WO2015152585A1 - Inductive sensor circuit - Google Patents

Inductive sensor circuit Download PDF

Info

Publication number
WO2015152585A1
WO2015152585A1 PCT/KR2015/003111 KR2015003111W WO2015152585A1 WO 2015152585 A1 WO2015152585 A1 WO 2015152585A1 KR 2015003111 W KR2015003111 W KR 2015003111W WO 2015152585 A1 WO2015152585 A1 WO 2015152585A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
signal
circuit unit
inductive sensor
operational amplifier
Prior art date
Application number
PCT/KR2015/003111
Other languages
French (fr)
Korean (ko)
Inventor
정경진
Original Assignee
금양산업(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금양산업(주) filed Critical 금양산업(주)
Publication of WO2015152585A1 publication Critical patent/WO2015152585A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/2006Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/003Measuring arrangements characterised by the use of electric or magnetic techniques for measuring position, not involving coordinate determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • G01D18/001Calibrating encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/08Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for safeguarding the apparatus, e.g. against abnormal operation, against breakdown
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/004Measuring arrangements characterised by the use of electric or magnetic techniques for measuring coordinates of points

Definitions

  • the present invention relates to an inductive sensor circuit, and more particularly, to an inductive sensor circuit for real-time detection and transmission of the cylinder exhaust valve position of the engine.
  • the inductive sensor which is one of the components used for the electronic control of the engine is attached to the cylinder exhaust valve of the engine to detect the position of the exhaust valve in real time to output the position signal and transmit to the central control system.
  • inductive sensors have been developed in the direction of reducing physical defects or measurement errors as they are used to detect the position attached to the engine.
  • the transmission device and the central control device interworking with the inductive sensor have ultrafast data transmission and processing capability.
  • the conventional inductive sensor has a remarkably slow response speed for detecting and outputting the position of the exhaust valve, which does not meet the performance of the transmission and the central controller. There is a problem.
  • An object of the present invention for solving the problems derived from the background art is to provide an inductive sensor circuit that can improve the response speed of sensing and outputting the position of the cylinder exhaust valve of an engine.
  • An inductive sensor circuit for outputting a circuit comprising: a capacitor connected in parallel with the inductor to form an oscillation circuit, a first operational amplifier configured to receive and amplify an oscillation waveform generated by the oscillation circuit as an electric signal, and the first operation
  • a sensing circuit unit including a rectifying circuit for receiving and rectifying the signal amplified by the amplifier, and a smoothing circuit for smoothing and outputting the signal rectified by the rectifying circuit;
  • a linearization circuit section including a plurality of section approximation paths configured to receive a signal of the sensing circuit unit and a predetermined reference voltage and process the signal in a line wise approximation to output a linearized signal;
  • a second operation amplifier which receives a signal output from the linearization circuit unit, reads a code
  • the sensing circuit unit further includes an oscillation control unit connected to the output terminal of the oscillation circuit to generate a frequency control signal, and the oscillation control unit controls the frequency of the oscillation waveform to adjust the measurement sensitivity.
  • the cutting line nearer, an adder connected to the first resistor and the second resistor connected to the sensing circuit unit and the reference voltage, respectively, and a connection point of the first resistor and the second resistor, and an input terminal of the adder;
  • a first diode connected in parallel to an output terminal, a second diode connected to an output terminal connection point of the adder and the first diode, an input terminal connection point of the adder and the first diode, and a third resistor connected in parallel to an output terminal of the second diode It may include.
  • the zero adjustment circuit the zero point regulator is connected to the reference voltage, the (+) input terminal is connected to the zero point regulator and the (-) input terminal is connected to the second operational amplifier and the fourth operational amplifier, It may include a span regulator connected to the output of the four operational amplifier.
  • the power circuit unit may include a surge absorber connected to a power input terminal to protect the internal device from an external abnormal voltage.
  • the power supply circuit unit may further include a coil and a capacitor connected to the surge absorber in series and in parallel to form an attenuation filter circuit to block noise.
  • the response speed of the inductive sensor is implemented at 5Khz or more, thereby greatly improving the performance of the transmission device and the central control device interworking with it.
  • the measurement accuracy can be greatly improved.
  • FIG. 1 is a circuit diagram showing an inductive sensor circuit according to an embodiment of the present invention.
  • the inductive sensor circuit on the premise that the inductive sensor is attached to the cylinder exhaust valve of the engine, the analog signal measured by the inductor 210 of the inductive sensor in real time It detects as and outputs the position signal of the exhaust valve.
  • the inductive sensor circuit as described above largely includes a sensing circuit unit 200, a linearization circuit unit 400, an output circuit unit 600, and a power circuit unit 800.
  • the sensing circuit unit 200 includes a capacitor 220 connected in parallel with the inductor 210 to form an oscillation circuit, and a first operational amplifier configured to amplify an oscillation waveform generated by the oscillation circuit as an electric signal.
  • a rectifier circuit 260 for receiving and rectifying the signal amplified by the first operational amplifier 240, and a smoothing circuit 280 for smoothing and outputting the signal rectified by the rectifier circuit 260.
  • the condenser 220 and the inductor 210 oscillate by forming a so-called tank circuit as an LCR parallel oscillation circuit.
  • the oscillation frequency at this time Becomes
  • the oscillation waveform generates an eddy current by a metal material close to the inductor 210, and the undulation of the oscillation frequency is changed non-linearly by the eddy current.
  • the change value is transferred to the first operational amplifier and amplified by current, and then rectified through a rectifier circuit composed of operational amplifiers U2B and U2C, diodes D1 and D2, and resistors D1, D2, D3, D4 and D5. do.
  • the rectified waveform is transmitted to the linearization circuit unit 400 to be described later through a smoothing circuit including an operational amplifier U2D, resistors R6, R7, R8, and R9, and capacitors C2, C3, and C4.
  • the sensing circuit unit 200 may further include an oscillation control unit U1 connected to an output terminal of the oscillation circuit to generate a frequency control signal.
  • the oscillation control unit U1 may generate a frequency of the oscillation waveform. Control to adjust the measurement sensitivity.
  • the linearization circuit unit 400 receives a signal of the sensing circuit unit 200 and a predetermined reference voltage, and processes the signal by a piecing approximation method to output a linearized signal 420. It includes a plurality.
  • the cut line near path 420a includes a first resistor R16 and a second resistor R17 connected to the sensing circuit unit 200 and the reference voltage, respectively, and the first resistor R16 and the second resistor ( An adder U3A connected to a connection point of R17), a first diode D3 connected in parallel to an input terminal and an output terminal of the adder U3A, and an output terminal connection point of the adder U3A and the first diode D3.
  • a third resistor R18 connected in parallel to an input terminal connection point of the adder U3A and the first diode D3 and an output terminal of the second diode D4.
  • the negative input terminal of the adder U3A is connected to the connection point of the resistors R16, R17 and R18 and the first diode D3, and the positive input terminal is grounded.
  • the output circuit unit 600 receives a signal output from the linearization circuit unit 400, reads a code, and outputs a second operation amplifier 620 and a signal output from the second operation amplifier 620.
  • the zero adjustment circuit 640 a zero regulator 646 connected to the reference voltage, (+) input terminal is connected to the zero regulator 646, and (-) input terminal is the second operational amplifier 620
  • the fourth operational amplifier 644 is connected to the) and the span adjuster 642 is connected to the output terminal of the fourth operational amplifier 644.
  • the zero point adjuster 646 and the span adjuster 642 is made of a variable resistor, the variable resistor can be selected in various ways, such as carbon film type or the summit type according to the use environment or design purpose.
  • the signal output from the zero point adjusting circuit 640 is divided into resistors R37 and R38 and input to the positive terminal of the third operational amplifier 660.
  • the signal input to the third operational amplifier 660 is output to the output terminal + OUTPUT and 0Vdc_OUT by an I / V converter or V / V amplifier circuit and transmitted to the outside.
  • the power circuit unit 800 provides a constant voltage for driving the circuit, and supplies a reference voltage to the linearization circuit unit 400.
  • the power circuit unit 800 may include a surge absorber, and the surge absorber 820 is connected to the input terminal of the power circuit unit 800 to protect the internal device from an external abnormal voltage.
  • the power circuit unit 800 may further include coils L1 and capacitors C5, C6, and C7 connected in series and parallel with the surge absorber 820, respectively.
  • C5, C6, and C7 form attenuation filter circuits to block noise.
  • control unit U6 shown in the power circuit unit 800 supplies a stable power supply to the active element inside the constant voltage supply module.
  • U7 and U8 are precision constant voltage reference ICs and supply a reference voltage to the junction points of the resistors R10, R11, R12, R13, and R14 of the zero point regulator 640 and the linearization circuit unit 400.
  • the response speed of the inductive sensor can be implemented at 5Khz or more, the performance of the transmission apparatus and the central control unit interworking with it can be greatly improved.
  • the measurement accuracy can be greatly improved.
  • the present invention relates to an inductive sensor circuit, and more particularly, it can be used in the field of inductive sensor circuit for real-time detection and transmission of the cylinder exhaust valve position of the engine.

Abstract

The purpose of the present invention, which relates to an inductive sensor circuit, is to improve the response speed of detecting and outputting the position of the cylinder exhaust valve of an engine. To this end, the inductive sensor circuit according to one embodiment of the present invention comprises: a detection circuit unit comprising a condenser, which is connected in parallel to the inductor of an inductive sensor and forms an oscillation circuit, a first operational amplifier for receiving as an input and amplifying the electrical signal of an oscillation waveform generated by the oscillation circuit, a rectifier circuit for receiving as an input and rectifying the signal amplified by the first operational amplifier, and a smoothing circuit for smoothing and outputting the signal rectified by the rectifier circuit; a linearization circuit unit comprising a plurality of piecewise linear circuits for receiving as inputs a signal of the detection circuit unit and a preset reference voltage, signal-processing same in a piecewise linear manner, and outputting a linearized signal; an output circuit unit comprising a second operational amplifier for receiving as an input the signal output by the linearization circuit unit and reading and outputting a code, a zero adjustment circuit for adjusting the zero point of the signal output by the second operational amplifier and the maximum value of the zero point, and a third operational amplifier for amplifying the signal input by the zero adjustment circuit and transmitting the amplified signal to an external output terminal; and a power circuit unit for providing a constant voltage for circuit operation and supplying the reference voltage to the linearization circuit unit.

Description

인덕티브 센서 회로Inductive sensor circuit
본 발명은 인덕티브 센서 회로에 관한 것으로서, 더욱 상세하게는 엔진의 실린더 배기밸브 위치를 실시간 감지하여 전송하는 인덕티브 센서 회로에 관한 것이다.The present invention relates to an inductive sensor circuit, and more particularly, to an inductive sensor circuit for real-time detection and transmission of the cylinder exhaust valve position of the engine.
산업의 발전과 더불어 조선 산업에 필요한 엔진도 친환경화, 고효율의 성능을 가지는 발전을 하기 위해 전자식 제어가 제안되어 사용되고 있다.In addition to the development of the industry, the engine required for the shipbuilding industry has also been proposed and used for the development of eco-friendly, high-efficiency performance.
한편, 엔진의 전자식 제어를 위해 사용되는 구성 중 하나인 인덕티브 센서는 엔진의 실린더 배기밸브에 부착되어 상기 배기밸브의 위치를 실시간 감지함으로써 위치신호를 출력하여 중앙제어시스템으로 전송하게 된다.On the other hand, the inductive sensor, which is one of the components used for the electronic control of the engine is attached to the cylinder exhaust valve of the engine to detect the position of the exhaust valve in real time to output the position signal and transmit to the central control system.
이러한 인덕티브 센서는 엔진에 부착되어 위치를 감지하는 데에 사용되는 만큼 물리적인 결함이나 측정 오차를 줄이기 위한 방향으로 종래기술이 개발되어왔다. 이와 함께 정보처리기술이 발전함에 따라 상기 인덕티브 센서와 연동하는 전송장치와 중앙제어장치는 초고속 데이터 전송 및 처리 능력을 보유하게 되었다.Such inductive sensors have been developed in the direction of reducing physical defects or measurement errors as they are used to detect the position attached to the engine. In addition, with the development of information processing technology, the transmission device and the central control device interworking with the inductive sensor have ultrafast data transmission and processing capability.
그러나, 종래의 인덕티브 센서는 초고속 데이터 전송 및 처리 기술의 발전에도 불구하고, 배기밸브의 위치를 감지하고 출력하는데 소요되는 응답속도가 현저히 느려 이와 연동하는 전송장치 및 중앙제어장치의 성능에 미치지 못하는 문제점이 있다.However, despite the development of ultra-fast data transmission and processing technology, the conventional inductive sensor has a remarkably slow response speed for detecting and outputting the position of the exhaust valve, which does not meet the performance of the transmission and the central controller. There is a problem.
앞선 배경기술에서 도출된 문제점을 해결하기 위한 본 발명의 목적은, 엔진의 실린더 배기밸브의 위치를 감지하고 출력하는 응답속도를 향상시킬 수 있는 인덕티브 센서 회로를 제공하는 것이다.SUMMARY OF THE INVENTION An object of the present invention for solving the problems derived from the background art is to provide an inductive sensor circuit that can improve the response speed of sensing and outputting the position of the cylinder exhaust valve of an engine.
상기한 목적은, 본 발명의 실시예에 따라, 엔진의 실린더 배기밸브에 부착되는 인덕티브 센서에 적용되는 것으로, 상기 인덕티브 센서의 인덕터에서 측정되는 아날로그신호를 실시간 감지하여 상기 배기밸브의 위치신호를 출력하는 인덕티브 센서 회로에 있어서, 상기 인덕터와 병렬 연결되어 발진회로를 형성하는 콘덴서와, 상기 발진회로에서 생성된 발진파형을 전기신호로 입력받아 증폭시키는 제1연산증폭기와, 상기 제1연산증폭기에서 증폭된 신호를 입력받아 정류시키는 정류회로와, 상기 정류회로에서 정류된 신호를 평활시켜 출력하는 평활회로를 포함하는 감지회로부와; 상기 감지회로부의 신호와 기설정된 기준전압을 입력받아 절선근사(Piece Wise Linear) 방식으로 신호처리하여 선형화된 신호를 출력하는 절선근사회로를 복수개 포함하는 선형화회로부와; 상기 선형화회로부에서 출력되는 신호를 입력받아 부호를 판독하여 출력하는 제2연산증폭기와, 상기 제2연산증폭기에서 출력되는 신호의 영점 및 상기 영점의 최대값을 조정하는 영점조정회로와, 상기 영점조정회로에서 입력되는 신호를 증폭시켜 외부 출력단자에 전송하는 제3연산증폭기를 포함하는 출력회로부; 및 회로 구동을 위한 정전압을 제공하고, 상기 선형화회로부에 기준전압을 공급하는 전원회로부;를 포함하는 것을 특징으로 하는 인덕티브 센서 회로에 의해 달성된다.The above object is applied to an inductive sensor attached to a cylinder exhaust valve of an engine according to an embodiment of the present invention, and the position signal of the exhaust valve is detected in real time by detecting an analog signal measured by an inductor of the inductive sensor. An inductive sensor circuit for outputting a circuit comprising: a capacitor connected in parallel with the inductor to form an oscillation circuit, a first operational amplifier configured to receive and amplify an oscillation waveform generated by the oscillation circuit as an electric signal, and the first operation A sensing circuit unit including a rectifying circuit for receiving and rectifying the signal amplified by the amplifier, and a smoothing circuit for smoothing and outputting the signal rectified by the rectifying circuit; A linearization circuit section including a plurality of section approximation paths configured to receive a signal of the sensing circuit unit and a predetermined reference voltage and process the signal in a line wise approximation to output a linearized signal; A second operation amplifier which receives a signal output from the linearization circuit unit, reads a code, and outputs a sign; a zero adjustment circuit that adjusts a zero point of the signal output from the second operation amplifier and a maximum value of the zero point; An output circuit unit including a third operational amplifier for amplifying a signal input from a circuit and transmitting the amplified signal to an external output terminal; And a power supply circuit unit for supplying a constant voltage for driving the circuit and supplying a reference voltage to the linearization circuit unit.
여기서, 상기 감지회로부는 상기 발진회로의 출력단에 연결되어 주파수 제어신호를 생성하는 발진제어유닛을 더 포함하며, 이러한 발진제어유닛은 상기 발진파형의 주파수를 제어하여 측정감도를 조절한다.Here, the sensing circuit unit further includes an oscillation control unit connected to the output terminal of the oscillation circuit to generate a frequency control signal, and the oscillation control unit controls the frequency of the oscillation waveform to adjust the measurement sensitivity.
그리고, 상기 절선근사회로는, 상기 감지회로부와 상기 기준전압에 각각 연결되는 제1저항 및 제2저항과, 상기 제1저항 및 제2저항의 접속점과 연결되는 가산기와, 상기 가산기의 입력단과 출력단에 병렬 연결되는 제1다이오드와, 상기 가산기 및 제1다이오드의 출력단 접속점에 연결되는 제2다이오드와, 상기 가산기 및 제1다이오드의 입력단 접속점과 상기 제2다이오드의 출력단에 병렬 연결되는 제3저항을 포함할 수 있다.In addition, the cutting line nearer, an adder connected to the first resistor and the second resistor connected to the sensing circuit unit and the reference voltage, respectively, and a connection point of the first resistor and the second resistor, and an input terminal of the adder; A first diode connected in parallel to an output terminal, a second diode connected to an output terminal connection point of the adder and the first diode, an input terminal connection point of the adder and the first diode, and a third resistor connected in parallel to an output terminal of the second diode It may include.
한편, 상기 영점조정회로는, 상기 기준전압과 연결되는 영점조정기와, (+)입력단은 상기 영점조정기와 연결되고 (-)입력단은 상기 제2연산증폭기와 연결되는 제4연산증폭기와, 상기 제4연산증폭기의 출력단에 연결되는 스판조정기를 포함할 수 있다.On the other hand, the zero adjustment circuit, the zero point regulator is connected to the reference voltage, the (+) input terminal is connected to the zero point regulator and the (-) input terminal is connected to the second operational amplifier and the fourth operational amplifier, It may include a span regulator connected to the output of the four operational amplifier.
그리고, 상기 전원회로부는, 전원 입력단에 연결되어 외부의 이상전압으로부터 내부 소자를 보호하는 서지흡수기를 포함할 수 있다. 이때, 상기 전원회로부는, 상기 서지흡수기와 각각 직렬 및 병렬 연결되어 노이즈를 차단하는 감쇄필터회로를 형성하는 코일 및 콘덴서를 더 포함할 수 있다.The power circuit unit may include a surge absorber connected to a power input terminal to protect the internal device from an external abnormal voltage. In this case, the power supply circuit unit may further include a coil and a capacitor connected to the surge absorber in series and in parallel to form an attenuation filter circuit to block noise.
상기한 실시예에 따른 본 발명에 의하면, 인덕티브 센서의 응답속도를 5Khz 이상으로 구현하여 이와 연동하는 전송장치 및 중앙제어장치의 성능을 대폭 향상시킬 수 있는 효과가 있다. 또한, 인덕티브 센서의 인덕터와 마이크로미터에서 측정되는 두 신호를 비교하여 선형화함으로써 측정 정밀도를 대폭 향상시킬 수 있는 효과가 있다.According to the present invention according to the above embodiment, the response speed of the inductive sensor is implemented at 5Khz or more, thereby greatly improving the performance of the transmission device and the central control device interworking with it. In addition, by comparing and linearizing two signals measured at the inductor of the inductive sensor and the micrometer, the measurement accuracy can be greatly improved.
도1은 본 발명의 실시예에 따른 인덕티브 센서 회로를 도시하는 회로도이다.1 is a circuit diagram showing an inductive sensor circuit according to an embodiment of the present invention.
이하, 첨부된 도면들을 참조하면서 본 발명의 바람직한 실시예에 대해 상세히 설명하기로 한다. 한편, 해당 기술분야의 통상적인 지식을 가진자로부터 용이하게 알 수 있는 구성과 그에 대한 작용 및 효과에 대한 도시 및 상세한 설명은 간략히 하거나 생략하고 본 발명과 관련된 부분들을 중심으로 상세히 설명하도록 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. On the other hand, illustrated and detailed description of the configuration and its operation and effects can be easily understood from those skilled in the art will be briefly or omitted and will be described in detail with respect to the parts related to the present invention.
특히, 본 발명의 실시예에 따른 인덕티브 센서 회로는, 엔진의 실린더 배기밸브에 부착되는 인덕티브 센서에 적용되는 것을 전제로 하며, 상기 인덕티브 센서의 인덕터(210)에서 측정되는 아날로그신호를 실시간으로 감지하여 상기 배기밸브의 위치신호를 출력한다.In particular, the inductive sensor circuit according to an embodiment of the present invention, on the premise that the inductive sensor is attached to the cylinder exhaust valve of the engine, the analog signal measured by the inductor 210 of the inductive sensor in real time It detects as and outputs the position signal of the exhaust valve.
상기와 같은 인덕티브 센서 회로는, 도1에 도시된 바와 같이, 크게 감지회로부(200), 선형화회로부(400), 출력회로부(600), 및 전원회로부(800)를 포함한다.As illustrated in FIG. 1, the inductive sensor circuit as described above largely includes a sensing circuit unit 200, a linearization circuit unit 400, an output circuit unit 600, and a power circuit unit 800.
먼저, 상기 감지회로부(200)는, 상기 인덕터(210)와 병렬 연결되어 발진회로를 형성하는 콘덴서(220)와, 상기 발진회로에서 생성된 발진파형을 전기신호로 입력받아 증폭시키는 제1연산증폭기(240)와, 상기 제1연산증폭기(240)에서 증폭된 신호를 입력받아 정류시키는 정류회로(260)와, 상기 정류회로(260)에서 정류된 신호를 평활시켜 출력하는 평활회로(280)를 포함한다.First, the sensing circuit unit 200 includes a capacitor 220 connected in parallel with the inductor 210 to form an oscillation circuit, and a first operational amplifier configured to amplify an oscillation waveform generated by the oscillation circuit as an electric signal. 240, a rectifier circuit 260 for receiving and rectifying the signal amplified by the first operational amplifier 240, and a smoothing circuit 280 for smoothing and outputting the signal rectified by the rectifier circuit 260. Include.
여기서, 상기 콘덴서(220)와 인덕터(210)는 LCR 병렬발진회로로 일명 탱크회로를 구성하여 발진한다. 이때의 발진주파수는
Figure PCTKR2015003111-appb-I000001
가 된다. 이 발진 파형은 상기 인덕터(210)에 근접하는 금속 물질에 의해 와전류를 발생하고 이 와전류에 의해 발진주파수의 파고가 일정하게 비 직선적으로 변하게 된다. 이 변화 값은 상기 제1연산증폭기에 전달되어 전류 증폭된 후 연산증폭기(U2B, U2C)와 다이오드(D1, D2) 및 저항(D1,D2,D3,D4,D5)으로 구성된 정류회로를 통해 정류된다. 정류된 파형은 연산증폭기(U2D)와 저항(R6, R7, R8, R9) 및 콘덴서(C2, C3, C4)로 구성된 평활회로를 거쳐 후술할 선형화회로부(400)로 전송한다.
Here, the condenser 220 and the inductor 210 oscillate by forming a so-called tank circuit as an LCR parallel oscillation circuit. The oscillation frequency at this time
Figure PCTKR2015003111-appb-I000001
Becomes The oscillation waveform generates an eddy current by a metal material close to the inductor 210, and the undulation of the oscillation frequency is changed non-linearly by the eddy current. The change value is transferred to the first operational amplifier and amplified by current, and then rectified through a rectifier circuit composed of operational amplifiers U2B and U2C, diodes D1 and D2, and resistors D1, D2, D3, D4 and D5. do. The rectified waveform is transmitted to the linearization circuit unit 400 to be described later through a smoothing circuit including an operational amplifier U2D, resistors R6, R7, R8, and R9, and capacitors C2, C3, and C4.
한편, 상기 감지회로부(200)는 상기 발진회로의 출력단에 연결되어 주파수 제어신호를 생성하는 발진제어유닛(U1)을 더 포함할 수 있으며, 이러한 발진제어유닛(U1)은 상기 발진파형의 주파수를 제어하여 측정감도를 조절한다.Meanwhile, the sensing circuit unit 200 may further include an oscillation control unit U1 connected to an output terminal of the oscillation circuit to generate a frequency control signal. The oscillation control unit U1 may generate a frequency of the oscillation waveform. Control to adjust the measurement sensitivity.
다음으로, 상기 선형화회로부(400)는 상기 감지회로부(200)의 신호와 기설정된 기준전압을 입력받아 절선근사(Piece Wise Linear) 방식으로 신호처리하여 선형화된 신호를 출력하는 절선근사회로(420)를 복수개 포함한다.Next, the linearization circuit unit 400 receives a signal of the sensing circuit unit 200 and a predetermined reference voltage, and processes the signal by a piecing approximation method to output a linearized signal 420. It includes a plurality.
여기서, 상기 절선근사회로(400)는 4개(420a,420b,420c,420d)가 병렬 배치된다. 이러한 절선근사회로(420a)는 상기 감지회로부(200)와 상기 기준전압에 각각 연결되는 제1저항(R16) 및 제2저항(R17)과, 상기 제1저항(R16) 및 제2저항(R17)의 접속점과 연결되는 가산기(U3A)와, 상기 가산기(U3A)의 입력단과 출력단에 병렬 연결되는 제1다이오드(D3)와, 상기 가산기(U3A) 및 제1다이오드(D3)의 출력단 접속점에 연결되는 제2다이오드(D4)와, 상기 가산기(U3A) 및 제1다이오드(D3)의 입력단 접속점과 상기 제2다이오드(D4)의 출력단에 병렬 연결되는 제3저항(R18)을 포함한다. 본 실시예에서 상기 가산기(U3A)의 (-)입력단은 저항(R16,R17,R18) 및 제1다이오드(D3)의 접속점과 연결되고, (+)입력단은 접지된다.In this case, four 420a, 420b, 420c, and 420d are arranged in parallel in the section near myopath. The cut line near path 420a includes a first resistor R16 and a second resistor R17 connected to the sensing circuit unit 200 and the reference voltage, respectively, and the first resistor R16 and the second resistor ( An adder U3A connected to a connection point of R17), a first diode D3 connected in parallel to an input terminal and an output terminal of the adder U3A, and an output terminal connection point of the adder U3A and the first diode D3. And a third resistor R18 connected in parallel to an input terminal connection point of the adder U3A and the first diode D3 and an output terminal of the second diode D4. In the present embodiment, the negative input terminal of the adder U3A is connected to the connection point of the resistors R16, R17 and R18 and the first diode D3, and the positive input terminal is grounded.
다음으로, 상기 출력회로부(600)는 상기 선형화회로부(400)에서 출력되는 신호를 입력받아 부호를 판독하여 출력하는 제2연산증폭기(620)와, 상기 제2연산증폭기(620)에서 출력되는 신호의 영점 및 상기 영점의 최대값을 조정하는 영점조정회로(640)와, 상기 영점조정회로(640)에서 입력되는 신호를 증폭시켜 외부 출력단자에 전송하는 제3연산증폭기(660)를 포함한다.Next, the output circuit unit 600 receives a signal output from the linearization circuit unit 400, reads a code, and outputs a second operation amplifier 620 and a signal output from the second operation amplifier 620. A zero point adjusting circuit 640 for adjusting a zero point and a maximum value of the zero point, and a third operational amplifier 660 amplifying a signal input from the zero point adjusting circuit 640 and transmitting the amplified signal to an external output terminal.
여기서, 상기 영점조정회로(640)는, 상기 기준전압과 연결되는 영점조정기(646)와, (+)입력단은 상기 영점조정기(646)와 연결되고 (-)입력단은 상기 제2연산증폭기(620)와 연결되는 제4연산증폭기(644)와, 상기 제4연산증폭기(644)의 출력단에 연결되는 스판조정기(642)를 포함한다. 이때, 상기 영점조정기(646) 및 스판조정기(642)는 가변저항으로 이루어지며, 이러한 가변저항은 사용환경이나 설계 목적에 따라 탄소피막형이나 서미트형 등 다양하게 선택이 가능하다.Here, the zero adjustment circuit 640, a zero regulator 646 connected to the reference voltage, (+) input terminal is connected to the zero regulator 646, and (-) input terminal is the second operational amplifier 620 The fourth operational amplifier 644 is connected to the) and the span adjuster 642 is connected to the output terminal of the fourth operational amplifier 644. At this time, the zero point adjuster 646 and the span adjuster 642 is made of a variable resistor, the variable resistor can be selected in various ways, such as carbon film type or the summit type according to the use environment or design purpose.
그리고, 상기 영점조정회로(640)에서 출력되는 신호는 상기 제3연산증폭기(660)의 (+)단자에 저항 R37과 R38로 분압되어 입력된다. 상기 제3연산증폭기(660)에 입력된 신호는 I/V컨버터 또는 V/V증폭기 회로에 의해 출력단자 +OUTPUT과 0Vdc_OUT으로 출력되어 외부로 전송된다.The signal output from the zero point adjusting circuit 640 is divided into resistors R37 and R38 and input to the positive terminal of the third operational amplifier 660. The signal input to the third operational amplifier 660 is output to the output terminal + OUTPUT and 0Vdc_OUT by an I / V converter or V / V amplifier circuit and transmitted to the outside.
다음으로, 상기 전원회로부(800)는 회로 구동을 위한 정전압을 제공하고, 상기 선형화회로부(400)에 기준전압을 공급한다.Next, the power circuit unit 800 provides a constant voltage for driving the circuit, and supplies a reference voltage to the linearization circuit unit 400.
여기서, 상기 전원회로부(800)는 서지흡수기(surge absorber)를 포함할 수 있으며, 이러한 서지흡수기(820)는 전원회로부(800)의 입력단에 연결되어 외부의 이상전압으로부터 내부 소자를 보호한다.Here, the power circuit unit 800 may include a surge absorber, and the surge absorber 820 is connected to the input terminal of the power circuit unit 800 to protect the internal device from an external abnormal voltage.
그리고, 상기 전원회로부(800)는 상기 서지흡수기(820)와 각각 직렬 및 병렬 연결되는 코일(L1) 및 콘덴서(C5,C6,C7)를 더 포함할 수 있으며, 이러한 코일(L1) 및 콘덴서(C5,C6,C7)는 감쇄필터회로를 형성하여 노이즈를 차단하는 역할을 한다.The power circuit unit 800 may further include coils L1 and capacitors C5, C6, and C7 connected in series and parallel with the surge absorber 820, respectively. C5, C6, and C7 form attenuation filter circuits to block noise.
한편, 상기 전원회로부(800)에서 도시된 제어유닛 U6은 정전압 공급 모듈로 안정된 전원을 내부의 능동 소자에 공급한다. U7 및 U8은 정밀한 정전압 레퍼런스 IC이며 상기 영점조정기(640)와 상기 선형화회로부(400)의 저항 R10, R11, R12, R13, R14의 절선점에 기준전압을 공급한다.On the other hand, the control unit U6 shown in the power circuit unit 800 supplies a stable power supply to the active element inside the constant voltage supply module. U7 and U8 are precision constant voltage reference ICs and supply a reference voltage to the junction points of the resistors R10, R11, R12, R13, and R14 of the zero point regulator 640 and the linearization circuit unit 400.
지금까지 설명한 본 발명의 실시예에 따른 회로설계에 의하면, 인덕티브 센서의 응답속도를 5Khz 이상으로 구현할 수 있기 때문에 이와 연동하는 전송장치 및 중앙제어장치의 성능을 대폭 향상시킬 수 있는 효과가 있다. 또한, 인덕티브 센서의 인덕터와 마이크로미터에서 측정되는 두 신호를 비교하여 선형화함으로써 측정 정밀도를 대폭 향상시킬 수 있는 효과가 있다.According to the circuit design according to the embodiment of the present invention described above, since the response speed of the inductive sensor can be implemented at 5Khz or more, the performance of the transmission apparatus and the central control unit interworking with it can be greatly improved. In addition, by comparing and linearizing two signals measured at the inductor of the inductive sensor and the micrometer, the measurement accuracy can be greatly improved.
전술한 내용은 후술할 발명의 청구범위를 더욱 잘 이해할 수 있도록 본 발명의 특징과 기술적 장점을 다소 폭넓게 상술하였다. 상술한 실시예들은 해당 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술적 사상의 범위에서 다양한 수정 및 변경이 가능할 것이다. 이러한 다양한 수정 및 변경 또한 본 발명의 기술적 사상의 범위 내라면 하기에서 기술되는 본 발명의 청구범위에 속한다 할 것이다.The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the claims that follow may be better understood. Embodiments described above may be variously modified and changed by those skilled in the art within the scope of the technical idea of the present invention. Such various modifications and changes will also fall within the scope of the claims as set forth below within the scope of the spirit of the present invention.
본 발명은 인덕티브 센서 회로에 관한 것으로서, 더욱 상세하게는 엔진의 실린더 배기밸브 위치를 실시간 감지하여 전송하는 인덕티브 센서 회로 분야에 이용가능하다.The present invention relates to an inductive sensor circuit, and more particularly, it can be used in the field of inductive sensor circuit for real-time detection and transmission of the cylinder exhaust valve position of the engine.

Claims (6)

  1. 엔진의 실린더 배기밸브에 부착되는 인덕티브 센서에 적용되는 것으로, 상기 인덕티브 센서의 인덕터에서 측정되는 아날로그신호를 실시간 감지하여 상기 배기밸브의 위치신호를 출력하는 인덕티브 센서 회로에 있어서,In the inductive sensor attached to the cylinder exhaust valve of the engine, the inductive sensor circuit for detecting the analog signal measured by the inductor of the inductive sensor in real time to output the position signal of the exhaust valve,
    상기 인덕터와 병렬 연결되어 발진회로를 형성하는 콘덴서와, 상기 발진회로에서 생성된 발진파형을 전기신호로 입력받아 증폭시키는 제1연산증폭기와, 상기 제1연산증폭기에서 증폭된 신호를 입력받아 정류시키는 정류회로와, 상기 정류회로에서 정류된 신호를 평활시켜 출력하는 평활회로를 포함하는 감지회로부;A capacitor connected in parallel with the inductor to form an oscillation circuit, a first operation amplifier configured to receive and amplify an oscillation waveform generated by the oscillation circuit as an electric signal, and to receive and rectify the signal amplified by the first operation amplifier A sensing circuit unit including a rectifying circuit and a smoothing circuit for smoothing and outputting the signal rectified by the rectifying circuit;
    상기 감지회로부의 신호와 기설정된 기준전압을 입력받아 절선근사(Piece Wise Linear) 방식으로 신호처리하여 선형화된 신호를 출력하는 절선근사회로를 복수개 포함하는 선형화회로부;A linearization circuit section including a plurality of section approximation paths configured to receive a signal of the sensing circuit unit and a predetermined reference voltage and process the signal in a line wise approximation to output a linearized signal;
    상기 선형화회로부에서 출력되는 신호를 입력받아 부호를 판독하여 출력하는 제2연산증폭기와, 상기 제2연산증폭기에서 출력되는 신호의 영점 및 상기 영점의 최대값을 조정하는 영점조정회로와, 상기 영점조정회로에서 입력되는 신호를 증폭시켜 외부 출력단자에 전송하는 제3연산증폭기를 포함하는 출력회로부; 및A second operation amplifier which receives a signal output from the linearization circuit unit, reads a code, and outputs a sign; a zero adjustment circuit that adjusts a zero point of the signal output from the second operation amplifier and a maximum value of the zero point; An output circuit unit including a third operational amplifier for amplifying a signal input from a circuit and transmitting the amplified signal to an external output terminal; And
    회로 구동을 위한 정전압을 제공하고, 상기 선형화회로부에 기준전압을 공급하는 전원회로부;A power supply circuit unit for supplying a constant voltage for driving the circuit and supplying a reference voltage to the linearization circuit unit;
    를 포함하는 것을 특징으로 하는 인덕티브 센서 회로.Inductive sensor circuit comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 감지회로부는 상기 발진회로의 출력단에 연결되어 주파수 제어신호를 생성하는 발진제어유닛을 더 포함하며,The sensing circuit unit further includes an oscillation control unit connected to the output terminal of the oscillation circuit to generate a frequency control signal,
    상기 발진제어유닛은 상기 발진파형의 주파수를 제어하여 측정감도를 조절하는 것을 특징으로 하는 인덕티브 센서 회로.And the oscillation control unit controls the frequency of the oscillation waveform to adjust the measurement sensitivity.
  3. 제1항에 있어서,The method of claim 1,
    상기 절선근사회로는,In the section muscle society,
    상기 감지회로부와 상기 기준전압에 각각 연결되는 제1저항 및 제2저항과,First and second resistors connected to the sensing circuit unit and the reference voltage, respectively;
    상기 제1저항 및 제2저항의 접속점과 연결되는 가산기와,An adder connected to a connection point of the first resistor and the second resistor,
    상기 가산기의 입력단과 출력단에 병렬 연결되는 제1다이오드와,A first diode connected in parallel with an input terminal and an output terminal of the adder;
    상기 가산기 및 제1다이오드의 출력단 접속점에 연결되는 제2다이오드와,A second diode connected to an output terminal connection point of the adder and the first diode;
    상기 가산기 및 제1다이오드의 입력단 접속점과 상기 제2다이오드의 출력단에 병렬 연결되는 제3저항을 포함하는 것을 특징으로 하는 인덕티브 센서 회로.And a third resistor connected in parallel to an input terminal connection point of the adder and the first diode and an output terminal of the second diode.
  4. 제1항에 있어서,The method of claim 1,
    상기 영점조정회로는,The zero point adjustment circuit,
    상기 기준전압과 연결되는 영점조정기와,A zero point controller connected to the reference voltage;
    (+)입력단은 상기 영점조정기와 연결되고 (-)입력단은 상기 제2연산증폭기와 연결되는 제4연산증폭기와,(+) Input terminal is connected to the zero point regulator and (-) input terminal is connected to the fourth operational amplifier and the fourth operational amplifier,
    상기 제4연산증폭기의 출력단에 연결되는 스판조정기를 포함하는 것을 특징으로 하는 인덕티브 센서 회로.And a span adjuster connected to an output terminal of the fourth operational amplifier.
  5. 제1항에 있어서,The method of claim 1,
    상기 전원회로부는, 전원 입력단에 연결되어 외부의 이상전압으로부터 내부 소자를 보호하는 서지흡수기를 포함하는 것을 특징으로 하는 인덕티브 센서 회로.The power circuit part, the inductive sensor circuit is characterized in that it comprises a surge absorber connected to the power input terminal to protect the internal element from the external abnormal voltage.
  6. 제5항에 있어서,The method of claim 5,
    상기 전원회로부는, 상기 서지흡수기와 각각 직렬 및 병렬 연결되어 노이즈를 차단하는 감쇄필터회로를 형성하는 코일 및 콘덴서를 더 포함하는 것을 특징으로 하는 인덕티브 센서 회로.The power supply circuit unit, the inductive sensor circuit further comprises a coil and a capacitor connected to the surge absorber in series and in parallel to form a damping filter circuit to block noise.
PCT/KR2015/003111 2014-04-02 2015-04-02 Inductive sensor circuit WO2015152585A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0039271 2014-04-02
KR1020140039271A KR101414216B1 (en) 2014-04-02 2014-04-02 Circuit For Inductive Sensor

Publications (1)

Publication Number Publication Date
WO2015152585A1 true WO2015152585A1 (en) 2015-10-08

Family

ID=51740921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/003111 WO2015152585A1 (en) 2014-04-02 2015-04-02 Inductive sensor circuit

Country Status (2)

Country Link
KR (1) KR101414216B1 (en)
WO (1) WO2015152585A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010029864A (en) * 1999-06-30 2001-04-16 니시무로 타이죠 Voltage controlled oscillating circuit
JP2002305873A (en) * 2001-01-31 2002-10-18 Matsushita Electric Ind Co Ltd Switching power supply unit
KR20110127395A (en) * 2010-05-19 2011-11-25 제이에프이 어드밴테크 가부시키가이샤 Apparatus for detecting concentration of magnetic powder contained in fluid
JP2012095446A (en) * 2010-10-27 2012-05-17 Mitsubishi Electric Corp Power supply unit and withstand voltage test method therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003081181A2 (en) 2002-03-22 2003-10-02 Bosch Rexroth Ag Circuit arrangement for rectifying the output voltage of a sensor that is fed by an oscillator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010029864A (en) * 1999-06-30 2001-04-16 니시무로 타이죠 Voltage controlled oscillating circuit
JP2002305873A (en) * 2001-01-31 2002-10-18 Matsushita Electric Ind Co Ltd Switching power supply unit
KR20110127395A (en) * 2010-05-19 2011-11-25 제이에프이 어드밴테크 가부시키가이샤 Apparatus for detecting concentration of magnetic powder contained in fluid
JP2012095446A (en) * 2010-10-27 2012-05-17 Mitsubishi Electric Corp Power supply unit and withstand voltage test method therefor

Also Published As

Publication number Publication date
KR101414216B1 (en) 2014-07-01

Similar Documents

Publication Publication Date Title
US20100283539A1 (en) Voltage detection device
CN105241949B (en) Lubricating oil metal filings monitor the detection circuit and carrier signal demodulation method of device on-line
JP2016001982A (en) Device and method for compensating resolver position error
GB2070776A (en) A sensor for a physical value
CN104198976B (en) A kind of bearing calibration for Hall voltage sensors measure voltage
CN102870013A (en) Detection of a metal or magnetic object
CN101876563A (en) Thermal air flowmeter
EP3255748B1 (en) Reactive power compensation system and method thereof
CN102870011A (en) Detection of a metal or magnetic object
JP2015506029A (en) Sensor for detecting mass flow rate and temperature of fluid flow
CN109730691A (en) Detect the signal compensation apparatus of special operating personnel body index instrument
CN105699730A (en) Electronic voltage transformer
CN202903415U (en) Process variable transmitter system provided with analog communication
CN109030622A (en) A kind of highly sensitive flexible eddy current array sensor and its monitoring method
WO2015152641A1 (en) Inductive sensor circuit
CN102870012B (en) Metal or the detection of magnetic
WO2015152585A1 (en) Inductive sensor circuit
KR101741531B1 (en) inductive sensor capable of performing fast and precise position sensing and being easily maintained
CN113710997B (en) Magnetic sensing system, detection device and magnetic interference biasing method
CN109839412B (en) Measuring device and method for synchronously acquiring capacitance and electrostatic signals in gas-solid two-phase flow
CN209841948U (en) Adjustable Hall voltage sensor
KR20210128239A (en) Diagnostic appratus for lvdt
US10054709B2 (en) Object locater and method for locating a metallic and/or magnetizable object
WO2015152642A1 (en) Inductive sensor circuit
CN104006903A (en) Method for detecting temperature sensor on engine inlet port

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15773763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15773763

Country of ref document: EP

Kind code of ref document: A1