WO2015152694A1 - Liquid crystal element - Google Patents

Liquid crystal element Download PDF

Info

Publication number
WO2015152694A1
WO2015152694A1 PCT/KR2015/003409 KR2015003409W WO2015152694A1 WO 2015152694 A1 WO2015152694 A1 WO 2015152694A1 KR 2015003409 W KR2015003409 W KR 2015003409W WO 2015152694 A1 WO2015152694 A1 WO 2015152694A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
mold layer
compound
layer
Prior art date
Application number
PCT/KR2015/003409
Other languages
French (fr)
Korean (ko)
Inventor
김진홍
김정운
오동현
유정선
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2016557011A priority Critical patent/JP6384011B2/en
Priority to US15/126,514 priority patent/US10196550B2/en
Priority claimed from KR1020150048241A external-priority patent/KR101732789B1/en
Publication of WO2015152694A1 publication Critical patent/WO2015152694A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133377Cells with plural compartments or having plurality of liquid crystal microcells partitioned by walls, e.g. one microcell per pixel

Definitions

  • the present application relates to a liquid crystal device and the use of the liquid crystal device.
  • LCD Liquid Crystal Display
  • the manufacturing process of LCD is an expensive process requiring a complicated process, and requires a large production line and equipment.
  • PDLC Polymer Dispersed Liquid Crystal
  • PNLC Polymer Network Liquid Crystal
  • PSLC Polymer Stabilized Liquid Crystal
  • a liquid crystal compound is usually present in an unaligned state in a PDLC.
  • PDLC is a cloudy opaque state when no voltage is applied, and this state is called a scattering mode.
  • the liquid crystal compounds are aligned accordingly, thereby making it possible to switch between the transmission mode and the scattering mode.
  • the PDCL mode which initially shows the scattering state shows the scattering state before the voltage is applied
  • the PDCL mode requires a voltage to be always applied to the cell in order to maintain the transparent state.
  • the present application provides a liquid crystal device and the use of the liquid crystal device.
  • An exemplary liquid crystal element of the present application includes a first substrate having a mold layer formed thereon and a second substrate having a resin layer formed thereon.
  • the mold layer may have a convex portion and a concave portion.
  • the second substrate may be disposed such that the resin layer is in contact with the convex portion of the mold layer.
  • the resin layer may have surface properties that can induce vertical alignment with respect to the liquid crystal compound.
  • the liquid crystal element may also include a liquid crystal compound present in the recessed portion of the mold layer.
  • FIG. 1 is a schematic view of an exemplary liquid crystal device of the present application.
  • a first substrate 102 having a mold layer 101 having convex portions 1011 and a concave portion 1012 formed thereon, and a resin layer 103 formed thereon
  • the resin layer includes a second substrate 104 disposed in contact with the convex portion 1011 of the mold layer and a liquid crystal compound 105 present in the concave portion 1012 of the mold layer.
  • the liquid crystal compound may be included in the liquid crystal element in a state in which the liquid crystal compound is separated by the partition formed on the recess of the mold layer and one surface of the resin layer.
  • the mold layer may comprise a crosslinkable or polymerizable compound.
  • the polymerizable or crosslinkable compound may mean a compound having a polymerizable or crosslinkable functional group.
  • the mold layer may include, for example, a crosslinkable or polymerizable compound in a crosslinked or polymerized state.
  • the polymerizable or crosslinkable functional group may include, for example, an alkenyl group, an epoxy group, a cyano group, a carboxyl group, a (meth) acryloyl group, or a (meth) acryloyloxy group, but is not limited thereto. no.
  • the mold layer contains a crosslinkable or polymerizable material, excellent adhesion to the resin layer can be exhibited.
  • an acrylate compound may be used as the crosslinkable or polymerizable compound.
  • the acrylate compound means a compound containing an acryloyl group or a methacryloyl group as a functional group, and the compound containing one functional group is a monofunctional acrylate compound, and the compound containing two or more is multifunctional It may be foiled with an acrylate compound.
  • the compound containing two functional groups below is referred to as a bifunctional acrylate compound, and the trifunctional or higher functional group, that is, the acrylate compound including three or more functional groups, is simply referred to as a polyfunctional acrylate compound.
  • the multifunctional acrylate compound may include, for example, 3 to 8, 3 to 7, 3 to 6, 3 to 5 or 3 to 4 functional groups.
  • the compound represented by following formula (1) can be used as a monofunctional acrylate compound.
  • R is hydrogen or an alkyl group having 1 to 4 carbon atoms
  • X is an alkyl group having 1 to 20 carbon atoms.
  • each R is independently hydrogen or an alkyl group having 1 to 4 carbon atoms
  • X is an alkylene group or alkylidene group having 1 to 20 carbon atoms.
  • a compound represented by the following formula (3) may be used as the polyfunctional acrylate compound.
  • N is a number of 3 or more
  • m is a number of 0 to 5
  • each R is independently hydrogen or an alkyl group having 1 to 4 carbon atoms
  • X is a (m + n) valent radical
  • Y is hydrogen or an alkyl group to be.
  • Examples of the alkyl group which may be present in R or Y in Formulas 1 to 3 include a methyl group or an ethyl group.
  • the alkyl group of X may be, for example, a straight or branched chain alkyl group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 4 to 12 carbon atoms, and 6 to 12 carbon atoms.
  • the alkylene group or alkylidene group of X is, for example, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 10 carbon atoms, 1 to 8 carbon atoms, 2 to 8 carbon atoms or 4 to 8 alkylene groups or alkyl. It may be a leaden group.
  • the alkylene group or alkylidene group may be, for example, linear, branched or cyclic.
  • n in Formula 3 may be any one of 3 or more, 3 to 8, 3 to 7, 3 to 6, 3 to 5, or 3 to 4 in the range.
  • m in Formula 2 may be any number in the range of 0 to 5, 0 to 4, 0 to 3, 0 to 2 or 0 to 1.
  • X in formula (3) is a (m + n) valent radical, for example, a hydrocarbon having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms or 2 to 6 carbon atoms, for example
  • (m + n) derived from straight or branched alkanes may be a radical.
  • Substituents defined in Chemical Formulas 1 to 3, for example, an alkyl group, an alkylene group, an alkylidene group or a (m + n) radical, etc., may be substituted by one or more substituents, if necessary.
  • an alkyl group, an alkoxy group, an epoxy group, an oxo group, an oxetanyl group, a thiol group, a cyano group, a carboxyl group, or an aryl group may be exemplified, but is not limited thereto.
  • the mold layer may include a curable compound.
  • the curable compound may mean a compound having a curable functional group.
  • the mold layer may include, for example, a curable compound in a cured state.
  • the kind of curable compound is not particularly limited, and may be appropriately selected within a range that does not impair the object of the present application, and for example, a heat curable compound or a photocurable compound may be used.
  • the mold layer may include a curable silicone compound in terms of effectively inducing vertical alignment with respect to the liquid crystal compound present in the concave portion. Specific details of the curable silicone compound may be equally applicable to the contents described in the following resin layer section.
  • the mold layer may exhibit the following surface properties in terms of effectively inducing the vertical alignment of the liquid crystal compound present in the recess.
  • the surface properties of the mold layer may be changed depending on, for example, the shape of the concave and convex portions of the mold layer, and the surface properties of the mold layer described below may be a mold in a flat state before forming the concave and convex portions in the mold layer. Surface properties for the layer.
  • the mold layer may satisfy the conditions of the following general formula (1), for example.
  • X represents the AFM Z scale surface roughness of the mold layer
  • Y represents the surface polarity of the mold layer.
  • the mold layer can induce better vertical alignment with respect to the liquid crystal compound in a state in which no external alignment force is applied to the liquid crystal device.
  • the surface energy of the mold layer is, for example, 5 mN / m to 100 mN / m, 8 mN / m to 80 mN / m, 10 mN / m to 50 mN / m or 12 mN / m to 30 mN / m Can be.
  • the polarity of the mold layer may be in the range of 0 to 0.5 or 0 to 0.4, for example.
  • the AFM Z scale surface roughness of the mold layer may be, for example, in the range of 0.1 nm to 50 nm, 0.2 nm to 30 nm, 0.3 nm to 10 nm or 0.4 nm to 8 nm.
  • the mold layer may effectively induce the vertical alignment of the liquid crystal compound present in the recess.
  • the surface properties of the mold layer are not limited to the above, and may be appropriately changed depending on the degree of vertical alignment of the desired liquid crystal.
  • surface energy is a value measured by a known surface energy measurement method, and may be, for example, a value measured by Owens-Wendt method through a static contact angle measurement.
  • Surface energy is about 50 nm thick and 4 cm 2 coating area (width: 2 cm, length: 2 cm) of the coating liquid diluted to about 2 wt% solids concentration in fluorobenzene.
  • the average value of the five contact angle values obtained is obtained by dropping the deionized water having a known surface tension on the thermally matured film and determining the contact angle five times. The procedure of dropping the known diiodomethane and determining the contact angle is repeated five times, and the average value of the five contact angle values obtained is obtained. Subsequently, the surface energy can be obtained by substituting the numerical value (Strom value) of the surface tension of the solvent by Owens-Wendt-Rabel-Kaelble method using the average value of the contact angles with respect to the deionized water and diiomethane obtained.
  • surface roughness is a value measured by a well-known average surface roughness measuring method, For example, it may be a value measured using the Bruker Multimode AFM apparatus.
  • the method for adjusting the surface properties of the mold layer as described above is not particularly limited.
  • a material of the mold layer a material capable of exhibiting the surface properties is selected, an additive that can exhibit the surface properties is added to the mold layer, or the manufacturing process is controlled such that the mold layer exhibits the surface properties.
  • the curable silicone compound may be selected as the material of the mold layer, an additive capable of inducing vertical orientation to the mold layer, or a corona treatment may be performed on the mold layer. Corona treatment conditions and methods are not particularly limited and may be appropriately adjusted in consideration of the surface properties of the desired mold layer.
  • the mold layer may include a vertically oriented polymer as an additive capable of inducing vertical alignment.
  • a vertically oriented polymer for example, a polymer of a polymerization unit containing at least 4 carbon atoms, at least 5, at least 6, at least 7, at least 8, at least 9, or at least 10 straight hydrocarbon groups can be used.
  • hydrocarbon group means an organic compound composed of carbon and hydrogen, and unless otherwise specified, may mean an alkyl group, an alkenyl group, an alkynyl group, or an aryl group.
  • the "linear hydrocarbon group” may mean a hydrocarbon group having a structure in which several atoms are extended in a row.
  • the upper limit of the carbon number of the straight chain hydrocarbon group is not particularly limited, but for example, it may mean a straight chain hydrocarbon group having 24 or less, 22 or less, 20 or less, 18 or less or 16 or less carbon atoms.
  • a vertically oriented polymer for example, a polymer containing chlorine (Cl) fluorine (F) or silicon (Si), more specifically, a chlorine (Cl), fluorine (F) or silicon (Si) substituted hydrocarbon Polymers of polymerized units containing groups can be used.
  • hydrocarbon group for example, an alkyl group having 1 carbon atom, an alkyl group having 2 or more carbon atoms, an alkenyl group or an alkynyl group, a cycloalkyl group having 3 or more carbon atoms, or an aryl group having 6 or more carbon atoms may be exemplified.
  • the mold layer may include a vertically oriented polymer including polymerized units derived from the compound of Formula 4 below.
  • R 1 to R 9 are each independently hydrogen, an alkyl group, an alkenyl group, an alkynyl group, or an alkoxy group, and A represents a single bond, an alkylene group, or an alkylidene group.
  • R 5 to R 9 is a halogen element may be excluded, and an alkyl group, alkenyl group, alkynyl group or alkoxy group substituted with halogen may be excluded.
  • single bond means a case where no separate atom is present in a portion represented by A.
  • A when A is a single bond, a structure in which benzene and oxygen are directly connected to both sides of A may be formed.
  • the vertically oriented polymer may include, but is not limited to, a polymerized unit derived from the compound represented by Formula 5 below.
  • R 10 may represent hydrogen, an alkyl group, an alkenyl group, an alkynyl group, or an aryl group.
  • the vertically oriented polymer may include, but is not limited to, polymerized units derived from the compound represented by Chemical Formula 6.
  • R 11 to R 16 each independently represent a hydrogen, an alkyl group an alkenyl group, an alkynyl group or an alkoxy group or provided that -OQP, R 11 to R 16 is at least one of the at least one of R 11 to R 16 or either -OQP
  • R 11 to R 16 is at least one of the at least one of R 11 to R 16 or either -OQP
  • One is a halogen substituted alkyl group, a halogen substituted alkenyl group, a halogen substituted alkynyl group or a halogen substituted alkoxy group.
  • Q is an alkylene group or an alkylidene group
  • P is an acryloyl group, methacryloyl group, acryloyloxy group or methacryloyloxy group.
  • the content of the vertically oriented polymer in the mold layer may be appropriately selected within a range that does not impair the purpose of the present application.
  • the solids content of the vertically oriented polymer in the mold layer may be in the range of 0.5% to 4.5%, 1% to 4%, 1.5% to 3.5% or 2% to 3.2% by weight. have.
  • the solid content means a solid content at the time when the polymer is manufactured in the form of a coating solution or the like and applied to a mold layer manufacturing process.
  • the mold layer can effectively implement the above-described vertical alignment characteristics.
  • the mold layer may be a radical or cationic initiator that can induce crosslinking or polymerization of a solvent, the crosslinkable or polymerizable compound, a basic substance, other reactives that can form crosslinking or polymerization, if necessary in addition to the aforementioned compounds. It may be formed from a precursor further comprising an additive such as a compound or a surfactant.
  • the mold layer may contain a liquid crystal compound, for example, a reactive liquid crystal compound. Even in this case, the ratio of the liquid crystal compound is appropriately adjusted in small amounts.
  • the absolute value of the birefringence of the mold layer may be 30 nm or less or 20 nm or less. That is, the mold layer may be an isotropic mold layer or a mold layer having birefringence within the above range. Therefore, even when the liquid crystal compound is included, it is preferable that the mold layer is included in a range capable of exhibiting the above-mentioned birefringence.
  • the birefringence may mean, for example, a plane phase difference calculated by Equation 1 below, or a phase difference in a thickness direction calculated by Equation 2 below.
  • Rin d ⁇ (nx-ny)
  • Rin is a retardation in phase
  • Rth is a retardation in thickness direction
  • d is a thickness of the mold layer
  • nx is a refractive index in the slow axis direction on the surface of the mold layer
  • ny is a fast axis direction on the surface of the mold layer. Is the refractive index of nz
  • nz is the refractive index in the thickness direction of the mold layer.
  • the spacing, width and thickness of the concave portion of the mold layer may be appropriately adjusted in consideration of the region in which the liquid crystal compound is contained within a range not impairing the object of the present application.
  • the spacing of the recesses may be in the range of 100 to 400 ⁇ m or 100 to 300 ⁇ m
  • the width may be in the range of 10 to 40 ⁇ m or 10 to 30 ⁇ m
  • the height may be 10 to 30 ⁇ m or 10 to 20 ⁇ m. It may be within the scope of, but is not limited thereto.
  • the liquid crystal compound may be present in the recess of the mold layer.
  • the liquid crystal compound various kinds can be used without particular limitation as long as the orientation is switchable and the light modulation characteristics of the liquid crystal device can be adjusted.
  • the switchable orientation may mean that the alignment direction of the liquid crystal compound may be changed by an external action such as application of a voltage.
  • the liquid crystal compound for example, when the alignment is regularly aligned in a predetermined direction, the liquid crystal compound may act in a transmission mode or a mode showing an appropriate phase difference according to the alignment direction, and the alignment is not regularly aligned in the predetermined direction. If it is randomly disposed without using a compound that can induce light scattering through the action with the mold layer.
  • liquid crystal compound a smectic liquid crystal compound, a nematic liquid crystal compound, a cholesteric liquid crystal compound, etc.
  • the liquid crystal compound is not bonded to the mold layer, and may have a form in which an orientation may be changed under an external action such as a voltage from the outside.
  • the liquid crystal compound may be a compound having no polymerizable group or crosslinkable group. If necessary, the liquid crystal compound may be present in the recess with a small amount of crosslinkable or polymerizable compound for proper adhesion with the resin layer.
  • the type of crosslinkable or polymerizable compound may be the same as described in the section of the mold layer.
  • the content ratio of the crosslinkable or polymerizable compound may be appropriately selected within a range that does not impair the purpose of the present application.
  • the crosslinkable or polymerizable compound may be included in, for example, 10 parts by weight to 15 parts by weight with respect to 100 parts by weight of the liquid crystal compound, but is not limited thereto.
  • the liquid crystal compound present in the concave portion of the mold layer may be present in an oriented state in an external non-applied state.
  • the alignment direction of the liquid crystal compound present in the aligned state may be changed by external action.
  • "external action” means all kinds of actions performed to change the orientation or alignment of the liquid crystal compound, and a representative example is application of voltage.
  • an "initial orientation” may mean the orientation or alignment direction of the liquid crystal compound in the state without the external action or the optical axis formed in the liquid crystal compound.
  • the alignment direction of the liquid crystal compound in the initial alignment state may be converted by an external action, and when the external action disappears, the liquid crystal compound may return to the initial alignment state.
  • the liquid crystal compound present in the concave portion of the mold layer may be present in the vertically aligned state from the initial state.
  • the vertically oriented state is that the optical axis of the liquid crystal layer including the liquid crystal compound is about 90 degrees to about 65 degrees, about 90 degrees to about 75 degrees, about 90 degrees to about 80 degrees, about 90 with respect to the plane of the liquid crystal layer. It may mean a case having an inclination angle of about 90 degrees to about 85 degrees.
  • the term “optical axis” may mean an axis in the long axis direction of the liquid crystal compound when the liquid crystal compound has a rod shape, and may mean an axis in the normal direction of the plane when the liquid crystal compound has a discotic shape.
  • the initial vertical alignment state of the liquid crystal compound can be changed by external action, for example, application of an external voltage. Accordingly, the liquid crystal device maintains the transparent mode in the initial state, and can be switched to various modes other than the transparent mode by external action.
  • the liquid crystal device may be implemented as a device capable of mutual switching between a transparent mode and a scattering mode.
  • the liquid crystal device of the present application since the liquid crystal compounds are vertically arranged in a state in which there is no external action (that is, an initial state or a normal state), a transmission mode is realized, and the liquid crystal compounds are scattered while being arranged in a disordered direction under the external action. It may be a device which is switched to the mode and which is switched back to the transmission mode when the external action is removed (such a device may be referred to as a device of the normal transmission mode for convenience).
  • the phase difference Rc of the liquid crystal element may be appropriately determined depending on the mode or structure to be implemented.
  • the area of the liquid crystal compound may have a planar phase difference of 30 nm or less in an initial state and a thickness direction phase difference of 500 nm or more. This range of phase difference is suitable, for example, for implementing a device in normal transmission mode.
  • the retardation value may be a value measured for light having a wavelength of 550 nm.
  • the resin layer on the top of the second substrate may have surface properties that can induce vertical alignment of the liquid crystal, for example.
  • the resin layer is 45 mN / m or less, 42.5 mN / m or less, 40 mN / m or less, 37.5 mN / m or less, 35 mN / m or less, 32.5 mN / m or less or 30 mN / m or less May have surface energy.
  • the surface energy of a resin layer shows the said range, the vertical orientation with respect to the liquid crystal compound which exists in the recessed part of a mold layer can be effectively induced.
  • the lower limit of the surface energy of the resin layer is not particularly limited, but for example, more than 0 mN / m, 1 mN / m or more, 2 mN / m or more, 3 mN / m or more, 4 mN / m or more, or 5 mN / m It may be abnormal.
  • the resin layer may also exhibit an AFM Z scale surface roughness in the range of, for example, 2 nm or less, 1.9 nm or less, 1.8 nm or less, 1.7 nm or less, 1.6 nm or less, or 1.5 nm or less.
  • the lower limit of the AFM Z scale surface roughness of the resin layer is not particularly limited, but may be, for example, greater than 0 nm, 0.1 nm or more, 0.2 nm or more, 0.3 nm or more, or 0.4 nm or more.
  • the resin layer may also satisfy the conditions of the following Formula 1, but is not limited thereto.
  • X represents the AFM Z scale surface roughness of the resin layer
  • Y represents the surface polarity of the resin layer.
  • the surface polarity of the resin layer may be, for example, in the range of 0 to 0.5 or 0 to 0.4, but is not limited thereto.
  • the method of measuring the surface energy, surface roughness, and surface polarity of a resin layer can apply the same content of the measuring method described in the item of a mold layer.
  • the method for adjusting the surface properties of the resin layer as described above is not particularly limited.
  • a material capable of exhibiting the surface properties is selected, an additive capable of exhibiting the surface properties is added to the resin layer, or the manufacturing process is controlled such that the resin layer exhibits the surface properties.
  • the curable silicone compound may be selected as the material of the resin layer, an additive capable of inducing vertical alignment may be added to the resin layer, or a corona treatment may be performed on the mold layer. Corona treatment conditions and methods are not particularly limited and may be appropriately adjusted in consideration of the surface properties of the desired resin layer.
  • the content described in the item of the mold layer may be equally applied to the additive capable of inducing vertical alignment.
  • the resin layer may include a curable compound.
  • the resin layer may contain, for example, a curable compound in a cured state.
  • the curable compound for example, as one specific example, the resin layer may include a curable silicone compound in terms of effectively inducing vertical alignment of the liquid crystal.
  • the resin layer may include the curable silicone compound alone or may further include the crosslinkable or polymerizable compound described in the section of the mold layer.
  • a heat curable silicone compound or an ultraviolet curable silicone compound can be used.
  • a curable silicone compound is demonstrated concretely.
  • the curable silicone compound is an addition-curable silicone compound, which comprises (1) an organopolysiloxane containing two or more alkenyl groups in a molecule and (2) contains two or more silicon-bonded hydrogen atoms in a molecule Organopolysiloxanes.
  • an addition-curable silicone compound which comprises (1) an organopolysiloxane containing two or more alkenyl groups in a molecule and (2) contains two or more silicon-bonded hydrogen atoms in a molecule Organopolysiloxanes.
  • a silicone compound can form hardened
  • the silicone cured product contains at least two alkenyl groups in one molecule.
  • specific examples of the alkenyl group include a vinyl group, allyl group, butenyl group, pentenyl group, hexenyl group, or heptenyl group, and the like, but a vinyl group is preferable, but is not limited thereto.
  • the bonding position of the above-mentioned alkenyl group is not specifically limited.
  • the alkenyl group may be bonded to the terminal of the molecular chain and / or the side chain of the molecular chain.
  • examples of the substituent which may be included in addition to the alkenyl described above include alkyl groups such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group or heptyl group; Aryl groups such as phenyl group, tolyl group, xylyl group or naphthyl group; Aralkyl groups such as benzyl or phenentyl; Halogen-substituted alkyl groups such as chloromethyl group, 3-chloropropyl group or 3,3,3-trifluoropropyl group, and the like, and the like, and a methyl group or a phenyl group is preferable, but is not limited thereto.
  • the molecular structure of the organopolysiloxane as described above (1) is not particularly limited, and may have any shape such as, for example, linear, branched, cyclic, networked, or linear form partly branched. have. In the present invention, it is preferable to have a linear molecular structure among the above molecular structures, but is not limited thereto. On the other hand, in the present invention, it is preferable to use an organopolysiloxane containing an aromatic group such as an aryl group or an aralkyl group in the molecular structure as the (1) organopolysiloxane in view of the hardness and the refractive index of the cured product. However, it is not necessarily limited thereto.
  • R 1 is a hydrocarbon group other than an alkenyl group, and specifically, an alkyl group such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group or heptyl group; Aryl groups such as phenyl group, tolyl group, xylyl group or naphthyl group; Aralkyl groups such as benzyl or phenentyl; Halogen substituted alkyl groups such as chloromethyl group, 3-chloropropyl group or 3,3,3-trifluoropropyl group.
  • R 2 is an alkenyl group, and specifically, may be a vinyl group, allyl group, butenyl group, pentenyl group, hexenyl group, or heptenyl group.
  • the (1) organopolysiloxane may have a viscosity at 25 °C 50 to 500,000 CP (centipoise), preferably 400 to 100,000 CP.
  • the said viscosity is less than 50 CP, there exists a possibility that the mechanical strength of the hardened
  • the organopolysiloxane may serve to crosslink the (1) organopolysiloxane.
  • the bonding position of the hydrogen atom is not particularly limited, and may be, for example, bonded to the terminal and / or side chain of the molecular chain.
  • the type of substituents that may be included in addition to the silicon-bonded hydrogen atom is not particularly limited, and examples thereof include alkyl groups, aryl groups, and the like mentioned in (1) organopolysiloxanes. Aralkyl groups or halogen-substituted alkyl groups, and the like. Among these, methyl or phenyl groups are preferred, but are not limited thereto.
  • the molecular structure of (2) organopolysiloxane is not specifically limited, For example, it may have any shape, such as a linear form, a branched form, a cyclic form, a network form, or the linear form part partially branched. In the present invention, it is preferable to have a linear molecular structure among the above molecular structures, but is not limited thereto.
  • R 1 is a hydrocarbon group other than an alkenyl group, and specifically, an alkyl group such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group or heptyl group; Aryl groups such as phenyl group, tolyl group, xylyl group or naphthyl group; Aralkyl groups such as benzyl or phenentyl; Halogen substituted alkyl groups such as chloromethyl group, 3-chloropropyl group or 3,3,3-trifluoropropyl group.
  • an alkyl group such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group or heptyl group
  • Aryl groups such as phenyl group, tolyl group, xylyl group or naphthyl group
  • Aralkyl groups such as benzyl or phenentyl
  • the organopolysiloxane may have a viscosity at 25 ° C. of 1 to 500,000 CP (centipoise), preferably 5 to 100,000 CP.
  • 500,000 CP centipoise
  • the said viscosity is less than 1 CP, there exists a possibility that the mechanical strength of the hardened
  • the content of the (2) organopolysiloxane is not particularly limited as long as it is included to the extent that appropriate curing can be achieved.
  • the (2) organopolysiloxane may be included in an amount such that 0.5 to 10 silicon-bonded hydrogen atoms are included with respect to one alkenyl group included in the aforementioned (1) organopolysiloxane. If the number of silicon atom-bonded hydrogen atoms is less than 0.5, the curing of the curable silicone compound may be insufficient, and if more than 10, the heat resistance of the cured product may be lowered.
  • organopolysiloxane containing (2) organopolysiloxane containing an aromatic group such as an aryl group or an aralkyl group in the molecular structure is used. It is preferred, but not necessarily limited thereto.
  • the addition-curable silicone compound may further include platinum or a platinum compound as a catalyst for curing.
  • platinum or a platinum compound include platinum fine powder, platinum black, platinum supported silica fine powder, platinum supported activated carbon, chloroplatinic acid, platinum tetrachloride, alcohol solution of chloroplatinic acid, complex of platinum and olefin, platinum and 1,1, Finely divided thermoplastic resin fine powders (polystyrene resins, nylon resins, polycarbonate resins) having a particle diameter of less than 10 ⁇ m complexes with alkenylsiloxanes such as 3,3-tetramethyl-1,3-divinyldisiloxane, and those platinum or platinum compounds , Silicone resins, etc.), but is not limited thereto.
  • the content of the catalyst described above in the addition-curable silicone compound of the present invention is not particularly limited, and may be included, for example, in an amount of 0.1 to 500 ppm, preferably 1 to 50 ppm, by weight of the total compound.
  • content of the said catalyst is less than 0.1 ppm, there exists a possibility that sclerosis
  • the addition-curable silicone compound is 3-methyl-1-butyn-3-ol, 3,5-dimethyl-1-hexyne- from the viewpoint of improving its storage stability, handleability and workability.
  • Alkyne alcohols such as 3-ol and phenylbutynol; Enyne compounds such as 3-methyl-3-penten-1-yne and 3,5-dimethyl-3-hexen-1-yne; 1,2,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetrahexenylcyclotetrasiloxane And a hardening inhibitor such as benzotriazole.
  • the content of the hardening inhibitor may be appropriately selected from a range that does not impair the object of the invention, for example, it may be included in the range of 10 ppm to 50,000 ppm by weight.
  • the silicone compound is a condensation-curable silicone compound, for example, (a) an alkoxy group-containing siloxane polymer; And (b) hydroxyl group-containing siloxane polymers.
  • the (a) siloxane polymer that can be used in the present invention may be, for example, a compound represented by the following formula (7).
  • R 1 and R 1 each independently represent a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group
  • R 3 represents an alkyl group
  • a and b each independently represent a number greater than 0 and less than 1
  • a + b represents a number greater than 0 and less than 2
  • c represents a number greater than 0 and less than 2
  • d represents a number greater than 0 and less than 4
  • a + b + c ⁇ 2 + d is 4.
  • the siloxane polymer represented by Formula 7 may be 1,000 to 100,000, preferably 1,000 to 80,000, more preferably 1,500 to 70,000, as measured by gel permeation chromatography. . (a) Since the weight average molecular weight of a siloxane polymer exists in the said range, favorable hardened
  • the monovalent hydrocarbon may be, for example, an alkyl group having 1 to 8 carbon atoms, a phenyl group, a benzyl group or a tolyl group, and the like, and as the alkyl group having 1 to 8 carbon atoms, a methyl group, an ethyl group, or a propyl group , Isopropyl group, butyl group, pentyl group, hexyl group, heptyl group or octyl group and the like.
  • the monovalent hydrocarbon group may be substituted with a known substituent such as a halogen, an amino group, a mercapto group, an isocyanate group, a glycidyl group, a glycidoxy group, or a ureido group.
  • a known substituent such as a halogen, an amino group, a mercapto group, an isocyanate group, a glycidyl group, a glycidoxy group, or a ureido group.
  • examples of the alkyl group of R 3 include a methyl group, an ethyl group, a propyl group, an isopropyl group or a butyl group.
  • alkyl groups methyl group or ethyl group is preferred, but is not limited thereto.
  • the hydroxyl group may remain in the range which does not impair the objective of this invention, and specifically in the range which does not inhibit a dealcoholization reaction.
  • Such (a) siloxane polymer can be manufactured by hydrolyzing and condensing a polyfunctional alkoxysilane, a polyfunctional chloro silane, etc., for example.
  • the average person skilled in the art can easily select an appropriate polyfunctional alkoxysilane or chloro silane according to the desired (a) siloxane polymer, and can also easily control the conditions of the hydrolysis and condensation reaction using the same.
  • Examples of the above (a) siloxane polymers include commercially available ores such as X40-9220 or X40-9225 from Shin-Etsu Silicone Co., Ltd., XR31-B1410, XR31-B0270 or XR31-B2733, etc.
  • the organosiloxane polymer can be used.
  • (a) organopolysiloxane containing an aromatic group such as an aryl group or an aralkyl group in the molecular structure is used as the (a) organopolysiloxane. It is preferred, but not necessarily limited thereto.
  • the (b) hydroxyl group-containing siloxane polymer contained in the condensation-curable silicone compound for example, a compound represented by the following formula (8) can be used.
  • R 4 and R 5 each independently represent a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group, and in the case where a plurality of R 5 and R 6 are present, they are the same as or different from each other.
  • N may represent an integer of 5 to 2,000.
  • the siloxane polymer of Chemical Formula 8 may have a polystyrene reduced weight average molecular weight of 500 to 100,000, preferably 1,000 to 80,000, and more preferably 1,500 to 70,000, as measured by gel permeation chromatography. (b) Since the weight average molecular weight of a siloxane polymer exists in the said range, favorable hardened
  • Such (b) siloxane polymer can be manufactured by hydrolyzing and condensing a dialkoxysilane, a dichlorosilane, etc., for example.
  • the average person skilled in the art can easily select an appropriate dialkoxy silane or dichloro silane according to the desired (b) siloxane polymer, and can also easily control the conditions of the hydrolysis and condensation reaction using the same.
  • commercially available bifunctional organosiloxane polymers such as GE Toray Silicone Co., Ltd. XC96-723, YF-3800, YF-3804, etc. can be used.
  • organopolysiloxane containing (1) organopolysiloxane containing an aromatic group such as an aryl group or an aralkyl group in the molecular structure is used. It is preferred, but not necessarily limited thereto.
  • the convex portions of the resin layer and the mold layer may be contacted by adhesive force, or the convex portions of the resin layer and the mold layer may be in contact with each other in a crosslinked state.
  • the convex part of a resin layer and a mold layer can exhibit adhesive force, for example by containing the curable compound mentioned above.
  • the resin layer and the mold layer may be in contact with each other in a crosslinked state through, for example, crosslinking between the polymerizable, crosslinkable or curable functional groups remaining in the mold layer and the resin layer.
  • the resin layer present on the upper portion of the second substrate may exhibit excellent adhesion to the convex portion and the liquid crystal compound of the adjacent mold layer.
  • the 90-degree peeling force between the recess of the resin layer and the mold layer may be, for example, 0.2 N / cm or more, 0.25 or more N / cm, or 0.3 N / cm or more, but is not limited thereto.
  • the type of adhesion of such a resin layer is not particularly limited, and may be appropriately selected according to the intended use. For example, a type of a solid adhesive, a semisolid adhesive, an elastic adhesive, or a liquid adhesive may be appropriately applied.
  • Solid adhesives, semisolid adhesives or elastic adhesives may be referred to as pressure sensitive adhesives (PSAs) and may be cured before bonding objects are bonded.
  • the liquid adhesive may be referred to as so-called optical clear resin (OCR), and may be cured after the bonding object is bonded.
  • OCR optical clear resin
  • a PSA type adhesive having a vertical alignment force a polydimethyl siloxane adhesive or a polymethylvinyl siloxane adhesive may be used, and an OCR having a vertical alignment force may be used.
  • Alkoxy silicone adhesive may be used as the type of adhesive, but is not limited thereto.
  • substrate which form a liquid crystal element are affixed by the suitable adhesive force required for liquid crystal cell formation.
  • a liquid crystal device including a liquid crystal region that is phase separated by polymerization of a polymer should generally have a low polymer content in order to implement a transmission mode. In this case, an adhesive force required for formation of a liquid crystal cell does not occur and liquid crystal flows. There was a problem coming out.
  • the liquid crystal device of the present application since the liquid crystal compound is separated by the recess formed in the mold layer and the partition wall formed by the resin layer, and the first substrate and the second substrate are attached by an appropriate adhesive force, the liquid crystal does not flow out and thus High contrast ratios.
  • the first substrate or the second substrate a known material can be used without particular limitation.
  • inorganic films, plastic films, etc. such as a glass film, a crystalline or amorphous silicon film, a quartz, or an Indium Tin Oxide (ITO) film, can be used.
  • ITO Indium Tin Oxide
  • a base material layer the optically isotropic base material layer and the optically anisotropic base material layer like retardation layer can be used.
  • plastic substrate layer examples include triacetyl cellulose (TAC); COP (cyclo olefin copolymer) such as norbornene derivatives; Poly (methyl methacrylate); PC (polycarbonate); PE (polyethylene); PP (polypropylene); PVA (polyvinyl alcohol); DAC (diacetyl cellulose); Pac (Polyacrylate); PES (poly ether sulfone); PEEK (polyetheretherketon PPS (polyphenylsulfone), PEI (polyetherimide); PEN (polyethylenemaphthatlate); PET (polyethyleneterephtalate); PI (polyimide); PSF (polysulfone); PAR (polyarylate) or amorphous fluorine resin
  • the substrate layer may include a coating layer of a silicon compound such as gold, silver, silicon dioxide or silicon monoxide, or a coating layer such as an antireflection layer, if necessary.
  • the liquid crystal device may also further comprise an electrode layer.
  • the electrode layer may be formed on the surface of the first substrate or the second substrate, for example, the surface of the side surface of the mold layer or the resin layer.
  • the electrode layer may be formed by depositing a conductive polymer, a conductive metal, a conductive nanowire, or a metal oxide such as indium tin oxide (ITO).
  • ITO indium tin oxide
  • the electrode layer can be formed to have transparency. In this field, various materials and forming methods capable of forming a transparent electrode layer are known, and all of these methods can be applied. If necessary, the electrode layer formed on the surface of the base material layer may be suitably patterned.
  • the liquid crystal device can usually implement a transmission mode.
  • a liquid crystal element has a haze of 10% or less, 8% or less, 6% or less, or 5% or less in an initial state, for example.
  • the haze may be a percentage of the transmittance of the diffused light to the transmittance of the total transmitted light passing through the measurement object.
  • the haze can be evaluated using a haze meter (NDH-5000SP). Haze can be evaluated in the following manner using the haze meter. In other words, the light is transmitted through the measurement target and is incident into the integrating sphere.
  • X DT / TT such a liquid crystal device may exhibit excellent transparency in a state in which no external action is applied.
  • the liquid crystal device may exhibit a light transmittance of at least 45%, at least 50%, at least 55%, or at least 60% in an initial state.
  • the light transmittance may be light transmittance for any wavelength in the visible light region, for example, in the range of about 400 nm to 700 nm.
  • the liquid crystal element is also capable of driving through low energy consumption, for example through low driving voltage.
  • the scattering mode may be realized by changing the alignment direction of the liquid crystal compound by applying a voltage.
  • the liquid crystal device of the present application may lower the driving voltage required in this process. It works.
  • RM reactive mesogen
  • a liquid crystal In general, in the case of implementing a transmissive mode device, RM (reactive mesogen) and a liquid crystal are used together. In this case, an anchoring with the liquid crystal is increased due to a system in which the RM is cured, thereby increasing driving voltage. have.
  • the liquid crystal device of the present application injects a liquid crystal or a liquid crystal and a small amount of a crosslinkable compound into the concave portion of the mold layer without using the RM, the driving voltage is only affected since the device is influenced only by an externally applied electric field. It has the advantage of being significantly lower.
  • the liquid crystal element can also exhibit excellent contrast ratio.
  • the term contrast ratio may refer to a ratio (T / S) of the luminance T in the transmission mode and the luminance S in the scattering mode.
  • the higher the contrast ratio the better the device performance. Therefore, the upper limit of the contrast ratio is not particularly limited.
  • the liquid crystal compound separated by the concave portion of the mold layer and the partition wall formed of the resin layer maintains a high vertical alignment state, so that light leakage phenomenon is reduced, thereby resulting in the high contrast ratio. Can be represented.
  • the present application also relates to a method of manufacturing the liquid crystal device.
  • the exemplary liquid crystal device manufacturing method after the liquid crystal compound is included in the concave portion of the first substrate on which the mold layer having the convex portion and the concave portion is formed, the surface energy is 45 mN / m or less on the upper portion, And laminating a second substrate on which a resin layer having an AFM Z scale surface roughness of 2 nm or less is formed on the first substrate so that the resin layer is in contact with the convex portion of the mold layer.
  • 2 is a process schematic diagram of a method of manufacturing an exemplary liquid crystal element. Details of the mold layer, the resin layer, and the liquid crystal compound in the manufacturing method may be the same as described in the items of the liquid crystal device.
  • the manufacturing method of the liquid crystal element includes forming a convex portion and a concave portion in the mold layer after forming the mold layer on the first substrate.
  • the mold layer may be polymerized or crosslinked and / or cured, for example, by coating a mold layer composition including a polymerizable or crosslinkable compound, a curable compound, and / or a vertically oriented polymer on top of a first substrate. Can be formed.
  • the polymerization or crosslinking may be performed by irradiating suitable energy, for example, light, which may induce polymerization or crosslinking.
  • irradiation of energy for crosslinking or polymerization can be carried out together with a process of appropriately heating and drying the resin layer composition.
  • Heat drying can be performed at 70 degreeC-250 degreeC, 80 degreeC-240 degreeC, or 90 degreeC-230 degreeC. Drying time may be carried out for 1 to 60 minutes. By controlling the drying temperature and drying time in the above range, the present application can effectively implement the surface characteristics of the desired mold layer.
  • the method for forming the resin layer composition on the first substrate is not particularly limited, and for example, known methods such as roll coating, printing, inkjet coating, slit nozzle method, bar coating, comma coating, spin coating or gravure coating, etc. It can be formed by coating through a coating scheme.
  • the convex portion and the concave portion in the mold layer may be formed by, for example, an imprinting method.
  • the imprinting process may be performed after volatilizing the solvent by drying the coating layer of the composition under appropriate conditions when the composition forming the mold layer includes a solvent or the like.
  • the imprinting process can be carried out by a known method, for example, using a stamp or roller having a pattern capable of transferring the desired convex and concave portions to the coating layer of the mold layer composition. .
  • application of energy for crosslinking or polymerization of the mold layer may be performed before, after or simultaneously with the imprinting process.
  • the conditions of application of energy for polymerization or crosslinking, for example, irradiation of light are not particularly limited as long as the mold layer is suitably cured to form recesses and convex portions. If necessary, an appropriate heat application or exposure step may be performed before or after the irradiation step of light or at the same time to promote the polymerization.
  • the manufacturing method of a liquid crystal element also includes the step of including a liquid crystal compound in the concave portion of the mold layer.
  • the liquid crystal compound may be included in the concave portion by coating the liquid crystal composition including the liquid crystal compound on the concave portion and the convex portion and the formed mold layer.
  • the layer of the composition comprising the liquid crystal compound may be formed by coating in a conventional coating manner such as, for example, bar coating, comma coating, inkjet coating or spin coating.
  • the manufacturing method of the liquid crystal element may further include laminating the second substrate on the first substrate so that the resin layer contacts the convex portion of the mold layer after the resin layer is formed on the second substrate.
  • the resin layer may be formed by coating a resin layer composition including a polymerizable or crosslinkable compound, a curable compound, and / or a vertically oriented polymer on the second substrate.
  • the method of coating the resin layer composition is not particularly limited, and for example, coating through a known coating method such as roll coating, printing, inkjet coating, slit nozzle method, bar coating, comma coating, spin coating or gravure coating, and the like. It can form by.
  • the resin layer composition contains a solvent or the like
  • the resin layer is prepared in a dried state in which the solvent is dried under appropriate conditions to volatilize the solvent or irradiated with appropriate energy capable of inducing crosslinking or polymerization. can do.
  • the method of manufacturing the liquid crystal device may also include irradiating suitable energy, for example, light, which may induce crosslinking, polymerization or curing after laminating the second substrate to the first substrate.
  • suitable energy for example, light
  • crosslinking or polymerization may be meant to include crosslinking or polymerization between the crosslinkable or polymerizable compounds included in the mold layer and crosslinking or polymerization between the crosslinkable or polymerizable compounds included in the resin layer. For this reason, the resin layer and the mold layer may be in a state of being completely crosslinked or polymerized, respectively.
  • crosslinking or polymerization may be meant to include crosslinking or polymerization between the crosslinkable or polymerizable compound present in the resin layer and the crosslinkable compound present in the convex portion or the liquid crystal region of the mold layer.
  • the first substrate and the second substrate can exhibit an appropriate adhesive force required to form the liquid crystal cell, and the concave portion of the mold layer And the resin layer can form a partition for separating the liquid crystal compound appropriately.
  • the liquid crystal device of the present application can properly maintain the initial alignment state without flowing down the liquid crystal compound even in the transmissive mode, so that not only a roll-to-roll process after manufacturing but also a high contrast ratio can be exhibited even at a low driving voltage.
  • the present application also relates to the use of the liquid crystal device.
  • the liquid crystal device has a merit that it is possible to implement a transmission mode, exhibit excellent contrast ratio, and to drive at a low voltage.
  • Such a liquid crystal element can be applied to, for example, an optical modulation device and used.
  • an optical modulation device a smart window, a window protective film, a flexible display element, an active retarder for viewing 3D images, a viewing angle adjusting film, or the like may be exemplified, but is not limited thereto.
  • the manner of configuring the above optical modulation device is not particularly limited, and a conventional manner may be applied as long as the liquid crystal element is used.
  • the liquid crystal device of the present application is, for example, a device capable of implementing a transmissive mode, and exhibits a high contrast ratio and can be driven at a low driving voltage.
  • the liquid crystal device may be applied to various light modulation devices such as a smart window, a window protective film, a flexible display device, an active retarder or a viewing angle control film for 3D image display.
  • FIG. 1 is a schematic diagram of an exemplary liquid crystal element.
  • FIG. 2 shows a method of manufacturing an exemplary liquid crystal element.
  • Example 4 is an OM image that can determine whether the vertical alignment of Example 1 and Comparative Example 1.
  • FIG. 5 shows the peel force evaluation results of Example 1 and Comparative Example 1.
  • FIG. 6 shows the results of evaluating straight transmittance according to the viewing angles of Example 1 and Comparative Example 1.
  • FIG. 7 shows the results of evaluating the overall transmittance according to the driving voltages of Example 1 and Comparative Example 1.
  • Surface roughness can be measured by measuring the AFM Z scale surface roughness (arithmetic mean roughness, Ra) using a Bruker Multimode AFM instrument (Measurement conditions: Parameters-Mode: ScanAsyst in air, Samples / line: 512 x 512). , Scan rate: 0.7 Hz, AFM probe: Silicon tip on nitride lever w / Al coating (Bruker), Material: Silicon Nitride, Resonance Frequency: 50 ⁇ 90 kHz, Force Constant: 0.4 N / m, Thickness: 0.65um, Length : 115 ⁇ 10um, Width: 25um, Tip height: 5um, Software-Nanoscope 8.15)
  • liquid crystal composition (7306, manufactured by HCCH Co., Ltd.) was placed therebetween. To a thickness of 30 ⁇ m to prepare a liquid crystal cell.
  • ITO Indium Tin Oxide
  • PC polycarbonate
  • the adhesive layer After depositing an Indium Tin Oxide (ITO) layer on a PET (Polyethylene terephthalate) film, the adhesive layer has two substrate films on which the Si-Ahesvie of Daipo Paper Co., Ltd. has been transferred to a thickness of about 7 ⁇ m to 50 ⁇ m on the ITO layer.
  • the liquid crystal composition (7306 (manufactured by HCCH Co., Ltd.)) was injected to have a thickness of about 3 ⁇ m to 30 ⁇ m after being disposed so as to face each other.
  • a liquid crystal cell was prepared by injecting a liquid crystal composition (7306, manufactured by HCCH, Inc.) to a thickness of about 3 ⁇ m to 30 ⁇ m.
  • a liquid crystal composition (7306, manufactured by HCCH Co., Ltd.) had a thickness of about 3 ⁇ m to 30 ⁇ m therebetween. It was injected so as to prepare a liquid crystal cell.
  • the adhesive layer was placed inside the two base films on which Henkel 3193H Adhesvie was transferred to a thickness of about 1 ⁇ m to 5 ⁇ m on the ITO layer.
  • the liquid crystal composition (7306, HCCH Co., Ltd. product) was inject
  • the liquid crystal cell having the upper and lower base films can effectively induce vertical alignment with respect to the liquid crystal. You can see that.
  • a liquid crystal composition containing 2 g of a liquid crystal compound (7306, manufactured by HCCH) and 20 mg of an anisotropic dye (X12, manufactured by BASF) was coated on the imprinted mold layer.
  • Si-Ahesvie of Daipo Paper Corporation was transferred to a thickness of about 10 ⁇ m as a resin layer on a PET film (100 mm ⁇ 100 mm) (hereinafter referred to as a second substrate) on which an ITO transparent electrode layer was deposited.
  • a liquid crystal device was manufactured by irradiating light under Fusion UV 70% 3 m / min under the conditions.
  • a liquid crystal device of Comparative Example 1 was prepared in the same manner as in Example 1, except that Henkel Corporation's 3193H Adhesvie was about 3 ⁇ m thick instead of Daipo Paper's Si-Ahesvie as a resin layer on the second substrate. .
  • Example 4 shows the images of the liquid crystal devices prepared in Example 1 and Comparative Example 2 observed with a microscope (OM). As shown in FIG. 4, in Comparative Example 1, since the liquid crystal and the dye are not in the vertical alignment state, domains are formed and the brightness is dark. On the other hand, in Example 1, since the liquid crystal and the dye are in a vertical alignment state, no domain is observed and the chromaticity and brightness are bright.
  • Example 1 The adhesion of the liquid crystal devices prepared in Example 1 and Comparative Example 1 was evaluated by measuring the 90-degree peeling force of the resin layer and the mold layer by using a texture analyzer, and the results are shown in FIG. 5 and Table 1. As shown in FIG. 5, it can be seen that Example 1 exhibits excellent adhesive strength compared to Comparative Example 1.
  • FIG. 5 it can be seen that Example 1 exhibits excellent adhesive strength compared to Comparative Example 1.
  • the linear transmittance according to the viewing angle was evaluated in the absence of voltage, and the results are shown in FIG. 6, and the total transmittance according to the driving voltage at the front was evaluated and the result. Is shown in FIG. 7.
  • the linear transmittance according to the viewing angle was measured using the LCMS-200 equipment, and the linear transmittance change according to the angle of the light incident on the liquid crystal device.
  • the transmittance according to the application of voltage was connected to the ITO layer of the upper and lower ITO-PET films
  • the total transmittance according to the applied voltage while driving was measured using a haze meter (NDH-5000SP). As shown in FIG.
  • the liquid crystal device of Example 1 exhibits a high transmittance in a voltage-free state and a low transmittance in a voltage-applied state, thereby implementing a normal transmission mode.
  • FIG. 6 it can be seen that the liquid crystal device of Example 1 exhibits a high transmittance at the front and viewing angles, that is, an excellent vertical alignment state, in a voltage-free state, as compared with the liquid crystal device of Comparative Example 1.

Abstract

The present application relates to a liquid crystal element and the use of the same. An embodiment of a liquid crystal element of the present application, for example, is an element which can implement a normally transparent mode, shows a high contrast ratio, and can be driven by low driving voltage. This liquid crystal element may be applied to a variety of optical modulating devices such as a smart window, a window protection film, a flexible display element, an active retarder for a 3D image display, or a viewing angle adjustment film.

Description

액정 소자Liquid crystal elements
본 출원은 액정 소자 및 액정 소자의 용도에 관한 것이다.The present application relates to a liquid crystal device and the use of the liquid crystal device.
LCD(Liquid Crystal Display)는, 액정 화합물을 일정 방향으로 배향시키고, 전압의 인가를 통해 배향을 스위칭시켜서 화상을 구현한다. LCD의 제조 공정은 복잡한 공정이 요구되는 고비용의 공정이고, 대형의 생산 라인 및 설비가 필요하다.Liquid Crystal Display (LCD) orientates a liquid crystal compound in a certain direction and implements an image by switching the orientation through the application of a voltage. The manufacturing process of LCD is an expensive process requiring a complicated process, and requires a large production line and equipment.
고분자 매트릭스 내에 액정을 분산시켜서 구현되는 소위 PDLC(Polymer Dispersed Liquid Crystal, 본 명세서에서 용어 PDLC는 소위 PNLC(Polymer Network Liquid Crystal)나 PSLC(Polymer Stabilized Liquid Crystal) 등을 포함하는 상위 개념이다.) 소자가 알려져 있다. PDLC는, 액정 용액의 코팅을 통하여 제조가 가능하므로, 기존 LCD 대비 간단한 공정으로 제조할 수 있다. The so-called PDLC (Polymer Dispersed Liquid Crystal), which is implemented by dispersing a liquid crystal in a polymer matrix, in the present specification, the term PDLC is a higher concept including a so-called Polymer Network Liquid Crystal (PNLC) or Polymer Stabilized Liquid Crystal (PSLC). Known. Since PDLC can be manufactured by coating a liquid crystal solution, it can be manufactured by a simpler process than a conventional LCD.
특허문헌 1(한국공개특허 제1993-0013794호) 등에 기재된 바와 같이 PDLC 내에서 통상 액정 화합물은 배향되어 있지 않은 상태로 존재한다. 따라서 PDLC는 전압이 인가되지 않은 상태에서는 뿌연 불투명 상태이고, 이러한 상태는 소위 산란 모드로 호칭된다. PDLC에 전압이 인가되면, 액정 화합물이 그에 따라 정렬되어 투명한 상태가 되는데, 이를 이용하여 투과 모드와 산란 모드의 스위칭이 가능하다.As described in Patent Document 1 (Korean Patent Publication No. 199-0013794) and the like, a liquid crystal compound is usually present in an unaligned state in a PDLC. Thus, PDLC is a cloudy opaque state when no voltage is applied, and this state is called a scattering mode. When a voltage is applied to the PDLC, the liquid crystal compounds are aligned accordingly, thereby making it possible to switch between the transmission mode and the scattering mode.
그러나, 이러한 초기에 산란 상태를 나타내는 PDCL 모드는 전압 인가 전 초기가 산란 상태를 나타내기 때문에 투명한 상태를 유지하기 위해서는 셀에 전압을 항상 인가해야 하므로 전력 소모가 크다는 단점이 있다.However, since the PDCL mode which initially shows the scattering state shows the scattering state before the voltage is applied, the PDCL mode requires a voltage to be always applied to the cell in order to maintain the transparent state.
본 출원은 액정 소자 및 액정 소자의 용도를 제공한다. The present application provides a liquid crystal device and the use of the liquid crystal device.
본 출원의 예시적인 액정 소자(liquid crystal element)는, 상부에 몰드층이 형성되어 있는 제 1 기판, 상부에 수지층이 형성되어 있는 제 2 기판을 포함한다. 상기 몰드층에는 볼록부와 오목부가 형성되어 있을 수 있다. 또한, 상기 제 2 기판은 수지층이 몰드층의 볼록부와 접촉하도록 배치되어 있을 수 있다. 하나의 예시에서, 수지층은 액정 화합물에 대하여 수직 배향을 유도할 수 있는 표면 특성을 가질 수 있다. 액정 소자는 또한, 몰드층의 오목부에 존재하는 액정 화합물을 포함할 수 있다. An exemplary liquid crystal element of the present application includes a first substrate having a mold layer formed thereon and a second substrate having a resin layer formed thereon. The mold layer may have a convex portion and a concave portion. In addition, the second substrate may be disposed such that the resin layer is in contact with the convex portion of the mold layer. In one example, the resin layer may have surface properties that can induce vertical alignment with respect to the liquid crystal compound. The liquid crystal element may also include a liquid crystal compound present in the recessed portion of the mold layer.
도 1은 본 출원의 예시적인 액정 소자의 모식도이다. 도 1의 액정 소자(1)는 상부에 볼록부(1011)와 오목부(1012)가 형성되어 있는 몰드층(101)이 존재하는 제 1 기판(102), 상부에 수지층(103)이 형성되어 있고, 상기 수지층이 상기 몰드층의 볼록부(1011)와 접촉하도록 배치되어 있는 제 2 기판(104) 및 상기 몰드층의 오목부(1012)에 존재하는 액정 화합물(105)을 포함하고 있다. 도 1 에 나타낸 바와 같이, 액정 화합물은 몰드층의 오목부와 수지층의 일면으로 형성된 격벽에 의해 분리된 상태로 액정 소자에 포함될 수 있다. 1 is a schematic view of an exemplary liquid crystal device of the present application. In the liquid crystal device 1 of FIG. 1, a first substrate 102 having a mold layer 101 having convex portions 1011 and a concave portion 1012 formed thereon, and a resin layer 103 formed thereon And the resin layer includes a second substrate 104 disposed in contact with the convex portion 1011 of the mold layer and a liquid crystal compound 105 present in the concave portion 1012 of the mold layer. . As shown in FIG. 1, the liquid crystal compound may be included in the liquid crystal element in a state in which the liquid crystal compound is separated by the partition formed on the recess of the mold layer and one surface of the resin layer.
하나의 예시에서 몰드층은 가교성 또는 중합성 화합물을 포함할 수 있다. 본 명세서에서 중합성 또는 가교성 화합물은 중합성 또는 가교성 관능기를 가지는 화합물을 의미할 수 있다. 몰드층은 예를 들어, 가교성 또는 중합성 화합물을 가교 또는 중합된 상태로 포함할 수 있다. 본 명세서에서 중합성 또는 가교성 관능기는 예를 들어, 알케닐기, 에폭시기, 시아노기, 카복실기, (메타)아크릴로일기 또는 (메타)아크릴로일옥시기 등이 예시될 수 있으나, 이에 제한되는 것은 아니다. 몰드층이 가교성 또는 중합성 재료를 포함하는 경우 수지층에 대하여 우수한 접착력을 나타낼 수 있다. In one example, the mold layer may comprise a crosslinkable or polymerizable compound. In the present specification, the polymerizable or crosslinkable compound may mean a compound having a polymerizable or crosslinkable functional group. The mold layer may include, for example, a crosslinkable or polymerizable compound in a crosslinked or polymerized state. In the present specification, the polymerizable or crosslinkable functional group may include, for example, an alkenyl group, an epoxy group, a cyano group, a carboxyl group, a (meth) acryloyl group, or a (meth) acryloyloxy group, but is not limited thereto. no. When the mold layer contains a crosslinkable or polymerizable material, excellent adhesion to the resin layer can be exhibited.
하나의 예시에서, 가교성 또는 중합성 화합물로는 아크릴레이트 화합물을 사용할 수 있다. 본 명세서에서 아크릴레이트 화합물은, 관능기로서 아크릴로일기 또는 메타크릴로일기를 포함하는 화합물을 의미하고, 상기 관능기를 하나 포함하는 화합물은 단관능성 아크릴레이트 화합물이고, 2개 이상 포함하는 화합물은 다관능성 아크릴레이트 화합물로 호칠할 수 있다. 구별의 편의를 위하여 이하에서 상기 관능기를 2개 포함하는 화합물은 이관능성 아크릴레이트 화합물로 호칭하며, 3관능 이상, 즉 상기 관능기를 3개 이상 포함하는 아크릴레이트 화합물은, 단순히 다관능성 아크릴레이트 화합물로 호칭한다. 다관능성 아크릴레이트 화합물은, 상기 관능기를 예를 들면, 3개 내지 8개, 3개 내지 7개, 3개 내지 6개, 3개 내지 5개 또는 3개 내지 4개 포함할 수 있다.In one example, an acrylate compound may be used as the crosslinkable or polymerizable compound. In the present specification, the acrylate compound means a compound containing an acryloyl group or a methacryloyl group as a functional group, and the compound containing one functional group is a monofunctional acrylate compound, and the compound containing two or more is multifunctional It may be foiled with an acrylate compound. For convenience of differentiation, the compound containing two functional groups below is referred to as a bifunctional acrylate compound, and the trifunctional or higher functional group, that is, the acrylate compound including three or more functional groups, is simply referred to as a polyfunctional acrylate compound. Call it. The multifunctional acrylate compound may include, for example, 3 to 8, 3 to 7, 3 to 6, 3 to 5 or 3 to 4 functional groups.
예를 들면, 단관능성 아크릴레이트 화합물로는 하기 화학식 1로 표시되는 화합물을 사용할 수 있다. For example, the compound represented by following formula (1) can be used as a monofunctional acrylate compound.
[화학식 1][Formula 1]
Figure PCTKR2015003409-appb-I000001
Figure PCTKR2015003409-appb-I000001
화학식 1에서 R은 수소 또는 탄소수 1 내지 4의 알킬기이고, X는 탄소수 1 내지 20의 알킬기이다.In Formula 1, R is hydrogen or an alkyl group having 1 to 4 carbon atoms, and X is an alkyl group having 1 to 20 carbon atoms.
또한, 이관능성 아크릴레이트 화합물로는, 하기 화학식 2로 표시되는 화합물을 사용할 수 있다. In addition, as a bifunctional acrylate compound, the compound represented by following formula (2) can be used.
[화학식 2][Formula 2]
Figure PCTKR2015003409-appb-I000002
Figure PCTKR2015003409-appb-I000002
화학식 2에서 R은 각각 독립적으로 수소 또는 탄소수 1 내지 4의 알킬기이고, X는 탄소수 1 내지 20의 알킬렌기 또는 알킬리덴기이다.In formula (2), each R is independently hydrogen or an alkyl group having 1 to 4 carbon atoms, and X is an alkylene group or alkylidene group having 1 to 20 carbon atoms.
또한, 다관능성 아크릴레이트 화합물로는 하기 화학식 3으로 표시되는 화합물을 사용할 수 있다.In addition, a compound represented by the following formula (3) may be used as the polyfunctional acrylate compound.
[화학식 3][Formula 3]
Figure PCTKR2015003409-appb-I000003
Figure PCTKR2015003409-appb-I000003
화학식 3에서 n은 3 이상의 수이고, m은 0 내지 5의 수이며, R은 각각 독립적으로 수소 또는 탄소수 1 내지 4의 알킬기이고, X는 (m+n)가의 라디칼이며, Y는 수소 또는 알킬기이다.N is a number of 3 or more, m is a number of 0 to 5, each R is independently hydrogen or an alkyl group having 1 to 4 carbon atoms, X is a (m + n) valent radical, Y is hydrogen or an alkyl group to be.
화학식 1 내지 3에서 R 또는 Y에 존재할 수 있는 알킬기의 예로는 메틸기 또는 에틸기를 들 수 있다.Examples of the alkyl group which may be present in R or Y in Formulas 1 to 3 include a methyl group or an ethyl group.
화학식 1에서 X의 알킬기는, 예를 들면, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 4 내지 12, 탄소수 6 내지 12의 직쇄 또는 분지쇄 알킬기일 수 있다.In Formula 1, the alkyl group of X may be, for example, a straight or branched chain alkyl group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 4 to 12 carbon atoms, and 6 to 12 carbon atoms.
화학식 2에서 X의 알킬렌기 또는 알킬리덴기는, 예를 들면, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 10, 탄소수 1 내지 8, 탄소수 2 내지 8 또는 탄소수 4 내지 8의 알킬렌기 또는 알킬리덴기일 수 있다. 상기 알킬렌기 또는 알킬리덴기는, 예를 들면, 직쇄, 분지쇄 또는 고리형일 수 있다.In the formula (2), the alkylene group or alkylidene group of X is, for example, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 10 carbon atoms, 1 to 8 carbon atoms, 2 to 8 carbon atoms or 4 to 8 alkylene groups or alkyl. It may be a leaden group. The alkylene group or alkylidene group may be, for example, linear, branched or cyclic.
한편, 화학식 3에서 n은, 3 이상, 3 내지 8, 3 내지 7, 3 내지 6, 3 내지 5 또는 3 내지 4의 범위 내의 어느 하나의 수일 수 있다. 또한, 화학식 2에서 m은 0 내지 5, 0 내지 4, 0 내지 3, 0 내지 2 또는 0 내지 1의 범위 내의 어느 하나의 수일 수 있다.Meanwhile, n in Formula 3 may be any one of 3 or more, 3 to 8, 3 to 7, 3 to 6, 3 to 5, or 3 to 4 in the range. In addition, m in Formula 2 may be any number in the range of 0 to 5, 0 to 4, 0 to 3, 0 to 2 or 0 to 1.
화학식 3에서 X는 (m+n)가의 라디칼이고, 예를 들면, 예들 들면, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 6의 하이드로카본, 예를 들면, 직쇄 또는 분지쇄의 알칸으로부터 유도된 (m+n)가 라디칼일 수 있다. X in formula (3) is a (m + n) valent radical, for example, a hydrocarbon having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms or 2 to 6 carbon atoms, for example For example, (m + n) derived from straight or branched alkanes may be a radical.
화학식 1 내지 3에서 정의된 치환기, 예를 들면, 알킬기, 알킬렌기, 알킬리덴기 또는 (m+n)가 라디칼 등은, 필요하다면 하나 이상의 치환기에 의해 치환되어 있을 수 있고, 이 때 치환기로는, 예를 들면, 알킬기, 알콕시기, 에폭시기, 옥소기, 옥세타닐기, 티올기, 시아노기, 카복실기 또는 아릴기 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.Substituents defined in Chemical Formulas 1 to 3, for example, an alkyl group, an alkylene group, an alkylidene group or a (m + n) radical, etc., may be substituted by one or more substituents, if necessary. For example, an alkyl group, an alkoxy group, an epoxy group, an oxo group, an oxetanyl group, a thiol group, a cyano group, a carboxyl group, or an aryl group may be exemplified, but is not limited thereto.
다른 하나의 예시에서 몰드층은 경화성 화합물을 포함할 수 있다. 본 명세서에서 경화성 화합물은 경화성 관능기를 가지는 화합물을 의미할 수 있다. 몰드층은 예를 들어, 경화성 화합물을 경화된 상태로 포함할 수 있다. 경화성 화합물의 종류는 특별히 제한되지 않으며, 본 출원의 목적을 손상시키지 않는 범위 내에서 적절히 선택될 수 있고, 예를 들어, 가열 경화성 화합물 또는 광 경화성 화합물을 사용할 수 있다. 하나의 구체적인 예로, 몰드층은 오목부에 존재하는 액정 화합물에 대한 수직 배향을 효과적으로 유도한다는 측면에서 경화성 실리콘 화합물을 포함할 수 있다. 경화성 실리콘 화합물에 대한 구체적인 사항은 이하 수지층 항목에서 기술한 내용이 동일하게 적용될 수 있다. In another example, the mold layer may include a curable compound. In the present specification, the curable compound may mean a compound having a curable functional group. The mold layer may include, for example, a curable compound in a cured state. The kind of curable compound is not particularly limited, and may be appropriately selected within a range that does not impair the object of the present application, and for example, a heat curable compound or a photocurable compound may be used. As one specific example, the mold layer may include a curable silicone compound in terms of effectively inducing vertical alignment with respect to the liquid crystal compound present in the concave portion. Specific details of the curable silicone compound may be equally applicable to the contents described in the following resin layer section.
몰드층의 표면 특성은 본 출원의 목적을 손상시키지 않는 범위 내에서 적절히 조절될 수 있다. 하나의 예시에서, 몰드층은 오목부에 존재하는 액정 화합물의 수직 배향을 효과적으로 유도한다는 측면에서 하기의 표면 특성을 나타낼 수 있다. 몰드층의 표면 특성은 예를 들어 몰드층의 오목부 및 볼록부의 형상에 따라 변경될 수 있고, 하기에서 기술하는 몰드층의 표면 특성은 몰드층에 오목부 및 볼록부를 형성하기 전의 평평한 상태의 몰드층에 대한 표면 특성일 수 있다.Surface characteristics of the mold layer can be appropriately adjusted within a range that does not impair the purpose of the present application. In one example, the mold layer may exhibit the following surface properties in terms of effectively inducing the vertical alignment of the liquid crystal compound present in the recess. The surface properties of the mold layer may be changed depending on, for example, the shape of the concave and convex portions of the mold layer, and the surface properties of the mold layer described below may be a mold in a flat state before forming the concave and convex portions in the mold layer. Surface properties for the layer.
몰드층은 예를 들어, 하기 일반식 1의 조건을 만족할 수 있다. The mold layer may satisfy the conditions of the following general formula (1), for example.
[일반식 1][Formula 1]
0 = |Y - {1×10-4X3 - 1.2×10-3X 2 + 3.1×10-3 X - 1.6×10-3}| = 0.050 = | Y - {1 × 10 -4 X 3 - 1.2 × 10 -3 X 2 + 3.1 × 10 -3 X-1.6 × 10 -3 } | = 0.05
일반식 1에서, X는 몰드층의 AFM Z 스케일 표면 조도를 나타내고, Y는 몰드층의 표면 극성도를 나타낸다. 몰드층의 표면 에너지(γsurface)는 무극성 분자간의 분산힘과 극성 분자간의 상호 작용힘이 고려되어(γsurface = γispersion + γpolar) 계산될 수 있는데, 표면 에너지 γsurface에서 polar term(γpolar)의 비율을 그 표면의 극성도(polarity)로 정의할 수 있다. 몰드층은 표면의 조도 및 극성도의 상호 관계를 일반식 1과 같이 고려함으로써, 액정 소자에 외부 배향력이 인가되지 않은 상태에서 액정 화합물에 대하여 보다 우수한 수직 배향을 유도할 수 있다. In Formula 1, X represents the AFM Z scale surface roughness of the mold layer, and Y represents the surface polarity of the mold layer. The surface energy (γ surface ) of the mold layer can be calculated by considering the dispersion force between the nonpolar molecules and the interaction force between the polar molecules (γ surface = γ ispersion + γ polar ), and the polar term (γ polar) at the surface energy γ surface Can be defined as the polarity of the surface. By considering the mutual relationship between the roughness and the polarity of the surface as in Formula 1, the mold layer can induce better vertical alignment with respect to the liquid crystal compound in a state in which no external alignment force is applied to the liquid crystal device.
몰드층의 표면 에너지는, 예를 들어, 5 mN/m 내지 100 mN/m, 8 mN/m 내지 80 mN/m, 10 mN/m 내지 50 mN/m 또는 12 mN/m 내지 30 mN/m일 수 있다. 또한, 몰드층의 극성도는 예를 들어, 0 내지 0.5 또는 0 내지 0.4의 범위 내에 있을 수 있다. 또한, 몰드층의 AFM Z 스케일 표면 조도는 예를 들어, 0.1nm 내지 50 nm, 0.2 nm 내지 30 nm, 0.3 nm 내지 10 nm 또는 0.4 nm 내지 8 nm 범위 내일 수 있다. 상기 표면 에너지, 극성도 또는 표면 조도 범위 내에서 몰드층은 오목부에 존재하는 액정 화합물의 수직 배향을 효과적으로 유도할 수 있다. 그러나, 몰드층의 표면 특성이 상기에 제한되는 것은 아니고, 목적하는 액정의 수직 배향 정도에 따라 적절히 설계 변경될 수 있다. The surface energy of the mold layer is, for example, 5 mN / m to 100 mN / m, 8 mN / m to 80 mN / m, 10 mN / m to 50 mN / m or 12 mN / m to 30 mN / m Can be. In addition, the polarity of the mold layer may be in the range of 0 to 0.5 or 0 to 0.4, for example. In addition, the AFM Z scale surface roughness of the mold layer may be, for example, in the range of 0.1 nm to 50 nm, 0.2 nm to 30 nm, 0.3 nm to 10 nm or 0.4 nm to 8 nm. Within the surface energy, polarity, or surface roughness range, the mold layer may effectively induce the vertical alignment of the liquid crystal compound present in the recess. However, the surface properties of the mold layer are not limited to the above, and may be appropriately changed depending on the degree of vertical alignment of the desired liquid crystal.
본 명세서에서 「표면 에너지」는, 공지의 표면 에너지 측정 방식에 의하여 측정된 값으로서, 예를 들면, Static contact angle measurement를 통한 Owens-Wendt 방식으로 측정된 값일 수 있다. 구체적인 예로, 표면 에너지(γsurface, mN/m)는 γsurface = γdispersion + γpolar 로 계산될 수 있고, 물방울형 분석기(Drop Shape Analyzer, KRUSS사의 DSA100제품)를 사용하여 측정할 수 있다. 표면 에너지는 측정하고자 하는 대상 시료를 플루오르벤젠(flourobenzene)에 약 2 중량%의 고형분 농도로 희석시킨 코팅액을 기판에 약 50nm의 두께와 4 cm2의 코팅 면적(가로: 2cm, 세로: 2cm)으로 상온에서 약 1 시간 정도 건조시킨 후에 160°C에서 약 1시간 동안 열적 숙성(thermal annealing)시킨 막에 대하여 측정할 수 있다. 열적 숙성을 거친 상기 막에 표면 장력(surface tension)이 공지되어 있는 탈이온화수를 떨어뜨리고 그 접촉각을 구하는 과정을 5회 반복하여, 얻어진 5개의 접촉각 수치의 평균치를 구하고, 동일하게, 표면 장력이 공지되어 있는 디요오드메탄(diiodomethane)을 떨어뜨리고 그 접촉각을 구하는 과정을 5회 반복하여, 얻어진 5개의 접촉각 수치의 평균치를 구한다. 그 후, 구해진 탈이온화수와 디요오드메탄에 대한 접촉각의 평균치를 이용하여 Owens-Wendt-Rabel-Kaelble 방법에 의해 용매의 표면 장력에 관한 수치(Strom 값)를 대입하여 표면 에너지를 구할 수 있다. 또한, 본 명세서에서 「표면 조도」는, 공지의 평균 표면 거칠기 측정 방식에 의하여 측정된 값으로서, 예를 들면 Bruker社의 Multimode AFM 기기를 사용하여 측정된 값일 수 있다. In the present specification, "surface energy" is a value measured by a known surface energy measurement method, and may be, for example, a value measured by Owens-Wendt method through a static contact angle measurement. As a specific example, the surface energy (γ surface , mN / m) can be calculated as γ surface = γ dispersion + γ polar , it can be measured using a drop shape analyzer (Drop Shape Analyzer, KRUSS DSA100). Surface energy is about 50 nm thick and 4 cm 2 coating area (width: 2 cm, length: 2 cm) of the coating liquid diluted to about 2 wt% solids concentration in fluorobenzene. After drying at room temperature for about 1 hour can be measured for the film thermally annealed at 160 ° C for about 1 hour. The average value of the five contact angle values obtained is obtained by dropping the deionized water having a known surface tension on the thermally matured film and determining the contact angle five times. The procedure of dropping the known diiodomethane and determining the contact angle is repeated five times, and the average value of the five contact angle values obtained is obtained. Subsequently, the surface energy can be obtained by substituting the numerical value (Strom value) of the surface tension of the solvent by Owens-Wendt-Rabel-Kaelble method using the average value of the contact angles with respect to the deionized water and diiomethane obtained. In addition, in this specification, "surface roughness" is a value measured by a well-known average surface roughness measuring method, For example, it may be a value measured using the Bruker Multimode AFM apparatus.
몰드층의 표면 특성을 상기와 같이 조절하는 방법은 특별히 제한되지 않는다. 예를 들면, 몰드층의 재료로서 상기 표면 특성을 나타낼 수 있는 물질을 선택하거나, 몰드층에 상기 표면 특성을 나타낼 수 있는 첨가제를 첨가하거나, 또는 몰드층이 상기 표면 특성을 나타내도록 제조 공정을 제어할 수도 있다. 하나의 예시에서, 몰드층의 재료로 경화성 실리콘 화합물을 선택하거나, 혹은 몰드층에 수직 배향을 유도할 수 있는 첨가제를 첨가하거나, 혹은 몰드층에 코로나 처리 등을 수행할 수 있다. 코로나 처리 조건 및 방법은 특별히 제한되지 않으며 목적하는 몰드층의 표면 특성을 고려하여 적절히 조절될 수 있다. The method for adjusting the surface properties of the mold layer as described above is not particularly limited. For example, as a material of the mold layer, a material capable of exhibiting the surface properties is selected, an additive that can exhibit the surface properties is added to the mold layer, or the manufacturing process is controlled such that the mold layer exhibits the surface properties. You may. In one example, the curable silicone compound may be selected as the material of the mold layer, an additive capable of inducing vertical orientation to the mold layer, or a corona treatment may be performed on the mold layer. Corona treatment conditions and methods are not particularly limited and may be appropriately adjusted in consideration of the surface properties of the desired mold layer.
하나의 구체적인 예로, 몰드층은 수직 배향을 유도할 수 있는 첨가제로서 수직 배향 폴리머를 포함할 수 있다. 수직 배향 폴리머로는 예를 들어, 말단에 탄소수 4 이상, 5 이상, 6 이상, 7 이상, 8 이상, 9 이상 또는 10 이상의 직쇄형 탄화수소기를 포함하는 중합 단위의 폴리머를 사용할 수 있다. 본 명세서에서 「탄화수소기」는 탄소와 수소로 이루어진 유기 화합물을 의미하는 것으로, 특별한 언급이 없는 한 알킬기, 알케닐기, 알키닐기 또는 아릴기 등을 의미할 수 있다. 또한, 본 명세서에서 「직쇄형 탄화수소기」는 여러 개의 원자가 한 줄로 길게 이어진 구조를 가지는 탄화 수소기를 의미할 수 있다. 상기에서 직쇄형 탄화수소기의 탄소 수의 상한은 특별히 제한되지 않으나, 예를 들어 24 이하, 22 이하, 20 이하, 18 이하 또는 16 이하의 탄소 수를 가지는 직쇄 탄화수소기를 의미할 수 있다. 혹은 수직 배향 폴리머로는 예를 들어, 염소(Cl) 불소(F) 또는 규소(Si)를 포함하는 폴리머를, 보다 구체적으로, 염소(Cl), 불소(F) 또는 규소(Si) 치환된 탄화수소기를 포함하는 중합 단위의 폴리머를 사용할 수 있다. 상기에서 탄화수소기는 예를 들어, 탄소수 1의 알킬기, 탄소수 2 이상의 알킬기, 알케닐기 또는 알키닐기, 탄소수 3 이상의 사이클로 알킬기 또는 탄소수 6 이상의 아릴기가 예시될 수 있다. As one specific example, the mold layer may include a vertically oriented polymer as an additive capable of inducing vertical alignment. As the vertically oriented polymer, for example, a polymer of a polymerization unit containing at least 4 carbon atoms, at least 5, at least 6, at least 7, at least 8, at least 9, or at least 10 straight hydrocarbon groups can be used. As used herein, the term "hydrocarbon group" means an organic compound composed of carbon and hydrogen, and unless otherwise specified, may mean an alkyl group, an alkenyl group, an alkynyl group, or an aryl group. In addition, in the present specification, the "linear hydrocarbon group" may mean a hydrocarbon group having a structure in which several atoms are extended in a row. The upper limit of the carbon number of the straight chain hydrocarbon group is not particularly limited, but for example, it may mean a straight chain hydrocarbon group having 24 or less, 22 or less, 20 or less, 18 or less or 16 or less carbon atoms. Or a vertically oriented polymer, for example, a polymer containing chlorine (Cl) fluorine (F) or silicon (Si), more specifically, a chlorine (Cl), fluorine (F) or silicon (Si) substituted hydrocarbon Polymers of polymerized units containing groups can be used. In the above hydrocarbon group, for example, an alkyl group having 1 carbon atom, an alkyl group having 2 or more carbon atoms, an alkenyl group or an alkynyl group, a cycloalkyl group having 3 or more carbon atoms, or an aryl group having 6 or more carbon atoms may be exemplified.
하나의 구체적인 예로, 수직 배향 폴리머로서 폴리메틸 메타크릴레이트, 아크릴산/메타크릴산 공중합체, 스티렌/말레인이미드 공중합체, 폴리비닐알코올, 변성 폴리비닐알코올, 폴리(N-메틸올 아크릴아미드), 스티렌/비닐 톨루엔 공중합체, 클로로설폰화 폴리에틸렌, 니트로셀루로스, 폴리염화비닐, 염소화 폴리올레핀, 폴리에스테르, 폴리이미드, 초산비닐/염화 비닐 공중합체, 에틸렌/초산비닐 공중합체, 카르복시 메틸 셀룰로오스, 폴리에틸렌, 폴리프로필렌 또는 폴리카보네이트 등을 사용할 수 있으나, 이에 제한되는 것은 아니다. As one specific example, polymethyl methacrylate, acrylic acid / methacrylic acid copolymer, styrene / maleimide copolymer, polyvinyl alcohol, modified polyvinyl alcohol, poly (N-methylol acrylamide) as a vertically oriented polymer , Styrene / vinyl toluene copolymer, chlorosulfonated polyethylene, nitrocellulose, polyvinyl chloride, chlorinated polyolefin, polyester, polyimide, vinyl acetate / vinyl chloride copolymer, ethylene / vinyl acetate copolymer, carboxymethyl cellulose, polyethylene , Polypropylene or polycarbonate may be used, but is not limited thereto.
하나의 구체적인 예로, 몰드층은 하기 화학식 4의 화합물로부터 유도된 중합 단위를 포함하는 수직 배향 폴리머를 포함할 수 있다.As one specific example, the mold layer may include a vertically oriented polymer including polymerized units derived from the compound of Formula 4 below.
[화학식 4][Formula 4]
Figure PCTKR2015003409-appb-I000004
Figure PCTKR2015003409-appb-I000004
상기 화학식 4에서, R1 내지 R9는 각각 독립적으로, 수소, 알킬기, 알케닐기, 알키닐기 또는 알콕시기이고, A는 단일결합, 알킬렌기 또는 알킬리덴기를 나타낸다. 상기에서, R5 내지 R9가 할로겐 원소인 경우를 제외할 수 있고, 할로겐으로 치환된 알킬기, 알케닐기, 알키닐기 또는 알콕시기도 제외될 수 있다.In Formula 4, R 1 to R 9 are each independently hydrogen, an alkyl group, an alkenyl group, an alkynyl group, or an alkoxy group, and A represents a single bond, an alkylene group, or an alkylidene group. In the above, the case where R 5 to R 9 is a halogen element may be excluded, and an alkyl group, alkenyl group, alkynyl group or alkoxy group substituted with halogen may be excluded.
본 명세서에서 용어 「단일 결합」은 A로 표시되는 부분에 별도의 원자가 존재하지 않는 경우를 의미한다. 예를 들어, 화학식 1에서 A가 단일 결합인 경우, A의 양측에 벤젠과 산소가 직접 연결되어있는 구조를 형성할 수 있다.As used herein, the term "single bond" means a case where no separate atom is present in a portion represented by A. For example, in Formula 1, when A is a single bond, a structure in which benzene and oxygen are directly connected to both sides of A may be formed.
또한, 수직 배향 폴리머는 하기 화학식 5의 화합물로부터 유도된 중합 단위를 포함할 수 있으나, 이에 제한되는 것은 아니다.In addition, the vertically oriented polymer may include, but is not limited to, a polymerized unit derived from the compound represented by Formula 5 below.
[화학식 5][Formula 5]
Figure PCTKR2015003409-appb-I000005
Figure PCTKR2015003409-appb-I000005
상기 화학식 5에서, R10은 수소, 알킬기, 알케닐기, 알키닐기, 또는 아릴기를 나타낼 수 있다.In Formula 5, R 10 may represent hydrogen, an alkyl group, an alkenyl group, an alkynyl group, or an aryl group.
또한, 수직 배향 폴리머는 하기 화학식 6의 화합물로부터 유도된 중합 단위를 포함할 수 있으나, 이에 제한되는 것은 아니다.In addition, the vertically oriented polymer may include, but is not limited to, polymerized units derived from the compound represented by Chemical Formula 6.
[화학식 6][Formula 6]
Figure PCTKR2015003409-appb-I000006
Figure PCTKR2015003409-appb-I000006
상기 화학식 6에서, R11 내지 R16은 각각 독립적으로 수소, 알킬기 알케닐기, 알키닐기 또는 알콕시기 또는 -O-Q-P이되, R11 내지 R16 중 적어도 하나는 -O-Q-P이거나 혹은 R11 내지 R16 중 적어도 하나는 할로겐 치환 알킬기, 할로겐 치환 알케닐기, 할로겐 치환 알키닐기 또는 할로겐 치환 알콕시기이다. 상기에서, Q는 알킬렌기 또는 알킬리덴기이며, P는 아크릴로일기, 메타크릴로일기, 아크릴로일옥시기 또는 메타크릴로일옥시기이다. In the formula 6, R 11 to R 16 each independently represent a hydrogen, an alkyl group an alkenyl group, an alkynyl group or an alkoxy group or provided that -OQP, R 11 to R 16 is at least one of the at least one of R 11 to R 16 or either -OQP One is a halogen substituted alkyl group, a halogen substituted alkenyl group, a halogen substituted alkynyl group or a halogen substituted alkoxy group. In the above, Q is an alkylene group or an alkylidene group, and P is an acryloyl group, methacryloyl group, acryloyloxy group or methacryloyloxy group.
몰드층이 수직 배향 폴리머를 함유하는 경우, 몰드층 내의 수직 배향 폴리머의 함량은 본 출원의 목적을 손상시키지 않는 범위 내에서 적절히 선택될 수 있다. 예를 들어, 몰드층 내의 수직 배향 폴리머의 고형분 함량은 0.5중량% 내지 4.5중량%, 1중량% 내지 4중량%, 1.5중량% 내지 3.5중량% 또는 2중량% 내지 3.2중량%의 범위 내에 있을 수 있다. 본 명세서에서 상기 고형분 함량은 상기 폴리머가 코팅액 등의 형태로 제조되어 몰드층 제조 과정에 적용되는 시점에서의 고형분 함량을 의미한다. 수직 배향 폴리머의 함량이 상기 범위 내인 경우, 몰드층은 전술한 수직 배향 특성을 효과적으로 구현할 수 있다.When the mold layer contains a vertically oriented polymer, the content of the vertically oriented polymer in the mold layer may be appropriately selected within a range that does not impair the purpose of the present application. For example, the solids content of the vertically oriented polymer in the mold layer may be in the range of 0.5% to 4.5%, 1% to 4%, 1.5% to 3.5% or 2% to 3.2% by weight. have. In the present specification, the solid content means a solid content at the time when the polymer is manufactured in the form of a coating solution or the like and applied to a mold layer manufacturing process. When the content of the vertical alignment polymer is within the above range, the mold layer can effectively implement the above-described vertical alignment characteristics.
몰드층은, 상기 언급한 화합물에 추가로 필요한 경우에 용매, 상기 가교성 또는 중합성 화합물의 가교 또는 중합을 유도할 수 있는 라디칼 또는 양이온 개시제, 염기성 물질, 가교 또는 중합을 형성할 수 있는 기타 반응성 화합물 또는 계면 활성제 등의 첨가제를 추가로 포함하는 전구체로부터 형성될 있다. The mold layer may be a radical or cationic initiator that can induce crosslinking or polymerization of a solvent, the crosslinkable or polymerizable compound, a basic substance, other reactives that can form crosslinking or polymerization, if necessary in addition to the aforementioned compounds. It may be formed from a precursor further comprising an additive such as a compound or a surfactant.
몰드층은, 액정성 화합물, 예를 들면, 반응성 액정 화합물을 포함할 수 있다. 이러한 경우에도 상기 액정성 화합물의 비율은 소량으로 조절되는 것이 적절하다. 하나의 예시에서, 상기 몰드층의 복굴절의 절대값은 30 nm 이하 또는 20 nm 이하일 수 있다. 즉, 상기 몰드층은 등방성 몰드층이거나, 복굴절이 상기 범위 내에 있는 몰드층일 수 있다. 따라서, 액정 화합물이 포함되는 경우에도 몰드층이 상기 언급한 복굴절을 나타낼 수 있는 범위에서 포함되는 것이 좋다. 상기 복굴절은, 예를 들면, 하기 수식 1으로 계산되는 면상 위상차 또는 하기 수식 2로 계산되는 두께 방향의 위상차를 의미할 수 있다.The mold layer may contain a liquid crystal compound, for example, a reactive liquid crystal compound. Even in this case, the ratio of the liquid crystal compound is appropriately adjusted in small amounts. In one example, the absolute value of the birefringence of the mold layer may be 30 nm or less or 20 nm or less. That is, the mold layer may be an isotropic mold layer or a mold layer having birefringence within the above range. Therefore, even when the liquid crystal compound is included, it is preferable that the mold layer is included in a range capable of exhibiting the above-mentioned birefringence. The birefringence may mean, for example, a plane phase difference calculated by Equation 1 below, or a phase difference in a thickness direction calculated by Equation 2 below.
[수식 1][Equation 1]
Rin = d × (nx - ny)Rin = d × (nx-ny)
[수식 2] [Formula 2]
Rth = d × (nz - ny)Rth = d × (nz-ny)
수식 1 및 2에서 Rin은 면상 위상차이고, Rth는 두께 방향 위상차이며, d는 몰드층의 두께이고, nx는 몰드층의 면상에서 지상축 방향의 굴절률이며, ny는 몰드층의 면상에서 진상축 방향의 굴절률이고, nz는 몰드층의 두께 방향의 굴절률이다. In Equations 1 and 2, Rin is a retardation in phase, Rth is a retardation in thickness direction, d is a thickness of the mold layer, nx is a refractive index in the slow axis direction on the surface of the mold layer, and ny is a fast axis direction on the surface of the mold layer. Is the refractive index of nz, and nz is the refractive index in the thickness direction of the mold layer.
몰드층의 오목부의 간격, 폭 및 두께는 본 출원의 목적을 손상시키지 않는 범위 내에서, 액정 화합물이 포함되는 영역을 고려하여 적절히 조절될 수 있다. 예를 들면, 오목부의 간격은 100 내지 400 ㎛ 또는 100 내지 300 ㎛ 범위 내에 있을 수 있고, 폭은 10 내지 40 ㎛ 또는 10 내지 30 ㎛ 범위 내에 있을 수 있으며, 높이는 10 내지 30 ㎛ 또는 10 내지 20 ㎛의 범위 내에 있을 수 있으나, 이에 제한되는 것은 아니다. The spacing, width and thickness of the concave portion of the mold layer may be appropriately adjusted in consideration of the region in which the liquid crystal compound is contained within a range not impairing the object of the present application. For example, the spacing of the recesses may be in the range of 100 to 400 μm or 100 to 300 μm, the width may be in the range of 10 to 40 μm or 10 to 30 μm, and the height may be 10 to 30 μm or 10 to 20 μm. It may be within the scope of, but is not limited thereto.
액정 화합물은 몰드층의 오목부 내에 존재할 수 있다. 액정 화합물로는, 배향이 스위칭 가능하여 액정 소자의 광변조 특성을 조절할 수 있는 것이라면 특별한 제한없이 다양한 종류를 사용 가능하다. 본 명세서에서 배향이 스위칭 가능하다는 것은 액정 화합물의 정렬 방향이 전압의 인가와 같은 외부 작용에 의해 변경될 수 있다는 것을 의미할 수 있다. 액정 화합물로는, 예를 들면, 그 배향이 소정 방향으로 규칙적으로 정렬된 경우에는 그 배향 방향에 따라 투과 모드 또는 적절한 위상차를 나타내는 모드로 작용할 수 있고, 그 배향이 소정 방향으로 규칙적으로 정렬되어 있지 않고 랜덤하게 배치된 경우에는 몰드층과의 작용을 통해 광의 산란을 유도할 수 있는 화합물을 사용할 수 있다.The liquid crystal compound may be present in the recess of the mold layer. As the liquid crystal compound, various kinds can be used without particular limitation as long as the orientation is switchable and the light modulation characteristics of the liquid crystal device can be adjusted. In the present specification, the switchable orientation may mean that the alignment direction of the liquid crystal compound may be changed by an external action such as application of a voltage. As the liquid crystal compound, for example, when the alignment is regularly aligned in a predetermined direction, the liquid crystal compound may act in a transmission mode or a mode showing an appropriate phase difference according to the alignment direction, and the alignment is not regularly aligned in the predetermined direction. If it is randomly disposed without using a compound that can induce light scattering through the action with the mold layer.
액정 화합물로는, 예를 들면, 스멕틱(smectic) 액정 화합물, 네마틱(nematic) 액정 화합물 또는 콜레스테릭(cholesteric) 액정 화합물 등을 사용할 수 있다. 액정 화합물은, 몰드층과는 결합되어 있지 않으며, 외부에서 전압과 같은 외부 작용 하에서 배향이 변경될 수 있는 형태일 수 있다. 이를 위하여, 예를 들면, 액정 화합물은, 중합성기 또는 가교성기를 가지지 않는 화합물일 수 있다. 필요한 경우, 액정 화합물은 수지층과의 적절한 접착력을 위하여 소량의 가교성 또는 중합성 화합물과 함께 오목부 내에 존재할 수 있다. 가교성 또는 중합성 화합물이 종류는 몰드층의 항목에서 기술한 내용이 동일하게 적용될 수 있다. 이 경우 가교성 또는 중합성 화합물의 함량 비율은 본 출원의 목적을 손상시키지 않는 범위 내에서 적절히 선택될 수 있다. 가교성 또는 중합성 화합물은, 예를 들어, 액정 화합물 100 중량부 대비 10 중량부 내지 15 중량부 비율로 포함될 수 있으나, 이에 제한되는 것은 아니다. As a liquid crystal compound, a smectic liquid crystal compound, a nematic liquid crystal compound, a cholesteric liquid crystal compound, etc. can be used, for example. The liquid crystal compound is not bonded to the mold layer, and may have a form in which an orientation may be changed under an external action such as a voltage from the outside. For this purpose, for example, the liquid crystal compound may be a compound having no polymerizable group or crosslinkable group. If necessary, the liquid crystal compound may be present in the recess with a small amount of crosslinkable or polymerizable compound for proper adhesion with the resin layer. The type of crosslinkable or polymerizable compound may be the same as described in the section of the mold layer. In this case, the content ratio of the crosslinkable or polymerizable compound may be appropriately selected within a range that does not impair the purpose of the present application. The crosslinkable or polymerizable compound may be included in, for example, 10 parts by weight to 15 parts by weight with respect to 100 parts by weight of the liquid crystal compound, but is not limited thereto.
하나의 예시에서, 몰드층의 오목부에 존재하는 액정 화합물은 외부 작용 비인가 상태에서 배향된 상태로 존재할 수 있다. 이와 같이 배향된 상태로 존재하는 액정 화합물은 외부 작용에 의해 그 배향 방향이 변환될 수 있다. 본 명세서에서 「외부 작용」은, 액정 화합물의 배향 또는 정렬을 변경시킬 수 있도록 수행되는 모든 종류의 작용을 의미하고, 대표적인 예로는 전압의 인가가 있다. 또한, 본 명세서에서 「초기 배향」은 상기 외부 작용이 없는 상태에서의 상기 액정 화합물의 배향 또는 정렬 방향이나 상기 액정 화합물에 형성되는 광축을 의미할 수 있다. 액정 소자에서 액정 화합물은 상기 초기 배향 상태의 액정 화합물의 정렬 방향이 외부 작용에 의해 변환될 수도 있고, 외부 작용이 사라지면 다시 초기 배향 상태로 액정화합물이 복귀할 수 있다. In one example, the liquid crystal compound present in the concave portion of the mold layer may be present in an oriented state in an external non-applied state. The alignment direction of the liquid crystal compound present in the aligned state may be changed by external action. In the present specification, "external action" means all kinds of actions performed to change the orientation or alignment of the liquid crystal compound, and a representative example is application of voltage. In addition, in this specification, an "initial orientation" may mean the orientation or alignment direction of the liquid crystal compound in the state without the external action or the optical axis formed in the liquid crystal compound. In the liquid crystal device, the alignment direction of the liquid crystal compound in the initial alignment state may be converted by an external action, and when the external action disappears, the liquid crystal compound may return to the initial alignment state.
하나의 예시에서, 몰드층의 오목부에 존재하는 액정 화합물은 초기 상태에서 수직 배향된 상태로 존재할 수 있다. 본 명세서에서 수직 배향된 상태는 액정 화합물을 포함하는 액정층의 광축이 액정층의 평면에 대하여 약 90도 내지 약 65도, 약 90도 내지 약 75도, 약 90도 내지 약 80도, 약 90도 내지 약 85도 약 90도의 경사각을 가지는 경우를 의미할 수 있다. 본 명세서에서 「광축」은 액정 화합물이 막대 (rod) 모양인 경우 액정 화합물의 장축 방향의 축을 의미할 있고, 액정 화합물이 원판 (discotic) 모양인 경우 평면의 법선 방향의 축을 의미할 수 있다. In one example, the liquid crystal compound present in the concave portion of the mold layer may be present in the vertically aligned state from the initial state. In the present specification, the vertically oriented state is that the optical axis of the liquid crystal layer including the liquid crystal compound is about 90 degrees to about 65 degrees, about 90 degrees to about 75 degrees, about 90 degrees to about 80 degrees, about 90 with respect to the plane of the liquid crystal layer. It may mean a case having an inclination angle of about 90 degrees to about 85 degrees. As used herein, the term “optical axis” may mean an axis in the long axis direction of the liquid crystal compound when the liquid crystal compound has a rod shape, and may mean an axis in the normal direction of the plane when the liquid crystal compound has a discotic shape.
액정 화합물의 초기 수직 배향 상태는 외부 작용, 예를 들면 외부 전압의 인가에 의해 변화할 수 있다. 이에 따라, 액정 소자는 초기 상태에서는 투과 모드(transparent mode)를 유지하고, 외부 작용에 의해 투과 모드 외의 다양한 모드로 전환될 수 있다. 하나의 예시에서, 액정 소자는 투과 모드(transparent mode)와 산란 모드(scattering mode) 간의 상호 전환이 가능한 소자로 구현될 수 있다. 예를 들면, 본 출원의 액정 소자는 외부 작용이 없는 상태(즉, 초기 상태 또는 통상 상태)에서는 액정 화합물이 수직으로 배열되므로 투과 모드가 구현되고, 외부 작용 하에 액정 화합물이 무질서한 방향으로 배열되면서 산란 모드로 전환되며, 외부 작용이 제거되면 다시 투과 모드로 전환되는 소자(이러한 소자를 편의상 통상 투과 모드의 소자로 호칭할 수 있다)일 수 있다. The initial vertical alignment state of the liquid crystal compound can be changed by external action, for example, application of an external voltage. Accordingly, the liquid crystal device maintains the transparent mode in the initial state, and can be switched to various modes other than the transparent mode by external action. In one example, the liquid crystal device may be implemented as a device capable of mutual switching between a transparent mode and a scattering mode. For example, in the liquid crystal device of the present application, since the liquid crystal compounds are vertically arranged in a state in which there is no external action (that is, an initial state or a normal state), a transmission mode is realized, and the liquid crystal compounds are scattered while being arranged in a disordered direction under the external action. It may be a device which is switched to the mode and which is switched back to the transmission mode when the external action is removed (such a device may be referred to as a device of the normal transmission mode for convenience).
액정 소자의 위상차(Rc)는, 구현하고자 모드 또는 구조에 따라 적절하게 결정될 수 있다. 예를 들면, 액정 화합물의 영역은 초기 상태에서 면상 위상차가 30 nm 이하이고, 두께 방향 위상차가 500 nm 이상의 범위를 나타낼 수 있다. 이러한 범위의 위상차는, 예를 들면, 통상 투과 모드의 소자를 구현하기에 적절하다. 상기 위상차 값은 550nm 파장의 광에 대해 측정된 값일 수 있다. The phase difference Rc of the liquid crystal element may be appropriately determined depending on the mode or structure to be implemented. For example, the area of the liquid crystal compound may have a planar phase difference of 30 nm or less in an initial state and a thickness direction phase difference of 500 nm or more. This range of phase difference is suitable, for example, for implementing a device in normal transmission mode. The retardation value may be a value measured for light having a wavelength of 550 nm.
제 2 기판 상부의 수지층은, 예를 들어 액정의 수직 배향을 유도할 수 있는 표면 특성을 가질 수 있다. 하나의 예시에서, 수지층은 45 mN/m 이하, 42.5 mN/m 이하, 40 mN/m 이하, 37.5 mN/m 이하, 35 mN/m 이하, 32.5 mN/m 이하 또는 30 mN/m 이하의 표면 에너지를 가질 수 있다. 수지층의 표면 에너지가 상기 범위를 나타내는 경우 몰드층의 오목부에 존재하는 액정 화합물에 대한 수직 배향을 효과적으로 유도할 수 있다. 수지층의 표면 에너지의 하한은 특별히 제한되지 않으나, 예를 들어 0 mN/m 초과, 1 mN/m 이상, 2 mN/m 이상, 3 mN/m 이상, 4 mN/m 이상 또는 5 mN/m 이상일 수 있다. The resin layer on the top of the second substrate may have surface properties that can induce vertical alignment of the liquid crystal, for example. In one example, the resin layer is 45 mN / m or less, 42.5 mN / m or less, 40 mN / m or less, 37.5 mN / m or less, 35 mN / m or less, 32.5 mN / m or less or 30 mN / m or less May have surface energy. When the surface energy of a resin layer shows the said range, the vertical orientation with respect to the liquid crystal compound which exists in the recessed part of a mold layer can be effectively induced. The lower limit of the surface energy of the resin layer is not particularly limited, but for example, more than 0 mN / m, 1 mN / m or more, 2 mN / m or more, 3 mN / m or more, 4 mN / m or more, or 5 mN / m It may be abnormal.
수지층은 또한, 예를 들어 2 nm 이하, 1.9 nm 이하, 1.8 nm 이하, 1.7 nm 이하, 1.6 nm 이하 또는 1.5 nm 이하 범위 내의 AFM Z 스케일 표면 조도를 나타낼 수 있다. 수지층의 표면 거칠기가 상기 범위를 나타내는 경우 몰드층의 오목부에 존재하는 액정 화합물에 대한 수직 배향을 효과적으로 유도할 수 있다. 수지층의 AFM Z 스케일 표면 조도의 하한은 특별히 제한되지 않으나, 예를 들어 0 nm 초과, 0.1 nm 이상, 0.2 nm 이상, 0.3 nm 이상 또는 0.4 nm 이상일 수 있다. The resin layer may also exhibit an AFM Z scale surface roughness in the range of, for example, 2 nm or less, 1.9 nm or less, 1.8 nm or less, 1.7 nm or less, 1.6 nm or less, or 1.5 nm or less. When the surface roughness of the resin layer shows the above range, the vertical alignment with respect to the liquid crystal compound present in the concave portion of the mold layer can be effectively induced. The lower limit of the AFM Z scale surface roughness of the resin layer is not particularly limited, but may be, for example, greater than 0 nm, 0.1 nm or more, 0.2 nm or more, 0.3 nm or more, or 0.4 nm or more.
또한, 필요한 경우 수지층도 하기 일반식 1의 조건을 만족할 수 있으나, 이에 제한되는 것은 아니다In addition, if necessary, the resin layer may also satisfy the conditions of the following Formula 1, but is not limited thereto.
[일반식 1] [Formula 1]
0 = |Y - {1×10-4X3 - 1.2×10-3X 2 + 3.1×10-3 X - 1.6×10-3}| = 0.050 = | Y - {1 × 10 -4 X 3 - 1.2 × 10 -3 X 2 + 3.1 × 10 -3 X-1.6 × 10 -3 } | = 0.05
상기 일반식 1에서, X는 상기 수지층의 AFM Z 스케일 표면 조도를 나타내고, Y는 상기 수지층의 표면 극성도를 나타낸다. 이 경우 수지층의 표면 극성도는 예를 들어, 예를 들어, 0 내지 0.5 또는 0 내지 0.4의 범위 내에 있을 수 있으나 이에 제한되는 것은 아니다. 또한, 수지층의 표면 에너지, 표면 조도 및 표면 극성도를 측정하는 방법은 몰드층의 항목에서 기술한 측정 방법의 내용이 동일하게 적용될 수 있다. In the general formula (1), X represents the AFM Z scale surface roughness of the resin layer, Y represents the surface polarity of the resin layer. In this case, the surface polarity of the resin layer may be, for example, in the range of 0 to 0.5 or 0 to 0.4, but is not limited thereto. In addition, the method of measuring the surface energy, surface roughness, and surface polarity of a resin layer can apply the same content of the measuring method described in the item of a mold layer.
수지층의 표면 특성을 상기와 같이 조절하는 방법은 특별히 제한되지 않는다. 예를 들면, 수지층의 재료로서 상기 표면 특성을 나타낼 수 있는 물질을 선택하거나, 수지층에 상기 표면 특성을 나타낼 수 있는 첨가제를 첨가하거나, 또는 수지층이 상기 표면 특성을 나타내도록 제조 공정을 제어할 수도 있다. 하나의 예시에서, 수지층의 재료로 경화성 실리콘 화합물을 선택하거나, 혹은 수지층에 수직 배향을 유도할 수 있는 첨가제를 첨가하거나, 혹은 몰드층에 코로나 처리 등을 수행할 수 있다. 코로나 처리 조건 및 방법은 특별히 제한되지 않으며 목적하는 수지층의 표면 특성을 고려하여 적절히 조절될 수 있다. 또한, 수직 배향을 유도할 수 있는 첨가제에 대해서는 몰드층의 항목에서 기술한 내용이 동일하게 적용될 수 있다. The method for adjusting the surface properties of the resin layer as described above is not particularly limited. For example, as a material of the resin layer, a material capable of exhibiting the surface properties is selected, an additive capable of exhibiting the surface properties is added to the resin layer, or the manufacturing process is controlled such that the resin layer exhibits the surface properties. You may. In one example, the curable silicone compound may be selected as the material of the resin layer, an additive capable of inducing vertical alignment may be added to the resin layer, or a corona treatment may be performed on the mold layer. Corona treatment conditions and methods are not particularly limited and may be appropriately adjusted in consideration of the surface properties of the desired resin layer. In addition, the content described in the item of the mold layer may be equally applied to the additive capable of inducing vertical alignment.
하나의 예시에서, 수지층은 경화성 화합물을 포함할 수 있다. 수지층은 예를 들어, 경화성 화합물을 경화된 상태로 포함할 수 있다. 경화성 화합물로는 예를 들어, 하나의 구체적인 예로, 수지층은 액정의 수직 배향을 효과적으로 유도한다는 측면에서 경화성 실리콘 화합물을 포함할 수 있다. 수지층은 경화성 실리콘 화합물을 단독으로 포함하거나 또는 몰드층의 항목에서 기술한 가교성 또는 중합성 화합물을 추가로 포함할 수 있다. 수지층은 예를 들어, 가열 경화성 실리콘 화합물 또는 자외선 경화형 실리콘 화합물을 사용할 수 있다. 이하, 경화성 실리콘 화합물에 대하여 구체적으로 설명한다. In one example, the resin layer may include a curable compound. The resin layer may contain, for example, a curable compound in a cured state. As the curable compound, for example, as one specific example, the resin layer may include a curable silicone compound in terms of effectively inducing vertical alignment of the liquid crystal. The resin layer may include the curable silicone compound alone or may further include the crosslinkable or polymerizable compound described in the section of the mold layer. As the resin layer, for example, a heat curable silicone compound or an ultraviolet curable silicone compound can be used. Hereinafter, a curable silicone compound is demonstrated concretely.
본 출원의 일 태양에서, 상기 경화성 실리콘 화합물은 부가경화형 실리콘 화합물로서, (1) 분자 중에 2개 이상의 알케닐기를 함유하는 오르가노폴리실록산 및 (2) 분자 중에 2개 이상의 규소결합 수소원자를 함유하는 오르가노폴리실록산을 포함할 수 있다. 상기와 같은 실리콘 화합물은, 예를 들면, 후술하는 촉매의 존재 하에서, 부가 반응에 의하여 경화물을 형성할 수 있다.In one aspect of the present application, the curable silicone compound is an addition-curable silicone compound, which comprises (1) an organopolysiloxane containing two or more alkenyl groups in a molecule and (2) contains two or more silicon-bonded hydrogen atoms in a molecule Organopolysiloxanes. Such a silicone compound can form hardened | cured material by addition reaction, for example in presence of a catalyst mentioned later.
상기에서 (1) 오르가노폴리실록산은, 실리콘 경화물을 구성하는 주성분으로서, 1 분자 중 적어도 2개의 알케닐기를 포함한다. 이 때, 알케닐기의 구체적인 예에는, 비닐기, 알릴기, 부테닐기, 펜테닐기, 헥세닐기 또는 헵테닐기 등이 포함되고, 이 중 비닐기가 바람직하나, 이에 제한되는 것은 아니다. 상기 (1) 오르가노폴리실록산에서, 전술한 알케닐기의 결합 위치는 특별히 한정되지 않는다. 예를 들면, 상기 알케닐기는 분자쇄의 말단 및/또는 분자쇄의 측쇄에 결합되어 있을 수 있다. 또한, 상기 (1) 오르가노폴리실록산에서, 전술한 알케닐 외에 포함될 수 있는 치환기의 종류로는, 메틸기, 에틸기, 프로필기, 부틸기, 펜틸기, 헥실기 또는 헵틸기 등의 알킬기; 페닐기, 톨릴기, 크실릴기 또는 나프틸기 등의 아릴기; 벤질기 또는 페넨틸기 등의 아랄킬기; 클로로메틸기, 3-클로로프로필기 또는 3,3,3-트리플루오로프로필기 등의 할로겐 치환 알킬기 등을 들 수 있고, 이 중 메틸기 또는 페닐기가 바람직하나, 이에 제한되는 것은 아니다. In the above (1) organopolysiloxane, as a main component constituting the silicone cured product, it contains at least two alkenyl groups in one molecule. In this case, specific examples of the alkenyl group include a vinyl group, allyl group, butenyl group, pentenyl group, hexenyl group, or heptenyl group, and the like, but a vinyl group is preferable, but is not limited thereto. In said (1) organopolysiloxane, the bonding position of the above-mentioned alkenyl group is not specifically limited. For example, the alkenyl group may be bonded to the terminal of the molecular chain and / or the side chain of the molecular chain. Further, in the above (1) organopolysiloxane, examples of the substituent which may be included in addition to the alkenyl described above include alkyl groups such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group or heptyl group; Aryl groups such as phenyl group, tolyl group, xylyl group or naphthyl group; Aralkyl groups such as benzyl or phenentyl; Halogen-substituted alkyl groups such as chloromethyl group, 3-chloropropyl group or 3,3,3-trifluoropropyl group, and the like, and the like, and a methyl group or a phenyl group is preferable, but is not limited thereto.
상기와 같은, (1) 오르가노폴리실록산의 분자 구조는 특별히 한정되지 않고, 예를 들면, 직쇄상, 분지상, 고리상, 망상 또는 일부가 분지상을 이루는 직쇄상 등과 같이, 어떠한 형상이라도 가질 수 있다. 본 발명에서는 상기와 같은 분자 구조 중 특히 직쇄상의 분자 구조를 가지는 것이 바람직하나, 이에 제한되는 것은 아니다. 한편, 본 발명에서는, 경화물의 하드니스(hardness) 및 굴절률의 관점에서, 상기 (1) 오르가노폴리실록산으로서, 분자 구조 중에 아릴기 또는 아랄킬기와 같은 방향족기를 함유하는 오르가노폴리실록산을 사용하는 것이 바람직하지만, 반드시 이에 제한되는 것은 아니다.The molecular structure of the organopolysiloxane as described above (1) is not particularly limited, and may have any shape such as, for example, linear, branched, cyclic, networked, or linear form partly branched. have. In the present invention, it is preferable to have a linear molecular structure among the above molecular structures, but is not limited thereto. On the other hand, in the present invention, it is preferable to use an organopolysiloxane containing an aromatic group such as an aryl group or an aralkyl group in the molecular structure as the (1) organopolysiloxane in view of the hardness and the refractive index of the cured product. However, it is not necessarily limited thereto.
본 발명에서 사용할 수 있는 상기 (1) 오르가노폴리실록산의 보다 구체적인 예로는, 분자쇄 양말단 트리메틸실록산기 봉쇄 디메틸실록산-메틸비닐실록산 공중합체, 분자쇄 양말단 트리메틸실록산기 봉쇄 메틸비닐폴리실록산, 분자쇄 양말단 트리메틸실록산기 봉쇄 디메틸실록산-메틸비닐실록산-메틸페닐실록산 공중합체, 분자쇄 양말단 디메틸비닐실록산기 봉쇄 디메틸폴리실록산, 분자쇄 양말단 디메틸비닐실록산기 봉쇄 메틸비닐폴리실록산, 분자쇄 양말단 디메틸비닐실록산기 봉쇄 디메틸실록산-메틸비닐실록산 공중합체, 분자쇄 양말단 디메틸비닐실록산기 봉쇄 디메틸실록산-메틸비닐실록산-메틸페닐실록산 공중합체, R1 2SiO1 /2로 표시되는 실록산 단위와 R1 2R2SiO1 /2로 표시되는 실록산 단위와 SiO4 /2로 표시되는 실록산 단위를 포함하는 오르가노폴리실록산 공중합체, R1 2R2SiO1 /2로 표시되는 실록산 단위와 SiO4 /2로 표시되는 실록산 단위를 포함하는 오르가노폴리실록산 공중합체, R1R2SiO2 /2로 표시되는 실록산 단위와 R1SiO3 /2로 표시되는 실록산 단위 또는 R2SiO3 /2로 표시되는 실록산 단위를 포함하는 오르가노폴리실록산 공중합체 및 상기 중 2 이상의 혼합물을 들 수 있으나, 이에 제한되는 것은 아니다. 상기에서, R1은 알케닐기 외의 탄화수소기로서, 구체적으로는 메틸기, 에틸기, 프로필기, 부틸기, 펜틸기, 헥실기 또는 헵틸기 등의 알킬기; 페닐기, 톨릴기, 크실릴기 또는 나프틸기 등의 아릴기; 벤질기 또는 페넨틸기 등의 아랄킬기; 클로로메틸기, 3-클로로프로필기 또는 3,3,3-트리플루오로프로필기 등의 할로겐 치환 알킬기 등일 수 있다. 또한, 상기에서 R2는 알케닐기로서, 구체적으로는 비닐기, 알릴기, 부테닐기, 펜테닐기, 헥세닐기 또는 헵테닐기 등일 수 있다.More specific examples of the (1) organopolysiloxane which can be used in the present invention include molecular chain sock end trimethylsiloxane group blockade dimethylsiloxane-methylvinylsiloxane copolymer, molecular chain sock end trimethylsiloxane group blockade methylvinylpolysiloxane, molecular chain Socks end trimethylsiloxane group blockade dimethylsiloxane-methylvinylsiloxane-methylphenylsiloxane copolymer, molecular chain sock end dimethylvinylsiloxane group blockade dimethylpolysiloxane, molecular chain sock end dimethylvinylsiloxane group blockade methylvinylpolysiloxane, molecular chain sock end dimethylvinylsiloxane acid groups blocked dimethylsiloxane-methylvinylsiloxane copolymer, a molecular chain, both ends dimethylvinylsiloxy group blocked dimethylsiloxane-methylvinylsiloxane-methylphenylsiloxane copolymer, R 1 2 SiO 1/2 siloxane units and R is represented by 1 2 R 2 including a siloxane unit represented by the siloxane unit, and SiO 4/2 represented by SiO 1/2 Organopolysiloxane copolymer, R 1 2 R 2 SiO represented by 1/2 siloxane units and SiO 4/2 organopolysiloxane copolymer, R 1 R 2 SiO 2/ 2 containing a siloxane unit represented by the represented by the include siloxane units and R 1 SiO 3/2 siloxane units, or an organopolysiloxane copolymer and a mixture of two or more of the above containing a siloxane unit represented by R 2 SiO 3/2 represented by, but not limited to . In the above, R 1 is a hydrocarbon group other than an alkenyl group, and specifically, an alkyl group such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group or heptyl group; Aryl groups such as phenyl group, tolyl group, xylyl group or naphthyl group; Aralkyl groups such as benzyl or phenentyl; Halogen substituted alkyl groups such as chloromethyl group, 3-chloropropyl group or 3,3,3-trifluoropropyl group. In addition, in the above, R 2 is an alkenyl group, and specifically, may be a vinyl group, allyl group, butenyl group, pentenyl group, hexenyl group, or heptenyl group.
본 발명의 일 태양에서, 상기 (1) 오르가노폴리실록산은 25℃에서의 점도가 50 내지 500,000 CP(centipoise), 바람직하게는 400 내지 100,000 CP일 수 있다. 상기 점도가 50 CP 미만이면, 실리콘 화합물의 경화물의 기계적 강도가 저하될 우려가 있고, 500,000 CP를 초과하면, 취급성 또는 작업성이 저하될 우려가 있다.In one aspect of the invention, the (1) organopolysiloxane may have a viscosity at 25 ℃ 50 to 500,000 CP (centipoise), preferably 400 to 100,000 CP. When the said viscosity is less than 50 CP, there exists a possibility that the mechanical strength of the hardened | cured material of a silicone compound may fall, and when it exceeds 500,000 CP, there exists a possibility that handleability or workability may fall.
상기 부가경화형 실리콘 화합물에서, (2) 오르가노폴리실록산은 상기 (1) 오르가노폴리실록산을 가교시키는 역할을 수행할 수 있다. 상기 (2) 오르가노폴리실록산에서, 수소원자의 결합 위치는 특별히 한정되지 않으며, 예를 들면, 분자쇄의 말단 및/또는 측쇄에 결합되어 있을 수 있다. 또한, 상기 (2) 오르가노폴리실록산에서, 상기 규소결합 수소원자 외에 포함될 수 있는 치환기의 종류는 특별히 한정되지 않으며, 예를 들면, (1) 오르가노폴리실록산에서 언급한 바와 같은, 알킬기, 아릴기, 아랄킬기 또는 할로겐 치환 알킬기 등을 들 수 있고, 이 중 메틸기 또는 페닐기가 바람직하나, 이에 제한되는 것은 아니다. In the addition-curable silicone compound, (2) the organopolysiloxane may serve to crosslink the (1) organopolysiloxane. In the organopolysiloxane (2), the bonding position of the hydrogen atom is not particularly limited, and may be, for example, bonded to the terminal and / or side chain of the molecular chain. Further, in the (2) organopolysiloxane, the type of substituents that may be included in addition to the silicon-bonded hydrogen atom is not particularly limited, and examples thereof include alkyl groups, aryl groups, and the like mentioned in (1) organopolysiloxanes. Aralkyl groups or halogen-substituted alkyl groups, and the like. Among these, methyl or phenyl groups are preferred, but are not limited thereto.
한편, (2) 오르가노폴리실록산의 분자 구조는 특별히 한정되지 않고, 예를 들면, 직쇄상, 분지상, 고리상, 망상 또는 일부가 분지상을 이루는 직쇄상 등과 같이, 어떠한 형상이라도 가질 수 있다. 본 발명에서는 상기와 같은 분자 구조 중 특히 직쇄상의 분자 구조를 가지는 것이 바람직하나, 이에 제한되는 것은 아니다.On the other hand, the molecular structure of (2) organopolysiloxane is not specifically limited, For example, it may have any shape, such as a linear form, a branched form, a cyclic form, a network form, or the linear form part partially branched. In the present invention, it is preferable to have a linear molecular structure among the above molecular structures, but is not limited thereto.
본 발명에서 사용할 수 있는 상기 (2) 오르가노폴리실록산의 보다 구체적인 예로는, 분자쇄 양말단 트리메틸실록산기 봉쇄 메틸하이드로젠폴리실록산, 분자쇄 양말단 트리메틸실록산기 봉쇄 디메틸실록산-메틸하이드로젠 공중합체, 분자쇄 양말단 트리메틸실록산기 봉쇄 디메틸실록산-메틸하이드로젠실록산-메틸페닐실록산 공중합체, 분자쇄 양말단 디메틸하이드로젠실록산기 봉쇄 디메틸폴리실록산, 분자쇄 양말단 디메틸하이드로젠실록산기 봉쇄 디메틸실록산-메틸페닐실록산 공중합체, 분자쇄 양말단 디메틸하이드로젠실록산기 봉쇄 메틸페닐폴리실록산, R1 3SiO1 /2로 표시되는 실록산 단위와 R1 2HSiO1 /2로 표시되는 실록산 단위와 SiO4 /2로 표시되는 실록산 단위를 포함하는 오르가노폴리실록산 공중합체, R1 2HSiO1 /2로 표시되는 실록산 단위와 SiO4 /2로 표시되는 실록산 단위를 포함하는 오르가노폴리실록산 공중합체, R1HSiO2/2로 표시되는 실록산 단위와 R1SiO3 /2로 표시되는 실록산 단위 또는 HSiO3 /2로 표시되는 실록산 단위를 포함하는 오르가노폴리실록산 공중합체 및 상기 중 2 이상의 혼합물을 들 수 있으나, 이에 제한되는 것은 아니다. 상기에서, R1은 알케닐기 외의 탄화수소기로서, 구체적으로는 메틸기, 에틸기, 프로필기, 부틸기, 펜틸기, 헥실기 또는 헵틸기 등의 알킬기; 페닐기, 톨릴기, 크실릴기 또는 나프틸기 등의 아릴기; 벤질기 또는 페넨틸기 등의 아랄킬기; 클로로메틸기, 3-클로로프로필기 또는 3,3,3-트리플루오로프로필기 등의 할로겐 치환 알킬기 등일 수 있다. More specific examples of the above (2) organopolysiloxane which can be used in the present invention include molecular chain sock end trimethylsiloxane group blocked methylhydrogenpolysiloxane, molecular chain sock end trimethylsiloxane group blocked dimethylsiloxane-methylhydrogen copolymer, molecule Chain Socks End Trimethylsiloxane Group Blockade Dimethylsiloxane-Methylhydrogensiloxane-Methylphenylsiloxane Copolymer, Molecular Chain Socks End Dimethylhydrogensiloxane Blockade Dimethylpolysiloxane, Molecular Chain Socks End Dimethylhydrogensiloxane Blockade Dimethylsiloxane-Methylphenylsiloxane Copolymer , the siloxane unit represented by a molecular chain, both ends dimethyl hydrogen siloxane group containment methylphenyl polysiloxane, R 1 3 SiO 1/2 siloxane units and R 1 2 HSiO 1/2 siloxane units and SiO 4/2 represented by the represented by the containing organopolysiloxane copolymer, R 1 2 HSiO siloxane stage represented by 1/2 Above and SiO 4/2 siloxane units represented by or HSiO 3/2 and siloxane units represented by R 1 SiO 3/2 represented by the organopolysiloxane copolymer, R 1 HSiO 2/2 containing the siloxane unit represented by the Organopolysiloxane copolymers comprising siloxane units and mixtures of two or more of the above, but are not limited thereto. In the above, R 1 is a hydrocarbon group other than an alkenyl group, and specifically, an alkyl group such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group or heptyl group; Aryl groups such as phenyl group, tolyl group, xylyl group or naphthyl group; Aralkyl groups such as benzyl or phenentyl; Halogen substituted alkyl groups such as chloromethyl group, 3-chloropropyl group or 3,3,3-trifluoropropyl group.
본 발명의 일 태양에서, 상기 (2) 오르가노폴리실록산은 25℃에서의 점도가 1 내지 500,000 CP(centipoise), 바람직하게는 5 내지 100,000 CP일 수 있다. 상기 점도가 1 CP 미만이면, 실리콘 화합물의 경화물의 기계적 강도가 저하될 우려가 있고, 500,000 CP를 초과하면, 취급성 또는 작업성이 저하될 우려가 있다.In one aspect of the present invention, (2) the organopolysiloxane may have a viscosity at 25 ° C. of 1 to 500,000 CP (centipoise), preferably 5 to 100,000 CP. When the said viscosity is less than 1 CP, there exists a possibility that the mechanical strength of the hardened | cured material of a silicone compound may fall, and when it exceeds 500,000 CP, there exists a possibility that handleability or workability may fall.
본 발명의 일 태양에서, 상기 (2) 오르가노폴리실록산의 함량은, 적절한 경화가 이루어질 수 있을 정도로 포함된다면 특별히 한정되지 않는다. 예를 들면, 상기 (2) 오르가노폴리실록산은, 전술한 (1) 오르가노폴리실록산에 포함되는 알케닐기 하나에 대하여, 규소결합 수소원자가 0.5 내지 10개가 되는 양으로 포함될 수 있다. 상기 규소원자 결합 수소 원자의 개수가 0.5개 미만이면, 경화성 실리콘 화합물의 경화가 불충분하게 이루어질 우려가 있고, 10개를 초과하면, 경화물의 내열성이 저하될 우려가 있다. 한편, 본 발명에서는, 경화물의 하드니스(hardness) 및 굴절률의 관점에서, 상기 (2) 오르가노폴리실록산으로서, 분자 구조 중에 아릴기 또는 아랄킬기와 같은 방향족기를 함유하는 (2) 오르가노폴리실록산을 사용하는 것이 바람직하지만, 반드시 이에 제한되는 것은 아니다.In one aspect of the present invention, the content of the (2) organopolysiloxane is not particularly limited as long as it is included to the extent that appropriate curing can be achieved. For example, the (2) organopolysiloxane may be included in an amount such that 0.5 to 10 silicon-bonded hydrogen atoms are included with respect to one alkenyl group included in the aforementioned (1) organopolysiloxane. If the number of silicon atom-bonded hydrogen atoms is less than 0.5, the curing of the curable silicone compound may be insufficient, and if more than 10, the heat resistance of the cured product may be lowered. On the other hand, in the present invention, from the viewpoint of hardness and refractive index of the cured product, (2) organopolysiloxane containing (2) organopolysiloxane containing an aromatic group such as an aryl group or an aralkyl group in the molecular structure is used. It is preferred, but not necessarily limited thereto.
본 발명의 일 태양에서, 상기 부가경화형 실리콘 화합물은, 경화를 위한 촉매로서, 백금 또는 백금 화합물을 추가로 포함할 수 있다. 이와 같은, 백금 또는 백금 화합물의 구체적인 예로는, 백금 미분말, 백금흑, 백금 담지 실리카 미분말, 백금 담지 활성탄, 염화 백금산, 사염화 백금, 염화 백금산의 알코올 용액, 백금과 올레핀의 착체, 백금과 1,1,3,3-테트라메틸-1,3-디비닐디실록산 등의 알케닐실록산과의 착체, 이들 백금 또는 백금 화합물을 함유하는 입자경이 10 ㎛ 미만인 열가소성 수지 미분말(폴리스티렌 수지, 나이론 수지, 폴리카보네이트 수지, 실리콘 수지 등)을 들 수 있으나, 이에 제한되는 것은 아니다.In one aspect of the present invention, the addition-curable silicone compound may further include platinum or a platinum compound as a catalyst for curing. Specific examples of such a platinum or platinum compound include platinum fine powder, platinum black, platinum supported silica fine powder, platinum supported activated carbon, chloroplatinic acid, platinum tetrachloride, alcohol solution of chloroplatinic acid, complex of platinum and olefin, platinum and 1,1, Finely divided thermoplastic resin fine powders (polystyrene resins, nylon resins, polycarbonate resins) having a particle diameter of less than 10 µm complexes with alkenylsiloxanes such as 3,3-tetramethyl-1,3-divinyldisiloxane, and those platinum or platinum compounds , Silicone resins, etc.), but is not limited thereto.
본 발명의 부가경화형 실리콘 화합물 내에 전술한 촉매의 함유량은 특별히 제한되지 않으며, 예를 들면, 전체 화합물 중 중량 단위로 0.1 내지 500 ppm, 바람직하게는 1 내지 50 ppm의 양으로 포함될 수 있다. 상기 촉매의 함유량이 0.1 ppm 미만이면, 조성물의 경화성이 저하될 우려가 있고, 500 ppm을 초과하면, 경제성이 떨어질 우려가 있다.The content of the catalyst described above in the addition-curable silicone compound of the present invention is not particularly limited, and may be included, for example, in an amount of 0.1 to 500 ppm, preferably 1 to 50 ppm, by weight of the total compound. When content of the said catalyst is less than 0.1 ppm, there exists a possibility that sclerosis | hardenability of a composition may fall, and when it exceeds 500 ppm, there exists a possibility that economy may fall.
본 발명의 일 태양에서, 상기 부가경화형 실리콘 화합물은, 그 저장 안정성, 취급성 및 작업성 향상의 관점에서, 3-메틸-1-부틴-3-올, 3,5-디메틸-1-헥신-3-올, 페닐부틴올 등의 알킨 알코올; 3-메틸-3-펜텐-1-인, 3,5-디메틸-3-헥센-1-인 등의 에닌(enyne) 화합물; 1,2,5,7-테트라메틸-1,3,5,7-테트라비닐시클로테트라실록산, 1,3,5,7-테트라메틸-1,3,5,7-테트라헥세닐시클로테트라실록산, 벤조트리아졸 등의 경화억제제를 추가로 포함할 수 있다. 상기 경화억제제의 함량은, 발명의 목적을 해하지 않는 범위에서 적절하게 선택될 수 있으며, 예를 들면, 중량 기준으로 10 ppm 내지 50,000 ppm의 범위로 포함될 수 있다.In one aspect of the present invention, the addition-curable silicone compound is 3-methyl-1-butyn-3-ol, 3,5-dimethyl-1-hexyne- from the viewpoint of improving its storage stability, handleability and workability. Alkyne alcohols such as 3-ol and phenylbutynol; Enyne compounds such as 3-methyl-3-penten-1-yne and 3,5-dimethyl-3-hexen-1-yne; 1,2,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetrahexenylcyclotetrasiloxane And a hardening inhibitor such as benzotriazole. The content of the hardening inhibitor may be appropriately selected from a range that does not impair the object of the invention, for example, it may be included in the range of 10 ppm to 50,000 ppm by weight.
본 발명의 다른 태양에서는, 상기 실리콘 화합물은, 축합경화형 실리콘 화합물로서, 예를 들면 (a) 알콕시기 함유 실록산 폴리머; 및 (b) 수산기 함유 실록산 폴리머를 포함할 수 있다.In another aspect of the present invention, the silicone compound is a condensation-curable silicone compound, for example, (a) an alkoxy group-containing siloxane polymer; And (b) hydroxyl group-containing siloxane polymers.
본 발명에서 사용될 수 있는 상기 (a) 실록산 폴리머는, 예를 들면, 하기 화학식 7로 표시되는 화합물일 수 있다.The (a) siloxane polymer that can be used in the present invention may be, for example, a compound represented by the following formula (7).
[화학식 7][Formula 7]
R1 aR2 bSiOc(OR3)d R 1 a R 2 b SiO c (OR 3 ) d
상기 식에서 R1 및 R1은, 각각 독립적으로, 수소 원자 또는 치환 또는 비치환된 1가 탄화수소기를 나타내고, R3은 알킬기를 나타내며, R1, R2 및 R3가 각각 복수개 존재하는 경우에는 서로 동일하거나 상이할 수 있고, a 및 b는 각각 독립적으로 0 이상, 1 미만의 수를 나타내고, a+b는 0 초과, 2 미만의 수를 나타내며, c는 0 초과, 2 미만의 수를 나타내고, d는 0 초과, 4 미만의 수를 나타내며, a+b+c×2+d는 4이다.In the above formula, R 1 and R 1 each independently represent a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group, R 3 represents an alkyl group, and in the case where a plurality of R 1 , R 2 and R 3 are each present, May be the same or different, a and b each independently represent a number greater than 0 and less than 1, a + b represents a number greater than 0 and less than 2, c represents a number greater than 0 and less than 2, d represents a number greater than 0 and less than 4, and a + b + c × 2 + d is 4.
본 발명에서는 또한, 상기 화학식 7로 표시되는 실록산 폴리머가 겔 투과 크로마토그래피로 측정한, 폴리스티렌 환산의 중량평균분자량이 1,000 내지 100,000, 바람직하게는 1,000 내지 80,000, 보다 바람직하게는 1,500 내지 70,000일 수 있다. (a) 실록산 폴리머의 중량평균분자량이 상기 범위 내에 있음으로 해서, 실리콘 경화물의 형성 시에 크랙 등의 불량을 일으키지 않고, 양호한 경화물을 얻을 수 있다.In the present invention, the siloxane polymer represented by Formula 7 may be 1,000 to 100,000, preferably 1,000 to 80,000, more preferably 1,500 to 70,000, as measured by gel permeation chromatography. . (a) Since the weight average molecular weight of a siloxane polymer exists in the said range, favorable hardened | cured material can be obtained without causing defects, such as a crack, at the time of formation of a silicone hardened | cured material.
상기 화학식 7의 정의에서, 1가 탄화수소는, 예를 들면, 탄소수 1 내지 8의 알킬기, 페닐기, 벤질기 또는 톨릴기 등일 수 있고, 이 때 탄소수 1 내지 8의 알킬기로서는, 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, 펜틸기, 헥실기, 헵틸기 또는 옥틸기 등일 수 있다. 또한, 상기 화학식 7의 정의에서, 1가 탄화수소기는, 예를 들면, 할로겐, 아미노기, 머캅토기, 이소시아네이트기, 글리시딜기, 글리시독시기 또는 우레이도기 등의 공지의 치환기로 치환되어 있을 수 있다.In the definition of Chemical Formula 7, the monovalent hydrocarbon may be, for example, an alkyl group having 1 to 8 carbon atoms, a phenyl group, a benzyl group or a tolyl group, and the like, and as the alkyl group having 1 to 8 carbon atoms, a methyl group, an ethyl group, or a propyl group , Isopropyl group, butyl group, pentyl group, hexyl group, heptyl group or octyl group and the like. In addition, in the definition of Chemical Formula 7, the monovalent hydrocarbon group may be substituted with a known substituent such as a halogen, an amino group, a mercapto group, an isocyanate group, a glycidyl group, a glycidoxy group, or a ureido group.
또한, 상기 화학식 7의 정의에서, R3의 알킬기의 예로는, 메틸기, 에틸기, 프로필기, 이소프로필기 또는 부틸기 등을 들 수 있다. 이와 같은 알킬기 중에서, 메틸기 또는 에틸기 등이 바람직하나, 이에 제한되는 것은 아니다.In addition, in the definition of Chemical Formula 7, examples of the alkyl group of R 3 include a methyl group, an ethyl group, a propyl group, an isopropyl group or a butyl group. Among such alkyl groups, methyl group or ethyl group is preferred, but is not limited thereto.
본 발명에서는, 상기 화학식 7의 폴리머 중 분지상 또는 3차 가교된 실록산 폴리머를 사용하는 것이 바람직하다. 또한, 이 (a) 실록산 폴리머에는, 본 발명의 목적을 손상시키지 않는 범위 내에서, 구체적으로는 탈알코올 반응을 저해하지 않는 범위 내에서 수산기가 잔존하고 있을 수 있다.In the present invention, it is preferable to use a branched or tertiary crosslinked siloxane polymer in the polymer of the general formula (7). In addition, in this (a) siloxane polymer, the hydroxyl group may remain in the range which does not impair the objective of this invention, and specifically in the range which does not inhibit a dealcoholization reaction.
상기와 같은 (a) 실록산 폴리머는, 예를 들면, 다관능의 알콕시실란 또는 다관능 클로로 실란 등을 가수분해 및 축합시킴으로써 제조할 수 있다. 이 분야의 평균적 기술자는, 목적하는 (a) 실록산 폴리머에 따라 적절한 다관능 알콕시실란 또는 클로로 실란을 용이하게 선택할 수 있으며, 그를 사용한 가수분해 및 축합 반응의 조건 또한 용이하게 제어할 수 있다. 한편, 상기 (a) 실록산 폴리머의 제조 시에는, 목적에 따라서, 적절한 1관능의 알콕시 실란을 병용 사용할 수도 있다.Such (a) siloxane polymer can be manufactured by hydrolyzing and condensing a polyfunctional alkoxysilane, a polyfunctional chloro silane, etc., for example. The average person skilled in the art can easily select an appropriate polyfunctional alkoxysilane or chloro silane according to the desired (a) siloxane polymer, and can also easily control the conditions of the hydrolysis and condensation reaction using the same. In addition, at the time of manufacture of the said (a) siloxane polymer, you may use together the appropriate monofunctional alkoxysilane according to the objective.
상기와 같은 (a) 실록산 폴리머로는, 예를 들면, 신에쯔 실리콘사의 X40-9220 또는 X40-9225, GE 토레이 실리콘사의 XR31-B1410, XR31-B0270 또는 XR31-B2733 등과 같은, 시판되고 있는 오르가노실록산 폴리머를 사용할 수 있다. 한편, 본 발명에서는, 경화물의 하드니스(hardness) 및 굴절률의 관점에서, 상기 (a) 오르가노폴리실록산으로서, 분자 구조 중에 아릴기 또는 아랄킬기와 같은 방향족기를 함유하는 (a) 오르가노폴리실록산을 사용하는 것이 바람직하지만, 반드시 이에 제한되는 것은 아니다.Examples of the above (a) siloxane polymers include commercially available ores such as X40-9220 or X40-9225 from Shin-Etsu Silicone Co., Ltd., XR31-B1410, XR31-B0270 or XR31-B2733, etc. The organosiloxane polymer can be used. On the other hand, in the present invention, from the viewpoint of hardness and refractive index of the cured product, (a) organopolysiloxane containing an aromatic group such as an aryl group or an aralkyl group in the molecular structure is used as the (a) organopolysiloxane. It is preferred, but not necessarily limited thereto.
한편, 상기 축합경화형 실리콘 화합물에 포함되는, (b) 수산기 함유 실록산 폴리머로는, 예를 들면, 하기 화학식 8으로 나타나는 화합물을 사용할 수 있다.On the other hand, as the (b) hydroxyl group-containing siloxane polymer contained in the condensation-curable silicone compound, for example, a compound represented by the following formula (8) can be used.
[화학식 8][Formula 8]
Figure PCTKR2015003409-appb-I000007
Figure PCTKR2015003409-appb-I000007
상기 화학식 8에서, R4 및 R5은 각각 독립적으로, 수소원자 또는 치환 또는 비치환된 1가의 탄화수소기를 나타내고, R5 및 R6이 각각 복수 존재하는 경우에는, 상기는 서로 동일하거나, 상이할 수 있으며, n은 5 내지 2,000의 정수를 나타낸다.In Formula 8, R 4 and R 5 each independently represent a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group, and in the case where a plurality of R 5 and R 6 are present, they are the same as or different from each other. N may represent an integer of 5 to 2,000.
상기 화학식 8의 정의에서, 1가 탄화수소기의 구체적인 종류로는, 예를 들면, 전술한 화학식 7의 경우와 동일한 탄화수소기를 들 수 있다.In the definition of Chemical Formula 8, specific examples of the monovalent hydrocarbon group include the same hydrocarbon group as in the case of Chemical Formula 7 described above.
본 발명에서, 상기 화학식 8의 실록산 폴리머는, 겔 투과 크로마토그래피로 측정한 폴리스티렌 환산 중량평균분자량이 500 내지 100,000, 바람직하게는 1,000 내지 80,000, 보다 바람직하게는 1,500 내지 70,000일 수 있다. (b) 실록산 폴리머의 중량평균분자량이 상기 범위 내에 있음으로 해서, 실리콘 경화물의 형성 시에 크랙 등의 불량을 일으키지 않고, 양호한 경화물을 얻을 수 있다.In the present invention, the siloxane polymer of Chemical Formula 8 may have a polystyrene reduced weight average molecular weight of 500 to 100,000, preferably 1,000 to 80,000, and more preferably 1,500 to 70,000, as measured by gel permeation chromatography. (b) Since the weight average molecular weight of a siloxane polymer exists in the said range, favorable hardened | cured material can be obtained without causing defects, such as a crack, at the time of formation of a silicone hardened | cured material.
상기와 같은 (b) 실록산 폴리머는, 예를 들면, 디알콕시실란 및/또는 디클로로 실란 등을 가수분해 및 축합시킴으로써 제조할 수 있다. 이 분야의 평균적 기술자는, 목적하는 (b) 실록산 폴리머에 따라 적절한 디알콕시 실란 또는 디클로로 실란을 용이하게 선택할 수 있으며, 그를 사용한 가수분해 및 축합 반응의 조건 또한 용이하게 제어할 수 있다. 상기와 같은 (b) 실록산 폴리머로는, 예를 들면, GE 토레이 실리콘사의 XC96-723, YF-3800, YF-3804 등과 같은, 시판되고 있는 2관능 오르가노실록산 폴리머를 사용할 수 있다. 한편, 본 발명에서는, 경화물의 하드니스(hardness) 및 굴절률의 관점에서, 상기 (1) 오르가노폴리실록산으로서, 분자 구조 중에 아릴기 또는 아랄킬기와 같은 방향족기를 함유하는 (1) 오르가노폴리실록산을 사용하는 것이 바람직하지만, 반드시 이에 제한되는 것은 아니다.Such (b) siloxane polymer can be manufactured by hydrolyzing and condensing a dialkoxysilane, a dichlorosilane, etc., for example. The average person skilled in the art can easily select an appropriate dialkoxy silane or dichloro silane according to the desired (b) siloxane polymer, and can also easily control the conditions of the hydrolysis and condensation reaction using the same. As the above-mentioned (b) siloxane polymer, commercially available bifunctional organosiloxane polymers, such as GE Toray Silicone Co., Ltd. XC96-723, YF-3800, YF-3804, etc. can be used. On the other hand, in the present invention, from the viewpoint of hardness and refractive index of the cured product, (1) organopolysiloxane containing (1) organopolysiloxane containing an aromatic group such as an aryl group or an aralkyl group in the molecular structure is used. It is preferred, but not necessarily limited thereto.
하나의 예시에서, 수지층과 몰드층의 볼록부는 접착력에 의해 접촉되어 있거나 또는 수지층과 몰드층의 볼록부가 가교된 상태로 접촉되어 있을 수 있다. 수지층과 몰드층의 볼록부는 예를 들어, 전술한 경화성 화합물을 포함하는 것에 의하여 점착력을 나타낼 수 있다. 또는 수지층과 몰드층은, 예를 들어 몰드층 및 수지층 내에 잔존하는 중합성, 가교성 또는 경화성 관능기 사이의 가교를 통하여 가교된 상태로 접촉되어 있을 수 있다. In one example, the convex portions of the resin layer and the mold layer may be contacted by adhesive force, or the convex portions of the resin layer and the mold layer may be in contact with each other in a crosslinked state. The convex part of a resin layer and a mold layer can exhibit adhesive force, for example by containing the curable compound mentioned above. Alternatively, the resin layer and the mold layer may be in contact with each other in a crosslinked state through, for example, crosslinking between the polymerizable, crosslinkable or curable functional groups remaining in the mold layer and the resin layer.
하나의 구체적인 예로, 제 2 기판의 상부에 존재하는 수지층이 인접하는 몰드층의 볼록부 및 액정 화합물에 대하여 우수한 접착력을 나타낼 수 있다. 하나의 예시에서 수지층 및 몰드층의 오목부 간의 90도 박리력은 예를 들어, 0.2 N/cm이상, 0.25 이상 N/cm 또는 0.3 N/cm 이상일 수 있으나, 이에 제한되는 것은 아니다. 이러한 수지층의 접착 타입은 특별히 제한되지 않고, 목적하는 용도에 따라 적절히 선택될 수 있으며, 예를 들어 고상 접착제, 반고상 접착제, 탄성 접착제 또는 액상 접착제의 타입을 적절히 적용하여 사용할 수 있다. 고상 접착제, 반고상 접착제 또는 탄성 접착제는 소위 감압성 접착제(PSA; Pressure Sensitive Adhesive)로 호칭될 수 있으며, 접착 대상이 합착되기 전에 경화될 수 있다. 액상 접착제는 소위 광학 투명 레진(OCR; Optical Clear Resin)으로 호칭될 수 있으며, 접착 대상이 합착된 후에 경화될 수 있다. 본 출원의 일 실시예에 따르면, 수직 배향력을 가지는 PSA 타입의 접착제로서 폴리디메틸실록산 접착제 (Polydimethyl siloxane adhesive) 또는 폴리메틸비닐실록산 접착제(Polymethylvinyl siloxane adhesive)를 사용할 수 있고, 수직 배향력을 가지는 OCR 타입의 접착제로서 알콕시실리콘 접착제 (Alkoxy silicone adhesive)을 사용할 수 있으나, 이에 제한되는 것은 아니다. As one specific example, the resin layer present on the upper portion of the second substrate may exhibit excellent adhesion to the convex portion and the liquid crystal compound of the adjacent mold layer. In one example, the 90-degree peeling force between the recess of the resin layer and the mold layer may be, for example, 0.2 N / cm or more, 0.25 or more N / cm, or 0.3 N / cm or more, but is not limited thereto. The type of adhesion of such a resin layer is not particularly limited, and may be appropriately selected according to the intended use. For example, a type of a solid adhesive, a semisolid adhesive, an elastic adhesive, or a liquid adhesive may be appropriately applied. Solid adhesives, semisolid adhesives or elastic adhesives may be referred to as pressure sensitive adhesives (PSAs) and may be cured before bonding objects are bonded. The liquid adhesive may be referred to as so-called optical clear resin (OCR), and may be cured after the bonding object is bonded. According to an embodiment of the present application, as a PSA type adhesive having a vertical alignment force, a polydimethyl siloxane adhesive or a polymethylvinyl siloxane adhesive may be used, and an OCR having a vertical alignment force may be used. Alkoxy silicone adhesive may be used as the type of adhesive, but is not limited thereto.
액정 소자를 형성하고 있는 제 1 기판과 제 2 기판은 액정 셀 형성에 요구되는 적절한 접착력에 의해 부착되어 있다. 종래, 고분자의 중합에 의해 상분리되는 액정 영역을 포함하는 액정 소자는, 통상 투과 모드를 구현하기 위해서는 고분자의 함량을 낮추어야 하는데, 이 경우에 액정 셀의 형성에 요구되는 접착력이 발생하지 않아 액정이 흘러나오는 문제점이 있었다. 반면, 본 출원의 액정 소자는 몰드층에 형성된 오목부와 수지층으로 형성된 격벽에 의해 액정 화합물이 분리되고 제 1 기판과 제 2 기판이 적절한 접착력에 의해 부착되어 있으므로, 액정이 흘러나오지 않고 이로 인해 높은 콘트라스트 비율을 나타낼 수 있다.The 1st board | substrate and the 2nd board | substrate which form a liquid crystal element are affixed by the suitable adhesive force required for liquid crystal cell formation. Conventionally, a liquid crystal device including a liquid crystal region that is phase separated by polymerization of a polymer should generally have a low polymer content in order to implement a transmission mode. In this case, an adhesive force required for formation of a liquid crystal cell does not occur and liquid crystal flows. There was a problem coming out. On the other hand, in the liquid crystal device of the present application, since the liquid crystal compound is separated by the recess formed in the mold layer and the partition wall formed by the resin layer, and the first substrate and the second substrate are attached by an appropriate adhesive force, the liquid crystal does not flow out and thus High contrast ratios.
제 1 기판 또는 제 2 기판으로는 특별한 제한 없이 공지의 소재를 사용할 수 있다. 예를 들면, 유리 필름, 결정성 또는 비결정성 실리콘 필름, 석영 또는 ITO(Indium Tin Oxide) 필름 등의 무기계 필름이나 플라스틱 필름 등을 사용할 수 있다. 기재층으로는, 광학적으로 등방성인 기재층이나, 위상차층과 같이 광학적으로 이방성인 기재층을 사용할 수 있다. As the first substrate or the second substrate, a known material can be used without particular limitation. For example, inorganic films, plastic films, etc., such as a glass film, a crystalline or amorphous silicon film, a quartz, or an Indium Tin Oxide (ITO) film, can be used. As a base material layer, the optically isotropic base material layer and the optically anisotropic base material layer like retardation layer can be used.
플라스틱 기재층으로는, TAC(triacetyl cellulose); 노르보르넨 유도체 등의 COP(cyclo olefin copolymer); PMMA(poly(methyl methacrylate); PC(polycarbonate); PE(polyethylene); PP(polypropylene); PVA(polyvinyl alcohol); DAC(diacetyl cellulose); Pac(Polyacrylate); PES(poly ether sulfone); PEEK(polyetheretherketon); PPS(polyphenylsulfone), PEI(polyetherimide); PEN(polyethylenemaphthatlate); PET(polyethyleneterephtalate); PI(polyimide); PSF(polysulfone); PAR(polyarylate) 또는 비정질 불소 수지 등을 포함하는 기재층을 사용할 수 있지만 이에 제한되는 것은 아니다. 기재층에는, 필요에 따라서 금, 은, 이산화 규소 또는 일산화 규소 등의 규소 화합물의 코팅층이나, 반사 방지층 등의 코팅층이 존재할 수도 있다. Examples of the plastic substrate layer include triacetyl cellulose (TAC); COP (cyclo olefin copolymer) such as norbornene derivatives; Poly (methyl methacrylate); PC (polycarbonate); PE (polyethylene); PP (polypropylene); PVA (polyvinyl alcohol); DAC (diacetyl cellulose); Pac (Polyacrylate); PES (poly ether sulfone); PEEK (polyetheretherketon PPS (polyphenylsulfone), PEI (polyetherimide); PEN (polyethylenemaphthatlate); PET (polyethyleneterephtalate); PI (polyimide); PSF (polysulfone); PAR (polyarylate) or amorphous fluorine resin The substrate layer may include a coating layer of a silicon compound such as gold, silver, silicon dioxide or silicon monoxide, or a coating layer such as an antireflection layer, if necessary.
액정 소자는 또한 전극층을 추가로 포함할 수 있다. 전극층은 예를 들어, 제 1 기판 또는 제 2 기판의 표면, 예를 들어 몰드층 또는 수지층의 측면의 표면에 형성되어 있을 수 있다. 전극층은, 예를 들면, 전도성 고분자, 전도성 금속, 전도성 나노와이어 또는 ITO(Indium Tin Oxide) 등의 금속 산화물 등을 증착하여 형성할 수 있다. 전극층은, 투명성을 가지도록 형성할 수 있다. 이 분야에서, 투명 전극층을 형성할 수 있는 다양한 소재 및 형성 방법이 공지되어 있고, 이러한 방법은 모두 적용될 수 있다. 필요한 경우에, 기재층의 표면에 형성되는 전극층은, 적절하게 패턴화되어 있을 수도 있다. The liquid crystal device may also further comprise an electrode layer. The electrode layer may be formed on the surface of the first substrate or the second substrate, for example, the surface of the side surface of the mold layer or the resin layer. For example, the electrode layer may be formed by depositing a conductive polymer, a conductive metal, a conductive nanowire, or a metal oxide such as indium tin oxide (ITO). The electrode layer can be formed to have transparency. In this field, various materials and forming methods capable of forming a transparent electrode layer are known, and all of these methods can be applied. If necessary, the electrode layer formed on the surface of the base material layer may be suitably patterned.
액정 소자는 통상 투과 모드를 구현할 수 있다. 이러한 액정 소자는, 예를 들면, 초기 상태에서 헤이즈가 10% 이하, 8% 이하, 6% 이하, 또는 5% 이하이다. 상기 헤이즈는 측정 대상을 투과하는 전체 투과광의 투과율에 대한 확산광의 투과율의 백분율일 수 있다. 상기 헤이즈는, 헤이즈미터(hazemeter, NDH-5000SP)를 사용하여 평가할 수 있다. 헤이즈는 상기 헤이즈미터를 사용하여 다음의 방식으로 평가할 수 있다. 즉, 광을 측정 대상을 투과시켜 적분구 내로 입사시킨다. 이 과정에서 광은 측정 대상에 의하여 확산광(DT)과 평행광(PT)으로 분리되는데, 이 광들은 적분구 내에서 반사되어 수광 소자에 집광되고, 집광되는 광을 통해 상기 헤이즈의 측정이 가능하다. 즉, 상기 과정에 의한 전 투과광(TT)는 상기 확산광(DT)과 평행광(PT)의 총합(DT+PT)이고, 헤이즈는 상기 전체 투과광에 대한 확산광의 백분율(Haze(%) = 100×DT/TT)로 규정될 수 있다. 또한, 이러한 액정 소자는 외부 작용 비인가 상태에서 우수한 투명성을 나타낼 수 있다. 예를 들면, 액정 소자는 초기 상태에서 45% 이상, 50% 이상, 55% 이상 또는 60% 이상의 광투과율을 나타낼 수 있다. 상기 광투과율은, 가시광선 영역, 예를 들면, 약 400 nm 내지 700 nm 범위 내의 어느 한 파장에 대한 광투과율일 수 있다. The liquid crystal device can usually implement a transmission mode. Such a liquid crystal element has a haze of 10% or less, 8% or less, 6% or less, or 5% or less in an initial state, for example. The haze may be a percentage of the transmittance of the diffused light to the transmittance of the total transmitted light passing through the measurement object. The haze can be evaluated using a haze meter (NDH-5000SP). Haze can be evaluated in the following manner using the haze meter. In other words, the light is transmitted through the measurement target and is incident into the integrating sphere. In this process, light is divided into diffused light (DT) and parallel light (PT) by a measurement object, and the light is reflected in an integrating sphere and collected by a light receiving element, and the haze can be measured through the light. Do. That is, the total transmitted light TT is the sum of the diffused light DT and the parallel light PT (DT + PT), and the haze is the percentage of diffused light with respect to the total transmitted light (Haze (%) = 100). X DT / TT). In addition, such a liquid crystal device may exhibit excellent transparency in a state in which no external action is applied. For example, the liquid crystal device may exhibit a light transmittance of at least 45%, at least 50%, at least 55%, or at least 60% in an initial state. The light transmittance may be light transmittance for any wavelength in the visible light region, for example, in the range of about 400 nm to 700 nm.
액정 소자는 또한, 낮은 에너지 소비를 통해, 예를 들면, 낮은 구동 전압을 통해 구동이 가능하다. 통상 투과 모드(normally transparent mode)의 소자의 경우, 전압의 인가에 의해 액정 화합물의 정렬 방향을 변화시켜 산란 모드를 구현할 수 있는데, 본 출원의 액정 소자는 이러한 과정에서 요구되는 구동 전압을 낮출 수 있는 효과가 있다. 일반적으로 통상 투과 모드 소자를 구현하는 경우 RM(반응성 메조겐)과 액정을 함께 사용하게 되는데, 이 경우 RM이 경화되는 시스템으로 인하여 액정과의 앵커링(anchoring)이 높아져 구동 전압이 상승하게 되는 문제점이 있다. 반면 본 출원의 액정 소자는 RM을 사용하지 않으면서 몰드층의 오목부에 액정 또는 액정과 소량의 가교성 화합물을 주입하게 되므로 소자를 구동함에 있어서 외부에서 인가되는 전기장에만 영향을 받기 때문에 구동 전압이 현저히 낮아지는 장점이 있다. The liquid crystal element is also capable of driving through low energy consumption, for example through low driving voltage. In the case of a device in a normally transparent mode, the scattering mode may be realized by changing the alignment direction of the liquid crystal compound by applying a voltage. The liquid crystal device of the present application may lower the driving voltage required in this process. It works. In general, in the case of implementing a transmissive mode device, RM (reactive mesogen) and a liquid crystal are used together. In this case, an anchoring with the liquid crystal is increased due to a system in which the RM is cured, thereby increasing driving voltage. have. On the other hand, since the liquid crystal device of the present application injects a liquid crystal or a liquid crystal and a small amount of a crosslinkable compound into the concave portion of the mold layer without using the RM, the driving voltage is only affected since the device is influenced only by an externally applied electric field. It has the advantage of being significantly lower.
액정 소자는 또한, 우수한 콘트라스트 비를 나타낼 수 있다. 본 명세서에서 용어 콘트라스트 비는, 상기 투과 모드에서 휘도(T)와 산란 모드에서의 휘도(S)의 비율(T/S)을 의미할 수 있다. 콘트라스트 비율이 높을수록 소자의 성능이 우수한 것을 의미하므로, 상기 콘트라스트 비율의 상한은 특별히 제한되지 않는다. 본 출원의 액정 소자는 전술한 바와 같이 몰드층의 오목부와 수지층으로 형성된 격벽에 의해 분리된 액정 화합물이 높은 수직 배향 상태를 유지하고 있으므로, 빛샘 현상이 줄어들고 이로 인해 상기와 같은 높은 콘트라스트 비율을 나타낼 수 있다. The liquid crystal element can also exhibit excellent contrast ratio. As used herein, the term contrast ratio may refer to a ratio (T / S) of the luminance T in the transmission mode and the luminance S in the scattering mode. The higher the contrast ratio, the better the device performance. Therefore, the upper limit of the contrast ratio is not particularly limited. In the liquid crystal device of the present application, as described above, the liquid crystal compound separated by the concave portion of the mold layer and the partition wall formed of the resin layer maintains a high vertical alignment state, so that light leakage phenomenon is reduced, thereby resulting in the high contrast ratio. Can be represented.
본 출원은 또한 상기 액정 소자의 제조 방법에 관한 것이다. 예시적인 액정 소자의 제조 방법은, 상부에 볼록부와 오목부가 형성되어 있는 몰드층이 존재하는 제 1 기판의 오목부에 액정 화합물을 포함시킨 후, 상부에 표면 에너지가 45 mN/m 이하이며, AFM Z 스케일 표면 조도가 2 nm 이하인 수지층이 형성되어 있는 제 2 기판을 상기 수지층이 상기 몰드층의 볼록부와 접촉하도록 제 1 기판에 적층하는 것을 포함한다. 도 2는 예시적인 액정 소자의 제조 방법의 공정 모식도이다. 상기 제조 방법에서 몰드층, 수지층 및 액정 화합물에 대한 구체적인 사항은 상기 액정 소자의 항목에서 기술한 내용이 동일하게 적용될 수 있다. The present application also relates to a method of manufacturing the liquid crystal device. In the exemplary liquid crystal device manufacturing method, after the liquid crystal compound is included in the concave portion of the first substrate on which the mold layer having the convex portion and the concave portion is formed, the surface energy is 45 mN / m or less on the upper portion, And laminating a second substrate on which a resin layer having an AFM Z scale surface roughness of 2 nm or less is formed on the first substrate so that the resin layer is in contact with the convex portion of the mold layer. 2 is a process schematic diagram of a method of manufacturing an exemplary liquid crystal element. Details of the mold layer, the resin layer, and the liquid crystal compound in the manufacturing method may be the same as described in the items of the liquid crystal device.
액정 소자의 제조 방법은 제 1 기판의 상부에 몰드층을 형성한 후 몰드층에 볼록부와 오목부를 형성하는 것을 포함한다. 상기 몰드층은, 예를 들면, 제 1 기판의 상부에 중합성 또는 가교성 화합물, 경화성 화합물 및/또는 수직 배향 폴리머를 포함하는 몰드층 조성물을 코팅하여 형성된 층을 중합 또는 가교 및/또는 경화시켜 형성할 수 있다. 상기 중합 또는 가교는, 중합 또는 가교를 유도할 수 있는 적절한 에너지, 예를 들면 광을 조사하여 수행할 수 있다. 또한, 가교 또는 중합을 위한 에너지의 조사는 수지층 조성물을 적절히 가열 건조하는 공정과 함께 수행될 수 있다. 가열 건조는 70℃내지 250℃, 80℃ 내지 240℃ 또는 90℃ 내지 230℃로 행할 수 있다. 건조 시간은 1분 내지 60분 동안 수행할 수 있다. 상기 건조 온도 및 건조 시간을 상기 범위로 제어함으로써, 본 출원은 목적하는 몰드층의 표면 특성을 효과적으로 구현할 수 있다. The manufacturing method of the liquid crystal element includes forming a convex portion and a concave portion in the mold layer after forming the mold layer on the first substrate. The mold layer may be polymerized or crosslinked and / or cured, for example, by coating a mold layer composition including a polymerizable or crosslinkable compound, a curable compound, and / or a vertically oriented polymer on top of a first substrate. Can be formed. The polymerization or crosslinking may be performed by irradiating suitable energy, for example, light, which may induce polymerization or crosslinking. In addition, irradiation of energy for crosslinking or polymerization can be carried out together with a process of appropriately heating and drying the resin layer composition. Heat drying can be performed at 70 degreeC-250 degreeC, 80 degreeC-240 degreeC, or 90 degreeC-230 degreeC. Drying time may be carried out for 1 to 60 minutes. By controlling the drying temperature and drying time in the above range, the present application can effectively implement the surface characteristics of the desired mold layer.
제 1 기판 상부에 수지층 조성물을 형성하는 방법은 특별히 제한되지 않고, 예를 들면, 롤 코팅, 인쇄법, 잉크젯 코팅, 슬릿 노즐법, 바 코팅, 콤마 코팅, 스핀 코팅 또는 그라비어 코팅 등과 같은 공지의 코팅 방식을 통한 코팅에 의해 형성될 수 있다. The method for forming the resin layer composition on the first substrate is not particularly limited, and for example, known methods such as roll coating, printing, inkjet coating, slit nozzle method, bar coating, comma coating, spin coating or gravure coating, etc. It can be formed by coating through a coating scheme.
몰드층에 볼록부와 오목부는, 예를 들면, 임프린팅 방식으로 형성될 수 있다. 이 경우에 상기 임프린팅 공정은 상기 몰드층을 형성하는 조성물이 용매 등을 포함하는 경우에는, 조성물의 코팅층을 적절한 조건에서 건조하여 용매를 휘발시킨 후에 수행할 수 있다. 임프린팅 공정은, 공지의 방식에 의해 수행될 수 있고, 예를 들면, 상기 몰드층 조성물의 코팅층에 목적하는 볼록부와 오목부를 전사시킬 수 있는 패턴을 가진 스탬프 또는 롤러를 사용하여 수행될 수 있다. 이 경우에, 상기 몰드층의 가교 또는 중합을 위한 에너지의 인가는 임프린팅 공정의 전, 후 또는 동시에 수행될 수 있다. 중합 또는 가교를 위한 에너지의 인가, 예를 들면, 광의 조사의 조건은, 몰드층이 적절히 경화되어 오목부와 볼록부를 형성할 수 있도록 수행되는 한 특별히 제한되지 않는다. 필요한 경우에 중합을 촉진하기 위하여 상기 광의 조사 공정의 전 또는 후, 또는 그와 동시에 적절한 열의 인가 또는 노광 공정을 수행할 수 있다. The convex portion and the concave portion in the mold layer may be formed by, for example, an imprinting method. In this case, the imprinting process may be performed after volatilizing the solvent by drying the coating layer of the composition under appropriate conditions when the composition forming the mold layer includes a solvent or the like. The imprinting process can be carried out by a known method, for example, using a stamp or roller having a pattern capable of transferring the desired convex and concave portions to the coating layer of the mold layer composition. . In this case, application of energy for crosslinking or polymerization of the mold layer may be performed before, after or simultaneously with the imprinting process. The conditions of application of energy for polymerization or crosslinking, for example, irradiation of light, are not particularly limited as long as the mold layer is suitably cured to form recesses and convex portions. If necessary, an appropriate heat application or exposure step may be performed before or after the irradiation step of light or at the same time to promote the polymerization.
액정 소자의 제조 방법은 또한, 상기 몰드층의 오목부에 액정 화합물을 포함시키는 단계를 포함한다. 액정 화합물은 오목부와 볼록부와 형성된 몰드층의 상부에 액정 화합물을 포함하는 액정 조성물을 코팅하는 것에 의하여 오목부에 포함될 수 있다. 액정 화합물을 포함하는 조성물의 층은, 예를 들어, 바 코팅, 콤마 코팅, 잉크젯 코팅 또는 스핀 코팅 등의 통상의 코팅 방식으로 코팅하여 형성할 수 있다. The manufacturing method of a liquid crystal element also includes the step of including a liquid crystal compound in the concave portion of the mold layer. The liquid crystal compound may be included in the concave portion by coating the liquid crystal composition including the liquid crystal compound on the concave portion and the convex portion and the formed mold layer. The layer of the composition comprising the liquid crystal compound may be formed by coating in a conventional coating manner such as, for example, bar coating, comma coating, inkjet coating or spin coating.
액정 소자의 제조 방법은 또한, 제 2 기판의 상부에 수지층을 형성한 후, 상기 제 2 기판을 수지층이 상기 몰드층의 볼록부와 접촉하도록 제 1 기판에 적층하는 것을 포함할 수 있다. 상기 수지층은, 예를 들면, 제 2 기판의 상부에 중합성 또는 가교성 화합물, 경화성 화합물 및/또는 수직 배향 폴리머를 포함하는 수지층 조성물을 코팅하여 형성될 수 있다. 수지층 조성물을 코팅하는 방법은 특별히 제한되지 않고, 예를 들면, 롤 코팅, 인쇄법, 잉크젯 코팅, 슬릿 노즐법, 바 코팅, 콤마 코팅, 스핀 코팅 또는 그라비어 코팅 등과 같은 공지의 코팅 방식을 통한 코팅에 의해 형성할 수 있다. 이 경우에 수지층은, 수지층 조성물이 용매 등을 포함하는 경우에는 적절한 조건에서 건조하여 용매를 휘발시킨 건조 상태나, 가교 또는 중합을 유도할 수 있는 적절한 에너지를 조사하여 부분 경화된 상태로 제조할 수 있다. The manufacturing method of the liquid crystal element may further include laminating the second substrate on the first substrate so that the resin layer contacts the convex portion of the mold layer after the resin layer is formed on the second substrate. For example, the resin layer may be formed by coating a resin layer composition including a polymerizable or crosslinkable compound, a curable compound, and / or a vertically oriented polymer on the second substrate. The method of coating the resin layer composition is not particularly limited, and for example, coating through a known coating method such as roll coating, printing, inkjet coating, slit nozzle method, bar coating, comma coating, spin coating or gravure coating, and the like. It can form by. In this case, when the resin layer composition contains a solvent or the like, the resin layer is prepared in a dried state in which the solvent is dried under appropriate conditions to volatilize the solvent or irradiated with appropriate energy capable of inducing crosslinking or polymerization. can do.
액정 소자의 제조 방법은 또한, 제 2 기판을 제 1 기판에 적층한 후에 가교, 중합 또는 경화를 유도할 수 있는 적절한 에너지, 예를 들면 광을 조사하는 단계를 포함할 수 있다. 상기에서 가교 또는 중합은 몰드층에 포함되는 가교성 또는 중합성 화합물 간의 가교 또는 중합과 수지층에 포함되는 가교성 또는 중합성 화합물 간의 가교 또는 중합을 포함하는 의미일 수 있다. 이로 인해, 수지층과 몰드층은 각각 완전 가교 또는 중합된 상태가 될 수 있다. The method of manufacturing the liquid crystal device may also include irradiating suitable energy, for example, light, which may induce crosslinking, polymerization or curing after laminating the second substrate to the first substrate. In the above, crosslinking or polymerization may be meant to include crosslinking or polymerization between the crosslinkable or polymerizable compounds included in the mold layer and crosslinking or polymerization between the crosslinkable or polymerizable compounds included in the resin layer. For this reason, the resin layer and the mold layer may be in a state of being completely crosslinked or polymerized, respectively.
또한, 상기 가교 또는 중합은 수지층에 존재하는 가교성 또는 중합성 화합물과 몰드층의 볼록부 또는 액정 영역 내에 존재하는 가교성 화합물 간의 가교 또는 중합을 포함하는 의미일 수 있다. 이 경우에 수지층과 몰드층의 볼록부는 가교에 의하여 서로 접촉된 상태를 유지할 수 있으므로, 제 1 기판과 제 2 기판은 액정 셀을 형성하는데 요구되는 적절한 접착력을 나타낼 수 있고, 몰드층의 오목부와 수지층은 액정 화합물을 분리시키기 위한 격벽을 적절히 형성할 수 있게 된다. 이에 따라, 본 출원의 액정소자는 통상 투과 모드에서도 액정 화합물이 흘러내리는 일 없이 초기 배향 상태를 적절히 유지할 수 있으므로, 제조 후 롤투롤 공정이 가능할 뿐만 아니라 낮은 구동 전압에서도 높은 콘트라스트 비율을 나타낼 수 있다. In addition, the crosslinking or polymerization may be meant to include crosslinking or polymerization between the crosslinkable or polymerizable compound present in the resin layer and the crosslinkable compound present in the convex portion or the liquid crystal region of the mold layer. In this case, since the convex portions of the resin layer and the mold layer can be kept in contact with each other by crosslinking, the first substrate and the second substrate can exhibit an appropriate adhesive force required to form the liquid crystal cell, and the concave portion of the mold layer And the resin layer can form a partition for separating the liquid crystal compound appropriately. Accordingly, the liquid crystal device of the present application can properly maintain the initial alignment state without flowing down the liquid crystal compound even in the transmissive mode, so that not only a roll-to-roll process after manufacturing but also a high contrast ratio can be exhibited even at a low driving voltage.
본 출원은 또한, 상기 액정 소자의 용도에 대한 것이다. 액정 소자는, 통상 투과 모드를 구현할 수 있고, 우수한 콘트라스트 비율 나타내며 낮은 전압으로 구동이 가능하다는 장점이 있다. 이러한 액정 소자는 예를 들어 광 변조 장치에 적용되어 사용될 수 있다. 광변조 장치로는, 스마트 윈도우, 윈도우 보호막, 플렉서블 디스플레이 소자, 3D 영상 표시용 액티브 리타더(active retarder) 또는 시야각 조절 필름 등이 예시될 수 있으나, 이에 제한되는 것은 아니다. 상기와 같은 광 변조 장치를 구성하는 방식은 특별히 제한되지 않고, 상기 액정 소자가 사용되는 한 통상적인 방식이 적용될 수 있다. The present application also relates to the use of the liquid crystal device. The liquid crystal device has a merit that it is possible to implement a transmission mode, exhibit excellent contrast ratio, and to drive at a low voltage. Such a liquid crystal element can be applied to, for example, an optical modulation device and used. As the optical modulation device, a smart window, a window protective film, a flexible display element, an active retarder for viewing 3D images, a viewing angle adjusting film, or the like may be exemplified, but is not limited thereto. The manner of configuring the above optical modulation device is not particularly limited, and a conventional manner may be applied as long as the liquid crystal element is used.
본 출원의 액정 소자는, 예를 들면, 통상 투과 모드를 구현할 수 있는 소자로서 높은 콘트라스트 비율을 나타내며 낮은 구동 전압으로 구동할 수 있다. 이러한 액정 소자는 스마트 윈도우, 윈도우 보호막, 플렉서블 디스플레이 소자, 3D 영상 표시용 액티브 리타더(active retarder) 또는 시야각 조절 필름 등과 같은 다양한 광변조 장치에 적용될 수 있다.The liquid crystal device of the present application is, for example, a device capable of implementing a transmissive mode, and exhibits a high contrast ratio and can be driven at a low driving voltage. The liquid crystal device may be applied to various light modulation devices such as a smart window, a window protective film, a flexible display device, an active retarder or a viewing angle control film for 3D image display.
도 1은 예시적인 액정 소자의 모식도이다.1 is a schematic diagram of an exemplary liquid crystal element.
도 2는 예시적인 액정 소자의 제조 방법을 나타낸다.2 shows a method of manufacturing an exemplary liquid crystal element.
도 3은 참조예 1 내지 6의 기재 필름의 표면 특성에 따른 액정에 대한 수직 배향 여부를 나타낸다.3 shows whether or not the vertical alignment with respect to the liquid crystal according to the surface characteristics of the base film of Reference Examples 1 to 6.
도 4는 실시예 1 및 비교예 1의 수직 배향 여부를 알아볼 수 있는 OM 이미지이다.4 is an OM image that can determine whether the vertical alignment of Example 1 and Comparative Example 1.
도 5는 실시예 1 및 비교예 1의 박리력 평가 결과를 나타낸다.5 shows the peel force evaluation results of Example 1 and Comparative Example 1. FIG.
도 6은 실시예 1 및 비교예 1의 시야각에 따른 직진 투과도 평가 결과를 나타낸다.6 shows the results of evaluating straight transmittance according to the viewing angles of Example 1 and Comparative Example 1. FIG.
도 7은 실시예 1 및 비교예 1의 구동 전압에 따른 전체 투과도 평가 결과를 나타낸다. 7 shows the results of evaluating the overall transmittance according to the driving voltages of Example 1 and Comparative Example 1. FIG.
이하 실시예 및 비교예를 통하여 상기 기술한 내용을 보다 구체적으로 설명하지만, 본 출원의 범위가 하기 제시된 내용에 의해 제한되는 것은 아니다. Hereinafter, the above-described contents will be described in more detail with reference to Examples and Comparative Examples, but the scope of the present application is not limited by the contents given below.
측정예 1. 표면 에너지 측정 Measurement Example 1. Surface Energy Measurement
표면 에너지는 물방울형 분석기(Drop Shape Analyzer, KRUSS사의 DSA100제품)를 사용하여 측정하였다. 측정하고자 하는 샘플에 표면 장력(surface tension)이 공지되어 있는 탈이온화수를 떨어뜨리고 그 접촉각을 구하는 과정을 5회 반복하여, 얻어진 5개의 접촉각 수치의 평균치를 구하고, 동일하게, 표면 장력이 공지되어 있는 디요오드메탄(diiodomethane)을 떨어뜨리고 그 접촉각을 구하는 과정을 5회 반복하여, 얻어진 5개의 접촉각 수치의 평균치를 구한다. 그 후, 구해진 탈이온화수와 디요오드메탄에 대한 접촉각의 평균치를 이용하여 Owens-Wendt-Rabel-Kaelble 방법에 의해 용매의 표면 장력에 관한 수치(Strom 값)를 대입하여 표면 에너지를 구하였다. 샘플의 표면 에너지(γsurface)는 무극성 분자간의 분산힘과 극성 분자간의 상호 작용힘이 고려되어(γsurface = γdispersion + γpolar) 계산될 수 있는데, 상기 표면 에너지 γsurface에서 polar term(γolar)의 비율을 그 표면의 극성도(polarity)로 정의할 수 있다.Surface energy was measured using a drop shape analyzer (Drop Shape Analyzer, DSA100 manufactured by KRUSS). Repeat the procedure of dropping the deionized water whose surface tension is known to the sample to be measured and determining the contact angle five times to obtain the average value of the five contact angle values obtained. Repeat the procedure of dropping the diiodomethane and calculating the contact angle five times, and average the five obtained contact angle values. Subsequently, the surface energy was determined by substituting a numerical value (Strom value) on the surface tension of the solvent by the Owens-Wendt-Rabel-Kaelble method using the average value of the contact angles with the deionized water and diiomethane obtained. The surface energy (γ surface ) of the sample can be calculated by considering the dispersion force between nonpolar molecules and the interaction force between polar molecules (γ surface = γ dispersion + γ polar ), and the polar term (γ olar) at the surface energy γ surface Can be defined as the polarity of the surface.
측정예 2. 표면 거칠기 측정Measurement Example 2. Surface Roughness Measurement
표면 거칠기는 Bruker社의 Multimode AFM 기기를 사용하여 AFM Z 스케일 표면 조도(산술평균조도, Ra)를 측정함으로써 측정될 수 있다(측정 조건: 파라미터 - Mode: ScanAsyst in air, Samples/line: 512×512, Scan rate: 0.7 Hz, AFM probe: Silicon tip on nitride lever w/ Al coating (Bruker), Material: Silicon Nitride, Resonance Frequency: 50~90 kHz, Force Constant: 0.4 N/m, Thickness: 0.65um, Length: 115±10um, Width: 25um, Tip height: 5um, Software-Nanoscope 8.15)Surface roughness can be measured by measuring the AFM Z scale surface roughness (arithmetic mean roughness, Ra) using a Bruker Multimode AFM instrument (Measurement conditions: Parameters-Mode: ScanAsyst in air, Samples / line: 512 x 512). , Scan rate: 0.7 Hz, AFM probe: Silicon tip on nitride lever w / Al coating (Bruker), Material: Silicon Nitride, Resonance Frequency: 50 ~ 90 kHz, Force Constant: 0.4 N / m, Thickness: 0.65um, Length : 115 ± 10um, Width: 25um, Tip height: 5um, Software-Nanoscope 8.15)
참조예 1Reference Example 1
PC(폴리카보네이트) 필름 상에 ITO (Indium Tin Oxide)층을 증착한 2 장의 기재 필름을 ITO층이 내측에 위치되도록 대향 배치한 후, 그 사이에 액정 조성물(7306, HCCH社제)을 약 3um 내지 30um의 두께가 되도록 주입하여 액정 셀을 제조하였다. After placing two substrate films having an ITO (Indium Tin Oxide) layer deposited on a PC (polycarbonate) film so as to face the ITO layer inside, a liquid crystal composition (7306, manufactured by HCCH Co., Ltd.) was placed therebetween. To a thickness of 30 μm to prepare a liquid crystal cell.
참조예 2Reference Example 2
PC(폴리카보네이트) 필름 상에 ITO (Indium Tin Oxide) 층을 증착한 후 코로나 처리를 수행한 기재 필름 2장을 ITO층이 내측에 위치하도록 대향 배치한 후, 그 사이에 액정 조성물(7306, HCCH社제)을 약 3um 내지 30um의 두께가 되도록 주입하여 액정 셀을 제조하였다. After depositing an Indium Tin Oxide (ITO) layer on a PC (polycarbonate) film, two substrate films subjected to corona treatment were disposed so as to face the ITO layer inside, and thereafter, the liquid crystal composition 7306, HCCH Company) was injected to a thickness of about 3um to 30um to prepare a liquid crystal cell.
참조예 3Reference Example 3
PET(폴리에틸렌테레프탈레이트) 필름 상에 ITO (Indium Tin Oxide) 층을 증착한 후, ITO층에 Daipo Paper사의 Si-Ahesvie를 약 7um 내지 50um의 두께로 전사한 기재 필름 2장을 접착제층이 내측에 위치하도록 대향 배치한 후, 그 사이에 액정 조성물(7306, HCCH社제)을 약 3um 내지 30um의 두께가 되도록 주입하여 액정 셀을 제조하였다.After depositing an Indium Tin Oxide (ITO) layer on a PET (Polyethylene terephthalate) film, the adhesive layer has two substrate films on which the Si-Ahesvie of Daipo Paper Co., Ltd. has been transferred to a thickness of about 7 μm to 50 μm on the ITO layer. The liquid crystal composition (7306 (manufactured by HCCH Co., Ltd.)) was injected to have a thickness of about 3 µm to 30 µm after being disposed so as to face each other.
참조예 4Reference Example 4
PC(폴리카보네이트) 필름 상에 ITO (Indium Tin Oxide) 층을 증착한 후, ITO층의 상부에 SiOx계 배리어층을 형성한 기재 필름 2장을 배리어층이 내측에 위치하도록 대향 배치한 후, 그 사이에 액정 조성물(7306, HCCH社제)을 약 3um 내지 30um의 두께가 되도록 주입하여 액정 셀을 제조하였다..After depositing an Indium Tin Oxide (ITO) layer on the PC (polycarbonate) film, two substrate films having a SiOx-based barrier layer formed on the ITO layer are disposed to face each other so that the barrier layer is positioned inward. A liquid crystal cell was prepared by injecting a liquid crystal composition (7306, manufactured by HCCH, Inc.) to a thickness of about 3 μm to 30 μm.
참조예 5Reference Example 5
PC(폴리카보네이트) 필름 상에 하드코팅층을 형성한 기재 필름 2장을 하드코팅층이 내측에 위치하도록 대향 배치한 후, 그 사이에 액정 조성물(7306, HCCH社제)을 약 3um 내지 30um의 두께가 되도록 주입하여 액정 셀을 제조하였다.After placing two substrate films on which a hard coating layer was formed on a PC (polycarbonate) film so as to face the hard coating layer inside, a liquid crystal composition (7306, manufactured by HCCH Co., Ltd.) had a thickness of about 3 μm to 30 μm therebetween. It was injected so as to prepare a liquid crystal cell.
참조예 6Reference Example 6
PET(폴리에틸렌테레프탈레이트) 필름 상에 ITO (Indium Tin Oxide) 층을 증착한 후, ITO층에 Henkel社의 3193H Adhesvie를 약 1um 내지 5um의 두께로 전사한 기재 필름 2장을 접착제층이 내측에 위치하도록 대향 배치한 후, 그 사이에 액정 조성물(7306, HCCH社제)을 약 3um 내지 30um의 두께가 되도록 주입하여 액정 셀을 제조하였다..After depositing an Indium Tin Oxide (ITO) layer on a PET (Polyethylene terephthalate) film, the adhesive layer was placed inside the two base films on which Henkel 3193H Adhesvie was transferred to a thickness of about 1 μm to 5 μm on the ITO layer. After arrange | positioning so that it may oppose, the liquid crystal composition (7306, HCCH Co., Ltd. product) was inject | poured so that it might become about 3 micrometers-30 micrometers in thickness, and the liquid crystal cell was produced.
평가예 1. 표면 특성에 따른 수직 배향 여부 평가Evaluation Example 1. Evaluation of Vertical Orientation According to Surface Characteristics
참조예 1 내지 6에서 제조된 기재 필름에 대하여 전술한 방법으로 표면 에너지 및 표면 거칠기를 측정하고 도 3 및 표 1에 나타내었고, 참조예 1 내지 6에서 제조된 액정 셀에 대하여 수직 배향 여부를 평가하여 그 결과를 표 1 에 나타내었다. 구체적으로, 표면 에너지 및 표면 거칠기는 측정예 1 및 2의 방법으로 측정할 수 있고, 또한, 액정 셀을 정면(입사각 0°)으로 관찰하였을 때, 직진 투과율이 55% 이상인 경우를 수직 배향이 되었다고 평가하였다. 도 3 및 표 1에 나타낸 바와 같이 기재 필름의 표면 에너지가 45 mN/m 이하이고, 표면 거칠기가 2 nm 이하인 경우, 이를 상하부 기재 필름으로 하는 액정 셀은 액정에 대하여 수직 배향을 효과적으로 유도할 수 있는 것을 확인할 수 있다.Surface energy and surface roughness were measured by the method described above with respect to the base film prepared in Reference Examples 1 to 6 and shown in FIG. 3 and Table 1, and evaluated the vertical alignment with respect to the liquid crystal cells prepared in Reference Examples 1 to 6 The results are shown in Table 1. Specifically, the surface energy and the surface roughness can be measured by the methods of Measurement Examples 1 and 2, and when the liquid crystal cell is observed from the front (incident angle 0 °), the case where the straight transmittance is 55% or more is said to be vertical alignment. Evaluated. As shown in FIG. 3 and Table 1, when the surface energy of the base film is 45 mN / m or less, and the surface roughness is 2 nm or less, the liquid crystal cell having the upper and lower base films can effectively induce vertical alignment with respect to the liquid crystal. You can see that.
표 1
표면 에너지(mN/m) 표면 거칠기(Ra, nm) 투과율(%) 수직 배향여부
참조예 1(PC-ITO) 23.1 0.4 66 O
참조예 2(PC-ITO_C) 29.7 0.4 65 O
참조예 3(Si-A) 8.5 1.3 69 O
참조예 4(Barrier) 61.0 2.3 48 X
참조예 5(H/C) 46.5 11.4 45 X
참조예 6(3193HS) 47.9 0.3 52 X
Table 1
Surface energy (mN / m) Surface roughness (Ra, nm) Transmittance (%) Vertical orientation
Reference Example 1 (PC-ITO) 23.1 0.4 66 O
Reference Example 2 (PC-ITO_C) 29.7 0.4 65 O
Reference Example 3 (Si-A) 8.5 1.3 69 O
Reference Example 4 (Barrier) 61.0 2.3 48 X
Reference Example 5 (H / C) 46.5 11.4 45 X
Reference Example 6 (3193HS) 47.9 0.3 52 X
실시예 1Example 1
ITO 투명 전극층이 증착된 PET 필름 (100mm x 100mm) (이하, 제 1 기판)의 ITO층 상에 아크릴 기반의 몰드층 조성물(상품명: KAD-03, 제조사: 미뉴타텍사제)을 코팅한 후, 임프린팅 방식으로 Honeycombo type의 패턴을 형성하였다 (패턴의 볼록부의 너비: 10um ~ 50um, 볼록부의 높이: 3um ~ 20um, 오목부의 너비: 300um ~ 750um). 이어서, 임프린팅된 몰드층의 상부에 액정 화합물(7306, HCCH社제) 2g 및 이방성 염료(X12, BASF사제) 20mg을 포함하는 액정 조성물을 코팅하였다. 다음으로, ITO 투명 전극층이 증착된 PET 필름 (100mm x 100mm) (이하, 제 2 기판) 상에 수지층으로서 Daipo Paper사의 Si-Ahesvie를 약 10um 두께로 전사하였다. 이어서, 수지층이 몰드층의 오목부에 접촉되도록 제 1 기판 상부에 제 2 기판을 적층한 후, 조건에서 Fusion UV 70% 3 m/min 조건으로 광을 조사함으로써 액정소자를 제조하였다. After coating an acrylic-based mold layer composition (trade name: KAD-03, manufactured by Minutatec Co., Ltd.) on an ITO layer of a PET film (100 mm x 100 mm) (hereinafter referred to as a first substrate) on which an ITO transparent electrode layer was deposited, Honeycombo type pattern was formed by imprinting method (width of convex part of pattern: 10um ~ 50um, height of convex part: 3um ~ 20um, width of concave part: 300um ~ 750um). Subsequently, a liquid crystal composition containing 2 g of a liquid crystal compound (7306, manufactured by HCCH) and 20 mg of an anisotropic dye (X12, manufactured by BASF) was coated on the imprinted mold layer. Next, Si-Ahesvie of Daipo Paper Corporation was transferred to a thickness of about 10 μm as a resin layer on a PET film (100 mm × 100 mm) (hereinafter referred to as a second substrate) on which an ITO transparent electrode layer was deposited. Subsequently, after the second substrate was laminated on the first substrate so that the resin layer was in contact with the recess of the mold layer, a liquid crystal device was manufactured by irradiating light under Fusion UV 70% 3 m / min under the conditions.
비교예 1Comparative Example 1
제 2 기판 상에 수지층으로서 Daipo Paper사의 Si-Ahesvie 대신에 Henkel社의 3193H Adhesvie를 약 3um 두께로 전사한 것을 제외하고는 실시예 1과 동일한 방법을 수행하여 비교예 1의 액정 소자를 제조하였다. A liquid crystal device of Comparative Example 1 was prepared in the same manner as in Example 1, except that Henkel Corporation's 3193H Adhesvie was about 3 μm thick instead of Daipo Paper's Si-Ahesvie as a resin layer on the second substrate. .
평가예 2. 실시예 및 비교예 액정 소자의 수직 배향 여부 평가Evaluation Example 2 Example and Comparative Example Evaluation of the vertical alignment of the liquid crystal device
실시예 1 및 비교예 2에서 제조된 액정 소자를 현미경(OM)으로 관찰한 이미지를 도 4에 나타내었다. 도 4에 보여지는 바와 같이, 비교예 1의 경우 액정 및 염료가 수직 배향 상태가 아니기 때문에 도메인을 형성하고 있으며 밝기가 어두운 것을 확인할 수 있다. 반면, 실시예 1의 경우 액정과 염료가 수직 배향 상태이므로 도메인도 관찰되지 않으며 색도 밝기가 밝은 것을 확인할 수 있다. 4 shows the images of the liquid crystal devices prepared in Example 1 and Comparative Example 2 observed with a microscope (OM). As shown in FIG. 4, in Comparative Example 1, since the liquid crystal and the dye are not in the vertical alignment state, domains are formed and the brightness is dark. On the other hand, in Example 1, since the liquid crystal and the dye are in a vertical alignment state, no domain is observed and the chromaticity and brightness are bright.
평가예 3. 접착력 평가 Evaluation Example 3. Evaluation of Adhesion
실시예 1 및 비교예 1에서 제조된 액정 소자에 대하여 Texture Analyzer를 이용하여 수지층과 몰드층의 90도 박리력을 측정함으로써 접착력을 평가하고, 그 결과를 도 5 및 표 1 에 나타내었다. 도 5에 나타낸 바와 같이, 실시예 1은 비교예 1 에 비하여 우수한 접착력을 나타내는 것을 알 수 있다. The adhesion of the liquid crystal devices prepared in Example 1 and Comparative Example 1 was evaluated by measuring the 90-degree peeling force of the resin layer and the mold layer by using a texture analyzer, and the results are shown in FIG. 5 and Table 1. As shown in FIG. 5, it can be seen that Example 1 exhibits excellent adhesive strength compared to Comparative Example 1. FIG.
평가예 4. 투과도 평가 Evaluation Example 4. Permeability Evaluation
실시예 1 및 비교예 1에서 제조된 액정 소자에 대하여, 전압 무인가 상태에서 시야각에 따른 직진 투과도를 평가하고 그 결과를 도 6에 나타내었고, 정면에서의 구동 전압에 따른 전체 투과도를 평가하고 그 결과를 도 7에 나타내었다. 시야각에 따른 직진 투과율은, LCMS-200 장비를 이용하여 액정 소자에 입사되는 광의 각도에 따른 직진 투과율 변화를 측정하였으며, 전압의 인가에 따른 투과율은 상하 ITO-PET필름의 ITO 층에 AC 전원을 연결하고 구동시키면서 인가된 전압에 따른 전체 투과율을 헤이즈 미터(NDH-5000SP)를 이용하여 측정하였다. 도 7에 나타낸 바와 같이, 실시예 1의 액정 소자는 전압 무인가 상태에서는 높은 투과율을 나타내고 전압 인가 상태에서는 낮은 투과율을 나타내는 것을 확인할 수 있고, 이를 통해 통상 투과 모드를 구현하는 것을 알 수 있다. 또한, 도 6에 나타낸 바와 같이, 실시예 1의 액정 소자는 비교예 1의 액정 소자에 비하여 전압 무인가 상태에서 정면 및 시야각에서 높은 투과율을, 즉 우수한 수직 배향 상태를 나타내고 있음을 알 수 있다. For the liquid crystal devices manufactured in Example 1 and Comparative Example 1, the linear transmittance according to the viewing angle was evaluated in the absence of voltage, and the results are shown in FIG. 6, and the total transmittance according to the driving voltage at the front was evaluated and the result. Is shown in FIG. 7. The linear transmittance according to the viewing angle was measured using the LCMS-200 equipment, and the linear transmittance change according to the angle of the light incident on the liquid crystal device. The transmittance according to the application of voltage was connected to the ITO layer of the upper and lower ITO-PET films The total transmittance according to the applied voltage while driving was measured using a haze meter (NDH-5000SP). As shown in FIG. 7, it can be seen that the liquid crystal device of Example 1 exhibits a high transmittance in a voltage-free state and a low transmittance in a voltage-applied state, thereby implementing a normal transmission mode. As shown in FIG. 6, it can be seen that the liquid crystal device of Example 1 exhibits a high transmittance at the front and viewing angles, that is, an excellent vertical alignment state, in a voltage-free state, as compared with the liquid crystal device of Comparative Example 1.

Claims (16)

  1. 상부에 볼록부와 오목부가 형성되어 있는 몰드층이 존재하는 제 1 기판; 상부에 표면 에너지가 45 mN/m 이하이며, AFM Z 스케일 표면 조도가 2 nm 이하인 수지층이 형성되어 있고, 상기 수지층이 상기 몰드층의 볼록부와 접촉하도록 배치되어 있는 제 2 기판; 및 상기 몰드층의 오목부에 존재하는 액정 화합물을 포함하는 액정 소자.A first substrate having a mold layer having convex portions and concave portions formed thereon; A second substrate having a surface energy of 45 mN / m or less and an AFM Z scale surface roughness of 2 nm or less, and having the resin layer in contact with the convex portion of the mold layer; And a liquid crystal compound present in the concave portion of the mold layer.
  2. 제 1 항에 있어서, 몰드층 또는 수지층은 하기 일반식 1을 만족하는 액정 소자:The liquid crystal device of claim 1, wherein the mold layer or the resin layer satisfies the following general formula (1):
    [일반식 1][Formula 1]
    0 = |Y - {1×10-4X3 - 1.2×10-3X 2 + 3.1×10-3 X - 1.6×10-3}| = 0.050 = | Y - {1 × 10 -4 X 3 - 1.2 × 10 -3 X 2 + 3.1 × 10 -3 X-1.6 × 10 -3 } | = 0.05
    상기 일반식 1에서, X는 상기 몰드층 또는 수지층의 AFM Z 스케일 표면 조도를 나타내고, Y는 상기 몰드층 또는 수지층의 표면 극성도를 나타낸다(단, 몰드층의 표면 조도 및 표면 극성도는 볼록부 및 오목부가 형성되지 있지 않은 상태의 몰드층의 표면에 대하여 측정한 값이다).In Formula 1, X represents the AFM Z scale surface roughness of the mold layer or the resin layer, and Y represents the surface polarity of the mold layer or the resin layer, provided that the surface roughness and surface polarity of the mold layer It is the value measured about the surface of the mold layer of the state in which the convex part and the recessed part are not formed).
  3. 제 1 항에 있어서, 몰드층 또는 수지층은 중합성 또는 가교성 화합물 또는 경화성 화합물을 포함하는 액정 소자. The liquid crystal device according to claim 1, wherein the mold layer or the resin layer contains a polymerizable or crosslinkable compound or a curable compound.
  4. 제 3 항에 있어서, 중합성 또는 가교성 화합물은 아크릴레이트 화합물인 액정 소자. The liquid crystal device according to claim 3, wherein the polymerizable or crosslinkable compound is an acrylate compound.
  5. 제 3 항에 있어서, 경화성 화합물은 경화성 실리콘 화합물인 액정 소자. The liquid crystal device according to claim 3, wherein the curable compound is a curable silicone compound.
  6. 제 3 항에 있어서, 몰드층 또는 수지층은 수직 배향을 유도할 수 있는 첨가제를 추가로 포함하는 액정 소자. 4. The liquid crystal device according to claim 3, wherein the mold layer or the resin layer further comprises an additive capable of inducing vertical alignment.
  7. 제 6 항에 있어서, 첨가제는 염소(Cl), 불소(F) 또는 규소(Si)를 포함하는 수직 배향 폴리머를 포함하는 액정 소자. 7. The liquid crystal device according to claim 6, wherein the additive comprises a vertically oriented polymer comprising chlorine (Cl), fluorine (F) or silicon (Si).
  8. 제 1 항에 있어서, 수지층과 몰드층의 볼록부는 점착력에 의해 접촉되어 있거나 또는 수지층과 몰드층의 볼록부가 가교된 상태로 접촉되어 있는 액정 소자. The liquid crystal element according to claim 1, wherein the convex portions of the resin layer and the mold layer are in contact with each other by adhesive force, or the convex portions of the resin layer and the mold layer are in contact with each other in a crosslinked state.
  9. 제 1 항에 있어서, 초기 상태에서 액정 화합물은 수직 배향된 상태로 오목부에 존재하는 액정 소자. The liquid crystal device according to claim 1, wherein in the initial state, the liquid crystal compound is present in the concave portion in the vertically oriented state.
  10. 제 1 항에 있어서, 초기 상태에서 액정 소자는 면상 위상차가 30 nm이하이고, 두께 방향 위상차는 500 nm이상인 액정 소자. The liquid crystal element according to claim 1, wherein in the initial state, the liquid crystal element has a plane phase difference of 30 nm or less, and a thickness direction phase difference of 500 nm or more.
  11. 제 1 항에 있어서, 초기 상태에서 400nm 내지 700nm 파장의 광에 대한 투과율이 45% 이상이고, 헤이즈가 10%이하인 액정 소자. The liquid crystal device according to claim 1, wherein in an initial state, a transmittance for light having a wavelength of 400 nm to 700 nm is 45% or more, and haze is 10% or less.
  12. 제 11항에 있어서, 외부 에너지 인가에 의하여 400nm 내지 700nm 파장의 광에 대한 투과율이 45%미만이고, 헤이즈가 10% 초과인 산란 모드로 스위칭되는 액정 소자.12. The liquid crystal device according to claim 11, wherein a light transmittance of less than 45% and a haze of more than 10% is switched to a scattering mode by applying external energy.
  13. 상부에 볼록부와 오목부가 형성되어 있는 몰드층이 존재하는 제 1 기판의 오목부에 액정 화합물을 포함시킨 후, 상부에 표면 에너지가 45 mN/m 이하이며, AFM Z 스케일 표면 조도가 2 nm 이하인 수지층이 형성되어 있는 제 2 기판을 상기 수지층이 상기 몰드층의 볼록부와 접촉하도록 제 1 기판 상부에 적층하는 것을 포함하는 액정 소자의 제조 방법.After incorporating a liquid crystal compound into the concave portion of the first substrate having the mold layer having the convex portion and the concave portion formed thereon, the surface energy is 45 mN / m or less at the top, and the AFM Z scale surface roughness is 2 nm or less. A method for manufacturing a liquid crystal element, comprising laminating a second substrate on which a resin layer is formed on the first substrate so that the resin layer is in contact with the convex portion of the mold layer.
  14. 제 13 항에 있어서, 몰드층의 볼록부와 오목부를 임프린팅 방식으로 형성하는 액정 소자의 제조 방법. The method for manufacturing a liquid crystal element according to claim 13, wherein the convex portion and the concave portion of the mold layer are formed by imprinting.
  15. 제 13 항에 있어서, 제 2 기판을 제 1 기판에 적층한 후 수지층과 몰드층의 볼록부를 가교시키는 것을 포함하는 액정 소자의 제조 방법. The manufacturing method of the liquid crystal element of Claim 13 which crosslinks the convex part of a resin layer and a mold layer after laminating | stacking a 2nd board | substrate to a 1st board | substrate.
  16. 제 1 항의 액정 소자를 포함하는 광 변조 장치.An optical modulation device comprising the liquid crystal element of claim 1.
PCT/KR2015/003409 2014-04-04 2015-04-06 Liquid crystal element WO2015152694A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016557011A JP6384011B2 (en) 2014-04-04 2015-04-06 Liquid crystal element
US15/126,514 US10196550B2 (en) 2014-04-04 2015-04-06 Liquid crystal element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140040644 2014-04-04
KR10-2014-0040644 2014-04-04
KR1020150048241A KR101732789B1 (en) 2014-04-04 2015-04-06 Liquid Crystal Element
KR10-2015-0048241 2015-04-06

Publications (1)

Publication Number Publication Date
WO2015152694A1 true WO2015152694A1 (en) 2015-10-08

Family

ID=54240903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/003409 WO2015152694A1 (en) 2014-04-04 2015-04-06 Liquid crystal element

Country Status (1)

Country Link
WO (1) WO2015152694A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114341718A (en) * 2020-02-18 2022-04-12 株式会社Lg化学 Pattern film, transmittance variable device including the same, and method for producing transmittance variable device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006085068A (en) * 2004-09-17 2006-03-30 Nippon Hoso Kyokai <Nhk> Manufacturing method of liquid crystal optical modulator, liquid crystal optical modulator, and liquid crystal display
JP2007065286A (en) * 2005-08-31 2007-03-15 Dainippon Ink & Chem Inc Macromolecule dispersion type liquid crystal display element
KR20100100900A (en) * 2007-12-27 2010-09-15 아사히 가라스 가부시키가이샤 Liquid crystal element, optical head device, and variable optical modulation element
KR20120022617A (en) * 2010-08-05 2012-03-12 미래나노텍(주) Patterned retarder and manufacturing method of the same
KR20130129120A (en) * 2012-05-18 2013-11-27 스탠리 일렉트릭 컴퍼니, 리미티드 Liquid crystal device and liquid crystal display

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006085068A (en) * 2004-09-17 2006-03-30 Nippon Hoso Kyokai <Nhk> Manufacturing method of liquid crystal optical modulator, liquid crystal optical modulator, and liquid crystal display
JP2007065286A (en) * 2005-08-31 2007-03-15 Dainippon Ink & Chem Inc Macromolecule dispersion type liquid crystal display element
KR20100100900A (en) * 2007-12-27 2010-09-15 아사히 가라스 가부시키가이샤 Liquid crystal element, optical head device, and variable optical modulation element
KR20120022617A (en) * 2010-08-05 2012-03-12 미래나노텍(주) Patterned retarder and manufacturing method of the same
KR20130129120A (en) * 2012-05-18 2013-11-27 스탠리 일렉트릭 컴퍼니, 리미티드 Liquid crystal device and liquid crystal display

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114341718A (en) * 2020-02-18 2022-04-12 株式会社Lg化学 Pattern film, transmittance variable device including the same, and method for producing transmittance variable device
US11874564B2 (en) 2020-02-18 2024-01-16 Lg Chem, Ltd. Patterned film, variable-transmittance device comprising same, and method for producing variable-transmittance device

Similar Documents

Publication Publication Date Title
WO2016200199A1 (en) Display device
WO2021080361A1 (en) Optical modulation device
WO2014092518A1 (en) Liquid crystal element
KR101732789B1 (en) Liquid Crystal Element
WO2019124961A1 (en) Permeability varying film and use thereof
WO2021091207A1 (en) Method for manufacturing light modulation device
WO2009088240A2 (en) Optical film and electronic information device employing the same
WO2018080017A1 (en) Viewer-side polarizing plate for liquid crystal display device, and liquid crystal display device comprising same
WO2018199619A1 (en) Optical device
WO2018199615A1 (en) Optical device
WO2019240414A1 (en) Optical device
WO2017188683A1 (en) Touch sensor-integrated color filter and manufacturing method therefor
WO2015080346A1 (en) Adhesive composition, adhesive film formed therefrom, and optical display device comprising same
WO2018199618A1 (en) Optical device
WO2016159671A1 (en) Liquid-crystal element
WO2013115628A1 (en) Liquid crystal composition
WO2021071263A1 (en) Light modulation device
WO2018043979A1 (en) Method for manufacturing multilayer liquid crystal film
WO2015152694A1 (en) Liquid crystal element
WO2022005236A1 (en) Optical modulation device
WO2022010185A1 (en) Optical device
WO2021167273A1 (en) Patterned film, variable-transmittance device comprising same, and method for producing variable-transmittance device
WO2019190190A1 (en) Polarizing plate and display device
WO2019190187A1 (en) Optical device
WO2022005244A1 (en) Adhesive and liquid crystal cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15773197

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016557011

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15126514

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15773197

Country of ref document: EP

Kind code of ref document: A1