WO2015152593A1 - Blood purifying apparatus - Google Patents

Blood purifying apparatus Download PDF

Info

Publication number
WO2015152593A1
WO2015152593A1 PCT/KR2015/003139 KR2015003139W WO2015152593A1 WO 2015152593 A1 WO2015152593 A1 WO 2015152593A1 KR 2015003139 W KR2015003139 W KR 2015003139W WO 2015152593 A1 WO2015152593 A1 WO 2015152593A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
cap
flow
blood
dialysate
Prior art date
Application number
PCT/KR2015/003139
Other languages
French (fr)
Korean (ko)
Other versions
WO2015152593A8 (en
Inventor
조태범
이경수
Original Assignee
조태범
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/243,137 external-priority patent/US9585994B2/en
Priority claimed from KR1020150016434A external-priority patent/KR101638280B1/en
Application filed by 조태범 filed Critical 조태범
Priority to US15/301,398 priority Critical patent/US9707332B2/en
Publication of WO2015152593A1 publication Critical patent/WO2015152593A1/en
Publication of WO2015152593A8 publication Critical patent/WO2015152593A8/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/3403Regulation parameters
    • A61M1/3406Physical characteristics of the filtrate, e.g. urea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/18Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/24Dialysis ; Membrane extraction
    • B01D61/243Dialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/04Hollow fibre modules comprising multiple hollow fibre assemblies
    • B01D63/043Hollow fibre modules comprising multiple hollow fibre assemblies with separate tube sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/54Modularity of membrane module elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2319/00Membrane assemblies within one housing
    • B01D2319/02Elements in series

Definitions

  • the present invention relates to a blood purification device that removes toxins and wastes from blood. More specifically, the entire apparatus is simple and easy to install and use by using a multifunctional filter that integrates the functions of dialysis, adsorption, ultrafiltration or plasma separation. It relates to a blood purification device that is easy to use and can reduce the cost of treatment.
  • the liver and kidneys perform important functions in our bodies.
  • the liver processes nutrients, synthesizes plasma proteins such as albumin, and decodes alcohol and drugs.
  • the kidneys release urea nitrogen, a protein metabolite, remove excess moisture from the body, and regulate blood pressure.
  • ammonia and bilirubin are removed through liver metabolism, causing substances to accumulate in the body, causing complications such as jaundice, hepatic coma, acute renal failure, systemic inflammatory reactions, and multiple organ failure.
  • water and protein metabolites to be released into the body accumulate and cause uremia, cardiovascular diseases, and the like.
  • Liver transplantation is considered the only treatment for acute liver failure, but based on liver transplant data in the US OPTN / SRTR report released in 2011, only 36% of patients awaiting a transplant are known to have a transplant. In Korea, only 22% of transplant recipients receive liver transplants, according to a report from the National Institute of Organ Transplantation. This is because the number of donors donated is significantly shorter than that of patients in need of transplantation. The same is true for kidney transplants, in which only about 30% of patients with end-stage renal failure are known to have kidney transplants. If a liver transplant or kidney transplant fails in a timely manner, blood purification should be performed to circulate blood outside the body to remove toxins from the blood through dialysis, filtration, or adsorption.
  • Phosphorus devices currently used in clinical practice are limited to equipment called Gambro's MARS and FMC's Prometheus, which separates plasma from blood, removes toxins from separated plasma using an ion resin adsorbent, and separates and adsorbs plasma. After hemodialysis is composed.
  • Prometheus includes a plasma separation filter, two adsorption filters to remove toxins from plasma, and a hemodialysis procedure, which makes the system complicated and requires expensive treatment costs.
  • MARS like hemodialysis, consists of a hemodialysis filter that removes hepatoxins in the blood through a dialysis filter, with a semi-permeable membrane interposed between the blood and the dialysate, and mass exchange between the blood and the dialysate.
  • MARS can remove various protein binding toxins and hepatoxins as well as urinary toxins through a dialysis filter by using a plasma protein called albumin in a dialysis solution. .
  • the albumin dialysate is reused, and another dialysis filter, activated carbon, and an ion resin adsorbent are used for regeneration of the dialysate. Therefore, not only the use of expensive albumin but also several stages of dialysis filter and adsorption filter for dialysis liquid regeneration, which is complicated system and expensive treatment cost like Prometheus.
  • An object of the present invention is to provide a blood purification device that can be saved.
  • a multifunctional filter according to the present invention for achieving the above object, the first filter and the second filter, the first filter and the first filter for purifying a biological fluid (blood, plasma, or used dialysate, etc.) 2
  • the housing that separates the adsorption section outside the filter is installed in the housing and comprises a housing port so that flow through the adsorption section can occur.
  • the housing includes a wall, a first cap coupled to the first filter on one side in the longitudinal direction of the wall, and a second cap coupled to a second filter on the other side in the longitudinal direction of the wall.
  • the multi-function filter according to an embodiment of the present invention may be configured to include a flow passage block connecting the first filter and the second filter so that there is no leakage of fluid between the first filter and the second filter.
  • the first filter and the second filter have a form in which a semipermeable separator is filled in a cylindrical container and potted using synthetic resin such as polyurethane at both ends thereof. Inner spaces of the first and second filter containers are partitioned so that two different fluids flow by the separator.
  • the first and second filter container is characterized in that the flow hole is provided on at least one side of both sides in the longitudinal direction around the longitudinal stop of the container.
  • a first flow hole may be provided at a side coupled to the first cap of the first filter container, and a third flow hole may be provided at a position biased to the side where the second cap of the second filter container is located.
  • the first and second caps comprise a filter port coupled to the cap port and a filter to allow fluid to pass therethrough, and the cap and the filter are coupled so that the fluid passing through the cap port flows to one side of the filter separation membrane.
  • at least one of the first and second caps is characterized in that it comprises a passage through the cap and one end adjacent to the filter engaging portion of the cap. That is, the first cap may have a first passage adjacent the filter engagement portion and the other end adjacent the outer surface of the cap.
  • the first passage is characterized in that the first cap is coupled with the first filter to form a flow path through which fluid can flow into the first filter.
  • One side of the first filter container is positioned at the first cap filter coupling unit, such that the first filter and the first cap are coupled to each other.
  • the first filter and the first cap are coupled to each other to form a first flow path through which the fluid passing through the first passage may flow into the first filter through the first flow hole provided in the first filter container.
  • the adsorption section is provided with an adsorbent to remove toxins and wastes.
  • Adsorbents include anion exchange resins that bind to plasma proteins, such as bilirubin, and remove toxins that are charged by ion exchange mechanisms, or activated carbon that removes tryptophan and water-soluble toxins of medium molecular size by physical adsorption. Can be.
  • the type and number of adsorbents are not limited, and the adsorbent is preferably changed according to the patient in need of blood purification therapy.
  • the housing port and the third flow hole are preferably provided on the opposite side in the longitudinal direction of the composite function filter so that the fluid introduced through the housing port can flow into the second filter after sufficiently contacting with the adsorbent in the adsorption section. At this time, it is preferable that the movement of the adsorbent does not occur through the housing port and the flow hole, and various methods may be used for this purpose.
  • the housing port or the flow hole may be made smaller than the adsorbent, the housing port or the flow hole may be wrapped with a mesh filter, or a separation wall may be installed between the adsorbent and the housing port or the adsorbent and the flow hole.
  • Blood purification apparatus may be divided into a case in which the multi-function filter is in contact with the blood of the patient and the other case.
  • the blood purification device comprises a combined function filter, a flow pipe connecting the combined function filter and the patient, the pump is installed in the flow pipe and transfers blood Can be.
  • hemodialysis occurs in the first filter and plasma separation occurs in the second filter.
  • Dialysis fluid may be supplied to or discharged from the first filter through a first flow path connecting the first passage and the first flow hole.
  • the dialysate may be prepared by using a pre-formed dialysate bag or by adjusting pH, electrolyte concentration, etc. in ultrapure water generated through a water treatment system.
  • the blood purification device when the multi-function filter does not directly contact the blood of the patient, the blood purification device according to an embodiment of the present invention, the blood filter and the blood filter that the substance transfer between the blood and the dialysate is connected and the blood or dialysate is It may be composed of a flowing flow tube, a pump installed in the flow tube to transfer blood or dialysate, and a combined function filter to purify the dialysate used. At this time, it is preferable that diafiltration takes place in the first filter and ultrafiltration occurs in the second filter.
  • the multifunction filter removes toxins and wastes from the used dialysate and readjusts the electrolyte concentration to reuse the dialysate.
  • the blood purification apparatus uses a multifunctional filter integrating dialysis through the first filter, plasma separation or ultrafiltration through the second filter, and adsorption in the adsorption section.
  • the blood purification device can be efficiently purified, and the whole device can be provided with a simple, easy installation and use, and a blood purification device that can reduce the treatment cost.
  • 1 and 2 are a cross-sectional view, a perspective view and an exploded view of a composite function filter according to an embodiment of the present invention.
  • FIG. 3 shows a flow passage connector and first and second filters.
  • FIG. 5 is a perspective view of the dividing wall.
  • FIG. 6 is a schematic diagram of a blood purification apparatus according to an embodiment of the present invention.
  • FIG. 7 shows an example flow inside a multifunction filter.
  • FIG 8 is a sectional view and a perspective view of the blood filter.
  • FIG 9 illustrates an example flow within a multifunction filter.
  • FIG. 10 is a cross-sectional view and a perspective view of the composite function filter separating the inflow and outflow of the dialysate through the first filter.
  • FIG 11 shows the flow passage connector and the first filter vessel.
  • FIG. 13 is a sectional view and a perspective view of a multifunction filter configured to allow a third flow path through the second cap;
  • FIG. 14 shows a second filter vessel in which a third flow hole is installed.
  • FIG. 15 illustrates an example flow inside a multifunction filter configured to allow a third flow path through the second cap.
  • 16 is a sectional view and a perspective view of a composite function filter having a fourth flow path.
  • FIG. 17 shows a second filter vessel further provided with a flow passage connector and a fourth flow hole.
  • 19 shows an example flow inside a composite function filter having a fourth flow path.
  • 20 and 21 illustrate a cross-sectional view and a perspective view of a composite function filter having flow passage connector flow holes and internal flows.
  • the multi-function filter 10 is a first filter 20 for purifying a biological fluid (blood, plasma, or used dialysate, etc.) ), Also a housing for partitioning the adsorption section 12 outside the first filter and the second filter, while providing a second filter 30 for the purification of the biological fluid, an installation space for the first filter and the second filter, And a housing port 13 installed in the housing to allow flow to occur through the adsorption section.
  • the housing includes a wall 11, a first cap 40 coupled to the first filter on one side in the longitudinal direction of the wall, and a second cap 50 coupled to the second filter on the other side in the longitudinal direction of the wall.
  • the multi-function filter 10 includes a flow path connecting connector 60 for connecting the first filter and the second filter so that there is no leakage of fluid between the first filter and the second filter.
  • the flow passage connector may have connecting portions 61 and 62 coupled to the first and second filters, respectively.
  • the first filter 20 and the second filter 30 fill the cylindrical containers 21 and 31 with the semi-permeable separation membranes 22 and 32 and at both ends thereof. It has the form which was potted using synthetic resin, such as polyurethane.
  • the figure shows a hollow fiber membrane filter having a hollow fiber membrane, the hollow fiber membrane filter has an advantage of excellent mass transfer efficiency compared to the small size.
  • the first and second filters are not limited to being composed of hollow fiber membranes, and may be formed of other types of separation membranes such as flat membranes.
  • the inner spaces of the first and second filter containers 21 and 31 are partitioned so that two fluids flow by the separators 22 and 32.
  • the first and second filter containers (21, 31) is characterized in that the flow hole is provided on at least one side of both sides in the longitudinal direction around the longitudinal stop of the container.
  • the first flow hole 23 is provided on the side that is engaged with the first cap of the first filter container 21 and the second filter.
  • the third flow hole 33 may be provided at a position biased toward the side where the second cap of the container 31 is located. It is preferable that a plurality of flow holes 23 and 33 be installed to surround the circumferential direction of the containers 21 and 31 so that flow can be easily generated.
  • the first cap 40 includes a first cap filter engagement portion 42 that engages the first cap port 41 and the first filter to allow fluid to pass therethrough, and the first cap 40 When the cap is coupled to the first filter, the fluid passing through the first cap port 41 is partitioned to flow to one side of the first filter separator 22 or in the case of the hollow fiber separator.
  • the second cap 50 may have a second cap filter coupling portion 52 that engages the second cap port 51 and the second filter, and the second cap is coupled to the second filter by the second cap 50.
  • the fluid passing through the port 51 is partitioned to flow to one side of the second filter separation membrane 32.
  • the filter coupling parts 42 and 52 are illustrated in the form of concave grooves into which one side of the filter can be inserted. Can be.
  • At least one of the caps of the first and second caps 40 and 50 is characterized in that it comprises a passage that penetrates the cap and one end thereof is adjacent to the filter coupling portions 42 and 52 of the cap.
  • the first cap shown in FIG. 2 has a first passage 43 one end adjacent to the first filter filter coupling portion 42 and the other end adjacent to the outer surface of the cap.
  • the cap outer surface means the side of the cap except the cap surface in contact with the suction section 12 or the surface on which the cap ports 41 and 51 are located. It can be seen that the outer surface of the cap corresponds to the outside of the multifunction filter.
  • the first passage 43 forms a flow path through which the fluid can flow into the first filter by coupling the first cap with the first filter.
  • 4 shows a first flow path 71 generated through the combination of the first cap 40 and the first filter 20.
  • One side of the first filter container 21 is positioned in the first cap filter coupling part 42, so that the first filter and the first cap are coupled to each other.
  • Two flow paths are partitioned when the first filter and the first cap are coupled, and one is partitioned so that the fluid passing through the first cap port 41 flows to one side of the first filter separation membrane 22 as described above.
  • the other is partitioned so that the fluid passing through the first passage 43 provided in the first cap flows into the first filter through the first flow hole 23 provided in the first filter container. That is, a first flow path 71 connecting the first passage 43, the first flow hole 23, and the first filter 20 is formed through the combination of the first filter and the first cap.
  • the fluid flows through the combination of the caps 40 and 50 and the filters 20 and 30 to a predetermined region, and various methods may be used for this purpose.
  • the fluid can be prevented from flowing to other spaces through a variety of methods, such as through chemical bonding to the cap and filter, or by inserting a soft O-ring such as silicone into each bonding site.
  • the adsorption section 12 is provided with an adsorbent to remove toxins and wastes.
  • Adsorbents are attached to plasma proteins, such as bilirubin, to remove the charged toxins by ion exchange mechanisms, or tryptophan and medium-molecularly water-soluble toxins. Activated carbon may be used.
  • the adsorbent may be used in powder form, in the form of granules, or in the form of an adsorbent block in which the powder or granules are compressed.
  • the adsorbents included in the multifunctional filter according to an embodiment of the present invention are not limited in kind and number. It is desirable to vary according to the patient in need of blood purification therapy.
  • the housing port allows the fluid introduced through the housing port 13 to flow into the second filter through the third flow hole 33 provided in the second filter container 31 after sufficient contact with the adsorbent in the adsorption section.
  • the first cap 40 or the wall 11 biased to the side where the first cap is located is provided, and the third flow hole is preferably provided at a position biased to the side where the second cap of the second filter container is located. The same is true if the flow occurs in the opposite direction. That is, after the fluid of the second filter is introduced into the adsorption section through the third flow hole, it may be discharged through the housing port through the adsorption section.
  • a housing port or flow hole may be made smaller in size than an adsorbent, or the housing port or flow hole may be wrapped in a mesh filter having pores of a smaller size than the adsorbent, or the adsorbent may be a mesh filter having pores of a smaller size than the adsorbent.
  • a separation wall 14 may be provided between the adsorbent and the housing port or between the adsorbent and the flow hole, as shown in FIG.
  • the dividing wall is made of a structure having pores of a smaller size than the adsorbent to suppress the passage of the adsorbent, or as shown in FIG. It may be manufactured in the form attached to the mesh filter 14b having a.
  • the adsorbents are wrapped in a mesh filter having pores of smaller size than the adsorbents, or an adsorbent block in which powder or granular adsorbents are compressed. Separation wall 14 may be installed between.
  • Blood purification apparatus can be divided into a case in which the multi-function filter is in direct contact with the blood of the patient and the other case.
  • the blood purification device connects the combined function filter 10, the combined function filter and the patient It may be configured to include a flow tube 81, the pump 82 is installed in the flow tube to transfer blood.
  • hemodialysis may occur in the first filter 20 and plasma separation may occur in the second filter 30.
  • Plasma separated across the second filter separation membrane 32 flows to the adsorption section 12 through the third flow hole 33 provided in the second filter vessel, where toxins and wastes are removed through contact with the adsorbent. do.
  • the plasma passing through the adsorption section is returned to the flow tube 81 through which the blood flows through the housing port 13.
  • Residual blood of the second filter moves to the first filter 20 via the flow passage connector 60, where dialysis takes place.
  • the dialysis fluid is supplied to the other side of the first filter membrane, or to the outside of the membrane in the case of the hollow fiber membrane.
  • the dialysate may be supplied to or discharged from the first filter through the first flow path 71 connecting the first passage and the first flow hole.
  • the dialysate may be prepared by using a pre-formed dialysate bag or by adjusting pH, electrolyte concentration, etc. in ultrapure water generated through a water treatment system.
  • the blood is not limited to being introduced into the second cap, and may be configured to enter the first cap and undergo dialysis first through the first filter, followed by plasma separation through the second filter.
  • the blood of the patient can be efficiently purified through dialysis in the first filter, plasma separation in the second filter, and adsorption in the adsorption section.
  • the blood purification apparatus 80 when the multi-function filter 10 does not directly contact the blood of the patient, the blood purification apparatus 80 according to an embodiment of the present invention, as shown in Figure 6 (b), between the blood and the dialysate A blood filter 83 in which the movement takes place may be included, and a dialysis fluid circuit for removing toxins from the blood circuit with the blood filter interposed therebetween.
  • the blood circuit is composed of a flow pipe 81 connecting the blood filter and the patient and a pump 82 for transporting blood.
  • the dialysis fluid circuit includes a flow pipe 81 through which the dialysate flows and a pump 82 for transporting the dialysate, and It may be composed of a multi-function filter 10 for purifying the dialysate used.
  • a container 83a having an inner space and a blood membrane 83b accommodated in the inner space of the container are included, and the inner space of the container is divided into a blood flow region and a dialysate flow region by the blood membrane.
  • a blood inlet 83c and a blood outlet 83d are provided at one end and the other end of the blood filter container, and a dialysis fluid inlet 83e and a dialysis fluid outlet 83f are provided at upper and lower outer peripheral surfaces of the container.
  • the combined function filter 10 serves to purify the used dialysate.
  • the dialysate is prepared by adjusting the concentration and pH of various electrolytes such as bicarbonate and sodium in the ultrapure water generated through the water treatment system.
  • hepatic dialysis contains an additional plasma protein such as albumin in the dialysate, and albumin may act as a medium for removing protein binding toxins present in blood or plasma.
  • the multifunction filter 10 removes toxins and wastes from the used dialysate and readjusts the electrolyte concentration to reuse the dialysate.
  • the regenerated dialysate may be stored in the dialysate reservoir 84 and then supplied to the blood filter.
  • FIG. 9 shows an example flow inside a multifunction filter 10 for purifying spent dialysate.
  • the dialysate used by the pump 82 flows into the second filter 30 through the second cap port 51.
  • a portion of the incoming dialysate is separated and flows to the adsorption section 12, where toxins in the dialysate may be removed through contact with the adsorbent.
  • the dialysate passed through the adsorption section is introduced into the second filter through the third flow hole 33 provided in the second filter container 31, and merges with the dialysate inside the second filter across the second filter separation membrane.
  • the amount of the dialysate separated to pass through the adsorption section in the dialysate flowing into the composite function filter 10 does not have a predetermined value.
  • the amount of toxin to be removed by adsorption in the dialysate, or the stability of the dialysate flow through the multifunction filter may be adjusted.
  • all of the used dialysate may be configured to pass through the adsorption section, or vice versa, all used dialysate may be configured to pass through the second cap.
  • the dialysis liquid that has passed through the second filter flows to the first filter 20 via the flow path segment connector 60, where the dialysis liquid used by dialysis is purified once more.
  • the dialysate is supplied and discharged through the first flow path 71.
  • the dialysate flow through the multifunction filter 10 is not limited to entering the second cap 50. Used dialysate flows into the first cap 40 and a portion of the dialysate flowing into the first cap may be separated to pass through the adsorption section. The dialysis solution not separated flows to the second filter 30 after the dialysis occurs first while passing through the first filter 20. The second filter merges with the dialysate passed through the adsorption section, and the dialysate passed through the second filter may be supplied to the blood filter 83 again.
  • the amount of the dialysate separated by ultrafiltration in the second filter is preferably not adjusted but considering the adsorption efficiency and flow stability.
  • the multifunction filter 10 according to an embodiment of the present invention may be configured in various ways in the dialysis fluid flow in consideration of the dialysis fluid purification efficiency and the stability of the dialysis fluid flow.
  • the pump 82 may be used in various ways to transfer blood, plasma or dialysate.
  • the pump 82 shown in FIG. 6 and FIG. 7 shows a roller pump composed of a roller for transferring the fluid therein by compressing the flow tube 81 and a driving unit for rotating the roller.
  • the pump is not limited to a roller pump, but a centrifugal pump for transferring fluid by applying centrifugal force, a flow tube pressurizing pump configured to pressurize the flow tube and a pressurizing member driver, and a piston for compressing or expanding the cylinder and the cylinder. It may be changed into various forms capable of transferring fluid, such as a piston pump or a pneumatic pump that compresses or expands a fluid sac using a pneumatic actuator.
  • the multi-function filter 10 is used for blood or blood through dialysis through a first filter, plasma separation or ultrafiltration through a second filter, and adsorption in an adsorption section.
  • the purified dialysate can be efficiently purified.
  • the multifunction filter 10 may be changed to separate the flow path from which the dialysis fluid is supplied from the flow path discharged from the first filter 20.
  • blood or used dialysate flows to one side of the first filter separation membrane 22
  • clean dialysate flows to the other side of the first filter separation membrane.
  • the dialysis efficiency may be further increased by separating the flow passage through which the clean dialysis liquid is supplied to the first filter and the flow passage discharged from the first filter.
  • FIG. 10 shows a composite function filter 10 having a second flow path as well as a first flow path 71 to separate the supply and discharge of the dialysate through the first filter.
  • the cut plane A-A shows a cut plane of the multi-function filter top view, as shown in FIG. 1.
  • the flow passage connector 60 accommodates not only the connecting portions 61 and 62 but also the first filter 20 and partitions the dialysate flow path outside the first filter. It has a first filter receiving space 63, one end of the first filter receiving space is coupled to the first cap.
  • the second filter hole 24 is further provided in the first filter container 21 so as to surround the circumferential direction of the container. The second flow hole is preferably provided on the side opposite to the first flow hole 23 around the longitudinal interruption of the container.
  • first cap 40 in addition to the first passage 43 for connecting the filter coupling portion 42 and the cap outer surface, and penetrates the cap to the adsorption section of the cap
  • a second passageway 44 is further provided which connects the abutting surface with the cap outer surface.
  • the second flow passage 72 may be formed through the combination of the flow passage partition connector 60, the first filter 20, and the first cap 40. 12 (a) and 12 (b), the first filter 20 is located in the first filter receiving space 63 of the flow path connecting connector 60 and one end of the first filter is connected to the flow path connecting connector. When coupled to the connecting portion 61, the dialysate inside the first filter is partitioned to flow through the second flow hole 24 to the first filter receiving space (63). Subsequently, as shown in FIG. 12 (c), when the flow path connecting connector 60 and the first cap 40 are coupled, the second passage in which the dialysis fluid flowing in the first filter accommodation space 63 is provided in the first cap is provided. Partitioned to pass 44.
  • a second flow path 72 connecting the first filter, the second flow hole, the first filter accommodation space, and the second passage is formed through the combination of the first filter, the flow passage partition connector, and the first cap.
  • the dialysis fluid is defined to flow through a predetermined space through the combination of the first cap 40, the first filter 20, and the flow path connecting connector 60, and various methods described above may be used.
  • the plasma or ultrafiltration dialysis fluid separated from the second filter 30 is moved to the adsorption section via the third flow hole 33. do. That is, the second filter and the suction section are connected to each other through the third flow hole.
  • the adsorption section is provided. It can be changed to be supplied to.
  • the cut plane A-A means a cut plane of the multi-function filter top view.
  • the third flow hole 33 installed on the side wall of the second filter container 31 is changed to be installed on the side that is coupled to the second cap 50 of the container, as shown in FIG.
  • the second cap 50 is provided with a third passage 53 penetrating the cap and having one end adjacent to the filter coupling portion 52 and the other end touching the second cap outer surface.
  • 13 (b) shows a second cap provided with a third passage.
  • one end of the second filter container 31 is located in the second cap filter coupler 52 so that the second filter 30 and the second cap 50 are coupled to each other.
  • the fluid passing through the third flow hole 33 is partitioned to pass through the third passage 53 provided in the second cap.
  • the formation of the third flow path 73 partitioned through the combination of the second filter and the second cap is the same as the formation principle of the first flow path shown in FIG. That is, a third flow path 73 connecting the second filter 30, the third flow hole 33, and the third passage 53 is formed through the combination of the second filter and the second cap.
  • FIG. 15 shows an example flow inside the composite function filter 10 according to an embodiment of the present invention having the third flow path.
  • Plasma or ultrafiltered dialysate separated from the second filter 30 is discharged through the third flow path 73, and then adsorbed through the flow pipe 81 connecting the third passage 53 and the housing port 13. It is supplied to the section.
  • the pump 82 may be installed in the flow pipe connecting the third passage 43 and the housing port 13 to facilitate the flow through the adsorption section.
  • the composite function filter 10 is first In order to separate the outflow and inflow of the fluid through the second filter 30, it may be changed to have not only the third flow path 73 but also the fourth flow path.
  • FIG. 16 illustrates a multiple function filter having a fourth flow path outside the second filter 30.
  • cut planes A-A mean cut planes of the multifunction filter top view.
  • the flow passage partition connector 60 includes a second filter accommodating space 64 for accommodating the second filter and partitioning the flow path outside the second filter, as shown in FIG. 17A. It further has, one end of the second filter receiving space is coupled to the second cap.
  • the second filter container 31 surrounds the circumferential direction of the container, in addition to the third flow hole 33 provided on the side engaged with the second cap 50 of the container.
  • the fourth flow hole 34 is further installed.
  • the fourth flow hole is preferably installed on the side opposite to the third flow hole 33 centered on the longitudinal interruption of the container.
  • the second cap 50 is further provided with a fourth passage 54 penetrating the cap and connecting the cap outer surface and the cap outer surface.
  • a fourth passage 54 penetrating the cap and connecting the cap outer surface and the cap outer surface.
  • FIG. 18 illustrates a fourth flow path 74 formed through the combination of the flow path connector 60, the second filter 30, and the second cap 50.
  • the second filter 30 is located in the second filter receiving space 64 of the flow passage connector 60, and one end of the second filter is the connection portion of the flow passage connector.
  • the fluid inside the second filter is partitioned to flow through the fourth flow hole 34 into the second filter receiving space 64.
  • FIG. 18C when the flow path connecting connector 60 and the second cap 50 are coupled to each other, a fluid that flows through the second filter accommodation space 64 is provided in the fourth passage ( 54).
  • a fourth flow path 74 connecting the second filter, the fourth flow hole, the second filter accommodation space, and the fourth passage is formed.
  • FIG. 19 illustrates an example flow inside a composite function filter 10 according to an embodiment of the present invention having a fourth flow path 74.
  • the fluid separated across the second filter separation membrane is discharged through the third flow path 73, and is supplied to the adsorption section through the flow pipe 81 connecting the second cap 50 and the housing port 13.
  • the fluid from which the toxins and the wastes are removed while passing through the adsorption section may be returned to the second filter through the fourth flow path 74.
  • the pump 82 may be installed in the flow pipe connecting the second cap and the housing port in order to facilitate the flow through the adsorption section.
  • a fluid such as plasma or dialysate is separated from the second filter separation membrane 32 close to the second cap, and the separated fluid passes through the adsorption section, and then the separation membrane opposite to the second cap. It can be seen that it is returned to (32).
  • the fluid returned through the fourth flow path 74 may be immediately discharged through the third flow path 73 without flowing into the separation membrane.
  • the inner wall protrusion 35 may be provided on the inner wall of the second filter container. The inner wall protrusion reduces the inner diameter of the second filter container 31 and can distinguish between the discharged area and the returned area of the fluid separated in the second filter.
  • the inner wall protrusion may also be installed in the first filter container 21.
  • the dialysate passes through the first filter, the dialysate can make a larger pressure change by the inner wall protrusion installed inside the first filter, thereby further improving the dialysing efficiency by filtration.
  • the fourth flow path 74 is not limited to passing through the second cap.
  • the fluid passing through the adsorption section 12 through the flow passage connector flow hole 65 installed at the position biased toward the side where the second cap of the flow passage connector 60 is located is connected to the housing port 13. It may be returned to the second filter 30 directly without passing through.
  • the housing port 13 and the flow passage connector flow hole 65 are connected to each other in the longitudinal direction of the multifunction filter so that the fluid introduced through the housing port 13 can be sufficiently contacted with the adsorbent in the adsorption section and then returned to the second filter. It is preferable to be installed on the opposite side. At this time, the fourth passage 54 installed in the second cap is unnecessary.
  • FIG. 21 illustrates an example flow inside a composite function filter including flow path segment flow holes 65.
  • the fluid separated from the second filter 30 is discharged through the third flow path 73 and then supplied to the adsorption section through the flow pipe 81 connecting the third passage and the housing port.
  • the fluid from which the toxins and the wastes are removed while passing through the adsorption section may be returned to the second filter through the flow passage connector flow hole 65, the second filter receiving space 64, and the fourth flow hole 34.
  • the movement of the adsorbent does not occur through the housing port 13 or the flow path connector flow hole 65, and the aforementioned various methods may be used.
  • the multi-function filter 10 integrates the functions of dialysis, adsorption, plasma separation or dialysis, adsorption, ultrafiltration, etc. in order to purify the blood or used dialysis solution, By smoothly configuring the flow inside the filter, it is possible to provide a blood purification device which can simplify the whole device, is easy to install and use, and reduce the treatment cost.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Vascular Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Anesthesiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Urology & Nephrology (AREA)
  • Emergency Medicine (AREA)
  • Cardiology (AREA)
  • External Artificial Organs (AREA)

Abstract

A complex function filter according to the present invention comprises: a first filter and a second filter for purifying biological fluid; a housing for partitioning a suction section at the outside of the first filter and the second filter; a fluid channel partition connection hole for connecting the first filter and the second filter to each other; and a housing port for generating a flow through the suction section. The housing comprises: a wall; a first cap coupled to the first filter on one side of the lengthwise direction of the wall; and a second cap coupled to the second filter on the other side of the lengthwise direction of the wall. The complex function filter according to the present invention has a configuration for integrating components for dialysis, adsorption, blood plasma separation, and ultra filtration and achieving a smooth internal flow in order to purify blood or a dialysis fluid. Thus, the present invention can provide a blood purifying apparatus which is entirely simple, can be easily installed and used, and can reduce treatment costs.

Description

[규칙 제26조에 의한 보정 15.09.2015] 혈액정화 장치 [Correction under rule 26. 15.09.2015] blood purification device
본 발명은 혈액으로부터 독소와 노폐물을 제거하는 혈액정화 장치에 관한 것으로서, 더욱 상세하게는 투석, 흡착, 한외여과 또는 혈장분리의 기능을 일체화한 복합기능 필터를 이용하여 전체 장치가 간단하고, 설치 및 사용이 용이하며, 처치 비용을 절감할 수 있는 혈액정화 장치에 관한 것이다.The present invention relates to a blood purification device that removes toxins and wastes from blood. More specifically, the entire apparatus is simple and easy to install and use by using a multifunctional filter that integrates the functions of dialysis, adsorption, ultrafiltration or plasma separation. It relates to a blood purification device that is easy to use and can reduce the cost of treatment.
간과 신장은 우리 몸에서 중요한 기능을 수행한다. 간은 영양소들을 처리하며, 알부민 등의 혈장 단백질을 합성하고, 알코올이나 약물 등을 해독한다. 신장은 단백질 대사물질인 요소질소를 배출하고, 체내 잉여수분을 제거하며, 혈압을 조절하는 역할을 수행한다. 간기능이 손상되면 암모니아, 빌리루빈 등 간 대사를 통해서 제거되어 할 물질들이 체내에 쌓이게 되고, 황달, 간성 혼수, 급성 신부전, 전신전 염증반응, 나아가 다중장기 부전 등의 합병증을 야기한다. 마찬가지로, 신장 기능에 장애가 생기면 체외로 배출되어야 할 수분 및 단백질 대사물질이 축적되고 요독증, 심혈관계 질환 등을 일으키게 된다.The liver and kidneys perform important functions in our bodies. The liver processes nutrients, synthesizes plasma proteins such as albumin, and decodes alcohol and drugs. The kidneys release urea nitrogen, a protein metabolite, remove excess moisture from the body, and regulate blood pressure. When liver function is impaired, ammonia and bilirubin are removed through liver metabolism, causing substances to accumulate in the body, causing complications such as jaundice, hepatic coma, acute renal failure, systemic inflammatory reactions, and multiple organ failure. Likewise, if the kidney function is impaired, water and protein metabolites to be released into the body accumulate and cause uremia, cardiovascular diseases, and the like.
급성 간부전의 경우 간이식이 유일한 치료법으로 간주되고 있지만, 2011년 발표된 미국의 OPTN/SRTR 보고서의 간이식 데이터를 보게 되면, 간이식을 기다리는 환자의 약 36% 만이 이식을 받는 것으로 알려져 있다. 한국의 경우 국립보건원 장기이식센터의 보고에 의하면 이식 대기자 중 22%만이 간이식을 받는다. 이식을 필요로 하는 환자에 비해 기증되는 공여 간의 수가 크게 부족하기 때문이다. 이는 신장이식도 마찬가지인데 전체 말기신부전 환자의 약 30% 가량만이 신장이식을 받는 것으로 알려져 있다. 간이식 혹은 신장이식이 적기에 이루어지지 못하면 혈액을 체외로 순환시켜 투석, 여과, 혹은 흡착 등의 방법을 통해 혈액 중의 독소를 제거하는 혈액정화 요법이 시행되어야 한다. Liver transplantation is considered the only treatment for acute liver failure, but based on liver transplant data in the US OPTN / SRTR report released in 2011, only 36% of patients awaiting a transplant are known to have a transplant. In Korea, only 22% of transplant recipients receive liver transplants, according to a report from the National Institute of Organ Transplantation. This is because the number of donors donated is significantly shorter than that of patients in need of transplantation. The same is true for kidney transplants, in which only about 30% of patients with end-stage renal failure are known to have kidney transplants. If a liver transplant or kidney transplant fails in a timely manner, blood purification should be performed to circulate blood outside the body to remove toxins from the blood through dialysis, filtration, or adsorption.
현재 임상에서 사용되고 있는 인공간 장치는 Gambro사의 MARS와 FMC사의 Prometheus라는 장비로 한정되는데, Prometheus는 혈액으로부터 혈장을 분리하고, 이온수지 흡착제를 이용하여 분리된 혈장으로부터 독소를 제거하며, 혈장분리 및 흡착 후 혈액투석이 진행되는 것으로 구성되어 있다. 즉, Prometheus는 혈장분리필터, 혈장으로부터 독소를 제거하는 두 개의 흡착필터, 그리고 혈액투석 절차를 포함하며, 이로 인하여 시스템이 복잡하고 고가의 치료비용이 요구된다.Phosphorus devices currently used in clinical practice are limited to equipment called Gambro's MARS and FMC's Prometheus, which separates plasma from blood, removes toxins from separated plasma using an ion resin adsorbent, and separates and adsorbs plasma. After hemodialysis is composed. In other words, Prometheus includes a plasma separation filter, two adsorption filters to remove toxins from plasma, and a hemodialysis procedure, which makes the system complicated and requires expensive treatment costs.
MARS는 혈액투석과 동일하게 반투과성 막을 사이에 두고 혈액과 투석액이 유동하며 혈액과 투석액 사이에 물질교환이 일어나는 투석필터를 통해 혈액 중의 간독소를 제거하는 것으로 구성되어 있다. 다만, 통상의 신부전 환자를 위한 혈액투석 장치와 비교해볼 때, MARS는 알부민이라는 혈장 단백질을 투석액에 혼합하여 사용함으로써 투석필터를 통하여 요독소뿐만 아니라, 각종 단백질 결합독소와 간독소를 제거할 수 있다. 이때, 알부민 투석액은 재사용되는데, 투석액 재생을 위하여 또다른 투석필터, 활성탄, 및 이온수지 흡착제가 이용된다. 따라서, 고가의 알부민의 사용뿐만 아니라 투석액 재생을 위한 여러 단계의 투석필터 및 흡착필터가 요구되며, 이로 인해 Prometheus와 마찬가지로 시스템이 복잡하고 고가의 치료 비용이 요구된다.MARS, like hemodialysis, consists of a hemodialysis filter that removes hepatoxins in the blood through a dialysis filter, with a semi-permeable membrane interposed between the blood and the dialysate, and mass exchange between the blood and the dialysate. However, in comparison with the hemodialysis device for a conventional renal failure patient, MARS can remove various protein binding toxins and hepatoxins as well as urinary toxins through a dialysis filter by using a plasma protein called albumin in a dialysis solution. . At this time, the albumin dialysate is reused, and another dialysis filter, activated carbon, and an ion resin adsorbent are used for regeneration of the dialysate. Therefore, not only the use of expensive albumin but also several stages of dialysis filter and adsorption filter for dialysis liquid regeneration, which is complicated system and expensive treatment cost like Prometheus.
본 발명은 상기와 같은 문제점을 해결하기 위하여, 투석, 흡착, 그리고 한외여과 혹은 혈장분리를 일체화한 복합기능의 필터를 이용하여 전체 장치가 간단하고, 설치 및 사용이 용이하며, 궁극적으로 처치 비용을 절감할 수 있는 혈액정화 장치를 제공하는 것을 목적으로 한다.In order to solve the above problems, the whole device is simple, easy to install and use, and ultimately to reduce the treatment cost by using a multi-functional filter that integrates dialysis, adsorption, and ultrafiltration or plasma separation. An object of the present invention is to provide a blood purification device that can be saved.
상기와 같은 목적을 달성하기 위한 본 발명에 의한 복합기능 필터는, 혈액, 혈장, 혹은 사용된 투석액 등의 생물학적 유체(biological fluid)를 정화하기 위한 제 1 필터 및 제 2 필터, 제 1 필터 및 제 2 필터 외부에 흡착구간을 구획하는 하우징, 하우징에 설치되며 흡착구간을 통한 유동이 발생할 수 있도록 하우징 포트를 포함하여 구성된다. 하우징은 벽체, 벽체의 길이 방향 일측에 제 1 필터와 결합하는 제 1 캡, 벽체의 길이 방향 타측에 제 2 필터와 결합하는 제 2 캡을 포함하여 구성된다. 또한, 본 발명의 일실시예에 의한 복합기능 필터는 제 1 필터와 제 2 필터 사이에 유체의 누출이 없도록 제 1 필터와 제 2 필터를 연결하는 유로구획 연결구를 포함하여 구성될 수 있다. A multifunctional filter according to the present invention for achieving the above object, the first filter and the second filter, the first filter and the first filter for purifying a biological fluid (blood, plasma, or used dialysate, etc.) 2 The housing that separates the adsorption section outside the filter, is installed in the housing and comprises a housing port so that flow through the adsorption section can occur. The housing includes a wall, a first cap coupled to the first filter on one side in the longitudinal direction of the wall, and a second cap coupled to a second filter on the other side in the longitudinal direction of the wall. In addition, the multi-function filter according to an embodiment of the present invention may be configured to include a flow passage block connecting the first filter and the second filter so that there is no leakage of fluid between the first filter and the second filter.
제 1 필터와 제 2 필터는 원통형 용기에 반투과성 분리막을 충전하고 그 양단부에 폴리우레탄 등의 합성수지를 이용하여 포팅 가공한 형태를 갖는다. 제 1 및 제 2 필터 용기의 내부 공간은 분리막에 의해 서로 다른 두 개의 유체가 흐르도록 구획된다.The first filter and the second filter have a form in which a semipermeable separator is filled in a cylindrical container and potted using synthetic resin such as polyurethane at both ends thereof. Inner spaces of the first and second filter containers are partitioned so that two different fluids flow by the separator.
여기서, 제 1 및 제 2 필터 용기에는 용기의 길이 방향 중단을 중심으로 길이 방향 양측 중 적어도 어느 한 측에 유동공이 설치되는 것을 특징으로 한다. 일례를 들어, 제 1 필터 용기의 제 1 캡과 결합되는 측에 제 1 유동공이 마련되며, 제 2 필터 용기의 제 2 캡이 위치한 측으로 치우친 위치에 제 3 유동공이 마련될 수 있다.Here, the first and second filter container is characterized in that the flow hole is provided on at least one side of both sides in the longitudinal direction around the longitudinal stop of the container. For example, a first flow hole may be provided at a side coupled to the first cap of the first filter container, and a third flow hole may be provided at a position biased to the side where the second cap of the second filter container is located.
제 1 및 제 2 캡은 유체가 통과할 수 있도록 캡 포트 및 필터와 결합되는 필터 결합부를 포함하여 구성되며, 캡과 필터가 결합함으로써 캡 포트를 통과하는 유체가 필터 분리막의 일측으로 흐르도록 구획된다. 또한, 제 1 및 제 2 캡 중 적어도 어느 하나의 캡은, 캡을 관통하며 일단이 캡의 필터 결합부에 인접하는 통로를 포함하여 구성되는 것을 특징으로 한다. 즉, 제 1 캡은 필터 결합부에 인접하고 타단이 캡의 외부면에 인접하는 제 1 통로를 가질 수 있다.The first and second caps comprise a filter port coupled to the cap port and a filter to allow fluid to pass therethrough, and the cap and the filter are coupled so that the fluid passing through the cap port flows to one side of the filter separation membrane. . Further, at least one of the first and second caps is characterized in that it comprises a passage through the cap and one end adjacent to the filter engaging portion of the cap. That is, the first cap may have a first passage adjacent the filter engagement portion and the other end adjacent the outer surface of the cap.
제 1 통로는 제 1 캡이 제 1 필터와 결합함으로써 제 1 필터 내부로 유체가 유동할 수 있는 유로를 형성하는 것을 특징으로 한다. 제 1 필터 용기의 일측이 제 1 캡 필터 결합부에 위치함으로써 제 1 필터와 제 1 캡이 결합하게 된다. 제 1 필터와 제 1 캡이 결합함으로써 상기 제 1 통로를 통과하는 유체가 제 1 필터 용기에 마련된 제 1 유동공을 거쳐 제 1 필터 내부로 유동할 수 있는 제 1 유로가 형성된다.The first passage is characterized in that the first cap is coupled with the first filter to form a flow path through which fluid can flow into the first filter. One side of the first filter container is positioned at the first cap filter coupling unit, such that the first filter and the first cap are coupled to each other. The first filter and the first cap are coupled to each other to form a first flow path through which the fluid passing through the first passage may flow into the first filter through the first flow hole provided in the first filter container.
상기 흡착구간에는 독소 및 노폐물을 제거하기 위하여 흡착제가 구비된다. 흡착제는 빌리루빈과 같이 혈장 단백질에 결합되어 있으며 전하를 띄고 있는 독소들을 이온 교환 기전에 의하여 제거하는 음이온 교환수지, 또는 트립토판 및 중분자 크기의 수용성 독소 등을 물리적 흡착에 의해 제거하는 활성탄소 등이 이용될 수 있다. 흡착제는 그 종류와 개수가 한정되지 않고, 혈액정화 요법을 필요로 하는 환자에 따라 변경되는 게 바람직하다.The adsorption section is provided with an adsorbent to remove toxins and wastes. Adsorbents include anion exchange resins that bind to plasma proteins, such as bilirubin, and remove toxins that are charged by ion exchange mechanisms, or activated carbon that removes tryptophan and water-soluble toxins of medium molecular size by physical adsorption. Can be. The type and number of adsorbents are not limited, and the adsorbent is preferably changed according to the patient in need of blood purification therapy.
하우징 포트를 통해 유입된 유체가 흡착구간 내의 흡착제와 충분히 접촉한 뒤 제 2 필터로 유동할 수 있도록, 하우징 포트와 제 3 유동공은 복합기능 필터 길이방향 반대측에 설치되는 게 바람직하다. 이때, 하우징 포트 및 유동공을 통해서는 흡착제의 이동이 발생하지 않는 것이 바람직하며, 이를 위해서 다양한 방법들이 이용될 수 있다. 예를 들어, 하우징 포트 혹은 유동공을 흡착제보다 작은 크기로 제작하거나, 하우징 포트 혹은 유동공을 메쉬필터로 감싸거나, 흡착제와 하우징 포트 혹은 흡착제와 유동공 사이에 분리벽이 설치될 수 있다.The housing port and the third flow hole are preferably provided on the opposite side in the longitudinal direction of the composite function filter so that the fluid introduced through the housing port can flow into the second filter after sufficiently contacting with the adsorbent in the adsorption section. At this time, it is preferable that the movement of the adsorbent does not occur through the housing port and the flow hole, and various methods may be used for this purpose. For example, the housing port or the flow hole may be made smaller than the adsorbent, the housing port or the flow hole may be wrapped with a mesh filter, or a separation wall may be installed between the adsorbent and the housing port or the adsorbent and the flow hole.
본 발명의 일실시예에 의한 혈액정화 장치는 복합기능 필터가 환자의 혈액과 닿는 경우와 그렇지 않은 경우로 구분될 수 있다. 복합기능 필터가 환자의 혈액과 닿는 경우, 본 발명의 일실시예에 의한 혈액정화 장치는 복합기능 필터, 복합기능 필터와 환자를 연결하는 유동관, 유동관에 설치되며 혈액을 이송시키는 펌프를 포함하여 구성될 수 있다. 이때, 제 1 필터에서는 혈액투석, 제 2 필터에서는 혈장분리가 일어나는 것이 바람직하다. Blood purification apparatus according to an embodiment of the present invention may be divided into a case in which the multi-function filter is in contact with the blood of the patient and the other case. When the combined function filter is in contact with the blood of the patient, the blood purification device according to an embodiment of the present invention comprises a combined function filter, a flow pipe connecting the combined function filter and the patient, the pump is installed in the flow pipe and transfers blood Can be. In this case, it is preferable that hemodialysis occurs in the first filter and plasma separation occurs in the second filter.
혈액이 유입되면 제 2 필터에서 혈액으로부터 혈장이 분리된다. 분리된 혈장은 제 3 유동공을 거쳐 흡착구간으로 유동하며, 여기서 흡착제와의 접촉을 통해 독소와 노폐물이 제거된다. 흡착구간을 통과한 혈장은 하우징 포트를 거쳐 혈액이 흐르는 유동관으로 회송된다. 제 2 필터의 잔여혈액은 유로구획 연결구를 거쳐 제 1 필터로 이동하며 여기서 투석이 일어난다. 제 1 통로와 제 1 유동공을 잇는 제 1 유로를 통해 투석액이 제 1 필터로 공급되거나 배출될 수 있다. 투석액은 미리 조성된 투석액 백(bag)을 이용하거나 혹은 수처리 시스템을 통해 생성된 초순수에 pH, 전해질 농도 등을 조정하여 제조될 수 있다.When blood enters, plasma is separated from the blood in the second filter. The separated plasma flows through the third flow hole to the adsorption section, where toxins and wastes are removed through contact with the adsorbent. The plasma passing through the adsorption section is returned to the flow tube through which the blood flows through the housing port. Residual blood from the second filter travels through the flow passage connector to the first filter where dialysis takes place. Dialysis fluid may be supplied to or discharged from the first filter through a first flow path connecting the first passage and the first flow hole. The dialysate may be prepared by using a pre-formed dialysate bag or by adjusting pH, electrolyte concentration, etc. in ultrapure water generated through a water treatment system.
반면에, 복합기능 필터가 환자의 혈액과 직접 닿지 않는 경우, 본 발명의 일실시예에 의한 혈액정화 장치는, 혈액과 투석액 사이에 물질 이동이 일어나는 혈액필터, 혈액필터와 연결되며 혈액 혹은 투석액이 흐르는 유동관, 유동관에 설치되며 혈액 혹은 투석액을 이송시키는 펌프, 그리고 사용된 투석액을 정화시키는 복합기능 필터로 구성될 수 있다. 이때, 제 1 필터에서는 투석, 제 2 필터에서는 한외여과가 일어나는 것이 바람직하다. 복합기능 필터는 사용된 투석액으로부터 독소 및 노폐물을 제거하고, 전해질 농도를 재조정하여 투석액을 재사용하도록 한다.On the other hand, when the multi-function filter does not directly contact the blood of the patient, the blood purification device according to an embodiment of the present invention, the blood filter and the blood filter that the substance transfer between the blood and the dialysate is connected and the blood or dialysate is It may be composed of a flowing flow tube, a pump installed in the flow tube to transfer blood or dialysate, and a combined function filter to purify the dialysate used. At this time, it is preferable that diafiltration takes place in the first filter and ultrafiltration occurs in the second filter. The multifunction filter removes toxins and wastes from the used dialysate and readjusts the electrolyte concentration to reuse the dialysate.
이상에서 설명한 바와 같이, 본 발명의 일실시예에 의한 혈액정화 장치는 제 1 필터를 통한 투석, 제 2 필터를 통한 혈장분리 혹은 한외여과, 그리고 흡착구간에서의 흡착을 일체화한 복합기능 필터를 이용하여 혈액을 효율적으로 정화시킴은 물론, 전체 장치가 간단하고, 설치 및 사용이 용이하며, 처치 비용을 절감할 수 있는 혈액정화 장치를 제공할 수 있다.As described above, the blood purification apparatus according to an embodiment of the present invention uses a multifunctional filter integrating dialysis through the first filter, plasma separation or ultrafiltration through the second filter, and adsorption in the adsorption section. In this way, the blood purification device can be efficiently purified, and the whole device can be provided with a simple, easy installation and use, and a blood purification device that can reduce the treatment cost.
도 1 및 도 2는 본 발명의 일실시예에 의한 복합기능 필터의 단면도, 사시도 및 분해도이다.1 and 2 are a cross-sectional view, a perspective view and an exploded view of a composite function filter according to an embodiment of the present invention.
도 3은 유로구획 연결구와 제 1 및 제 2 필터를 나타낸 것이다.3 shows a flow passage connector and first and second filters.
도 4는 제 1 캡과 제 1 필터의 결합 단면을 나타낸 것이다.4 shows a coupling cross section of the first cap and the first filter.
도 5는 분리벽의 사시도이다.5 is a perspective view of the dividing wall.
도 6은 본 발명의 일실시예에 의한 혈액정화 장치의 개략도이다.6 is a schematic diagram of a blood purification apparatus according to an embodiment of the present invention.
도 7은 복합기능 필터 내부의 일례의 유동을 도시한 것이다.7 shows an example flow inside a multifunction filter.
도 8은 혈액필터의 단면도와 사시도이다.8 is a sectional view and a perspective view of the blood filter.
도 9는 복합기능 필터 내부의 일례의 유동을 도시한 것이다.9 illustrates an example flow within a multifunction filter.
도 10은 제 1 필터를 통한 투석액의 유입과 유출을 분리한 복합기능 필터의 단면도와 사시도이다.10 is a cross-sectional view and a perspective view of the composite function filter separating the inflow and outflow of the dialysate through the first filter.
도 11은 유로구획 연결구와 제 1 필터 용기를 나타낸 것이다.11 shows the flow passage connector and the first filter vessel.
도 12는 제 1 캡, 제 1 필터, 및 유로구획 연결구의 결합 단면을 나타낸 것이다.12 shows the engagement cross section of the first cap, the first filter, and the flow passage segment connector.
도 13은 제 3 유로가 제 2 캡을 통과하도록 구성된 복합기능 필터의 단면도와 사시도이다.13 is a sectional view and a perspective view of a multifunction filter configured to allow a third flow path through the second cap;
도 14는 제 3 유동공이 설치된 제 2 필터 용기를 나타낸 것이다.14 shows a second filter vessel in which a third flow hole is installed.
도 15는 제 3 유로가 제 2 캡을 통과하도록 구성된 복합기능 필터 내부의 일례의 유동을 도시한 것이다.FIG. 15 illustrates an example flow inside a multifunction filter configured to allow a third flow path through the second cap.
도 16은 제 4 유로를 갖는 복합기능 필터의 단면도와 사시도이다.16 is a sectional view and a perspective view of a composite function filter having a fourth flow path.
도 17은 유로구획 연결구와 제 4 유동공이 추가로 설치된 제 2 필터 용기를 나타낸 것이다.FIG. 17 shows a second filter vessel further provided with a flow passage connector and a fourth flow hole.
도 18은 제 2 캡, 제 2 필터, 및 유로구획 연결구의 결합 단면을 나타낸 것이다.18 shows the engagement cross section of the second cap, the second filter, and the flow passage connector.
도 19는 제 4 유로를 갖는 복합기능 필터 내부의 일례의 유동을 도시한 것이다.19 shows an example flow inside a composite function filter having a fourth flow path.
도 20 및 21은 유로구획 연결구 유동공을 갖는 복합기능 필터의 단면도와 사시도, 그리고 내부 유동을 도시한 것이다.20 and 21 illustrate a cross-sectional view and a perspective view of a composite function filter having flow passage connector flow holes and internal flows.
이하 첨부된 도면을 참조하여 본 발명의 일실시예에 의한 복합기능 필터 및 이를 포함하여 구성되는 혈액정화 장치를 상세히 설명한다.Hereinafter, a multifunction filter and a blood purification device including the same according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
본 발명을 설명함에 있어서, 도면에 도시된 구성요소의 크기나 형상 등은 설명의 명료성과 편의성을 위해 과장되거나 단순화되어질 수 있다. 또한, 본 발명의 구성 및 작용을 고려하여 특별히 정의된 용어들은 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 이러한 용어들은 본 명세서 전반에 걸친 내용을 토대로 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.In describing the present invention, the size or shape of the components shown in the drawings may be exaggerated or simplified for clarity and convenience of description. In addition, terms that are specifically defined in consideration of the configuration and operation of the present invention may vary depending on the intention or custom of the user or operator. These terms should be interpreted as meanings and concepts corresponding to the technical spirit of the present invention based on the contents throughout the specification.
도 1 및 2에 도시한 것과 같이, 본 발명의 일실시예에 의한 복합기능 필터(10)는 혈액, 혈장, 혹은 사용된 투석액 등의 생물학적 유체(biological fluid)를 정화하기 위한 제 1 필터(20), 역시 생물학적 유체를 정화하기 위한 제 2 필터(30), 제 1 필터와 제 2 필터의 설치 공간을 제공하는 한편, 제 1 필터 및 제 2 필터 외부에 흡착구간(12)을 구획하는 하우징, 및 하우징에 설치되며 흡착구간을 통하여 유동이 발생할 수 있도록 하우징 포트(13)를 포함하여 구성된다. 하우징은 벽체(11), 벽체의 길이 방향 일측에 제 1 필터와 결합하는 제 1 캡(40), 벽체의 길이 방향 타측에 제 2 필터와 결합하는 제 2 캡(50)을 포함하여 구성된다. 또한, 본 발명의 일실시예에 의한 복합기능 필터(10)는 제 1 필터와 제 2 필터 사이에 유체의 누출이 없도록 제 1 필터와 제 2 필터를 연결하는 유로구획 연결구(60)를 포함할 수 있다. 도 3(a)에 도시한 것과 같이, 유로구획 연결구는 제 1 및 제 2 필터와 각각 결합되는 연결부(61, 62)를 가질 수 있다.As shown in Figures 1 and 2, the multi-function filter 10 according to an embodiment of the present invention is a first filter 20 for purifying a biological fluid (blood, plasma, or used dialysate, etc.) ), Also a housing for partitioning the adsorption section 12 outside the first filter and the second filter, while providing a second filter 30 for the purification of the biological fluid, an installation space for the first filter and the second filter, And a housing port 13 installed in the housing to allow flow to occur through the adsorption section. The housing includes a wall 11, a first cap 40 coupled to the first filter on one side in the longitudinal direction of the wall, and a second cap 50 coupled to the second filter on the other side in the longitudinal direction of the wall. In addition, the multi-function filter 10 according to an embodiment of the present invention includes a flow path connecting connector 60 for connecting the first filter and the second filter so that there is no leakage of fluid between the first filter and the second filter. Can be. As shown in FIG. 3 (a), the flow passage connector may have connecting portions 61 and 62 coupled to the first and second filters, respectively.
도 3(b) 및 3(c)에 도시한 것처럼, 제 1 필터(20)와 제 2 필터(30)는 원통형 용기(21, 31)에 반투과성 분리막(22, 32)을 충전하고 그 양단부에 폴리우레탄 등의 합성수지를 이용하여 포팅 가공한 형태를 갖는다. 도면은 중공사 형태의 분리막을 갖는 중공사막형 필터를 도시하였는데, 중공사막형 필터는 크기가 작은 것에 비해 물질 전달 효율이 우수한 장점이 있다. 하지만, 제 1 및 제 2 필터는 중공사막으로 구성되는 것으로 한정되지 않고, 평막 등 다른 형태의 분리막으로 구성될 수 있다. 제 1 및 제 2 필터 용기(21, 31)의 내부 공간은 분리막(22, 32)에 의해 두 개의 유체가 흐르도록 구획된다.As shown in FIGS. 3B and 3C, the first filter 20 and the second filter 30 fill the cylindrical containers 21 and 31 with the semi-permeable separation membranes 22 and 32 and at both ends thereof. It has the form which was potted using synthetic resin, such as polyurethane. The figure shows a hollow fiber membrane filter having a hollow fiber membrane, the hollow fiber membrane filter has an advantage of excellent mass transfer efficiency compared to the small size. However, the first and second filters are not limited to being composed of hollow fiber membranes, and may be formed of other types of separation membranes such as flat membranes. The inner spaces of the first and second filter containers 21 and 31 are partitioned so that two fluids flow by the separators 22 and 32.
여기서, 제 1 및 제 2 필터 용기(21, 31)는 용기의 길이 방향 중단을 중심으로 길이 방향 양측 중 적어도 어느 한 측에 유동공이 설치되는 것을 특징으로 한다. 일례를 들어, 도 3(b)와 3(c)에 도시한 것과 같이, 제 1 필터 용기(21)의 제 1 캡과 결합되는 측에 제 1 유동공(23)이 마련되며, 제 2 필터 용기(31)의 제 2 캡이 위치한 측으로 치우친 위치에 제 3 유동공(33)이 마련될 수 있다. 유동공(23, 33)은 유동이 용이하게 발생할 수 있도록 용기(21, 31)의 원주방향을 둘러싸도록 다수 개 설치되는 것이 바람직하다.Here, the first and second filter containers (21, 31) is characterized in that the flow hole is provided on at least one side of both sides in the longitudinal direction around the longitudinal stop of the container. For example, as shown in FIGS. 3B and 3C, the first flow hole 23 is provided on the side that is engaged with the first cap of the first filter container 21 and the second filter. The third flow hole 33 may be provided at a position biased toward the side where the second cap of the container 31 is located. It is preferable that a plurality of flow holes 23 and 33 be installed to surround the circumferential direction of the containers 21 and 31 so that flow can be easily generated.
도 2에 도시한 것과 같이, 제 1 캡(40)은 유체가 통과할 수 있도록 제 1 캡 포트(41)와 제 1 필터와 결합하는 제 1 캡 필터 결합부(42)를 포함하며, 제 1 캡이 제 1 필터와 결합함으로써 제 1 캡 포트(41)를 통과하는 유체가 제 1 필터 분리막(22)의 일측, 혹은 중공사 분리막의 경우 분리막의 안쪽으로 흐르도록 구획된다. 마찬가지로, 제 2 캡(50)은 제 2 캡 포트(51)와 제 2 필터와 결합하는 제 2 캡 필터 결합부(52)를 가질 수 있으며, 제 2 캡이 제 2 필터와 결합함으로써 제 2 캡 포트(51)를 통과하는 유체가 제 2 필터 분리막(32)의 일측으로 흐르도록 구획된다. 도면에서 필터 결합부(42, 52)는 필터의 일측이 삽입될 수 있는 오목한 홈의 형태로 도시되었는데, 필터 결합부는 도시한 형상으로 한정되지 않고 필터와 캡이 결합할 수 있도록 치수와 모양이 변경될 수 있다. As shown in FIG. 2, the first cap 40 includes a first cap filter engagement portion 42 that engages the first cap port 41 and the first filter to allow fluid to pass therethrough, and the first cap 40 When the cap is coupled to the first filter, the fluid passing through the first cap port 41 is partitioned to flow to one side of the first filter separator 22 or in the case of the hollow fiber separator. Similarly, the second cap 50 may have a second cap filter coupling portion 52 that engages the second cap port 51 and the second filter, and the second cap is coupled to the second filter by the second cap 50. The fluid passing through the port 51 is partitioned to flow to one side of the second filter separation membrane 32. In the drawings, the filter coupling parts 42 and 52 are illustrated in the form of concave grooves into which one side of the filter can be inserted. Can be.
또한, 제 1 및 제 2 캡(40, 50) 중 적어도 어느 하나의 캡은, 캡을 관통하며 일단이 캡의 필터 결합부(42, 52)에 인접하는 통로를 포함하여 구성되는 것을 특징으로 한다. 일례를 들어, 도 2에 도시한 제 1 캡은 일단이 제 1 필터 필터 결합부(42)에 인접하고 타단이 캡의 외부면에 인접하는 제 1 통로(43)를 갖는다. 여기서, 캡 외부면이란 흡착구간(12)에 접하는 캡 면을 제외한 캡의 측면 혹은 캡 포트(41, 51)가 위치하는 면 등을 의미한다. 캡 외부면은 복합기능 필터의 외부에 해당하는 것을 알 수 있다. In addition, at least one of the caps of the first and second caps 40 and 50 is characterized in that it comprises a passage that penetrates the cap and one end thereof is adjacent to the filter coupling portions 42 and 52 of the cap. . For example, the first cap shown in FIG. 2 has a first passage 43 one end adjacent to the first filter filter coupling portion 42 and the other end adjacent to the outer surface of the cap. Here, the cap outer surface means the side of the cap except the cap surface in contact with the suction section 12 or the surface on which the cap ports 41 and 51 are located. It can be seen that the outer surface of the cap corresponds to the outside of the multifunction filter.
제 1 통로(43)는 제 1 캡이 제 1 필터와 결합함으로써 제 1 필터 내부로 유체가 유동할 수 있는 유로를 형성한다. 도 4는 제 1 캡(40)과 제 1 필터(20)의 결합을 통해 생성되는 제 1 유로(71)를 도시한 것이다. 제 1 필터 용기(21)의 일측이 제 1 캡 필터 결합부(42)에 위치함으로써 제 1 필터와 제 1 캡이 결합하게 된다. 제 1 필터와 제 1 캡이 결합할 때 두 개의 유로가 구획되는데, 하나는 전술한 바와 같이 제 1 캡 포트(41)를 통과하는 유체가 제 1 필터 분리막(22)의 일측으로 흐르도록 구획되며, 다른 하나는 제 1 캡에 마련된 제 1 통로(43)를 통과하는 유체가 제 1 필터 용기에 마련된 제 1 유동공(23)을 거쳐 제 1 필터 내부로 유동하도록 구획된다. 즉, 제 1 필터와 제 1 캡의 결합을 통해 제 1 통로(43), 제 1 유동공(23), 및 제 1 필터(20)를 연결하는 제 1 유로(71)가 형성된다.The first passage 43 forms a flow path through which the fluid can flow into the first filter by coupling the first cap with the first filter. 4 shows a first flow path 71 generated through the combination of the first cap 40 and the first filter 20. One side of the first filter container 21 is positioned in the first cap filter coupling part 42, so that the first filter and the first cap are coupled to each other. Two flow paths are partitioned when the first filter and the first cap are coupled, and one is partitioned so that the fluid passing through the first cap port 41 flows to one side of the first filter separation membrane 22 as described above. The other is partitioned so that the fluid passing through the first passage 43 provided in the first cap flows into the first filter through the first flow hole 23 provided in the first filter container. That is, a first flow path 71 connecting the first passage 43, the first flow hole 23, and the first filter 20 is formed through the combination of the first filter and the first cap.
이와 같이, 캡(40, 50)과 필터(20, 30)의 결합을 통해 유체가 정해진 영역으로 흐르도록 한정되는데, 이를 위하여 다양한 방법들이 이용될 수 있다. 캡과 필터의 결합부위에 화학적 접착을 통하거나, 혹은 실리콘 등 연질의 오링을 각 접착 부위에 삽입하는 등 다양한 방법을 통해 유체가 정해진 공간 외의 타 공간으로 흐르는 것을 방지할 수 있다.As such, the fluid flows through the combination of the caps 40 and 50 and the filters 20 and 30 to a predetermined region, and various methods may be used for this purpose. The fluid can be prevented from flowing to other spaces through a variety of methods, such as through chemical bonding to the cap and filter, or by inserting a soft O-ring such as silicone into each bonding site.
흡착구간(12)에는 독소 및 노폐물을 제거하기 위하여 흡착제가 구비된다. 흡착제는 빌리루빈(brilirubin)과 같이 혈장 단백질에 결합되어 있으며 전하를 띄고 있는 독소들을 이온 교환 기전에 의하여 제거하는 음이온 교환수지, 또는 트립토판(tryptophan) 및 중분자 크기의 수용성 독소 등을 물리적 흡착에 의해 제거하는 활성탄소 등이 이용될 수 있다. 흡착제는 파우더 형태, 알갱이 형태, 혹은 파우더 혹은 알갱이를 압착시킨 흡착제 블록의 형태 등으로 사용될 수 있으며, 본 발명의 일실시예에 의한 복합기능 필터에 포함되는 흡착제는 그 종류와 개수가 한정되지 않고, 혈액정화 요법을 필요로 하는 환자에 따라 변경되는 게 바람직하다.The adsorption section 12 is provided with an adsorbent to remove toxins and wastes. Adsorbents are attached to plasma proteins, such as bilirubin, to remove the charged toxins by ion exchange mechanisms, or tryptophan and medium-molecularly water-soluble toxins. Activated carbon may be used. The adsorbent may be used in powder form, in the form of granules, or in the form of an adsorbent block in which the powder or granules are compressed. The adsorbents included in the multifunctional filter according to an embodiment of the present invention are not limited in kind and number. It is desirable to vary according to the patient in need of blood purification therapy.
하우징 포트(13)를 통해 유입된 유체가 흡착구간 내의 흡착제와 충분히 접촉한 뒤 제 2 필터 용기(31)에 마련된 제 3 유동공(33)을 통해 제 2 필터로 유동할 수 있도록, 하우징 포트는 제 1 캡(40) 혹은 제 1 캡이 위치한 측으로 치우친 벽체(11)에 마련되며, 제 3 유동공은 제 2 필터 용기의 제 2 캡이 위치한 측으로 치우친 위치에 마련되는 게 바람직하다. 이는 유동이 반대 방향으로 발생할 경우에도 동일하다. 즉, 제 2 필터의 유체가 제 3 유동공을 통해 흡착구간에 유입된 후, 흡착구간을 거쳐 하우징 포트를 통해 배출될 수 있다.The housing port allows the fluid introduced through the housing port 13 to flow into the second filter through the third flow hole 33 provided in the second filter container 31 after sufficient contact with the adsorbent in the adsorption section. The first cap 40 or the wall 11 biased to the side where the first cap is located is provided, and the third flow hole is preferably provided at a position biased to the side where the second cap of the second filter container is located. The same is true if the flow occurs in the opposite direction. That is, after the fluid of the second filter is introduced into the adsorption section through the third flow hole, it may be discharged through the housing port through the adsorption section.
이때, 하우징 포트(13), 및 제 1 혹은 제 3 유동공(23, 33) 등을 통해서는 흡착제의 이동이 발생하지 않는 것이 바람직하며, 이를 위해서 다양한 방법들이 이용될 수 있다. 예를 들어, 하우징 포트 혹은 유동공을 흡착제보다 작은 크기로 제작하거나, 하우징 포트 혹은 유동공을 흡착제보다 작은 크기의 기공을 갖는 메쉬필터로 감싸거나, 흡착제를 흡착제보다 작은 크기의 기공을 갖는 메쉬필터로 감싸거나, 파우더 혹은 알갱이 형태의 흡착제를 압착시킨 흡착제 블록을 이용하거나, 또는 도 2에 도시한 것과 같이, 흡착제와 하우징 포트 혹은 흡착제와 유동공 사이에 분리벽(14)이 설치될 수 있다. 분리벽은 흡착제의 통과를 억제하기 위하여 흡착제보다 작은 크기의 기공을 갖는 구조로 제작되거나, 혹은 도 5에 도시한 것과 같이, 유체가 통과할 수 있는 지지벽(14a)에 흡착제보다 작은 크기의 기공을 갖는 메쉬필터(14b)를 부착한 형태 등으로 제작될 수 있다. At this time, it is preferable that the movement of the adsorbent does not occur through the housing port 13 and the first or third flow holes 23 and 33, and various methods may be used for this purpose. For example, a housing port or flow hole may be made smaller in size than an adsorbent, or the housing port or flow hole may be wrapped in a mesh filter having pores of a smaller size than the adsorbent, or the adsorbent may be a mesh filter having pores of a smaller size than the adsorbent. Or a separation wall 14 may be provided between the adsorbent and the housing port or between the adsorbent and the flow hole, as shown in FIG. The dividing wall is made of a structure having pores of a smaller size than the adsorbent to suppress the passage of the adsorbent, or as shown in FIG. It may be manufactured in the form attached to the mesh filter 14b having a.
마찬가지로, 2종 이상의 흡착제가 사용된 경우 흡착제 간의 혼합을 방지하기 위하여, 흡착제를 흡착제보다 작은 크기의 기공을 갖는 메쉬필터로 감싸거나, 파우더 혹은 알갱이 형태의 흡착제를 압착시킨 흡착제 블록을 이용하거나, 흡착제 사이에 분리벽(14)이 설치될 수 있다.Similarly, when two or more adsorbents are used, in order to prevent mixing between the adsorbents, the adsorbents are wrapped in a mesh filter having pores of smaller size than the adsorbents, or an adsorbent block in which powder or granular adsorbents are compressed. Separation wall 14 may be installed between.
이하 첨부된 도면을 참조하여 복합기능 필터(10)를 포함하여 구성되는 혈액정화 장치(80)에 대하여 상세히 설명한다.Hereinafter, the blood purification apparatus 80 including the multifunction filter 10 will be described in detail with reference to the accompanying drawings.
본 발명의 일실시예에 의한 혈액정화 장치는 복합기능 필터가 환자의 혈액과 직접 닿는 경우와 그렇지 않은 경우로 구분될 수 있다. 먼저, 복합기능 필터가 환자의 혈액과 닿는 경우, 도 6(a)에 도시한 것과 같이, 본 발명의 일실시예에 의한 혈액정화 장치는 복합기능 필터(10), 복합기능 필터와 환자를 연결하는 유동관(81), 유동관에 설치되며 혈액을 이송시키는 펌프(82)를 포함하여 구성될 수 있다. 이때, 제 1 필터(20)에서는 혈액투석, 제 2 필터(30)에서는 혈장분리가 일어날 수 있다. Blood purification apparatus according to an embodiment of the present invention can be divided into a case in which the multi-function filter is in direct contact with the blood of the patient and the other case. First, when the combined function filter is in contact with the blood of the patient, as shown in Figure 6 (a), the blood purification device according to an embodiment of the present invention connects the combined function filter 10, the combined function filter and the patient It may be configured to include a flow tube 81, the pump 82 is installed in the flow tube to transfer blood. In this case, hemodialysis may occur in the first filter 20 and plasma separation may occur in the second filter 30.
도 7에 도시한 것과 같이, 펌프(82)에 의해 혈액이 제 2 캡(50)을 통해 복합기능 필터로 유입되면, 제 2 필터(30)에서 혈액으로부터 혈장이 분리된다. 제 2 필터 분리막(32)을 가로질러 분리된 혈장은 제 2 필터 용기에 마련된 제 3 유동공(33)을 거쳐 흡착구간(12)으로 유동하며, 여기서 흡착제와의 접촉을 통해 독소와 노폐물이 제거된다. 흡착구간을 통과한 혈장은 하우징 포트(13)를 거쳐 혈액이 흐르는 유동관(81)으로 회송된다. As shown in FIG. 7, when blood flows into the multifunction filter through the second cap 50 by the pump 82, plasma is separated from the blood in the second filter 30. Plasma separated across the second filter separation membrane 32 flows to the adsorption section 12 through the third flow hole 33 provided in the second filter vessel, where toxins and wastes are removed through contact with the adsorbent. do. The plasma passing through the adsorption section is returned to the flow tube 81 through which the blood flows through the housing port 13.
제 2 필터의 잔여혈액은 유로구획 연결구(60)를 거쳐 제 1 필터(20)로 이동하며, 여기서 투석이 일어난다. 제 1 필터 분리막의 일측, 혹은 중공사막의 경우 분리막의 안쪽으로 유동하는 혈액을 정화하기 위하여, 투석액이 제 1 필터 분리막의 타측, 혹은 중공사막의 경우 분리막의 바깥쪽으로 공급된다. 이때, 제 1 통로와 제 1 유동공을 잇는 제 1 유로(71)를 통해 투석액이 제 1 필터로 공급되거나 배출될 수 있다. 투석액은 미리 조성된 투석액 백(bag)을 이용하거나 혹은 수처리 시스템을 통해 생성된 초순수에 pH, 전해질 농도 등을 조정하여 제조될 수 있다.Residual blood of the second filter moves to the first filter 20 via the flow passage connector 60, where dialysis takes place. In order to purify the blood flowing into one side of the first filter membrane, or in the case of the hollow fiber membrane, the dialysis fluid is supplied to the other side of the first filter membrane, or to the outside of the membrane in the case of the hollow fiber membrane. At this time, the dialysate may be supplied to or discharged from the first filter through the first flow path 71 connecting the first passage and the first flow hole. The dialysate may be prepared by using a pre-formed dialysate bag or by adjusting pH, electrolyte concentration, etc. in ultrapure water generated through a water treatment system.
혈액은 제 2 캡으로 유입되는 것으로 한정되지 않고, 제 1 캡으로 유입되며 제 1 필터를 거치면서 투석이 먼저 일어나고, 이어서 제 2 필터를 거치면서 혈장분리가 일어나도록 구성될 수 있다. 이와 같이, 제 1 필터에서의 투석, 제 2 필터에서의 혈장분리, 그리고 흡착구간에서의 흡착을 통하여 환자의 혈액은 효율적으로 정화될 수 있다.The blood is not limited to being introduced into the second cap, and may be configured to enter the first cap and undergo dialysis first through the first filter, followed by plasma separation through the second filter. As such, the blood of the patient can be efficiently purified through dialysis in the first filter, plasma separation in the second filter, and adsorption in the adsorption section.
반대로, 복합기능 필터(10)가 환자의 혈액과 직접 닿지 않는 경우, 본 발명의 일실시예에 의한 혈액정화 장치(80)는 도 6(b)에 도시한 것과 같이, 혈액과 투석액 사이에 물질 이동이 일어나는 혈액필터(83), 혈액필터를 사이에 두고 혈액 회로와 혈액으로부터 독소를 제거하기 위한 투석액 회로를 포함하여 구성될 수 있다. 혈액 회로는 혈액필터와 환자를 연결하는 유동관(81)과 혈액을 이송시키는 펌프(82)로 구성되며, 마찬가지로 투석액 회로는 투석액이 유동하는 유동관(81)과 투석액을 이송시키는 펌프(82), 그리고 사용된 투석액을 정화시키는 복합기능 필터(10)로 구성될 수 있다. On the contrary, when the multi-function filter 10 does not directly contact the blood of the patient, the blood purification apparatus 80 according to an embodiment of the present invention, as shown in Figure 6 (b), between the blood and the dialysate A blood filter 83 in which the movement takes place may be included, and a dialysis fluid circuit for removing toxins from the blood circuit with the blood filter interposed therebetween. The blood circuit is composed of a flow pipe 81 connecting the blood filter and the patient and a pump 82 for transporting blood. Similarly, the dialysis fluid circuit includes a flow pipe 81 through which the dialysate flows and a pump 82 for transporting the dialysate, and It may be composed of a multi-function filter 10 for purifying the dialysate used.
도 8은 혈액필터(83)의 일례를 도시한 것이다. 내부 공간을 갖는 용기(83a)와 용기의 내부 공간에 수용되는 혈액막(83b)을 포함하며, 용기의 내부 공간은 혈액막에 의해 혈액 유동영역과 투석액 유동영역으로 구획된다. 혈액필터 용기의 일단과 타단에는 혈액 유입구(83c)와 혈액 유출구(83d)가 마련되고, 용기의 외주면 상하부에는 투석액 유입구(83e)와 투석액 유출구(83f)가 마련된다.8 shows an example of the blood filter 83. A container 83a having an inner space and a blood membrane 83b accommodated in the inner space of the container are included, and the inner space of the container is divided into a blood flow region and a dialysate flow region by the blood membrane. A blood inlet 83c and a blood outlet 83d are provided at one end and the other end of the blood filter container, and a dialysis fluid inlet 83e and a dialysis fluid outlet 83f are provided at upper and lower outer peripheral surfaces of the container.
이때, 복합기능 필터(10)는 사용된 투석액(used dialysate)을 정화시키는 역할을 수행한다. 전술한 바와 같이, 투석액은 수처리 시스템을 통해 생성된 초순수에 bicarbonate, sodium 등 여러 전해질 농도와 pH 등을 조정하여 제조된다. 특히, 간투석에서는 투석액에 알부민과 같은 혈장 단백질을 추가로 포함하여 조성되는데, 알부민은 혈액 혹은 혈장에 존재하는 단백질 결합 독소를 제거하는 매개체로 작용할 수 있다. 복합기능 필터(10)는 사용된 투석액으로부터 독소 및 노폐물을 제거하고, 전해질 농도를 재조정하여 투석액을 재사용하도록 한다. 재생된 투석액은 투석액 레저버(84)에 저장된 후 혈액필터로 공급될 수 있다.At this time, the combined function filter 10 serves to purify the used dialysate. As described above, the dialysate is prepared by adjusting the concentration and pH of various electrolytes such as bicarbonate and sodium in the ultrapure water generated through the water treatment system. In particular, hepatic dialysis contains an additional plasma protein such as albumin in the dialysate, and albumin may act as a medium for removing protein binding toxins present in blood or plasma. The multifunction filter 10 removes toxins and wastes from the used dialysate and readjusts the electrolyte concentration to reuse the dialysate. The regenerated dialysate may be stored in the dialysate reservoir 84 and then supplied to the blood filter.
도 9는 사용된 투석액을 정화시키는 복합기능 필터(10) 내부의 일례의 유동을 도시한 것이다. 도 9(a)에 도시한 것과 같이, 펌프(82)에 의해 사용된 투석액이 제 2 캡 포트(51)를 통해 제 2 필터(30)로 유입된다. 이때, 유입되는 투석액의 일부가 분리되어 흡착구간(12)으로 유동하며, 여기서 흡착제와의 접촉을 통해 투석액 중의 독소가 제거될 수 있다. 흡착구간을 거친 투석액은 제 2 필터 용기(31)에 마련된 제 3 유동공(33)을 거쳐 제 2 필터로 유입되며, 여기서 제 2 필터 분리막을 가로질러 제 2 필터 안쪽의 투석액과 병합하게 된다.9 shows an example flow inside a multifunction filter 10 for purifying spent dialysate. As shown in FIG. 9A, the dialysate used by the pump 82 flows into the second filter 30 through the second cap port 51. At this time, a portion of the incoming dialysate is separated and flows to the adsorption section 12, where toxins in the dialysate may be removed through contact with the adsorbent. The dialysate passed through the adsorption section is introduced into the second filter through the third flow hole 33 provided in the second filter container 31, and merges with the dialysate inside the second filter across the second filter separation membrane.
여기서, 복합기능 필터(10)로 유입되는 투석액 중에 흡착구간을 통과하도록 분리되는 투석액의 양은 정해진 값을 갖는 것이 아니다. 투석액 중의 흡착에 의해 제거되어야 하는 독소의 양, 혹은 복합기능 필터을 통과하는 투석액 유동의 안정성 등을 고려하여 조절될 수 있다. 따라서, 사용된 투석액의 전부가 흡착구간을 통과하도록 구성되거나, 혹은 반대로 사용된 투석액이 모두 제 2 캡을 통과하도록 구성될 수 있다.Here, the amount of the dialysate separated to pass through the adsorption section in the dialysate flowing into the composite function filter 10 does not have a predetermined value. The amount of toxin to be removed by adsorption in the dialysate, or the stability of the dialysate flow through the multifunction filter may be adjusted. Thus, all of the used dialysate may be configured to pass through the adsorption section, or vice versa, all used dialysate may be configured to pass through the second cap.
이어서, 제 2 필터를 통과한 투석액은 유로구획 연결구(60)를 거쳐 제 1 필터(20)로 유동하며, 여기서 투석에 의해 사용된 투석액은 한번 더 정화된다. 투석액은 제 1 유로(71)를 통해 공급되고 배출된다.Subsequently, the dialysis liquid that has passed through the second filter flows to the first filter 20 via the flow path segment connector 60, where the dialysis liquid used by dialysis is purified once more. The dialysate is supplied and discharged through the first flow path 71.
복합기능 필터(10)를 통한 투석액 흐름은 제 2 캡(50)으로 유입되는 것으로 한정되지 않는다. 사용된 투석액이 제 1 캡(40)으로 유입되며 제 1 캡으로 유입되는 투석액의 일부가 분리되어 흡착구간을 지나도록 구성될 수 있다. 분리되지 않은 투석액은 제 1 필터(20)를 거치면서 투석이 먼저 일어난 후 제 2 필터(30)로 유동한다. 제 2 필터에서 흡착구간을 거친 투석액과 병합하게 되며, 제 2 필터를 통과한 투석액은 혈액필터(83)로 재공급될 수 있다.The dialysate flow through the multifunction filter 10 is not limited to entering the second cap 50. Used dialysate flows into the first cap 40 and a portion of the dialysate flowing into the first cap may be separated to pass through the adsorption section. The dialysis solution not separated flows to the second filter 30 after the dialysis occurs first while passing through the first filter 20. The second filter merges with the dialysate passed through the adsorption section, and the dialysate passed through the second filter may be supplied to the blood filter 83 again.
뿐만 아니라, 본 발명의 일실시예에 의한 복합기능 필터(10)를 통한 투석액 흐름은 도 9(b)에 도시한 것과 같이, 제 1 캡으로 투석액이 유입되며 제 1 필터에서 투석이 먼저 일어난다. 이어서 제 2 필터에서 투석액의 일부가 제 2 필터 분리막(32)을 가로질러 한외여과된다. 여과된 투석액은 제 3 유동공(33)을 거쳐 흡착구간으로 유동하며 여기서 흡착에 의해 독소들이 제거된다. 흡착구간을 거친 투석액은 유동관(81)으로 회송된다. In addition, the dialysate flow through the composite function filter 10 according to an embodiment of the present invention, as shown in Figure 9 (b), the dialysate flows into the first cap and the dialysis occurs in the first filter first. A portion of the dialysate is then ultrafiltered across the second filter separator 32 in the second filter. The filtered dialysate flows through the third flow hole 33 to the adsorption section, where toxins are removed by adsorption. The dialysate passed through the adsorption section is returned to the flow tube (81).
마찬가지로, 제 2 필터에서 한외여과를 통해 분리되는 투석액의 양은 정해진 값을 갖는 것이 아니라, 흡착 효율과 유동 안정성을 고려하여 조절되는 게 바람직하다. 이와 같이, 본 발명의 일실시예에 의한 복합기능 필터(10)는 투석액 정화 효율과 투석액 유동의 안정성을 고려하여 투석액 흐름을 다양하게 구성할 수 있다.Similarly, the amount of the dialysate separated by ultrafiltration in the second filter is preferably not adjusted but considering the adsorption efficiency and flow stability. As described above, the multifunction filter 10 according to an embodiment of the present invention may be configured in various ways in the dialysis fluid flow in consideration of the dialysis fluid purification efficiency and the stability of the dialysis fluid flow.
여기서, 펌프(82)는 혈액, 혈장 혹은 투석액을 이송시킬 수 있는 다양한 방법이 이용될 수 있다. 도 6 및 도 7에 도시한 펌프(82)는 유동관(81)을 압착함으로써 내부의 유체를 이송시키는 롤러와 롤러를 회전시키는 구동부로 구성된 롤러펌프를 도시하였다. 하지만, 펌프는 롤러펌프로 한정되지 않고, 원심력을 가함으로써 유체를 이송시키는 원심펌프, 유동관을 가압하는 유동관 가압부재와 가압부재 구동기로 구성된 유동관 가압펌프, 실린더와 실린더를 압축 혹은 팽창시키는 피스톤으로 구성된 피스톤 펌프, 혹은 공기압 구동기를 이용하여 유체 주머니(sac)를 압축 혹은 팽창시키는 공기압 펌프 등 유체를 이송시킬 수 있는 다양한 형태로 변경될 수 있다.Here, the pump 82 may be used in various ways to transfer blood, plasma or dialysate. The pump 82 shown in FIG. 6 and FIG. 7 shows a roller pump composed of a roller for transferring the fluid therein by compressing the flow tube 81 and a driving unit for rotating the roller. However, the pump is not limited to a roller pump, but a centrifugal pump for transferring fluid by applying centrifugal force, a flow tube pressurizing pump configured to pressurize the flow tube and a pressurizing member driver, and a piston for compressing or expanding the cylinder and the cylinder. It may be changed into various forms capable of transferring fluid, such as a piston pump or a pneumatic pump that compresses or expands a fluid sac using a pneumatic actuator.
이상에서 살펴본 바와 같이, 본 발명의 일실시예에 의한 복합기능 필터(10)는 제 1 필터를 통한 투석, 제 2 필터를 통한 혈장분리 혹은 한외여과, 그리고 흡착구간에서의 흡착을 통해 혈액 혹은 사용된 투석액을 효율적으로 정화시킬 수 있다.As described above, the multi-function filter 10 according to an embodiment of the present invention is used for blood or blood through dialysis through a first filter, plasma separation or ultrafiltration through a second filter, and adsorption in an adsorption section. The purified dialysate can be efficiently purified.
여기서, 복합기능 필터(10)는 제 1 필터(20)에서 투석액이 공급되는 유로와 배출되는 유로가 분리되도록 변경될 수 있다. 제 1 필터 분리막(22)의 일측으로 혈액 혹은 사용된 투석액이 유동할 때, 깨끗한 투석액이 제 1 필터 분리막의 타측을 유동한다. 이때, 깨끗한 투석액이 제 1 필터로 공급되는 유로와 제 1 필터로부터 배출되는 유로가 분리됨으로써 투석효율은 더욱 증대될 수 있다. 도 10은 제 1 필터를 통한 투석액의 공급과 배출을 분리하기 위하여 제 1 유로(71)뿐만 아니라, 제 2 유로를 갖는 복합기능 필터(10)를 도시한 것이다. 도 10에서 절단면A-A는 도 1에 도시한 것과 같이, 복합기능 필터 상면도(top view)의 절단면을 나타낸 것이다.Here, the multifunction filter 10 may be changed to separate the flow path from which the dialysis fluid is supplied from the flow path discharged from the first filter 20. When blood or used dialysate flows to one side of the first filter separation membrane 22, clean dialysate flows to the other side of the first filter separation membrane. At this time, the dialysis efficiency may be further increased by separating the flow passage through which the clean dialysis liquid is supplied to the first filter and the flow passage discharged from the first filter. FIG. 10 shows a composite function filter 10 having a second flow path as well as a first flow path 71 to separate the supply and discharge of the dialysate through the first filter. In FIG. 10, the cut plane A-A shows a cut plane of the multi-function filter top view, as shown in FIG. 1.
이를 위해, 유로구획 연결구(60)는 도 11(a)에 도시한 것과 같이, 연결부(61, 62)뿐만 아니라, 제 1 필터(20)를 수용하며 제 1 필터 외부에 투석액 유로를 구획할 수 있는 제 1 필터 수용공간(63)을 가지며, 제 1 필터 수용공간의 일단은 제 1 캡에 결합된다. 또한, 도 11(b)에 도시한 것처럼, 제 1 필터 용기(21)에는 용기의 원주방향을 둘러싸도록 제 2 유동공(24)이 추가로 설치된다. 제 2 유동공은 용기의 길이 방향 중단을 중심으로 제 1 유동공(23)의 반대편 측에 설치되는 게 바람직하다. To this end, as shown in FIG. 11A, the flow passage connector 60 accommodates not only the connecting portions 61 and 62 but also the first filter 20 and partitions the dialysate flow path outside the first filter. It has a first filter receiving space 63, one end of the first filter receiving space is coupled to the first cap. In addition, as shown in FIG. 11 (b), the second filter hole 24 is further provided in the first filter container 21 so as to surround the circumferential direction of the container. The second flow hole is preferably provided on the side opposite to the first flow hole 23 around the longitudinal interruption of the container.
뿐만 아니라, 도 10(b)에서 알 수 있듯이, 제 1 캡(40)에는 필터 결합부(42)와 캡 외부면을 연결하는 제 1 통로(43) 외에, 캡을 관통하며 캡의 흡착구간에 접하는 면과 캡 외부면을 연결하는 제 2 통로(44)가 추가로 설치된다.In addition, as can be seen in Figure 10 (b), the first cap 40, in addition to the first passage 43 for connecting the filter coupling portion 42 and the cap outer surface, and penetrates the cap to the adsorption section of the cap A second passageway 44 is further provided which connects the abutting surface with the cap outer surface.
제 2 유로(72)는 유로구획 연결구(60), 제 1 필터(20), 그리고 제 1 캡(40)의 결합을 통해 형성될 수 있다. 도 12(a)와 12(b)에 도시한 것과 같이, 제 1 필터(20)가 유로구획 연결구(60)의 제 1 필터 수용공간(63)에 위치하고 제 1 필터의 일단이 유로구획 연결구의 연결부(61)에 결합되면, 제 1 필터 내부의 투석액은 제 2 유동공(24)을 거쳐 제 1 필터 수용공간(63)으로 흐르도록 구획된다. 이어서, 도 12(c)에 도시한 것과 같이, 유로구획 연결구(60)와 제 1 캡(40)이 결합하게 되면 제 1 필터 수용공간(63)을 흐르는 투석액이 제 1 캡에 마련된 제 2 통로(44)를 통과하도록 구획된다. 이와 같이, 제 1 필터, 유로구획 연결구, 제 1 캡의 결합을 통하여, 제 1 필터, 제 2 유동공, 제 1 필터 수용공간, 및 제 2 통로를 연결하는 제 2 유로(72)가 형성된다. 제 1 및 제 2 유로(71, 72) 중 어느 하나의 유로를 통해 투석액이 공급되면 다른 하나의 유로를 통해 배출되는 게 바람직하다.The second flow passage 72 may be formed through the combination of the flow passage partition connector 60, the first filter 20, and the first cap 40. 12 (a) and 12 (b), the first filter 20 is located in the first filter receiving space 63 of the flow path connecting connector 60 and one end of the first filter is connected to the flow path connecting connector. When coupled to the connecting portion 61, the dialysate inside the first filter is partitioned to flow through the second flow hole 24 to the first filter receiving space (63). Subsequently, as shown in FIG. 12 (c), when the flow path connecting connector 60 and the first cap 40 are coupled, the second passage in which the dialysis fluid flowing in the first filter accommodation space 63 is provided in the first cap is provided. Partitioned to pass 44. In this way, a second flow path 72 connecting the first filter, the second flow hole, the first filter accommodation space, and the second passage is formed through the combination of the first filter, the flow passage partition connector, and the first cap. . When the dialysate is supplied through one of the first and second flow paths 71 and 72, it is preferable that the dialysis fluid is discharged through the other flow path.
이와 같이, 제 1 캡(40)과 제 1 필터(20), 그리고 유로구획 연결구(60)의 결합을 통해 투석액이 정해진 공간을 흐르도록 한정되며, 이를 위하여 전술한 다양한 방법이 이용될 수 있다.As such, the dialysis fluid is defined to flow through a predetermined space through the combination of the first cap 40, the first filter 20, and the flow path connecting connector 60, and various methods described above may be used.
여기서, 도 7 또는 도 9에 도시한 복합기능 필터(10) 내부의 유동을 살펴보면 제 2 필터(30)에서 분리된 혈장 혹은 한외여과된 투석액은 제 3 유동공(33)을 거쳐 흡착구간으로 이동한다. 즉, 제 2 필터와 흡착구간은 제 3 유동공을 통해 서로 연결된다. 하지만, 본 발명의 일실시예에 의한 복합기능 필터(10)는 도 13에 도시한 것과 같이, 제 2 필터(30)의 유체가 제 2 캡을 거쳐 복합기능 필터 외부로 배출된 후, 흡착구간으로 공급되도록 변경될 수 있다. 마찬가지로, 도 13에서 절단면A-A는 복합기능 필터 상면도(top view)의 절단면을 의미한다.Here, looking at the flow inside the composite function filter 10 shown in FIG. 7 or 9, the plasma or ultrafiltration dialysis fluid separated from the second filter 30 is moved to the adsorption section via the third flow hole 33. do. That is, the second filter and the suction section are connected to each other through the third flow hole. However, in the composite function filter 10 according to one embodiment of the present invention, as shown in FIG. 13, after the fluid of the second filter 30 is discharged to the outside of the composite function filter through the second cap, the adsorption section is provided. It can be changed to be supplied to. Likewise, in FIG. 13, the cut plane A-A means a cut plane of the multi-function filter top view.
이를 위해, 제 2 필터 용기(31)의 측벽에 설치되었던 제 3 유동공(33)은, 도 14에 도시한 것과 같이 용기의 제 2 캡(50)과 결합되는 측에 설치되도록 변경되며, 제 2 캡(50)에는 캡을 관통하며 일단이 필터 결합부(52)에 인접하고 타단이 제 2 캡 외부면에 닿는 제 3 통로(53)가 설치된다. 도 13(b)에 제 3 통로가 설치된 제 2 캡을 도시하였다.To this end, the third flow hole 33 installed on the side wall of the second filter container 31 is changed to be installed on the side that is coupled to the second cap 50 of the container, as shown in FIG. The second cap 50 is provided with a third passage 53 penetrating the cap and having one end adjacent to the filter coupling portion 52 and the other end touching the second cap outer surface. 13 (b) shows a second cap provided with a third passage.
전술한 바와 같이, 제 2 필터 용기(31)의 일단이 제 2 캡 필터 결합부(52)에 위치함으로써 제 2 필터(30)와 제 2 캡(50)은 결합하게 된다. 제 2 필터와 제 2 캡이 결합할 때, 제 3 유동공(33)을 통과하는 유체가 제 2 캡에 마련된 제 3 통로(53)를 통과하도록 구획된다. 제 2 필터와 제 2 캡의 결합을 통해 구획되는 제 3 유로(73)의 형성은 도 4에 도시한 제 1 유로의 형성 원리와 동일하다. 즉, 제 2 필터와 제 2 캡의 결합을 통해 제 2 필터(30), 제 3 유동공(33), 그리고 제 3 통로(53)를 연결하는 제 3 유로(73)가 형성된다. 이를 통해 제 2 필터 내부의 유체가 외부로 배출된 후, 흡착구간으로 다시 공급될 수 있다. As described above, one end of the second filter container 31 is located in the second cap filter coupler 52 so that the second filter 30 and the second cap 50 are coupled to each other. When the second filter and the second cap are coupled, the fluid passing through the third flow hole 33 is partitioned to pass through the third passage 53 provided in the second cap. The formation of the third flow path 73 partitioned through the combination of the second filter and the second cap is the same as the formation principle of the first flow path shown in FIG. That is, a third flow path 73 connecting the second filter 30, the third flow hole 33, and the third passage 53 is formed through the combination of the second filter and the second cap. Through this, the fluid inside the second filter may be discharged to the outside and then supplied back to the adsorption section.
도 15는 상기 제 3 유로를 갖는 본 발명의 일실시예에 의한 복합기능 필터(10) 내부의 일례의 유동을 도시한 것이다. 제 2 필터(30)에서 분리된 혈장 혹은 한외여과된 투석액이 제 3 유로(73)를 통해 배출되며, 이어서 제 3 통로(53)와 하우징 포트(13)를 연결하는 유동관(81)을 거쳐 흡착구간으로 공급된다. 이때, 흡착구간을 통한 유동을 보다 원활히 하기 위하여 제 3 통로(43)와 하우징 포트(13)를 연결하는 유동관에 펌프(82)가 설치될 수 있다.FIG. 15 shows an example flow inside the composite function filter 10 according to an embodiment of the present invention having the third flow path. Plasma or ultrafiltered dialysate separated from the second filter 30 is discharged through the third flow path 73, and then adsorbed through the flow pipe 81 connecting the third passage 53 and the housing port 13. It is supplied to the section. At this time, the pump 82 may be installed in the flow pipe connecting the third passage 43 and the housing port 13 to facilitate the flow through the adsorption section.
여기서, 제 1 필터(20)를 통한 투석액의 공급과 배출을 분리하기 위하여 설치된 제 1 및 제 2 유로(71, 72)와 마찬가지로, 본 발명의 일실시예에 의한 복합기능 필터(10)는 제 2 필터(30)를 통한 유체의 유출과 유입을 분리하기 위하여 제 3 유로(73)뿐만 아니라, 제 4 유로를 갖도록 변경될 수 있다. 도 16은 제 2 필터(30) 외부에 제 4 유로를 갖는 복합기능 필터를 도시한 것이다. 마찬가지로, 절단면A-A는 복합기능 필터 상면도(top view)의 절단면을 의미한다.Here, similarly to the first and second flow paths 71 and 72 provided to separate the supply and discharge of the dialysate through the first filter 20, the composite function filter 10 according to an embodiment of the present invention is first In order to separate the outflow and inflow of the fluid through the second filter 30, it may be changed to have not only the third flow path 73 but also the fourth flow path. FIG. 16 illustrates a multiple function filter having a fourth flow path outside the second filter 30. Similarly, cut planes A-A mean cut planes of the multifunction filter top view.
제 4 유로를 형성하기 위하여 유로구획 연결구(60)는 도 17(a)에 도시한 것과 같이, 제 2 필터를 수용하며 제 2 필터 외부에 유로를 구획할 수 있는 제 2 필터 수용공간(64)을 추가로 가지며, 이때 제 2 필터 수용공간의 일단은 제 2 캡에 결합된다.In order to form the fourth flow path, the flow passage partition connector 60 includes a second filter accommodating space 64 for accommodating the second filter and partitioning the flow path outside the second filter, as shown in FIG. 17A. It further has, one end of the second filter receiving space is coupled to the second cap.
또한, 도 17(b)에 도시한 것과 같이, 제 2 필터 용기(31)에는 용기의 제 2 캡(50)과 결합되는 측에 설치된 제 3 유동공(33) 외에, 용기의 원주방향을 둘러싸도록 제 4 유동공(34)이 추가로 설치된다. 제 4 유동공은 용기의 길이 방향 중단을 중심으로 상기 제 3 유동공(33)의 반대편 측에 설치되는 게 바람직하다. In addition, as shown in FIG. 17 (b), the second filter container 31 surrounds the circumferential direction of the container, in addition to the third flow hole 33 provided on the side engaged with the second cap 50 of the container. The fourth flow hole 34 is further installed. The fourth flow hole is preferably installed on the side opposite to the third flow hole 33 centered on the longitudinal interruption of the container.
또한, 제 2 캡(50)에는 캡을 관통하며 캡의 흡착구간에 접하는 면과 캡 외부면을 연결하는 제 4 통로(54)가 추가로 설치된다. 도 16(b)에 제 4 통로(54)가 설치된 제 2 캡을 도시하였다.In addition, the second cap 50 is further provided with a fourth passage 54 penetrating the cap and connecting the cap outer surface and the cap outer surface. In FIG. 16B, the second cap in which the fourth passage 54 is installed is illustrated.
도 18은 유로구획 연결구(60), 제 2 필터(30), 그리고 제 2 캡(50)의 결합을 통해 형성되는 제 4 유로(74)를 도시한 것이다. 도 18(a) 및 18(b)에 도시한 것처럼, 제 2 필터(30)가 유로구획 연결구(60)의 제 2 필터 수용공간(64)에 위치하고 제 2 필터의 일단이 유로구획 연결구의 연결부(62)에 결합되면, 제 2 필터 내부의 유체는 제 4 유동공(34)을 거쳐 제 2 필터 수용공간(64)으로 흐르도록 구획된다. 이어서, 도 18(c)에 도시한 것과 같이, 유로구획 연결구(60)와 제 2 캡(50)이 결합하면 제 2 필터 수용공간(64)을 흐르는 유체가 제 2 캡에 마련된 제 4 통로(54)를 통과하도록 구획된다. 즉, 제 2 필터, 제 4 유동공, 제 2 필터 수용공간, 제 4 통로를 연결하는 제 4 유로(74)가 형성된다. 상기 제 3 유로(73) 및 제 4 유로(74) 중 어느 하나의 유로를 통해 제 2 필터의 유체가 유출되면, 다른 하나의 유로를 통해 제 2 필터로 회송되는 게 바람직하다.FIG. 18 illustrates a fourth flow path 74 formed through the combination of the flow path connector 60, the second filter 30, and the second cap 50. 18 (a) and 18 (b), the second filter 30 is located in the second filter receiving space 64 of the flow passage connector 60, and one end of the second filter is the connection portion of the flow passage connector. When coupled to 62, the fluid inside the second filter is partitioned to flow through the fourth flow hole 34 into the second filter receiving space 64. Subsequently, as shown in FIG. 18C, when the flow path connecting connector 60 and the second cap 50 are coupled to each other, a fluid that flows through the second filter accommodation space 64 is provided in the fourth passage ( 54). That is, a fourth flow path 74 connecting the second filter, the fourth flow hole, the second filter accommodation space, and the fourth passage is formed. When the fluid of the second filter flows through any one of the third flow path 73 and the fourth flow path 74, it is preferable to return to the second filter through the other flow path.
도 19는 제 4 유로(74)를 갖는 본 발명의 일실시예에 의한 복합기능 필터(10) 내부의 일례의 유동을 도시한 것이다. 제 2 필터 분리막을 가로질러 분리된 유체는 제 3 유로(73)를 통해 배출되며, 제 2 캡(50)과 하우징 포트(13)를 연결하는 유동관(81)을 거쳐 흡착구간으로 공급된다. 흡착구간을 거치면서 독소와 노폐물이 제거된 유체는 제 4 유로(74)를 거쳐 제 2 필터로 회송될 수 있다. 이때, 흡착구간을 통한 유동을 원활히 하기 위하여 제 2 캡과 하우징 포트를 연결하는 유동관에 펌프(82)가 설치될 수 있다.FIG. 19 illustrates an example flow inside a composite function filter 10 according to an embodiment of the present invention having a fourth flow path 74. The fluid separated across the second filter separation membrane is discharged through the third flow path 73, and is supplied to the adsorption section through the flow pipe 81 connecting the second cap 50 and the housing port 13. The fluid from which the toxins and the wastes are removed while passing through the adsorption section may be returned to the second filter through the fourth flow path 74. At this time, the pump 82 may be installed in the flow pipe connecting the second cap and the housing port in order to facilitate the flow through the adsorption section.
도 19의 유동을 살펴보면, 혈장 혹은 투석액 등의 유체가 제 2 캡과 가까운 측의 제 2 필터 분리막(32)에서 분리되며, 분리된 유체는 흡착구간을 통과한 뒤, 제 2 캡 반대편 측의 분리막(32)으로 회송되는 것을 알 수 있다. 이와 같이, 제 2 필터 내에서 유체의 분리와 회송이 일어날 경우, 제 4 유로(74)를 거쳐 회송된 유체가 분리막의 안쪽으로 유동하지 않고 제 3 유로(73)를 거쳐 곧바로 배출될 수 있다. 이러한 유체의 재순환을 억제하기 위하여 도 19 혹은 도 17(b)에 도시한 것과 같이, 제 2 필터 용기의 내벽에 내벽 돌출부(35)가 설치될 수 있다. 내벽 돌출부는 제 2 필터 용기(31)의 내경을 감소시키며, 제 2 필터 내에서 분리된 유체의 배출되는 영역과 회송되는 영역을 구분할 수 있다.Referring to the flow of FIG. 19, a fluid such as plasma or dialysate is separated from the second filter separation membrane 32 close to the second cap, and the separated fluid passes through the adsorption section, and then the separation membrane opposite to the second cap. It can be seen that it is returned to (32). As such, when separation and return of the fluid occur in the second filter, the fluid returned through the fourth flow path 74 may be immediately discharged through the third flow path 73 without flowing into the separation membrane. In order to suppress the recirculation of the fluid as shown in Fig. 19 or 17 (b), the inner wall protrusion 35 may be provided on the inner wall of the second filter container. The inner wall protrusion reduces the inner diameter of the second filter container 31 and can distinguish between the discharged area and the returned area of the fluid separated in the second filter.
내벽 돌출부는 제 1 필터 용기(21)에도 설치될 수 있다. 투석액이 제 1 필터를 통과할 때, 제 1 필터 내부에 설치된 내벽 돌출부에 의해 투석액은 더 큰 압력 변화를 이룰 수 있고, 이를 통해 여과에 의한 투석 효율을 더욱 향상시킬 수 있다. The inner wall protrusion may also be installed in the first filter container 21. When the dialysate passes through the first filter, the dialysate can make a larger pressure change by the inner wall protrusion installed inside the first filter, thereby further improving the dialysing efficiency by filtration.
끝으로, 상기 제 4 유로(74)는 제 2 캡을 통과하는 것으로 한정되지 않는다. 도 20에 도시한 것과 같이, 유로구획 연결구(60)의 제 2 캡이 위치한 측으로 치우친 위치에 설치된 유로구획 연결구 유동공(65)을 통해 흡착구간(12)을 거친 유체가 하우징 포트(13)를 거치지 않고 곧바로 제 2 필터(30)로 회송될 수 있다. 하우징 포트(13)를 통해 유입된 유체가 흡착구간 내의 흡착제와 충분히 접촉한 뒤 제 2 필터로 회송될 수 있도록 하우징 포트(13)와 유로구획 연결구 유동공(65)은 복합기능 필터 길이 방향의 서로 반대측에 설치되는 것이 바람직하다. 이때, 제 2 캡에 설치되었던 제 4 통로(54)는 불필요하다.Finally, the fourth flow path 74 is not limited to passing through the second cap. As shown in FIG. 20, the fluid passing through the adsorption section 12 through the flow passage connector flow hole 65 installed at the position biased toward the side where the second cap of the flow passage connector 60 is located is connected to the housing port 13. It may be returned to the second filter 30 directly without passing through. The housing port 13 and the flow passage connector flow hole 65 are connected to each other in the longitudinal direction of the multifunction filter so that the fluid introduced through the housing port 13 can be sufficiently contacted with the adsorbent in the adsorption section and then returned to the second filter. It is preferable to be installed on the opposite side. At this time, the fourth passage 54 installed in the second cap is unnecessary.
도 21은 유로구획 연결구 유동공(65)를 포함하여 구성되는 복합기능 필터 내부의 일례의 유동을 도시한 것이다. 제 2 필터(30)에서 분리된 유체가 제 3 유로(73)를 통해 배출되며, 이어서 제 3 통로와 하우징 포트를 연결하는 유동관(81)을 거쳐 흡착구간으로 공급된다. 흡착구간을 거치면서 독소와 노폐물이 제거된 유체는 유로구획 연결구 유동공(65), 제 2 필터 수용공간(64), 그리고 제 4 유동공(34)을 거쳐 제 2 필터로 회송될 수 있다.FIG. 21 illustrates an example flow inside a composite function filter including flow path segment flow holes 65. The fluid separated from the second filter 30 is discharged through the third flow path 73 and then supplied to the adsorption section through the flow pipe 81 connecting the third passage and the housing port. The fluid from which the toxins and the wastes are removed while passing through the adsorption section may be returned to the second filter through the flow passage connector flow hole 65, the second filter receiving space 64, and the fourth flow hole 34.
이때, 하우징 포트(13) 혹은 유로구획 연결구 유동공(65)을 통해서는 흡착제의 이동이 발생하지 않는 것이 바람직하며 이를 위하여 전술한 다양한 방법들이 이용될 수 있다.At this time, it is preferable that the movement of the adsorbent does not occur through the housing port 13 or the flow path connector flow hole 65, and the aforementioned various methods may be used.
이상에서 설명한 바와 같이, 본 발명의 일실시예에 의한 복합기능 필터(10)는 혈액 혹은 사용된 투석액을 정화하기 위하여 투석, 흡착, 혈장분리 혹은 투석, 흡착, 한외여과 등의 기능을 일체화시키고, 필터 내부의 흐름을 원활하게 구성함으로써 전체 장치가 간단하고, 설치 및 사용이 용이하며, 처치 비용을 절감할 수 있는 혈액정화 장치를 제공할 수 있다.As described above, the multi-function filter 10 according to an embodiment of the present invention integrates the functions of dialysis, adsorption, plasma separation or dialysis, adsorption, ultrafiltration, etc. in order to purify the blood or used dialysis solution, By smoothly configuring the flow inside the filter, it is possible to provide a blood purification device which can simplify the whole device, is easy to install and use, and reduce the treatment cost.
이상, 앞에서 설명되고 도면에 도시된 본 발명의 실시예는 본 발명의 기술적 사상을 한정하는 것으로 해석되어서는 안되며, 본 발명의 보호범위는 특허청구범위에 기재된 사항에 의하여 제한된다. 본 발명의 기술분야에서 통상의 지식을 습득한 자라면 본 발명의 기술적 사상을 다양한 형태로 개량하거나 변경하는 것이 가능하며, 이러한 개량 및 변경은 본 발명의 보호범위에 속하게 될 것이다.As described above, the embodiments of the present invention described and illustrated in the drawings should not be construed as limiting the technical idea of the present invention, and the protection scope of the present invention is limited by the matters described in the claims. Those of ordinary skill in the art of the present invention can improve or change the technical idea of the present invention in various forms, and such improvements and modifications will fall within the protection scope of the present invention.

Claims (14)

  1. 내부 공간을 갖는 용기와 용기의 내부 공간에 수용되는 분리막을 포함하여 구성되는 제 1 필터;A first filter comprising a container having an inner space and a separator accommodated in the inner space of the container;
    내부 공간을 갖는 용기와 용기의 내부 공간에 수용되는 분리막을 포함하여 구성되는 제 2 필터;A second filter including a container having an inner space and a separator accommodated in the inner space of the container;
    제 1 필터와 제 2 필터의 설치 공간을 제공하는 한편, 제 1 필터와 제 2 필터 외부에 흡착구간을 구획하는 하우징; 및A housing which provides an installation space between the first filter and the second filter, and partitions the suction section outside the first filter and the second filter; And
    상기 하우징에 설치되며 흡착구간을 통하여 유동이 발생할 수 있도록 하우징 포트;를 갖는 복합기능 필터.And a housing port installed in the housing to allow flow to occur through the adsorption section.
  2. 제 1 항에 있어서The method of claim 1
    제 1 필터 및 제 2 필터 용기는 용기의 길이 방향 중단을 중심으로 길이 방향 양측 중 적어도 어느 한 측에 유체가 통과할 수 있는 유동공;을 갖는 것을 특징으로 하는 복합기능 필터.The first filter and the second filter container has a flow hole through which the fluid can pass through at least one of the two sides in the longitudinal direction of the longitudinal interruption of the container.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 하우징은,The housing,
    벽체;Wall;
    벽체의 길이 방향 일측에 제 1 필터와 결합하는 제 1 캡;A first cap coupled to the first filter on one side of the wall in the longitudinal direction;
    벽체의 길이 방향 타측에 제 2 필터와 결합하는 제 2 캡;을 포함하여 구성되는 복합기능 필터.And a second cap coupled to the second filter on the other side in the longitudinal direction of the wall.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    제 1 필터와 제 2 필터 사이에 유체 누출이 없도록 제 1 필터와 제 2 필터를 연결하는 유로구획 연결구;를 추가로 갖는 복합기능 필터.And a flow path segment connector connecting the first filter and the second filter so that there is no fluid leakage between the first filter and the second filter.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    제 1 및 제 2 캡 중 적어도 어느 하나의 캡은, 캡을 관통하며 일단이 캡의 필터 결합부에 인접하는 통로;를 포함하여 구성되는 복합기능 필터.At least one cap of the first and second caps, passage through the cap and one end adjacent to the filter coupling portion of the cap; multifunctional filter comprising a.
  6. 제 5 항에 있어서, The method of claim 5,
    상기 유로구획 연결구는 제 1 캡 및 제 2 캡 중 적어도 어느 하나의 캡에 결합되며, 상기 유로구획 연결구가 결합되는 캡은, 캡을 관통하며 일단이 캡의 흡착구간에 접하는 면에 인접하는 통로;를 추가로 갖는 것을 특징으로 하는 복합기능 필터.The flow passage segment connector is coupled to at least one of the caps of the first cap and the second cap, the cap coupled to the flow passage segment, the passage penetrates through the cap and the end adjacent to the surface in contact with the suction section of the cap; Multiple function filter, characterized in that it further has.
  7. 제 5 항에 있어서, The method of claim 5,
    상기 유로구획 연결구의 양단은 상기 제 1 캡 및 제 2 캡에 결합되며, Both ends of the flow path connector are coupled to the first cap and the second cap,
    상기 제 1 캡 및 제 2 캡 중 어느 하나의 캡은, 캡을 관통하며 일단이 캡의 흡착구간에 접하는 면에 인접하는 통로;를 포함하고,The cap of any one of the first cap and the second cap, the passage penetrates adjacent to the surface of the cap is in contact with the suction section of the cap;
    상기 유로구획 연결구는 원주방향을 둘러싸며 유체가 통과할 수 있는 유동공;을 갖는 것을 특징으로 하는 복합기능 필터.The flow path partition connector has a flow hole through which the fluid passes through the circumferential direction; multi-function filter characterized in that it has a.
  8. 제 2 항 내지 제 7 항 중 어느 한 항에 있어서, The method according to any one of claims 2 to 7,
    상기 흡착구간에는 노폐물을 제거하기 위하여 흡착제;가 구비되는 복합기능 필터.The adsorption section is a combined function filter is provided; to remove the waste.
  9. 제 8 항에 있어서, The method of claim 8,
    상기 하우징 포트 혹은 유동공을 통하여 흡착제의 이동이 발생하지 않도록,In order to prevent the movement of the adsorbent through the housing port or the flow hole,
    하우징 포트 혹은 유동공을 흡착제보다 작은 크기로 제작하거나,Make the housing port or flow hole smaller than the adsorbent,
    하우징 포트 혹은 유동공을 흡착제보다 작은 크기의 기공을 갖는 메쉬필터로 감싸거나,Wrap the housing port or flow hole with a mesh filter with pores smaller than the adsorbent,
    흡착제를 흡착제보다 작은 크기의 기공을 갖는 메쉬필터로 감싸거나,Wrap the adsorbent with a mesh filter with pores of smaller size than the adsorbent,
    파우더 혹은 알갱이 형태의 흡착제를 압착시킨 흡착제 블록을 이용하거나, 또는Using adsorbent blocks in which powder or granule adsorbents are compressed, or
    흡착제의 통과를 억제할 수 있도록 분리벽;이 설치되는 복합기능 필터.A composite function filter is installed; to prevent the passage of the adsorbent;
  10. 제 9 항에 있어서,The method of claim 9,
    상기 분리벽은, 흡착제의 통과를 억제할 수 있도록 흡착제보다 작은 크기의 기공을 갖거나, 혹은 유체가 통과할 수 있는 지지벽;에 흡착제보다 작은 크기의 기공을 갖는 메쉬필터;를 부착한 형태를 갖는 것을 특징으로 하는 복합기능 필터.The separation wall may include a mesh filter having pores of a smaller size than the adsorbent or a support wall through which fluid may pass; The composite function filter characterized by having.
  11. 제 8 항에 있어서,The method of claim 8,
    제 1 필터 용기 혹은 제 2 필터 용기의 내벽에 설치되며 용기의 내경을 감소시키는 내벽 돌출부;를 갖는 복합기능 필터.And an inner wall protrusion installed on an inner wall of the first filter container or the second filter container to reduce an inner diameter of the container.
  12. 상기 제 9 항의 복합기능 필터;The composite function filter of claim 9;
    복합기능 필터와 연결되며 혈액 혹은 혈장이 유동하는 유동관; 및A flow tube connected to the multifunction filter and in which blood or plasma flows; And
    유동관에 설치되며 혈액 혹은 혈장을 이송시키는 펌프;를 포함하여 구성되는 혈액정화 장치.And a pump installed in the flow tube and transferring blood or plasma.
  13. 제 12 항에 있어서,The method of claim 12,
    제 1 필터 분리막 및 제 2 필터 분리막 중 어느 하나는 투석막이며 다른 하나는 혈장분리막인 것을 특징으로 하는 혈액정화 장치.At least one of the first filter membrane and the second filter membrane is a dialysis membrane and the other blood purification device, characterized in that the plasma separation membrane.
  14. 혈액과 투석액이 내부를 통과하며 혈액과 투석액 사이에 물질 전달이 일어나는 혈액필터;A blood filter through which the blood and the dialysate pass and a mass transfer between the blood and the dialysate;
    혈액필터와 연결되며 혈액 혹은 투석액이 유동하는 유동관;A flow pipe connected to the blood filter and in which blood or dialysis fluid flows;
    유동관에 설치되어 혈액 혹은 투석액을 이송시키는 펌프; 및A pump installed in the flow pipe to transfer blood or dialysate; And
    투석액을 정화하기 위하여 상기 제 9 항의 복합기능 필터;를 포함하여 구성되는 혈액정화 장치.Blood purification device comprising a; the multifunction filter of claim 9 to purify the dialysate.
PCT/KR2015/003139 2014-04-02 2015-03-31 Blood purifying apparatus WO2015152593A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/301,398 US9707332B2 (en) 2014-04-02 2015-03-31 Blood purifying apparatus

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US14/243,137 2014-04-02
US14/243,137 US9585994B2 (en) 2014-04-02 2014-04-02 Blood purifying filter and blood purifying apparatus having the same
KR20140110391 2014-08-25
KR10-2014-0110391 2014-08-25
KR1020150016434A KR101638280B1 (en) 2014-04-02 2015-02-03 Blood Purifying Apparatus
KR10-2015-0016434 2015-02-03

Publications (2)

Publication Number Publication Date
WO2015152593A1 true WO2015152593A1 (en) 2015-10-08
WO2015152593A8 WO2015152593A8 (en) 2015-10-29

Family

ID=54240841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/003139 WO2015152593A1 (en) 2014-04-02 2015-03-31 Blood purifying apparatus

Country Status (1)

Country Link
WO (1) WO2015152593A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060057176A (en) * 2004-11-23 2006-05-26 주식회사 뉴하트바이오 Filter module with multi-function parts for a blood purification and/or oxygenation using thereof and method for a blood purification and oxygenation and purification device comprising thereof
KR20090007173A (en) * 2007-07-13 2009-01-16 삼성전자주식회사 Wafer-level package, biochip kits, and methods of packaging thereof
JP2011019685A (en) * 2009-07-15 2011-02-03 Nikkiso Co Ltd Hemocatharsis column
KR20130086624A (en) * 2010-12-27 2013-08-02 아사히 가세이 메디컬 가부시키가이샤 Blood processing filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060057176A (en) * 2004-11-23 2006-05-26 주식회사 뉴하트바이오 Filter module with multi-function parts for a blood purification and/or oxygenation using thereof and method for a blood purification and oxygenation and purification device comprising thereof
KR20090007173A (en) * 2007-07-13 2009-01-16 삼성전자주식회사 Wafer-level package, biochip kits, and methods of packaging thereof
JP2011019685A (en) * 2009-07-15 2011-02-03 Nikkiso Co Ltd Hemocatharsis column
KR20130086624A (en) * 2010-12-27 2013-08-02 아사히 가세이 메디컬 가부시키가이샤 Blood processing filter

Also Published As

Publication number Publication date
WO2015152593A8 (en) 2015-10-29

Similar Documents

Publication Publication Date Title
KR101638280B1 (en) Blood Purifying Apparatus
US9713668B2 (en) Multi-staged filtration system for blood fluid removal
KR101071402B1 (en) Apparatus for purifying blood
KR20150114887A (en) Blood Purifying Apparatus
US8771513B2 (en) Regeneratable filter for extracorporal treatment of liquids containing particles and use thereof
EP2968726B1 (en) Universal portable machine for online hemodiafiltration using regenerated dialysate
US6852231B2 (en) Spin-hemodialysis assembly and method
EA004446B1 (en) Dual-stage filtration cartridge
GB1600997A (en) Dialysis device
WO2008002354A1 (en) Dialysis bag system
US5942112A (en) Hollow fiber ultradialyzer apparatus
CN203507201U (en) Separating type hemodialysis absorber
EP3796955B1 (en) Sorbent cartridge for dialysate regeneration
KR101572304B1 (en) Blood purifying filter and blood purifying apparatus having the same
US9585996B2 (en) Blood purifying filter and blood purifying apparatus
WO2015152593A1 (en) Blood purifying apparatus
CN108697987B (en) System and method for filtering a fluid
CN111035826A (en) Blood purification device with membrane separation and perfusion coupling
JPS6045359A (en) Blood purifier
CN211584545U (en) Blood purification device with membrane separation and perfusion coupling
KR20160016474A (en) Blood purifying filter and blood purifying apparatus
KR20160095317A (en) Blood Purifying Apparatus
KR101638235B1 (en) Blood purifying filter and blood purifying apparatus having the same
RU2699971C1 (en) Membrane polyfunctional device for biological fluid treatment
JPS6053156A (en) Blood purifier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15773615

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15301398

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15773615

Country of ref document: EP

Kind code of ref document: A1