接收到所述第一节点发送来的所述第一 交互信息包含所述特定标识时, 确定所述特定标识对应为所述第一节点将在 第二预设时间到达时停止发送预设类型交互信息的内容, 还是对应为所述第 一节点已经停止发送预设类型交互信息的内容。 在确定所述特定标识对应为 所述第一节点将在第二预设时间到达时停止发送预设类型交互信息的内容 时, 开始计时, 当第二预设时间到达时, 且未接收到所述第一节点发送来的 预设类型交互信息时,确定所述第一节点的控制面未发生故障但退出了 Hello 检测功能, 继续向所述第一节点发送刷新信息; 在确定所述特定标识对应为 所述第一节点已经停止发送预设类型交互信息的内容时, 确定所述第一节点 的控制面未发生故障但退出了 Hello检测功能,继续向所述第一节点发送刷新 信息。 所述第二预设时间可以为 30s、 IMin等用户设置的合适的时间间隔。 通过分析所述特定标识对应的内容, 有效防止在所述第一节点的控制面未发 生故障时, 所述第二节点停止向所述第一节点发送刷新信息的技术问题, 进 而有效避免了所述第一节点的老化。 所述分析模块 10, 还可设置为在侦测并接收到所述第一节点发送来的第 一交互信息不包含所述特定标识时, 分析在第一预设时间内是否接收到所述 第一节点发送来的预设类型交互信息;
所述第二发送模块 60, 还可设置为在第一预设时间内未接收到所述第一 节点发送来的预设类型交互信息时, 确定所述第一节点的控制面发生故障, 停止向所述第一节点发送刷新信息。
在本实施例中, 所述第二节点在侦测并接收到所述第一节点发送来的第 一交互信息不包含所述特定标识时, 即,在所述第一节点未退出 Hello检测功 能时, 所述第二节点分析在第一预设时间内是否侦测并接收到所述第一节点 发送来的预设类型交互信息, 即, 所述第二节点分析在第一预设时间内是否 接收到所述第一节点发送来的控制面状态的信息。 所述预设类型交互信息对 应为控制面状态的内容, 控制面状态的内容包括控制面重启时间、 控制面恢 复时间等内容, 根据控制面的不同状态而不同; 所述第一预设时间为节点间 发送预设类型交互信息的周期, 可以是 10s、 20s等用户任意设置的合适的时 间间隔。 以所述第一节点为例, 当所述第一节点控制面重启时, 所述第一节 点控制面状态的内容包括恢复时间, 控制面正常运行状态时, 所述第一节点 控制面状态的内容重启时间。 所述第二节点在第一预设时间内未侦测并接收 到所述第一节点发送来的预设类型交互信息时, 确定所述第一节点的控制面 发生故障, 或所述第一节点的控制面处于重启状态, 停止向所述第一节点发 送刷新信息。 所述第一节点在重启控制面之后, 向其相邻的第二节点发送预 设类型交互信息, 以告知与其相邻的第二节点所述第一节点的控制面状态信 息, 并通过所述第二节点恢复第一节点的控制面信息。
本发明实施例还提出一种防止节点老化的系统, 该系统包括多个节点, 且该系统中的节点包括上述实施例中的防止节点老化的装置。 例如, 该系统 包括两个节点: 第一节点和第二节点, 所述第一节点和所述第二节点均包括: 分析模块 10、 添加模块 20、 第一发送模块 30、 接收模块 40、 确定模块 50及 第二发送模块 60。 各个模块的功能见上述防止节点老化的装置的具体描述, 在此不再赘述。
本发明实施例还提出一种计算机程序, 包括程序指令, 当该程序指令被 防止网络节点老化的装置执行时, 使得该装置可执行上面所述的方法。
本发明实施例还提出一种载有上述计算机程序的载体。 上述本发明实施例序号仅仅为了描述, 不代表实施例的优劣。 通过以上 的实施方式的描述, 本领域的技术人员可以清楚地了解到上述实施例方法可 借助软件加必需的通用硬件平台的方式来实现, 当然也可以通过硬件, 但很 多情况下前者是更佳的实施方式。 基于这样的理解, 本发明的技术方案本质 上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来, 该计 算机软件产品存储在一个存储介质 (如 ROM/RAM、 磁碟、 光盘) 中, 包括 若干指令用以使得一台终端设备(可以是手机, 计算机, 服务器, 或者网络 设备等)执行本发明各个实施例所述的方法。 以上所述仅为本发明的优选实施例, 并非因此限制本发明的专利范围, 凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换, 或直接 或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
工业实用性
通过本发明实施例以防止第一节点未发生故障但退出了 Hello检测功能 的情况下开启重启定时器, 停止向所述第一节点发送刷新信息, 进而避免所 述第一节点的老化。

Claims

权 利 要 求 书
1、 一种防止网络节点老化的方法, 该方法包括:
分析第一节点的控制面是否是因为发生了故障而退出了 Hello检测功能; 在所述第一节点的控制面未发生故障但退出了 Hello检测功能的情况下, 添加特定标识至第一交互信息中, 其中, 所述特定标识用于指示控制面未发 生故障但退出了 Hello检测功能的状态;
将所述第一交互信息发送至与所述第一节点相邻的第二节点, 以供所述 第二节点通过所述特定标识确定所述第一节点的控制面未发生故障但退出了
Hello检测功能, 并继续向所述第一节点发送刷新信息。
2、 如权利要求 1所述的防止网络节点老化的方法, 该方法还包括: 接收来自第三节点的、 包含所述特定标识的第二交互信息;
根据所述第二交互信息 , 确定所述第三节点的控制面未发生故障但退出 了 Hello检测功能;
继续向所述第三节点发送刷新信息。
3、 如权利要求 1所述的防止网络节点老化的方法, 其中, 所述在将所述 第一交互信息发送至与所述第一节点相邻的第二节点的步骤之后, 该方法还 包括:
接收包含所述特定标识的所述第一交互信息;
根据所述第一交互信息 , 确定所述第一节点的控制面未发生故障但退出 了 Hello检测功能;
继续向所述第一节点发送刷新信息。
4、 如权利要求 1所述的防止网络节点老化的方法, 该方法还包括: 在侦测并接收到的所述第一交互信息不包含特定标识时, 分析在第一预 设时间内是否接收到来自所述第一节点的预设类型交互信息;
在第一预设时间内未接收到来自所述第一节点的预设类型交互信息时, 确定所述第一节点的控制面发生故障, 停止向所述第一节点发送刷新信息。
5、 如权利要求 4所述的防止网络节点老化的方法, 其中于, 所述确定所 述第一节点的控制面发生故障, 停止向所述第一节点发送刷新信息的步骤之 后, 该方法还包括步骤:
在侦测并接收到来自所述第一节点的预设类型交互信息时, 恢复向所述 第一节点发送刷新信息。
6、 如权利要求 1所述的防止网络节点老化的方法, 其中, 所述确定所述 第一节点的控制面未发生故障但退出了 Hello检测功能,继续向所述第一节点 发送刷新信息的步骤包括:
确定所述特定标识是否对应为所述第一节点将在第二预设时间到达时停 止发送预设类型交互信息的内容;
确定所述特定标识对应为所述第一节点将在第二预设时间到达时停止发 送预设类型交互信息的内容, 在第二预设时间到达时, 确定所述第一节点的 控制面未发生故障但退出了 Hello检测功能,继续向所述第一节点发送刷新信 息。
7、 如权利要求 6所述的防止网络节点老化的方法, 其中, 所述确定所述 特定标识是否对应为所述第一节点将在第二预设时间到达时停止发送预设类 型交互信息的内容的步骤之后, 该方法还包括步骤:
在确定所述特定标识对应为所述第一节点已经停止发送预设类型交互信 息的内容, 确定所述第一节点的控制面未发生故障但退出了 Hello检测功能, 继续向所述第一节点发送刷新信息。
8、 一种防止网络节点老化的装置, 该装置包括:
分析模块, 其设置为分析第一节点的控制面是否是因为发生了故障而退 出了 Hello检测功能;
添加模块,其设置为:在所述第一节点未发生故障但退出了 Hello检测功 能的情况下, 添加特定标识至第一交互信息中, 其中, 所述特定标识用于指 示控制面未发生故障但退出了 Hello检测功能的状态; 以及 第一发送模块, 其设置为: 将所述第一交互信息发送至与所述第一节点 相邻的第二节点, 以供第二节点通过所述特定标识确定所述第一节点的控制 面未发生故障但退出了 Hello检测功能, 并继续向所述第一节点发送刷新信 息。
9、 如权利要求 8所述的防止网络节点老化的装置, 该装置还包括: 接收模块, 其设置为接收来自第三节点的、 包含所述特定标识的第二交 互信息;
确定模块, 其设置为根据所述第二交互信息, 确定所述第三节点的控制 面未发生故障但退出了 Hello检测功能; 以及
第二发送模块, 其设置为继续向所述第三节点发送刷新信息。
10、 一种防止网络节点老化的系统, 该系统包括: 至少两个节点, 该系 统的节点包括如权利要求 8- 10任一项所述的防止网络节点老化的装置。
11、 一种计算机程序, 包括程序指令, 当该程序指令被防止网络节点老 化的装置执行时, 使得该装置可执行权利要求 1-7任一项所述的方法。
12、 一种载有权利要求 11所述计算机程序的载体。
PCT/CN2014/084377 2014-04-09 2014-08-14 防止网络节点老化的方法、装置及系统 WO2015154357A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14888669.0A EP3131233A4 (en) 2014-04-09 2014-08-14 Method, device and system for preventing network node ageing
US15/303,363 US10153947B2 (en) 2014-04-09 2014-08-14 Method, device and system for preventing network node aging

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410140723.1A CN104980295A (zh) 2014-04-09 2014-04-09 防止网络节点老化的方法、装置及系统
CN201410140723.1 2014-04-09

Publications (1)

Publication Number Publication Date
WO2015154357A1 true WO2015154357A1 (zh) 2015-10-15

Family

ID=54276427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/084377 WO2015154357A1 (zh) 2014-04-09 2014-08-14 防止网络节点老化的方法、装置及系统

Country Status (4)

Country Link
US (1) US10153947B2 (zh)
EP (1) EP3131233A4 (zh)
CN (1) CN104980295A (zh)
WO (1) WO2015154357A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108234184B (zh) 2016-12-22 2021-01-15 上海诺基亚贝尔股份有限公司 用于管理用户信息的方法和设备
CN109639800B (zh) * 2018-12-14 2022-03-22 深信服科技股份有限公司 一种tcp连接处理方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101094186A (zh) * 2007-07-30 2007-12-26 杭州华三通信技术有限公司 一种保持邻居关系的方法和接口板
CN101420378A (zh) * 2008-11-24 2009-04-29 华为技术有限公司 资源预留协议流量工程下优雅重启的实现装置及方法
CN101741738A (zh) * 2009-12-15 2010-06-16 中兴通讯股份有限公司 一种链路状态路由协议的平滑重启实现方法和装置
WO2014018293A1 (en) * 2012-07-27 2014-01-30 Alcatel-Lucent Usa Inc. System, method and apparatus for signaling and responding to ero expansion failure in inter domain te lsp

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1801802B (zh) * 2004-12-31 2010-06-02 华为技术有限公司 通用多协议标签交换路径上节点重启恢复的方法
US7881183B2 (en) * 2005-09-08 2011-02-01 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Industry, Through The Communications Research Centre Canada Recovery from control plane failures in the LDP signalling protocol
US8170189B2 (en) * 2005-11-02 2012-05-01 Qwest Communications International Inc. Cross-platform message notification
CN101087221B (zh) * 2006-06-07 2010-12-08 华为技术有限公司 资源预留协议节点及其交互方法
CN101087207B (zh) * 2006-06-09 2010-05-12 华为技术有限公司 一种多节点通信故障的处理方法
CN101459549B (zh) * 2007-12-14 2011-09-21 华为技术有限公司 链路故障处理方法及数据转发装置
US8499071B2 (en) * 2009-05-01 2013-07-30 Ncr Corporation Application monitoring
US8966318B1 (en) * 2012-04-27 2015-02-24 Symantec Corporation Method to validate availability of applications within a backup image
WO2014084377A1 (ja) 2012-11-29 2014-06-05 株式会社 東芝 血流機能検査装置、及び、x線診断装置
US9436813B2 (en) * 2014-02-03 2016-09-06 Ca, Inc. Multi-tenancy support for a product that does not support multi-tenancy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101094186A (zh) * 2007-07-30 2007-12-26 杭州华三通信技术有限公司 一种保持邻居关系的方法和接口板
CN101420378A (zh) * 2008-11-24 2009-04-29 华为技术有限公司 资源预留协议流量工程下优雅重启的实现装置及方法
CN101741738A (zh) * 2009-12-15 2010-06-16 中兴通讯股份有限公司 一种链路状态路由协议的平滑重启实现方法和装置
WO2014018293A1 (en) * 2012-07-27 2014-01-30 Alcatel-Lucent Usa Inc. System, method and apparatus for signaling and responding to ero expansion failure in inter domain te lsp

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3131233A4 *

Also Published As

Publication number Publication date
US10153947B2 (en) 2018-12-11
CN104980295A (zh) 2015-10-14
US20170041196A1 (en) 2017-02-09
EP3131233A4 (en) 2017-11-22
EP3131233A1 (en) 2017-02-15

Similar Documents

Publication Publication Date Title
JP5508289B2 (ja) 多重リンク障害からのネットワーク回復システム及び方法
US20120275456A1 (en) Expedited graceful ospf restart
US8659993B2 (en) Priority domains for protection switching processes
WO2008131624A1 (fr) Système ethernet réparti et son utilisation pour détection de dysfonctionnement
WO2008055436A1 (fr) Procédé de commande d&#39;état de redémarrage progressif et de routeur
WO2008077300A1 (fr) Procédé et système permettant de négocier le discriminateur de session de détection de transmission bidirectionnelle d&#39;un pseudo-fil
WO2011057540A1 (zh) 一种环网拓扑信息的更新方法、装置和系统
WO2017054547A1 (zh) 双向转发检测的方法和装置
TWI492575B (zh) 快速標籤交換路徑警示機制
WO2011157149A2 (zh) 通信设备间的主备倒换方法、通信设备和系统及服务请求设备
WO2014000643A1 (zh) 三层虚拟专用网的性能检测方法、节点和系统
CN111010319B (zh) 基于vsf的链路检测方法及装置
WO2006102851A1 (fr) Procede d&#39;information et de negociation de l&#39;aptitude a surveiller propre a la commutation de label
US20080267080A1 (en) Fault Verification for an Unpaired Unidirectional Switched-Path
CN110224886B (zh) 隧道连通性检测方法、装置及网络边缘设备
WO2015154357A1 (zh) 防止网络节点老化的方法、装置及系统
WO2021143524A1 (zh) 一种故障检测方法及设备
WO2016169214A1 (zh) 一种隧道保护切换的方法和装置
WO2009046652A1 (fr) Procédé de détection d&#39;état de liaison et dispositif de réseau
WO2012097571A1 (zh) 恢复环网业务的方法及节点设备
JP5301014B2 (ja) ノード、制御装置及び通信システム
WO2015042840A1 (zh) 一种故障恢复的方法、节点和路径计算单元
EP2804352A1 (en) Method and apparatus for processing residual information
WO2017206607A1 (zh) 一种指定路由器选举方法、装置、路由器及通信系统
WO2016134582A1 (zh) 一种实现rsvp-te协议报文处理的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14888669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15303363

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014888669

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014888669

Country of ref document: EP