WO2015152686A1 - Broadband module and communication device including same - Google Patents

Broadband module and communication device including same Download PDF

Info

Publication number
WO2015152686A1
WO2015152686A1 PCT/KR2015/003382 KR2015003382W WO2015152686A1 WO 2015152686 A1 WO2015152686 A1 WO 2015152686A1 KR 2015003382 W KR2015003382 W KR 2015003382W WO 2015152686 A1 WO2015152686 A1 WO 2015152686A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
terminal
voltage
line
frequency band
Prior art date
Application number
PCT/KR2015/003382
Other languages
French (fr)
Korean (ko)
Inventor
성원모
김의선
Original Assignee
주식회사 이엠따블유
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이엠따블유 filed Critical 주식회사 이엠따블유
Publication of WO2015152686A1 publication Critical patent/WO2015152686A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • H01Q5/15Resonant antennas for operation of centre-fed antennas comprising one or more collinear, substantially straight or elongated active elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • Embodiments of the present invention relate to a broadband module and a communication device including the same, and more particularly, to a broadband module and a communication device including the same that can improve the performance of the antenna.
  • penta band antennas satisfying the GSM quad band and the W2100 band have been used in various communication devices (communication devices).
  • An example of a conventional antenna that satisfies these characteristics is as follows.
  • a part of the radiator is a feed end and a ground end.
  • the feed end is connected to the feed part of the communication device and the ground end is connected to the ground plane of the communication device.
  • the inverted-f type antenna operates in the service bands of the GSM quad band and the W2100 band, and can be seen to operate at 824 to 960 MHz and 1710 to 2170 MHz in terms of frequency.
  • the widening and high gain of the antenna are opposite to the miniaturization. That is, it is very difficult to expand the bandwidth and increase the gain while making the antenna small. Nevertheless, there is a problem in the market because the antenna requires miniaturization, wide bandwidth and high gain at the same time.
  • miniaturization of the antenna has a problem that it is difficult to draw resonance of the low frequency band.
  • the resonant frequency is inevitably dependent on the size of the antenna. The lower the resonant frequency, the larger the size of the antenna. Therefore, when designing an antenna that operates in a lower frequency band than the GSM quad band such as the LTE low band, the size is inevitably larger. Therefore, it is difficult to realize miniaturization.
  • the antenna designed to satisfy the GSM quad band and the W2100 band may not be designed to operate in the LTE low band.
  • the antennas had to be redesigned to expand or change the service band.
  • the antenna is redesigned from the beginning, there is a problem in that it cannot use the already invested effort and capital because the previously developed antenna cannot be used as it is.
  • Embodiments of the present invention are to provide a broadband module and a communication device including the same so that the antenna can smoothly transmit and receive signals in the broadband through the impedance matching unit and the switching unit.
  • an impedance comprising a first terminal connected to the feed end of the antenna, and a second terminal connected to the feed part, the impedance consisting of a combination of one or more of a capacitor and an inductor for impedance matching of the antenna Matching part; And a switching unit for allowing the ground terminal of the antenna or the first terminal to be connected to the ground plane through any one of a plurality of adjustment elements in accordance with an external control signal to move the resonance frequency band of the antenna. Modules are provided.
  • the impedance matching unit further includes a first line on which the first terminal is formed and a second line on which the second terminal is formed, wherein the first line, the second line, and between the first line and the second line are formed. At least one capacitor and at least one inductor may be disposed.
  • a first tuning element for resonant frequency tuning of the antenna may be disposed between a third terminal formed in a direction opposite to the first terminal side of the first line and one side of a ground plane adjacent to the third terminal.
  • a second tuning element for resonant frequency tuning of the antenna may be disposed between the fourth terminal formed in the opposite direction to the second terminal side of the second line and the other side of the ground plane adjacent to the fourth terminal.
  • Each of the adjustment elements may be a passive element having different impedance values.
  • the switching unit may include a first input unit and a second input unit configured to receive a first voltage from the outside or a second voltage higher by a predetermined magnitude than the first voltage.
  • the switching unit may connect the ground terminal of the antenna or the first terminal to the ground plane when the second voltage is input to the first input unit.
  • the plurality of adjustment elements may include a first adjustment element and a second adjustment element, and the switching unit may be grounded through the first adjustment element when the voltage input to the second input unit is the first voltage. However, when the first terminal is connected to the ground plane, and the voltage input to the second input unit is the second voltage, the ground terminal of the antenna or the first terminal is connected to the ground plane through the second adjustment element. Can be connected to
  • a capacitor or an inductor may be disposed between the switching unit and the first terminal.
  • a communication device comprising the broadband module described above.
  • an impedance matching unit may be disposed between the antenna and the feeding unit to match the impedance of the antenna and the impedance of the feeding unit in a wide bandwidth.
  • the operation of the switching unit even while the antenna is operating in the low frequency band (for example, about 600MHz to 680MHz band) high frequency band (for example, about 1.7GHz to 2.2GHz band) can be kept constant so that the antenna performance at the low frequency band (for example, about 600MHz to 680MHz band) high frequency band (for example, about 1.7GHz to 2.2GHz band) can be kept constant so that the antenna performance at the low frequency band (for example, about 600MHz to 680MHz band) high frequency band (for example, about 1.7GHz to 2.2GHz band) can be kept constant so that the antenna performance at the low frequency band (for example, about 600MHz to 680MHz band) high frequency band (for example, about 1.7GHz to 2.2GHz band) can be kept constant so that the antenna performance at the low frequency band (for example, about 600MHz to 680MHz band) high frequency band (for example, about 1.7GHz to 2.2GHz band) can be kept constant so that the antenna performance at the low frequency band (for example, about 600MHz to 680MHz band) high frequency band (
  • FIG. 1 is a schematic diagram illustrating a broadband module according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a detailed configuration of a broadband module according to a first embodiment of the present invention
  • FIG 3 is a view illustrating an embodiment of an impedance matching unit in a broadband module according to embodiments of the present invention.
  • VSWRs voltage standing wave ratios
  • 5 is a view comparing the average gain and efficiency of the antenna when the impedance matching unit is not applied to the antenna according to the embodiments of the present invention
  • FIG. 6 is a graph illustrating a change in voltage standing wave ratio of an antenna according to an operation mode of a switching unit in a broadband module according to the first embodiment of the present invention.
  • FIG. 7 is a diagram illustrating an average gain and efficiency of an antenna according to an operation mode of a switching unit in the broadband module according to the first embodiment of the present invention.
  • FIG. 8 is a schematic diagram illustrating a broadband module according to a second embodiment of the present invention.
  • FIG. 9 is a block diagram showing a detailed configuration of a broadband module according to a second embodiment of the present invention.
  • FIG. 10 is a graph illustrating a change in voltage standing wave ratio (VSWR) of an antenna according to an operation mode of a switching unit in a broadband module according to a second embodiment of the present invention.
  • VSWR voltage standing wave ratio
  • FIG. 11 is a view illustrating an average gain and efficiency of an antenna according to an operation mode of a switching unit in a broadband module according to a second embodiment of the present invention.
  • FIG. 1 is a schematic diagram illustrating a broadband module 100 according to a first embodiment of the present invention
  • FIG. 2 is a block diagram showing a detailed configuration of the broadband module 100 shown in FIG. 1.
  • the broadband module 100 according to the first embodiment of the present invention may be connected to an antenna 150 embedded in a communication device (not shown).
  • the communication device may be, for example, a mobile phone, a PDA, a notebook computer, or an MP3.
  • the antenna 150 may include a radiator 152, a dielectric 154, a feed end 156, and a ground end 158.
  • Antenna 150 may be a small antenna having a size of ⁇ / 4 or less, and may be, for example, an inverted F type antenna.
  • the shape of the antenna 150 is not limited thereto, and the wideband module 100 may be applied to various types of antennas, such as an inverted L type antenna.
  • the broadband module 100 includes an impedance matching unit 110 and a switching unit 120.
  • the impedance matching unit 110 performs impedance matching between the power feeding unit 180 and the antenna 150.
  • the frequency band in which the antenna 150 operates is called a first frequency band (used to include a plurality of frequency bands).
  • the impedance matching unit 110 performs impedance matching between the power feeding unit 180 and the antenna 150 in the wide frequency band so that the antenna 150 may operate in the second frequency band wider than the first frequency band.
  • the “operation” refers to a state in which the antenna 150 transmits and receives a signal while having an average gain and efficiency of more than a predetermined value. As shown in FIG.
  • the impedance matching unit 110 may include a first terminal 112a connected to the feed terminal 156 of the antenna 150, a second terminal 114b connected to the feed unit 180, And a third terminal 112b connected to the first tuning element 132 and a fourth terminal 114a connected to the second tuning element 134.
  • the impedance matching unit 110 may be formed of a combination of one or more of a capacitor and an inductor, thereby extending the resonance frequency band of the antenna 150.
  • the switching unit 120 may switch the switching module 148 to move the resonance frequency band of the antenna 150.
  • the switching unit 120 includes a switching module 148 connected to the ground terminal 158 of the antenna.
  • the ground terminal 158 of the antenna 150 may include a plurality of adjustment elements according to an external control signal (for example, a voltage having a predetermined magnitude).
  • the switching module 148 is switched to be connected to the ground plane 160 through any one of the 142 and 144.
  • each of the first adjusting element 142 and the second adjusting element 144 may be a passive element (eg, a capacitor or an inductor) having different impedance values.
  • the switching unit 120 may include an input unit 146 that receives a voltage from the outside, and controls the operation of the switching module 148 according to the magnitude of the voltage received through the input unit 146.
  • the input unit 146 may include a first input unit EN 146a, a second input unit CTRL 146b, and a third input unit VBATT 146c.
  • the third input unit 146c may receive a battery voltage for the operation of the switching unit 120.
  • the battery voltage may be about 3.5V, for example.
  • the first input unit 146a and the second input unit 146b may receive a voltage from outside to control the operation of the switching module 148.
  • the switching unit 120 may have any one of a plurality of adjustment elements 142 and 144 of the ground terminal 158 of the antenna 150.
  • the switching module 148 may be switched to be connected to the ground plane 160 through the through.
  • the switching unit 120 may shut down the switching module 148 so that the switching operation of the switching module 148 does not occur.
  • the first voltage may be, for example, 2.4V.
  • the switching module 148 may include a plurality of adjustment elements according to the magnitude of the voltage applied to the second input unit 146b. It may be connected to the ground plane 160 through any one of (142, 144). The second voltage may be, for example, 2.8V. The switching operation of the switching module 148 may occur only when a voltage of a predetermined magnitude or more is applied to the first input unit 146a. That is, the magnitude of the voltage applied to the first input unit 146a becomes a reference voltage that determines whether the switching module 148 operates.
  • the switching module 148 may be connected to the ground plane 160 through the first adjusting element 142. Can be.
  • the switching module 148 may be connected to the ground plane 160 through the second adjustment element 144. It can be connected with. As the switching module 148 is connected to the ground plane 160 through one of the adjusting elements 142 and 144 having different impedance values, the ground of the antenna 150 is changed and consequently the The resonant frequency band may shift. Meanwhile, although the switching module 148 is described as being connected to the ground plane 160 through one of the two adjusting elements 142 and 144, this is only one embodiment, and the number of adjusting elements is limited thereto. It doesn't work.
  • the switching unit 120 may control the switching operation of the switching module 148 by dividing the magnitude of the voltage applied to the second input unit 146b into a first voltage, a second voltage, a third voltage, and a fourth voltage. It may be.
  • the impedance matching unit 110 is disposed between the antenna 150 and the feeding unit 180 to widen the impedance of the antenna 150 and the impedance of the feeding unit 180. Can match in bandwidth.
  • the transmission and reception efficiency of the antenna 150 in a specific frequency band may be reduced, so that embodiments of the present invention resonant frequency band of the antenna 150 through the operation of the switching unit 120.
  • the service is configured to be available in most communication bands currently in service.
  • the high frequency band (eg, about 1.7) may be achieved while the antenna 150 operates in the low frequency band (eg, about 600 MHz to 680 MHz band) through the operation of the switching unit 120.
  • GHz to 2.2 GHz band can be kept constant so as not to degrade antenna performance.
  • the impedance matching unit 110 includes a first line 112 and a second line 114.
  • the first terminal 112a is formed at one end of the first line 112 and the third terminal 112b is formed at the other end.
  • the first terminal 112a may be connected to the feed end 156 of the antenna 150, and the third terminal 112b may be connected to the first tuning element 132.
  • the fourth terminal 114a may be formed at one end of the second line 114, and the second terminal 114b may be formed at the other end of the second line 114.
  • the fourth terminal 114a may be connected to the second tuning element 134, and the second terminal 114b may be connected to the feeder 180.
  • the first tuning element 132 and the second tuning element 134 are for finely adjusting the resonant frequency band of the antenna 150 and may be formed of a combination of one or more of a capacitor and an inductor.
  • Positions of the tuning element 132 and the second tuning element 134 may vary depending on the shape of the impedance matching unit 110, the resonance frequency of the antenna 150, and the like.
  • One or more capacitors and inductors may be disposed between the first line 112, the second line 114, and the first line 112 and the second line 114.
  • a first capacitor C1 may be disposed in the first line 112 between the first terminal 112a and the third terminal 112b and the fourth terminal 114a and the second terminal 114b.
  • the second capacitor C2 may be disposed in the second line 114 between them.
  • a third capacitor C3, a first inductor L1, a second inductor L2, and a fourth capacitor C4 may be disposed between the first line 112 and the second line 114, respectively. .
  • the second inductor L2 and the fourth capacitor C4 may be disposed to be close to one ends 112a and 114a of the first line 112 and the second line 114, and the third capacitor C3.
  • the first inductor L1 may be disposed to be close to the other ends 112b and 114b of the first line 112 and the second line 114.
  • the impedance matching unit 110 is shown as a combination of four capacitors C1, C2, C3, and C4 and two inductors L1 and L2, this is only one embodiment. The number of is not limited to this.
  • the arrangement of the capacitor and the inductor shown in FIG. 3 is only one embodiment, but is not limited thereto.
  • the impedance matching unit 110 may be formed by combining one or more capacitors and inductors in a form different from that shown in FIG. 3.
  • FIG. 4 compares the voltage standing wave ratio (VSWR) of the antenna 150 when the impedance matching unit 110 according to the embodiments of the present invention is not applied to the antenna 150. It is a graph. 4 (a) is a graph showing the voltage standing wave ratio when the impedance matching unit 110 according to the embodiments of the present invention is not applied to the antenna 150, and FIG. 4 (b) is a graph of the present invention. A graph showing a voltage standing wave ratio when the impedance matching unit 110 according to the embodiments is applied to the antenna 150. As shown in FIG. 4, when the impedance matching unit 110 is applied to the antenna 150, it can be seen that the bandwidth is broadened overall.
  • VSWR voltage standing wave ratio
  • the impedance matching unit 110 may be disposed between the antenna 150 and the power feeding unit 180 to match the impedance of the antenna 150 with the impedance of the power feeding unit 180 in a wide bandwidth.
  • the impedance matching unit 110 composed of a combination of a capacitor and an inductor is applied to the antenna 150, the resonance frequency of the antenna 150 may be easily adjusted because the capacitance and inductance values may be easily adjusted than when applying a general impedance converter. There is an easy advantage to change.
  • FIG. 5 is a view comparing average gain and efficiency of the antenna 150 when the impedance matching unit 110 according to the embodiments of the present invention is not applied to the antenna 150.
  • FIG. 5A illustrates average gain and efficiency when the impedance matching unit 110 according to the embodiments of the present invention is not applied to the antenna 150
  • FIG. 5B illustrates the present invention.
  • the average gain and efficiency when the impedance matching unit 110 according to the embodiments of the present invention is applied to the antenna 150.
  • the average gain and efficiency in the low frequency band (698 MHz to 787 MHz band) may be improved.
  • the average gain and efficiency may be reduced, but this may be improved by combining the above-described switching unit 120 with the impedance matching unit 110.
  • FIG. 6 is a graph illustrating a change in the voltage standing wave ratio of the antenna 150 according to the operation mode of the switching unit 120 in the broadband module 100 according to the first embodiment of the present invention.
  • the second voltage V High is input to the first input unit EN 146a and the first voltage V Low is input to the second input unit CTRL 146b. Therefore, assuming that the mode in which the switching module 148 is connected to the ground plane 160 through the first adjustment element RF1 142 is a first operation mode State 1, and a second voltage is applied to the first input unit 146a.
  • the switching module 148 is the second adjusting device; that is connected to the ground plane 160 through via (RF2 144)
  • the mode is assumed to be the second operation mode (State 2), and the mode in which the switching module 148 is shut down by inputting the first voltage V Low to the first input unit 146a is called the third operation mode (State 2). Assume 3).
  • the antenna 150 may operate in an operation mode 1 (state 1), an operation mode 2 (state 2), or an operation mode 3 (state 3).
  • operating mode 1 2G frequency band (GSM 850 / PCS frequency band), 3G frequency band (WCDMA W1 / 2/4/5) and 4G frequency band (LTE B1 / 2/4/5/12/13 /
  • operation mode 2 it is confirmed that the antenna 150 may operate.
  • operation mode 2 it is confirmed that the antenna 150 can operate in a frequency band of 620 MHz to 680 MHz, a frequency band of 2G (GSM 850 / PCS frequency band), and a frequency band of 3G (WCDMA W1 / 2/4/5). Can be.
  • the antenna 150 can operate in the frequency band of 640 MHz to 680 MHz, the frequency band of 2G (GSM 850 / PCS frequency band), and the frequency bands of W2 / 5 and LTE B29.
  • the resonant frequency of the antenna 150 is extended to the frequency band of the early 600MHz. That is, according to the embodiments of the present invention, by moving the resonant frequency band of the antenna 150 through the operation of the switching unit 120, to enable the service in most communication bands currently in service and to operate the frequency band It can scale up to about 600MHz. Accordingly, only the broadband module 100 may be added to the existing antenna 150 to enable the service up to the LTE frequency band.
  • FIG. 7 is a diagram illustrating an average gain and efficiency of the antenna 150 according to an operation mode of the switching unit 120 in the broadband module 100 according to the first embodiment of the present invention.
  • the broadband module 100 enables the antenna 150 to operate in different frequency bands according to the operation mode of the switching unit 120.
  • operation mode 1 it can be seen that the antenna 150 operates smoothly in the frequency band of 700 MHz to 920 MHz and the frequency band of 1.71 GHz to 2.17 GHz.
  • operation mode 2 it can be seen that the antenna 150 operates smoothly in a frequency band of 620 MHz to 680 MHz, a frequency band of 820 MHz to 920 MHz, and a frequency band of 1.71 GHz to 2.17 GHz.
  • the antenna 150 operates smoothly in a frequency band of 640 MHz to 720 MHz, a frequency band of 820 MHz to 920 MHz, and a frequency band of 1.71 GHz to 1.99 GHz. That is, according to embodiments of the present invention, the resonance frequency band of the antenna 150 can be easily moved through the operation of the switching unit 120, thereby enabling service in most communication bands currently in service. . In particular, according to embodiments of the present invention, even when the antenna 150 operates in the low frequency band (for example, about 600MHz to 680MHz band) through the operation of the switching unit 120, for example, It is possible to keep the antenna 150 constant in the range of about 1.7 GHz to 2.2 GHz.
  • the low frequency band for example, about 600MHz to 680MHz band
  • FIG. 8 is a schematic diagram illustrating a broadband module 200 according to a second embodiment of the present invention
  • FIG. 9 is a block diagram showing a detailed configuration of the broadband module 200 according to the second embodiment of the present invention.
  • Broadband module 200 according to the second embodiment of the present invention is the majority of the broadband module 100 according to the first embodiment of the present invention, except that the switching module 148 is connected to the first terminal 112a. Have the same configuration.
  • the switching module 148 is connected to the first terminal 112a.
  • the first terminal 112a may be connected to the feed end 156 of the antenna 150.
  • a capacitor or an inductor 202 may be disposed between the switching module 148 and the first terminal 112a of the switching unit 120.
  • the resonance frequency band of the antenna 150 is slightly different, the operation method of the broadband module 200 and the effects thereof are the same as the case of using the broadband module 100 according to the first embodiment. Therefore, the detailed configuration and operation method of the broadband module 200 as described above will be omitted.
  • FIG. 10 is a graph illustrating a change in voltage standing wave ratio (VSWR) of an antenna according to an operation mode of the switching unit 120 in the broadband module 200 according to the second embodiment of the present invention.
  • the antenna 150 may operate in an operation mode 1 (state 1), an operation mode 2 (state 2), or an operation mode 3 (state 3).
  • the operation mode 1 (state 1), the operation mode 2 (state 2), and the operation mode 3 (state 3) illustrated in FIG. 10 are the same as described in [Table 1].
  • operation mode 1 it can be seen that the antenna 150 may operate in the frequency bands of LTE B1 / 2/4/12/13/17/29, W1 / 2/4, and DCS / PCS.
  • the antenna 150 can operate in the frequency band of the GSM 850/900.
  • the antenna 150 can operate in the frequency band of the GSM 850. That is, according to the second exemplary embodiment of the present invention, the resonant frequency band of the antenna 150 is moved by the operation of the switching unit 120, thereby enabling service in most communication bands currently in service.
  • FIG. 11 is a diagram illustrating an average gain and efficiency of the antenna 150 according to an operation mode of the switching unit 120 in the broadband module 200 according to the second embodiment of the present invention.
  • the wideband module 200 allows the antenna 150 to operate in different frequency bands according to the operation mode of the switching unit 120.
  • operation mode 1 it can be seen that the antenna 150 operates smoothly in a frequency band of 698 MHz to 894 MHz and a frequency band of 1.71 GHz to 2.17 GHz.
  • operation mode 2 it can be seen that the antenna 150 operates smoothly in the frequency band of 824MHz to 960MHz and the frequency band of 1.85GHz to 2.17GHz.
  • operation mode 3 it can be seen that the antenna 150 operates smoothly in the frequency band of 824MHz to 894MHz.
  • the antenna 150 can operate in a plurality of frequency bands through the operation of the switching unit 120, thereby enabling service in most communication bands currently in service.
  • the antenna 150 operates in the low frequency band (for example, the frequency band of about 700 MHz) through the operation of the switching unit 120, for example, It is possible to keep the antenna 150 constant in the range of about 1.7 GHz to 2.2 GHz.
  • a communication device may include the above-described broadband module 100 or 200.
  • the communication device is a terminal having an antenna, and may be, for example, a mobile phone, a PDA, a notebook computer, or an MP3.
  • the above-described wideband module 100 or 200 may be embedded in, for example, a chip in the communication device.

Abstract

A broadband module and a communication device including the same are disclosed. The broadband module, according to one embodiment of the present invention, comprises: an impedance matching unit which includes a first terminal connected to a feeding end of an antenna and a second terminal connected to a feeding unit, and which is formed by one or more combinations of capacitors and inductors for an impedance matching of the antenna; and a switching unit for enabling a ground end of the antenna or the first terminal to connect with a ground surface through any one of a plurality of coordination elements according to an external control signal so as to move a resonance frequency band of the antenna.

Description

광대역 모듈 및 이를 포함하는 통신 장치Broadband Module and Communication Device Including Same
본 발명의 실시예들은 광대역 모듈 및 이를 포함하는 통신 장치에 관한 것으로서, 보다 상세하게는 안테나의 성능을 향상시킬 수 있는 광대역 모듈 및 이를 포함하는 통신 장치에 관한 것이다.Embodiments of the present invention relate to a broadband module and a communication device including the same, and more particularly, to a broadband module and a communication device including the same that can improve the performance of the antenna.
종래에는 GSM 쿼드 밴드(quad band) 및 W2100 밴드를 동시에 만족하는 펜타밴드(penta band) 안테나들이 각종 통신 장치(통신 장치)에 사용되어 왔다. 이러한 특성을 만족하는 종래의 안테나의 일 예를 설명하면 다음과 같다.Conventionally, penta band antennas satisfying the GSM quad band and the W2100 band have been used in various communication devices (communication devices). An example of a conventional antenna that satisfies these characteristics is as follows.
유전체 및 방사체를 포함하는 종래의 역에프 타입(Inverted F type) 안테나는 방사체 일부가 급전단 및 접지단이 된다. 급전단은 통신 장치의 급전부와 연결되고 접지단은 통신 장치의 접지면과 연결된다. In the conventional Inverted F type antenna including a dielectric and a radiator, a part of the radiator is a feed end and a ground end. The feed end is connected to the feed part of the communication device and the ground end is connected to the ground plane of the communication device.
이러한 역에프 타입의 안테나는 GSM 쿼드 밴드 및 W2100 밴드의 서비스 대역에서 동작하는데, 주파수를 기준으로 보면 824∼960MHz, 1710∼2170MHz에서 동작한다고 볼 수 있다.The inverted-f type antenna operates in the service bands of the GSM quad band and the W2100 band, and can be seen to operate at 824 to 960 MHz and 1710 to 2170 MHz in terms of frequency.
그런데, 최근에는 GSM 쿼드 밴드(quad band) 및 W2100 밴드를 동시에 만족하면서도, 이러한 서비스 대역 이외에 LTE(Long Term Evolution) 대역에서도 동작 가능한 안테나의 출시가 요구되고 있다. 특히 LTE Low 밴드(800MHz 이하)까지도 동작 대역이 확장되는 안테나의 설계가 요구된다. 그러나 λ/4 이하에서 동작하는 소형 안테나가 이러한 모든 서비스 대역을 만족하도록 설계하는 것은 아래와 같은 문제점으로 인해 많은 연구가 필요로 한다.However, in recent years, while satisfying the GSM quad band and the W2100 band at the same time, it is required to release an antenna that can operate in the LTE (Long Term Evolution) band in addition to the service band. In particular, the design of an antenna that extends the operating band even in the LTE low band (below 800MHz) is required. However, designing a small antenna that operates below λ / 4 to satisfy all these service bands requires much research due to the following problems.
첫째, 안테나의 광대역화 및 고이득화는 소형화에 상반된 특성이다. 즉, 안테나를 작게 만들면서 대역폭을 확장하고 이득을 높이는 것은 매우 어렵다. 그럼에도 불구하고 시장에서는 안테나의 소형화, 광대역화 및 고이득화를 동시에 요구하기 때문에 문제가 된다.First, the widening and high gain of the antenna are opposite to the miniaturization. That is, it is very difficult to expand the bandwidth and increase the gain while making the antenna small. Nevertheless, there is a problem in the market because the antenna requires miniaturization, wide bandwidth and high gain at the same time.
둘째, 안테나의 소형화는 저주파 대역의 공진을 끌어내기 어려운 문제점이 있다. 공진 주파수는 안테나의 사이즈에 의존할 수밖에 없는 특성인데, 공진 주파수를 낮출수록 안테나의 사이즈는 커질 수밖에 없다. 따라서 LTE Low 밴드와 같이 GSM 쿼드 밴드보다 낮은 주파수 대역에서 동작하는 안테나를 설계할 경우 그 크기는 필연적으로 더 커질 수밖에 없다. 따라서 소형화를 구현하기 어렵다.Second, miniaturization of the antenna has a problem that it is difficult to draw resonance of the low frequency band. The resonant frequency is inevitably dependent on the size of the antenna. The lower the resonant frequency, the larger the size of the antenna. Therefore, when designing an antenna that operates in a lower frequency band than the GSM quad band such as the LTE low band, the size is inevitably larger. Therefore, it is difficult to realize miniaturization.
셋째, 안테나의 서비스 대역이 일부 확장되면 기존에 설계된 안테나를 그대로 활용할 수 없는 문제도 있다. 다시 말해, 종래기술에 의해서는 GSM 쿼드 밴드 및 W2100 밴드를 만족하도록 설계된 안테나를 그대로 활용하면서 LTE Low 밴드에서도 동작하도록 설계할 수는 없다. 따라서 서비스 대역을 확장하거나 변경하기 위해서는 안테나를 재설계할 수밖에 없었다. 그런데 안테나를 처음부터 다시 설계한다면, 기존에 개발한 안테나를 그대로 사용할 수 없기 때문에 이미 투입된 노력과 자본을 활용하지 못하는 문제가 있다.Third, if the service band of the antenna is partially extended, there is a problem in that the previously designed antenna cannot be used as it is. In other words, according to the related art, the antenna designed to satisfy the GSM quad band and the W2100 band may not be designed to operate in the LTE low band. As a result, the antennas had to be redesigned to expand or change the service band. However, if the antenna is redesigned from the beginning, there is a problem in that it cannot use the already invested effort and capital because the previously developed antenna cannot be used as it is.
본 발명의 실시예들은 임피던스 정합부 및 스위칭부를 통해 안테나가 광대역에서 신호를 원활하게 송수신할 수 있도록 하는 광대역 모듈 및 이를 포함하는 통신 장치를 제공하기 위한 것이다.Embodiments of the present invention are to provide a broadband module and a communication device including the same so that the antenna can smoothly transmit and receive signals in the broadband through the impedance matching unit and the switching unit.
본 발명의 예시적인 실시예에 따르면, 안테나의 급전단과 연결되는 제 1 단자, 및 급전부와 연결되는 제 2 단자를 포함하며, 상기 안테나의 임피던스 정합을 위해 커패시터 및 인덕터 중 하나 이상의 조합으로 이루어지는 임피던스 정합부; 및 상기 안테나의 공진 주파수 대역을 이동시킬 수 있도록 외부 제어 신호에 따라 상기 안테나의 접지단 또는 상기 제 1 단자가 복수 개의 조정 소자 중 어느 하나를 통해 접지면과 연결될 수 있도록 하는 스위칭부를 포함하는, 광대역 모듈이 제공된다.According to an exemplary embodiment of the present invention, an impedance comprising a first terminal connected to the feed end of the antenna, and a second terminal connected to the feed part, the impedance consisting of a combination of one or more of a capacitor and an inductor for impedance matching of the antenna Matching part; And a switching unit for allowing the ground terminal of the antenna or the first terminal to be connected to the ground plane through any one of a plurality of adjustment elements in accordance with an external control signal to move the resonance frequency band of the antenna. Modules are provided.
상기 임피던스 정합부는 상기 제 1 단자가 형성되는 제 1 선로 및 상기 제 2 단자가 형성되는 제 2 선로를 더 포함하며, 상기 제 1 선로, 상기 제 2 선로 및 상기 제 1 선로와 상기 제 2 선로 사이에는 상기 커패시터 및 상기 인덕터가 하나 이상 배치될 수 있다.The impedance matching unit further includes a first line on which the first terminal is formed and a second line on which the second terminal is formed, wherein the first line, the second line, and between the first line and the second line are formed. At least one capacitor and at least one inductor may be disposed.
상기 제 1 선로의 상기 제 1 단자 측과 반대 방향에 형성되는 제 3 단자 및 상기 제 3 단자와 인접하는 접지면의 일측 사이에는 상기 안테나의 공진 주파수 튜닝을 위한 제 1 튜닝 소자가 배치될 수 있다.A first tuning element for resonant frequency tuning of the antenna may be disposed between a third terminal formed in a direction opposite to the first terminal side of the first line and one side of a ground plane adjacent to the third terminal. .
상기 제 2 선로의 상기 제 2 단자 측과 반대 방향에 형성되는 제 4 단자 및 상기 제 4 단자와 인접하는 접지면의 타측 사이에는 상기 안테나의 공진 주파수 튜닝을 위한 제 2 튜닝 소자가 배치될 수 있다.A second tuning element for resonant frequency tuning of the antenna may be disposed between the fourth terminal formed in the opposite direction to the second terminal side of the second line and the other side of the ground plane adjacent to the fourth terminal. .
상기 조정 소자 각각은, 서로 다른 임피던스 값을 갖는 수동소자일 수 있다.Each of the adjustment elements may be a passive element having different impedance values.
상기 스위칭부는, 외부로부터 제 1 전압, 또는 상기 제 1 전압보다 기 설정된 크기만큼 높은 제 2 전압을 입력받는 제 1 입력부 및 제 2 입력부를 포함할 수 있다.The switching unit may include a first input unit and a second input unit configured to receive a first voltage from the outside or a second voltage higher by a predetermined magnitude than the first voltage.
상기 스위칭부는, 상기 제 1 입력부에 상기 제 2 전압이 입력되는 경우 상기 안테나의 접지단 또는 상기 제 1 단자를 상기 접지면과 연결시킬 수 있다.The switching unit may connect the ground terminal of the antenna or the first terminal to the ground plane when the second voltage is input to the first input unit.
복수 개의 상기 조정 소자는, 제 1 조정 소자 및 제 2 조정 소자를 포함하며, 상기 스위칭부는, 상기 제 2 입력부에 입력되는 전압이 상기 제 1 전압인 경우 상기 제 1 조정 소자를 통해 상기 안테나의 접지단 또는 상기 제 1 단자를 상기 접지면과 연결시키며, 상기 제 2 입력부에 입력되는 전압이 상기 제 2 전압인 경우 상기 제 2 조정 소자를 통해 상기 안테나의 접지단 또는 상기 제 1 단자를 상기 접지면과 연결시킬 수 있다.The plurality of adjustment elements may include a first adjustment element and a second adjustment element, and the switching unit may be grounded through the first adjustment element when the voltage input to the second input unit is the first voltage. However, when the first terminal is connected to the ground plane, and the voltage input to the second input unit is the second voltage, the ground terminal of the antenna or the first terminal is connected to the ground plane through the second adjustment element. Can be connected to
상기 스위칭부와 상기 제 1 단자 사이에는 커패시터 또는 인덕터가 배치될 수 있다.A capacitor or an inductor may be disposed between the switching unit and the first terminal.
본 발명의 다른 예시적인 실시예에 따르면, 상술한 광대역 모듈을 포함하는 통신 장치가 제공된다.According to another exemplary embodiment of the present invention, there is provided a communication device comprising the broadband module described above.
본 발명의 실시예들에 따르면, 안테나와 급전부 사이에 임피던스 정합부를 배치함으로써 안테나의 임피던스와 급전부의 임피던스을 넓은 대역폭에서 정합(matching)시킬 수 있다.According to the embodiments of the present invention, an impedance matching unit may be disposed between the antenna and the feeding unit to match the impedance of the antenna and the impedance of the feeding unit in a wide bandwidth.
또한, 본 발명의 실시예들에 따르면, 스위칭부의 동작을 통해 안테나의 공진 주파수 대역을 이동(shifting)시킴으로써, 현재 서비스 중인 대부분의 통신 대역에서 서비스를 가능하게 하며 특히 동작 가능한 주파수 대역을 약 600MHz까지 확장할 수 있다. 이에 따라, 기존 안테나에 광대역 모듈을 추가하는 것만으로 LTE 주파수 대역까지 서비스를 가능하게 할 수 있다.In addition, according to the embodiments of the present invention, by shifting the resonant frequency band of the antenna through the operation of the switching unit, it is possible to service in most communication bands currently in service, in particular operating frequency band up to about 600MHz Can be extended. Accordingly, it is possible to service up to the LTE frequency band only by adding a broadband module to the existing antenna.
또한, 본 발명의 실시예들에 따르면, 스위칭부의 동작을 통해 안테나가 저주파수 대역(예를 들어, 약 600MHz 내지 680MHz 대역)에서 동작하는 동안에도 고주파수 대역(예를 들어, 약 1.7GHz 내지 2.2GHz 대역)에서의 안테나 성능이 떨어지지 않도록 일정하게 유지할 수 있다.Further, according to embodiments of the present invention, the operation of the switching unit, even while the antenna is operating in the low frequency band (for example, about 600MHz to 680MHz band) high frequency band (for example, about 1.7GHz to 2.2GHz band) Can be kept constant so that the antenna performance at
도 1은 본 발명의 제 1 실시예에 따른 광대역 모듈을 설명하기 위한 개략도1 is a schematic diagram illustrating a broadband module according to a first embodiment of the present invention.
도 2는 본 발명의 제 1 실시예에 따른 광대역 모듈의 상세 구성을 나타낸 블록도2 is a block diagram showing a detailed configuration of a broadband module according to a first embodiment of the present invention
도 3은 본 발명의 실시예들에 따른 광대역 모듈에서, 임피던스 정합부의 일 실시예를 나타낸 도면3 is a view illustrating an embodiment of an impedance matching unit in a broadband module according to embodiments of the present invention.
도 4는 본 발명의 실시예들에 따른 임피던스 정합부를 안테나에 적용하지 않은 경우와 적용한 경우의 안테나의 전압 정재파비(VSWR : Voltage Standing Wave Ratio)를 비교한 그래프4 is a graph comparing voltage standing wave ratios (VSWRs) of antennas when an impedance matching unit is not applied to an antenna according to embodiments of the present invention.
도 5는 본 발명의 실시예들에 따른 임피던스 정합부를 안테나에 적용하지 않은 경우와 적용한 경우의 안테나의 평균 이득 및 효율을 비교한 도면5 is a view comparing the average gain and efficiency of the antenna when the impedance matching unit is not applied to the antenna according to the embodiments of the present invention
도 6은 본 발명의 제 1 실시예에 따른 광대역 모듈에서, 스위칭부의 동작 모드에 따른 안테나의 전압 정재파비의 변화를 나타낸 그래프6 is a graph illustrating a change in voltage standing wave ratio of an antenna according to an operation mode of a switching unit in a broadband module according to the first embodiment of the present invention.
도 7은 본 발명의 제 1 실시예에 따른 광대역 모듈에서, 스위칭부의 동작 모드에 따른 안테나의 평균 이득 및 효율을 나타낸 도면FIG. 7 is a diagram illustrating an average gain and efficiency of an antenna according to an operation mode of a switching unit in the broadband module according to the first embodiment of the present invention.
도 8은 본 발명의 제 2 실시예에 따른 광대역 모듈을 설명하기 위한 개략도8 is a schematic diagram illustrating a broadband module according to a second embodiment of the present invention.
도 9는 본 발명의 제 2 실시예에 따른 광대역 모듈의 상세 구성을 나타낸 블록도9 is a block diagram showing a detailed configuration of a broadband module according to a second embodiment of the present invention.
도 10은 본 발명의 제 2 실시예에 따른 광대역 모듈에서, 스위칭부의 동작 모드에 따른 안테나의 전압 정재파비(VSWR)의 변화를 나타낸 그래프10 is a graph illustrating a change in voltage standing wave ratio (VSWR) of an antenna according to an operation mode of a switching unit in a broadband module according to a second embodiment of the present invention.
도 11은 본 발명의 제 2 실시예에 따른 광대역 모듈에서, 스위칭부의 동작 모드에 따른 안테나의 평균 이득 및 효율을 나타낸 도면11 is a view illustrating an average gain and efficiency of an antenna according to an operation mode of a switching unit in a broadband module according to a second embodiment of the present invention.
이하, 도면을 참조하여 본 발명의 구체적인 실시예를 설명하기로 한다. 그러나 이는 예시적 실시예에 불과하며 본 발명은 이에 한정되지 않는다.Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. However, this is only an exemplary embodiment and the present invention is not limited thereto.
본 발명을 설명함에 있어서, 본 발명과 관련된 공지기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다. 그리고, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.In describing the present invention, when it is determined that the detailed description of the known technology related to the present invention may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted. In addition, terms to be described below are terms defined in consideration of functions in the present invention, which may vary according to the intention or custom of a user or an operator. Therefore, the definition should be made based on the contents throughout the specification.
본 발명의 기술적 사상은 청구범위에 의해 결정되며, 이하 실시예는 진보적인 본 발명의 기술적 사상을 본 발명이 속하는 기술분야에서 통상의 지식을 가진자에게 효율적으로 설명하기 위한 일 수단일 뿐이다.The technical spirit of the present invention is determined by the claims, and the following embodiments are merely means for effectively explaining the technical spirit of the present invention to those skilled in the art to which the present invention pertains.
도 1은 본 발명의 제 1 실시예에 따른 광대역 모듈(100)을 설명하기 위한 개략도이며, 도 2는 도 1에 도시된 광대역 모듈(100)의 상세 구성을 나타낸 블록도이다. 도 1에 도시된 바와 같이, 본 발명의 제 1 실시예에 따른 광대역 모듈(100)은 통신 장치(미도시)에 내장되는 안테나(150)와 연결될 수 있다. 여기서, 통신 장치란 예를 들어, 휴대폰, PDA, 노트북, MP3 등이 될 수 있다. 안테나(150)는 방사체(152), 유전체(154), 급전단(156) 및 접지단(158)을 포함할 수 있다. 안테나(150)는 λ/4 이하의 크기를 갖는 소형 안테나일 수 있으며, 예를 들어 역 F 타입의 안테나가 될 수 있다. 다만, 안테나(150)의 형태가 이에 한정되는 것은 아니며, 광대역 모듈(100)은 역 L 타입의 안테나 등 다양한 형태의 안테나에 적용될 수 있다.1 is a schematic diagram illustrating a broadband module 100 according to a first embodiment of the present invention, and FIG. 2 is a block diagram showing a detailed configuration of the broadband module 100 shown in FIG. 1. As shown in FIG. 1, the broadband module 100 according to the first embodiment of the present invention may be connected to an antenna 150 embedded in a communication device (not shown). Here, the communication device may be, for example, a mobile phone, a PDA, a notebook computer, or an MP3. The antenna 150 may include a radiator 152, a dielectric 154, a feed end 156, and a ground end 158. Antenna 150 may be a small antenna having a size of λ / 4 or less, and may be, for example, an inverted F type antenna. However, the shape of the antenna 150 is not limited thereto, and the wideband module 100 may be applied to various types of antennas, such as an inverted L type antenna.
또한, 도 2에 도시된 바와 같이, 광대역 모듈(100)은 임피던스 정합부(110) 및 스위칭부(120)를 포함한다.In addition, as shown in FIG. 2, the broadband module 100 includes an impedance matching unit 110 and a switching unit 120.
임피던스 정합부(110)는 급전부(180) 및 안테나(150) 사이의 임피던스 정합을 수행한다. 임피던스 정합부(110) 및 스위칭부(120) 없이 안테나(150)가 단독으로 존재하는 경우 안테나(150)가 동작하는 주파수 대역을 제 1 주파수 대역(복수 개의 주파수 대역을 포함하는 의미로 사용됨)이라 가정한다. 안테나(150)가 제 1 주파수 대역보다 넓은 제 2 주파수 대역에서 동작할 수 있도록, 임피던스 정합부(110)는 넓은 주파수 대역에서 급전부(180) 및 안테나(150) 사이의 임피던스 정합을 수행한다. 여기서, “동작”이란 기 설정된 값 이상의 평균 이득 및 효율을 가지면서 안테나(150)가 신호를 송수신하는 상태를 의미한다. 도 2에 도시된 바와 같이, 임피던스 정합부(110)는 안테나(150)의 급전단(156)과 연결되는 제 1 단자(112a), 급전부(180)와 연결되는 제 2 단자(114b), 제 1 튜닝 소자(132)와 연결되는 제 3 단자(112b) 및 제 2 튜닝 소자(134)와 연결되는 제 4 단자(114a)를 포함한다. 임피던스 정합부(110)는 커패시터 및 인덕터 중 하나 이상의 조합으로 이루어질 수 있으며, 이에 따라 안테나(150)의 공진 주파수 대역을 확장할 수 있다. The impedance matching unit 110 performs impedance matching between the power feeding unit 180 and the antenna 150. When the antenna 150 exists alone without the impedance matching unit 110 and the switching unit 120, the frequency band in which the antenna 150 operates is called a first frequency band (used to include a plurality of frequency bands). Assume The impedance matching unit 110 performs impedance matching between the power feeding unit 180 and the antenna 150 in the wide frequency band so that the antenna 150 may operate in the second frequency band wider than the first frequency band. Here, the “operation” refers to a state in which the antenna 150 transmits and receives a signal while having an average gain and efficiency of more than a predetermined value. As shown in FIG. 2, the impedance matching unit 110 may include a first terminal 112a connected to the feed terminal 156 of the antenna 150, a second terminal 114b connected to the feed unit 180, And a third terminal 112b connected to the first tuning element 132 and a fourth terminal 114a connected to the second tuning element 134. The impedance matching unit 110 may be formed of a combination of one or more of a capacitor and an inductor, thereby extending the resonance frequency band of the antenna 150.
스위칭부(120)는 안테나(150)의 공진 주파수 대역을 이동시킬 수 있도록 스위칭 모듈(148)을 스위칭시킬 수 있다. 도 2에 도시된 바와 같이, 스위칭부(120)는 안테나의 접지단(158)과 연결되는 스위칭 모듈(148)을 포함한다. 스위칭부(120)는 안테나(150)의 공진 주파수 대역을 이동시킬 수 있도록, 외부 제어 신호(예를 들어, 소정 크기의 전압)에 따라 안테나(150)의 접지단(158)이 복수 개의 조정 소자(142, 144) 중 어느 하나를 통해 접지면(160)과 연결될 수 있도록 스위칭 모듈(148)을 스위칭시킨다. 여기서, 제 1 조정 소자(142) 및 제 2 조정 소자(144) 각각은 서로 다른 임피던스 값을 갖는 수동 소자(예를 들어, 커패시터 또는 인덕터)일 수 있다. 예를 들어, 제 1 조정 소자(142)는 100pF의 값을 갖는 커패시터일 수 있으며, 제 2 조정 소자(144)는 10pF의 값을 갖는 커패시터일 수 있다. 스위칭부(120)는 외부로부터 전압을 입력받는 입력부(146)를 포함할 수 있으며, 입력부(146)를 통해 입력받는 전압의 크기에 따라 스위칭 모듈(148)의 동작을 제어할 수 있다. 여기서, 입력부(146)는 제 1 입력부(EN ; 146a), 제 2 입력부(CTRL ; 146b) 및 제 3 입력부(VBATT ; 146c)를 포함할 수 있다. 제 3 입력부(146c)는 스위칭부(120)의 동작을 위한 배터리 전압을 인가받을 수 있다. 상기 배터리 전압은 예를 들어, 약 3.5V 일 수 있다. 제 1 입력부(146a) 및 제 2 입력부(146b)는 스위칭 모듈(148)의 동작 제어를 위한 전압을 외부로부터 인가받을 수 있다. 스위칭부(120)는 제 1 입력부(146a) 및 제 2 입력부(146b)에 인가되는 전압의 크기에 따라 안테나(150)의 접지단(158)이 복수 개의 조정 소자(142, 144) 중 어느 하나를 통해 접지면(160)과 연결될 수 있도록 스위칭 모듈(148)을 스위칭시킬 수 있다.The switching unit 120 may switch the switching module 148 to move the resonance frequency band of the antenna 150. As shown in FIG. 2, the switching unit 120 includes a switching module 148 connected to the ground terminal 158 of the antenna. In order for the switching unit 120 to shift the resonant frequency band of the antenna 150, the ground terminal 158 of the antenna 150 may include a plurality of adjustment elements according to an external control signal (for example, a voltage having a predetermined magnitude). The switching module 148 is switched to be connected to the ground plane 160 through any one of the 142 and 144. Here, each of the first adjusting element 142 and the second adjusting element 144 may be a passive element (eg, a capacitor or an inductor) having different impedance values. For example, the first adjustment element 142 may be a capacitor having a value of 100 pF, and the second adjustment element 144 may be a capacitor having a value of 10 pF. The switching unit 120 may include an input unit 146 that receives a voltage from the outside, and controls the operation of the switching module 148 according to the magnitude of the voltage received through the input unit 146. The input unit 146 may include a first input unit EN 146a, a second input unit CTRL 146b, and a third input unit VBATT 146c. The third input unit 146c may receive a battery voltage for the operation of the switching unit 120. The battery voltage may be about 3.5V, for example. The first input unit 146a and the second input unit 146b may receive a voltage from outside to control the operation of the switching module 148. According to the magnitude of the voltage applied to the first input unit 146a and the second input unit 146b, the switching unit 120 may have any one of a plurality of adjustment elements 142 and 144 of the ground terminal 158 of the antenna 150. The switching module 148 may be switched to be connected to the ground plane 160 through the through.
먼저, 제 1 입력부(146a)에 제 1 전압이 인가되는 경우 스위칭부(120)는 스위칭 모듈(148)의 스위칭 동작이 일어나지 않도록 스위칭 모듈(148)을 차단(shutdown)시킬 수 있다. 상기 제 1 전압은 예를 들어, 2.4V 일 수 있다.. First, when the first voltage is applied to the first input unit 146a, the switching unit 120 may shut down the switching module 148 so that the switching operation of the switching module 148 does not occur. The first voltage may be, for example, 2.4V.
만약, 제 1 입력부(146a)에 제 1 전압보다 기 설정된 크기만큼 높은 제 2 전압이 인가되는 경우 스위칭 모듈(148)은 제 2 입력부(146b)에 인가되는 전압의 크기에 따라 복수 개의 상기 조정 소자(142, 144) 중 어느 하나를 통해 접지면(160)과 연결될 수 있다. 상기 제 2 전압은 예를 들어, 2.8V 일 수 있다. 제 1 입력부(146a)에 일정 크기 이상의 전압이 인가되는 경우에만 스위칭 모듈(148)의 스위칭 동작이 일어날 수 있다. 즉, 제 1 입력부(146a)에 인가되는 전압의 크기가 스위칭 모듈(148)의 동작 여부를 결정짓는 기준 전압이 된다.If a second voltage higher than the first voltage is applied to the first input unit 146a, the switching module 148 may include a plurality of adjustment elements according to the magnitude of the voltage applied to the second input unit 146b. It may be connected to the ground plane 160 through any one of (142, 144). The second voltage may be, for example, 2.8V. The switching operation of the switching module 148 may occur only when a voltage of a predetermined magnitude or more is applied to the first input unit 146a. That is, the magnitude of the voltage applied to the first input unit 146a becomes a reference voltage that determines whether the switching module 148 operates.
제 1 입력부(146a)에 제 2 전압이 인가되고 제 2 입력부(146b)에 제 1 전압이 인가되는 경우, 스위칭 모듈(148)은 제 1 조정 소자(142)를 통해 접지면(160)과 연결될 수 있다.When the second voltage is applied to the first input unit 146a and the first voltage is applied to the second input unit 146b, the switching module 148 may be connected to the ground plane 160 through the first adjusting element 142. Can be.
또한, 제 1 입력부(146a)에 제 2 전압이 인가되고 제 2 입력부(146b)에 제 2 전압이 인가되는 경우, 스위칭 모듈(148)은 제 2 조정 소자(144)를 통해 접지면(160)과 연결될 수 있다. 스위칭 모듈(148)이 서로 다른 임피던스 값을 갖는 조정 소자(142, 144) 중 어느 하나를 통해 접지면(160)과 연결됨에 따라, 안테나(150)의 그라운드가 변하게 되며 결과적으로 안테나(150)의 공진 주파수 대역이 이동(shifting)할 수 있다. 한편, 여기서는 스위칭 모듈(148)이 2개의 조정 소자(142, 144) 중 어느 하나를 통해 접지면(160)과 연결되는 것으로 설명하였으나 이는 하나의 실시예에 불과하며, 조정 소자의 개수는 이에 한정되지 않는다. 또한, 스위칭부(120)는 제 2 입력부(146b)에 인가되는 전압의 크기를 제 1 전압, 제 2 전압, 제 3 전압, 제 4 전압 등으로 나누어 스위칭 모듈(148)의 스위칭 동작을 제어할 수도 있다.In addition, when the second voltage is applied to the first input unit 146a and the second voltage is applied to the second input unit 146b, the switching module 148 may be connected to the ground plane 160 through the second adjustment element 144. It can be connected with. As the switching module 148 is connected to the ground plane 160 through one of the adjusting elements 142 and 144 having different impedance values, the ground of the antenna 150 is changed and consequently the The resonant frequency band may shift. Meanwhile, although the switching module 148 is described as being connected to the ground plane 160 through one of the two adjusting elements 142 and 144, this is only one embodiment, and the number of adjusting elements is limited thereto. It doesn't work. In addition, the switching unit 120 may control the switching operation of the switching module 148 by dividing the magnitude of the voltage applied to the second input unit 146b into a first voltage, a second voltage, a third voltage, and a fourth voltage. It may be.
상술한 바와 같이, 본 발명의 실시예들에 따르면, 안테나(150)와 급전부(180) 사이에 임피던스 정합부(110)를 배치함으로써 안테나(150)의 임피던스와 급전부(180)의 임피던스을 넓은 대역폭에서 정합(matching)시킬 수 있다. 임피던스 정합부(110)만을 사용하는 경우 특정 주파수 대역에서의 안테나(150)의 송수신 효율이 떨어질 수 있으므로, 본 발명의 실시예들은 스위칭부(120)의 동작을 통해 안테나(150)의 공진 주파수 대역을 이동시킴으로써 현재 서비스 중인 대부분의 통신 대역에서 서비스를 가능하도록 구성하였다. 본 발명의 실시예들에 따르면, 스위칭부(120)의 동작을 통해 안테나(150)가 저주파수 대역(예를 들어, 약 600MHz 내지 680MHz 대역)에서 동작하는 동안에도 고주파수 대역(예를 들어, 약 1.7GHz 내지 2.2GHz 대역)에서의 안테나 성능이 떨어지지 않도록 일정하게 유지할 수 있다.As described above, according to the embodiments of the present invention, the impedance matching unit 110 is disposed between the antenna 150 and the feeding unit 180 to widen the impedance of the antenna 150 and the impedance of the feeding unit 180. Can match in bandwidth. When only the impedance matching unit 110 is used, the transmission and reception efficiency of the antenna 150 in a specific frequency band may be reduced, so that embodiments of the present invention resonant frequency band of the antenna 150 through the operation of the switching unit 120. By moving, the service is configured to be available in most communication bands currently in service. According to the exemplary embodiments of the present invention, the high frequency band (eg, about 1.7) may be achieved while the antenna 150 operates in the low frequency band (eg, about 600 MHz to 680 MHz band) through the operation of the switching unit 120. GHz to 2.2 GHz band) can be kept constant so as not to degrade antenna performance.
도 3은 본 발명의 실시예들에 따른 광대역 모듈(100, 200)에서, 임피던스 정합부(110)의 일 실시예를 나타낸 도면이다. 도 3에 도시된 바와 같이, 임피던스 정합부(110)는 제 1 선로(112) 및 제 2 선로(114)을 포함한다.3 is a diagram illustrating an embodiment of the impedance matching unit 110 in the broadband modules 100 and 200 according to the exemplary embodiments of the present invention. As shown in FIG. 3, the impedance matching unit 110 includes a first line 112 and a second line 114.
제 1 선로(112)의 일단에는 제 1 단자(112a)가 형성되며 타단에는 제 3 단자(112b)가 형성된다. 제 1 단자(112a)는 안테나(150)의 급전단(156)과 연결될 수 있으며, 제 3 단자(112b)는 제 1 튜닝 소자(132)와 연결될 수 있다. The first terminal 112a is formed at one end of the first line 112 and the third terminal 112b is formed at the other end. The first terminal 112a may be connected to the feed end 156 of the antenna 150, and the third terminal 112b may be connected to the first tuning element 132.
제 2 선로(114)의 일단에는 제 4 단자(114a)가 형성되며 타단에는 제 2 단자(114b)가 형성될 수 있다. 제 4 단자(114a)는 제 2 튜닝 소자(134)와 연결될 수 있으며, 제 2 단자(114b)는 급전부(180)와 연결될 수 있다. 제 1 튜닝 소자(132) 및 제 2 튜닝 소자(134)는 안테나(150)의 공진 주파수 대역을 미세하게 조정하기 위한 것으로, 커패시터 및 인덕터 중 하나 이상의 조합으로 이루어질 수 있다. 여기서는, 제 1 튜닝 소자(132)가 제 1 단자(112a)에 연결되고 제 2 튜닝 소자(134)가 제 4 단자(114a)에 연결되는 것으로 도시하였으나 이는 하나의 실시예에 불과하며, 제 1 튜닝 소자(132) 및 제 2 튜닝 소자(134)의 위치는 임피던스 정합부(110)의 형태, 안테나(150)의 공진 주파수 등에 따라 달라질 수 있다.The fourth terminal 114a may be formed at one end of the second line 114, and the second terminal 114b may be formed at the other end of the second line 114. The fourth terminal 114a may be connected to the second tuning element 134, and the second terminal 114b may be connected to the feeder 180. The first tuning element 132 and the second tuning element 134 are for finely adjusting the resonant frequency band of the antenna 150 and may be formed of a combination of one or more of a capacitor and an inductor. Here, although the first tuning element 132 is connected to the first terminal 112a and the second tuning element 134 is connected to the fourth terminal 114a, this is only one embodiment. Positions of the tuning element 132 and the second tuning element 134 may vary depending on the shape of the impedance matching unit 110, the resonance frequency of the antenna 150, and the like.
제 1 선로(112), 제 2 선로(114) 및 제 1 선로(112)와 제 2 선로(114) 사이에는 하나 이상의 커패시터 및 인덕터가 배치될 수 있다. 예를 들어, 제 1 단자(112a)와 제 3 단자(112b) 사이의 제 1 선로(112)에는 제 1 커패시터(C1)가 배치될 수 있으며 제 4 단자(114a)와 제 2 단자(114b) 사이의 제 2 선로(114)에는 제 2 커패시터(C2)가 배치될 수 있다. 또한, 제 1 선로(112)와 제 2 선로(114) 사이에는 제 3 커패시터(C3), 제 1 인덕터(L1), 제 2 인덕터(L2) 및 제 4 커패시터(C4)가 각각 배치될 수 있다. 여기서, 제 2 인덕터(L2) 및 제 4 커패시터(C4)는 제 1 선로(112) 및 제 2 선로(114)의 일단 측(112a, 114a)에 가깝게 배치될 수 있으며, 제 3 커패시터(C3) 및 제 1 인덕터(L1)는 제 1 선로(112) 및 제 2 선로(114)의 타단 측(112b, 114b)에 가깝게 배치될 수 있다. 한편, 여기서는 임피던스 정합부(110)가 4개의 커패시터(C1, C2, C3, C4) 및 2개의 인덕터(L1, L2)의 조합으로 이루어지는 것으로 도시하였으나 이는 하나의 실시예에 불과하며, 커패시터 및 인덕터의 개수는 이에 한정되지 않는다. 또한, 도 3에 도시된 커패시터 및 인덕터의 배치 형태는 하나의 실시예에 불과하며 이에 한정되는 것은 아니다. 임피던스 정합부(110)는 하나 이상의 커패시터 및 인덕터가 도 3에 도시된 바와 다른 형태로 조합되어 이루어질 수도 있다. One or more capacitors and inductors may be disposed between the first line 112, the second line 114, and the first line 112 and the second line 114. For example, a first capacitor C1 may be disposed in the first line 112 between the first terminal 112a and the third terminal 112b and the fourth terminal 114a and the second terminal 114b. The second capacitor C2 may be disposed in the second line 114 between them. In addition, a third capacitor C3, a first inductor L1, a second inductor L2, and a fourth capacitor C4 may be disposed between the first line 112 and the second line 114, respectively. . Here, the second inductor L2 and the fourth capacitor C4 may be disposed to be close to one ends 112a and 114a of the first line 112 and the second line 114, and the third capacitor C3. The first inductor L1 may be disposed to be close to the other ends 112b and 114b of the first line 112 and the second line 114. Meanwhile, although the impedance matching unit 110 is shown as a combination of four capacitors C1, C2, C3, and C4 and two inductors L1 and L2, this is only one embodiment. The number of is not limited to this. In addition, the arrangement of the capacitor and the inductor shown in FIG. 3 is only one embodiment, but is not limited thereto. The impedance matching unit 110 may be formed by combining one or more capacitors and inductors in a form different from that shown in FIG. 3.
도 4는 본 발명의 실시예들에 따른 임피던스 정합부(110)를 안테나(150)에 적용하지 않은 경우와 적용한 경우의 안테나(150)의 전압 정재파비(VSWR : Voltage Standing Wave Ratio)를 비교한 그래프이다. 도 4의 (a)는 본 발명의 실시예들에 따른 임피던스 정합부(110)를 안테나(150)에 적용하지 않은 경우의 전압 정재파비를 나타낸 그래프이며, 도 4의 (b)는 본 발명의 실시예들에 따른 임피던스 정합부(110)를 안테나(150)에 적용한 경우의 전압 정재파비를 나타낸 그래프이다. 도 4에 도시된 바와 같이, 임피던스 정합부(110)를 안테나(150)에 적용한 경우 전반적으로 대역폭이 확장되는 것을 확인할 수 있다. 특히, LTE Low 밴드(800MHz 이하)에서 전압 정재파비가 2 이하로 떨어지는 것을 확인할 수 있다. 즉, 안테나(150)와 급전부(180) 사이에 임피던스 정합부(110)를 배치함으로써 안테나(150)의 임피던스와 급전부(180)의 임피던스을 넓은 대역폭에서 정합(matching)시킬 수 있다. 또한, 커패시터 및 인덕터의 조합으로 이루어진 임피던스 정합부(110)를 안테나(150)에 적용하는 경우 일반적인 임피던스 변환기를 적용하는 경우보다 커패시턴스 및 인덕턴스 값을 용이하게 조절할 수 있기 때문에 안테나(150)의 공진 주파수를 변경하는데 용이한 장점이 있다.FIG. 4 compares the voltage standing wave ratio (VSWR) of the antenna 150 when the impedance matching unit 110 according to the embodiments of the present invention is not applied to the antenna 150. It is a graph. 4 (a) is a graph showing the voltage standing wave ratio when the impedance matching unit 110 according to the embodiments of the present invention is not applied to the antenna 150, and FIG. 4 (b) is a graph of the present invention. A graph showing a voltage standing wave ratio when the impedance matching unit 110 according to the embodiments is applied to the antenna 150. As shown in FIG. 4, when the impedance matching unit 110 is applied to the antenna 150, it can be seen that the bandwidth is broadened overall. In particular, it can be seen that the voltage standing wave ratio drops to 2 or less in the LTE Low band (below 800MHz). That is, the impedance matching unit 110 may be disposed between the antenna 150 and the power feeding unit 180 to match the impedance of the antenna 150 with the impedance of the power feeding unit 180 in a wide bandwidth. In addition, when the impedance matching unit 110 composed of a combination of a capacitor and an inductor is applied to the antenna 150, the resonance frequency of the antenna 150 may be easily adjusted because the capacitance and inductance values may be easily adjusted than when applying a general impedance converter. There is an easy advantage to change.
도 5는 본 발명의 실시예들에 따른 임피던스 정합부(110)를 안테나(150)에 적용하지 않은 경우와 적용한 경우의 안테나(150)의 평균 이득 및 효율을 비교한 도면이다. 도 5의 (a)는 본 발명의 실시예들에 따른 임피던스 정합부(110)를 안테나(150)에 적용하지 않은 경우의 평균 이득 및 효율을 나타낸 도면이며, 도 5의 (b)는 본 발명의 실시예들에 따른 임피던스 정합부(110)를 안테나(150)에 적용한 경우의 평균 이득 및 효율을 나타낸 도면이다. 도 5에 도시된 바와 같이, 임피던스 정합부(110)를 안테나(150)에 적용한 경우 저주파수 대역(698MHz 내지 787MHz 대역)에서의 평균 이득 및 효율이 향상되는 것을 확인할 수 있다. 일부 구간에서 평균 이득 및 효율이 감소하는 부분이 나타나기도 하지만, 이는 임피던스 정합부(110)에 상술한 스위칭부(120)를 조합함으로써 향상시킬 수 있다.FIG. 5 is a view comparing average gain and efficiency of the antenna 150 when the impedance matching unit 110 according to the embodiments of the present invention is not applied to the antenna 150. FIG. 5A illustrates average gain and efficiency when the impedance matching unit 110 according to the embodiments of the present invention is not applied to the antenna 150, and FIG. 5B illustrates the present invention. The average gain and efficiency when the impedance matching unit 110 according to the embodiments of the present invention is applied to the antenna 150. As shown in FIG. 5, when the impedance matching unit 110 is applied to the antenna 150, the average gain and efficiency in the low frequency band (698 MHz to 787 MHz band) may be improved. In some sections, the average gain and efficiency may be reduced, but this may be improved by combining the above-described switching unit 120 with the impedance matching unit 110.
도 6은 본 발명의 제 1 실시예에 따른 광대역 모듈(100)에서, 스위칭부(120)의 동작 모드에 따른 안테나(150)의 전압 정재파비의 변화를 나타낸 그래프이다. 6 is a graph illustrating a change in the voltage standing wave ratio of the antenna 150 according to the operation mode of the switching unit 120 in the broadband module 100 according to the first embodiment of the present invention.
이하에서는 [표 1]에서 볼 수 있는 바와 같이, 제 1 입력부(EN ; 146a)에 제 2 전압(VHigh)이 입력되고 제 2 입력부(CTRL ; 146b)에 제 1 전압(VLow)이 입력되어 스위칭 모듈(148)이 제 1 조정 소자(RF1 ; 142)를 통해 접지면(160)과 연결되는 모드를 제 1 동작 모드(State 1)로 가정하고, 제 1 입력부(146a)에 제 2 전압(VHigh)이 입력되고 제 2 입력부(146b)에 제 2 전압(VHigh)이 입력되어 스위칭 모듈(148)이 제 2 조정 소자(RF2 ; 144)를 통해 통해 접지면(160)과 연결되는 모드를 제 2 동작 모드(State 2)로 가정하며, 제 1 입력부(146a)에 제 1 전압(VLow)이 입력되어 스위칭 모듈(148)이 차단(Shutdown)되는 모드를 제 3 동작 모드(State 3)로 가정한다.As shown in Table 1 below, the second voltage V High is input to the first input unit EN 146a and the first voltage V Low is input to the second input unit CTRL 146b. Therefore, assuming that the mode in which the switching module 148 is connected to the ground plane 160 through the first adjustment element RF1 142 is a first operation mode State 1, and a second voltage is applied to the first input unit 146a. (V High) is input and the second input unit is the second voltage (V High) input to (146b), the switching module 148 is the second adjusting device; that is connected to the ground plane 160 through via (RF2 144) The mode is assumed to be the second operation mode (State 2), and the mode in which the switching module 148 is shut down by inputting the first voltage V Low to the first input unit 146a is called the third operation mode (State 2). Assume 3).
표 1
동작 모드(State) 제 1 입력부(EN) 제 2 입력부(CTRL) RF Path
1 제 2 전압(VHigh) 제 1 전압(VLow) 제 1 조정 소자(RF1)
2 제 2 전압(VHigh) 제 2 전압(VHigh) 제 2 조정 소자(RF2)
3 제 1 전압(VLow) - Shutdown
Table 1
State of operation First input unit (EN) Second Input Unit (CTRL) RF Path
One Second voltage (V High ) First voltage (V Low ) First adjusting element RF1
2 Second voltage (V High ) Second voltage (V High ) Second adjusting element RF2
3 First voltage (V Low ) - Shutdown
도 6에 도시된 바와 같이, 안테나(150)는 동작 모드 1(State 1), 동작 모드 2(State 2) 또는 동작 모드 3(State 3)으로 동작할 수 있다. 동작 모드 1에서는 2G의 주파수 대역(GSM 850/PCS 주파수 대역), 3G의 주파수 대역(WCDMA W1/2/4/5) 및 4G의 주파수 대역(LTE B1/2/4/5/12/13/17/29)에서 안테나(150)가 동작할 수 있음을 확인할 수 있다. 동작 모드 2에서는 620MHz 내지 680MHz의 주파수 대역, 2G의 주파수 대역(GSM 850/PCS 주파수 대역) 및 3G의 주파수 대역(WCDMA W1/2/4/5)에서 안테나(150)가 동작할 수 있음을 확인할 수 있다. 또한, 동작 모드 3에서는 640MHz 내지 680MHz의 주파수 대역, 2G의 주파수 대역(GSM 850/PCS 주파수 대역), W2/5 및 LTE B29의 주파수 대역에서 안테나(150)가 동작할 수 있음을 확인할 수 있다. 특히, 동작 모드 2 및 3에서는 안테나(150)의 공진 주파수가 600MHz 초반의 주파수 대역까지 확장되는 것을 확인할 수 있다. 즉, 본 발명의 실시예들에 따르면, 스위칭부(120)의 동작을 통해 안테나(150)의 공진 주파수 대역을 이동시킴으로써, 현재 서비스 중인 대부분의 통신 대역에서 서비스를 가능하게 하며 동작 가능한 주파수 대역을 약 600MHz까지 확장할 수 있다. 이에 따라, 기존 안테나(150)에 광대역 모듈(100)을 추가하는 것만으로 LTE 주파수 대역까지 서비스를 가능하게 할 수 있다.As shown in FIG. 6, the antenna 150 may operate in an operation mode 1 (state 1), an operation mode 2 (state 2), or an operation mode 3 (state 3). In operating mode 1, 2G frequency band (GSM 850 / PCS frequency band), 3G frequency band (WCDMA W1 / 2/4/5) and 4G frequency band (LTE B1 / 2/4/5/12/13 / In operation 17/29, it may be confirmed that the antenna 150 may operate. In operation mode 2, it is confirmed that the antenna 150 can operate in a frequency band of 620 MHz to 680 MHz, a frequency band of 2G (GSM 850 / PCS frequency band), and a frequency band of 3G (WCDMA W1 / 2/4/5). Can be. In operation mode 3, it can be seen that the antenna 150 can operate in the frequency band of 640 MHz to 680 MHz, the frequency band of 2G (GSM 850 / PCS frequency band), and the frequency bands of W2 / 5 and LTE B29. In particular, in the operation modes 2 and 3 it can be seen that the resonant frequency of the antenna 150 is extended to the frequency band of the early 600MHz. That is, according to the embodiments of the present invention, by moving the resonant frequency band of the antenna 150 through the operation of the switching unit 120, to enable the service in most communication bands currently in service and to operate the frequency band It can scale up to about 600MHz. Accordingly, only the broadband module 100 may be added to the existing antenna 150 to enable the service up to the LTE frequency band.
도 7은 본 발명의 제 1 실시예에 따른 광대역 모듈(100)에서, 스위칭부(120)의 동작 모드에 따른 안테나(150)의 평균 이득 및 효율을 나타낸 도면이다. 상술한 바와 같이, 광대역 모듈(100)은 스위칭부(120)의 동작 모드에 따라 안테나(150)가 서로 다른 주파수 대역에서 동작할 수 있도록 한다. 동작 모드 1에서는 700MHz 내지 920MHz의 주파수 대역 및 1.71GHz 내지 2.17GHz의 주파수 대역에서 안테나(150)가 원활하게 동작함을 확인할 수 있다. 동작 모드 2에서는 620MHz 내지 680MHz의 주파수 대역, 820MHz 내지 920MHz의 주파수 대역 및 1.71GHz 내지 2.17GHz의 주파수 대역에서 안테나(150)가 원활하게 동작함을 확인할 수 있다. 동작 모드 3에서는 640MHz 내지 720MHz의 주파수 대역, 820MHz 내지 920MHz의 주파수 대역 및 1.71GHz 내지 1.99GHz의 주파수 대역에서 안테나(150)가 원활하게 동작함을 확인할 수 있다. 즉, 본 발명의 실시예들에 따르면, 스위칭부(120)의 동작을 통해 안테나(150)의 공진 주파수 대역을 용이하게 이동시킬 수 있도록 함으로써, 현재 서비스 중인 대부분의 통신 대역에서 서비스를 가능하게 한다. 특히, 본 발명의 실시예들에 따르면, 스위칭부(120)의 동작을 통해 안테나(150)가 저주파수 대역(예를 들어, 약 600MHz 내지 680MHz 대역)에서 동작하는 동안에도 고주파수 대역(예를 들어, 약 1.7GHz 내지 2.2GHz 대역)에서의 안테나(150) 성능이 떨어지지 않도록 일정하게 유지할 수 있다.FIG. 7 is a diagram illustrating an average gain and efficiency of the antenna 150 according to an operation mode of the switching unit 120 in the broadband module 100 according to the first embodiment of the present invention. As described above, the broadband module 100 enables the antenna 150 to operate in different frequency bands according to the operation mode of the switching unit 120. In operation mode 1, it can be seen that the antenna 150 operates smoothly in the frequency band of 700 MHz to 920 MHz and the frequency band of 1.71 GHz to 2.17 GHz. In operation mode 2, it can be seen that the antenna 150 operates smoothly in a frequency band of 620 MHz to 680 MHz, a frequency band of 820 MHz to 920 MHz, and a frequency band of 1.71 GHz to 2.17 GHz. In operation mode 3, it can be seen that the antenna 150 operates smoothly in a frequency band of 640 MHz to 720 MHz, a frequency band of 820 MHz to 920 MHz, and a frequency band of 1.71 GHz to 1.99 GHz. That is, according to embodiments of the present invention, the resonance frequency band of the antenna 150 can be easily moved through the operation of the switching unit 120, thereby enabling service in most communication bands currently in service. . In particular, according to embodiments of the present invention, even when the antenna 150 operates in the low frequency band (for example, about 600MHz to 680MHz band) through the operation of the switching unit 120, for example, It is possible to keep the antenna 150 constant in the range of about 1.7 GHz to 2.2 GHz.
도 8은 본 발명의 제 2 실시예에 따른 광대역 모듈(200)을 설명하기 위한 개략도이며, 도 9는 본 발명의 제 2 실시예에 따른 광대역 모듈(200)의 상세 구성을 나타낸 블록도이다. 본 발명의 제 2 실시예에 따른 광대역 모듈(200)은 스위칭 모듈(148)이 제 1 단자(112a)에 연결되는 것을 제외하고는 본 발명의 제 1 실시예에 따른 광대역 모듈(100)과 대부분 동일한 구성을 갖는다.8 is a schematic diagram illustrating a broadband module 200 according to a second embodiment of the present invention, and FIG. 9 is a block diagram showing a detailed configuration of the broadband module 200 according to the second embodiment of the present invention. Broadband module 200 according to the second embodiment of the present invention is the majority of the broadband module 100 according to the first embodiment of the present invention, except that the switching module 148 is connected to the first terminal 112a. Have the same configuration.
도 9에 도시된 바와 같이, 본 발명의 제 2 실시예에 따른 광대역 모듈(200)은 스위칭 모듈(148)이 제 1 단자(112a)에 연결된다. 상술한 바와 같이, 제 1 단자(112a)는 안테나(150)의 급전단 (156)에 연결될 수 있다. 이때, 스위칭부(120)의 스위칭 모듈(148) 및 제 1 단자(112a) 사이에는 커패시터 또는 인덕터(202)가 배치될 수 있다. 이 경우, 안테나(150)의 공진 주파수 대역이 조금 달라질 뿐 광대역 모듈(200)의 동작 방법 및 이로 인한 효과는 제 1 실시예에 따른 광대역 모듈(100)을 사용한 경우와 동일하다. 따라서, 여기서는 앞서 설명한 바와 중복되는 광대역 모듈(200)의 상세 구성 및 동작 방법은 생략하기로 한다.As shown in FIG. 9, in the broadband module 200 according to the second embodiment of the present invention, the switching module 148 is connected to the first terminal 112a. As described above, the first terminal 112a may be connected to the feed end 156 of the antenna 150. In this case, a capacitor or an inductor 202 may be disposed between the switching module 148 and the first terminal 112a of the switching unit 120. In this case, the resonance frequency band of the antenna 150 is slightly different, the operation method of the broadband module 200 and the effects thereof are the same as the case of using the broadband module 100 according to the first embodiment. Therefore, the detailed configuration and operation method of the broadband module 200 as described above will be omitted.
도 10은 본 발명의 제 2 실시예에 따른 광대역 모듈(200)에서, 스위칭부(120)의 동작 모드에 따른 안테나의 전압 정재파비(VSWR)의 변화를 나타낸 그래프이다. 도 10에 도시된 바와 같이, 안테나(150)는 동작 모드 1(State 1), 동작 모드 2(State 2) 또는 동작 모드 3(State 3)으로 동작할 수 있다. 도 10에서 도시된 동작 모드 1(State 1), 동작 모드 2(State 2) 및 동작 모드 3(State 3)은 [표 1]에서 설명한 바와 같다. 동작 모드 1에서는 LTE B1/2/4/12/13/17/29, W1/2/4 및 DCS/PCS의 주파수 대역에서 안테나(150)가 동작할 수 있음을 확인할 수 있다. 동작 모드 2에서는 GSM 850/900의 주파수 대역에서 안테나(150)가 동작할 수 있음을 확인할 수 있다. 또한, 동작 모드 3에서는 GSM 850의 주파수 대역에서 안테나(150)가 동작할 수 있음을 확인할 수 있다. 즉, 본 발명의 제 2 실시예에 따르면, 스위칭부(120)의 동작을 통해 안테나(150)의 공진 주파수 대역을 이동시킴으로써, 현재 서비스 중인 대부분의 통신 대역에서 서비스를 가능하게 한다.FIG. 10 is a graph illustrating a change in voltage standing wave ratio (VSWR) of an antenna according to an operation mode of the switching unit 120 in the broadband module 200 according to the second embodiment of the present invention. As shown in FIG. 10, the antenna 150 may operate in an operation mode 1 (state 1), an operation mode 2 (state 2), or an operation mode 3 (state 3). The operation mode 1 (state 1), the operation mode 2 (state 2), and the operation mode 3 (state 3) illustrated in FIG. 10 are the same as described in [Table 1]. In operation mode 1, it can be seen that the antenna 150 may operate in the frequency bands of LTE B1 / 2/4/12/13/17/29, W1 / 2/4, and DCS / PCS. In operation mode 2, it can be seen that the antenna 150 can operate in the frequency band of the GSM 850/900. In addition, in the operation mode 3 it can be seen that the antenna 150 can operate in the frequency band of the GSM 850. That is, according to the second exemplary embodiment of the present invention, the resonant frequency band of the antenna 150 is moved by the operation of the switching unit 120, thereby enabling service in most communication bands currently in service.
도 11은 본 발명의 제 2 실시예에 따른 광대역 모듈(200)에서, 스위칭부(120)의 동작 모드에 따른 안테나(150)의 평균 이득 및 효율을 나타낸 도면이다. 광대역 모듈(200)은 스위칭부(120)의 동작 모드에 따라 안테나(150)가 서로 다른 주파수 대역에서 동작할 수 있도록 한다. 동작 모드 1에서는 698MHz 내지 894MHz의 주파수 대역 및 1.71GHz 내지 2.17GHz의 주파수 대역에서 안테나(150)가 원활하게 동작함을 확인할 수 있다. 동작 모드 2에서는 824MHz 내지 960MHz의 주파수 대역 및 1.85GHz 내지 2.17GHz의 주파수 대역에서 안테나(150)가 원활하게 동작함을 확인할 수 있다. 동작 모드 3에서는 824MHz 내지 894MHz의 주파수 대역에서 안테나(150)가 원활하게 동작함을 확인할 수 있다. 즉, 본 발명의 실시예들에 따르면, 스위칭부(120)의 동작을 통해 안테나(150)가 복수 개의 주파수 대역에서 동작할 수 있도록 함으로써, 현재 서비스 중인 대부분의 통신 대역에서 서비스를 가능하게 한다. 특히, 본 발명의 실시예들에 따르면, 스위칭부(120)의 동작을 통해 안테나(150)가 저주파수 대역(예를 들어, 약 700MHz의 주파수 대역)에서 동작하는 동안에도 고주파수 대역(예를 들어, 약 1.7GHz 내지 2.2GHz 대역)에서의 안테나(150) 성능이 떨어지지 않도록 일정하게 유지할 수 있다.FIG. 11 is a diagram illustrating an average gain and efficiency of the antenna 150 according to an operation mode of the switching unit 120 in the broadband module 200 according to the second embodiment of the present invention. The wideband module 200 allows the antenna 150 to operate in different frequency bands according to the operation mode of the switching unit 120. In operation mode 1, it can be seen that the antenna 150 operates smoothly in a frequency band of 698 MHz to 894 MHz and a frequency band of 1.71 GHz to 2.17 GHz. In operation mode 2, it can be seen that the antenna 150 operates smoothly in the frequency band of 824MHz to 960MHz and the frequency band of 1.85GHz to 2.17GHz. In operation mode 3, it can be seen that the antenna 150 operates smoothly in the frequency band of 824MHz to 894MHz. That is, according to the embodiments of the present invention, the antenna 150 can operate in a plurality of frequency bands through the operation of the switching unit 120, thereby enabling service in most communication bands currently in service. In particular, according to the exemplary embodiments of the present invention, even when the antenna 150 operates in the low frequency band (for example, the frequency band of about 700 MHz) through the operation of the switching unit 120, for example, It is possible to keep the antenna 150 constant in the range of about 1.7 GHz to 2.2 GHz.
한편, 본 발명의 실시예들에 따른 통신 장치(미도시)은 상술한 광대역 모듈(100 또는 200)을 포함할 수 있다. 상기 통신 장치는 안테나를 내장하고 있는 단말로서, 예를 들어 휴대폰, PDA, 노트북, MP3 등이 될 수 있다. 상술한 광대역 모듈(100 또는 200)은 예를 들어, 상기 통신 장치에 칩(chip) 형태로 내장될 수 있다.Meanwhile, a communication device (not shown) according to embodiments of the present invention may include the above-described broadband module 100 or 200. The communication device is a terminal having an antenna, and may be, for example, a mobile phone, a PDA, a notebook computer, or an MP3. The above-described wideband module 100 or 200 may be embedded in, for example, a chip in the communication device.
이상에서 대표적인 실시예를 통하여 본 발명에 대하여 상세하게 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 전술한 실시예에 대하여 본 발명의 범주에서 벗어나지 않는 한도 내에서 다양한 변형이 가능함을 이해할 것이다. 그러므로 본 발명의 권리범위는 설명된 실시예에 국한되어 정해져서는 안 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다. Although the present invention has been described in detail with reference to exemplary embodiments above, those skilled in the art to which the present invention pertains can make various modifications without departing from the scope of the present invention with respect to the above-described embodiments. Will understand. Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined by the claims below and equivalents thereof.

Claims (10)

  1. 안테나의 급전단과 연결되는 제 1 단자, 및 급전부와 연결되는 제 2 단자를 포함하며, 상기 안테나의 임피던스 정합을 위해 커패시터 및 인덕터 중 하나 이상의 조합으로 이루어지는 임피던스 정합부; 및An impedance matching part including a first terminal connected to a feed end of the antenna and a second terminal connected to a feed part, the impedance matching part including one or more combinations of a capacitor and an inductor for impedance matching of the antenna; And
    상기 안테나의 공진 주파수 대역을 이동시킬 수 있도록 외부 제어 신호에 따라 상기 안테나의 접지단 또는 상기 제 1 단자가 복수 개의 조정 소자 중 어느 하나를 통해 접지면과 연결될 수 있도록 하는 스위칭부를 포함하는, 광대역 모듈.A broadband module including a switching unit to allow the ground terminal of the antenna or the first terminal to be connected to the ground plane through any one of a plurality of adjustment elements according to an external control signal so as to move the resonance frequency band of the antenna .
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 임피던스 정합부는 상기 제 1 단자가 형성되는 제 1 선로 및 상기 제 2 단자가 형성되는 제 2 선로를 더 포함하며, 상기 제 1 선로, 상기 제 2 선로 및 상기 제 1 선로와 상기 제 2 선로 사이에는 상기 커패시터 및 상기 인덕터가 하나 이상 배치되는, 광대역 모듈.The impedance matching unit further includes a first line on which the first terminal is formed and a second line on which the second terminal is formed, wherein the first line, the second line, and between the first line and the second line are formed. And at least one capacitor and the inductor are disposed therein.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 제 1 선로의 상기 제 1 단자 측과 반대 방향에 형성되는 제 3 단자 및 상기 제 3 단자와 인접하는 접지면의 일측 사이에는 상기 안테나의 공진 주파수 튜닝을 위한 제 1 튜닝 소자가 배치되는, 광대역 모듈.A first tuning element for resonant frequency tuning of the antenna is disposed between the third terminal formed in the opposite direction to the first terminal side of the first line and one side of the ground plane adjacent to the third terminal. module.
  4. 청구항 2에 있어서,The method according to claim 2,
    상기 제 2 선로의 상기 제 2 단자 측과 반대 방향에 형성되는 제 4 단자 및 상기 제 4 단자와 인접하는 접지면의 타측 사이에는 상기 안테나의 공진 주파수 튜닝을 위한 제 2 튜닝 소자가 배치되는, 광대역 모듈.A second tuning element for resonant frequency tuning of the antenna is disposed between the fourth terminal formed in the opposite direction to the second terminal side of the second line and the other side of the ground plane adjacent to the fourth terminal. module.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 조정 소자 각각은, 서로 다른 임피던스 값을 갖는 수동 소자인, 광대역 모듈.Wherein each of the adjustment elements is a passive element having a different impedance value.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 스위칭부는, 외부로부터 제 1 전압, 또는 상기 제 1 전압보다 기 설정된 크기만큼 높은 제 2 전압을 입력받는 제 1 입력부 및 제 2 입력부를 포함하는, 광대역 모듈.The switching unit includes a first input unit and a second input unit for receiving a first voltage from the outside, or a second voltage higher by a predetermined magnitude than the first voltage.
  7. 청구항 6에 있어서,The method according to claim 6,
    상기 스위칭부는, 상기 제 1 입력부에 상기 제 2 전압이 입력되는 경우 상기 안테나의 접지단 또는 상기 제 1 단자를 상기 접지면과 연결시키는, 광대역 모듈.And the switching unit connects the ground terminal of the antenna or the first terminal to the ground plane when the second voltage is input to the first input unit.
  8. 청구항 7에 있어서,The method according to claim 7,
    복수 개의 상기 조정 소자는, 제 1 조정 소자 및 제 2 조정 소자를 포함하며,The plurality of adjustment elements include a first adjustment element and a second adjustment element,
    상기 스위칭부는, 상기 제 2 입력부에 입력되는 전압이 상기 제 1 전압인 경우 상기 제 1 조정 소자를 통해 상기 안테나의 접지단 또는 상기 제 1 단자를 상기 접지면과 연결시키며, 상기 제 2 입력부에 입력되는 전압이 상기 제 2 전압인 경우 상기 제 2 조정 소자를 통해 상기 안테나의 접지단 또는 상기 제 1 단자를 상기 접지면과 연결시키는, 광대역 모듈.When the voltage input to the second input unit is the first voltage, the switching unit connects the ground terminal or the first terminal of the antenna to the ground plane through the first adjusting element, and inputs the second input unit. Connecting the ground terminal of the antenna or the first terminal to the ground plane through the second adjusting element when the voltage becomes the second voltage.
  9. 청구항 1에 있어서,The method according to claim 1,
    상기 스위칭부와 상기 제 1 단자 사이에는 커패시터 또는 인덕터가 배치되는, 광대역 모듈.And a capacitor or an inductor is disposed between the switching unit and the first terminal.
  10. 청구항 1 내지 청구항 9 중 어느 한 항에 기재된 광대역 모듈을 포함하는 통신 장치.A communication device comprising the broadband module according to any one of claims 1 to 9.
PCT/KR2015/003382 2014-04-03 2015-04-03 Broadband module and communication device including same WO2015152686A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0039776 2014-04-03
KR1020140039776A KR101473714B1 (en) 2014-04-03 2014-04-03 Wide-band module and communication device including the same

Publications (1)

Publication Number Publication Date
WO2015152686A1 true WO2015152686A1 (en) 2015-10-08

Family

ID=52679159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/003382 WO2015152686A1 (en) 2014-04-03 2015-04-03 Broadband module and communication device including same

Country Status (2)

Country Link
KR (1) KR101473714B1 (en)
WO (1) WO2015152686A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102255953B1 (en) * 2021-01-06 2021-05-25 주식회사 선우커뮤니케이션 Wide-band omni-antenna

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100020233A (en) * 2008-08-12 2010-02-22 에스케이 텔레콤주식회사 Multi-band antenna by using switching
KR20110068246A (en) * 2009-12-15 2011-06-22 삼성전기주식회사 Wideband antenna
KR20110108417A (en) * 2010-01-19 2011-10-05 가부시키가이샤 무라타 세이사쿠쇼 Antenna device and communication terminal apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100020233A (en) * 2008-08-12 2010-02-22 에스케이 텔레콤주식회사 Multi-band antenna by using switching
KR20110068246A (en) * 2009-12-15 2011-06-22 삼성전기주식회사 Wideband antenna
KR20110108417A (en) * 2010-01-19 2011-10-05 가부시키가이샤 무라타 세이사쿠쇼 Antenna device and communication terminal apparatus

Also Published As

Publication number Publication date
KR101473714B1 (en) 2014-12-18

Similar Documents

Publication Publication Date Title
TWI654851B (en) Adaptive load for coupler in broadband multimode multiband front end module
CN113572440B (en) Power amplifier output matching circuit, radio frequency front end module and wireless device
US8525734B2 (en) Antenna device
FI118782B (en) Adjustable antenna
JP4875166B2 (en) Device that allows two elements to share a common feed
CN1937425B (en) An antenna arrangement for a cellular communication terminal
US20180159220A1 (en) Antenna matching circuit, antenna circuit, front-end circuit, and communication apparatus
WO2010095803A1 (en) Band-selecting antenna
US20100060542A1 (en) Multi-Band Antenna Arrangement
US20140028521A1 (en) Tuner topology for wide bandwidth
US20160134017A1 (en) Multiband antenna and wireless communication device
EP2301108B1 (en) An antenna arrangement
US9780862B2 (en) Antenna structure and wireless communication device using the same
CN104466361B (en) A kind of mobile phone and its antenna
TWI484768B (en) Wireless communication device and feed-in method thereof
US20200052379A1 (en) Antenna module and mobile terminal
CN103633419A (en) Mobile device
US9819077B1 (en) Multi-feed antenna optimized for non-50 Ohm operation
CN115632619B (en) Wireless amplifier circuit for carrier aggregation
KR20170004238A (en) Wide-band module and communication device including the same
Whatley et al. RF front-end tunability for LTE handset applications
WO2015152686A1 (en) Broadband module and communication device including same
WO2015152687A1 (en) Broadband module and communication device including same
US20150207231A1 (en) Co-located antennas and an electronic device including the same
KR20210126967A (en) Front-end module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15773429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15773429

Country of ref document: EP

Kind code of ref document: A1