WO2015152179A1 - Method for preparing transformed micoorganisms and method for producing catechol compound using transformed microorganisms prepared by said method - Google Patents
Method for preparing transformed micoorganisms and method for producing catechol compound using transformed microorganisms prepared by said method Download PDFInfo
- Publication number
- WO2015152179A1 WO2015152179A1 PCT/JP2015/060004 JP2015060004W WO2015152179A1 WO 2015152179 A1 WO2015152179 A1 WO 2015152179A1 JP 2015060004 W JP2015060004 W JP 2015060004W WO 2015152179 A1 WO2015152179 A1 WO 2015152179A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aromatic ring
- gene
- general formula
- group
- promoter
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
- A61Q19/02—Preparations for care of the skin for chemically bleaching or whitening the skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/33—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
- A61K8/34—Alcohols
- A61K8/347—Phenols
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/52—Genes encoding for enzymes or proenzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0069—Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/22—Preparation of oxygen-containing organic compounds containing a hydroxy group aromatic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/80—Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
- A61K2800/86—Products or compounds obtained by genetic engineering
Definitions
- the present invention relates to a method for preparing a transformed microorganism into which an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene are introduced, and a method for producing a catechol compound using the transformed microorganism prepared by the method. Furthermore, the present invention also relates to a composition having excellent stability containing a catechol compound and the use of the composition.
- Catechol compounds are used as intermediates and raw materials for various industrial products such as pharmaceutical intermediates, cosmetics, antioxidants, ultraviolet absorbers, adhesives and the like.
- catechol compounds such as hydroxytyrosol (2- (3,4-dihydroxy) phenylethanol) contained in olive extract have a high antioxidant effect, a reduced risk of coronary heart disease, melanin It is known to have various physiological functions such as synthetic inhibitory action, antibacterial / antiviral action, and other applications, and is expected to be applied to pharmaceuticals and cosmetics.
- a biotechnological synthesis method using an aromatic ring dioxygenase such as toluene dioxygenase and an aromatic ring dihydrodiol dehydrogenase such as cis-toluene dihydrodiol dehydrogenase is known.
- Microorganisms such as Pseudomonas putida metabolize toluene with enzymes such as toluene dioxygenase and cis-toluene dihydrodiol dehydrogenase.
- enzymes such as toluene dioxygenase and cis-toluene dihydrodiol dehydrogenase.
- catechol compounds such as 3-methylcatechol are generally metabolic intermediates.
- the generated 3-methylcatechol is degraded by 3-methylcatechol 2,3-dioxygenase (todE) (Non-patent Document 1).
- an aromatic ring dioxygen is expressed by an expression inducer such as isopropyl ⁇ -thiogalactopyranoside (hereinafter also referred to as “IPTG”).
- IPTG isopropyl ⁇ -thiogalactopyranoside
- Non-Patent Document 1 discloses that a toluene dioxygenase gene group (todC1, todC2, todB, and todA) derived from Pseudomonas putida F1 strain and Escherichia coli into which cis-toluene dihydrodiol dehydrogenase gene (todD) was introduced were used.
- TodC1, todC2, todB, and todA a toluene dioxygenase gene group derived from Pseudomonas putida F1 strain and Escherichia coli into which cis-toluene dihydrodiol dehydrogenase gene (todD) was introduced were used.
- TodD cis-toluene dihydrodiol dehydrogenase gene
- the present invention has been made in view of the above problems, and provides a method for preparing a transformed microorganism that efficiently synthesizes a catechol compound into which an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene have been introduced. This is the issue. Moreover, this invention makes it a subject to provide the efficient manufacturing method of a catechol compound using the transformed microorganisms prepared by this method.
- Another object of the present invention is to provide a catechol compound-containing composition having excellent stability.
- the first aspect of the present invention is to prepare a transformed microorganism comprising culturing a transformed microorganism into which an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene have been introduced in a solution containing 5 to 100 ⁇ M IPTG. Regarding the method.
- the second aspect of the present invention is the following general formula (1) using a transformed microorganism prepared by the method for preparing a transformed microorganism according to the present invention:
- R is a hydrogen atom, a halogen atom, a phenyl group, a heterocyclic group, or a group represented by the following general formula (2):
- x is 0 or 1
- Y is a linear or branched alkylene group having 1 to 5 carbon atoms
- Z is a hydrogen atom or a hydroxyl group
- the third aspect of the present invention is the following general formula (1):
- R is a hydrogen atom, a halogen atom, a phenyl group, a heterocyclic group, or a group represented by the following general formula (2):
- x is 0 or 1
- Y is a linear or branched alkylene group having 1 to 5 carbon atoms
- Z is a hydrogen atom or a hydroxyl group
- R ′ is a hydrogen atom, a halogen atom, a phenyl group, a heterocyclic group, or a group represented by the following general formula (4):
- x ′ is 0 or 1
- Y ′ is a linear or branched alkylene group having 1 to 5 carbon atoms
- Z ′ is a hydrogen atom or a hydroxyl group.
- a ratio of the monohydroxide to 100 mol of the catechol compound is 0.002 to 5 mol.
- FIG. 1 shows a TIC chromatogram when the reaction was carried out using 2-phenylethanol as a substrate.
- FIG. 2 shows the mass spectrum for the peak with a retention time of 13.7 minutes in the chromatogram of FIG.
- FIG. 3 shows a TIC chromatogram when the reaction was carried out using 2-phenoxyethanol as a substrate.
- FIG. 4 shows the mass spectrum for the peak with a retention time of 13.9 minutes in the chromatogram of FIG.
- FIG. 5 is a graph showing the pH of the culture solution in Example 4.
- Dissolved oxygen concentration (DO) and OD 660 values 6 is a graph showing the dissolved oxygen concentration (DO) of the culture solution in Example 4.
- FIG. FIG. 7 is a graph showing the OD 660 value of the culture solution in Example 4.
- FIG. 8 schematically shows the structure of the cassette (1) and the cassette (2).
- FIG. 9 schematically shows a cassette in the recombinant plasmid introduced into the transformed strain in Example 6.
- FIG. 10 is a graph showing the dissolved oxygen concentration (DO) of the culture solution in Example 6.
- FIG. 11 is a graph showing consumption of the aromatic compound raw material (2-phenylethanol) in the reaction solution in Example 6.
- FIG. 12 is a graph showing the amount of catechol compound (2- (2,3-dihydroxyphenyl) ethanol) produced in the reaction solution in Example 6.
- FIG. 13 is a graph showing the selectivity of a catechol compound (2- (2,3-dihydroxyphenyl) ethanol) in Example 6.
- FIG. 14 shows the results of measuring the UV-VIS spectrum of a sample before storage in a test for evaluating the effect of monohydroxide on the stability of a catechol compound.
- FIG. 15 is a result of measuring a UV-VIS spectrum of a sample after storage at 60 ° C. for 4 days in a test for evaluating the effect of the monohydroxide on the stability of the catechol compound.
- FIG. 16 is a graph showing the effect of the composition according to the present invention as a whitening agent.
- FIG. 17 is a graph showing the effect of the composition according to the present invention as an oxygen absorbent.
- FIG. 18 is a graph showing the effect of the composition according to the present invention as an oxygen absorbent.
- X to Y indicating a range means “X or more and Y or less”, “weight” and “mass”, “weight%” and “mass%”, “part by weight” and “weight part”. “Part by mass” is treated as a synonym. Unless otherwise specified, measurement of operation and physical properties is performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50%.
- the first aspect of the present invention is to prepare a transformed microorganism comprising culturing a transformed microorganism into which an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene have been introduced in a solution containing 5 to 100 ⁇ M IPTG. Regarding the method. According to the first aspect of the present invention, there is provided a method for preparing a transformed microorganism for efficiently synthesizing a catechol compound, into which an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene are introduced.
- One embodiment of the present invention is a method for preparing a transformed microorganism, comprising culturing a transformed microorganism into which an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene have been introduced in a solution containing 5 to 30 ⁇ M IPTG. About.
- the following reaction formula (1) shows an aromatic compound raw material (hereinafter referred to as an aromatic compound raw material used for the production of a catechol compound) catalyzed by an aromatic ring dioxygenase and an aromatic ring dihydrodiol dehydrogenase. It represents a reaction in which a catechol compound is produced from a “substrate”.
- R is the same as in the general formula (1).
- Aromatic ring dioxygenases such as toluene dioxygenase add one hydroxyl group to two adjacent carbon atoms in the aromatic ring of an aromatic compound such as toluene, benzene, naphthalene, and biphenyl.
- an aromatic compound to which a hydroxyl group has been added by an aromatic ring dioxygenase is also simply referred to as a “dihydrodiol derivative”
- cis-toluene dihydrodiol A hydrogen atom is extracted by an aromatic ring dihydrodiol dehydrogenase such as dehydrogenase to synthesize a catechol compound.
- the transformed microorganism used in the present invention is produced by introducing an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene into a host microorganism.
- An aromatic ring dioxygenase is composed of four subunits consisting of a large subunit, a small subunit, ferredoxin, and a ferredoxin reductase, and introduces an oxygen atom derived from an oxygen molecule (O 2 ) into the aromatic ring as a hydroxyl group.
- O 2 oxygen molecule
- genes encoding the large subunit, small subunit, ferredoxin, and ferredoxin reductase of aromatic ring dioxygenase are collectively referred to as “aromatic ring dioxygenase gene group”.
- aromatic ring dioxygenase In the aromatic ring dioxygenase, four subunits are conjugated, and one hydroxyl group is added to two adjacent carbon atoms in the aromatic ring of an aromatic compound such as benzene.
- the aromatic ring dioxygenase is particularly suitable as long as it catalyzes a reaction for introducing an oxygen atom derived from an oxygen molecule (O 2 ) into the aromatic ring as a hydroxyl group (for example, those classified as EC 1.14.12.-).
- examples of the aromatic ring dioxygenase that can be used in the present invention include toluene dioxygenase classified as EC 1.14.12.11, and benzene- classified as EC 1.14.12.3.
- the reaction described in the above reaction formula (1) can be catalyzed by adding one hydroxyl group to two adjacent carbon atoms in the aromatic ring of the aromatic compound.
- Aromatic ring dioxygenases are also included in the present invention.
- toluene dioxygenase When toluene is used as a substrate, toluene dioxygenase is known to catalyze a chemical reaction represented by the following reaction formula (2).
- an aromatic ring dioxygenase gene group encoding an aromatic ring dioxygenase that catalyzes the reaction represented by the following reaction formula (2) is preferably used.
- toluene dioxygenase or benzene-1,2-dioxygenase that is, toluene dioxygenase gene group or benzene-1,2-dioxygenase gene group
- More preferred is toluene dioxygenase. That is, in one embodiment of the present invention, a method for preparing a transformed microorganism in which the aromatic ring dioxygenase gene group is a toluene dioxygenase gene group is provided.
- toluene dioxygenase uses benzene, halogenated benzene, ethylbenzene, xylene, phenyl alcohol (for example, 2-phenylethanol) or the like as a substrate.
- phenyl alcohol for example, 2-phenylethanol
- the present inventor has also found that toluene dioxygenase uses phenoxy alcohol (for example, 2-phenoxyethanol) as a substrate.
- aromatic ring dioxygenase aromatic ring dioxygenase gene group
- Pseudomonas putida eg, P. putida F1 strain (ATCC 700007), P. putida T-12 strain, P. putida IH-2000). Strains, P. putida DOT-T1E strain, or P. putida T-57 strain), P. aeruginosa, P. pseudoalcigenes (for example, P. pseudoaligenes F.
- strain 70 Toluene dioxygens derived from the genus Pseudomonas such as SP (P.sp.) (for example, P.sp. NCIB 9816-4 strain)
- P.sp. for example, P.sp. NCIB 9816-4 strain
- the genus Burkholderia for example, B. cepacia LB400
- Bordetella for example, B. sp. IITR02
- Sphingomonas genus
- Rhizobium genus Rhizobium
- R. jostii RHA1 strain Rhodococcus genus
- Janibacter genus for example, J. sp.
- TYM3221 strain Aspergillus genus (for example, , A. kawachii IFO 4308 strain), Ralstonia genus (for example, R. sp. JS705 strain), etc. It may be.
- Aspergillus genus for example, , A. kawachii IFO 4308 strain
- Ralstonia genus for example, R. sp. JS705 strain
- Pseudomonas aromatic ring dioxygenase especially toluene dioxygenase; that is, a toluene dioxygenase gene group derived from Pseudomonas genus
- Pseudomonas putida that is, Pseudomonas putida
- Toluene dioxygenase gene group is more preferable.
- SEQ ID NOs: 1 to 4 show the amino acid sequences of the large subunit, small subunit, ferredoxin, and ferredoxin reductase of toluene dioxygenase derived from Pseudomonas putida F1 strain.
- amino acid sequences 1 to 4 it consists of an amino acid sequence in which one or several amino acids are deleted, substituted or added, and an oxygen atom derived from an oxygen molecule (O 2 ) is used as a hydroxyl group in an aromatic ring.
- a gene encoding an enzyme having an activity of catalyzing the reaction to be introduced is also preferably used.
- “several” is usually 2 to 5, preferably 2 to 3.
- Examples of conservative substitutions between different amino acid residues include glycine (Gly) and alanine (Ala); valine (Val), leucine (Leu) and isoleucine (Ile); glutamic acid (Glu) and aspartic acid (Asp); Substitutions between amino acids such as glutamine (Gln) and asparagine (Asn); threonine (Thr) and serine (Ser); or lysine (Lys) and arginine (Arg) are known.
- the aromatic ring dihydrodiol dehydrogenase catalyzes a reaction of oxidizing a dihydrodiol derivative of an aromatic compound to a catechol compound (the latter reaction in the reaction formula (1)). More specifically, examples of the aromatic ring dihydrodiol dehydrogenase that can be used in the present invention include cis-toluene dihydrodiol dehydrogenase, cis-benzene dihydrodiol dehydrogenase classified in EC 1.3.1.19, EC 1.
- Cis-Toluene dihydrodiol dehydrogenase catalyzes a chemical reaction represented by the following reaction formula (3) classified in EC 1.3.1.19.
- an aromatic ring dihydrodiol dehydrogenase gene encoding an aromatic ring dihydrodiol dehydrogenase that catalyzes a reaction represented by the following reaction formula (3) is preferably used.
- cis-toluene dihydrodiol dehydrogenase is more preferred in the present invention. That is, in one embodiment of the present invention, a method for preparing a transformed microorganism in which the aromatic ring dihydrodiol dehydrogenase gene is a cis-toluene dihydrodiol dehydrogenase gene is provided.
- cis-toluene dihydrodiol dehydrogenase uses a metabolite (dihydrodiol derivative) of phenoxy alcohol (for example, 2-phenoxyethanol) by aromatic ring dioxygenase as a substrate.
- the organism from which the aromatic ring dihydrodiol dehydrogenase (aromatic ring dihydrodiol dehydrogenase gene) is derived is not particularly limited.
- the above-mentioned bacteria exemplified as those expressing aromatic ring dioxygenase can be mentioned.
- the organism from which the aromatic ring dioxygenase gene is derived and the organism from which the aromatic ring dihydrodiol dehydrogenase gene is derived may be the same or different, but are preferably the same.
- Pseudomonas aromatic ring dihydrodiol dehydrogenase (in particular, cis-toluene dihydrodiol dehydrogenase; that is, cis-toluene dihydrodiol dehydrogenase gene derived from Pseudomonas) is preferable, and Pseudomonas putida (ie More preferred is a cis-toluene dihydrodiol dehydrogenase gene derived from Pseudomonas putida.
- SEQ ID NO: 5 shows the amino acid sequence of cis-toluene dihydrodiol dehydrogenase derived from Pseudomonas putida F1 strain.
- the amino acid sequence 5 has an amino acid sequence in which one or several amino acids are deleted, substituted or added, and has an activity of catalyzing a reaction of oxidizing a dihydrodiol derivative of an aromatic compound to a catechol compound.
- a gene encoding the enzyme is also preferably used.
- “several” is usually 1 to 10, preferably 2 to 8.
- the transformed microorganism used in the preparation method according to the present invention comprises a gene encoding the above aromatic ring dioxygenase and aromatic ring dihydrodiol dehydrogenase or a part thereof linked to an appropriate vector, and the obtained recombinant vector. It can be prepared by introducing the gene of interest into a host so that the gene of interest can be expressed, or by inserting the gene of interest or a part thereof at any position on the genome by homologous recombination. “Part” refers to a part of each gene capable of expressing the protein encoded by each gene when introduced into a host.
- the gene includes DNA and RNA, preferably DNA.
- the method of obtaining a desired gene from the genome of a microorganism by cloning is well known in the field of molecular biology.
- a suitable genomic library can be prepared by restriction endonuclease digestion and screened using a probe complementary to the desired gene sequence.
- the DNA is amplified using standard amplification techniques such as the polymerase chain reaction (PCR) (US Pat. No. 4,683,202), and an appropriate amount of DNA is transformed.
- PCR polymerase chain reaction
- the aromatic ring dioxygenase gene group and the aromatic ring dihydrodiol dehydrogenase gene are obtained by a hybridization method, a PCR method, etc. using a synthetic primer appropriately designed based on the base sequence of the known gene in addition to the known gene. You can also
- the vector for linking genes is not particularly limited as long as it can be replicated in the host, such as plasmids, phages, cosmids, etc., used for introducing foreign genes, but preferably has a promoter capable of inducing expression by IPTG.
- a promoter capable of inducing expression by IPTG used. That is, in one embodiment of the present invention, a transformed microorganism into which an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene incorporated downstream of a promoter capable of inducing expression by IPTG is used.
- the promoter sequence capable of inducing expression by IPTG include T7 promoter, lac promoter, tac promoter, trc promoter, spac promoter and the like.
- T7 promoter or tac promoter is preferably used, and T7 promoter is more preferably used.
- vectors for linking genes include pET (manufactured by Novagen), pGEX (manufactured by GE Healthcare), pHAT20, pTV118N (manufactured by Takara Bio Inc.), pMAL (manufactured by New England Biolabs). , PQE (Qiagen), pMUTIN (Vagner V., et. Al.
- SEQ ID NO: 10 Gene sequences encoding large subunit (todC1), small subunit (todC2), ferredoxin (todB), and ferredoxin reductase (todA) of Pseudomonas putida F1 toluene dioxygenase in SEQ ID NOs: 6 to 9,
- SEQ ID NO: 10 exemplifies a gene sequence encoding cis-toluene dihydrodiol dehydrogenase (todD) of Pseudomonas putida F1 strain.
- the large subunit of the aromatic ring dioxygenase gene group, the small subunit, ferredoxin, and the gene encoding ferredoxin reductase that is, aromatic ring dioxygenase gene group
- ferredoxin reductase that is, aromatic ring dioxygenase gene group
- aromatic ring dihydrodiol dehydrogenase gene A gene functionally equivalent to the gene consisting of the nucleotide sequence represented by SEQ ID NOs: 6, 7, 8, 9, and 10 is also preferably used.
- “Functionally equivalent gene” means that the protein encoded by the target gene has the same biological function and biochemical properties as the protein encoded by the gene consisting of the base sequence represented by each SEQ ID NO. It means having a function.
- these mutant genes hybridize under stringent conditions with a gene consisting of a base sequence complementary to the base sequence represented by SEQ ID NO: 6,
- a gene consisting of a base sequence complementary to the base sequence represented by SEQ ID NO: 6 As long as the large subunit activity of the aromatic ring dioxygenase, i.e., the small subunit of the aromatic ring dioxygenase, ferredoxin, and a protein that exhibits the activity of the aromatic dioxygenase together with ferredoxin reductase, it encodes the aromatic ring dioxygenase. It can be used as a gene encoding the large subunit of oxygenase. The same applies to genes encoding other subunits and genes encoding aromatic ring dihydrodiol dehydrogenase.
- Stringent conditions refer to conditions in which specific hybrids are formed and non-specific hybrids are not formed, that is, conditions in which DNA having high homology to each gene hybridizes. More specifically, such conditions include hybridization at 42-68 ° C. in the presence of 0.5-1 M NaCl, or 42 ° C. in the presence of 50% formamide, or 65-68 ° C. in aqueous solution. Thereafter, the membrane can be washed at room temperature (25 ° C.) to 68 ° C. using a SSC (saline sodium citrate) solution having a concentration of 0.1 to 2 times.
- SSC saline sodium citrate
- the target nucleotide sequence has at least 80% identity, preferably at least 85% identity, more preferably at least 90% identity, and even more preferably at least 95% identity.
- a gene comprising a base sequence having identity, particularly preferably at least 99% (upper limit 100%) identity, can hybridize with a gene comprising a base sequence complementary to the subject base sequence.
- Examples of host microorganisms in the present invention include, but are not limited to, Escherichia coli, Bacillus subtilis, actinomycetes, yeast, and the like. Of these, Escherichia coli or Bacillus subtilis is preferably used, and Escherichia coli is more preferable because of the low metabolic activity of the aromatic compound as a raw material and the catechol compound as a product.
- the Escherichia coli preferably used in the present invention can adopt a general strain used for protein expression and is not particularly limited.
- E. coli BLR (DE3), E. coli. E. coli HMS174 (DE3), E. coli. coli Origami (DE3), E. coli. E. coli Rosetta (registered trademark) (DE3), E. coli.
- An example is E. coli Tuner (registered trademark) (DE3).
- the microorganism used as the host is preferably an aromatic compound as a raw material and a product having a low metabolic activity as a product.
- Aromatic compounds that are raw materials and microorganisms eg, Escherichia coli
- microorganisms eg, Escherichia coli
- 3-methylcatechol 2,3-dioxygenase todE
- Microorganisms that have lost the function of catechol compound-metabolizing enzymes may also be used.
- a microorganism having low aromatic compound metabolic activity as a raw material as a host consumption of the aromatic compound through a route other than the synthesis of the catechol compound can be prevented.
- the yield of a catechol compound can be improved by using a microorganism with low catechol compound metabolic activity as a host.
- the microorganism used as the host may be a microorganism in which the function of alcohol dehydrogenase and / or aldehyde dehydrogenase is lost by gene disruption or the like.
- an aromatic compound raw material such as 2-phenylethanol whose side chain is a hydroxyalkyl group
- the catechol compound represented by the general formula (1) the side chain R is a hydroxyalkyl group In such a case, side chain oxidation can be suppressed.
- a known method can be used for the gene disruption method. Specifically, a method of destroying the gene using a vector (targeting vector) that causes homologous recombination at an arbitrary position of the target gene (gene targeting method), or a trap vector (promoter at an arbitrary position of the target gene). Knockout cells, transgenic animals (including knockout animals), etc. in this technical field, such as methods that insert a reporter gene that does not possess) and destroy the gene to lose its function (gene trap method), methods that combine them, etc. A method used for manufacturing can be used.
- a method of introducing a vector expressing an antisense cDNA of a gene desired to be disrupted or a method of introducing a vector expressing a double-stranded RNA of a gene desired to be disrupted into a cell can be used.
- Such vectors include viral vectors, plasmid vectors, and the like, and can be prepared based on ordinary genetic engineering techniques.
- a commercially available vector can be cleaved with an arbitrary restriction enzyme, and a desired gene or the like can be incorporated and semi-synthesized.
- the position where homologous substitution occurs or the position where the trap vector is inserted is not particularly limited as long as it causes a mutation that eliminates the expression of the target gene to be disrupted, but preferably the transcription regulatory region is replaced.
- the transformed microorganism used in the present invention introduces a recombinant vector incorporating an aromatic ring dioxygenase gene group and / or an aromatic ring dihydrodiol dehydrogenase gene into a host so that the target gene can be expressed. Or by inserting the gene of interest or a part thereof at any position on the genome by homologous recombination.
- the method for introducing and expressing the aromatic ring dioxygenase gene group and the aromatic ring dihydrodiol dehydrogenase gene into a microorganism such as Escherichia coli can be performed by a conventional method. Although not particularly limited, for example, a method using calcium ions generally used for introducing a vector into a microorganism, a protoplast method, an electroporation method, a heat shock method, and the like can be given.
- the method of inserting the gene of interest at any position on the genome by homologous recombination is to insert the gene of interest together with the promoter into a sequence homologous to the sequence on the genome and introduce this nucleic acid fragment into the cell by electroporation or the like. Thus, it can be carried out by causing homologous recombination.
- a strain in which homologous recombination has occurred can be easily selected by using a nucleic acid fragment in which a target gene and a drug resistance gene are linked.
- a gene linked to a drug resistance gene and a gene that becomes lethal under specific conditions is inserted into the genome by homologous recombination by the above method, and then becomes lethal under specific conditions with the drug resistance gene.
- the target gene can also be introduced by homologous recombination in the form of replacing the gene.
- the method is not particularly limited, but a method by which only a transformed microorganism into which a target gene has been introduced can be easily selected is preferred.
- antibiotic resistance genes methods using antibiotics such as ampicillin, kanamycin, streptomycin, chloramphenicol corresponding to these antibiotic resistance genes, or expression as a fusion protein of fluorescent protein or tag and target protein
- Conventionally known means such as a method may be employed.
- the expression of the target protein can also be confirmed by SDS-polyacrylamide gel electrophoresis or Western blotting.
- a transformed microorganism can be selected by the method described later, using as an index the production rate of 2- (2,3-dihydroxyphenyl) ethanol using 2-phenylethanol as a raw material.
- the aromatic ring dioxygenase gene group and the aromatic ring dihydrodiol dehydrogenase gene have a copy number ratio of the following cassette (1) and cassette (2) of 1: 1 to 5: 1. Introduce into the microorganism so that Cassette (1): An IPTG-inducible promoter (1) and an aromatic ring dioxygenase gene group operatively linked to the promoter (1) and the aromatic ring dihydrodiol dehydrogenase gene. Cassette (2): IPTG inducibility A promoter (2), and an aromatic ring dihydrodiol dehydrogenase gene operably linked to the promoter (2).
- the cassette (1) and cassette (2) may further contain a linker sequence for linking the promoter and the gene and a terminator region at the end of the gene.
- FIG. 8 schematically shows the structure of the cassette (1) and the cassette (2).
- an aromatic ring dioxygenase gene group todC1 gene, todC2 gene, todB gene, todA gene
- an aromatic ring dihydrodiol dehydrogenase gene todD gene
- cassette (1) the aromatic ring dioxygenase gene group and the aromatic ring dihydrodiol dehydrogenase gene are operatively linked downstream of the promoter (1)”.
- the “vector having the polynucleotide” is also simply referred to as “vector (1)”.
- an aromatic ring dihydrodiol dehydrogenase gene (todD gene) is operably linked downstream of the promoter (2) (hereinafter referred to as “cassette (2)”.
- a vector having a polynucleotide in which an aromatic ring dihydrodiol dehydrogenase gene is operably linked downstream of the promoter (2) is also simply referred to as “vector (2)”).
- “operably linked” means that the expression of a gene (aromatic ring dioxygenase gene group, aromatic ring dihydrodiol dehydrogenase gene) is expressed by a promoter by the addition of an expression inducer (eg, IPTG). It means that the promoter and the gene are linked so as to induce.
- the transformed microorganism operates an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene with the isopropyl ⁇ -thiogalactopyranoside inducible promoter (1) and the promoter (1).
- a cassette (1) comprising an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene, an isopropyl ⁇ -thiogalactopyranoside inducible promoter (2) and a promoter (2)
- the cassette (2) containing the aromatic ring dihydrodiol dehydrogenase gene thus introduced was introduced so that the copy number ratio of the cassette (1) and the cassette (2) was 1: 1 to 5: 1.
- the production rate of catechol compounds per unit time and unit cell concentration can be increased. Although it does not restrict
- the above reaction formula ( The latter half of the reaction in 1) will be promoted.
- the dihydrodiol derivative is rapidly changed to a catechol compound, and it is presumed that the selectivity of the catechol compound and the production rate of the catechol compound per unit time / unit cell concentration are increased.
- the copy number ratio between the vector (1) and the vector (2) is 5: 1 or less, the first half and second half reactions in the reaction formula (1) are appropriately balanced.
- the cassette (1) and cassette (2) are introduced into the host in the state of being incorporated into the above-described vector such as pET (as the vector (1) and vector (2)).
- Cassette (1) and cassette (2) may be incorporated into the same vector in tandem, or may be incorporated into different vectors, but are preferably incorporated into the same vector in tandem. Since the cassette (1) and the cassette (2) are incorporated in the same vector in tandem, the types of antibiotics used for selection of transformed microorganisms can be reduced (for example, one type). . This probably reduces the damage to the microorganisms by antibiotics, the load of plasmid amplification, and the load of expression of drug resistance genes, thus promoting enzyme production. Therefore, it is possible to prepare a transformed microorganism having a higher catechol compound selectivity and a higher rate of catechol compound production per unit time and unit cell concentration.
- the copy number ratio between the cassette (1) and the cassette (2) to be introduced into the host is preferably 1: 1 to 5: 1, more preferably 1.5: 1 to 4: 1. More preferably, it is 2: 1 to 3: 1. If it is the said range, the reaction rate of the reaction of the first half in Reaction formula (1) and the reaction of the latter half will be balanced, the selectivity of a catechol compound will become high, and the production
- the copy number ratio can be arbitrarily set by appropriately designing the number of cassettes (1) and cassettes (2) contained in the insertion sequence into the vector. In addition, the above copy number ratio corresponds to the copy number ratio of the vector (1) and the vector (2), so the copy number of the vector (1) and the vector (2) when introduced into the host is adjusted. It can be arbitrarily set depending on the situation.
- the promoter (1) and promoter (2) are not particularly limited as long as they are IPTG-inducible, and for example, the above-described T7 promoter, lac promoter, tac promoter, trc promoter, spac promoter and the like can be used. Of these, the T7 promoter is preferably used from the viewpoint of high promoter activity.
- the promoter (1) and the promoter (2) contained in each of the cassette (1) and the cassette (2) may be the same promoter or different promoters, but from the viewpoint of easy induction control. , Preferably the same.
- aromatic ring dioxygenase gene group and the aromatic ring dihydrodiol dehydrogenase gene contained in the cassettes (1) and (2) may be derived from the same species or different organisms.
- the aromatic ring dioxygenase gene group contained in the cassette (1) is preferably a toluene dioxygenase gene group, more preferably a toluene dioxygenase gene group derived from Pseudomonas.
- the aromatic ring dihydrodiol dehydrogenase gene contained in the cassettes (1) and (2) is preferably a cis-toluene dihydrodiol dehydrogenase gene, and more preferably a cis-toluene dihydrodiol dehydrogenase gene derived from Pseudomonas. .
- IPTG-free medium When the transformed microorganism is maintained and cultured, a medium usually used for maintenance culture of the transformed microorganism (hereinafter, a maintenance medium not containing IPTG and usually used for culturing the transformed microorganism is also referred to as “IPTG-free medium”). What is necessary is just to maintain by the normal culture method using this.
- the IPTG-free medium used for the maintenance culture of the transformed microorganism may be either a synthetic medium or a natural medium as long as it contains a carbon source, an appropriate amount of nitrogen source, inorganic salts and other nutrients that can be assimilated by the microorganism used. But you can.
- the IPTG-free medium contains a carbon source, a nitrogen source, and an inorganic substance.
- the carbon source that can be used for the IPTG-free medium is not particularly limited as long as it is a carbon source that can be assimilated by the strain used. Specifically, in consideration of microbial utilization, glucose, fructose, cellobiose, raffinose, xylose, maltose, galactose, sorbose, glucosamine, ribose, arabinose, rhamnose, sucrose, trehalose, ⁇ -methyl-D-glucoside , Salicin, melibiose, lactose, melezitose, inulin, erythritol, glucitol, mannitol, galactitol, N-acetyl-D-glucosamine, starch, starch hydrolysate, molasses, molasses, and other natural products such as wheat and rice And alcohols such as glycerol, methanol and ethanol, organic acids such as acetic acid
- Nitrogen sources that can be used in the IPTG-free medium include meat extract, peptone, polypeptone, tryptone, yeast extract, malt extract, soybean hydrolysate, soybean powder, casein, milk casein, casamino acid, glycine, glutamic acid, aspartic acid
- Organic nitrogen sources such as various amino acids such as corn steep liquor, other animals, plants, microorganism hydrolysates; ammonium salts such as ammonia, ammonium nitrate, ammonium sulfate, ammonium chloride, nitrates such as sodium nitrate, sodium nitrite, etc. Examples thereof include inorganic nitrogen sources such as nitrite and urea. The nitrogen source is appropriately selected in view of assimilation by the microorganism to be cultured. Further, one or more of the nitrogen sources can be selected and used.
- Inorganic materials that can be used in the IPTG-free medium include phosphates, hydrochlorides, sulfates, acetates, carbonates, chlorides, such as magnesium, manganese, calcium, sodium, potassium, copper, iron, zinc, tungsten and molybdenum. And the like, and hydrates thereof.
- the inorganic substance is appropriately selected in consideration of the requirements of the microorganism to be cultured.
- one or more of the above inorganic materials can be selected and used.
- vegetable oil, a surfactant, an antifoaming agent for example, Adecanol (registered trademark) LG-109 and the like may be added to the IPTG-free medium as necessary.
- ampicillin or kanamycin corresponding to the antibiotic resistance gene is used to maintain the character and prevent contamination by other microorganisms.
- Antibiotics such as streptomycin and chloramphenicol may be added to the IPTG-free medium.
- the conditions for the maintenance culture are not particularly limited as long as the conditions are selected appropriately depending on the type of microorganism to be cultured, the composition of the medium and the culture method, and the microorganism can grow.
- the culture temperature is preferably 15 to 50 ° C., more preferably 15 to 37 ° C.
- the pH of a medium suitable for culture is preferably 3 to 10, more preferably 5 to 8.
- a transformed microorganism into which an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene are introduced is cultured in a solution containing 5 to 100 ⁇ M IPTG.
- a transformed microorganism into which an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene are introduced is cultured in a solution containing 5 to 30 ⁇ M IPTG.
- a transformed microorganism into which an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene have been introduced contains a liquid containing IPTG at a low concentration of 5 to 100 ⁇ M (for example, 5 to 30 ⁇ M).
- the solution containing IPTG is prepared by adding IPTG to a medium (IPTG-free medium) usually used for culturing the above-described transformed microorganism.
- the concentration of IPTG in the entire liquid containing IPTG may be 5 to 100 ⁇ M.
- the concentration of IPTG in the entire liquid containing IPTG is, for example, 5 to 30 ⁇ M, preferably 6 to 25 ⁇ M, more preferably 6 to 24 ⁇ M, still more preferably 7 to 23 ⁇ M, and particularly preferably 10
- the effect of efficient synthesis of catechol compounds when the concentration of IPTG is ⁇ 20 ⁇ M is the introduction of an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene operatively linked to the T7 promoter.
- the concentration of IPTG in the whole liquid containing IPTG is, for example, 15 Is 100 to 100 ⁇ M, preferably 25 to 100 ⁇ M, more preferably 30 to 95 ⁇ M, still more preferably 35 to 80 ⁇ M, and particularly preferably 35 to 60 ⁇ M.
- concentration of IPTG in the whole liquid containing IPTG is in the above numerical range, a catechol compound can be efficiently produced by the prepared transformed microorganism.
- the culture method of the transformed microorganism in the liquid containing IPTG may be any method as long as the microorganism can grow and proliferate. Specifically, the above-mentioned conditions for maintenance culture are taken into consideration.
- the culture time in the liquid containing IPTG is not particularly limited, and varies depending on the type of microorganism to be cultured, the amount of medium, the culture conditions, and the like. When culturing at 25 ° C., the culture time is 5 to 96 hours, preferably 5 to 72 hours, more preferably 12 to 48 hours.
- the dissolved oxygen concentration of the liquid containing IPTG is preferably more than 0 mg / L and not more than 5 mg / L.
- catechol compounds can be efficiently used, especially when the culture volume is cultured in a large volume of 1 L or more. Can be prepared. Although it does not limit the technical scope of the present invention, it is presumed that this is due to inhibition of enzyme deactivation due to dissolved oxygen and enzyme deactivation associated with the progress of the reaction using a medium component as a substrate.
- the dissolved oxygen concentration of the liquid containing IPTG is more preferably 0.1 to 5 mg / L, still more preferably 0.1 to 2 mg / L, and preferably 0.7 to 1.6 mg / L. Further preferred.
- the above numerical range refers to the dissolved oxygen concentration (initial dissolved oxygen concentration) immediately after the start of expression induction by IPTG (within 5 minutes).
- the dissolved oxygen concentration may fluctuate, but the dissolved oxygen concentration is 0 to 5 mg / L, exceeding 0 mg / L to 5 mg / L or less, 0 mg throughout the period of culturing the transformed microorganism with a solution containing IPTG. It is more preferable in this order that it is 2 mg / L or less exceeding / L.
- the dissolved oxygen concentration of the liquid containing IPTG can be arbitrarily set, for example, by adjusting the composition of the gas (aeration gas) that passes through the medium, the amount of aeration, and the stirring speed.
- an inert gas such as nitrogen or argon
- the mixing ratio of air and inert gas in the aeration gas is preferably 1: 0.5 to 20 (v: v) of air: inert gas, and 1: 3 to 9 (v: v). More preferably, it is 1: 4 to 9 (v: v).
- the air flow rate is, for example, 10 L / min or less, preferably 0.1 to 5 L / min, with respect to a liquid containing 1 L of IPTG.
- the pH of the medium may fluctuate during the culture, and thus an acid or alkali may be added as appropriate to adjust the pH to a desired value.
- the acid or alkali is not particularly limited, but acids such as hydrochloric acid, nitric acid, sulfuric acid, and acetic acid, and alkalis such as sodium hydroxide and potassium hydroxide are used.
- the transformed microorganism is cultured in an IPTG-free medium; then (ii) the final concentration is 5 to 100 ⁇ M (for example, 5 to 30 ⁇ M or 15 to 100 ⁇ M).
- the final concentration is 5 to 100 ⁇ M (for example, 5 to 30 ⁇ M or 15 to 100 ⁇ M).
- it is preferable to induce the expression of aromatic ring dioxygenase and aromatic ring dihydrodiol dehydrogenase by adding IPTG to the medium (cultured in a liquid containing IPTG).
- Expression induction can also be delayed by adding glucose at a final concentration of 0.5 to 1% (w / v) to the medium.
- the timing of adding IPTG may be determined by measuring the cell concentration of the microorganism by turbidity measurement or the like.
- the timing of adding IPTG is, for example, when OD 660 becomes 0.1 to 1.
- the transformed microorganism may be pre-cultured before the above (i) (cultivation of transformed microorganism in IPTG-free medium). Pre-culture makes it easy to adjust the cell concentration of the transformed microorganism.
- the pre-culture conditions the above-described maintenance culture conditions are considered.
- the transformed microorganism prepared by the preparation method according to the present invention efficiently produces a catechol compound.
- the rate of formation of catechol compounds (hereinafter also referred to as “reaction rate”) is, for example, 2- (2,3-dihydroxy per unit time / unit cell concentration produced when 2-phenylethanol is used as a raw material. It is determined by the amount of phenyl) ethanol (mM / (h ⁇ OD 660 )). Production of catechol compounds by the amount of 2- (2,3-dihydroxyphenyl) ethanol per unit time and unit cell concentration (mM / (h ⁇ OD 660 )) produced when 2-phenylethanol is used as a raw material The speed is determined by the method described in the examples.
- IPTG-free medium for example, LB medium optionally containing an antibiotic corresponding to an antibiotic resistance gene in the case of Escherichia coli or Bacillus subtilis
- 2 to 3 of a transformant microorganism and 4 ml of IPTG-free medium are put in a test tube.
- IPTG-free medium for example, LB medium optionally containing an antibiotic corresponding to an antibiotic resistance gene in the case of Escherichia coli or Bacillus subtilis
- preculture the OD 660 of the culture solution after the pre-culture is measured, the culture solution is diluted in a jar fermenter, and the bacterial cell concentration is adjusted.
- the bacterial cell concentration can be adjusted by diluting the culture solution in an IPTG-free medium so that OD 660 (initial OD 660 ) is 0.05 and the reaction volume is 1 L.
- the IPTG-free medium used for dilution may be of the following composition if it is Escherichia coli or Bacillus subtilis.
- the medium to be used such as ISP medium (actinomycetes) or YPD medium (yeast) may be arbitrarily selected depending on the microorganism to be cultured.
- the diluted culture solution is cultured (25 ° C., 725 rpm), and IPTG is added so that the final concentration becomes 10 ⁇ M when OD 660 reaches 0.4 to 0.6.
- IPTG IPTG
- adjusting the pH at a temperature of 25 ° C. and a stirring rate of 725 rpm (adding 2N NaOH so that the lower limit of the pH is 6.0)
- the aeration rate is 1 L / min (aeration gas air: nitrogen gas is Incubate at 1: 4) for 24 hours.
- the cells are collected and washed with a phosphate buffer solution (pH 7.0) having the following composition.
- the microorganism prepared as described above is stored at ⁇ 80 ° C. until the formation reaction of the catechol compound.
- the phosphate buffer pH 7.0
- OD 660 the microorganism suspension prepared by adding the buffer is also referred to as “microbe suspension”. From the measured OD 660 of the microorganism suspension, the dilution factor at which OD 660 is 5.0 is determined.
- the following reaction solution is prepared so that the dilution rate of the microorganism suspension after the preparation of the reaction solution is the dilution rate thus determined. Reaction is performed using the prepared reaction solution (30 ° C., 300 rpm, 4 hours).
- 2- (2,3-dihydroxyphenyl) ethanol is analyzed by LC-MS.
- 2- (2,3-dihydroxyphenyl) ethanol may be quantified from the UV peak (retention time: 5.2 minutes, m / z: 155, 137).
- the production of 2- (2,3-dihydroxyphenyl) ethanol calculated by the above method using 2-phenylethanol as a raw material of a transformed microorganism cultured in a solution containing IPTG The speed is preferably 0.45 mM / (h ⁇ OD 660 ) or more. More preferably, the production rate of 2- (2,3-dihydroxyphenyl) ethanol using 2-phenylethanol calculated by the above method is 0.50 mM / (h ⁇ OD 660 ) or more, Preferably, it is 0.70 mM / (h ⁇ OD 660 ) or more.
- the upper limit of the production rate of 2- (2,3-dihydroxyphenyl) ethanol when 2-phenylethanol is used as a raw material is not particularly limited, but is, for example, 1.60 mM / (h ⁇ OD 660 ) or less ( For example, it is 1.57 mM / (h ⁇ OD 660 ) or less).
- 2-phenylethanol is used as a raw material
- 2- (2,3-dihydroxyphenyl) ethanol is produced at a rate of 0.45 mM / (h ⁇ OD 660 ) or more.
- a transformed microorganism can be obtained.
- the transformed microorganism comprises an isopropyl ⁇ -thiogalactopyranoside inducible promoter (1) and an aromatic ring dioxygenase gene group and an aromatic ring dihydro operably linked to the promoter (1).
- Cassette (1) containing diol dehydrogenase gene, isopropyl ⁇ -thiogalactopyranoside inducible promoter (2) and cassette (2) containing aromatic ring dihydrodiol dehydrogenase gene operably linked to said promoter (2) Are introduced into the microorganism so that the copy number ratio between the cassette (1) and the cassette (2) is 1: 1 to 5: 1.
- said promoter (1) and said promoter (2) are T7 promoter or tac promoter.
- the second aspect of the present invention relates to a method for producing a catechol compound represented by the following general formula (1) using a transformed microorganism prepared by the above preparation method. According to the second aspect of the present invention, there is provided an efficient method for producing a catechol compound using a transformed microorganism prepared by the method. According to the second aspect of the present invention, there is provided an efficient method for producing a catechol compound using a transformed microorganism prepared by the method.
- R is a hydrogen atom, a halogen atom, a phenyl group, a heterocyclic group, or a group represented by the following general formula (2).
- the “heterocyclic group” is a group composed of a 5- to 10-membered heterocyclic ring. Specific examples of the heterocyclic ring include furan, thiophene, pyrrole, imidazole, pyrazole, thiazole, isothiazole, and oxazole.
- R is represented by a hydrogen atom, a halogen atom, or the following general formula (2).
- x is 0 or 1
- Y is a linear or branched alkylene group having 1 to 5 carbon atoms
- Z is a hydrogen atom or a hydroxyl group.
- x is 0 or 1
- Y is a linear or branched alkylene group having 1 to 3 carbon atoms
- Z is a hydrogen atom or a hydroxyl group.
- x is 0 or 1
- Y is — (CH 2 ) n — (n is an integer of 1 to 3)
- Z is a hydroxyl group.
- the catechol compound represented by the general formula (1) includes catechol, 3-fluorocatechol, 3-chlorocatechol, 3-bromocatechol, 3-iodocatechol, 3-phenylcatechol, 3-methylcatechol.
- the transformed microorganism prepared by the above method is brought into contact with an aromatic compound raw material.
- aromatic compound raw materials benzene, fluorobenzene, chlorobenzene, bromobenzene, iodobenzene, biphenyl, toluene (methylbenzene), anisole (methoxybenzene), benzyl alcohol (phenylmethanol), phenoxymethanol, phenylethane, phenoxyethane, 1-phenylethanol, 2-phenylethanol, 1-phenoxyethanol, 2-phenoxyethanol, 1-phenyl-propane, 1-phenoxy-propane, 1-phenyl-1-propyl alcohol, 1-phenyl-2-propyl alcohol, 1- Phenoxy-1-propyl alcohol, 1-phenoxy-2-propyl alcohol, 2-phenyl-propane, 2-phenoxy-propane, 2-phenyl-1-propyl alcohol, -Phenyl-2-propyl alcohol, 2-phen
- a synthetic reaction of a catechol compound can be performed by adding an aromatic compound raw material to a culture solution (a solution containing IPTG) containing a transformed microorganism prepared by the above method. That is, as the reaction solvent, a liquid containing a medium component can also be used. However, when a medium component is included in the reaction field, the reaction may be inhibited by glucose metabolites such as acetic acid, the product may be difficult to purify, or a by-product may be generated. Therefore, in the present invention, the transformed microorganism prepared by the above method is collected, and the catechol compound is produced by a resting cell reaction in which the synthesis reaction of the catechol compound is performed in a liquid not containing a medium component.
- reaction solvents used include GOOD buffers such as BES, HEPES, TES, bicine, and tricine, amino acid buffers such as glycine-NaOH, phosphate buffers, Buffers such as Tris-HCl buffer, acetate buffer, and borate buffer are preferred.
- As the pH of the buffer solution one having a pH of about 4.0 to 10.0 is usually used.
- the buffer includes halogens such as phosphate, hydrochloride, sulfate, acetate, carbonate, and chloride, such as magnesium, calcium, sodium, potassium, copper, and iron, depending on the nature of the enzyme.
- An inorganic component such as a chemical compound may be added.
- the culture solution may be centrifuged at 1000 to 10,000 ⁇ g, and the precipitate (bacterial cell fraction) may be collected.
- a buffer appropriately selected according to the microorganism may be added to the microorganism thus collected, and the microorganism may be suspended to wash the microorganism.
- the buffer used for the above-mentioned resting cell reaction can be illustrated, for example. Washing may be performed multiple times.
- the transformed microorganism prepared by culturing in a solution containing IPTG may be stored frozen (for example, at ⁇ 80 ° C.) until the catechol compound production reaction. Freezing of the transformed microorganism after preparation is preferably performed after collection to reduce the liquid volume.
- the concentration of the aromatic compound raw material in the reaction solution can be adjusted within a range where the influence of substrate inhibition does not occur.
- the concentration of the aromatic compound raw material is preferably 1 to 100 mM, and more preferably 5 to 50 mM.
- the amount of the transformed microorganism collected in the reaction solution is, for example, an amount at which OD 660 is 0.5 to 100 at the start of the reaction, preferably an amount at which OD 660 is 1 to 40. is there.
- the transformed microorganism prepared by the preparation method according to the present invention is diluted as necessary to obtain OD 660 , and the OD 660 in the reaction solution is obtained. What is necessary is just to calculate the dilution rate from which OD660 becomes a desired value, and determine the addition amount of the microbial cell to a reaction liquid.
- the aromatic compound raw material used for the production of the catechol compound may be sequentially added to the reaction solution.
- the production scale-up can be facilitated and the selectivity can be increased.
- the “selectivity” is a value represented by the following formula 1.
- the reaction temperature in the production of the catechol compound may be arbitrarily set, and is, for example, 10 to 60 ° C., preferably 20 to 40 ° C. By setting the reaction temperature to 10 ° C. or higher, it is possible to prevent a decrease in the reaction rate. In addition, by carrying out the reaction at 60 ° C. or lower, inactivation of the aromatic ring dioxygenase or aromatic ring dihydrodiol dehydrogenase can be prevented.
- the reaction is preferably performed with stirring at, for example, 100 to 1000 rpm.
- the reaction time may be arbitrarily set depending on the production scale and the like, but is usually 1 to 48 hours.
- the obtained product can be purified by any method such as solvent extraction, distillation, crystallization, salting out, chromatography, treatment with an adsorbent such as activated carbon.
- an adsorbent such as activated carbon.
- the structure and production amount of the product (catechol compound) obtained by synthesis include, for example, LC and GC described in Examples, and methods using MS combined with these, NMR, infrared spectroscopy, etc. This can be confirmed by means known to those skilled in the art.
- compositions comprising a catechol compound represented by the following general formula (1) and a monohydroxide represented by the following general formula (3): Compositions are provided wherein the proportion of the product is 0.002 to 5 moles. According to the third aspect of the present invention, a catechol compound-containing composition having excellent stability is provided.
- R is a hydrogen atom, a halogen atom, a phenyl group, a heterocyclic group, or a group represented by the following general formula (2).
- x is 0 or 1
- Y is a linear or branched alkylene group having 1 to 5 carbon atoms
- Z is a hydrogen atom or a hydroxyl group.
- R ′ is a heterocyclic group or a group represented by the following general formula (4).
- x ′ is 0 or 1
- Y ′ is a linear or branched alkylene group having 1 to 5 carbon atoms
- Z ′ is a hydrogen atom or a hydroxyl group.
- R ′ in the general formula (3) is applied by appropriately modifying the description of R in the general formula (1).
- x ′, Y ′, and Z ′ in the general formula (4) have the same definitions as x, Y, and Z in the general formula (2), respectively.
- the description of the general formula (2) is appropriately modified and applied.
- the hydroxyl group may be in the ortho position, the meta position or the para position, but is preferably the ortho position or the meta position, more preferably the ortho position.
- the monohydroxide represented by the general formula (3) is, for example, 2-hydroxybenzyl alcohol, 3-hydroxybenzyl alcohol, 4-hydroxybenzyl alcohol, 2-hydroxyphenoxymethanol, 3-hydroxyphenoxy.
- R of the catechol compound represented by the general formula (1) included in the composition and R ′ of the monohydroxide represented by the general formula (3) are the same.
- the catechol compound represented by the general formula (1) has a whitening effect.
- the composition containing the monohydroxide represented by the general formula (3) in a predetermined range has a higher stability than the case of the catechol compound alone.
- the present inventors have found that the properties (particularly, the degradation of catechol compounds and the suppression of coloring) are achieved. Although it does not restrict
- the catechol compound represented by the general formula (1) 100 moles of the catechol compound represented by the general formula (1) (the “catechol compound represented by the general formula (1)” is also simply referred to as “the catechol compound according to the present invention”).
- the monohydroxide represented by the general formula (3) (“monohydroxide represented by the general formula (3)” is also simply referred to as “monohydroxide according to the present invention") is 0. It is contained at a ratio of 002 to 5 mol.
- the composition contains the monohydroxide according to the present invention at a ratio of 0.002 mol or more with respect to 100 mol of the catechol compound according to the present invention, high oxidation stability can be obtained.
- the catechol compound according to the present invention when the proportion of the monohydroxide according to the present invention is 5 mol or less with respect to 100 mol of the catechol compound according to the present invention, the catechol compound according to the present invention has an influence on functions such as whitening effect. There is an advantage that it can be suppressed.
- the content of the catechol compound represented by the general formula (1) and the monohydroxide represented by the general formula (3) in the composition can be measured, for example, by the gas chromatography method described in the examples.
- the measurement sample may be concentrated after measurement if necessary.
- the composition according to the present invention contains 0.005 to 5 mol of the monohydroxide represented by the general formula (3) with respect to 100 mol of the catechol compound represented by the general formula (1). Contained, more preferably 0.01 to 1 mole.
- the content of the catechol compound represented by the general formula (1) is, for example, 95 to 99.998 mol% in the composition. Further, the content of the monohydroxide represented by the general formula (3) is, for example, 0.002 to 5 mol% in the composition.
- the composition according to the present invention comprises 99.998 to 95 mol% of the catechol compound represented by the general formula (1), and 0.002 to 5 mol% of the total composition. It consists of a monohydroxide represented by the general formula (3) (however, the total amount of the catechol compound represented by the general formula (1) and the monohydroxide represented by the general formula (3) is 100 mol%. is there.). In another preferred embodiment, the composition according to the present invention is represented by 0.005 to 5 mol% of a catechol compound represented by the general formula (1) and 95 to 99.995 mol% of a general formula (3).
- the composition according to the present invention comprises 0.01 to 1 mol% of a catechol compound represented by the general formula (1) and 99 to 99.99 mol% of a general formula (3). (The total amount of the catechol compound represented by the general formula (1) and the monohydroxide represented by the general formula (3) is 100 mol%).
- composition containing the catechol compound according to the present invention and the monohydroxide according to the present invention is obtained by adding the monohydroxide according to the present invention at a desired ratio to the separated and purified catechol compound according to the present invention. It can also be prepared.
- a catechol compound is produced using a transformed microorganism into which an aromatic ring dioxygenase and an aromatic ring dihydrodiol dehydrogenase have been introduced (for example, a transformed microorganism prepared by the preparation method according to the present invention)
- the present invention is used as a by-product.
- the monohydroxide according to can also be produced. Although it does not restrict
- the catechol compound represented by the general formula (1) and the monohydroxide represented by the general formula (3) contained in the composition are aromatic ring dioxygenase and aromatic ring dihydrodiol dehydrogenase. It is produced by oxidizing an aromatic compound raw material using a transformed microorganism into which is introduced.
- the transformed microorganism is a transformed microorganism prepared by the adjustment method described above.
- the R of the catechol compound represented by the general formula (1) and the general formula (3) R ′ of the monohydroxide represented is the same.
- the hydroxyl group is in the ortho position or the meta position.
- the catechol compound represented by the general formula (1) When producing the catechol compound according to the present invention and the monohydroxide according to the present invention using a transformed microorganism into which an aromatic ring dioxygenase and an aromatic ring dihydrodiol dehydrogenase are introduced, the catechol compound represented by the general formula (1) (E.g., introducing cassette (2) in addition to cassette (1) into the microorganism, increasing the reaction time), thereby reducing the monohydroxide content according to the present invention in the product ( The amount of the catechol compound according to the present invention can be increased). On the other hand, by reducing the selectivity of the catechol compound represented by the general formula (1), the monohydroxide content according to the present invention in the product can be increased (the amount of the catechol compound according to the present invention is reduced).
- the product obtained by such a technique can be used as the composition according to the present invention.
- the amount of the catechol compound according to the present invention and the content of the monohydric acid according to the present invention in the composition may be adjusted by appropriately combining separation and purification techniques after the production of the catechol compound using the transformed microorganism. .
- the total amount of the catechol compound according to the present invention and the monohydroxide according to the present invention is 98 to 100% by mass, preferably based on the whole composition. Is separated and purified to 99 to 100% by mass.
- the content of the catechol compound according to the present invention and the monohydroxide according to the present invention contained in the composition can be measured by the method described in the following examples.
- the catechol compound represented by the general formula (1) has a whitening effect. Since the composition according to the present invention contains a monohydroxide represented by the general formula (3) in addition to the catechol compound represented by the general formula (1), the composition is excellent in stability. Therefore, the composition according to the present invention can be used as a whitening agent having excellent stability. In one embodiment of the present invention, a whitening agent comprising the composition of the present invention is provided.
- x is preferably 1 in the general formula (2).
- x ' is 1 in General formula (4).
- the composition of the present invention contained in the whitening agent is, for example, 0.0005% by mass or more, preferably 0.001% by mass or more, and more preferably 0.003% by mass or more.
- the upper limit of the composition of the present invention contained in the whitening agent is not particularly limited, it is, for example, 1% by mass or less, preferably 0.1% by mass or less, from the viewpoint of production cost.
- the whitening agent include lotion, cosmetic milk, cosmetic liquid, cosmetic gel, cosmetic soap, cleansing cream, facial cleanser, skin cream, skin milk, emollient cream, cosmetic oil, pack, tanning oil, and tanning. Stop oils, sun lotions, sunscreen lotions, sun creams, sun creams, foundations, lipsticks, lip balms, toothpastes, deodorants, lip balms and the like.
- the whitening agent is a range of other whitening components other than the catechol compound according to the present invention, such as sorbitan fatty acid ester, polyglycerin fatty acid ester, sucrose fatty acid ester, polyoxyethylene alkyl ether, etc.
- Oils such as surfactants, squalane, liquid paraffin, paraffin wax, hydrocarbons such as petroleum jelly, fatty acid esters such as isopropyl palmitate and butyl stearate, silicone oils such as dimethicone and cyclomethicone, beeswax, olive oil and safflower oil Alcohols such as ethanol, cetyl alcohol, 2-octyldodecanol, isostearyl alcohol, polyhydric alcohols such as glycerin, propylene glycol, butylene glycol, sodium chloride, magnesium sulfate Which stabilizers, vitamins such as vitamin A, vitamin B group, vitamin C, vitamin E, thickeners such as carboxymethylcellulose, polyvinyl alcohol, carrageenan, clay minerals such as silica, talc, mica, kaolin, bentonite, methylparaben, etc.
- anti-inflammatory agents such as glycyrrhetinate, PABA-based, cinnamic acid-based, benzophenone-based, salicylic acid-based organic UV absorbers, amino acids, glycyrrhizinate, emulsifier, fragrance, dye, pigment, antioxidant
- blend well-known components such as an agent, an astringent, a cell activator, a moisturizer, a rough skin improving agent, a cosmetic ingredient, a pH adjuster, a binder, and a keratin improving agent suitably.
- the catechol compound represented by the general formula (1) has an oxygen absorbing action.
- an oxygen absorber is provided comprising the composition of the present invention.
- the oxygen absorbent may be composed only of the composition according to the present invention.
- alcohols such as glycerin and ethylene glycol
- sugar alcohols such as sorbitol, ascorbic acid, hydroquinone, pyrogallol, gallic acid, resorcin and derivatives thereof
- Main components of conventionally known oxygen scavengers such as: transition metals such as iron, copper, manganese, nickel, etc., and their halides (eg, chlorides), sulfates, nitrates, phosphates, which are catalysts for the reaction of the main components , Transition metal compounds such as carbonates, oxides, hydroxides; activated carbon, graphite, carbon black, silica, kaolin, talc, bentonite, zeolite, perlite, diatomaceous earth, activated clay, calcium silicate, magnesium oxide, calcium hydroxide
- a carrier such as the above may be contained in an arbitrary ratio.
- composition of the present invention contained in the oxygen absorbent is, for example, 0.0001 to 20% by weight with respect to the whole oxygen absorbent. In one embodiment, 0.001 to 0.1 parts by weight of the composition according to the invention is used per 100 parts by weight of carrier.
- the oxygen absorbent according to the present invention can be used for, for example, foods, cosmetics, pharmaceuticals, chemical products, electronic materials and the like.
- a method for preparing a transformed microorganism comprising culturing a transformed microorganism into which an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene have been introduced in a solution containing 5 to 100 ⁇ M of isopropyl ⁇ -thiogalactopyranoside.
- 2. The preparation method according to 1, wherein the solution containing isopropyl ⁇ -thiogalactopyranoside has a dissolved oxygen concentration of more than 0 mg / L and not more than 5 mg / L. 3.
- the transformed microorganism comprises the aromatic ring dioxygenase gene group and the aromatic ring dihydrodiol dehydrogenase gene, An isopropyl ⁇ -thiogalactopyranoside inducible promoter (1) and the aromatic ring dioxygenase gene group operably linked to the promoter (1) and a cassette (1) comprising the aromatic ring dihydrodiol dehydrogenase gene; An isopropyl ⁇ -thiogalactopyranoside inducible promoter (2) and a cassette (2) comprising the aromatic ring dihydrodiol dehydrogenase gene operably linked to the promoter (2), 9.
- R is a hydrogen atom, a halogen atom, a phenyl group, a heterocyclic group, or a group represented by the following general formula (2):
- x is 0 or 1
- Y is a linear or branched alkylene group having 1 to 5 carbon atoms
- Z is a hydrogen atom or a hydroxyl group
- 12 A transformed microorganism that produces 2- (2,3-dihydroxyphenyl) ethanol at a rate of 0.45 mM / (h ⁇ OD 660 ) or more when 2-phenylethanol is used as a raw material. 13.
- the transformed microorganism according to 12 which is introduced into the microorganism so that the copy number ratio between the cassette (1) and the cassette (2) is 1: 1 to 5: 1. 14
- the transformed microorganism according to 13, wherein the promoter (1) and the promoter (2) are T7 promoter or tac promoter. 15.
- R is a hydrogen atom, a halogen atom, a phenyl group, a heterocyclic group, or a group represented by the following general formula (2):
- x is 0 or 1
- Y is a linear or branched alkylene group having 1 to 5 carbon atoms
- Z is a hydrogen atom or a hydroxyl group
- R ′ is a hydrogen atom, a halogen atom, a phenyl group, a heterocyclic group, or a group represented by the following general formula (4):
- x ′ is 0 or 1
- Y ′ is a linear or branched alkylene group having 1 to 5 carbon atoms
- Z ′ is a hydrogen atom or a hydroxyl group
- a whitening agent or an oxygen absorbent comprising the composition according to 15.
- PCR amplification was performed using the following primers and Phusion High-Fidelity DNA Polymerase (Finzymes) to obtain a pET21-b (+) fragment.
- todA-D fragment 1 and pET21-b (+) fragment obtained by PCR amplification as described above
- cloning was performed according to the protocol of the In-Fusion PCR cloning kit (Takara) and recombination.
- a plasmid, todA-D / pET21-b (+) was constructed.
- the cloning host is E. coli.
- E. coli DH5 ⁇ (Takara Bio Inc.) was used.
- E. coli BL21 (DE3) Invitrogen
- E. coli BL21 (DE3) / (todA-D / pET21-b (+)) and E. coli. coli BL21 (DE3) / pET21-b (+) was obtained.
- a glycerol stock of the obtained transformed Escherichia coli was prepared and stored at ⁇ 80 ° C. until preparation of transformed microorganisms described later (Examples 1 to 5).
- Example 1 Reaction using 2-phenylethanol (PEA) as a substrate
- PDA 2-phenylethanol
- the strain was inoculated into 4 mL of liquid medium A (test tube) and incubated (30 ° C., 300 rpm, overnight, preculture). Subsequently, a preculture was inoculated into liquid medium A (100 ml) so that the initial OD 660 was 0.05 (Sakaguchi flask) and incubated (25 ° C., 120 rpm). When OD 660 was 0.4 to 0.5 (about 4 hours of culture), IPTG (manufactured by Wako Pure Chemical Industries, Ltd.) was added and incubated (25 ° C., 120 rpm, culture) so that the final concentration was 100 ⁇ M. 24 hours from the start). Bacteria were collected and washed with phosphate buffer A (pH 7.0), and then stored frozen at ⁇ 80 ° C. until used for the synthesis of catechol compounds.
- phosphate buffer A pH 7.0
- the reaction solution was analyzed by LC-MS and GC-MS.
- TIC chromatogram a peak detected only when the substrate was added was confirmed at a retention time of 13.7 minutes. From the product ion, it was confirmed that the peak was 2- (2,3-dihydroxyphenyl) ethanol.
- Mass spectra for the TIC chromatogram and the peak with a retention time of 13.7 minutes are shown in FIGS.
- LC-MS and GC-MS analysis conditions and a summary of MS analysis results are shown below.
- Vaporization chamber temperature 250 ° C
- Injection mode Split control mode: Linear velocity Linear velocity: 38.1 cm / sec Pressure: 77.0kPa
- Ion source temperature 200 ° C
- Interface temperature 250 ° C
- Example 2 Reaction using 2-phenoxyethanol as a substrate
- the strain was inoculated into 4 mL of liquid medium A (test tube) and incubated (30 ° C., 300 rpm, overnight, preculture). Subsequently, a preculture was inoculated into liquid medium A (100 ml) so that the initial OD 660 was 0.05 (Sakaguchi flask) and incubated (25 ° C., 120 rpm). When the OD 660 was 0.4 to 0.5 (about 4 hours of culture), IPTG (manufactured by Wako Pure Chemical Industries, Ltd.) was added to the final concentration of 10 ⁇ M and incubated (25 ° C., 120 rpm, culture) 24 hours from the start). Bacteria were collected and washed with phosphate buffer B (pH 7.0), and stored frozen at ⁇ 80 ° C. until used for the synthesis of catechol compounds.
- phosphate buffer B pH 7.0
- the reaction solution with a reaction time of 2 hours was analyzed by LC-MS and GC-MS.
- TIC chromatogram a peak detected only when the substrate was added was confirmed at a retention time of 13.9 minutes. From the product ion, it was confirmed that the peak was 2- (2,3-dihydroxyphenoxy) ethanol.
- the concentration of the product was 11.2 mM (1.91 g / L), and the selectivity was 96.6%.
- the mass spectra for the TIC chromatogram and the peak with a retention time of 13.9 minutes are shown in FIGS.
- the analytical conditions for LC-MS and GC-MS are as described above. GC analysis conditions and a summary of MS analysis results are shown below.
- Vaporization chamber temperature 250 ° C Injection mode: Split split ratio: 25 Control mode: Linear velocity Linear velocity: 45.1 cm / sec Pressure: 90.7kPa Detector temperature (FID): 340 ° C.
- Example 3 When IPTG concentration is changed, (1) Preparation of transformed microorganisms coli BL21 (DE3) / (todA-D / pET21-b (+)) was induced to induce IPTG expression according to the following procedure.
- the strain was inoculated into 4 mL of liquid medium A (test tube) and incubated (30 ° C., 300 rpm, overnight, preculture). Subsequently, a preculture was inoculated into liquid medium A (100 ml) so that the initial OD 660 was 0.05 (Sakaguchi flask) and incubated (25 ° C., 120 rpm). When OD 660 reached 0.4 to 0.5, IPTG (manufactured by Wako Pure Chemical Industries, Ltd.) was added so as to have a final concentration of 10 to 500 ⁇ M and incubated (25 ° C., 120 rpm, 24 hours from the start of culture). time). Bacteria were collected and washed with phosphate buffer B (pH 7.0), and stored frozen at ⁇ 80 ° C. until used for the synthesis of catechol compounds.
- phosphate buffer B pH 7.0
- the reaction solution was analyzed by LC-MS, and the catechol compound was quantified from the UV peak.
- the reaction rate (catechol compound formation rate) is high, and the catechol compound (2- (2,3-dihydroxyphenyl) ) Ethanol) was efficiently produced.
- the production rate of the catechol compound was the fastest when the IPTG concentration was 10 ⁇ M.
- “Initial PEA” is the concentration of 2-phenylethanol in the reaction solution at the start of the reaction solution, and “Conc.” Is the concentration of 2- (2,3-dihydroxyphenyl) ethanol in the reaction solution after the reaction. Refers to concentration. LC-MS analysis conditions are the same as above.
- Example 4 When dissolved oxygen concentration is changed] (1) Preparation of transformed microorganisms During Sakaguchi flask culture, a large amount of air bubbles is generated, which deteriorates ventilation and decreases the dissolved oxygen concentration in the culture solution. However, since the dissolved oxygen concentration cannot be adjusted in the Sakaguchi flask culture, the influence of the dissolved oxygen concentration on the microorganisms cannot be evaluated. The effect of dissolved oxygen concentration on microorganisms was evaluated, and for further scale-up, E. coli transformed with a jar fermenter was used. coli BL21 (DE3) / (todA-D / pET21-b (+)) was induced to induce IPTG expression according to the following procedure.
- the aeration gas composition is shown in the table below.
- the gas composition ratio is a volume ratio.
- IPTG manufactured by Wako Pure Chemical Industries, Ltd.
- the culture solution pH, dissolved oxygen concentration (DO), and OD 660 values when cultured using the aeration gas are shown in FIGS. 5 to 7 (in the figure, “ppm” is synonymous with “mg / L”). Used in).
- the cultured microorganisms were collected and washed with phosphate buffer B (pH 7.0) and then stored frozen at ⁇ 80 ° C. until use.
- starting oxygen concentration is the dissolved oxygen concentration of the reaction solution at the start of the reaction (in the table, “ppm” is used synonymously with “mg / L”)
- initial dissolved oxygen concentration is The dissolved oxygen concentration in the reaction solution immediately after the addition of IPTG (within 5 minutes)
- Initial PEA is the concentration of 2-phenylethanol in the reaction solution at the start of the reaction solution, “Conc.” Is 2- ( This refers to the concentration of 2,3-dihydroxyphenyl) ethanol in the reaction solution.
- LC-MS analysis conditions are the same as above. In any test section, the dissolved oxygen concentration did not become higher than the initial oxygen concentration throughout the reaction period.
- Example 5 When substrate is added sequentially] (1) Preparation of transformed microorganisms coli BL21 (DE3) / (todA-D / pET21-b (+)) was induced to induce IPTG expression according to the following procedure.
- the strain was inoculated into 4 mL of liquid medium A (test tube) and incubated (30 ° C., 300 rpm, overnight, preculture). Subsequently, the preculture was inoculated into the liquid medium B (1 L) in the 2 L jar fermenter (manufactured by ABLE) so that the initial OD 660 was 0.05. pH adjustment under (as the lower limit of the pH is 6.0, added at any time 2N NaOH), air: N 2 is 1: aeration gas is 4 aerated with aeration 1L / min, and incubated (25 ° C. 725 rpm).
- IPTG manufactured by Wako Pure Chemical Industries, Ltd.
- the cultured microorganisms were collected and washed with phosphate buffer B (pH 7.0) and then stored frozen at ⁇ 80 ° C. until use.
- the obtained reaction solution (880.5 mL) was analyzed by GC.
- 2-phenylethanol was not detected, and 2- (2,3-dihydroxyphenyl) ethanol was 46.5 mM (7.2 g / L). It was confirmed that the product was produced at a rate of 97.0%.
- the strain was inoculated into 4 mL of LB medium (test tube) and incubated (30 ° C., 300 rpm, overnight, preculture). Subsequently, the preculture was inoculated into an LB medium (100 mL) containing 0.1% toluene so that the initial OD 660 was 0.05 (Sakaguchi flask) and incubated (30 ° C., 120 rpm, 24 hours from the start of the culture). time). The cells were collected and washed with phosphate buffer A (pH 7.0), and then stored frozen at ⁇ 80 ° C. until use.
- phosphate buffer A pH 7.0
- the conversion rate of 2-phenylethanol was 25.1%, but 2- (2,3-dihydroxyphenyl) ethanol, which is a catechol compound, could not be confirmed.
- the “conversion rate” is a value represented by the following formula 2.
- the main product confirmed was phenylacetic acid (0.77 mM, selectivity 62.1%). This is presumably because 2-phenylethanol was oxidized by alcohol dehydrogenase and the resulting aldehyde was oxidized by aldehyde dehydrogenase.
- the above estimation does not limit the technical scope of the present invention.
- the strain was inoculated into 4 mL of LB medium (added with 100 mg / L ampicillin) (test tube) and incubated (30 ° C., 300 rpm, overnight, preculture). Subsequently, a preculture was inoculated into liquid medium A (100 mL) so that the initial OD 660 was 0.05 (Sakaguchi flask) and incubated (25 ° C., 120 rpm). When OD 660 reached 0.4 to 0.6, IPTG (manufactured by Wako Pure Chemical Industries, Ltd.) was added to the final concentration of 10 ⁇ M and incubated (25 ° C., 120 rpm, culture start 24 hours). The cells were collected and washed with phosphate buffer A (pH 7.0), and then stored frozen at ⁇ 80 ° C. until use.
- phosphate buffer A pH 7.0
- the reaction solution was analyzed by LC-MS. The results are shown in Table 26.
- the conversion rate of 2-phenylethanol at 24 hours from the start of the reaction was 5.4%, but 2- (2,3-dihydroxyphenyl) ethanol, which is a catechol compound, could not be confirmed.
- Example 6 Ratio of the number of copies of cassette (1) to the number of copies of cassette (2)] (1) Preparation of transformed microorganism
- a recombinant vector is introduced into the host by the heat shock method or electroporation method in the combinations shown in the table below, and the copy number of cassette (1) is calculated.
- Each transformed microorganism IPTG-inducible promoter (1) and IPTG-inducible promoter (2) were both T7 promoters
- a cassette in the recombinant plasmid introduced into each transformant is schematically shown in FIG.
- a glycerol stock of the obtained transformed Escherichia coli was prepared and stored at ⁇ 80 ° C. until preparation of a transformed microorganism described below.
- strain No. 3 (tod2 + todD strain) is strain no. 2 (tod2 strain) was prepared by introducing the recombinant plasmid todD / pCDF. That is, the tod2 strain was inoculated into 4 ml of LB medium (containing 100 mg / L ampicillin and 1% by mass of glucose), and precultured at 30 ° C. overnight with stirring at 300 rpm. The OD 660 of the preculture was measured and found to be 9.05. Next, the preculture solution was inoculated into 100 ml of LB medium (containing 100 mg / L ampicillin and 1% by mass of glucose) so that OD 660 was 0.05, and 4.5 hours at 30 ° C.
- LB medium containing 100 mg / L ampicillin and 1% by mass of glucose
- the culture was performed with stirring at 120 rpm. After incubation, centrifugation (7000 rpm, 10 minutes, 4 ° C.) was performed, and the precipitate (bacteria) was collected. 5 ml of 10% by weight glycerol aqueous solution was added to the cells to suspend them, and centrifugation (7000 rpm, 10 minutes, 4 ° C.) was performed to collect precipitates (cells) (washing step). After the washing process was repeated four times in total, the cells were suspended in 2 ml of 10% by mass glycerol aqueous solution. Using the suspension, the recombinant plasmid (todD / pCDF) was obtained from the strain No. in the above table by electroporation.
- tod2 strain The tod2 strain treated with todD / pCDF was inoculated into LB medium (containing 100 mg / L ampicillin, 20 mg / L streptomycin, and 1% by weight glucose), and the transformed strain was selected by antibiotic resistance. Strain No. 3 (tod2 + todD strain) was obtained.
- E.E. E. coli BL21 (DE3) was purchased from Takara Bio.
- pET21-b Novagen, having a sequence encoding an ampicillin resistance gene
- pCDF Duet-1 Novagen, having a sequence encoding a streptomycin (Sm) resistance gene
- FIG. 10 shows the dissolved oxygen concentration (DO) of the culture solution when the tod1 strain, tod2 strain, tod2 + todD strain, todD_tod1 strain, and tod2_todD strain were cultured.
- DO dissolved oxygen concentration
- the amount of 2-phenylethanol (PEA) and 2- (2,3-dihydroxyphenyl) ethanol (HEC) in the reaction solution at 2 hours and 4 hours after the start of the reaction was measured by the above method.
- the selectivity and reaction rate of the catechol compound were determined from the amounts of 2-phenylethanol (PEA) and 2- (2,3-dihydroxyphenyl) ethanol (HEC).
- the results are shown in FIGS. 11 to 13 and the table below. In the table below, the reaction rate is slightly lower than in Example 4, but this is because the amount of cells used in the reaction is less than in Example 4.
- the 2-phenylethanol (PEA) consumption shown in FIG. 11 corresponds to the first half reaction rate in the reaction formula (1).
- the amount of 2- (2,3-dihydroxyphenyl) ethanol (HEC) produced shown in FIG. 12 corresponds to the reaction rate in the latter half of the reaction formula (1).
- the second half reaction in the reaction formula (1) is promoted by setting the copy number ratio of the cassette (1) and the cassette (2) to 1: 1 to 5: 1. It can be seen that the production rate of the catechol compound is improved and the selectivity is also improved. From FIG.
- cassette (1) and cassette (2) are incorporated into the same vector in tandem (todD_tod1 strain, tod2_todD strain), cassette (1) and cassette (2) are incorporated into separate vectors. Compared to the case (tod2 + todD strain), it can be seen that the first half reaction in the reaction formula (1) is promoted.
- Example 7 Types of promoter
- a cassette (1) in which an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene are operatively linked downstream of the tac promoter is used.
- a transformed microorganism (tacP-tod1 strain) into which the expression vector was introduced was prepared.
- a glycerol stock of the obtained transformed Escherichia coli was prepared and stored at ⁇ 80 ° C. until preparation of a transformed microorganism described below.
- E.E. E. coli JM109 was purchased from Takara Bio Inc.
- the promoter of pUC18 (Clontech, which has a sequence encoding an ampicillin resistance gene) is a lac promoter
- the expression vector of TacP / pUC18 amplified using a primer containing a tac promoter sequence is used. Constructed.
- JM109 was used as the host, cloning was performed according to the protocol of the In-Fusion PCR cloning kit (Takara), and then E. coli was used as the cloning host.
- E. coli JM109 was used.
- Example 3 (Sakaguchi flask, OD 660 was adjusted to 0.4 to 0.5 so that the final concentration was 10 to 500 ⁇ M)
- a transformed microorganism was prepared according to (IPTG added).
- composition (1) From the reaction solution in which 2- (2,3-dihydroxyphenyl) ethanol was synthesized in Example 5 above, 2- (2,3-dihydroxyphenyl) ethanol (catechol compound according to the present invention, 3- (hydroxyl) was synthesized by the following procedure. A composition (1) comprising ethyl) catechol, HEC) and 2- (2-hydroxyphenyl) ethanol (monohydroxide according to the invention) was obtained.
- silica gel 60 manufactured by Merck was added to the concentrate until the surface of the silica gel was dried, and loaded onto a column packed with silica gel 60.
- TLC aluminum oxide 150F254 neutral (type T)
- filter paper Karlinum oxide 150F254 neutral (type T)
- Composition (1) contains 0.13 mol of 2- (2-hydroxyphenyl) ethanol with respect to 100 mol of 2- (2,3-dihydroxyphenyl) ethanol.
- the contents of 2- (2,3-dihydroxyphenyl) ethanol and 2- (2-hydroxyphenyl) ethanol were confirmed by gas chromatography analysis under the following conditions.
- Vaporization chamber temperature 250 ° C Injection mode: Split split ratio: 25 Control mode: Linear velocity Linear velocity: 45.1 cm / sec Pressure: 90.7kPa Detector temperature (FID): 340 ° C. (internal standard: 5 mM 1-octanol).
- composition (2) From the reaction solution in which 2- (2,3-dihydroxyphenoxy) ethanol was synthesized in Example 5 above, 2- (2,3-dihydroxyphenoxy) ethanol (according to the present invention) was produced in the same manner as in composition (1). A composition (2) containing a catechol compound, 3- (hydroxyethoxy) catechol, HEOC) and 2- (2-hydroxyphenoxy) ethanol (monohydroxide according to the present invention) was obtained.
- Composition (2) contains 0.78 mol of 2- (2-hydroxyphenoxy) ethanol with respect to 100 mol of 2- (2,3-dihydroxyphenoxy) ethanol.
- the contents of 2- (2,3-dihydroxyphenoxy) ethanol and 2- (2-hydroxyphenoxy) ethanol were confirmed by the same method as for composition (1).
- the selectivity of the catechol compound can be adjusted by arbitrarily setting the copy number ratio between the cassette (1) and the cassette (2).
- the number of moles of the aromatic compound raw material used for the synthesis is M 1
- the number of moles of the aromatic compound raw material remaining at a certain reaction time is M 2
- the dihydroform produced by the first half reaction of the reaction formula (1) When the number of moles of the diol derivative is M 3 and the number of moles of the produced catechol compound is M 4 , the relationship of the following formula 3 is established.
- M 2 and M 4 at an arbitrary reaction time can be measured by arbitrarily combining the above-described measuring methods using LC-MS, GC-MS, and gas chromatography.
- the dihydrodiol derivative produced by the first half reaction of the reaction formula (1) is easily dehydrated under acidic conditions to produce a monohydroxide (for example, J Ind Microbiol Biotechnol (2005) 32: 542-547). Therefore, the amount of monohydroxide contained in the composition can be adjusted by arbitrarily setting M 3 described above.
- HEOC Stability evaluation
- the prepared composition was kept under air at 60 ° C. for 4 days, and the degree of coloring of the composition was observed visually.
- the composition was diluted with ethanol so that the total amount of HEOC and monohydroxide was 10 mg / mL, and UV-VIS detector (SPD-20A, manufactured by Shimadzu Corporation) was used for UV- The VIS spectrum was measured.
- the UV-VIS spectra of the ethanol solution before and after storage are shown in FIGS. 14 and 15, “0 mol”, “0.01 mol”, “0.05 mol” and “1 mol” are the amounts of monohydroxide (moles) per 100 mol of HEOC in each composition. ).
- the composition containing the monohydroxide was less colored by visual observation as compared with the HEOC high-purity product not containing the monohydroxide.
- the UV-VIS spectrum in all the compositions used for the test, the absorbance increased over a wide range after being held at 60 ° C. for 4 days, compared with the spectrum on the 0th day. It can be seen that the increase in absorbance is suppressed by the addition of hydroxide.
- the composition containing 0.01 mole one hydroxide per 100 moles of HEOC was increased inhibition rate 50.1% .
- the “OD440 increase amount” is obtained by subtracting the OD440 on the 0th day from the value of the OD660 on the 4th day.
- B16 melanoma cells were used to evaluate the melanin synthesis inhibitory activity of the composition (1) and the composition (2). Specifically, B16 melanoma cells (purchased from DS Pharma Medical) were seeded in a 6-well plate so that the number of cells was 1 ⁇ 10 4 cells / well, and 4 ml of D-MEM medium (DS Pharma Medical) Purchased, 2 mM glutamine (manufactured by Wako Pure Chemical Industries, Ltd.), 10% (w / v) fetal bovine serum (manufactured by AusGeneX), and antibiotics (Penicillin G 100 units / ml, Streptomycin Sulfate 100 ⁇ g / ml (both Wako Pure Chemical) Incubated for 24 hours in a 37 ° C. 5% CO 2 incubator.
- D-MEM medium DS Pharma Medical
- composition (1) or the composition (2) was added to the medium so that the final concentration of the catechol compound according to the present invention was 0.2 mM, and cultured for 48 hours. Thereafter, the medium was changed to a medium containing the same concentration of the catechol compound and cultured for 24 hours.
- hydroxytyrosol (2- (3,4-dihydroxyphenyl) ethanol, Tokyo Kasei Kogyo, HT) and kojic acid (Tokyo Kasei Kogyo) were used as comparative objects with known melanin synthesis inhibitory activity (final). Concentration 0.2 mM).
- the cells were washed with PBS ( ⁇ ), detached from the plate with 2 ml of a 0.25% (w / v) trypsin / EDTA solution, and the cells were collected with 1 ml of medium.
- the cell suspension was centrifuged (1,000 ⁇ g, 3 min, 4 ° C.) and the supernatant was discarded. Then, 1 ml of phosphate buffer was added to the precipitate and suspended. The number of cells in the suspension was measured with a particle counting analyzer CDA-1000 (manufactured by sysmex).
- the composition according to the present invention has a high whitening effect.
- Oxygen absorber Liquid mixture of glycerin (100 parts by weight), manganese chloride tetrahydrate (6 parts by weight), the above composition (1) or composition (2) (0.05 parts by weight) and pure water (65 parts by weight) was prepared. This mixed solution was impregnated with calcium hydroxide (500 parts by weight) to obtain an oxygen absorbent. About 200 mg of the above oxygen absorbent was put in a test tube (volume: 62 mL) having an inner diameter of 24 mm and a length of 20 cm, and sealed with a W cap (manufactured by ASONE). After maintaining this at 25 ° C. for 20 or 24 hours, the oxygen concentration in the test tube was measured by the following GC analysis method. As a comparison object, a test group using 0.05 or 0.6 parts by weight of 5-methylresorcin instead of the catechol compound was set.
- the oxygen absorbent containing the composition (1) had an oxygen absorption rate per weight of 0.890 mL-O 2 / (g ⁇ h).
- the oxygen absorbent containing the composition (2) had an oxygen absorption rate per weight of 0.708 mL-O 2 / (g ⁇ h).
- the oxygen absorbent containing 0.05 part by weight of 5-methylresorcin had an oxygen absorption rate per weight of 0.291 mL-O 2 / (g ⁇ h).
- the oxygen absorbent containing 0.6 part by weight of 5-methylresorcin had an oxygen absorption rate per weight of 0.753 mL-O 2 / (g ⁇ h).
- the oxygen absorbent using the composition according to the present invention exhibits high oxygen absorbability.
- the oxygen absorbent using the composition according to the present invention showed the same level of oxygen absorptivity even with a small addition amount of 1/10 or less.
- the preparation method of the present invention can be used for synthesizing catechol compounds, and can also be applied to uses such as removal of environmental pollutants by using microorganisms having metabolic properties of catechol compounds as hosts.
- SEQ ID NO: 20 PCR primer sequence for amplification of tod / pET21-b fragment.
- SEQ ID NO: 25 PCR primer sequence for amplification of cassette (1) fragment 2.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Biomedical Technology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Biotechnology (AREA)
- General Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Medicinal Chemistry (AREA)
- Microbiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pharmacology & Pharmacy (AREA)
- Dermatology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Emergency Medicine (AREA)
- Birds (AREA)
- Epidemiology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Cosmetics (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Gas Separation By Absorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Enzymes And Modification Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
[Problem to be solved] To provide a method for preparing transformed microorganisms that efficiently synthesize a catechol compound, the transformed microorganisms having an aromatic ring dioxygenase gene cluster and an aromatic ring dihydrodiol dehydrogenase gene introduced thereinto. [Solution] The problem is solved by culturing transformed microorganisms having an aromatic ring dioxygenase gene cluster and an aromatic ring dihydrodiol dehydrogenase gene introduced thereinto in liquid containing 5-100 μM of isopropyl β-thiogalactopyranoside.
Description
本発明は、芳香環ジオキシゲナーゼ遺伝子群および芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を導入した形質転換微生物の調製方法、ならびに該方法により調製された形質転換微生物を利用したカテコール化合物の製造方法に関する。さらに、本発明はまた、カテコール化合物を含む安定性に優れた組成物および当該組成物の用途に関する。
The present invention relates to a method for preparing a transformed microorganism into which an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene are introduced, and a method for producing a catechol compound using the transformed microorganism prepared by the method. Furthermore, the present invention also relates to a composition having excellent stability containing a catechol compound and the use of the composition.
カテコール化合物は、医薬品中間体をはじめとして、化粧料、抗酸化剤、紫外線吸収剤、接着剤など、様々な工業製品の中間体や原料として利用されている。例えば、オリーブ抽出物に含まれるヒドロキシチロソール(2-(3,4-ジヒドロキシ)フェニルエタノール)等のカテコール化合物には、高い抗酸化作用のほか、冠状動脈性心疾患のリスクの低減作用、メラニン合成阻害作用、抗菌・抗ウィルス作用、その他、種々の生理機能を有することが知られており、医薬品、化粧品への応用が期待されている。
Catechol compounds are used as intermediates and raw materials for various industrial products such as pharmaceutical intermediates, cosmetics, antioxidants, ultraviolet absorbers, adhesives and the like. For example, catechol compounds such as hydroxytyrosol (2- (3,4-dihydroxy) phenylethanol) contained in olive extract have a high antioxidant effect, a reduced risk of coronary heart disease, melanin It is known to have various physiological functions such as synthetic inhibitory action, antibacterial / antiviral action, and other applications, and is expected to be applied to pharmaceuticals and cosmetics.
カテコール化合物の合成方法として、トルエンジオキシゲナーゼ等の芳香環ジオキシゲナーゼ、およびcis-トルエンジヒドロジオールデヒドロゲナーゼ等の芳香環ジヒドロジオールデヒドロゲナーゼを利用して、生物工学的に合成する方法が知られている。
As a method for synthesizing a catechol compound, a biotechnological synthesis method using an aromatic ring dioxygenase such as toluene dioxygenase and an aromatic ring dihydrodiol dehydrogenase such as cis-toluene dihydrodiol dehydrogenase is known.
シュードモナス・プチダ(Pseudomonas putida)などの微生物は、トルエンジオキシゲナーゼやcis-トルエンジヒドロジオールデヒドロゲナーゼ等の酵素によってトルエンを代謝する。しかしながら、シュードモナス・プチダなどのトルエン資化性微生物においては、一般的には、3-メチルカテコール等のカテコール化合物は代謝中間体である。例えば、シュードモナス・プチダF1株においては、生じた3-メチルカテコールは3-メチルカテコール2,3-ジオキシゲナーゼ(todE)によって分解されてしまう(非特許文献1)。従って、トルエンジオキシゲナーゼ等の芳香環ジオキシゲナーゼ、およびcis-トルエンジヒドロジオールデヒドロゲナーゼ等の芳香環ジヒドロジオールデヒドロゲナーゼを利用して生物工学的にカテコール化合物を製造する場合、3-メチルカテコール2,3-ジオキシゲナーゼ(todE)等のカテコール化合物代謝活性を有しないまたはカテコール化合物代謝活性の低い微生物、例えば大腸菌等を宿主とし、当該宿主に芳香環ジオキシゲナーゼ遺伝子群および芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を導入した系が用いられる。外来遺伝子として芳香環ジオキシゲナーゼ遺伝子群および芳香環ジヒドロジオールデヒドロゲナーゼを導入した系においては、イソプロピルβ-チオガラクトピラノシド(以下、「IPTG」とも称する。)等の発現誘導剤によって、芳香環ジオキシゲナーゼおよび芳香環ジヒドロジオールデヒドロゲナーゼのタンパク質発現を誘導可能な系にすることができる。
Microorganisms such as Pseudomonas putida metabolize toluene with enzymes such as toluene dioxygenase and cis-toluene dihydrodiol dehydrogenase. However, in toluene-utilizing microorganisms such as Pseudomonas putida, catechol compounds such as 3-methylcatechol are generally metabolic intermediates. For example, in Pseudomonas putida F1 strain, the generated 3-methylcatechol is degraded by 3-methylcatechol 2,3-dioxygenase (todE) (Non-patent Document 1). Therefore, when a catechol compound is produced biotechnologically using an aromatic ring dioxygenase such as toluene dioxygenase and an aromatic ring dihydrodiol dehydrogenase such as cis-toluene dihydrodiol dehydrogenase, 3-methylcatechol 2,3-di- A system in which an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene are introduced into a host having a microorganism having no catechol compound metabolic activity such as oxygenase (todE) or having a low catechol compound metabolic activity, for example, Escherichia coli, etc. Used. In a system in which an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase are introduced as a foreign gene, an aromatic ring dioxygen is expressed by an expression inducer such as isopropyl β-thiogalactopyranoside (hereinafter also referred to as “IPTG”). A system capable of inducing protein expression of oxygenases and aromatic ring dihydrodiol dehydrogenases can be made.
非特許文献1には、シュードモナス・プチダF1株由来のトルエンジオキシゲナーゼ遺伝子群(todC1、todC2、todBおよびtodA)およびcis-トルエンジヒドロジオールデヒドロゲナーゼ遺伝子(todD)を導入した大腸菌を用いて、トルエンからcis-トルエンジヒドロジオールを、さらに、cis-トルエンジヒドロジオールから3-メチルカテコールを合成した例が開示されている。
Non-Patent Document 1 discloses that a toluene dioxygenase gene group (todC1, todC2, todB, and todA) derived from Pseudomonas putida F1 strain and Escherichia coli into which cis-toluene dihydrodiol dehydrogenase gene (todD) was introduced were used. An example of synthesizing 3-toluene dihydrodiol and 3-methylcatechol from cis-toluene dihydrodiol is disclosed.
芳香環ジオキシゲナーゼ遺伝子群および芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を導入した形質転換微生物を利用し、カテコール化合物を生物工学的に合成する方法は知られているものの、従来公知の方法では効率が低く、工業的生産に耐えうるものではなかった。さらに、カテコール化合物は安定性が低いため、経時で着色しやすい等の問題があった。
Although a method for synthesizing a catechol compound biotechnologically using a transformed microorganism into which an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene have been introduced is known, the efficiency of conventional known methods is low, It could not withstand typical production. Further, since the catechol compound has low stability, there is a problem that it is easily colored over time.
従って、本発明は上記課題を鑑みてなされたものであり、芳香環ジオキシゲナーゼ遺伝子群および芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を導入した、効率的にカテコール化合物を合成する形質転換微生物の調製方法を提供することを課題とする。また、本発明は、該方法により調製された形質転換微生物を利用した、カテコール化合物の効率的な製造方法を提供することを課題とする。
Accordingly, the present invention has been made in view of the above problems, and provides a method for preparing a transformed microorganism that efficiently synthesizes a catechol compound into which an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene have been introduced. This is the issue. Moreover, this invention makes it a subject to provide the efficient manufacturing method of a catechol compound using the transformed microorganisms prepared by this method.
さらに本発明は、安定性に優れたカテコール化合物含有組成物を提供することを、別の課題とする。
Furthermore, another object of the present invention is to provide a catechol compound-containing composition having excellent stability.
本発明者は、鋭意研究を行った結果、芳香環ジオキシゲナーゼ遺伝子群および芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を導入した形質転換微生物を、所定の濃度のイソプロピルβ-チオガラクトピラノシドを含む液(以下、「IPTGを含む液」とも称する。)で培養することにより上記の問題が解決されうることを見出し、本発明の完成に至った。本発明の第一の側面は、芳香環ジオキシゲナーゼ遺伝子群および芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を導入した形質転換微生物を、5~100μMのIPTGを含む液で培養することを有する、形質転換微生物の調製方法に関する。
As a result of diligent research, the present inventor obtained transformed microorganisms into which an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene had been introduced into a liquid containing isopropyl β-thiogalactopyranoside at a predetermined concentration (hereinafter referred to as the following). , Also referred to as “IPTG-containing solution”), and found that the above problems can be solved, and the present invention has been completed. The first aspect of the present invention is to prepare a transformed microorganism comprising culturing a transformed microorganism into which an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene have been introduced in a solution containing 5 to 100 μM IPTG. Regarding the method.
本発明の第二の側面は、本発明に係る形質転換微生物の調製方法により調製された形質転換微生物を用いた、下記一般式(1):
The second aspect of the present invention is the following general formula (1) using a transformed microorganism prepared by the method for preparing a transformed microorganism according to the present invention:
前記一般式(1)中、Rは水素原子、ハロゲン原子、フェニル基、複素環基または下記一般式(2)で示される基である:
In the general formula (1), R is a hydrogen atom, a halogen atom, a phenyl group, a heterocyclic group, or a group represented by the following general formula (2):
前記一般式(2)中、xは0または1であり、Yは炭素数1~5の直鎖または分岐鎖のアルキレン基であり、Zは水素原子または水酸基である;
で表されるカテコール化合物の製造方法に関する。 In the general formula (2), x is 0 or 1, Y is a linear or branched alkylene group having 1 to 5 carbon atoms, and Z is a hydrogen atom or a hydroxyl group;
It relates to the manufacturing method of the catechol compound represented by these.
で表されるカテコール化合物の製造方法に関する。 In the general formula (2), x is 0 or 1, Y is a linear or branched alkylene group having 1 to 5 carbon atoms, and Z is a hydrogen atom or a hydroxyl group;
It relates to the manufacturing method of the catechol compound represented by these.
本発明の第三の側面は、下記一般式(1):
The third aspect of the present invention is the following general formula (1):
前記一般式(1)中、Rは水素原子、ハロゲン原子、フェニル基、複素環基または下記一般式(2)で示される基である:
In the general formula (1), R is a hydrogen atom, a halogen atom, a phenyl group, a heterocyclic group, or a group represented by the following general formula (2):
前記一般式(2)中、xは0または1であり、Yは炭素数1~5の直鎖または分岐鎖のアルキレン基であり、Zは水素原子または水酸基である;
で表されるカテコール化合物、および下記一般式(3): In the general formula (2), x is 0 or 1, Y is a linear or branched alkylene group having 1 to 5 carbon atoms, and Z is a hydrogen atom or a hydroxyl group;
And a catechol compound represented by the following general formula (3):
で表されるカテコール化合物、および下記一般式(3): In the general formula (2), x is 0 or 1, Y is a linear or branched alkylene group having 1 to 5 carbon atoms, and Z is a hydrogen atom or a hydroxyl group;
And a catechol compound represented by the following general formula (3):
前記一般式(3)中、R’は水素原子、ハロゲン原子、フェニル基、複素環基または下記一般式(4)で示される基である:
In the general formula (3), R ′ is a hydrogen atom, a halogen atom, a phenyl group, a heterocyclic group, or a group represented by the following general formula (4):
前記一般式(4)中、x’は0または1であり、Y’は炭素数1~5の直鎖または分岐鎖のアルキレン基であり、Z’は水素原子または水酸基である;で表される一水酸化物を含み、100モルの前記カテコール化合物に対する前記一水酸化物の割合が、0.002~5モルである、組成物に関する。
In the general formula (4), x ′ is 0 or 1, Y ′ is a linear or branched alkylene group having 1 to 5 carbon atoms, and Z ′ is a hydrogen atom or a hydroxyl group. And a ratio of the monohydroxide to 100 mol of the catechol compound is 0.002 to 5 mol.
以下、本発明の実施の形態を説明する。なお、本発明は、以下の実施の形態のみには限定されない。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited only to the following embodiment. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may be different from the actual ratios.
また、本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味し、「重量」と「質量」、「重量%」と「質量%」及び「重量部」と「質量部」は同義語として扱う。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%の条件で測定する。
In the present specification, “X to Y” indicating a range means “X or more and Y or less”, “weight” and “mass”, “weight%” and “mass%”, “part by weight” and “weight part”. “Part by mass” is treated as a synonym. Unless otherwise specified, measurement of operation and physical properties is performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50%.
本発明の第一の側面は、芳香環ジオキシゲナーゼ遺伝子群および芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を導入した形質転換微生物を、5~100μMのIPTGを含む液で培養することを有する、形質転換微生物の調製方法に関する。本発明の第一の側面によれば、芳香環ジオキシゲナーゼ遺伝子群および芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を導入した、効率的にカテコール化合物を合成する形質転換微生物の調製方法が提供される。本発明の一実施形態は、芳香環ジオキシゲナーゼ遺伝子群および芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を導入した形質転換微生物を、5~30μMのIPTGを含む液で培養することを有する、形質転換微生物の調製方法に関する。
The first aspect of the present invention is to prepare a transformed microorganism comprising culturing a transformed microorganism into which an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene have been introduced in a solution containing 5 to 100 μM IPTG. Regarding the method. According to the first aspect of the present invention, there is provided a method for preparing a transformed microorganism for efficiently synthesizing a catechol compound, into which an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene are introduced. One embodiment of the present invention is a method for preparing a transformed microorganism, comprising culturing a transformed microorganism into which an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene have been introduced in a solution containing 5 to 30 μM IPTG. About.
下記反応式(1)は、芳香環ジオキシゲナーゼと芳香環ジヒドロジオールデヒドロゲナーゼとにより触媒される、トルエンやベンゼン等の芳香族化合物原料(以下、カテコール化合物の生成に用いられる芳香族化合物原料を、「基質」ともいう。)からカテコール化合物が生成される反応を表す。下記反応式(1)中、Rは、上記一般式(1)と同様である。トルエンジオキシゲナーゼをはじめとする芳香環ジオキシゲナーゼは、トルエン、ベンゼン、ナフタレン、ビフェニル等の芳香族化合物の芳香環における隣接した2つの炭素原子に対し、水酸基を1つずつ付加する。芳香環ジオキシゲナーゼによって水酸基が付加された芳香族化合物(以下、「芳香環ジオキシゲナーゼによって水酸基が付加された芳香族化合物」を、単に「ジヒドロジオール誘導体」とも称する。)から、cis-トルエンジヒドロジオールデヒドロゲナーゼ等の芳香環ジヒドロジオールデヒドロゲナーゼによって水素原子が抜き取られ、カテコール化合物が合成される。
The following reaction formula (1) shows an aromatic compound raw material (hereinafter referred to as an aromatic compound raw material used for the production of a catechol compound) catalyzed by an aromatic ring dioxygenase and an aromatic ring dihydrodiol dehydrogenase. It represents a reaction in which a catechol compound is produced from a “substrate”. In the following reaction formula (1), R is the same as in the general formula (1). Aromatic ring dioxygenases such as toluene dioxygenase add one hydroxyl group to two adjacent carbon atoms in the aromatic ring of an aromatic compound such as toluene, benzene, naphthalene, and biphenyl. From an aromatic compound to which a hydroxyl group has been added by an aromatic ring dioxygenase (hereinafter, an “aromatic compound to which a hydroxyl group has been added by an aromatic ring dioxygenase” is also simply referred to as a “dihydrodiol derivative”), cis-toluene dihydrodiol A hydrogen atom is extracted by an aromatic ring dihydrodiol dehydrogenase such as dehydrogenase to synthesize a catechol compound.
[形質転換微生物]
本発明において用いられる形質転換微生物は、芳香環ジオキシゲナーゼ遺伝子群および芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を宿主微生物に導入して作製される。 [Transformed microorganism]
The transformed microorganism used in the present invention is produced by introducing an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene into a host microorganism.
本発明において用いられる形質転換微生物は、芳香環ジオキシゲナーゼ遺伝子群および芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を宿主微生物に導入して作製される。 [Transformed microorganism]
The transformed microorganism used in the present invention is produced by introducing an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene into a host microorganism.
芳香環ジオキシゲナーゼは、ラージサブユニット、スモールサブユニット、フェレドキシン、およびフェレドキシン還元酵素からなる4つのサブユニットによって構成され、酸素分子(O2)由来の酸素原子を、水酸基として芳香環に導入する反応を触媒する(反応式(1)における前半の反応)。本明細書においては、芳香環ジオキシゲナーゼのラージサブユニット、スモールサブユニット、フェレドキシン、およびフェレドキシン還元酵素をそれぞれコードする遺伝子をまとめて、「芳香環ジオキシゲナーゼ遺伝子群」と称する。芳香環ジオキシゲナーゼは4つのサブユニットが共役し、ベンゼン等の芳香族化合物の芳香環における隣接した2つの炭素原子に対し、水酸基を1つずつ付加する。芳香環ジオキシゲナーゼは、酸素分子(O2)由来の酸素原子を水酸基として芳香環に導入する反応を触媒するもの(例えば、EC 1.14.12.-に分類されるもの)であれば特に制限されない。より具体的には、本発明に用いることができる芳香環ジオキシゲナーゼとしては、EC 1.14.12.11に分類されるトルエンジオキシゲナーゼ、EC 1.14.12.3に分類されるベンゼン-1,2-ジオキシゲナーゼ、EC 1.14.12.18に分類されるビフェニル-2,3-ジオキシゲナーゼ、EC 1.14.12.22に分類されるカルバゾール-1,9a-ジオキシゲナーゼ、EC 1.14.12.15に分類されるテレフタル酸-1,2-ジオキシゲナーゼ、EC 1.14.12.21に分類されるベンゾイルCoA-2,3-ジオキシゲナーゼ等が挙げられる。これらの芳香環ジオキシゲナーゼ以外にも、芳香族化合物の芳香環における隣接した2つの炭素原子に対し、水酸基を1つずつ付加する、上記反応式(1)に記載の反応を触媒することができる芳香環ジオキシゲナーゼも同様に、本発明に含まれる。
An aromatic ring dioxygenase is composed of four subunits consisting of a large subunit, a small subunit, ferredoxin, and a ferredoxin reductase, and introduces an oxygen atom derived from an oxygen molecule (O 2 ) into the aromatic ring as a hydroxyl group. (The first half reaction in the reaction formula (1)). In the present specification, genes encoding the large subunit, small subunit, ferredoxin, and ferredoxin reductase of aromatic ring dioxygenase are collectively referred to as “aromatic ring dioxygenase gene group”. In the aromatic ring dioxygenase, four subunits are conjugated, and one hydroxyl group is added to two adjacent carbon atoms in the aromatic ring of an aromatic compound such as benzene. The aromatic ring dioxygenase is particularly suitable as long as it catalyzes a reaction for introducing an oxygen atom derived from an oxygen molecule (O 2 ) into the aromatic ring as a hydroxyl group (for example, those classified as EC 1.14.12.-). Not limited. More specifically, examples of the aromatic ring dioxygenase that can be used in the present invention include toluene dioxygenase classified as EC 1.14.12.11, and benzene- classified as EC 1.14.12.3. 1,2-dioxygenase, biphenyl-2,3-dioxygenase classified as EC 1.14.1.12.18, carbazole-1,9a-dioxygenase classified as EC 1.14.12.22, EC Examples include terephthalic acid-1,2-dioxygenase classified into 1.14.12.15, benzoyl CoA-2,3-dioxygenase classified into EC 1.14.12.21, and the like. In addition to these aromatic ring dioxygenases, the reaction described in the above reaction formula (1) can be catalyzed by adding one hydroxyl group to two adjacent carbon atoms in the aromatic ring of the aromatic compound. Aromatic ring dioxygenases are also included in the present invention.
トルエンを基質とした場合、トルエンジオキシゲナーゼは以下の反応式(2)で表わされる化学反応を触媒することが知られている。本発明においては、以下の反応式(2)で表わされる反応を触媒する芳香環ジオキシゲナーゼをコードする芳香環ジオキシゲナーゼ遺伝子群が好ましく用いられる。
When toluene is used as a substrate, toluene dioxygenase is known to catalyze a chemical reaction represented by the following reaction formula (2). In the present invention, an aromatic ring dioxygenase gene group encoding an aromatic ring dioxygenase that catalyzes the reaction represented by the following reaction formula (2) is preferably used.
これらの芳香環ジオキシゲナーゼのうち、本発明においては、トルエンジオキシゲナーゼまたはベンゼン-1,2-ジオキシゲナーゼ(すなわち、トルエンジオキシゲナーゼ遺伝子群またはベンゼン-1,2-ジオキシゲナーゼ遺伝子群)がより好ましく、トルエンジオキシゲナーゼが更に好ましい。すなわち、本発明の一実施形態では、芳香環ジオキシゲナーゼ遺伝子群が、トルエンジオキシゲナーゼ遺伝子群である形質転換微生物の調製方法が提供される。トルエンジオキシゲナーゼは、トルエンのほか、ベンゼン、ハロゲン化ベンゼン、エチルベンゼン、キシレン、またはフェニルアルコール(例えば、2-フェニルエタノール)等を基質とする。また、本発明者は、トルエンジオキシゲナーゼがフェノキシアルコール(例えば、2-フェノキシエタノール)を基質とすることを見出した。
Among these aromatic ring dioxygenases, in the present invention, toluene dioxygenase or benzene-1,2-dioxygenase (that is, toluene dioxygenase gene group or benzene-1,2-dioxygenase gene group) is more preferable, More preferred is toluene dioxygenase. That is, in one embodiment of the present invention, a method for preparing a transformed microorganism in which the aromatic ring dioxygenase gene group is a toluene dioxygenase gene group is provided. In addition to toluene, toluene dioxygenase uses benzene, halogenated benzene, ethylbenzene, xylene, phenyl alcohol (for example, 2-phenylethanol) or the like as a substrate. The present inventor has also found that toluene dioxygenase uses phenoxy alcohol (for example, 2-phenoxyethanol) as a substrate.
芳香環ジオキシゲナーゼ(芳香環ジオキシゲナーゼ遺伝子群)が由来する生物もまた、特に限定されない。多くの細菌が芳香環ジオキシゲナーゼを発現することが知られており、例えば、シュードモナス・プチダ(例えば、P.putida F1株(ATCC 700007)、P.putida T-12株、P.putida IH-2000株、P.putida DOT-T1E株、またはP.putida T-57株)、シュードモナス・エルギノーサ(P.aeruginosa)、シュードモナス・シュードアルカリゲネス(P.pseudoalcaligenes)(例えば、P.pseudoalcaligenes KF707株)またはシュードモナス・エスピー(P.sp.)(例えば、P.sp. NCIB 9816-4株)などのシュードモナス(Pseudomonas)属に由来するトルエンジオキシゲナーゼのほか、バークホルデリア(Burkholderia)属(例えば、B.cepacia LB400株)、ボルデテラ(Bordetella)属(例えば、B.sp. IITR02株)、スフィンゴモナス(Sphingomonas)属、リゾビウム(Rhizobium)属(例えば、R.sp. TSY03b株)、ロドコッカス(Rhodococcus)属(例えば、R.jostii RHA1株)、ジャニバクター(Janibacter)属(例えば、J.sp. TYM3221株)、アスペルギルス(Aspergillus)属(例えば、A.kawachii IFO 4308株)、ラルストニア(Ralstonia)属(例えば、R.sp. JS705株)等の微生物に由来するものであってもよい。これらの微生物は、ATCCやNBRC等から入手することができる。
The organism from which the aromatic ring dioxygenase (aromatic ring dioxygenase gene group) is derived is also not particularly limited. Many bacteria are known to express aromatic ring dioxygenase, for example, Pseudomonas putida (eg, P. putida F1 strain (ATCC 700007), P. putida T-12 strain, P. putida IH-2000). Strains, P. putida DOT-T1E strain, or P. putida T-57 strain), P. aeruginosa, P. pseudoalcigenes (for example, P. pseudoaligenes F. strain 70) Toluene dioxygens derived from the genus Pseudomonas such as SP (P.sp.) (for example, P.sp. NCIB 9816-4 strain) In addition to Bose, the genus Burkholderia (for example, B. cepacia LB400), Bordetella (for example, B. sp. IITR02), Sphingomonas (genus), Rhizobium (genus Rhizobium) (For example, R. sp. TSY03b strain), Rhodococcus genus (for example, R. jostii RHA1 strain), Janibacter genus (for example, J. sp. TYM3221 strain), Aspergillus genus (for example, , A. kawachii IFO 4308 strain), Ralstonia genus (for example, R. sp. JS705 strain), etc. It may be. These microorganisms can be obtained from ATCC, NBRC, and the like.
このうち、活性の高さから、シュードモナス属の芳香環ジオキシゲナーゼ(特に、トルエンジオキシゲナーゼ;すなわち、シュードモナス属に由来するトルエンジオキシゲナーゼ遺伝子群)が好ましく、シュードモナス・プチダ(すなわち、シュードモナス・プチダに由来するトルエンジオキシゲナーゼ遺伝子群)がより好ましい。配列番号1~4に、シュードモナス・プチダ F1株由来のトルエンジオキシゲナーゼのラージサブユニット、スモールサブユニット、フェレドキシン、およびフェレドキシン還元酵素のアミノ酸配列を示す。
Among them, Pseudomonas aromatic ring dioxygenase (especially toluene dioxygenase; that is, a toluene dioxygenase gene group derived from Pseudomonas genus) is preferable because of its high activity, and Pseudomonas putida (that is, Pseudomonas putida) (Toluene dioxygenase gene group) is more preferable. SEQ ID NOs: 1 to 4 show the amino acid sequences of the large subunit, small subunit, ferredoxin, and ferredoxin reductase of toluene dioxygenase derived from Pseudomonas putida F1 strain.
本発明においては、アミノ酸配列1~4において、1または数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ酸素分子(O2)由来の酸素原子を、水酸基として芳香環に導入する反応を触媒する活性を有する酵素をコードする遺伝子も好適に用いられる。ここで、「数個」とは、通常2~5個、好ましくは2~3個である。異なるアミノ酸残基間の保存的置換の例としては、グリシン(Gly)とアラニン(Ala);バリン(Val)、ロイシン(Leu)とイソロイシン(Ile);グルタミン酸(Glu)とアスパラギン酸(Asp);グルタミン(Gln)とアスパラギン(Asn);スレオニン(Thr)とセリン(Ser);またはリジン(Lys)とアルギニン(Arg)等のアミノ酸の間での置換が知られている。
In the present invention, in amino acid sequences 1 to 4, it consists of an amino acid sequence in which one or several amino acids are deleted, substituted or added, and an oxygen atom derived from an oxygen molecule (O 2 ) is used as a hydroxyl group in an aromatic ring. A gene encoding an enzyme having an activity of catalyzing the reaction to be introduced is also preferably used. Here, “several” is usually 2 to 5, preferably 2 to 3. Examples of conservative substitutions between different amino acid residues include glycine (Gly) and alanine (Ala); valine (Val), leucine (Leu) and isoleucine (Ile); glutamic acid (Glu) and aspartic acid (Asp); Substitutions between amino acids such as glutamine (Gln) and asparagine (Asn); threonine (Thr) and serine (Ser); or lysine (Lys) and arginine (Arg) are known.
芳香環ジヒドロジオールデヒドロゲナーゼは、芳香族化合物のジヒドロジオール誘導体をカテコール化合物に酸化する反応を触媒する(反応式(1)における後半の反応)。本発明に用いることができる芳香環ジヒドロジオールデヒドロゲナーゼとしては、より具体的には、cis-トルエンジヒドロジオールデヒドロゲナーゼ、EC 1.3.1.19に分類されるcis-ベンゼンジヒドロジオールデヒドロゲナーゼ、EC 1.3.1.56に分類されるcis-2,3-ジヒドロビフェニル-2,3-ジオールデヒドロゲナーゼ、EC 1.3.1.29に分類されるcis-1,2-ジヒドロ-1,2-ジヒドロキシナフタレンデヒドロゲナーゼ、EC 1.3.1.64に分類されるフタル酸-4,5-cis-ジヒドロジオールデヒドロゲナーゼ、EC 1.3.1.66に分類されるcis-1,2-ジヒドロエチルカテコールデヒドロゲナーゼ等が挙げられる。
The aromatic ring dihydrodiol dehydrogenase catalyzes a reaction of oxidizing a dihydrodiol derivative of an aromatic compound to a catechol compound (the latter reaction in the reaction formula (1)). More specifically, examples of the aromatic ring dihydrodiol dehydrogenase that can be used in the present invention include cis-toluene dihydrodiol dehydrogenase, cis-benzene dihydrodiol dehydrogenase classified in EC 1.3.1.19, EC 1. 3.1 cis-2,3-dihydrobiphenyl-2,3-diol dehydrogenase classified as 1.56, cis-1,2-dihydro-1,2-dihydroxy classified as EC 1.3.1.29 Naphthalene dehydrogenase, phthalate-4,5-cis-dihydrodiol dehydrogenase classified as EC 1.3.1.64, cis-1,2-dihydroethylcatechol dehydrogenase classified as EC 1.3.1.66 Etc.
cis-トルエンジヒドロジオールデヒドロゲナーゼは、EC 1.3.1.19に分類される、以下の反応式(3)で表わされる化学反応を触媒する。本発明においては、以下の反応式(3)で表わされる反応を触媒する芳香環ジヒドロジオールデヒドロゲナーゼをコードする芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子が好ましく用いられる。
Cis-Toluene dihydrodiol dehydrogenase catalyzes a chemical reaction represented by the following reaction formula (3) classified in EC 1.3.1.19. In the present invention, an aromatic ring dihydrodiol dehydrogenase gene encoding an aromatic ring dihydrodiol dehydrogenase that catalyzes a reaction represented by the following reaction formula (3) is preferably used.
上記の芳香環ジヒドロジオールデヒドロゲナーゼのうち、本発明においては、cis-トルエンジヒドロジオールデヒドロゲナーゼがより好ましい。すなわち、本発明の一実施形態では、芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子が、cis-トルエンジヒドロジオールデヒドロゲナーゼ遺伝子である形質転換微生物の調製方法が提供される。cis-トルエンジヒドロジオールデヒドロゲナーゼは、cis-トルエンジヒドロジオールのほか、ベンゼン、ハロゲン化ベンゼン、エチルベンゼン、キシレン、またはフェニルアルコール(例えば、2-フェニルエタノール)等の芳香環ジオキシゲナーゼによる代謝物(ジヒドロジオール誘導体)を基質とし、反応式(3)に準じた反応を触媒する。また、本発明者は、cis-トルエンジヒドロジオールデヒドロゲナーゼが、フェノキシアルコール(例えば、2-フェノキシエタノール)の芳香環ジオキシゲナーゼによる代謝物(ジヒドロジオール誘導体)を基質とすることを見出した。
Of the above aromatic ring dihydrodiol dehydrogenases, cis-toluene dihydrodiol dehydrogenase is more preferred in the present invention. That is, in one embodiment of the present invention, a method for preparing a transformed microorganism in which the aromatic ring dihydrodiol dehydrogenase gene is a cis-toluene dihydrodiol dehydrogenase gene is provided. In addition to cis-toluene dihydrodiol dehydrogenase, metabolites (dihydrodiol derivatives) of aromatic ring dioxygenase such as benzene, halogenated benzene, ethylbenzene, xylene, or phenyl alcohol (for example, 2-phenylethanol), in addition to cis-toluene dihydrodiol ) As a substrate, and a reaction according to the reaction formula (3) is catalyzed. The present inventor has also found that cis-toluene dihydrodiol dehydrogenase uses a metabolite (dihydrodiol derivative) of phenoxy alcohol (for example, 2-phenoxyethanol) by aromatic ring dioxygenase as a substrate.
芳香環ジヒドロジオールデヒドロゲナーゼ(芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子)が由来する生物は、特に限定されない。例えば、芳香環ジオキシゲナーゼを発現するものとして例示した上述の細菌が挙げられる。芳香環ジオキシゲナーゼ遺伝子が由来する生物と、芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子が由来する生物とは、同一であっても、異なっていても良いが、好ましくは同一である。
The organism from which the aromatic ring dihydrodiol dehydrogenase (aromatic ring dihydrodiol dehydrogenase gene) is derived is not particularly limited. For example, the above-mentioned bacteria exemplified as those expressing aromatic ring dioxygenase can be mentioned. The organism from which the aromatic ring dioxygenase gene is derived and the organism from which the aromatic ring dihydrodiol dehydrogenase gene is derived may be the same or different, but are preferably the same.
このうち、活性の高さから、シュードモナス属の芳香環ジヒドロジオールデヒドロゲナーゼ(特に、cis-トルエンジヒドロジオールデヒドロゲナーゼ;すなわち、シュードモナス属に由来するcis-トルエンジヒドロジオールデヒドロゲナーゼ遺伝子)が好ましく、シュードモナス・プチダ(すなわち、シュードモナス・プチダに由来するcis-トルエンジヒドロジオールデヒドロゲナーゼ遺伝子)がより好ましい。配列番号5に、シュードモナス・プチダ F1株由来のcis-トルエンジヒドロジオールデヒドロゲナーゼのアミノ酸配列を示す。
Among these, Pseudomonas aromatic ring dihydrodiol dehydrogenase (in particular, cis-toluene dihydrodiol dehydrogenase; that is, cis-toluene dihydrodiol dehydrogenase gene derived from Pseudomonas) is preferable, and Pseudomonas putida (ie More preferred is a cis-toluene dihydrodiol dehydrogenase gene derived from Pseudomonas putida. SEQ ID NO: 5 shows the amino acid sequence of cis-toluene dihydrodiol dehydrogenase derived from Pseudomonas putida F1 strain.
本発明においては、アミノ酸配列5において、1または数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、芳香族化合物のジヒドロジオール誘導体をカテコール化合物に酸化する反応を触媒する活性を有する酵素をコードする遺伝子も好適に用いられる。ここで、「数個」とは、通常1~10個、好ましくは2~8個である。
In the present invention, the amino acid sequence 5 has an amino acid sequence in which one or several amino acids are deleted, substituted or added, and has an activity of catalyzing a reaction of oxidizing a dihydrodiol derivative of an aromatic compound to a catechol compound. A gene encoding the enzyme is also preferably used. Here, “several” is usually 1 to 10, preferably 2 to 8.
本発明にかかる調製方法に用いられる形質転換微生物は、上記の芳香環ジオキシゲナーゼおよび芳香環ジヒドロジオールデヒドロゲナーゼをコードする遺伝子をまたはその一部を適当なベクターに連結し、得られた組換えベクターを目的の遺伝子が発現し得るように宿主中に導入することにより、または相同組換えによってゲノム上の任意の位置に目的の遺伝子もしくはその一部を挿入することにより作製できる。「一部」とは、宿主中に導入された場合に各遺伝子がコードするタンパク質を発現することができる各遺伝子の一部分を指す。本発明において遺伝子には、DNA及びRNAが包含され、好ましくはDNAである。
The transformed microorganism used in the preparation method according to the present invention comprises a gene encoding the above aromatic ring dioxygenase and aromatic ring dihydrodiol dehydrogenase or a part thereof linked to an appropriate vector, and the obtained recombinant vector. It can be prepared by introducing the gene of interest into a host so that the gene of interest can be expressed, or by inserting the gene of interest or a part thereof at any position on the genome by homologous recombination. “Part” refers to a part of each gene capable of expressing the protein encoded by each gene when introduced into a host. In the present invention, the gene includes DNA and RNA, preferably DNA.
微生物のゲノムから所望の遺伝子をクローニングにより取得する方法は、分子生物学の分野において周知である。例えば遺伝子の配列が既知の場合、制限エンドヌクレアーゼ消化により適したゲノムライブラリを作り、所望の遺伝子配列に相補的なプローブを用いてスクリーニングすることができる。配列が単離されたら、ポリメラーゼ連鎖反応(PCR)(米国特許第4,683,202号明細書)のような標準的増幅法を用いてDNAを増幅し、形質転換に適した量のDNAを得ることができる。芳香環ジオキシゲナーゼ遺伝子群および芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子は、既知の遺伝子以外にも、既知の遺伝子の塩基配列に基づいて適当に設計された合成プライマーを用いてハイブリダイゼーション法、PCR法などにより取得することもできる。
The method of obtaining a desired gene from the genome of a microorganism by cloning is well known in the field of molecular biology. For example, when the gene sequence is known, a suitable genomic library can be prepared by restriction endonuclease digestion and screened using a probe complementary to the desired gene sequence. Once the sequence is isolated, the DNA is amplified using standard amplification techniques such as the polymerase chain reaction (PCR) (US Pat. No. 4,683,202), and an appropriate amount of DNA is transformed. Obtainable. The aromatic ring dioxygenase gene group and the aromatic ring dihydrodiol dehydrogenase gene are obtained by a hybridization method, a PCR method, etc. using a synthetic primer appropriately designed based on the base sequence of the known gene in addition to the known gene. You can also
遺伝子のクローニングに用いるゲノムDNAライブラリーの作製、ハイブリダイゼーション、PCR、プラスミドの調製、DNAの切断及び連結、形質転換等の方法は、Sambrook, J et al., Molecular Cloning 2nd ed., 9.47-9.58, Cold Spring Harbor Lab. press(1989)に記載されている。
Methods for preparation of genomic DNA library used for gene cloning, hybridization, PCR, plasmid preparation, DNA cleavage and ligation, transformation, etc. are described in Sambrook, J et al. , Molecular Cloning 2nd ed. , 9.47-9.58, Cold Spring Harbor Lab. Press (1989).
遺伝子を連結するベクターとしては、外来遺伝子導入に利用されているプラスミド、ファージ、コスミド等、宿主で複製可能なものであれば特に限定されないが、IPTGによる発現誘導が可能なプロモーターを有するものが好ましく用いられる。すなわち、本発明の一態様では、IPTGによる発現誘導が可能なプロモーターの下流に組込まれた芳香環ジオキシゲナーゼ遺伝子群および芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を導入した形質転換微生物が用いられる。IPTGによる発現誘導が可能なプロモーター配列としては、T7プロモーター、lacプロモーター、tacプロモーター、trcプロモーターまたはspacプロモーター等が挙げられる。このうち、プロモーター活性の高さ(転写の頻度)の観点から、好ましくはT7プロモーターまたはtacプロモーターが用いられ、より好ましくはT7プロモーターが用いられる。遺伝子を連結するベクターとしては、より具体的には、pET(Novagen社製)、pGEX(GEヘルスケア社製)、pHAT20、pTV118N(以上、タカラバイオ社製)、pMAL(ニューイングランドバイオラボ社製)、pQE(キアゲン社製)、pMUTIN(Vagner V., et. al. Microbiology (1998), 144,3097-3104)、pHT(MoBiTec社製)、pCDFDuet-1(Novagen社製)、pUC18(タカラバイオ社製)等の、T7プロモーター、T5プロモーター、lacプロモーター、tacプロモーター、trcプロモーター、lppプロモーターまたはspacプロモーターを有するプラスミドのほか、λgt10、M13mp18、M13mp19等のファージが挙げられる。芳香環ジオキシゲナーゼ遺伝子群および芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子が単一のベクターに連結されても良いし、それぞれ別々のベクターに連結されても良い。
The vector for linking genes is not particularly limited as long as it can be replicated in the host, such as plasmids, phages, cosmids, etc., used for introducing foreign genes, but preferably has a promoter capable of inducing expression by IPTG. Used. That is, in one embodiment of the present invention, a transformed microorganism into which an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene incorporated downstream of a promoter capable of inducing expression by IPTG is used. Examples of the promoter sequence capable of inducing expression by IPTG include T7 promoter, lac promoter, tac promoter, trc promoter, spac promoter and the like. Among these, from the viewpoint of high promoter activity (frequency of transcription), T7 promoter or tac promoter is preferably used, and T7 promoter is more preferably used. More specifically, vectors for linking genes include pET (manufactured by Novagen), pGEX (manufactured by GE Healthcare), pHAT20, pTV118N (manufactured by Takara Bio Inc.), pMAL (manufactured by New England Biolabs). , PQE (Qiagen), pMUTIN (Vagner V., et. Al. Microbiology (1998), 144, 3097-3104), pHT (MoBiTec), pCDFDuet-1 (Novagen), pUC18 (Takara Bio) In addition to plasmids having T7 promoter, T5 promoter, lac promoter, tac promoter, trc promoter, lpp promoter or spac promoter, such as λgt10, M13mp18, Phage such as 13mp19 and the like. The aromatic ring dioxygenase gene group and the aromatic ring dihydrodiol dehydrogenase gene may be linked to a single vector, or may be linked to separate vectors.
配列番号6~9にシュードモナス・プチダ F1株のトルエンジオキシゲナーゼのラージサブユニット(todC1)、スモールサブユニット(todC2)、フェレドキシン(todB)、およびフェレドキシン還元酵素(todA)をそれぞれコードする遺伝子配列を、ならびに配列番号10にシュードモナス・プチダ F1株のcis-トルエンジヒドロジオールデヒドロゲナーゼ(todD)をコードする遺伝子配列を例示する。
Gene sequences encoding large subunit (todC1), small subunit (todC2), ferredoxin (todB), and ferredoxin reductase (todA) of Pseudomonas putida F1 toluene dioxygenase in SEQ ID NOs: 6 to 9, In addition, SEQ ID NO: 10 exemplifies a gene sequence encoding cis-toluene dihydrodiol dehydrogenase (todD) of Pseudomonas putida F1 strain.
ここで、芳香環ジオキシゲナーゼ遺伝子群のラージサブユニット、スモールサブユニット、フェレドキシン、およびフェレドキシン還元酵素をコードする遺伝子(すなわち、芳香環ジオキシゲナーゼ遺伝子群)、ならびに芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子として、それぞれ、配列番号6、7、8、9、および10で表される塩基配列からなる遺伝子と機能的に同等の遺伝子も好適に用いられる。「機能的に同等の遺伝子」とは、対象となる遺伝子によってコードされるタンパク質が、各配列番号で表される塩基配列からなる遺伝子によってコードされるタンパク質と同等の生物学的機能、生化学的機能を有することを指す。
Here, the large subunit of the aromatic ring dioxygenase gene group, the small subunit, ferredoxin, and the gene encoding ferredoxin reductase (that is, aromatic ring dioxygenase gene group), and aromatic ring dihydrodiol dehydrogenase gene, respectively, A gene functionally equivalent to the gene consisting of the nucleotide sequence represented by SEQ ID NOs: 6, 7, 8, 9, and 10 is also preferably used. “Functionally equivalent gene” means that the protein encoded by the target gene has the same biological function and biochemical properties as the protein encoded by the gene consisting of the base sequence represented by each SEQ ID NO. It means having a function.
あるタンパク質と機能的に同等のタンパク質をコードする遺伝子を調製する当業者によく知られた方法としては、ハイブリダイゼーション技術を利用する方法が挙げられる。
As a method well known to those skilled in the art for preparing a gene encoding a protein functionally equivalent to a certain protein, a method using a hybridization technique can be mentioned.
例えば、配列番号6で表される塩基配列の全長において、種々の人為的処理、例えば部位特異的変異導入、変異剤処理によるランダム変異、制限酵素切断による核酸断片の変異、欠失、連結等により、部分的にその配列が変化したものであっても、これらの変異型遺伝子が配列番号6で表される塩基配列と相補的な塩基配列からなる遺伝子とストリンジェントな条件下でハイブリダイズし、芳香環ジオキシゲナーゼのラージサブユニットの活性、すなわち、芳香環ジオキシゲナーゼのスモールサブユニット、フェレドキシン、およびフェレドキシン還元酵素と一緒になって芳香環ジオキシゲナーゼの活性を示すタンパク質をコードする限り、芳香環ジオキシゲナーゼのラージサブユニットをコードする遺伝子として用いられうる。その他のサブユニットをコードする遺伝子、および芳香環ジヒドロジオールデヒドロゲナーゼをコードする遺伝子についても同様である。
For example, in the full length of the base sequence represented by SEQ ID NO: 6, various artificial treatments such as site-directed mutagenesis, random mutation by treatment with a mutagen, mutation of nucleic acid fragments by restriction enzyme cleavage, deletion, ligation, etc. Even if the sequence is partially changed, these mutant genes hybridize under stringent conditions with a gene consisting of a base sequence complementary to the base sequence represented by SEQ ID NO: 6, As long as the large subunit activity of the aromatic ring dioxygenase, i.e., the small subunit of the aromatic ring dioxygenase, ferredoxin, and a protein that exhibits the activity of the aromatic dioxygenase together with ferredoxin reductase, it encodes the aromatic ring dioxygenase. It can be used as a gene encoding the large subunit of oxygenase. The same applies to genes encoding other subunits and genes encoding aromatic ring dihydrodiol dehydrogenase.
ストリンジェントな条件とは、特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいい、すなわち、各遺伝子に対し高い相同性を有するDNAがハイブリダイズする条件をいう。より具体的には、このような条件は、0.5~1MのNaCl存在下42~68℃で、または50%ホルムアミド存在下42℃で、または水溶液中65~68℃で、ハイブリダイゼーションを行った後、0.1~2倍濃度のSSC(saline sodium citrate)溶液を用いて室温(25℃)~68℃でメンブレンを洗浄することにより達成できる。
Stringent conditions refer to conditions in which specific hybrids are formed and non-specific hybrids are not formed, that is, conditions in which DNA having high homology to each gene hybridizes. More specifically, such conditions include hybridization at 42-68 ° C. in the presence of 0.5-1 M NaCl, or 42 ° C. in the presence of 50% formamide, or 65-68 ° C. in aqueous solution. Thereafter, the membrane can be washed at room temperature (25 ° C.) to 68 ° C. using a SSC (saline sodium citrate) solution having a concentration of 0.1 to 2 times.
上記のようなストリンジェントな条件においては、対象となる塩基配列と少なくとも80%の同一性、好ましくは少なくとも85%の同一性、より好ましくは少なくとも90%の同一性、更に好ましくは少なくとも95%の同一性、特に好ましくは少なくとも99%(上限100%)の同一性を有する塩基配列からなる遺伝子が、対象となる塩基配列と相補的な塩基配列からなる遺伝子とハイブリダイズすることができる。
Under stringent conditions as described above, the target nucleotide sequence has at least 80% identity, preferably at least 85% identity, more preferably at least 90% identity, and even more preferably at least 95% identity. A gene comprising a base sequence having identity, particularly preferably at least 99% (upper limit 100%) identity, can hybridize with a gene comprising a base sequence complementary to the subject base sequence.
本発明における宿主微生物としては、大腸菌(Escherichia coli)、枯草菌(Bacillus subtilis)、放線菌や酵母等が例示できるが、これらに制限されない。このうち、原料である芳香族化合物、および生成物であるカテコール化合物の代謝活性の低さから、大腸菌または枯草菌を用いることが好ましく、大腸菌がより好ましい。
Examples of host microorganisms in the present invention include, but are not limited to, Escherichia coli, Bacillus subtilis, actinomycetes, yeast, and the like. Of these, Escherichia coli or Bacillus subtilis is preferably used, and Escherichia coli is more preferable because of the low metabolic activity of the aromatic compound as a raw material and the catechol compound as a product.
本発明において好ましく用いられる大腸菌は、タンパク質の発現に用いられる一般的な菌株を採用することができ、特に制限されるものではないが、例えば、E.coli AD494、E.coli B834、E.coli BL21、E.coli BLR、E.coli HMS174、E.coli Origami(登録商標)、E.coli Rosetta(登録商標)、E.coli Tuner(登録商標)、E.coli JM109、E.coli AD494(DE3)、E.coli B834(DE3)、E.coli BL21(DE3)、E.coli BLR(DE3)、E.coli HMS174(DE3)、E.coli Origami(DE3)、E.coli Rosetta(登録商標)(DE3)、E.coli Tuner(登録商標)(DE3)等が例示できる。
The Escherichia coli preferably used in the present invention can adopt a general strain used for protein expression and is not particularly limited. coli AD494, E. coli. coli B834, E. coli. coli BL21, E. coli. coli BLR, E. coli. E. coli HMS174, E. coli. coli Origami (registered trademark), E. coli. E. coli Rosetta (registered trademark), E. coli. E. coli Tuner (registered trademark), E. coli. coli JM109, E. coli. E. coli AD494 (DE3), E. coli. coli B834 (DE3), E. coli. coli BL21 (DE3), E. coli. coli BLR (DE3), E. coli. E. coli HMS174 (DE3), E. coli. coli Origami (DE3), E. coli. E. coli Rosetta (registered trademark) (DE3), E. coli. An example is E. coli Tuner (registered trademark) (DE3).
宿主として用いられる微生物は、原料である芳香族化合物、および生成物であるカテコール化合物代謝活性の低いものが好ましい。原料である芳香族化合物、およびカテコール化合物代謝活性が本来的に低い微生物(例えば、大腸菌)であっても良いが、遺伝子破壊等によって、3-メチルカテコール2,3-ジオキシゲナーゼ(todE)などのカテコール化合物代謝性酵素の機能を失わせた微生物であっても良い。原料である芳香族化合物代謝活性の低い微生物を宿主として用いることにより、カテコール化合物の合成以外の経路にて芳香族化合物が消費されることを防止し得る。また、カテコール化合物代謝活性の低い微生物を宿主として用いることにより、カテコール化合物の収率が改善し得る。
The microorganism used as the host is preferably an aromatic compound as a raw material and a product having a low metabolic activity as a product. Aromatic compounds that are raw materials and microorganisms (eg, Escherichia coli) that are inherently low in metabolic activity of catechol compounds may be used. However, such as 3-methylcatechol 2,3-dioxygenase (todE) can be obtained by gene disruption. Microorganisms that have lost the function of catechol compound-metabolizing enzymes may also be used. By using a microorganism having low aromatic compound metabolic activity as a raw material as a host, consumption of the aromatic compound through a route other than the synthesis of the catechol compound can be prevented. Moreover, the yield of a catechol compound can be improved by using a microorganism with low catechol compound metabolic activity as a host.
さらに、宿主として用いられる微生物は、遺伝子破壊等によって、アルコールデヒドロゲナーゼおよび/またはアルデヒドデヒドロゲナーゼの機能を失わせた微生物であっても良い。これにより、2-フェニルエタノールのような側鎖がヒドロキシアルキル基であるような芳香族化合物原料を用いる場合や、一般式(1)で表わされるカテコール化合物において側鎖Rがヒドロキシアルキル基であるものを合成するような場合において、側鎖の酸化を抑えることができる。
Furthermore, the microorganism used as the host may be a microorganism in which the function of alcohol dehydrogenase and / or aldehyde dehydrogenase is lost by gene disruption or the like. As a result, when an aromatic compound raw material such as 2-phenylethanol whose side chain is a hydroxyalkyl group is used, or in the catechol compound represented by the general formula (1), the side chain R is a hydroxyalkyl group In such a case, side chain oxidation can be suppressed.
遺伝子破壊の方法については、公知の方法を使用できる。具体的には、標的遺伝子の任意の位置で相同組換えを起こすベクター(ターゲティングベクター)を用いて当該遺伝子を破壊する方法(ジーンターゲティング法)や、標的遺伝子の任意の位置にトラップベクター(プロモーターを持たないレポーター遺伝子)を挿入して当該遺伝子を破壊しその機能を失わせる方法(遺伝子トラップ法)、それらを組み合わせた方法等の当技術分野でノックアウト細胞、トランスジェニック動物(ノックアウト動物含む)等を作製する際に用いられる方法を用いることが出来る。また、破壊したい遺伝子のアンチセンスcDNAを発現するベクターを導入する方法や、破壊したい遺伝子の2重鎖RNAを発現するベクターを細胞に導入する方法も利用できる。当該ベクターとしては、ウイルスベクターやプラスミドベクター等が包含され、通常の遺伝子工学的手法に基づき作製することができる。また、市販されているベクターを任意の制限酵素で切断し所望の遺伝子等を組み込んで半合成することもできる。相同置換を起こす位置またはトラップベクターを挿入する位置は、破壊したい標的遺伝子の発現を消失させる変異を生じる位置であれば特に限定されないが、好ましくは転写調節領域を置換する。
A known method can be used for the gene disruption method. Specifically, a method of destroying the gene using a vector (targeting vector) that causes homologous recombination at an arbitrary position of the target gene (gene targeting method), or a trap vector (promoter at an arbitrary position of the target gene). Knockout cells, transgenic animals (including knockout animals), etc. in this technical field, such as methods that insert a reporter gene that does not possess) and destroy the gene to lose its function (gene trap method), methods that combine them, etc. A method used for manufacturing can be used. In addition, a method of introducing a vector expressing an antisense cDNA of a gene desired to be disrupted or a method of introducing a vector expressing a double-stranded RNA of a gene desired to be disrupted into a cell can be used. Such vectors include viral vectors, plasmid vectors, and the like, and can be prepared based on ordinary genetic engineering techniques. In addition, a commercially available vector can be cleaved with an arbitrary restriction enzyme, and a desired gene or the like can be incorporated and semi-synthesized. The position where homologous substitution occurs or the position where the trap vector is inserted is not particularly limited as long as it causes a mutation that eliminates the expression of the target gene to be disrupted, but preferably the transcription regulatory region is replaced.
本発明のおいて用いられる形質転換微生物は、芳香環ジオキシゲナーゼ遺伝子群および/または芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を組み込んだ組換えベクターを、目的の遺伝子が発現し得るように宿主中に導入することにより、または相同組換えによってゲノム上の任意の位置に目的の遺伝子もしくはその一部を挿入することにより得られる。芳香環ジオキシゲナーゼ遺伝子群および芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を大腸菌等の微生物に導入・発現する方法は、常法により行うことができる。特に制限されないが、例えば、微生物へのベクター導入に一般的に利用されているカルシウムイオンを用いる方法、プロトプラスト法、エレクトロポレーション法、ヒートショック法等を挙げることができる。
The transformed microorganism used in the present invention introduces a recombinant vector incorporating an aromatic ring dioxygenase gene group and / or an aromatic ring dihydrodiol dehydrogenase gene into a host so that the target gene can be expressed. Or by inserting the gene of interest or a part thereof at any position on the genome by homologous recombination. The method for introducing and expressing the aromatic ring dioxygenase gene group and the aromatic ring dihydrodiol dehydrogenase gene into a microorganism such as Escherichia coli can be performed by a conventional method. Although not particularly limited, for example, a method using calcium ions generally used for introducing a vector into a microorganism, a protoplast method, an electroporation method, a heat shock method, and the like can be given.
相同組換えによってゲノム上の任意の位置に目的の遺伝子を挿入する方法は、ゲノム上の配列と相同な配列に目的遺伝子をプロモーターとともに挿入し、この核酸断片をエレクトロポレーション等によって細胞内に導入して相同組換えを起こさせることにより実施できる。ゲノムへの導入の際には目的遺伝子と薬剤耐性遺伝子を連結した核酸断片を用いると容易に相同組換えが起こった株を選抜することができる。また、薬剤耐性遺伝子と特定の条件下で致死的になる遺伝子を連結した遺伝子をゲノム上に上記の方法で相同組換えによって挿入し、その後、薬剤耐性遺伝子と特定の条件下で致死的になる遺伝子を置き換える形で目的遺伝子を相同組換えにより導入することもできる。
The method of inserting the gene of interest at any position on the genome by homologous recombination is to insert the gene of interest together with the promoter into a sequence homologous to the sequence on the genome and introduce this nucleic acid fragment into the cell by electroporation or the like. Thus, it can be carried out by causing homologous recombination. At the time of introduction into the genome, a strain in which homologous recombination has occurred can be easily selected by using a nucleic acid fragment in which a target gene and a drug resistance gene are linked. In addition, a gene linked to a drug resistance gene and a gene that becomes lethal under specific conditions is inserted into the genome by homologous recombination by the above method, and then becomes lethal under specific conditions with the drug resistance gene. The target gene can also be introduced by homologous recombination in the form of replacing the gene.
目的とする遺伝子が導入された形質転換微生物を選択する場合、その方法は、特に制限されないが、目的とする遺伝子が導入された形質転換微生物のみを、容易に選択できる手法によるものが好ましい。例えば、抗生物質耐性遺伝子およびこれらの抗生物質耐性遺伝子に対応したアンピシリン、カナマイシン、ストレプトマイシン、クロラムフェニコール等の抗生物質を利用する方法や、蛍光タンパク質やタグと標的タンパク質との融合タンパク質として発現させる方法など、従来公知の手段が採用され得る。SDS-ポリアクリルアミドゲル電気泳動やウェスタンブロッティング等によって、標的タンパク質の発現を確認することもできる。また、後述の方法により、2-フェニルエタノールを原料としたときの2-(2,3-ジヒドロキシフェニル)エタノールの生成速度を指標として、形質転換微生物を選択することもできる。
When selecting a transformed microorganism into which a target gene has been introduced, the method is not particularly limited, but a method by which only a transformed microorganism into which a target gene has been introduced can be easily selected is preferred. For example, antibiotic resistance genes, methods using antibiotics such as ampicillin, kanamycin, streptomycin, chloramphenicol corresponding to these antibiotic resistance genes, or expression as a fusion protein of fluorescent protein or tag and target protein Conventionally known means such as a method may be employed. The expression of the target protein can also be confirmed by SDS-polyacrylamide gel electrophoresis or Western blotting. In addition, a transformed microorganism can be selected by the method described later, using as an index the production rate of 2- (2,3-dihydroxyphenyl) ethanol using 2-phenylethanol as a raw material.
本発明の好ましい一実施形態では、芳香環ジオキシゲナーゼ遺伝子群および芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子は、以下のカセット(1)とカセット(2)とのコピー数の比が、1:1~5:1となるように微生物に導入し、形質転換を行う;
カセット(1): IPTG誘導性プロモーター(1)、ならびに、プロモーター(1)と作動的に連結された芳香環ジオキシゲナーゼ遺伝子群および前記芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を含む
カセット(2): IPTG誘導性プロモーター(2)、およびプロモーター(2)と作動的に連結された芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を含む。 In one preferred embodiment of the present invention, the aromatic ring dioxygenase gene group and the aromatic ring dihydrodiol dehydrogenase gene have a copy number ratio of the following cassette (1) and cassette (2) of 1: 1 to 5: 1. Introduce into the microorganism so that
Cassette (1): An IPTG-inducible promoter (1) and an aromatic ring dioxygenase gene group operatively linked to the promoter (1) and the aromatic ring dihydrodiol dehydrogenase gene. Cassette (2): IPTG inducibility A promoter (2), and an aromatic ring dihydrodiol dehydrogenase gene operably linked to the promoter (2).
カセット(1): IPTG誘導性プロモーター(1)、ならびに、プロモーター(1)と作動的に連結された芳香環ジオキシゲナーゼ遺伝子群および前記芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を含む
カセット(2): IPTG誘導性プロモーター(2)、およびプロモーター(2)と作動的に連結された芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を含む。 In one preferred embodiment of the present invention, the aromatic ring dioxygenase gene group and the aromatic ring dihydrodiol dehydrogenase gene have a copy number ratio of the following cassette (1) and cassette (2) of 1: 1 to 5: 1. Introduce into the microorganism so that
Cassette (1): An IPTG-inducible promoter (1) and an aromatic ring dioxygenase gene group operatively linked to the promoter (1) and the aromatic ring dihydrodiol dehydrogenase gene. Cassette (2): IPTG inducibility A promoter (2), and an aromatic ring dihydrodiol dehydrogenase gene operably linked to the promoter (2).
なお、カセット(1)やカセット(2)は、さらに、プロモーターと遺伝子とを連結するリンカー配列や、遺伝子終端にターミネーター領域を更に含み得る。
The cassette (1) and cassette (2) may further contain a linker sequence for linking the promoter and the gene and a terminator region at the end of the gene.
図8は、カセット(1)およびカセット(2)の構造を模式的に示す。図8に示す通り、カセット(1)では、プロモーター(1)の下流に、芳香環ジオキシゲナーゼ遺伝子群(todC1遺伝子、todC2遺伝子、todB遺伝子、todA遺伝子)と芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子(todD遺伝子)とが作動的に連結されている(以下、「カセット(1)のような、プロモーター(1)の下流に芳香環ジオキシゲナーゼ遺伝子群と芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子とが作動的に連結されているポリヌクレオチドを有するベクター」を、単に「ベクター(1)」とも称する。)。また、図8に示す通り、カセット(2)では、プロモーター(2)の下流に、芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子(todD遺伝子)が作動的に連結されている(以下、「カセット(2)のような、プロモーター(2)の下流に芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子が作動的に連結されているポリヌクレオチドを有するベクター」を、単に「ベクター(2)」とも称する。)。なお、本明細書において、「作動的に連結された」とは、発現誘導剤(例えば、IPTG)の添加によって遺伝子(芳香環ジオキシゲナーゼ遺伝子群、芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子)の発現をプロモーターが誘導するように、プロモーターと遺伝子とが連結されていることを意味する。
FIG. 8 schematically shows the structure of the cassette (1) and the cassette (2). As shown in FIG. 8, in the cassette (1), an aromatic ring dioxygenase gene group (todC1 gene, todC2 gene, todB gene, todA gene) and an aromatic ring dihydrodiol dehydrogenase gene (todD gene) are located downstream of the promoter (1). (Hereinafter referred to as “cassette (1), the aromatic ring dioxygenase gene group and the aromatic ring dihydrodiol dehydrogenase gene are operatively linked downstream of the promoter (1)”. The “vector having the polynucleotide” is also simply referred to as “vector (1)”.) Further, as shown in FIG. 8, in the cassette (2), an aromatic ring dihydrodiol dehydrogenase gene (todD gene) is operably linked downstream of the promoter (2) (hereinafter referred to as “cassette (2)”. A vector having a polynucleotide in which an aromatic ring dihydrodiol dehydrogenase gene is operably linked downstream of the promoter (2) is also simply referred to as “vector (2)”). In the present specification, “operably linked” means that the expression of a gene (aromatic ring dioxygenase gene group, aromatic ring dihydrodiol dehydrogenase gene) is expressed by a promoter by the addition of an expression inducer (eg, IPTG). It means that the promoter and the gene are linked so as to induce.
本発明の一実施形態では、形質転換微生物は、芳香環ジオキシゲナーゼ遺伝子群および芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を、イソプロピルβ-チオガラクトピラノシド誘導性プロモーター(1)ならびに前記プロモーター(1)と作動的に連結された芳香環ジオキシゲナーゼ遺伝子群および芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を含むカセット(1)と、イソプロピルβ-チオガラクトピラノシド誘導性プロモーター(2)ならびにプロモーター(2)と作動的に連結された芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を含むカセット(2)とを、カセット(1)とカセット(2)とのコピー数の比が1:1~5:1となるように導入したものである。このような手法により調製した芳香環ジオキシゲナーゼ遺伝子群および芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を導入した形質転換微生物を用いてカテコール化合物を生成すると、後述するカテコール化合物の選択率を高めることができ、さらに、単位時間・単位菌体濃度当りのカテコール化合物の生成速度を高めることができる。本発明の技術的範囲を制限するものでは無いが、これは、以下のメカニズムによるものと推測される。ベクター(2)とベクター(1)とをコピー数の比が1:1以上の条件で組み合わせて宿主に導入した場合、ベクター(1)のみを宿主に導入した場合と比べて、上記反応式(1)における後半の反応が促進されることとなる。これにより、ジヒドロジオール誘導体が速やかにカテコール化合物に変化することとなり、カテコール化合物の選択率や、単位時間・単位菌体濃度当りのカテコール化合物の生成速度が高くなるものと推測される。ベクター(1)とベクター(2)とのコピー数の比が5:1以下であることにより、反応式(1)における前半と後半の反応が適度にバランスされる。
In one embodiment of the present invention, the transformed microorganism operates an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene with the isopropyl β-thiogalactopyranoside inducible promoter (1) and the promoter (1). Operably linked to a cassette (1) comprising an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene, an isopropyl β-thiogalactopyranoside inducible promoter (2) and a promoter (2) The cassette (2) containing the aromatic ring dihydrodiol dehydrogenase gene thus introduced was introduced so that the copy number ratio of the cassette (1) and the cassette (2) was 1: 1 to 5: 1. When a catechol compound is produced using a transformed microorganism introduced with an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene prepared by such a technique, the selectivity of the catechol compound described later can be increased. The production rate of catechol compounds per unit time and unit cell concentration can be increased. Although it does not restrict | limit the technical scope of this invention, it is estimated that this is based on the following mechanisms. When the vector (2) and the vector (1) are combined and introduced into the host under the condition where the copy number ratio is 1: 1 or more, the above reaction formula ( The latter half of the reaction in 1) will be promoted. As a result, the dihydrodiol derivative is rapidly changed to a catechol compound, and it is presumed that the selectivity of the catechol compound and the production rate of the catechol compound per unit time / unit cell concentration are increased. When the copy number ratio between the vector (1) and the vector (2) is 5: 1 or less, the first half and second half reactions in the reaction formula (1) are appropriately balanced.
カセット(1)やカセット(2)は、上述のpET等のベクターに組込まれた状態で(ベクター(1)やベクター(2)として)、宿主に導入される。カセット(1)およびカセット(2)は、同一のベクター内にタンデムに組込まれていても良く、それぞれ別のベクターに組込まれていても良いが、好ましくは同一のベクターにタンデムに組込まれる。カセット(1)とカセット(2)とが同一のベクター内にタンデムに組込まれていることにより、形質転換微生物の選択に用いる抗生物質の種類を少なくする(例えば、1種類とする)ことができる。このため、おそらくは抗生物質による微生物へのダメージ、プラスミド増幅の負荷、薬剤耐性遺伝子の発現の負荷が低減されて酵素産生が促進する。従って、カテコール化合物の選択率、および単位時間・単位菌体濃度当りのカテコール化合物の生成速度がより高い形質転換微生物を調製することができる。
The cassette (1) and cassette (2) are introduced into the host in the state of being incorporated into the above-described vector such as pET (as the vector (1) and vector (2)). Cassette (1) and cassette (2) may be incorporated into the same vector in tandem, or may be incorporated into different vectors, but are preferably incorporated into the same vector in tandem. Since the cassette (1) and the cassette (2) are incorporated in the same vector in tandem, the types of antibiotics used for selection of transformed microorganisms can be reduced (for example, one type). . This probably reduces the damage to the microorganisms by antibiotics, the load of plasmid amplification, and the load of expression of drug resistance genes, thus promoting enzyme production. Therefore, it is possible to prepare a transformed microorganism having a higher catechol compound selectivity and a higher rate of catechol compound production per unit time and unit cell concentration.
宿主に導入するカセット(1)とカセット(2)とのコピー数の比は、1:1~5:1であることが好ましく、1.5:1~4:1であることがより好ましく、2:1~3:1であることが更に好ましい。上記範囲であれば反応式(1)における前半の反応と後半の反応との反応速度がバランスされてカテコール化合物の選択率が高くなり、また、カテコール化合物の生成速度も高くすることができる。上記のコピー数の比は、ベクターへの挿入配列中に含まれるカセット(1)やカセット(2)の数を適宜設計することで、任意に設定することができる。また、上記のコピー数の比は、ベクター(1)およびベクター(2)のコピー数の比に相当するため、宿主に導入する際のベクター(1)およびベクター(2)のコピー数を調整すること等によっても任意に設定することができる。
The copy number ratio between the cassette (1) and the cassette (2) to be introduced into the host is preferably 1: 1 to 5: 1, more preferably 1.5: 1 to 4: 1. More preferably, it is 2: 1 to 3: 1. If it is the said range, the reaction rate of the reaction of the first half in Reaction formula (1) and the reaction of the latter half will be balanced, the selectivity of a catechol compound will become high, and the production | generation rate of a catechol compound can also be made high. The copy number ratio can be arbitrarily set by appropriately designing the number of cassettes (1) and cassettes (2) contained in the insertion sequence into the vector. In addition, the above copy number ratio corresponds to the copy number ratio of the vector (1) and the vector (2), so the copy number of the vector (1) and the vector (2) when introduced into the host is adjusted. It can be arbitrarily set depending on the situation.
プロモーター(1)やプロモーター(2)は、IPTG誘導性であれば特に制限されず、例えば、上述のT7プロモーター、lacプロモーター、tacプロモーター、trcプロモーターおよびspacプロモーター等を用いることができる。このうち、プロモーター活性の高さの観点から、好ましくはT7プロモーターが用いられる。カセット(1)およびカセット(2)のそれぞれに含まれるプロモーター(1)およびプロモーター(2)は、同一のプロモーターであっても異なるプロモーターであっても良いが、誘導制御が容易であるという観点から、好ましくは同一である。
The promoter (1) and promoter (2) are not particularly limited as long as they are IPTG-inducible, and for example, the above-described T7 promoter, lac promoter, tac promoter, trc promoter, spac promoter and the like can be used. Of these, the T7 promoter is preferably used from the viewpoint of high promoter activity. The promoter (1) and the promoter (2) contained in each of the cassette (1) and the cassette (2) may be the same promoter or different promoters, but from the viewpoint of easy induction control. , Preferably the same.
また、カセット(1)および(2)に含まれる芳香環ジオキシゲナーゼ遺伝子群および芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子は、同一の生物種に由来しても良く、異なる生物に由来しても良い。カセット(1)に含まれる芳香環ジオキシゲナーゼ遺伝子群は、好ましくはトルエンジオキシゲナーゼ遺伝子群であり、より好ましくはシュードモナス属に由来するトルエンジオキシゲナーゼ遺伝子群である。また、カセット(1)および(2)に含まれる芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子は、好ましくはcis-トルエンジヒドロジオールデヒドロゲナーゼ遺伝子であり、より好ましくはシュードモナス属に由来するcis-トルエンジヒドロジオールデヒドロゲナーゼ遺伝子である。
In addition, the aromatic ring dioxygenase gene group and the aromatic ring dihydrodiol dehydrogenase gene contained in the cassettes (1) and (2) may be derived from the same species or different organisms. The aromatic ring dioxygenase gene group contained in the cassette (1) is preferably a toluene dioxygenase gene group, more preferably a toluene dioxygenase gene group derived from Pseudomonas. The aromatic ring dihydrodiol dehydrogenase gene contained in the cassettes (1) and (2) is preferably a cis-toluene dihydrodiol dehydrogenase gene, and more preferably a cis-toluene dihydrodiol dehydrogenase gene derived from Pseudomonas. .
形質転換微生物を維持培養する場合、形質転換微生物の維持培養に通常用いられる培地(以下、IPTGを含まない、形質転換微生物の培養に通常用いられる維持培地を、「IPTGフリー培地」とも称する。)を用いた通常の培養方法により維持すればよい。形質転換微生物の維持培養に使用するIPTGフリー培地は、使用する微生物が資化しうる炭素源、適量の窒素源、無機塩及びその他の栄養素を含有する培地であれば、合成培地または天然培地のいずれでもよい。通常、IPTGフリー培地は、炭素源、窒素源および無機物を含む。
When the transformed microorganism is maintained and cultured, a medium usually used for maintenance culture of the transformed microorganism (hereinafter, a maintenance medium not containing IPTG and usually used for culturing the transformed microorganism is also referred to as “IPTG-free medium”). What is necessary is just to maintain by the normal culture method using this. The IPTG-free medium used for the maintenance culture of the transformed microorganism may be either a synthetic medium or a natural medium as long as it contains a carbon source, an appropriate amount of nitrogen source, inorganic salts and other nutrients that can be assimilated by the microorganism used. But you can. Usually, the IPTG-free medium contains a carbon source, a nitrogen source, and an inorganic substance.
IPTGフリー培地に使用できる炭素源としては、使用する菌株が資化できる炭素源であれば特に制限されない。具体的には、微生物の資化性を考慮して、グルコース、フラクトース、セロビオース、ラフィノース、キシロース、マルトース、ガラクトース、ソルボース、グルコサミン、リボース、アラビノース、ラムノース、スクロース、トレハロース、α-メチル-D-グルコシド、サリシン、メリビオース、ラクトース、メレジトース、イヌリン、エリスリトール、グルシトール、マンニトール、ガラクチトール、N-アセチル-D-グルコサミン、デンプン、デンプン加水分解物、糖蜜、廃糖蜜等の糖類、麦、米等の天然物、グリセロール、メタノール、エタノール等のアルコール類、酢酸、乳酸、コハク酸、グルコン酸、ピルピン酸、クエン酸等の有機酸類、ヘキサデカン等の炭化水素などが挙げられる。上記炭素源は、培養する微生物による資化性を考慮して適宜選択される。また、上記炭素源を1種または2種以上選択して使用することができる。
The carbon source that can be used for the IPTG-free medium is not particularly limited as long as it is a carbon source that can be assimilated by the strain used. Specifically, in consideration of microbial utilization, glucose, fructose, cellobiose, raffinose, xylose, maltose, galactose, sorbose, glucosamine, ribose, arabinose, rhamnose, sucrose, trehalose, α-methyl-D-glucoside , Salicin, melibiose, lactose, melezitose, inulin, erythritol, glucitol, mannitol, galactitol, N-acetyl-D-glucosamine, starch, starch hydrolysate, molasses, molasses, and other natural products such as wheat and rice And alcohols such as glycerol, methanol and ethanol, organic acids such as acetic acid, lactic acid, succinic acid, gluconic acid, pyrpinic acid and citric acid, and hydrocarbons such as hexadecane. The carbon source is appropriately selected in view of assimilation by the microorganism to be cultured. Moreover, the said carbon source can be used 1 type or 2 types or more selected.
また、IPTGフリー培地に使用できる窒素源としては、肉エキス、ペプトン、ポリペプトン、トリプトン、酵母エキス、麦芽エキス、大豆加水分解物、大豆粉末、カゼイン、ミルクカゼイン、カザミノ酸、グリシン、グルタミン酸、アスパラギン酸等の各種アミノ酸、コーンスティープリカー、その他の動物、植物、微生物の加水分解物等の有機窒素源;アンモニア、硝酸アンモニウム、硫酸アンモニウム、塩化アンモニウムなどのアンモニウム塩、硝酸ナトリウムなどの硝酸塩、亜硝酸ナトリウムなどの亜硝酸塩、尿素等の無機窒素源などが挙げられる。上記窒素源は、培養する微生物による資化性を考慮して適宜選択される。また、上記窒素源を1種または2種以上選択して使用することができる。
Nitrogen sources that can be used in the IPTG-free medium include meat extract, peptone, polypeptone, tryptone, yeast extract, malt extract, soybean hydrolysate, soybean powder, casein, milk casein, casamino acid, glycine, glutamic acid, aspartic acid Organic nitrogen sources such as various amino acids such as corn steep liquor, other animals, plants, microorganism hydrolysates; ammonium salts such as ammonia, ammonium nitrate, ammonium sulfate, ammonium chloride, nitrates such as sodium nitrate, sodium nitrite, etc. Examples thereof include inorganic nitrogen sources such as nitrite and urea. The nitrogen source is appropriately selected in view of assimilation by the microorganism to be cultured. Further, one or more of the nitrogen sources can be selected and used.
IPTGフリー培地に使用できる無機物としては、マグネシウム、マンガン、カルシウム、ナトリウム、カリウム、銅、鉄、亜鉛、タングステンおよびモリブデンなどの、リン酸塩、塩酸塩、硫酸塩、酢酸塩、炭酸塩、塩化物等のハロゲン化物、ならびにこれらの水和物などが挙げられる。上記無機物は、培養する微生物による要求性を考慮して適宜選択される。また、上記無機物を1種または2種以上選択して使用することができる。また、IPTGフリー培地中に、必要に応じて、植物油、界面活性剤、消泡剤(例えば、アデカノール(登録商標) LG-109)等を添加してもよい。また、抗生物質耐性遺伝子をコードする配列を有するベクターにより形質転換を行ったような場合は、形質を維持し、他の微生物によるコンタミネーションを防止するため、抗生物質耐性遺伝子に対応したアンピシリン、カナマイシン、ストレプトマイシン、クロラムフェニコール等の抗生物質をIPTGフリー培地中に添加しても良い。
Inorganic materials that can be used in the IPTG-free medium include phosphates, hydrochlorides, sulfates, acetates, carbonates, chlorides, such as magnesium, manganese, calcium, sodium, potassium, copper, iron, zinc, tungsten and molybdenum. And the like, and hydrates thereof. The inorganic substance is appropriately selected in consideration of the requirements of the microorganism to be cultured. In addition, one or more of the above inorganic materials can be selected and used. In addition, vegetable oil, a surfactant, an antifoaming agent (for example, Adecanol (registered trademark) LG-109) and the like may be added to the IPTG-free medium as necessary. In addition, when transformation is performed using a vector having a sequence encoding an antibiotic resistance gene, ampicillin or kanamycin corresponding to the antibiotic resistance gene is used to maintain the character and prevent contamination by other microorganisms. Antibiotics such as streptomycin and chloramphenicol may be added to the IPTG-free medium.
維持培養の条件は、培養する微生物の種類、培地の組成や培養法によって適宜選択され、微生物が増殖できる条件であれば特に制限されない。通常は、培養温度が、好ましくは15~50℃、より好ましくは15~37℃である。また、培養に適当な培地のpHは、好ましくは3~10、より好ましくは5~8である。
The conditions for the maintenance culture are not particularly limited as long as the conditions are selected appropriately depending on the type of microorganism to be cultured, the composition of the medium and the culture method, and the microorganism can grow. Usually, the culture temperature is preferably 15 to 50 ° C., more preferably 15 to 37 ° C. Further, the pH of a medium suitable for culture is preferably 3 to 10, more preferably 5 to 8.
[イソプロピルβ-チオガラクトピラノシドを含む液(IPTGを含む液)]
本発明においては、芳香環ジオキシゲナーゼ遺伝子群および芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を導入した形質転換微生物を、5~100μMのIPTGを含む液で培養する。一実施形態では、芳香環ジオキシゲナーゼ遺伝子群および芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を導入した形質転換微生物を、5~30μMのIPTGを含む液で培養する。芳香環ジオキシゲナーゼ遺伝子群および芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を導入した形質転換微生物をIPTGを含む液で培養することで、芳香環ジオキシゲナーゼおよび芳香環ジヒドロジオールデヒドロゲナーゼのタンパク質発現が誘導される。 [Liquid containing isopropyl β-thiogalactopyranoside (liquid containing IPTG)]
In the present invention, a transformed microorganism into which an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene are introduced is cultured in a solution containing 5 to 100 μM IPTG. In one embodiment, a transformed microorganism into which an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene are introduced is cultured in a solution containing 5 to 30 μM IPTG. By culturing a transformed microorganism into which an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene are introduced in a liquid containing IPTG, protein expression of the aromatic ring dioxygenase and the aromatic ring dihydrodiol dehydrogenase is induced.
本発明においては、芳香環ジオキシゲナーゼ遺伝子群および芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を導入した形質転換微生物を、5~100μMのIPTGを含む液で培養する。一実施形態では、芳香環ジオキシゲナーゼ遺伝子群および芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を導入した形質転換微生物を、5~30μMのIPTGを含む液で培養する。芳香環ジオキシゲナーゼ遺伝子群および芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を導入した形質転換微生物をIPTGを含む液で培養することで、芳香環ジオキシゲナーゼおよび芳香環ジヒドロジオールデヒドロゲナーゼのタンパク質発現が誘導される。 [Liquid containing isopropyl β-thiogalactopyranoside (liquid containing IPTG)]
In the present invention, a transformed microorganism into which an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene are introduced is cultured in a solution containing 5 to 100 μM IPTG. In one embodiment, a transformed microorganism into which an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene are introduced is cultured in a solution containing 5 to 30 μM IPTG. By culturing a transformed microorganism into which an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene are introduced in a liquid containing IPTG, protein expression of the aromatic ring dioxygenase and the aromatic ring dihydrodiol dehydrogenase is induced.
一般的に、IPTGによってタンパク質の発現誘導を行う場合、例えば、非特許文献1のSUPPLEMENTARY MATERIALに記載されているように、IPTGの終濃度が1mM程度となるように行われる。さらに、目的とする酵素活性を高めようとする場合、一般的には、培養液中のIPTG濃度を高くすることにより、誘導される標的タンパク質の発現量を増加させる方法が採用される。一方、本発明にかかる調製方法においては、芳香環ジオキシゲナーゼ遺伝子群および芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を導入した形質転換微生物を、5~100μM(例えば、5~30μM)といった低濃度のIPTGを含む液で培養する。低濃度のIPTGを含む液で形質転換微生物を培養することにより、効率的にカテコール化合物を合成する形質転換微生物を得ることができる。本発明の技術的範囲をなんら制限するものではないが、これは、IPTGの添加濃度を下げることで、発現誘導によるタンパク質の生成速度が低下し、これにより、タンパク質のミスホールディングが抑制され、活性を有する可溶性のタンパク質の生成量が増加するためであると推定される。
Generally, when protein expression is induced by IPTG, for example, as described in SUPPLEMENTENTARY MATERIAL in Non-Patent Document 1, the final concentration of IPTG is about 1 mM. Furthermore, in order to increase the target enzyme activity, generally, a method of increasing the expression level of the induced target protein by increasing the IPTG concentration in the culture solution is employed. On the other hand, in the preparation method according to the present invention, a transformed microorganism into which an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene have been introduced contains a liquid containing IPTG at a low concentration of 5 to 100 μM (for example, 5 to 30 μM). Incubate at By culturing the transformed microorganism in a solution containing a low concentration of IPTG, a transformed microorganism that efficiently synthesizes a catechol compound can be obtained. Although it does not limit the technical scope of the present invention at all, this is because the rate of protein production due to expression induction is reduced by lowering the concentration of IPTG added, thereby suppressing protein misfolding and activity. It is presumed that this is because the amount of soluble protein produced having increased.
IPTGを含む液は、上述の形質転換微生物の培養に通常用いられる培地(IPTGフリー培地)にIPTGを添加して調製される。IPTGを含む液全体におけるIPTGの濃度は、5~100μMであれば良い。例えば、IPTGを含む液全体におけるIPTGの濃度は、例えば5~30μMであり、好ましくは6~25μMであり、より好ましくは6~24μMであり、更に好ましくは7~23μMであり、特に好ましくは10~20μMであり、かようなIPTGの濃度にした場合のカテコール化合物の効率的な合成という効果は、T7プロモーターと作動的に連結された芳香環ジオキシゲナーゼ遺伝子群および芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を導入した形質転換微生物を用いるときに特に顕著に得られる。また、例えば、tacプロモーターと作動的に連結された芳香環ジオキシゲナーゼ遺伝子群および芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を導入した形質転換微生物を用いるときは、IPTGを含む液全体におけるIPTGの濃度は、例えば15~100μMであり、好ましくは25~100μMであり、より好ましくは30~95μMであり、更に好ましくは35~80μMであり、特に好ましくは35~60μMである。IPTGを含む液全体におけるIPTGの濃度が上記数値範囲である場合、調製された形質転換微生物によりカテコール化合物を効率的に製造できる。
The solution containing IPTG is prepared by adding IPTG to a medium (IPTG-free medium) usually used for culturing the above-described transformed microorganism. The concentration of IPTG in the entire liquid containing IPTG may be 5 to 100 μM. For example, the concentration of IPTG in the entire liquid containing IPTG is, for example, 5 to 30 μM, preferably 6 to 25 μM, more preferably 6 to 24 μM, still more preferably 7 to 23 μM, and particularly preferably 10 The effect of efficient synthesis of catechol compounds when the concentration of IPTG is ˜20 μM is the introduction of an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene operatively linked to the T7 promoter. This is particularly noticeable when using transformed microorganisms. For example, when using a transformed microorganism into which an aromatic ring dioxygenase gene group operatively linked to a tac promoter and an aromatic ring dihydrodiol dehydrogenase gene are used, the concentration of IPTG in the whole liquid containing IPTG is, for example, 15 Is 100 to 100 μM, preferably 25 to 100 μM, more preferably 30 to 95 μM, still more preferably 35 to 80 μM, and particularly preferably 35 to 60 μM. When the concentration of IPTG in the whole liquid containing IPTG is in the above numerical range, a catechol compound can be efficiently produced by the prepared transformed microorganism.
IPTGを含む液での形質転換微生物の培養方法は、当該微生物が生育・増殖できるものであれば、いずれのものであってよい。具体的には、上述の維持培養の条件が参酌される。IPTGを含む液における培養時間は、特に制限されず、培養する微生物の種類、培地の量、培養条件などによって異なる。25℃で培養する場合は、培養時間は、5~96時間、好ましくは5~72時間、より好ましくは12~48時間である。
The culture method of the transformed microorganism in the liquid containing IPTG may be any method as long as the microorganism can grow and proliferate. Specifically, the above-mentioned conditions for maintenance culture are taken into consideration. The culture time in the liquid containing IPTG is not particularly limited, and varies depending on the type of microorganism to be cultured, the amount of medium, the culture conditions, and the like. When culturing at 25 ° C., the culture time is 5 to 96 hours, preferably 5 to 72 hours, more preferably 12 to 48 hours.
本発明においては、IPTGを含む液の溶存酸素濃度が、0mg/Lを超えて5mg/L以下であることが好ましい。溶存酸素濃度が0mg/Lを超えて5mg/L以下であるIPTGを含む液で形質転換微生物を培養することにより、特に培養ボリュームが1L以上の大容量で培養した場合に、カテコール化合物を効率的に生成する形質転換微生物を調製できる。本発明の技術的範囲を制限するものでは無いが、これは、溶存酸素による酵素の失活や培地成分を基質とした反応の進行に伴う酵素の失活が抑制されることによるものと推測される。IPTGを含む液の溶存酸素濃度は0.1~5mg/Lであることがより好ましく、0.1~2mg/Lであることが更に好ましく、0.7~1.6mg/Lであることが更に好ましい。ここで、上記数値範囲は、IPTGによる発現誘導開始直後(5分以内)における溶存酸素濃度(初期溶存酸素濃度)を指す。培養中、溶存酸素濃度が変動することがあるが、IPTGを含む液で形質転換微生物を培養する期間を通じて、溶存酸素濃度が0~5mg/L、0mg/Lを超えて5mg/L以下、0mg/Lを超えて2mg/L以下であることが、この順番でさらに好ましい。
In the present invention, the dissolved oxygen concentration of the liquid containing IPTG is preferably more than 0 mg / L and not more than 5 mg / L. By culturing transformed microorganisms with a solution containing IPTG having a dissolved oxygen concentration of more than 0 mg / L and not more than 5 mg / L, catechol compounds can be efficiently used, especially when the culture volume is cultured in a large volume of 1 L or more. Can be prepared. Although it does not limit the technical scope of the present invention, it is presumed that this is due to inhibition of enzyme deactivation due to dissolved oxygen and enzyme deactivation associated with the progress of the reaction using a medium component as a substrate. The The dissolved oxygen concentration of the liquid containing IPTG is more preferably 0.1 to 5 mg / L, still more preferably 0.1 to 2 mg / L, and preferably 0.7 to 1.6 mg / L. Further preferred. Here, the above numerical range refers to the dissolved oxygen concentration (initial dissolved oxygen concentration) immediately after the start of expression induction by IPTG (within 5 minutes). During the cultivation, the dissolved oxygen concentration may fluctuate, but the dissolved oxygen concentration is 0 to 5 mg / L, exceeding 0 mg / L to 5 mg / L or less, 0 mg throughout the period of culturing the transformed microorganism with a solution containing IPTG. It is more preferable in this order that it is 2 mg / L or less exceeding / L.
なお、グルコース代謝に関与するグリセルアルデヒド-3-リン酸デヒドロゲナーゼ遺伝子や6-ホスホフルクトキナーゼ遺伝子などのプロモーター領域、および大腸菌において耐酸性機構に関与するグルタミン酸脱炭酸酵素遺伝子などのプロモーター領域を有する発現ベクターを導入した形質転換微生物においても、上記のような溶存酸素濃度で培養することにより、カテコール化合物の生成効率を向上することができる。
It has a promoter region such as glyceraldehyde-3-phosphate dehydrogenase gene and 6-phosphofructokinase gene involved in glucose metabolism, and a promoter region such as glutamate decarboxylase gene involved in acid resistance mechanism in E. coli. Even in a transformed microorganism into which an expression vector has been introduced, the production efficiency of the catechol compound can be improved by culturing at the dissolved oxygen concentration as described above.
IPTGを含む液の溶存酸素濃度は、例えば、培地に通気するガス(通気ガス)の組成、通気量、攪拌速度を調節することにより、任意に設定できる。通気ガスに窒素やアルゴン等の不活性ガスを使用したり、通気量を下げたり、攪拌速度を下げたりすることで、IPTGを含む液の溶存酸素濃度低くすることができる。通気ガス中の空気と不活性ガスとの混合割合は、空気:不活性ガスが1:0.5~20(v:v)であることが好ましく、1:3~9(v:v)であることがより好ましく、1:4~9(v:v)であることが更に好ましい。通気量は、例えば、1LのIPTGを含む液に対し、10L/分以下であり、好ましくは0.1~5L/分である。
The dissolved oxygen concentration of the liquid containing IPTG can be arbitrarily set, for example, by adjusting the composition of the gas (aeration gas) that passes through the medium, the amount of aeration, and the stirring speed. By using an inert gas such as nitrogen or argon as the aeration gas, reducing the aeration amount, or reducing the stirring speed, the dissolved oxygen concentration of the liquid containing IPTG can be lowered. The mixing ratio of air and inert gas in the aeration gas is preferably 1: 0.5 to 20 (v: v) of air: inert gas, and 1: 3 to 9 (v: v). More preferably, it is 1: 4 to 9 (v: v). The air flow rate is, for example, 10 L / min or less, preferably 0.1 to 5 L / min, with respect to a liquid containing 1 L of IPTG.
IPTGを含む液で形質転換微生物を培養する際には、培養中に培地のpHが変動することがあるため、適宜酸やアルカリを加えて、所望のpHに調整しても良い。酸やアルカリとしては、特に制限されないが、塩酸、硝酸、硫酸、酢酸などの酸や、水酸化ナトリウム、水酸化カリウムなどのアルカリが用いられる。
When cultivating a transformed microorganism with a solution containing IPTG, the pH of the medium may fluctuate during the culture, and thus an acid or alkali may be added as appropriate to adjust the pH to a desired value. The acid or alkali is not particularly limited, but acids such as hydrochloric acid, nitric acid, sulfuric acid, and acetic acid, and alkalis such as sodium hydroxide and potassium hydroxide are used.
IPTGによってタンパク質発現が誘導されると、微生物増殖が阻害される場合がある。従って、本発明にかかる調製方法においては、(i)IPTGフリー培地中で形質転換微生物を培養し;その後、(ii)終濃度が5~100μM(例えば5~30μMや、15~100μM)となるようにIPTGを培地に添加することにより、芳香環ジオキシゲナーゼおよび芳香環ジヒドロジオールデヒドロゲナーゼの発現誘導を行う(IPTGを含む液で培養する)ことが好ましい。また培地中に終濃度0.5~1%(w/v)のグルコースを添加することで、発現誘導を遅らせることもできる。IPTGフリー培地中で培養後にIPTGを含む液で形質転換微生物を培養する場合、IPTGを添加するタイミングは、濁度測定等により微生物の菌体濃度を測定して決定すればよい。IPTGを添加するタイミングは、例えば、OD660が0.1~1となった時点である。また、上述の(i)(IPTGフリー培地中での形質転換微生物の培養)の前に、形質転換微生物を前培養しても良い。前培養により、形質転換微生物の菌体濃度を調節することが容易となる。前培養の条件は、上述の維持培養の条件が参酌される。
When protein expression is induced by IPTG, microbial growth may be inhibited. Therefore, in the preparation method according to the present invention, (i) the transformed microorganism is cultured in an IPTG-free medium; then (ii) the final concentration is 5 to 100 μM (for example, 5 to 30 μM or 15 to 100 μM). Thus, it is preferable to induce the expression of aromatic ring dioxygenase and aromatic ring dihydrodiol dehydrogenase by adding IPTG to the medium (cultured in a liquid containing IPTG). Expression induction can also be delayed by adding glucose at a final concentration of 0.5 to 1% (w / v) to the medium. When the transformed microorganism is cultured in a liquid containing IPTG after culturing in an IPTG-free medium, the timing of adding IPTG may be determined by measuring the cell concentration of the microorganism by turbidity measurement or the like. The timing of adding IPTG is, for example, when OD 660 becomes 0.1 to 1. In addition, the transformed microorganism may be pre-cultured before the above (i) (cultivation of transformed microorganism in IPTG-free medium). Pre-culture makes it easy to adjust the cell concentration of the transformed microorganism. As the pre-culture conditions, the above-described maintenance culture conditions are considered.
本発明にかかる調製方法により調製された形質転換微生物は、カテコール化合物を効率的に生成する。カテコール化合物の生成速度(以下、「反応速度」とも称する。)は、例えば、2-フェニルエタノールを原料としたときに生成する、単位時間・単位菌体濃度当りの2-(2,3-ジヒドロキシフェニル)エタノールの量(mM/(h・OD660))で求められる。2-フェニルエタノールを原料としたときに生成する、単位時間・単位菌体濃度当りの2-(2,3-ジヒドロキシフェニル)エタノールの量(mM/(h・OD660))によるカテコール化合物の生成速度は、実施例に記載される方法によって求められる。
The transformed microorganism prepared by the preparation method according to the present invention efficiently produces a catechol compound. The rate of formation of catechol compounds (hereinafter also referred to as “reaction rate”) is, for example, 2- (2,3-dihydroxy per unit time / unit cell concentration produced when 2-phenylethanol is used as a raw material. It is determined by the amount of phenyl) ethanol (mM / (h · OD 660 )). Production of catechol compounds by the amount of 2- (2,3-dihydroxyphenyl) ethanol per unit time and unit cell concentration (mM / (h · OD 660 )) produced when 2-phenylethanol is used as a raw material The speed is determined by the method described in the examples.
より具体的には、以下の方法により求めればよい。すなわち、形質転換微生物と4mlのIPTGフリー培地(例えば、大腸菌や枯草菌であれば、抗生物質耐性遺伝子に対応した抗生物質を任意に含むLB培地)とを試験管に入れたものを2~3本用意し、30℃で一晩(約14~18時間)、300rpmで振盪培養する(前培養)。次に、前培養後の培養液のOD660を測定し、ジャーファーメンター内で培養液を希釈し、菌体濃度を調節する。菌体濃度の調節は、OD660(初期OD660)が0.05であり、反応ボリュームが1LとなるようにIPTGフリー培地で培養液を希釈すればよい。希釈に用いられるIPTGフリー培地は、大腸菌や枯草菌であれば、以下の組成のものを用いればよい。なお、宿主として放線菌や酵母を用いる場合、ISP培地(放線菌)やYPD培地(酵母)など、使用する培地は培養する微生物によって任意に選択すればよい。
More specifically, it may be obtained by the following method. That is, 2 to 3 of a transformant microorganism and 4 ml of IPTG-free medium (for example, LB medium optionally containing an antibiotic corresponding to an antibiotic resistance gene in the case of Escherichia coli or Bacillus subtilis) are put in a test tube. Prepare this and perform shaking culture at 300 rpm overnight (about 14 to 18 hours) at 30 ° C. (preculture). Next, the OD 660 of the culture solution after the pre-culture is measured, the culture solution is diluted in a jar fermenter, and the bacterial cell concentration is adjusted. The bacterial cell concentration can be adjusted by diluting the culture solution in an IPTG-free medium so that OD 660 (initial OD 660 ) is 0.05 and the reaction volume is 1 L. The IPTG-free medium used for dilution may be of the following composition if it is Escherichia coli or Bacillus subtilis. In addition, when using actinomycetes or yeast as the host, the medium to be used such as ISP medium (actinomycetes) or YPD medium (yeast) may be arbitrarily selected depending on the microorganism to be cultured.
希釈後の培養液を培養し(25℃、725rpm)、OD660が0.4~0.6となった時点で終濃度が10μMとなるようにIPTGを添加する。IPTGを添加後、温度25℃、攪拌数725rpmでpHを調整(pHの下限が6.0となるように、2N NaOHを添加)しつつ、通気量1L/分(通気ガス 空気:窒素ガスが1:4)で24時間培養する。培養後、以下の組成のリン酸緩衝液(pH7.0)にて集洗菌する。上記のように調製した微生物は、カテコール化合物の生成反応まで、-80℃で保管する。
The diluted culture solution is cultured (25 ° C., 725 rpm), and IPTG is added so that the final concentration becomes 10 μM when OD 660 reaches 0.4 to 0.6. After adding IPTG, adjusting the pH at a temperature of 25 ° C. and a stirring rate of 725 rpm (adding 2N NaOH so that the lower limit of the pH is 6.0), the aeration rate is 1 L / min (aeration gas air: nitrogen gas is Incubate at 1: 4) for 24 hours. After culture, the cells are collected and washed with a phosphate buffer solution (pH 7.0) having the following composition. The microorganism prepared as described above is stored at −80 ° C. until the formation reaction of the catechol compound.
調製した微生物に上記のリン酸緩衝液(pH7.0)を加えてOD660を測定する(緩衝液を加えて調製した微生物懸濁液を、「微生物懸濁液」とも称する。)。測定した微生物懸濁液のOD660から、OD660が5.0となる希釈倍率を求める。反応溶液調製後の微生物懸濁液の希釈倍率が、こうして求めた希釈倍率となるように、下記の反応液を調製する。調製した反応溶液を用いて、反応を行う(30℃、300rpm、4時間)。
The phosphate buffer (pH 7.0) is added to the prepared microorganism and OD 660 is measured (the microorganism suspension prepared by adding the buffer is also referred to as “microbe suspension”). From the measured OD 660 of the microorganism suspension, the dilution factor at which OD 660 is 5.0 is determined. The following reaction solution is prepared so that the dilution rate of the microorganism suspension after the preparation of the reaction solution is the dilution rate thus determined. Reaction is performed using the prepared reaction solution (30 ° C., 300 rpm, 4 hours).
反応後、生成した2-(2,3-ジヒドロキシフェニル)エタノールをLC-MSにより分析する。2-(2,3-ジヒドロキシフェニル)エタノールは、UVのピーク(保持時間:5.2分、m/z:155、137)から定量すればよい。
(LC-MSによる分析条件)
MS: 3200QTRAP (AB Sciex)
移動層: A液 0.1% ギ酸
B液 アセトニトリル
カラム: カプセルパックAQ 粒子径3μm 内径2mm 長さ25cm
カラム温度: 40℃
検出波長: 254nm
流速: 0.2mL/min
分析時間: 15 min
MASSモード:Q1 posi
測定m/z: 100-250
グラジエント: After the reaction, the produced 2- (2,3-dihydroxyphenyl) ethanol is analyzed by LC-MS. 2- (2,3-dihydroxyphenyl) ethanol may be quantified from the UV peak (retention time: 5.2 minutes, m / z: 155, 137).
(Analysis conditions by LC-MS)
MS: 3200QTRAP (AB Sciex)
Moving layer: Liquid A 0.1% formic acid Liquid B Acetonitrile column: Capsule packAQ Particle diameter 3 μm Internal diameter 2 mm Length 25 cm
Column temperature: 40 ° C
Detection wavelength: 254 nm
Flow rate: 0.2 mL / min
Analysis time: 15 min
MASS mode: Q1 posi
Measurement m / z: 100-250
Gradient:
(LC-MSによる分析条件)
MS: 3200QTRAP (AB Sciex)
移動層: A液 0.1% ギ酸
B液 アセトニトリル
カラム: カプセルパックAQ 粒子径3μm 内径2mm 長さ25cm
カラム温度: 40℃
検出波長: 254nm
流速: 0.2mL/min
分析時間: 15 min
MASSモード:Q1 posi
測定m/z: 100-250
グラジエント: After the reaction, the produced 2- (2,3-dihydroxyphenyl) ethanol is analyzed by LC-MS. 2- (2,3-dihydroxyphenyl) ethanol may be quantified from the UV peak (retention time: 5.2 minutes, m / z: 155, 137).
(Analysis conditions by LC-MS)
MS: 3200QTRAP (AB Sciex)
Moving layer: Liquid A 0.1% formic acid Liquid B Acetonitrile column: Capsule pack
Column temperature: 40 ° C
Detection wavelength: 254 nm
Flow rate: 0.2 mL / min
Analysis time: 15 min
MASS mode: Q1 posi
Measurement m / z: 100-250
Gradient:
生成した2-(2,3-ジヒドロキシフェニル)エタノールの定量結果から、20mMの2-フェニルエタノールを原料としたときに生成する、単位時間・単位菌体濃度当りの2-(2,3-ジヒドロキシフェニル)エタノールの量(mM/(h・OD660))を算出する。このとき、時間(h)は反応時間である4時間を採用し、OD660は反応液の調製時の5.0を採用する。
Based on the quantification result of 2- (2,3-dihydroxyphenyl) ethanol produced, 2- (2,3-dihydroxy per unit time and unit cell concentration produced when 20 mM 2-phenylethanol is used as a raw material. The amount of phenyl) ethanol (mM / (h · OD 660 )) is calculated. At this time, the time (h) is 4 hours as the reaction time, and OD 660 is 5.0 at the time of preparing the reaction solution.
本発明にかかる調製方法においては、IPTGを含む液で培養した形質転換微生物の、2-フェニルエタノールを原料としたときの2-(2,3-ジヒドロキシフェニル)エタノールの上記方法により算出される生成速度が、0.45mM/(h・OD660)以上であることが好ましい。より好ましくは、上記方法により算出される2-フェニルエタノールを原料としたときの2-(2,3-ジヒドロキシフェニル)エタノールの生成速度が0.50mM/(h・OD660)以上であり、より好ましくは0.70mM/(h・OD660)以上である。2-フェニルエタノールを原料としたときの2-(2,3-ジヒドロキシフェニル)エタノールの生成速度の上限は特に制限されるものではないが、例えば、1.60mM/(h・OD660)以下(例えば、1.57mM/(h・OD660)以下)である。本発明にかかる調製方法によれば、2-フェニルエタノールを原料としたときに、2-(2,3-ジヒドロキシフェニル)エタノールを0.45mM/(h・OD660)以上の速度で生成する、形質転換微生物を得ることができる。
In the preparation method according to the present invention, the production of 2- (2,3-dihydroxyphenyl) ethanol calculated by the above method using 2-phenylethanol as a raw material of a transformed microorganism cultured in a solution containing IPTG The speed is preferably 0.45 mM / (h · OD 660 ) or more. More preferably, the production rate of 2- (2,3-dihydroxyphenyl) ethanol using 2-phenylethanol calculated by the above method is 0.50 mM / (h · OD 660 ) or more, Preferably, it is 0.70 mM / (h · OD 660 ) or more. The upper limit of the production rate of 2- (2,3-dihydroxyphenyl) ethanol when 2-phenylethanol is used as a raw material is not particularly limited, but is, for example, 1.60 mM / (h · OD 660 ) or less ( For example, it is 1.57 mM / (h · OD 660 ) or less). According to the preparation method of the present invention, when 2-phenylethanol is used as a raw material, 2- (2,3-dihydroxyphenyl) ethanol is produced at a rate of 0.45 mM / (h · OD 660 ) or more. A transformed microorganism can be obtained.
本発明の一実施形態では、形質転換微生物は、イソプロピルβ-チオガラクトピラノシド誘導性プロモーター(1)ならびに前記プロモーター(1)と作動的に連結された芳香環ジオキシゲナーゼ遺伝子群および芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を含むカセット(1)と、イソプロピルβ-チオガラクトピラノシド誘導性プロモーター(2)ならびに前記プロモーター(2)と作動的に連結された芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を含むカセット(2)とを、前記カセット(1)と前記カセット(2)とのコピー数の比が1:1~5:1となるよう微生物に導入されてなる。本発明の更なる実施形態では、前記プロモーター(1)および前記プロモーター(2)が、T7プロモーターまたはtacプロモーターである。
In one embodiment of the present invention, the transformed microorganism comprises an isopropyl β-thiogalactopyranoside inducible promoter (1) and an aromatic ring dioxygenase gene group and an aromatic ring dihydro operably linked to the promoter (1). Cassette (1) containing diol dehydrogenase gene, isopropyl β-thiogalactopyranoside inducible promoter (2) and cassette (2) containing aromatic ring dihydrodiol dehydrogenase gene operably linked to said promoter (2) Are introduced into the microorganism so that the copy number ratio between the cassette (1) and the cassette (2) is 1: 1 to 5: 1. In a further embodiment of the invention, said promoter (1) and said promoter (2) are T7 promoter or tac promoter.
[カテコール化合物の製造方法]
本発明の第二の側面は、上記の調製方法により調製された形質転換微生物を用いた、下記一般式(1)で表されるカテコール化合物の製造方法に関する。本発明の第二の側面によれば、該方法により調製された形質転換微生物を利用した、カテコール化合物の効率的な製造方法が提供される。本発明の第二の側面によれば、該方法により調製された形質転換微生物を利用した、カテコール化合物の効率的な製造方法が提供される。 [Method for producing catechol compound]
The second aspect of the present invention relates to a method for producing a catechol compound represented by the following general formula (1) using a transformed microorganism prepared by the above preparation method. According to the second aspect of the present invention, there is provided an efficient method for producing a catechol compound using a transformed microorganism prepared by the method. According to the second aspect of the present invention, there is provided an efficient method for producing a catechol compound using a transformed microorganism prepared by the method.
本発明の第二の側面は、上記の調製方法により調製された形質転換微生物を用いた、下記一般式(1)で表されるカテコール化合物の製造方法に関する。本発明の第二の側面によれば、該方法により調製された形質転換微生物を利用した、カテコール化合物の効率的な製造方法が提供される。本発明の第二の側面によれば、該方法により調製された形質転換微生物を利用した、カテコール化合物の効率的な製造方法が提供される。 [Method for producing catechol compound]
The second aspect of the present invention relates to a method for producing a catechol compound represented by the following general formula (1) using a transformed microorganism prepared by the above preparation method. According to the second aspect of the present invention, there is provided an efficient method for producing a catechol compound using a transformed microorganism prepared by the method. According to the second aspect of the present invention, there is provided an efficient method for producing a catechol compound using a transformed microorganism prepared by the method.
前記一般式(1)中、Rは水素原子、ハロゲン原子、フェニル基、複素環基または下記一般式(2)で示される基である。本明細書において「複素環基」は、員数5~10のヘテロ環により構成される基であり、複素環の具体例としては、フラン、チオフェン、ピロール、イミダゾール、ピラゾール、チアゾール、イソチアゾール、オキサゾール、ピロリジン、ピラン、ピリジン、ピリミジン、ピラジン、ピペリジン、ピペラジン、モルホリン、インドール、インダノン、ベンゾフラン、ベンゾイミダゾール、ベンゾチアゾール、ベンゾオキサゾール、プリン、キノリン、イソキノリン、クロメン、クロメン-4-オン、クロマンおよびクロマン-4-オンが例示できる。
In the general formula (1), R is a hydrogen atom, a halogen atom, a phenyl group, a heterocyclic group, or a group represented by the following general formula (2). In the present specification, the “heterocyclic group” is a group composed of a 5- to 10-membered heterocyclic ring. Specific examples of the heterocyclic ring include furan, thiophene, pyrrole, imidazole, pyrazole, thiazole, isothiazole, and oxazole. , Pyrrolidine, pyran, pyridine, pyrimidine, pyrazine, piperidine, piperazine, morpholine, indole, indanone, benzofuran, benzimidazole, benzothiazole, benzoxazole, purine, quinoline, isoquinoline, chromene, chromen-4-one, chroman and chroman- 4-on can be exemplified.
好ましくは、一般式(1)中、Rは水素原子、ハロゲン原子、または下記一般式(2)で表わされる。
Preferably, in the general formula (1), R is represented by a hydrogen atom, a halogen atom, or the following general formula (2).
前記一般式(2)中、xは0または1であり、Yは炭素数1~5の直鎖または分岐鎖のアルキレン基であり、Zは水素原子または水酸基である。好ましくは、xは0または1であり、Yは炭素数1~3の直鎖または分岐鎖のアルキレン基であり、Zは水素原子または水酸基である。より好ましくは、xは0または1であり、Yは-(CH2)n-(nは1~3の整数)であり、Zは水酸基である。
In the general formula (2), x is 0 or 1, Y is a linear or branched alkylene group having 1 to 5 carbon atoms, and Z is a hydrogen atom or a hydroxyl group. Preferably, x is 0 or 1, Y is a linear or branched alkylene group having 1 to 3 carbon atoms, and Z is a hydrogen atom or a hydroxyl group. More preferably, x is 0 or 1, Y is — (CH 2 ) n — (n is an integer of 1 to 3), and Z is a hydroxyl group.
一般式(1)で表わされるカテコール化合物としては、より具体的には、カテコール、3-フルオロカテコール、3-クロロカテコール、3-ブロモカテコール、3-ヨードカテコール、3-フェニルカテコール、3-メチルカテコール、3-エチルカテコール、3-n-プロピルカテコール、3-イソプロピルカテコール、3-n-ブチルカテコール、3-sec-ブチルカテコール、3-tert-ブチルカテコール、3-メトキシカテコール、3-エトキシカテコール、3-n-プロポキシカテコール、3-イソプロポキシカテコール、3-n-ブトキシカテコール、3-sec-ブトキシカテコール、3-tert-ブトキシカテコール、2,3-ジヒドロキシベンジルアルコール、(2,3-ジヒドロキシフェノキシ)メタノール、1-(2,3-ジヒドロキシフェニル)エタノール、1-(2,3-ジヒドロキシフェノキシ)エタノール、2-(2,3-ジヒドロキシフェニル)エタノール、2-(2,3-ジヒドロキシフェノキシ)エタノール、1-(2,3-ジヒドロキシフェニル)-1-プロピルアルコール、1-(2,3-ジヒドロキシフェニル)-2-プロピルアルコール、1-(2,3-ジヒドロキシフェノキシ)-1-プロピルアルコール、1-(2,3-ジヒドロキシフェノキシ)-2-プロピルアルコール、2-(2,3-ジヒドロキシフェニル)-1-プロピルアルコール、2-(2,3-ジヒドロキシフェニル)-2-プロピルアルコール、2-(2,3-ジヒドロキシフェノキシ)-1-プロピルアルコール、2-(2,3-ジヒドロキシフェノキシ)-2-プロピルアルコール、3-(2,3-ジヒドロキシフェニル)-1-プロピルアルコール、3-(2,3-ジヒドロキシフェノキシ)-1-プロピルアルコール、2-(2,3-ジヒドロキシフェニル)-ピリジン、2-(2,3-ジヒドロキシフェニル)-インドール、2-(2,3-ジヒドロキシフェニル)-インダン-1-オン、3-(2,3-ジヒドロキシフェニル)-インダン-1-オン、2-(2,3-ジヒドロキシフェニル)-キノリン、2-(2,3-ジヒドロキシフェニル)-ベンゾオキサゾール、2-(2,3-ジヒドロキシフェニル)-クロメン-4-オン、2-(2,3-ジヒドロキシフェニル)-クロマン-4-オン、等が例示できる。
More specifically, the catechol compound represented by the general formula (1) includes catechol, 3-fluorocatechol, 3-chlorocatechol, 3-bromocatechol, 3-iodocatechol, 3-phenylcatechol, 3-methylcatechol. 3-ethyl catechol, 3-n-propyl catechol, 3-isopropyl catechol, 3-n-butyl catechol, 3-sec-butyl catechol, 3-tert-butyl catechol, 3-methoxy catechol, 3-ethoxy catechol, 3 -N-propoxycatechol, 3-isopropoxycatechol, 3-n-butoxycatechol, 3-sec-butoxycatechol, 3-tert-butoxycatechol, 2,3-dihydroxybenzyl alcohol, (2,3-dihydroxyphenoxy) methanol 1- (2,3-dihydroxyphenyl) ethanol, 1- (2,3-dihydroxyphenoxy) ethanol, 2- (2,3-dihydroxyphenyl) ethanol, 2- (2,3-dihydroxyphenoxy) ethanol, 1 -(2,3-dihydroxyphenyl) -1-propyl alcohol, 1- (2,3-dihydroxyphenyl) -2-propyl alcohol, 1- (2,3-dihydroxyphenoxy) -1-propyl alcohol, 1- ( 2,3-dihydroxyphenoxy) -2-propyl alcohol, 2- (2,3-dihydroxyphenyl) -1-propyl alcohol, 2- (2,3-dihydroxyphenyl) -2-propyl alcohol, 2- (2, 3-dihydroxyphenoxy) -1-propyl alcohol, 2- (2,3-dihydroxy Enoxy) -2-propyl alcohol, 3- (2,3-dihydroxyphenyl) -1-propyl alcohol, 3- (2,3-dihydroxyphenoxy) -1-propyl alcohol, 2- (2,3-dihydroxyphenyl) -Pyridine, 2- (2,3-dihydroxyphenyl) -indole, 2- (2,3-dihydroxyphenyl) -indan-1-one, 3- (2,3-dihydroxyphenyl) -indan-1-one, 2- (2,3-dihydroxyphenyl) -quinoline, 2- (2,3-dihydroxyphenyl) -benzoxazole, 2- (2,3-dihydroxyphenyl) -chromen-4-one, 2- (2,3 -Dihydroxyphenyl) -chroman-4-one and the like.
本発明にかかる製造方法では、上記方法にて調製された形質転換微生物を、芳香族化合物原料に接触させることにより行う。芳香族化合物原料としては、ベンゼン、フルオロベンゼン、クロロベンゼン、ブロモベンゼン、ヨードベンゼン、ビフェニル、トルエン(メチルベンゼン)、アニソール(メトキシベンゼン)、ベンジルアルコール(フェニルメタノール)、フェノキシメタノール、フェニルエタン、フェノキシエタン、1-フェニルエタノール、2-フェニルエタノール、1-フェノキシエタノール、2-フェノキシエタノール、1-フェニル-プロパン、1-フェノキシ-プロパン、1-フェニル-1-プロピルアルコール、1-フェニル-2-プロピルアルコール、1-フェノキシ-1-プロピルアルコール、1-フェノキシ-2-プロピルアルコール、2-フェニル-プロパン、2-フェノキシ-プロパン、2-フェニル-1-プロピルアルコール、2-フェニル-2-プロピルアルコール、2-フェノキシ-1-プロピルアルコール、2-フェノキシ-2-プロピルアルコール、3-フェニル-1-プロピルアルコール、3-フェノキシ-1-プロピルアルコール、2-フェニル-ピリジン、2-フェニル-インドール、2-フェニル-インダン-1-オン、3-フェニル-インダン-1-オン、2-フェニル-キノリン、2-フェニル-ベンゾオキサゾール、2-フェニル-クロメン-4-オン、2-フェニル-クロマン-4-オン等が例示できる。
In the production method according to the present invention, the transformed microorganism prepared by the above method is brought into contact with an aromatic compound raw material. As aromatic compound raw materials, benzene, fluorobenzene, chlorobenzene, bromobenzene, iodobenzene, biphenyl, toluene (methylbenzene), anisole (methoxybenzene), benzyl alcohol (phenylmethanol), phenoxymethanol, phenylethane, phenoxyethane, 1-phenylethanol, 2-phenylethanol, 1-phenoxyethanol, 2-phenoxyethanol, 1-phenyl-propane, 1-phenoxy-propane, 1-phenyl-1-propyl alcohol, 1-phenyl-2-propyl alcohol, 1- Phenoxy-1-propyl alcohol, 1-phenoxy-2-propyl alcohol, 2-phenyl-propane, 2-phenoxy-propane, 2-phenyl-1-propyl alcohol, -Phenyl-2-propyl alcohol, 2-phenoxy-1-propyl alcohol, 2-phenoxy-2-propyl alcohol, 3-phenyl-1-propyl alcohol, 3-phenoxy-1-propyl alcohol, 2-phenyl-pyridine, 2-phenyl-indole, 2-phenyl-indan-1-one, 3-phenyl-indan-1-one, 2-phenyl-quinoline, 2-phenyl-benzoxazole, 2-phenyl-chromen-4-one, 2 Examples thereof include -phenyl-chroman-4-one.
本発明にかかる製造方法では、上記方法にて調製された形質転換微生物を含む培養液(IPTGを含む液)中に、芳香族化合物原料を添加してカテコール化合物の合成反応を行うこともできる。すなわち、反応溶媒としては、培地成分を含む液を用いることもできる。しかしながら、反応場に培地成分が含まれると、酢酸等のグルコース代謝産物により反応が阻害されたり、生成物の精製が困難になったり、副生成物が生じたりすることがある。従って、本発明においては、上記方法にて調製された形質転換微生物を集菌し、培地成分を含まない液中でカテコール化合物の合成反応を行う、休止菌体反応によってカテコール化合物が製造されることが好ましい。休止菌体反応によってカテコール化合物の合成反応を行う場合、用いる反応溶媒としては、BES、HEPES、TES、ビシン、トリシン等のGOOD緩衝液、グリシン-NaOH等のアミノ酸系緩衝液、リン酸緩衝液、トリス-塩酸緩衝液、酢酸緩衝液、ホウ酸緩衝液などの緩衝液が好ましい。緩衝液のpHとしては、通常、pH4.0~10.0程度のものが用いられる。緩衝液には、酵素の性質等に応じて、マグネシウム、カルシウム、ナトリウム、カリウム、銅、および鉄、などの、リン酸塩、塩酸塩、硫酸塩、酢酸塩、炭酸塩、塩化物等のハロゲン化物などの無機成分を添加しても良い。
In the production method according to the present invention, a synthetic reaction of a catechol compound can be performed by adding an aromatic compound raw material to a culture solution (a solution containing IPTG) containing a transformed microorganism prepared by the above method. That is, as the reaction solvent, a liquid containing a medium component can also be used. However, when a medium component is included in the reaction field, the reaction may be inhibited by glucose metabolites such as acetic acid, the product may be difficult to purify, or a by-product may be generated. Therefore, in the present invention, the transformed microorganism prepared by the above method is collected, and the catechol compound is produced by a resting cell reaction in which the synthesis reaction of the catechol compound is performed in a liquid not containing a medium component. Is preferred. When performing a catechol compound synthesis reaction by resting cell reaction, reaction solvents used include GOOD buffers such as BES, HEPES, TES, bicine, and tricine, amino acid buffers such as glycine-NaOH, phosphate buffers, Buffers such as Tris-HCl buffer, acetate buffer, and borate buffer are preferred. As the pH of the buffer solution, one having a pH of about 4.0 to 10.0 is usually used. The buffer includes halogens such as phosphate, hydrochloride, sulfate, acetate, carbonate, and chloride, such as magnesium, calcium, sodium, potassium, copper, and iron, depending on the nature of the enzyme. An inorganic component such as a chemical compound may be added.
集菌は、例えば、1000~10000×gで培養液を遠心分離し、沈殿(菌体画分)を回収すればよい。こうして回収した微生物に、微生物に応じて適宜選択される緩衝液を加え、菌体を懸濁して微生物を洗浄しても良い。微生物の洗浄に用いる緩衝液としては、例えば、上述の休止菌体反応に用いられる緩衝液が例示できる。洗浄は複数回行っても良い。IPTGを含む液で培養することにより調製された形質転換微生物は、カテコール化合物の生成反応まで、冷凍(例えば、-80℃)で保管してもよい。調製後の形質転換微生物の冷凍は、液量を減らすため、集菌後に行うことが好ましい。
For collection of bacteria, for example, the culture solution may be centrifuged at 1000 to 10,000 × g, and the precipitate (bacterial cell fraction) may be collected. A buffer appropriately selected according to the microorganism may be added to the microorganism thus collected, and the microorganism may be suspended to wash the microorganism. As a buffer used for washing | cleaning of microorganisms, the buffer used for the above-mentioned resting cell reaction can be illustrated, for example. Washing may be performed multiple times. The transformed microorganism prepared by culturing in a solution containing IPTG may be stored frozen (for example, at −80 ° C.) until the catechol compound production reaction. Freezing of the transformed microorganism after preparation is preferably performed after collection to reduce the liquid volume.
反応液中における芳香族化合物原料の濃度は、基質阻害による影響が出ない範囲で調整できる。本発明にかかる製造方法では、芳香族化合物原料の濃度が、1~100mMであることが好ましく、5~50mMであることがより好ましい。また、上記で回収した形質転換微生物の反応液中の量は、例えば、反応開始時において、OD660が0.5~100となる量であり、好ましくはOD660が1~40となる量である。形質転換微生物の反応液中のOD660を上記の範囲に調整するには、本発明に係る調製方法にて調製した形質転換微生物を必要に応じて希釈してOD660を求め、反応液中のOD660が所望の値となる希釈率を算出し、反応液への菌体の添加量を決定すればよい。
The concentration of the aromatic compound raw material in the reaction solution can be adjusted within a range where the influence of substrate inhibition does not occur. In the production method according to the present invention, the concentration of the aromatic compound raw material is preferably 1 to 100 mM, and more preferably 5 to 50 mM. The amount of the transformed microorganism collected in the reaction solution is, for example, an amount at which OD 660 is 0.5 to 100 at the start of the reaction, preferably an amount at which OD 660 is 1 to 40. is there. In order to adjust the OD 660 in the reaction solution of the transformed microorganism to the above range, the transformed microorganism prepared by the preparation method according to the present invention is diluted as necessary to obtain OD 660 , and the OD 660 in the reaction solution is obtained. What is necessary is just to calculate the dilution rate from which OD660 becomes a desired value, and determine the addition amount of the microbial cell to a reaction liquid.
本発明にかかる製造方法では、カテコール化合物の製造に用いられる芳香族化合物原料を、反応液に逐次添加しても良い。基質を逐次添加することで、製造のスケールアップが容易となり、選択率を高くすることができる。この場合、「選択率」とは、以下の数式1で表わされる値である。基質を逐次添加する場合、形質転換微生物(形質転換微生物懸濁液)をも追加添加しても良い。
In the production method according to the present invention, the aromatic compound raw material used for the production of the catechol compound may be sequentially added to the reaction solution. By sequentially adding the substrate, the production scale-up can be facilitated and the selectivity can be increased. In this case, the “selectivity” is a value represented by the following formula 1. When the substrate is added sequentially, a transformed microorganism (transformed microorganism suspension) may also be added.
カテコール化合物の生成における反応温度は、任意に設定すればよいが、例えば10~60℃であり、好ましくは20~40℃である。反応温度を10℃以上とすることにより、反応速度の低下を防止し得る。また、60℃以下で反応を行うことにより、芳香環ジオキシゲナーゼや芳香環ジヒドロジオールデヒドロゲナーゼの失活を防ぐことができる。反応は、例えば100~1000rpmで撹拌しながら行うことが好ましい。反応時間も、製造スケール等によって任意に設定すればよいが、通常、1~48時間である。
The reaction temperature in the production of the catechol compound may be arbitrarily set, and is, for example, 10 to 60 ° C., preferably 20 to 40 ° C. By setting the reaction temperature to 10 ° C. or higher, it is possible to prevent a decrease in the reaction rate. In addition, by carrying out the reaction at 60 ° C. or lower, inactivation of the aromatic ring dioxygenase or aromatic ring dihydrodiol dehydrogenase can be prevented. The reaction is preferably performed with stirring at, for example, 100 to 1000 rpm. The reaction time may be arbitrarily set depending on the production scale and the like, but is usually 1 to 48 hours.
得られた生成物は、溶媒抽出、蒸留、晶析、塩析、クロマトグラフィー、活性炭等の吸着材による処理など、任意の方法によって精製し得る。また、合成によって得られた生成物(カテコール化合物)の構造や生成量は、例えば実施例に記載のLCやGC、およびこれらに組み合わせたMSを用いた方法や、NMR、赤外分光法など、当業者に知られた手段によって確認できる。
The obtained product can be purified by any method such as solvent extraction, distillation, crystallization, salting out, chromatography, treatment with an adsorbent such as activated carbon. In addition, the structure and production amount of the product (catechol compound) obtained by synthesis include, for example, LC and GC described in Examples, and methods using MS combined with these, NMR, infrared spectroscopy, etc. This can be confirmed by means known to those skilled in the art.
[組成物、美白剤、酸素吸収剤]
本発明の第三の側面では、下記一般式(1)で表されるカテコール化合物および下記一般式(3)で表される一水酸化物を含み、100モルの前記カテコール化合物に対する前記一水酸化物の割合が、0.002~5モルである、組成物が提供される。本発明の第三の側面によれば、安定性に優れたカテコール化合物含有組成物が提供される。 [Composition, whitening agent, oxygen absorber]
In the third aspect of the present invention, the monohydration with respect to 100 mol of the catechol compound, comprising a catechol compound represented by the following general formula (1) and a monohydroxide represented by the following general formula (3): Compositions are provided wherein the proportion of the product is 0.002 to 5 moles. According to the third aspect of the present invention, a catechol compound-containing composition having excellent stability is provided.
本発明の第三の側面では、下記一般式(1)で表されるカテコール化合物および下記一般式(3)で表される一水酸化物を含み、100モルの前記カテコール化合物に対する前記一水酸化物の割合が、0.002~5モルである、組成物が提供される。本発明の第三の側面によれば、安定性に優れたカテコール化合物含有組成物が提供される。 [Composition, whitening agent, oxygen absorber]
In the third aspect of the present invention, the monohydration with respect to 100 mol of the catechol compound, comprising a catechol compound represented by the following general formula (1) and a monohydroxide represented by the following general formula (3): Compositions are provided wherein the proportion of the product is 0.002 to 5 moles. According to the third aspect of the present invention, a catechol compound-containing composition having excellent stability is provided.
前記一般式(1)中、Rは水素原子、ハロゲン原子、フェニル基、複素環基または下記一般式(2)で示される基である。
In the general formula (1), R is a hydrogen atom, a halogen atom, a phenyl group, a heterocyclic group, or a group represented by the following general formula (2).
前記一般式(2)中、xは0または1であり、Yは炭素数1~5の直鎖または分岐鎖のアルキレン基であり、Zは水素原子または水酸基である。
In the general formula (2), x is 0 or 1, Y is a linear or branched alkylene group having 1 to 5 carbon atoms, and Z is a hydrogen atom or a hydroxyl group.
本発明の第三の側面において、上記一般式(1)および(2)におけるR、x、Y、およびZの定義は、上記第二の側面における定義と同様であり、第二の側面における説明が適宜修飾されて第三の側面にも適用される。
In the third aspect of the present invention, the definitions of R, x, Y, and Z in the general formulas (1) and (2) are the same as the definitions in the second aspect, and the explanation in the second aspect. Is appropriately modified and applied to the third aspect.
前記一般式(3)中、R’は複素環基または下記一般式(4)で示される基である。
In the general formula (3), R ′ is a heterocyclic group or a group represented by the following general formula (4).
前記一般式(4)中、x’は0または1であり、Y’は炭素数1~5の直鎖または分岐鎖のアルキレン基であり、Z’は水素原子または水酸基である。
In the general formula (4), x ′ is 0 or 1, Y ′ is a linear or branched alkylene group having 1 to 5 carbon atoms, and Z ′ is a hydrogen atom or a hydroxyl group.
本発明の第三の側面において、上記一般式(3)におけるR’は、上記一般式(1)におけるRについての説明が適宜修飾されて適用される。また、本発明の第三の側面において、上記一般式(4)におけるx’、Y’、およびZ’はそれぞれ、上記一般式(2)におけるx、Y、およびZとそれぞれ同様の定義であり、上記一般式(2)についての説明が適宜修飾されて適用される。上記一般式(3)において、水酸基はオルト位、メタ位またはパラ位のいずれであっても良いが、好ましくはオルト位またはメタ位であり、より好ましくはオルト位である。
In the third aspect of the present invention, R ′ in the general formula (3) is applied by appropriately modifying the description of R in the general formula (1). In the third aspect of the present invention, x ′, Y ′, and Z ′ in the general formula (4) have the same definitions as x, Y, and Z in the general formula (2), respectively. The description of the general formula (2) is appropriately modified and applied. In the general formula (3), the hydroxyl group may be in the ortho position, the meta position or the para position, but is preferably the ortho position or the meta position, more preferably the ortho position.
一般式(3)で表わされる一水酸化物は、より具体的には、例えば、2-ヒドロキシベンジルアルコール、3-ヒドロキシベンジルアルコール、4-ヒドロキシベンジルアルコール、2-ヒドロキシフェノキシメタノール、3-ヒドロキシフェノキシメタノール、4-ヒドロキシフェノキシメタノール、1-(2-ヒドロキシフェニル)エタノール、1-(3-ヒドロキシフェニル)エタノール、1-(2-ヒドロキシフェノキシ)エタノール、1-(3-ヒドロキシフェノキシ)エタノール、2-(2-ヒドロキシフェニル)エタノール、2-(3-ヒドロキシフェニル)エタノール、2-(4-ヒドロキシフェニル)エタノール(チロソール)、2-(2-ヒドロキシフェノキシ)エタノール、2-(3-ヒドロキシフェノキシ)エタノール、2-(4-ヒドロキシフェノキシ)エタノール、1-(2-ヒドロキシフェニル)-1-プロピルアルコール、1-(2-ヒドロキシフェニル)-2-プロピルアルコール、1-(2-ヒドロキシフェノキシ)-1-プロピルアルコール、1-(2-ヒドロキシフェノキシ)-2-プロピルアルコール、2-(2-ヒドロキシフェニル)-1-プロピルアルコール、2-(2-ヒドロキシフェニル)-2-プロピルアルコール、2-(2-ヒドロキシフェノキシ)-1-プロピルアルコール、2-(2-ヒドロキシフェノキシ)-2-プロピルアルコール、3-(2-ヒドロキシフェニル)-1-プロピルアルコール、3-(2-ヒドロキシフェノキシ)-1-プロピルアルコール、2-(2-ヒドロキシフェニル)-ピリジン、2-(2-ヒドロキシフェニル)-インドール、2-(2-ヒドロキシフェニル)-インダン-1-オン、3-(2-ヒドロキシフェニル)-インダン-1-オン、2-(2-ヒドロキシフェニル)-キノリン、2-(2-ヒドロキシフェニル)-ベンゾオキサゾール、2-(2-ヒドロキシフェニル)-クロメン-4-オン、2-(2-ヒドロキシフェニル)-クロマン-4-オン、等が例示できる。
More specifically, the monohydroxide represented by the general formula (3) is, for example, 2-hydroxybenzyl alcohol, 3-hydroxybenzyl alcohol, 4-hydroxybenzyl alcohol, 2-hydroxyphenoxymethanol, 3-hydroxyphenoxy. Methanol, 4-hydroxyphenoxymethanol, 1- (2-hydroxyphenyl) ethanol, 1- (3-hydroxyphenyl) ethanol, 1- (2-hydroxyphenoxy) ethanol, 1- (3-hydroxyphenoxy) ethanol, 2- (2-hydroxyphenyl) ethanol, 2- (3-hydroxyphenyl) ethanol, 2- (4-hydroxyphenyl) ethanol (tyrosol), 2- (2-hydroxyphenoxy) ethanol, 2- (3-hydroxyphenoxy) ethane 2- (4-hydroxyphenoxy) ethanol, 1- (2-hydroxyphenyl) -1-propyl alcohol, 1- (2-hydroxyphenyl) -2-propyl alcohol, 1- (2-hydroxyphenoxy)- 1-propyl alcohol, 1- (2-hydroxyphenoxy) -2-propyl alcohol, 2- (2-hydroxyphenyl) -1-propyl alcohol, 2- (2-hydroxyphenyl) -2-propyl alcohol, 2- ( 2-hydroxyphenoxy) -1-propyl alcohol, 2- (2-hydroxyphenoxy) -2-propyl alcohol, 3- (2-hydroxyphenyl) -1-propyl alcohol, 3- (2-hydroxyphenoxy) -1- Propyl alcohol, 2- (2-hydroxyphenyl) -pyridine, 2 (2-hydroxyphenyl) -indole, 2- (2-hydroxyphenyl) -indan-1-one, 3- (2-hydroxyphenyl) -indan-1-one, 2- (2-hydroxyphenyl) -quinoline, Examples include 2- (2-hydroxyphenyl) -benzoxazole, 2- (2-hydroxyphenyl) -chromen-4-one, 2- (2-hydroxyphenyl) -chroman-4-one, and the like.
組成物に含まれる一般式(1)で表されるカテコール化合物のRと、一般式(3)で表わされる一水酸化物のR’とは、同一であることが好ましい。
It is preferable that R of the catechol compound represented by the general formula (1) included in the composition and R ′ of the monohydroxide represented by the general formula (3) are the same.
後述のように、上記一般式(1)で表されるカテコール化合物には、美白作用が認められる。一方、一般式(1)で表されるカテコール化合物に加えて上記一般式(3)で表わされる一水酸化物を所定の範囲で含む組成物は、カテコール化合物単独の場合に比べて、高い安定性(特に、カテコール化合物の分解および着色の抑制)が達成されることを本発明者は見出した。本発明の技術的範囲を制限するものでは無いが、これは、以下のメカニズムによるものと推測される。すなわち、一般式(3)で表わされるような酸化されやすい一水酸化物が組成物中に含まれることにより、組成物中の酸素がトラップされ、カテコール化合物の酸化安定性が増すためであると推測される。
As described later, the catechol compound represented by the general formula (1) has a whitening effect. On the other hand, in addition to the catechol compound represented by the general formula (1), the composition containing the monohydroxide represented by the general formula (3) in a predetermined range has a higher stability than the case of the catechol compound alone. The present inventors have found that the properties (particularly, the degradation of catechol compounds and the suppression of coloring) are achieved. Although it does not restrict | limit the technical scope of this invention, it is estimated that this is based on the following mechanisms. That is, when a monohydroxide that is easily oxidized as represented by the general formula (3) is contained in the composition, oxygen in the composition is trapped and the oxidation stability of the catechol compound is increased. Guessed.
本発明に係る組成物は、100モルの一般式(1)で表わされるカテコール化合物(「一般式(1)で表わされるカテコール化合物」を、単に「本発明に係るカテコール化合物」とも称する。)に対して、一般式(3)で表わされる一水酸化物(「一般式(3)で表わされる一水酸化物」を、単に「本発明に係る一水酸化物」とも称する。)を0.002~5モルの割合で含む。100モルの本発明に係るカテコール化合物に対して、0.002モル以上の割合で本発明に係る一水酸化物を組成物が含むことにより、高い酸化安定性を得ることができる。また、100モルの本発明に係るカテコール化合物に対して、本発明に係る一水酸化物の割合が5モル以下であることにより、本発明に関わるカテコール化合物の美白効果等の機能への影響が抑えられるという利点がある。一般式(1)で表わされるカテコール化合物と一般式(3)で表わされる一水酸化物の組成物中の含量は、例えば実施例に記載のガスクロマトグラフィー法により測定され得る。ガスクロマトグラフィー法等により一般式(3)で表わされる一水酸化物の組成物中の含量を測定する際は、必要に応じて測定試料を濃縮してから測定しても良い。好ましくは、本発明に係る組成物は、100モルの一般式(1)で表わされるカテコール化合物に対して、一般式(3)で表わされる一水酸化物を0.005~5モルの割合で含み、より好ましくは0.01~1モルの割合で含む。
In the composition according to the present invention, 100 moles of the catechol compound represented by the general formula (1) (the “catechol compound represented by the general formula (1)” is also simply referred to as “the catechol compound according to the present invention”). On the other hand, the monohydroxide represented by the general formula (3) ("monohydroxide represented by the general formula (3)" is also simply referred to as "monohydroxide according to the present invention") is 0. It is contained at a ratio of 002 to 5 mol. When the composition contains the monohydroxide according to the present invention at a ratio of 0.002 mol or more with respect to 100 mol of the catechol compound according to the present invention, high oxidation stability can be obtained. Further, when the proportion of the monohydroxide according to the present invention is 5 mol or less with respect to 100 mol of the catechol compound according to the present invention, the catechol compound according to the present invention has an influence on functions such as whitening effect. There is an advantage that it can be suppressed. The content of the catechol compound represented by the general formula (1) and the monohydroxide represented by the general formula (3) in the composition can be measured, for example, by the gas chromatography method described in the examples. When measuring the content in the composition of the monohydroxide represented by the general formula (3) by gas chromatography or the like, the measurement sample may be concentrated after measurement if necessary. Preferably, the composition according to the present invention contains 0.005 to 5 mol of the monohydroxide represented by the general formula (3) with respect to 100 mol of the catechol compound represented by the general formula (1). Contained, more preferably 0.01 to 1 mole.
一般式(1)で表わされるカテコール化合物の含量は、組成物中、例えば、95~99.998モル%である。また、一般式(3)で表わされる一水酸化物の含量は、組成物中、例えば、0.002~5モル%である。
The content of the catechol compound represented by the general formula (1) is, for example, 95 to 99.998 mol% in the composition. Further, the content of the monohydroxide represented by the general formula (3) is, for example, 0.002 to 5 mol% in the composition.
本発明の更なる実施形態では、発明に係る組成物は、組成物全体に対し、99.998~95モル%の一般式(1)で表わされるカテコール化合物、および0.002~5モル%の一般式(3)で表わされる一水酸化物からなる(ただし、一般式(1)で表わされるカテコール化合物と、一般式(3)で表わされる一水酸化物との合計量は100モル%である。)。好ましい別の実施形態では、本発明に係る組成物は、0.005~5モル%の一般式(1)で表わされるカテコール化合物、および95~99.995モル%の一般式(3)で表わされる一水酸化物からなる(ただし、一般式(1)で表わされるカテコール化合物と、一般式(3)で表わされる一水酸化物との合計量は100モル%である。)。より好ましい別の実施形態では、本発明に係る組成物は、0.01~1モル%の一般式(1)で表わされるカテコール化合物、および99~99.99モル%の一般式(3)で表わされる一水酸化物からなる(ただし、一般式(1)で表わされるカテコール化合物と、一般式(3)で表わされる一水酸化物との合計量は100モル%である。)。
In a further embodiment of the present invention, the composition according to the present invention comprises 99.998 to 95 mol% of the catechol compound represented by the general formula (1), and 0.002 to 5 mol% of the total composition. It consists of a monohydroxide represented by the general formula (3) (however, the total amount of the catechol compound represented by the general formula (1) and the monohydroxide represented by the general formula (3) is 100 mol%. is there.). In another preferred embodiment, the composition according to the present invention is represented by 0.005 to 5 mol% of a catechol compound represented by the general formula (1) and 95 to 99.995 mol% of a general formula (3). (However, the total amount of the catechol compound represented by the general formula (1) and the monohydroxide represented by the general formula (3) is 100 mol%). In another more preferred embodiment, the composition according to the present invention comprises 0.01 to 1 mol% of a catechol compound represented by the general formula (1) and 99 to 99.99 mol% of a general formula (3). (The total amount of the catechol compound represented by the general formula (1) and the monohydroxide represented by the general formula (3) is 100 mol%).
本発明に係るカテコール化合物および本発明に係る一水酸化物を含む組成物は、分離・精製した本発明に係るカテコール化合物に対して、所望の割合で本発明に係る一水酸化物を添加して調製することもできる。
The composition containing the catechol compound according to the present invention and the monohydroxide according to the present invention is obtained by adding the monohydroxide according to the present invention at a desired ratio to the separated and purified catechol compound according to the present invention. It can also be prepared.
また、芳香環ジオキシゲナーゼおよび芳香環ジヒドロジオールデヒドロゲナーゼを導入した形質転換微生物(例えば、本発明に係る調製方法により調製した形質転換微生物)を用いてカテコール化合物を製造した場合、副生成物として本発明に係る一水酸化物をも生じ得る。本発明の技術的範囲を制限するものでは無いが、これは、以下のメカニズムによるものと推測される。すなわち、上記の反応式(1)において、芳香環ジオキシゲナーゼによって隣接した2つの炭素原子に対して1つずつ水酸基が芳香族化合物に付加された後、水分子が自発的に脱離し、本発明に係る一水酸化物が生成するものと推測される。従って、本発明の一実施形態では、組成物に含まれる一般式(1)で表わされるカテコール化合物および一般式(3)で表わされる一水酸化物は、芳香環ジオキシゲナーゼおよび芳香環ジヒドロジオールデヒドロゲナーゼを導入した形質転換微生物を用いて、芳香族化合物原料を酸化することにより製造される。一実施形態では、当該形質転換微生物は、上記の調整方法によって調製された形質転換微生物である。
Further, when a catechol compound is produced using a transformed microorganism into which an aromatic ring dioxygenase and an aromatic ring dihydrodiol dehydrogenase have been introduced (for example, a transformed microorganism prepared by the preparation method according to the present invention), the present invention is used as a by-product. The monohydroxide according to can also be produced. Although it does not restrict | limit the technical scope of this invention, it is estimated that this is based on the following mechanisms. That is, in the above reaction formula (1), a hydroxyl group is added to an aromatic compound one by one with respect to two adjacent carbon atoms by an aromatic ring dioxygenase, and then water molecules are spontaneously desorbed. It is presumed that a monohydroxide according to the above is generated. Therefore, in one embodiment of the present invention, the catechol compound represented by the general formula (1) and the monohydroxide represented by the general formula (3) contained in the composition are aromatic ring dioxygenase and aromatic ring dihydrodiol dehydrogenase. It is produced by oxidizing an aromatic compound raw material using a transformed microorganism into which is introduced. In one embodiment, the transformed microorganism is a transformed microorganism prepared by the adjustment method described above.
芳香環ジオキシゲナーゼおよび芳香環ジヒドロジオールデヒドロゲナーゼを導入した形質転換微生物を用いてカテコール化合物を製造した場合、通常は、一般式(1)で表されるカテコール化合物のRと、一般式(3)で表わされる一水酸化物のR’とは、同一となる。また、この場合、一般式(3)で表わされる一水酸化物において、水酸基はオルト位、またはメタ位となる。
When a catechol compound is produced using a transformed microorganism into which an aromatic ring dioxygenase and an aromatic ring dihydrodiol dehydrogenase are introduced, usually, the R of the catechol compound represented by the general formula (1) and the general formula (3) R ′ of the monohydroxide represented is the same. In this case, in the monohydroxide represented by the general formula (3), the hydroxyl group is in the ortho position or the meta position.
芳香環ジオキシゲナーゼおよび芳香環ジヒドロジオールデヒドロゲナーゼを導入した形質転換微生物を用いて本発明に係るカテコール化合物および本発明に係る一水酸化物を製造する場合、一般式(1)で表されるカテコール化合物の選択率を上げる(例えば、カセット(1)に加えてカセット(2)を微生物に導入する、反応時間を長くする)ことにより、生成物中の本発明に係る一水酸化物含量を少なく(本発明に係るカテコール化合物量を多く)することができる。一方、一般式(1)で表されるカテコール化合物の選択率を下げることにより、生成物中の本発明に係る一水酸化物含量を多く(本発明に係るカテコール化合物量を少なく)することができる。かような手法により得られた生成物を、本発明に係る組成物として用いることができる。また、組成物中の本発明に係るカテコール化合物量や本発明に係る一水酸化物含量は、形質転換微生物を用いたカテコール化合物の生成後、分離・精製手法を適宜組み合わせて調整しても良い。この場合、一実施形態では、本発明の組成物において、本発明に係るカテコール化合物と本発明に係る一水酸化物との合計量は、組成物全体に対して、98~100質量%、好ましくは99~100質量%となるように、分離・精製を行う。組成物中に含まれる本発明に係るカテコール化合物、および本発明に係る一水酸化物の含量は、下記の実施例に記載の方法により測定することができる。
When producing the catechol compound according to the present invention and the monohydroxide according to the present invention using a transformed microorganism into which an aromatic ring dioxygenase and an aromatic ring dihydrodiol dehydrogenase are introduced, the catechol compound represented by the general formula (1) (E.g., introducing cassette (2) in addition to cassette (1) into the microorganism, increasing the reaction time), thereby reducing the monohydroxide content according to the present invention in the product ( The amount of the catechol compound according to the present invention can be increased). On the other hand, by reducing the selectivity of the catechol compound represented by the general formula (1), the monohydroxide content according to the present invention in the product can be increased (the amount of the catechol compound according to the present invention is reduced). it can. The product obtained by such a technique can be used as the composition according to the present invention. Further, the amount of the catechol compound according to the present invention and the content of the monohydric acid according to the present invention in the composition may be adjusted by appropriately combining separation and purification techniques after the production of the catechol compound using the transformed microorganism. . In this case, in one embodiment, in the composition of the present invention, the total amount of the catechol compound according to the present invention and the monohydroxide according to the present invention is 98 to 100% by mass, preferably based on the whole composition. Is separated and purified to 99 to 100% by mass. The content of the catechol compound according to the present invention and the monohydroxide according to the present invention contained in the composition can be measured by the method described in the following examples.
(美白剤)
一般式(1)で表されるカテコール化合物は美白作用を有する。本発明に係る組成物は、一般式(1)で表されるカテコール化合物に加えて、一般式(3)で表わされる一水酸化物を含むため、安定性に優れる。従って、本発明に係る組成物を、安定性に優れた美白剤として利用することができる。本発明の一実施形態では、本発明の組成物を含む、美白剤が提供される。 (Whitening agent)
The catechol compound represented by the general formula (1) has a whitening effect. Since the composition according to the present invention contains a monohydroxide represented by the general formula (3) in addition to the catechol compound represented by the general formula (1), the composition is excellent in stability. Therefore, the composition according to the present invention can be used as a whitening agent having excellent stability. In one embodiment of the present invention, a whitening agent comprising the composition of the present invention is provided.
一般式(1)で表されるカテコール化合物は美白作用を有する。本発明に係る組成物は、一般式(1)で表されるカテコール化合物に加えて、一般式(3)で表わされる一水酸化物を含むため、安定性に優れる。従って、本発明に係る組成物を、安定性に優れた美白剤として利用することができる。本発明の一実施形態では、本発明の組成物を含む、美白剤が提供される。 (Whitening agent)
The catechol compound represented by the general formula (1) has a whitening effect. Since the composition according to the present invention contains a monohydroxide represented by the general formula (3) in addition to the catechol compound represented by the general formula (1), the composition is excellent in stability. Therefore, the composition according to the present invention can be used as a whitening agent having excellent stability. In one embodiment of the present invention, a whitening agent comprising the composition of the present invention is provided.
美白剤として本発明に係る組成物を用いる場合、一般式(2)中、xは1であることが好ましい。また、美白剤として本発明に係る組成物を用いる場合、一般式(4)中、x’は1であることが好ましい。xやx’が1であることにより、より高い美白効果を得ることができる。
When the composition according to the present invention is used as a whitening agent, x is preferably 1 in the general formula (2). Moreover, when using the composition based on this invention as a whitening agent, it is preferable that x 'is 1 in General formula (4). When x and x 'are 1, a higher whitening effect can be obtained.
美白剤に含まれる本発明の組成物は、例えば0.0005質量%以上、好ましくは0.001質量%以上、より好ましくは0.003質量%以上である。美白剤に含まれる本発明の組成物の上限は、特に制限されないが、製造コストの観点から、例えば1質量%以下であり、好ましくは0.1質量%以下である。美白剤の形態としては、例えば、化粧水、化粧用乳液、美容液、化粧用ゲル、化粧石鹸、クレンジングクリーム、洗顔料、スキンクリーム、スキンミルク、エモリエントクリーム、化粧油、パック、日焼けオイル、日焼け止めオイル、日焼けローション、日焼け止めローション、日焼けクリーム、日焼け止めクリーム、ファンデーション、口紅、リップクリーム、歯磨き、デオドランド剤、リップクリームなどが挙げられる。
The composition of the present invention contained in the whitening agent is, for example, 0.0005% by mass or more, preferably 0.001% by mass or more, and more preferably 0.003% by mass or more. Although the upper limit of the composition of the present invention contained in the whitening agent is not particularly limited, it is, for example, 1% by mass or less, preferably 0.1% by mass or less, from the viewpoint of production cost. Examples of the whitening agent include lotion, cosmetic milk, cosmetic liquid, cosmetic gel, cosmetic soap, cleansing cream, facial cleanser, skin cream, skin milk, emollient cream, cosmetic oil, pack, tanning oil, and tanning. Stop oils, sun lotions, sunscreen lotions, sun creams, sun creams, foundations, lipsticks, lip balms, toothpastes, deodorants, lip balms and the like.
また、美白剤は、本発明の効果を損なわない範囲で、本発明に係るカテコール化合物以外の他の美白成分、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステル、ポリオキシエチレンアルキルエーテルなどの界面活性剤、スクワラン、流動パラフィン、パラフィンワックス、ワセリンなどの炭化水素類、パルミチン酸イソプロピル、ステアリン酸ブチルなどの脂肪酸エステル、ジメチコン、シクロメチコンなどのシリコーン油、ミツロウ、オリーブ油、サフラワー油などの油剤、エタノール、セチルアルコール、2-オクチルドデカノール、イソステアリルアルコールなどのアルコール類、グリセリン、プロピレングリコール、ブチレングリコールなどの多価アルコール、塩化ナトリウム、硫酸マグネシウムなどの安定剤、ビタミンA、ビタミンB群、ビタミンC、ビタミンEなどのビタミン類、カルボキシメチルセルロース、ポリビニルアルコール、カラギーナンなどの増粘剤、シリカ、タルク、マイカ、カオリン、ベントナイトなどの粘土鉱物、メチルパラベンなどの防腐剤、グリチルレチン酸塩などの抗炎症剤、PABA系、桂皮酸系、ベンゾフェノン系、サリチル酸系などの有機系紫外線吸収剤、アミノ酸類、グリチルリチン酸塩、乳化剤、香料、色素、顔料、酸化防止剤、収斂剤、細胞賦活剤、保湿剤、肌荒れ改善剤、美容成分、pH調節剤、バインダー、角質改良剤などの公知成分を適宜配合してもよい。
Further, the whitening agent is a range of other whitening components other than the catechol compound according to the present invention, such as sorbitan fatty acid ester, polyglycerin fatty acid ester, sucrose fatty acid ester, polyoxyethylene alkyl ether, etc. Oils such as surfactants, squalane, liquid paraffin, paraffin wax, hydrocarbons such as petroleum jelly, fatty acid esters such as isopropyl palmitate and butyl stearate, silicone oils such as dimethicone and cyclomethicone, beeswax, olive oil and safflower oil Alcohols such as ethanol, cetyl alcohol, 2-octyldodecanol, isostearyl alcohol, polyhydric alcohols such as glycerin, propylene glycol, butylene glycol, sodium chloride, magnesium sulfate Which stabilizers, vitamins such as vitamin A, vitamin B group, vitamin C, vitamin E, thickeners such as carboxymethylcellulose, polyvinyl alcohol, carrageenan, clay minerals such as silica, talc, mica, kaolin, bentonite, methylparaben, etc. Preservatives, anti-inflammatory agents such as glycyrrhetinate, PABA-based, cinnamic acid-based, benzophenone-based, salicylic acid-based organic UV absorbers, amino acids, glycyrrhizinate, emulsifier, fragrance, dye, pigment, antioxidant You may mix | blend well-known components, such as an agent, an astringent, a cell activator, a moisturizer, a rough skin improving agent, a cosmetic ingredient, a pH adjuster, a binder, and a keratin improving agent suitably.
(酸素吸収剤)
一般式(1)で表されるカテコール化合物は酸素吸収作用を有する。本発明の一実施形態では、本発明の組成物を含む、酸素吸収剤が提供される。 (Oxygen absorber)
The catechol compound represented by the general formula (1) has an oxygen absorbing action. In one embodiment of the present invention, an oxygen absorber is provided comprising the composition of the present invention.
一般式(1)で表されるカテコール化合物は酸素吸収作用を有する。本発明の一実施形態では、本発明の組成物を含む、酸素吸収剤が提供される。 (Oxygen absorber)
The catechol compound represented by the general formula (1) has an oxygen absorbing action. In one embodiment of the present invention, an oxygen absorber is provided comprising the composition of the present invention.
酸素吸収剤は本発明に係る組成物のみから構成されても良いが、例えば、グリセリン、エチレングリコール等のアルコール類、ソルビトール等の糖アルコール、アスコルビン酸、ヒドロキノン、ピロガロール、没食子酸、レゾルシンやその誘導体等の従来公知の脱酸素剤の主剤;主剤の反応の触媒である鉄、銅、マンガン、ニッケル等の遷移金属や、これらのハロゲン化物(例えば、塩化物)、硫酸塩、硝酸塩、リン酸塩、炭酸塩、酸化物、水酸化物等の遷移金属化合物;活性炭、黒鉛、カーボンブラック、シリカ、カオリン、タルク、ベントナイト、ゼオライト、パーライト、珪藻土、活性白土、ケイ酸カルシウム、酸化マグネシウム、水酸化カルシウム等の担体等を任意の割合で含んでも良い。
The oxygen absorbent may be composed only of the composition according to the present invention. For example, alcohols such as glycerin and ethylene glycol, sugar alcohols such as sorbitol, ascorbic acid, hydroquinone, pyrogallol, gallic acid, resorcin and derivatives thereof Main components of conventionally known oxygen scavengers such as: transition metals such as iron, copper, manganese, nickel, etc., and their halides (eg, chlorides), sulfates, nitrates, phosphates, which are catalysts for the reaction of the main components , Transition metal compounds such as carbonates, oxides, hydroxides; activated carbon, graphite, carbon black, silica, kaolin, talc, bentonite, zeolite, perlite, diatomaceous earth, activated clay, calcium silicate, magnesium oxide, calcium hydroxide A carrier such as the above may be contained in an arbitrary ratio.
酸素吸収剤に含まれる本発明の組成物は、酸素吸収剤全体に対して、例えば0.0001~20重量%である。一実施形態では、100重量部の担体に対して、0.001~0.1重量部の本発明に係る組成物が用いられる。
The composition of the present invention contained in the oxygen absorbent is, for example, 0.0001 to 20% by weight with respect to the whole oxygen absorbent. In one embodiment, 0.001 to 0.1 parts by weight of the composition according to the invention is used per 100 parts by weight of carrier.
本発明に係る酸素吸収剤は、例えば、食品、化粧品、医薬品、化成品、電子材料等に利用することができる。
The oxygen absorbent according to the present invention can be used for, for example, foods, cosmetics, pharmaceuticals, chemical products, electronic materials and the like.
[実施形態]
以下に、本発明の好ましい実施形態を示す。
1. 芳香環ジオキシゲナーゼ遺伝子群および芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を導入した形質転換微生物を、5~100μMのイソプロピルβ-チオガラクトピラノシドを含む液で培養することを有する、形質転換微生物の調製方法。
2. 前記イソプロピルβ-チオガラクトピラノシドを含む液の溶存酸素濃度が、0mg/Lを超えて5mg/L以下である、1に記載の調製方法。
3. 前記微生物が、大腸菌である、1または2に記載の調製方法。
4. 前記芳香環ジオキシゲナーゼ遺伝子群が、トルエンジオキシゲナーゼ遺伝子群である、1~3のいずれか1つに記載の調製方法。
5. 前記トルエンジオキシゲナーゼ遺伝子群が、シュードモナス・プチダ(Pseudomonas putida)に由来する、4に記載の調製方法。
6. 前記芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子が、cis-トルエンジヒドロジオールデヒドロゲナーゼ遺伝子である、1~5のいずれか1つに記載の調製方法。
7. 前記cis-トルエンジヒドロジオールデヒドロゲナーゼ遺伝子が、シュードモナス・プチダ(Pseudomonas putida)に由来する、6に記載の調製方法。
8. 前記イソプロピルβ-チオガラクトピラノシドを含む液で培養した形質転換微生物が、2-フェニルエタノールを原料としたときに、2-(2,3-ジヒドロキシフェニル)エタノールを0.45mM/(h・OD660)以上の速度で生成する、1~7のいずれか1つに記載の調製方法。
9. 前記形質転換微生物は、前記芳香環ジオキシゲナーゼ遺伝子群および前記芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を、
イソプロピルβ-チオガラクトピラノシド誘導性プロモーター(1)ならびに前記プロモーター(1)と作動的に連結された前記芳香環ジオキシゲナーゼ遺伝子群および前記芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を含むカセット(1)と、
イソプロピルβ-チオガラクトピラノシド誘導性プロモーター(2)ならびに前記プロモーター(2)と作動的に連結された前記芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を含むカセット(2)とを、
前記カセット(1)と前記カセット(2)とのコピー数の比が1:1~5:1となるように導入した、1~8のいずれか1つに記載の調製方法。
10. 1~9のいずれか1つに記載の調製方法により調製された形質転換微生物を用いた、下記一般式(1): [Embodiment]
The preferred embodiments of the present invention are shown below.
1. A method for preparing a transformed microorganism, comprising culturing a transformed microorganism into which an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene have been introduced in a solution containing 5 to 100 μM of isopropyl β-thiogalactopyranoside.
2. 2. The preparation method according to 1, wherein the solution containing isopropyl β-thiogalactopyranoside has a dissolved oxygen concentration of more than 0 mg / L and not more than 5 mg / L.
3. The preparation method according to 1 or 2, wherein the microorganism is Escherichia coli.
4). 4. The preparation method according to any one of 1 to 3, wherein the aromatic ring dioxygenase gene group is a toluene dioxygenase gene group.
5. 5. The preparation method according to 4, wherein the toluene dioxygenase gene group is derived from Pseudomonas putida.
6). 6. The preparation method according to any one of 1 to 5, wherein the aromatic ring dihydrodiol dehydrogenase gene is a cis-toluene dihydrodiol dehydrogenase gene.
7. 7. The preparation method according to 6, wherein the cis-toluene dihydrodiol dehydrogenase gene is derived from Pseudomonas putida.
8). When the transformed microorganism cultured in the solution containing isopropyl β-thiogalactopyranoside uses 2-phenylethanol as a raw material, 2- (2,3-dihydroxyphenyl) ethanol is 0.45 mM / (h · OD 660 ) The preparation method according to any one of 1 to 7, which is produced at a rate of not less than 1.
9. The transformed microorganism comprises the aromatic ring dioxygenase gene group and the aromatic ring dihydrodiol dehydrogenase gene,
An isopropyl β-thiogalactopyranoside inducible promoter (1) and the aromatic ring dioxygenase gene group operably linked to the promoter (1) and a cassette (1) comprising the aromatic ring dihydrodiol dehydrogenase gene;
An isopropyl β-thiogalactopyranoside inducible promoter (2) and a cassette (2) comprising the aromatic ring dihydrodiol dehydrogenase gene operably linked to the promoter (2),
9. The preparation method according to any one of 1 to 8, which is introduced so that a copy number ratio of the cassette (1) and the cassette (2) is 1: 1 to 5: 1.
10. The following general formula (1) using a transformed microorganism prepared by the preparation method according to any one of 1 to 9:
以下に、本発明の好ましい実施形態を示す。
1. 芳香環ジオキシゲナーゼ遺伝子群および芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を導入した形質転換微生物を、5~100μMのイソプロピルβ-チオガラクトピラノシドを含む液で培養することを有する、形質転換微生物の調製方法。
2. 前記イソプロピルβ-チオガラクトピラノシドを含む液の溶存酸素濃度が、0mg/Lを超えて5mg/L以下である、1に記載の調製方法。
3. 前記微生物が、大腸菌である、1または2に記載の調製方法。
4. 前記芳香環ジオキシゲナーゼ遺伝子群が、トルエンジオキシゲナーゼ遺伝子群である、1~3のいずれか1つに記載の調製方法。
5. 前記トルエンジオキシゲナーゼ遺伝子群が、シュードモナス・プチダ(Pseudomonas putida)に由来する、4に記載の調製方法。
6. 前記芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子が、cis-トルエンジヒドロジオールデヒドロゲナーゼ遺伝子である、1~5のいずれか1つに記載の調製方法。
7. 前記cis-トルエンジヒドロジオールデヒドロゲナーゼ遺伝子が、シュードモナス・プチダ(Pseudomonas putida)に由来する、6に記載の調製方法。
8. 前記イソプロピルβ-チオガラクトピラノシドを含む液で培養した形質転換微生物が、2-フェニルエタノールを原料としたときに、2-(2,3-ジヒドロキシフェニル)エタノールを0.45mM/(h・OD660)以上の速度で生成する、1~7のいずれか1つに記載の調製方法。
9. 前記形質転換微生物は、前記芳香環ジオキシゲナーゼ遺伝子群および前記芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を、
イソプロピルβ-チオガラクトピラノシド誘導性プロモーター(1)ならびに前記プロモーター(1)と作動的に連結された前記芳香環ジオキシゲナーゼ遺伝子群および前記芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を含むカセット(1)と、
イソプロピルβ-チオガラクトピラノシド誘導性プロモーター(2)ならびに前記プロモーター(2)と作動的に連結された前記芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を含むカセット(2)とを、
前記カセット(1)と前記カセット(2)とのコピー数の比が1:1~5:1となるように導入した、1~8のいずれか1つに記載の調製方法。
10. 1~9のいずれか1つに記載の調製方法により調製された形質転換微生物を用いた、下記一般式(1): [Embodiment]
The preferred embodiments of the present invention are shown below.
1. A method for preparing a transformed microorganism, comprising culturing a transformed microorganism into which an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene have been introduced in a solution containing 5 to 100 μM of isopropyl β-thiogalactopyranoside.
2. 2. The preparation method according to 1, wherein the solution containing isopropyl β-thiogalactopyranoside has a dissolved oxygen concentration of more than 0 mg / L and not more than 5 mg / L.
3. The preparation method according to 1 or 2, wherein the microorganism is Escherichia coli.
4). 4. The preparation method according to any one of 1 to 3, wherein the aromatic ring dioxygenase gene group is a toluene dioxygenase gene group.
5. 5. The preparation method according to 4, wherein the toluene dioxygenase gene group is derived from Pseudomonas putida.
6). 6. The preparation method according to any one of 1 to 5, wherein the aromatic ring dihydrodiol dehydrogenase gene is a cis-toluene dihydrodiol dehydrogenase gene.
7. 7. The preparation method according to 6, wherein the cis-toluene dihydrodiol dehydrogenase gene is derived from Pseudomonas putida.
8). When the transformed microorganism cultured in the solution containing isopropyl β-thiogalactopyranoside uses 2-phenylethanol as a raw material, 2- (2,3-dihydroxyphenyl) ethanol is 0.45 mM / (h · OD 660 ) The preparation method according to any one of 1 to 7, which is produced at a rate of not less than 1.
9. The transformed microorganism comprises the aromatic ring dioxygenase gene group and the aromatic ring dihydrodiol dehydrogenase gene,
An isopropyl β-thiogalactopyranoside inducible promoter (1) and the aromatic ring dioxygenase gene group operably linked to the promoter (1) and a cassette (1) comprising the aromatic ring dihydrodiol dehydrogenase gene;
An isopropyl β-thiogalactopyranoside inducible promoter (2) and a cassette (2) comprising the aromatic ring dihydrodiol dehydrogenase gene operably linked to the promoter (2),
9. The preparation method according to any one of 1 to 8, which is introduced so that a copy number ratio of the cassette (1) and the cassette (2) is 1: 1 to 5: 1.
10. The following general formula (1) using a transformed microorganism prepared by the preparation method according to any one of 1 to 9:
前記一般式(1)中、Rは水素原子、ハロゲン原子、フェニル基、複素環基または下記一般式(2)で示される基である:
In the general formula (1), R is a hydrogen atom, a halogen atom, a phenyl group, a heterocyclic group, or a group represented by the following general formula (2):
前記一般式(2)中、xは0または1であり、Yは炭素数1~5の直鎖または分岐鎖のアルキレン基であり、Zは水素原子または水酸基である;
で表されるカテコール化合物の製造方法。
11. 前記カテコール化合物が、休止菌体反応によって製造される、10に記載の製造方法。
12. 2-フェニルエタノールを原料としたときに、2-(2,3-ジヒドロキシフェニル)エタノールを0.45mM/(h・OD660)以上の速度で生成する、形質転換微生物。
13. イソプロピルβ-チオガラクトピラノシド誘導性プロモーター(1)ならびに前記プロモーター(1)と作動的に連結された芳香環ジオキシゲナーゼ遺伝子群および芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を含むカセット(1)と、
イソプロピルβ-チオガラクトピラノシド誘導性プロモーター(2)ならびに前記プロモーター(2)と作動的に連結された芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を含むカセット(2)とを、
前記カセット(1)と前記カセット(2)とのコピー数の比が1:1~5:1となるよう微生物に導入されてなる、12に記載の形質転換微生物。
14. 前記プロモーター(1)および前記プロモーター(2)が、T7プロモーターまたはtacプロモーターである、13に記載の形質転換微生物。
15. 下記一般式(1): In the general formula (2), x is 0 or 1, Y is a linear or branched alkylene group having 1 to 5 carbon atoms, and Z is a hydrogen atom or a hydroxyl group;
The manufacturing method of the catechol compound represented by these.
11. 11. The production method according to 10, wherein the catechol compound is produced by a resting cell reaction.
12 A transformed microorganism that produces 2- (2,3-dihydroxyphenyl) ethanol at a rate of 0.45 mM / (h · OD 660 ) or more when 2-phenylethanol is used as a raw material.
13. An isopropyl β-thiogalactopyranoside inducible promoter (1) and a cassette (1) comprising an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene operably linked to said promoter (1);
An isopropyl β-thiogalactopyranoside inducible promoter (2) and a cassette (2) containing an aromatic ring dihydrodiol dehydrogenase gene operably linked to said promoter (2),
13. The transformed microorganism according to 12, which is introduced into the microorganism so that the copy number ratio between the cassette (1) and the cassette (2) is 1: 1 to 5: 1.
14 14. The transformed microorganism according to 13, wherein the promoter (1) and the promoter (2) are T7 promoter or tac promoter.
15. The following general formula (1):
で表されるカテコール化合物の製造方法。
11. 前記カテコール化合物が、休止菌体反応によって製造される、10に記載の製造方法。
12. 2-フェニルエタノールを原料としたときに、2-(2,3-ジヒドロキシフェニル)エタノールを0.45mM/(h・OD660)以上の速度で生成する、形質転換微生物。
13. イソプロピルβ-チオガラクトピラノシド誘導性プロモーター(1)ならびに前記プロモーター(1)と作動的に連結された芳香環ジオキシゲナーゼ遺伝子群および芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を含むカセット(1)と、
イソプロピルβ-チオガラクトピラノシド誘導性プロモーター(2)ならびに前記プロモーター(2)と作動的に連結された芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を含むカセット(2)とを、
前記カセット(1)と前記カセット(2)とのコピー数の比が1:1~5:1となるよう微生物に導入されてなる、12に記載の形質転換微生物。
14. 前記プロモーター(1)および前記プロモーター(2)が、T7プロモーターまたはtacプロモーターである、13に記載の形質転換微生物。
15. 下記一般式(1): In the general formula (2), x is 0 or 1, Y is a linear or branched alkylene group having 1 to 5 carbon atoms, and Z is a hydrogen atom or a hydroxyl group;
The manufacturing method of the catechol compound represented by these.
11. 11. The production method according to 10, wherein the catechol compound is produced by a resting cell reaction.
12 A transformed microorganism that produces 2- (2,3-dihydroxyphenyl) ethanol at a rate of 0.45 mM / (h · OD 660 ) or more when 2-phenylethanol is used as a raw material.
13. An isopropyl β-thiogalactopyranoside inducible promoter (1) and a cassette (1) comprising an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene operably linked to said promoter (1);
An isopropyl β-thiogalactopyranoside inducible promoter (2) and a cassette (2) containing an aromatic ring dihydrodiol dehydrogenase gene operably linked to said promoter (2),
13. The transformed microorganism according to 12, which is introduced into the microorganism so that the copy number ratio between the cassette (1) and the cassette (2) is 1: 1 to 5: 1.
14 14. The transformed microorganism according to 13, wherein the promoter (1) and the promoter (2) are T7 promoter or tac promoter.
15. The following general formula (1):
前記一般式(1)中、Rは水素原子、ハロゲン原子、フェニル基、複素環基または下記一般式(2)で示される基である:
In the general formula (1), R is a hydrogen atom, a halogen atom, a phenyl group, a heterocyclic group, or a group represented by the following general formula (2):
前記一般式(2)中、xは0または1であり、Yは炭素数1~5の直鎖または分岐鎖のアルキレン基であり、Zは水素原子または水酸基である;
で表されるカテコール化合物、および
下記一般式(3): In the general formula (2), x is 0 or 1, Y is a linear or branched alkylene group having 1 to 5 carbon atoms, and Z is a hydrogen atom or a hydroxyl group;
And a catechol compound represented by the following general formula (3):
で表されるカテコール化合物、および
下記一般式(3): In the general formula (2), x is 0 or 1, Y is a linear or branched alkylene group having 1 to 5 carbon atoms, and Z is a hydrogen atom or a hydroxyl group;
And a catechol compound represented by the following general formula (3):
前記一般式(3)中、R’は水素原子、ハロゲン原子、フェニル基、複素環基または下記一般式(4)で示される基である:
In the general formula (3), R ′ is a hydrogen atom, a halogen atom, a phenyl group, a heterocyclic group, or a group represented by the following general formula (4):
前記一般式(4)中、x’は0または1であり、Y’は炭素数1~5の直鎖または分岐鎖のアルキレン基であり、Z’は水素原子または水酸基である;
で表される一水酸化物を含み、
100モルの前記カテコール化合物に対する前記一水酸化物の割合が、0.002~5モルである、組成物。
16. 15に記載の組成物を含む、美白剤、または酸素吸収剤。 In the general formula (4), x ′ is 0 or 1, Y ′ is a linear or branched alkylene group having 1 to 5 carbon atoms, and Z ′ is a hydrogen atom or a hydroxyl group;
Including a monohydroxide represented by
A composition wherein the ratio of the monohydroxide to 100 mol of the catechol compound is 0.002 to 5 mol.
16. A whitening agent or an oxygen absorbent comprising the composition according to 15.
で表される一水酸化物を含み、
100モルの前記カテコール化合物に対する前記一水酸化物の割合が、0.002~5モルである、組成物。
16. 15に記載の組成物を含む、美白剤、または酸素吸収剤。 In the general formula (4), x ′ is 0 or 1, Y ′ is a linear or branched alkylene group having 1 to 5 carbon atoms, and Z ′ is a hydrogen atom or a hydroxyl group;
Including a monohydroxide represented by
A composition wherein the ratio of the monohydroxide to 100 mol of the catechol compound is 0.002 to 5 mol.
16. A whitening agent or an oxygen absorbent comprising the composition according to 15.
本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。
The effect of the present invention will be described using the following examples and comparative examples. However, the technical scope of the present invention is not limited only to the following examples.
[形質転換微生物の作製]
シュードモナス・プチダF1株(ATCC700007)のトルエンジオキシゲナーゼ遺伝子群(todA:配列番号9、todB:配列番号8、todC1:配列番号6、todC2:配列番号7)およびcis-トルエンジヒドロジオールデヒドロゲナーゼ遺伝子(todD:配列番号10)を含むDNA領域を発現ベクターpET21-b(+)(Novagen社製、T7プロモーター配列およびアンピシリン耐性遺伝子をコードする配列を有する。)に挿入した組換えプラスミド、todA-D/pET21-b(+)を、以下の手法により構築した。 [Production of transformed microorganisms]
Pseudomonas putida F1 strain (ATCC 700007) toluene dioxygenase gene group (todA: SEQ ID NO: 9, todB: SEQ ID NO: 8, todC1: SEQ ID NO: 6, todC2: SEQ ID NO: 7) and cis-toluene dihydrodiol dehydrogenase gene (todD: A recombinant plasmid, todA-D / pET21-, in which a DNA region containing SEQ ID NO: 10) is inserted into an expression vector pET21-b (+) (Novagen, having a T7 promoter sequence and a sequence encoding an ampicillin resistance gene) b (+) was constructed by the following procedure.
シュードモナス・プチダF1株(ATCC700007)のトルエンジオキシゲナーゼ遺伝子群(todA:配列番号9、todB:配列番号8、todC1:配列番号6、todC2:配列番号7)およびcis-トルエンジヒドロジオールデヒドロゲナーゼ遺伝子(todD:配列番号10)を含むDNA領域を発現ベクターpET21-b(+)(Novagen社製、T7プロモーター配列およびアンピシリン耐性遺伝子をコードする配列を有する。)に挿入した組換えプラスミド、todA-D/pET21-b(+)を、以下の手法により構築した。 [Production of transformed microorganisms]
Pseudomonas putida F1 strain (ATCC 700007) toluene dioxygenase gene group (todA: SEQ ID NO: 9, todB: SEQ ID NO: 8, todC1: SEQ ID NO: 6, todC2: SEQ ID NO: 7) and cis-toluene dihydrodiol dehydrogenase gene (todD: A recombinant plasmid, todA-D / pET21-, in which a DNA region containing SEQ ID NO: 10) is inserted into an expression vector pET21-b (+) (Novagen, having a T7 promoter sequence and a sequence encoding an ampicillin resistance gene) b (+) was constructed by the following procedure.
すなわち、P.putida F1株のゲノムDNAをテンプレートとし、以下のプライマーおよびPhusion High-Fidelity DNA Polymerase(Finnzymes社)を用いてPCR増幅を行い、todA-D断片1を得た。
That is, P.I. Using the genomic DNA of putida F1 strain as a template, PCR amplification was performed using the following primers and Phusion High-Fidelity DNA Polymerase (Finzymes) to obtain todA-D fragment 1.
pET21-b(+)をテンプレートとし、以下のプライマーおよびPhusion High-Fidelity DNA Polymerase(Finnzymes社)を用いてPCR増幅を行い、pET21-b(+)断片を得た。
Using pET21-b (+) as a template, PCR amplification was performed using the following primers and Phusion High-Fidelity DNA Polymerase (Finzymes) to obtain a pET21-b (+) fragment.
前記のPCR増幅により得たtodA-D断片1およびpET21-b(+)断片(T7プロモーター配列を含む)を用いて、In-Fusion PCRクローニングキット(Takara社)のプロトコールに従ってクローニングを行い、組換えプラスミド、todA-D/pET21-b(+)を構築した。なおクローニングの宿主としては、E.coli DH5α(タカラバイオ社)を用いた。
Using the todA-D fragment 1 and pET21-b (+) fragment (including T7 promoter sequence) obtained by PCR amplification as described above, cloning was performed according to the protocol of the In-Fusion PCR cloning kit (Takara) and recombination. A plasmid, todA-D / pET21-b (+) was constructed. The cloning host is E. coli. E. coli DH5α (Takara Bio Inc.) was used.
得られた組換えプラスミドおよび遺伝子を導入していないpET21-b(+)をE.coli BL21(DE3)(Invitrogen社)にヒートショック法にて形質転換し、形質転換大腸菌:E.coli BL21(DE3)/(todA-D/pET21-b(+))およびE.coli BL21(DE3)/pET21-b(+)を得た。得られた形質転換大腸菌のグリセロールストックを調製し、後述の形質転換微生物の調製(実施例1~5)まで、-80℃で保管した。
The obtained recombinant plasmid and pET21-b (+) into which no gene has been introduced were transformed into E. coli. E. coli BL21 (DE3) (Invitrogen) was transformed by the heat shock method. E. coli BL21 (DE3) / (todA-D / pET21-b (+)) and E. coli. coli BL21 (DE3) / pET21-b (+) was obtained. A glycerol stock of the obtained transformed Escherichia coli was prepared and stored at −80 ° C. until preparation of transformed microorganisms described later (Examples 1 to 5).
[実施例1: 2-フェニルエタノール(PEA)を基質とした反応]
(1)形質転換微生物の調製
形質転換大腸菌E.coli BL21(DE3)/(todA-D/pET21-b(+))を以下の手順でIPTG発現誘導培養した。 [Example 1: Reaction using 2-phenylethanol (PEA) as a substrate]
(1) Preparation of transformed microorganisms coli BL21 (DE3) / (todA-D / pET21-b (+)) was induced to induce IPTG expression according to the following procedure.
(1)形質転換微生物の調製
形質転換大腸菌E.coli BL21(DE3)/(todA-D/pET21-b(+))を以下の手順でIPTG発現誘導培養した。 [Example 1: Reaction using 2-phenylethanol (PEA) as a substrate]
(1) Preparation of transformed microorganisms coli BL21 (DE3) / (todA-D / pET21-b (+)) was induced to induce IPTG expression according to the following procedure.
菌株を4mLの液体培地Aに植菌し(試験管)、インキュベートした(30℃、300rpm、一晩、前培養)。続いて、液体培地A(100ml)に初期OD660が0.05となるように前培養物を植菌し(坂口フラスコ)、インキュベートした(25℃、120rpm)。OD660が0.4~0.5(培養経過4時間程度)の時点で、終濃度が100μMになるようにIPTG(和光純薬社製)を添加し、インキュベートした(25℃、120rpm、培養開始から24時間)。リン酸緩衝液A(pH7.0)にて集洗菌した後、カテコール化合物の合成に使用するまで、-80℃にて凍結保存した。
The strain was inoculated into 4 mL of liquid medium A (test tube) and incubated (30 ° C., 300 rpm, overnight, preculture). Subsequently, a preculture was inoculated into liquid medium A (100 ml) so that the initial OD 660 was 0.05 (Sakaguchi flask) and incubated (25 ° C., 120 rpm). When OD 660 was 0.4 to 0.5 (about 4 hours of culture), IPTG (manufactured by Wako Pure Chemical Industries, Ltd.) was added and incubated (25 ° C., 120 rpm, culture) so that the final concentration was 100 μM. 24 hours from the start). Bacteria were collected and washed with phosphate buffer A (pH 7.0), and then stored frozen at −80 ° C. until used for the synthesis of catechol compounds.
(2)形質転換微生物を用いたカテコール化合物の合成
凍結菌体をリン酸緩衝液A(pH7.0)にて懸濁し、下記の反応液(3ml)を調製し、反応を開始した(30℃、300rpm、24時間)。2-フェニルエタノールは、和光純薬より購入した。なお、菌体濃度は以下のように調整した。すなわち、上述の方法により調製した微生物に上記のリン酸緩衝液Aを加えて微生物懸濁液を調製し、OD660を測定した。測定した微生物懸濁液のOD660から、OD660が10.0となる希釈倍率を求めた。反応溶液調製後の微生物懸濁液の希釈倍率が、こうして求めた希釈倍率となるよう、菌体量を調整した。以下の実施例においても同様である。 (2) Synthesis of catechol compound using transformed microorganism Frozen cells were suspended in phosphate buffer A (pH 7.0) to prepare the following reaction solution (3 ml), and the reaction was started (30 ° C. , 300 rpm, 24 hours). 2-Phenylethanol was purchased from Wako Pure Chemical. The bacterial cell concentration was adjusted as follows. That is, the above-described phosphate buffer A was added to the microorganism prepared by the above-described method to prepare a microorganism suspension, and OD 660 was measured. From the measured OD 660 of the microorganism suspension, the dilution factor at which OD 660 was 10.0 was determined. The amount of cells was adjusted so that the dilution rate of the microorganism suspension after the reaction solution preparation was the dilution rate thus determined. The same applies to the following embodiments.
凍結菌体をリン酸緩衝液A(pH7.0)にて懸濁し、下記の反応液(3ml)を調製し、反応を開始した(30℃、300rpm、24時間)。2-フェニルエタノールは、和光純薬より購入した。なお、菌体濃度は以下のように調整した。すなわち、上述の方法により調製した微生物に上記のリン酸緩衝液Aを加えて微生物懸濁液を調製し、OD660を測定した。測定した微生物懸濁液のOD660から、OD660が10.0となる希釈倍率を求めた。反応溶液調製後の微生物懸濁液の希釈倍率が、こうして求めた希釈倍率となるよう、菌体量を調整した。以下の実施例においても同様である。 (2) Synthesis of catechol compound using transformed microorganism Frozen cells were suspended in phosphate buffer A (pH 7.0) to prepare the following reaction solution (3 ml), and the reaction was started (30 ° C. , 300 rpm, 24 hours). 2-Phenylethanol was purchased from Wako Pure Chemical. The bacterial cell concentration was adjusted as follows. That is, the above-described phosphate buffer A was added to the microorganism prepared by the above-described method to prepare a microorganism suspension, and OD 660 was measured. From the measured OD 660 of the microorganism suspension, the dilution factor at which OD 660 was 10.0 was determined. The amount of cells was adjusted so that the dilution rate of the microorganism suspension after the reaction solution preparation was the dilution rate thus determined. The same applies to the following embodiments.
反応液をLC-MSおよびGC-MSにより分析した。TICクロマトグラムにおいて、基質を添加したときにのみ検出されるピークが保持時間13.7分に確認された。プロダクトイオンより、当該ピークが2-(2,3-ジヒドロキシフェニル)エタノールであることを確認した。TICクロマトグラムと保持時間13.7分のピークについてのマススペクトルを、図1および2に示す。また、LC-MSおよびGC-MSの分析条件、およびMS分析結果のまとめを、以下に示す。
The reaction solution was analyzed by LC-MS and GC-MS. In the TIC chromatogram, a peak detected only when the substrate was added was confirmed at a retention time of 13.7 minutes. From the product ion, it was confirmed that the peak was 2- (2,3-dihydroxyphenyl) ethanol. Mass spectra for the TIC chromatogram and the peak with a retention time of 13.7 minutes are shown in FIGS. In addition, LC-MS and GC-MS analysis conditions and a summary of MS analysis results are shown below.
(LC-MSの分析条件)
MS: 3200QTRAP (AB Sciex)
移動層: A液 0.1% ギ酸
B液 アセトニトリル
カラム: カプセルパックAQ 粒子径3μm 内径2mm 長さ25cm
カラム温度: 40℃
検出波長: 254nm
流速: 0.2mL/min
分析時間: 15 min
MASSモード:Q1 posi
測定m/z: 100-250 (Analysis conditions for LC-MS)
MS: 3200QTRAP (AB Sciex)
Moving layer: Liquid A 0.1% formic acid Liquid B Acetonitrile column: Capsule packAQ Particle diameter 3 μm Internal diameter 2 mm Length 25 cm
Column temperature: 40 ° C
Detection wavelength: 254 nm
Flow rate: 0.2 mL / min
Analysis time: 15 min
MASS mode: Q1 posi
Measurement m / z: 100-250
MS: 3200QTRAP (AB Sciex)
移動層: A液 0.1% ギ酸
B液 アセトニトリル
カラム: カプセルパックAQ 粒子径3μm 内径2mm 長さ25cm
カラム温度: 40℃
検出波長: 254nm
流速: 0.2mL/min
分析時間: 15 min
MASSモード:Q1 posi
測定m/z: 100-250 (Analysis conditions for LC-MS)
MS: 3200QTRAP (AB Sciex)
Moving layer: Liquid A 0.1% formic acid Liquid B Acetonitrile column: Capsule pack
Column temperature: 40 ° C
Detection wavelength: 254 nm
Flow rate: 0.2 mL / min
Analysis time: 15 min
MASS mode: Q1 posi
Measurement m / z: 100-250
(GC-MSの分析条件)
装置: GCMS-QP2010(株式会社島津製作所製)
カラム: DB-17HT(Agilent社製)
カラムオーブンプログラム: (GC-MS analysis conditions)
Equipment: GCMS-QP2010 (manufactured by Shimadzu Corporation)
Column: DB-17HT (manufactured by Agilent)
Column oven program:
装置: GCMS-QP2010(株式会社島津製作所製)
カラム: DB-17HT(Agilent社製)
カラムオーブンプログラム: (GC-MS analysis conditions)
Equipment: GCMS-QP2010 (manufactured by Shimadzu Corporation)
Column: DB-17HT (manufactured by Agilent)
Column oven program:
気化室温度: 250℃
注入モード: スプリット
制御モード: 線速度
線速度: 38.1cm/sec
圧力: 77.0kPa
イオン源温度: 200℃
インターフェース温度:250℃ Vaporization chamber temperature: 250 ° C
Injection mode: Split control mode: Linear velocity Linear velocity: 38.1 cm / sec
Pressure: 77.0kPa
Ion source temperature: 200 ° C
Interface temperature: 250 ° C
注入モード: スプリット
制御モード: 線速度
線速度: 38.1cm/sec
圧力: 77.0kPa
イオン源温度: 200℃
インターフェース温度:250℃ Vaporization chamber temperature: 250 ° C
Injection mode: Split control mode: Linear velocity Linear velocity: 38.1 cm / sec
Pressure: 77.0kPa
Ion source temperature: 200 ° C
Interface temperature: 250 ° C
基質として用いた2-フェニルエタノール、および生成物であるカテコール化合物2-(2,3-ジヒドロキシフェニル)エタノールの構造を、以下に示す。
The structures of 2-phenylethanol used as a substrate and the product catechol compound 2- (2,3-dihydroxyphenyl) ethanol are shown below.
[実施例2: 2-フェノキシエタノールを基質とした反応]
(1)形質転換微生物の調製
形質転換大腸菌E.coli BL21(DE3)/(todA-D/pET21-b(+))を以下の手順でIPTG発現誘導培養した。 [Example 2: Reaction using 2-phenoxyethanol as a substrate]
(1) Preparation of transformed microorganisms coli BL21 (DE3) / (todA-D / pET21-b (+)) was induced to induce IPTG expression according to the following procedure.
(1)形質転換微生物の調製
形質転換大腸菌E.coli BL21(DE3)/(todA-D/pET21-b(+))を以下の手順でIPTG発現誘導培養した。 [Example 2: Reaction using 2-phenoxyethanol as a substrate]
(1) Preparation of transformed microorganisms coli BL21 (DE3) / (todA-D / pET21-b (+)) was induced to induce IPTG expression according to the following procedure.
菌株を4mLの液体培地Aに植菌し(試験管)、インキュベートした(30℃、300rpm、一晩、前培養)。続いて、液体培地A(100ml)に初期OD660が0.05となるように前培養物を植菌し(坂口フラスコ)、インキュベートした(25℃、120rpm)。OD660が0.4~0.5(培養経過4時間程度)の時点で、終濃度が10μMになるようにIPTG(和光純薬社製)を添加し、インキュベートした(25℃、120rpm、培養開始から24時間)。リン酸緩衝液B(pH7.0)にて集洗菌した後、カテコール化合物の合成に使用するまで、-80℃にて凍結保存した。
The strain was inoculated into 4 mL of liquid medium A (test tube) and incubated (30 ° C., 300 rpm, overnight, preculture). Subsequently, a preculture was inoculated into liquid medium A (100 ml) so that the initial OD 660 was 0.05 (Sakaguchi flask) and incubated (25 ° C., 120 rpm). When the OD 660 was 0.4 to 0.5 (about 4 hours of culture), IPTG (manufactured by Wako Pure Chemical Industries, Ltd.) was added to the final concentration of 10 μM and incubated (25 ° C., 120 rpm, culture) 24 hours from the start). Bacteria were collected and washed with phosphate buffer B (pH 7.0), and stored frozen at −80 ° C. until used for the synthesis of catechol compounds.
(2)形質転換微生物を用いたカテコール化合物の合成
凍結菌体をリン酸緩衝液B(pH7.0)にて懸濁し、下記の反応液(3ml)を調製し、反応を開始した(30℃、300rpm、2~24時間)。2-フェノキシエタノールは、東京化成工業より購入した。 (2) Synthesis of catechol compound using transformed microorganism Frozen cells were suspended in phosphate buffer B (pH 7.0) to prepare the following reaction solution (3 ml), and the reaction was started (30 ° C. 300 rpm, 2-24 hours). 2-phenoxyethanol was purchased from Tokyo Chemical Industry.
凍結菌体をリン酸緩衝液B(pH7.0)にて懸濁し、下記の反応液(3ml)を調製し、反応を開始した(30℃、300rpm、2~24時間)。2-フェノキシエタノールは、東京化成工業より購入した。 (2) Synthesis of catechol compound using transformed microorganism Frozen cells were suspended in phosphate buffer B (pH 7.0) to prepare the following reaction solution (3 ml), and the reaction was started (30 ° C. 300 rpm, 2-24 hours). 2-phenoxyethanol was purchased from Tokyo Chemical Industry.
反応時間2時間の反応液をLC-MSおよびGC-MSにより分析した。TICクロマトグラムにおいて、基質を添加したときにのみ検出されるピークが保持時間13.9分に確認された。プロダクトイオンより、当該ピークが2-(2,3-ジヒドロキシフェノキシ)エタノールであることを確認した。また反応時間24時間の反応液をGCにより分析したところ、生成物の濃度は11.2mM(1.91g/L)、選択率96.6%であった。TICクロマトグラムと保持時間13.9分のピークについてのマススペクトルを、図3および4に示す。LC-MSおよびGC-MSの分析条件は上述のとおりである。GCの分析条件、およびMS分析結果のまとめを、以下に示す。
The reaction solution with a reaction time of 2 hours was analyzed by LC-MS and GC-MS. In the TIC chromatogram, a peak detected only when the substrate was added was confirmed at a retention time of 13.9 minutes. From the product ion, it was confirmed that the peak was 2- (2,3-dihydroxyphenoxy) ethanol. When the reaction solution with a reaction time of 24 hours was analyzed by GC, the concentration of the product was 11.2 mM (1.91 g / L), and the selectivity was 96.6%. The mass spectra for the TIC chromatogram and the peak with a retention time of 13.9 minutes are shown in FIGS. The analytical conditions for LC-MS and GC-MS are as described above. GC analysis conditions and a summary of MS analysis results are shown below.
(GC分析条件)
装置: GC-2010(株式会社島津製作所製)
カラム: DB-17HT(Agilent社製)
カラムオーブンプログラム: (GC analysis conditions)
Equipment: GC-2010 (manufactured by Shimadzu Corporation)
Column: DB-17HT (manufactured by Agilent)
Column oven program:
装置: GC-2010(株式会社島津製作所製)
カラム: DB-17HT(Agilent社製)
カラムオーブンプログラム: (GC analysis conditions)
Equipment: GC-2010 (manufactured by Shimadzu Corporation)
Column: DB-17HT (manufactured by Agilent)
Column oven program:
気化室温度: 250℃
注入モード: スプリット
スプリット比: 25
制御モード: 線速度
線速度: 45.1cm/sec
圧力: 90.7kPa
検出器温度(FID): 340℃。 Vaporization chamber temperature: 250 ° C
Injection mode: Split split ratio: 25
Control mode: Linear velocity Linear velocity: 45.1 cm / sec
Pressure: 90.7kPa
Detector temperature (FID): 340 ° C.
注入モード: スプリット
スプリット比: 25
制御モード: 線速度
線速度: 45.1cm/sec
圧力: 90.7kPa
検出器温度(FID): 340℃。 Vaporization chamber temperature: 250 ° C
Injection mode: Split split ratio: 25
Control mode: Linear velocity Linear velocity: 45.1 cm / sec
Pressure: 90.7kPa
Detector temperature (FID): 340 ° C.
基質として用いた2-フェノキシエタノール、および生成物であるカテコール化合物2-(2,3-ジヒドロキシフェノキシ)エタノールの構造を、以下に示す。
The structures of 2-phenoxyethanol used as a substrate and the product catechol compound 2- (2,3-dihydroxyphenoxy) ethanol are shown below.
[実施例3: IPTG濃度を変更した場合]
(1)形質転換微生物の調製
形質転換大腸菌E.coli BL21(DE3)/(todA-D/pET21-b(+))を以下の手順でIPTG発現誘導培養した。 [Example 3: When IPTG concentration is changed]
(1) Preparation of transformed microorganisms coli BL21 (DE3) / (todA-D / pET21-b (+)) was induced to induce IPTG expression according to the following procedure.
(1)形質転換微生物の調製
形質転換大腸菌E.coli BL21(DE3)/(todA-D/pET21-b(+))を以下の手順でIPTG発現誘導培養した。 [Example 3: When IPTG concentration is changed]
(1) Preparation of transformed microorganisms coli BL21 (DE3) / (todA-D / pET21-b (+)) was induced to induce IPTG expression according to the following procedure.
菌株を4mLの液体培地Aに植菌し(試験管)、インキュベートした(30℃、300rpm、一晩、前培養)。続いて、液体培地A(100ml)に初期OD660が0.05となるように前培養物を植菌し(坂口フラスコ)、インキュベートした(25℃、120rpm)。OD660が0.4~0.5になった時点で、終濃度が10~500μMになるようにIPTG(和光純薬社製)を添加し、インキュベートした(25℃、120rpm、培養開始から24時間)。リン酸緩衝液B(pH7.0)にて集洗菌した後、カテコール化合物の合成に使用するまで、-80℃にて凍結保存した。
The strain was inoculated into 4 mL of liquid medium A (test tube) and incubated (30 ° C., 300 rpm, overnight, preculture). Subsequently, a preculture was inoculated into liquid medium A (100 ml) so that the initial OD 660 was 0.05 (Sakaguchi flask) and incubated (25 ° C., 120 rpm). When OD 660 reached 0.4 to 0.5, IPTG (manufactured by Wako Pure Chemical Industries, Ltd.) was added so as to have a final concentration of 10 to 500 μM and incubated (25 ° C., 120 rpm, 24 hours from the start of culture). time). Bacteria were collected and washed with phosphate buffer B (pH 7.0), and stored frozen at −80 ° C. until used for the synthesis of catechol compounds.
(2)形質転換微生物を用いたカテコール化合物の合成
凍結菌体をリン酸緩衝液B(pH7.0)にて懸濁し、下記の反応液(3ml)を調製し、反応を開始した(30℃、300rpm、2~3時間)。 (2) Synthesis of catechol compound using transformed microorganism Frozen cells were suspended in phosphate buffer B (pH 7.0) to prepare the following reaction solution (3 ml), and the reaction was started (30 ° C. , 300 rpm, 2-3 hours).
凍結菌体をリン酸緩衝液B(pH7.0)にて懸濁し、下記の反応液(3ml)を調製し、反応を開始した(30℃、300rpm、2~3時間)。 (2) Synthesis of catechol compound using transformed microorganism Frozen cells were suspended in phosphate buffer B (pH 7.0) to prepare the following reaction solution (3 ml), and the reaction was started (30 ° C. , 300 rpm, 2-3 hours).
反応液をLC-MSにより分析し、UVのピークよりカテコール化合物を定量した。その結果、下表に示すように、IPTG濃度が5~100μMの場合、特に5~30μMの場合、反応速度(カテコール化合物の生成速度)が高く、カテコール化合物(2-(2,3-ジヒドロキシフェニル)エタノール)が効率的に生成されていた。カテコール化合物の生成速度は、IPTG濃度が10μMとした際に、最も速かった。下表中、「初期PEA」は反応液開始時の2-フェニルエタノールの反応液中の濃度を、「Conc.」は反応後の2-(2,3-ジヒドロキシフェニル)エタノールの反応液中の濃度を指す。LC-MSの分析条件は、上記と同様である。
The reaction solution was analyzed by LC-MS, and the catechol compound was quantified from the UV peak. As a result, as shown in the table below, when the IPTG concentration is 5 to 100 μM, particularly 5 to 30 μM, the reaction rate (catechol compound formation rate) is high, and the catechol compound (2- (2,3-dihydroxyphenyl) ) Ethanol) was efficiently produced. The production rate of the catechol compound was the fastest when the IPTG concentration was 10 μM. In the table below, “Initial PEA” is the concentration of 2-phenylethanol in the reaction solution at the start of the reaction solution, and “Conc.” Is the concentration of 2- (2,3-dihydroxyphenyl) ethanol in the reaction solution after the reaction. Refers to concentration. LC-MS analysis conditions are the same as above.
[実施例4: 溶存酸素濃度を変更した場合]
(1)形質転換微生物の調製
坂口フラスコ培養時には、多量の気泡が発生するため、ベンチレーションが悪化し、培養液中の溶存酸素濃度が低下する。しかしながら、坂口フラスコ培養では溶存酸素濃度を調節できないため、溶存酸素濃度が微生物に与える影響を評価できない。溶存酸素濃度が微生物に与える影響を評価し、さらに、スケールアップのため、ジャーファーメンターにて形質転換大腸菌E.coli BL21(DE3)/(todA-D/pET21-b(+))を以下の手順でIPTG発現誘導培養した。 [Example 4: When dissolved oxygen concentration is changed]
(1) Preparation of transformed microorganisms During Sakaguchi flask culture, a large amount of air bubbles is generated, which deteriorates ventilation and decreases the dissolved oxygen concentration in the culture solution. However, since the dissolved oxygen concentration cannot be adjusted in the Sakaguchi flask culture, the influence of the dissolved oxygen concentration on the microorganisms cannot be evaluated. The effect of dissolved oxygen concentration on microorganisms was evaluated, and for further scale-up, E. coli transformed with a jar fermenter was used. coli BL21 (DE3) / (todA-D / pET21-b (+)) was induced to induce IPTG expression according to the following procedure.
(1)形質転換微生物の調製
坂口フラスコ培養時には、多量の気泡が発生するため、ベンチレーションが悪化し、培養液中の溶存酸素濃度が低下する。しかしながら、坂口フラスコ培養では溶存酸素濃度を調節できないため、溶存酸素濃度が微生物に与える影響を評価できない。溶存酸素濃度が微生物に与える影響を評価し、さらに、スケールアップのため、ジャーファーメンターにて形質転換大腸菌E.coli BL21(DE3)/(todA-D/pET21-b(+))を以下の手順でIPTG発現誘導培養した。 [Example 4: When dissolved oxygen concentration is changed]
(1) Preparation of transformed microorganisms During Sakaguchi flask culture, a large amount of air bubbles is generated, which deteriorates ventilation and decreases the dissolved oxygen concentration in the culture solution. However, since the dissolved oxygen concentration cannot be adjusted in the Sakaguchi flask culture, the influence of the dissolved oxygen concentration on the microorganisms cannot be evaluated. The effect of dissolved oxygen concentration on microorganisms was evaluated, and for further scale-up, E. coli transformed with a jar fermenter was used. coli BL21 (DE3) / (todA-D / pET21-b (+)) was induced to induce IPTG expression according to the following procedure.
試験管に液体培地Aを4mL入れたものを2本用意し、そこに菌株を植菌し(試験管)、インキュベートした(30℃、300rpm、一晩、前培養)。続いて、初期OD660が0.05となるよう、2Lジャーファーメンター(ABLE社製)内の液体培地B(1L)に前培養物を植菌した。pH調整下(pHの下限が6.0となるように、2N NaOHを随時添加)、表20のいずれかの通気ガスを通気量1L/分で通気し、インキュベートした(25℃、725rpm)。
Two tubes containing 4 mL of liquid medium A were prepared, inoculated with the strain (test tube), and incubated (30 ° C., 300 rpm, overnight, preculture). Subsequently, the preculture was inoculated into the liquid medium B (1 L) in the 2 L jar fermenter (manufactured by ABLE) so that the initial OD 660 was 0.05. Under pH adjustment (2N NaOH was added as necessary so that the lower limit of the pH was 6.0), any of the aeration gases in Table 20 was aerated at an aeration rate of 1 L / min and incubated (25 ° C., 725 rpm).
通気ガス組成を以下の表に示す。なお、下記表中、ガス組成比は体積比である。
The aeration gas composition is shown in the table below. In the table below, the gas composition ratio is a volume ratio.
培養開始から4.5時間後に、終濃度が10μMになるようにIPTG(和光純薬社製)を添加し、温度25℃、攪拌数725rpmで24時間培養した。
After 4.5 hours from the start of culture, IPTG (manufactured by Wako Pure Chemical Industries, Ltd.) was added so that the final concentration was 10 μM, and cultured at a temperature of 25 ° C. and a stirring speed of 725 rpm for 24 hours.
上記の通気ガスを用いて培養した場合の、培養液のpH、溶存酸素濃度(DO)およびOD660の値を図5~7に示す(図中、「ppm」は「mg/L」と同義で用いられる。)。
The culture solution pH, dissolved oxygen concentration (DO), and OD 660 values when cultured using the aeration gas are shown in FIGS. 5 to 7 (in the figure, “ppm” is synonymous with “mg / L”). Used in).
培養後の微生物をリン酸緩衝液B(pH7.0)にて集洗菌した後、使用するまで、-80℃にて凍結保存した。
The cultured microorganisms were collected and washed with phosphate buffer B (pH 7.0) and then stored frozen at −80 ° C. until use.
(2)形質転換微生物を用いたカテコール化合物の合成
凍結菌体をリン酸緩衝液B(pH7.0)にて懸濁し、下記の反応液を調製し、反応を開始した(30℃、300rpm、4時間)。 (2) Synthesis of catechol compound using transformed microorganisms Frozen cells were suspended in phosphate buffer B (pH 7.0) to prepare the following reaction solution, and the reaction was started (30 ° C., 300 rpm, 4 hours).
凍結菌体をリン酸緩衝液B(pH7.0)にて懸濁し、下記の反応液を調製し、反応を開始した(30℃、300rpm、4時間)。 (2) Synthesis of catechol compound using transformed microorganisms Frozen cells were suspended in phosphate buffer B (pH 7.0) to prepare the following reaction solution, and the reaction was started (30 ° C., 300 rpm, 4 hours).
反応開始から2時間(表22)または4時間(表23)の時点で、反応液をLC-MSにより分析し、UVのピークよりカテコール化合物を定量した。その結果、下表に示すように、空気のみや空気:N2=1:1のガスを通気した場合に比べて、空気:N2が1:3、1:4または1:9のガスを通気した場合の方が、生成物であるカテコール類化合物(2-(2,3-ジヒドロキシフェニル)エタノール)の生成量が多かった。下表中、「開始時酸素濃度」は反応開始時の反応液の溶存酸素濃度を(表中、「ppm」は「mg/L」と同義で用いられる。)、「初期溶存酸素濃度」はIPTG添加直後(5分以内)の反応液の溶存酸素濃度を、「初期PEA」は反応液開始時の2-フェニルエタノールの反応液中の濃度を、「Conc.」は反応後の2-(2,3-ジヒドロキシフェニル)エタノールの反応液中の濃度を指す。LC-MSの分析条件は、上記と同様である。いずれの試験区においても、反応期間を通じて、初期酸素濃度よりも溶存酸素濃度が高くなることは無かった。
At the time of 2 hours (Table 22) or 4 hours (Table 23) from the start of the reaction, the reaction solution was analyzed by LC-MS, and the catechol compound was quantified from the UV peak. As a result, as shown in the table below, air: N 2 has a 1: 3, 1: 4, or 1: 9 gas as compared to a case where only air or a gas of air: N 2 = 1: 1 is vented. When aeration was performed, the amount of product catechol compound (2- (2,3-dihydroxyphenyl) ethanol) produced was larger. In the table below, “starting oxygen concentration” is the dissolved oxygen concentration of the reaction solution at the start of the reaction (in the table, “ppm” is used synonymously with “mg / L”), and “initial dissolved oxygen concentration” is The dissolved oxygen concentration in the reaction solution immediately after the addition of IPTG (within 5 minutes), “Initial PEA” is the concentration of 2-phenylethanol in the reaction solution at the start of the reaction solution, “Conc.” Is 2- ( This refers to the concentration of 2,3-dihydroxyphenyl) ethanol in the reaction solution. LC-MS analysis conditions are the same as above. In any test section, the dissolved oxygen concentration did not become higher than the initial oxygen concentration throughout the reaction period.
[実施例5: 基質を逐次添加した場合]
(1)形質転換微生物の調製
形質転換大腸菌E.coli BL21(DE3)/(todA-D/pET21-b(+))を以下の手順でIPTG発現誘導培養した。 [Example 5: When substrate is added sequentially]
(1) Preparation of transformed microorganisms coli BL21 (DE3) / (todA-D / pET21-b (+)) was induced to induce IPTG expression according to the following procedure.
(1)形質転換微生物の調製
形質転換大腸菌E.coli BL21(DE3)/(todA-D/pET21-b(+))を以下の手順でIPTG発現誘導培養した。 [Example 5: When substrate is added sequentially]
(1) Preparation of transformed microorganisms coli BL21 (DE3) / (todA-D / pET21-b (+)) was induced to induce IPTG expression according to the following procedure.
菌株を4mLの液体培地Aに植菌し(試験管)、インキュベートした(30℃、300rpm、一晩、前培養)。続いて、初期OD660が0.05となるよう、2Lジャーファーメンター(ABLE社製)内の液体培地B(1L)に前培養物を植菌した。pH調整下(pHの下限が6.0となるように、2N NaOHを随時添加)、空気:N2が1:4である通気ガスを通気量1L/分で通気し、インキュベートした(25℃、725rpm)。
The strain was inoculated into 4 mL of liquid medium A (test tube) and incubated (30 ° C., 300 rpm, overnight, preculture). Subsequently, the preculture was inoculated into the liquid medium B (1 L) in the 2 L jar fermenter (manufactured by ABLE) so that the initial OD 660 was 0.05. pH adjustment under (as the lower limit of the pH is 6.0, added at any time 2N NaOH), air: N 2 is 1: aeration gas is 4 aerated with aeration 1L / min, and incubated (25 ° C. 725 rpm).
培養開始から4.5時間後(OD660=0.59)、終濃度が10μMになるようにIPTG(和光純薬社製)を添加し、温度25℃、攪拌数725rpmで24時間培養した。培養後の微生物をリン酸緩衝液B(pH7.0)にて集洗菌した後、使用するまで、-80℃にて凍結保存した。
After 4.5 hours from the start of culture (OD 660 = 0.59), IPTG (manufactured by Wako Pure Chemical Industries, Ltd.) was added so that the final concentration was 10 μM, and the cells were cultured at a temperature of 25 ° C. and a stirring rate of 725 rpm for 24 hours. The cultured microorganisms were collected and washed with phosphate buffer B (pH 7.0) and then stored frozen at −80 ° C. until use.
(2)形質転換微生物を用いた2-(2,3-ジヒドロキシフェニル)エタノールの合成
凍結菌体をリン酸緩衝液B(pH7.0)にて懸濁し、OD660=70とした微生物懸濁液を調製した。600mLのリン酸緩衝液B、100mLの20%(w/v)グルコース水溶液、90mLの微生物懸濁液(OD660=70)、500μLのアデカノール(登録商標)LG-109(アデカ社製)、および2.5gの2-フェニルエタノールを2Lジャーファーメンター(ABLE社製)に添加し、インキュベートした(25℃、7時間、500rpm、空気 1vvm)。 (2) Synthesis of 2- (2,3-dihydroxyphenyl) ethanol using transformed microorganisms Microbial suspension in which frozen cells were suspended in phosphate buffer B (pH 7.0) to give OD 660 = 70 A liquid was prepared. 600 mL of phosphate buffer B, 100 mL of 20% (w / v) aqueous glucose solution, 90 mL of microbial suspension (OD 660 = 70), 500 μL of Adecanol® LG-109 (Adeka), and 2.5 g of 2-phenylethanol was added to a 2 L jar fermenter (Able) and incubated (25 ° C., 7 hours, 500 rpm,air 1 vvm).
凍結菌体をリン酸緩衝液B(pH7.0)にて懸濁し、OD660=70とした微生物懸濁液を調製した。600mLのリン酸緩衝液B、100mLの20%(w/v)グルコース水溶液、90mLの微生物懸濁液(OD660=70)、500μLのアデカノール(登録商標)LG-109(アデカ社製)、および2.5gの2-フェニルエタノールを2Lジャーファーメンター(ABLE社製)に添加し、インキュベートした(25℃、7時間、500rpm、空気 1vvm)。 (2) Synthesis of 2- (2,3-dihydroxyphenyl) ethanol using transformed microorganisms Microbial suspension in which frozen cells were suspended in phosphate buffer B (pH 7.0) to give OD 660 = 70 A liquid was prepared. 600 mL of phosphate buffer B, 100 mL of 20% (w / v) aqueous glucose solution, 90 mL of microbial suspension (OD 660 = 70), 500 μL of Adecanol® LG-109 (Adeka), and 2.5 g of 2-phenylethanol was added to a 2 L jar fermenter (Able) and incubated (25 ° C., 7 hours, 500 rpm,
続いて、凍結菌体をリン酸緩衝液B(pH7.0)にて懸濁し、OD660=75とした微生物懸濁液を調製した。85mLの微生物懸濁液(OD660=75)、および2.5gの2-フェニルエタノールを上記の2Lジャーファーメンター(ABLE社製)に追加添加し、インキュベートした(25℃、14時間、500rpm、空気 1vvm)。得られた反応液(880.5mL)をGCにより分析したところ、2-フェニルエタノールは検出されず、2-(2,3-ジヒドロキシフェニル)エタノールが46.5mM(7.2g/L)、選択率97.0%で生成していることを確認した。
Subsequently, the frozen cells were suspended in phosphate buffer B (pH 7.0) to prepare a microorganism suspension having an OD 660 = 75. An additional 85 mL of microbial suspension (OD 660 = 75) and 2.5 g of 2-phenylethanol were added to the above 2 L jar fermenter (Able) and incubated (25 ° C., 14 hours, 500 rpm, Air 1 vvm). The obtained reaction solution (880.5 mL) was analyzed by GC. As a result, 2-phenylethanol was not detected, and 2- (2,3-dihydroxyphenyl) ethanol was 46.5 mM (7.2 g / L). It was confirmed that the product was produced at a rate of 97.0%.
(3)形質転換微生物を用いた2-(2,3-ジヒドロキシフェノキシ)エタノールの合成
凍結菌体をリン酸緩衝液B(pH7.0)にて懸濁し、OD660=124とした微生物懸濁液を調製した。660mLのリン酸緩衝液B、40mLの50%(w/v)グルコース水溶液、200mLの微生物懸濁液(OD660=124)、1mLのアデカノール(登録商標)LG-109(アデカ社製)、および2.2g(2mL)の2-フェノキシエタノールを2Lジャーファーメンター(ABLE社製)に添加し、インキュベートした(25℃、4時間、500rpm、空気 1vvm)。 (3) Synthesis of 2- (2,3-dihydroxyphenoxy) ethanol using transformed microorganism Suspended microorganism suspension with OD 660 = 124 by suspending frozen cells in phosphate buffer B (pH 7.0) A liquid was prepared. 660 mL of phosphate buffer B, 40 mL of 50% (w / v) aqueous glucose solution, 200 mL of microbial suspension (OD 660 = 124), 1 mL of Adecanol® LG-109 (Adeka), and 2.2 g (2 mL) of 2-phenoxyethanol was added to a 2 L jar fermenter (manufactured by ABLE) and incubated (25 ° C., 4 hours, 500 rpm,air 1 vvm).
凍結菌体をリン酸緩衝液B(pH7.0)にて懸濁し、OD660=124とした微生物懸濁液を調製した。660mLのリン酸緩衝液B、40mLの50%(w/v)グルコース水溶液、200mLの微生物懸濁液(OD660=124)、1mLのアデカノール(登録商標)LG-109(アデカ社製)、および2.2g(2mL)の2-フェノキシエタノールを2Lジャーファーメンター(ABLE社製)に添加し、インキュベートした(25℃、4時間、500rpm、空気 1vvm)。 (3) Synthesis of 2- (2,3-dihydroxyphenoxy) ethanol using transformed microorganism Suspended microorganism suspension with OD 660 = 124 by suspending frozen cells in phosphate buffer B (pH 7.0) A liquid was prepared. 660 mL of phosphate buffer B, 40 mL of 50% (w / v) aqueous glucose solution, 200 mL of microbial suspension (OD 660 = 124), 1 mL of Adecanol® LG-109 (Adeka), and 2.2 g (2 mL) of 2-phenoxyethanol was added to a 2 L jar fermenter (manufactured by ABLE) and incubated (25 ° C., 4 hours, 500 rpm,
続いて、200mLの微生物懸濁液(OD660=124)、および2.2g(2mL)の2-フェニルエタノールを上記の2Lジャーファーメンター(ABLE社製)に追加添加し、インキュベートした(25℃、18時間、500rpm、空気 1vvm)。得られた反応液(1105mL)をGCにより分析したところ、2-フェニルエタノールは4.2mM、2-(2,3-ジヒドロキシフェノキシ)エタノールが24.3mM(3.8g/L)、選択率98.2%で生成していることを確認した。
Subsequently, 200 mL of the microbial suspension (OD 660 = 124) and 2.2 g (2 mL) of 2-phenylethanol were additionally added to the 2 L jar fermenter (manufactured by Able) and incubated (25 ° C. 18 hours, 500 rpm, air 1 vvm). The obtained reaction liquid (1105 mL) was analyzed by GC. As a result, 4.2 mM for 2-phenylethanol, 24.3 mM (3.8 g / L) for 2- (2,3-dihydroxyphenoxy) ethanol, and a selectivity of 98 It was confirmed that it was produced at 2%.
[比較例1: シュードモナス・プチダF1株(ATCC700007)を用いた反応]
(1)微生物の調製
シュードモナス・プチダF1株(ATCC700007)を以下の手順でIPTG発現誘導培養した。 [Comparative Example 1: Reaction using Pseudomonas putida F1 strain (ATCC 700007)]
(1) Preparation of microorganism Pseudomonas putida F1 strain (ATCC 700007) was subjected to IPTG expression induction culture according to the following procedure.
(1)微生物の調製
シュードモナス・プチダF1株(ATCC700007)を以下の手順でIPTG発現誘導培養した。 [Comparative Example 1: Reaction using Pseudomonas putida F1 strain (ATCC 700007)]
(1) Preparation of microorganism Pseudomonas putida F1 strain (ATCC 700007) was subjected to IPTG expression induction culture according to the following procedure.
菌株を4mLのLB培地に植菌し(試験管)、インキュベートした(30℃、300rpm、一晩、前培養)。続いて、0.1% トルエン添加LB培地(100mL)に初期OD660が0.05となるように前培養物を植菌し(坂口フラスコ)、インキュベートした(30℃、120rpm、培養開始から24時間)。リン酸緩衝液A(pH7.0)にて集洗菌した後、使用するまで、-80℃にて凍結保存した。
The strain was inoculated into 4 mL of LB medium (test tube) and incubated (30 ° C., 300 rpm, overnight, preculture). Subsequently, the preculture was inoculated into an LB medium (100 mL) containing 0.1% toluene so that the initial OD 660 was 0.05 (Sakaguchi flask) and incubated (30 ° C., 120 rpm, 24 hours from the start of the culture). time). The cells were collected and washed with phosphate buffer A (pH 7.0), and then stored frozen at −80 ° C. until use.
(2)微生物を用いたカテコール化合物の合成
凍結菌体をリン酸緩衝液A(pH7.0)にて懸濁し、下記の反応液を調製し、反応を実施した(30℃、300rpm、24時間)。 (2) Synthesis of catechol compound using microorganisms Frozen cells were suspended in phosphate buffer A (pH 7.0), the following reaction solution was prepared, and the reaction was carried out (30 ° C., 300 rpm, 24 hours) ).
凍結菌体をリン酸緩衝液A(pH7.0)にて懸濁し、下記の反応液を調製し、反応を実施した(30℃、300rpm、24時間)。 (2) Synthesis of catechol compound using microorganisms Frozen cells were suspended in phosphate buffer A (pH 7.0), the following reaction solution was prepared, and the reaction was carried out (30 ° C., 300 rpm, 24 hours) ).
反応液をLC-MSにより分析した。その結果、2-フェニルエタノールの転化率は25.1%であったが、カテコール化合物である2-(2,3-ジヒドロキシフェニル)エタノールは確認できなかった。この場合、「転化率」とは、以下の数式2で表わされる値である。
The reaction solution was analyzed by LC-MS. As a result, the conversion rate of 2-phenylethanol was 25.1%, but 2- (2,3-dihydroxyphenyl) ethanol, which is a catechol compound, could not be confirmed. In this case, the “conversion rate” is a value represented by the following formula 2.
確認できた主な生成物はフェニル酢酸であった(0.77mM、選択率62.1%)。これは、アルコールデヒドロゲナーゼによって2-フェニルエタノールが酸化され、生じたアルデヒドがアルデヒドデヒドロゲナーゼによって酸化されたためであると推定される。上記推定は本発明の技術的範囲を制限するものではない。
The main product confirmed was phenylacetic acid (0.77 mM, selectivity 62.1%). This is presumably because 2-phenylethanol was oxidized by alcohol dehydrogenase and the resulting aldehyde was oxidized by aldehyde dehydrogenase. The above estimation does not limit the technical scope of the present invention.
[比較例2: E.coli BL21(DE3)/pET21-b(+)を用いた反応]
(1)形質転換微生物の調製
E.coli BL21(DE3)/pET21-b(+)を以下の手順でIPTG発現誘導培養した。 [Comparative Example 2: E.E. reaction using E. coli BL21 (DE3) / pET21-b (+)]
(1) Preparation of transformed microorganism coli BL21 (DE3) / pET21-b (+) was induced to induce IPTG expression according to the following procedure.
(1)形質転換微生物の調製
E.coli BL21(DE3)/pET21-b(+)を以下の手順でIPTG発現誘導培養した。 [Comparative Example 2: E.E. reaction using E. coli BL21 (DE3) / pET21-b (+)]
(1) Preparation of transformed microorganism coli BL21 (DE3) / pET21-b (+) was induced to induce IPTG expression according to the following procedure.
4mLのLB培地(100mg/Lアンピシリン添加)に菌株を植菌し(試験管)、インキュベートした(30℃、300rpm、一晩、前培養)。続いて、液体培地A(100mL)に初期OD660が0.05となるように前培養物を植菌し(坂口フラスコ)、インキュベートした(25℃、120rpm)。OD660が0.4~0.6になった時点で、終濃度が10μMになるようにIPTG(和光純薬社製)を添加し、インキュベートした(25℃、120rpm、培養開始24時間)。リン酸緩衝液A(pH7.0)にて集洗菌した後、使用するまで、-80℃にて凍結保存した。
The strain was inoculated into 4 mL of LB medium (added with 100 mg / L ampicillin) (test tube) and incubated (30 ° C., 300 rpm, overnight, preculture). Subsequently, a preculture was inoculated into liquid medium A (100 mL) so that the initial OD 660 was 0.05 (Sakaguchi flask) and incubated (25 ° C., 120 rpm). When OD 660 reached 0.4 to 0.6, IPTG (manufactured by Wako Pure Chemical Industries, Ltd.) was added to the final concentration of 10 μM and incubated (25 ° C., 120 rpm, culture start 24 hours). The cells were collected and washed with phosphate buffer A (pH 7.0), and then stored frozen at −80 ° C. until use.
(2)形質転換微生物を用いたカテコール化合物の合成
凍結菌体をリン酸緩衝液A(pH7.0)にて懸濁し、下記の反応液を調製し、反応を開始した(30℃、300rpm)。 (2) Synthesis of catechol compound using transformed microorganisms Frozen cells were suspended in phosphate buffer A (pH 7.0), the following reaction solution was prepared, and the reaction was started (30 ° C., 300 rpm). .
凍結菌体をリン酸緩衝液A(pH7.0)にて懸濁し、下記の反応液を調製し、反応を開始した(30℃、300rpm)。 (2) Synthesis of catechol compound using transformed microorganisms Frozen cells were suspended in phosphate buffer A (pH 7.0), the following reaction solution was prepared, and the reaction was started (30 ° C., 300 rpm). .
反応液をLC-MSにより分析した。その結果を表26に示す。反応開始24時間での2-フェニルエタノールの転化率は5.4%であったが、カテコール化合物である2-(2,3-ジヒドロキシフェニル)エタノールは確認できなかった。
The reaction solution was analyzed by LC-MS. The results are shown in Table 26. The conversion rate of 2-phenylethanol at 24 hours from the start of the reaction was 5.4%, but 2- (2,3-dihydroxyphenyl) ethanol, which is a catechol compound, could not be confirmed.
[実施例6: カセット(1)のコピー数と、カセット(2)のコピー数との比]
(1)形質転換微生物の作製
上記の手法に準じて、下表の組み合わせで宿主に対して組換えベクターをヒートショック法またはエレクトロポレーション法にて導入して、カセット(1)のコピー数とカセット(2)のコピー数との比を変更した各形質転換微生物(IPTG誘導性プロモーター(1)およびIPTG誘導性プロモーター(2)が、ともにT7プロモーター)を作製した。各形質転換株に導入した組換えプラスミド中のカセットを、図9に模式的に示す。得られた形質転換大腸菌のグリセロールストックを調製し、後述の形質転換微生物の調製まで、-80℃で保管した。 [Example 6: Ratio of the number of copies of cassette (1) to the number of copies of cassette (2)]
(1) Preparation of transformed microorganism According to the above method, a recombinant vector is introduced into the host by the heat shock method or electroporation method in the combinations shown in the table below, and the copy number of cassette (1) is calculated. Each transformed microorganism (IPTG-inducible promoter (1) and IPTG-inducible promoter (2) were both T7 promoters) with different ratios to the copy number of the cassette (2) was prepared. A cassette in the recombinant plasmid introduced into each transformant is schematically shown in FIG. A glycerol stock of the obtained transformed Escherichia coli was prepared and stored at −80 ° C. until preparation of a transformed microorganism described below.
(1)形質転換微生物の作製
上記の手法に準じて、下表の組み合わせで宿主に対して組換えベクターをヒートショック法またはエレクトロポレーション法にて導入して、カセット(1)のコピー数とカセット(2)のコピー数との比を変更した各形質転換微生物(IPTG誘導性プロモーター(1)およびIPTG誘導性プロモーター(2)が、ともにT7プロモーター)を作製した。各形質転換株に導入した組換えプラスミド中のカセットを、図9に模式的に示す。得られた形質転換大腸菌のグリセロールストックを調製し、後述の形質転換微生物の調製まで、-80℃で保管した。 [Example 6: Ratio of the number of copies of cassette (1) to the number of copies of cassette (2)]
(1) Preparation of transformed microorganism According to the above method, a recombinant vector is introduced into the host by the heat shock method or electroporation method in the combinations shown in the table below, and the copy number of cassette (1) is calculated. Each transformed microorganism (IPTG-inducible promoter (1) and IPTG-inducible promoter (2) were both T7 promoters) with different ratios to the copy number of the cassette (2) was prepared. A cassette in the recombinant plasmid introduced into each transformant is schematically shown in FIG. A glycerol stock of the obtained transformed Escherichia coli was prepared and stored at −80 ° C. until preparation of a transformed microorganism described below.
上記のうち、株No.3(tod2+todD株)は、株No.2(tod2株)に対して組換えプラスミドtodD/pCDFを導入して作製した。すなわち、tod2株を4mlのLB培地(100mg/Lのアンピシリン、1質量%のグルコースを含む)に植菌し、30℃で一晩、300rpmで撹拌しながら前培養した。前培養液のOD660を測定したところ9.05であった。次に、OD660が0.05となるように、前培養液を100mlのLB培地(100mg/Lのアンピシリン、1質量%のグルコースを含む)に植菌し、30℃で4.5時間、120rpmで撹拌しながら培養した。培養後、遠心分離(7000rpm、10分間、4℃)を行い、沈殿(菌体)を回収した。菌体に5mlの10重量%グリセロール水溶液を加えて懸濁し、遠心分離(7000rpm、10分間、4℃)を行い、沈殿(菌体)を回収した(洗浄工程)。洗浄工程を計4回繰り返した後、菌体を2mlの10質量%グリセロール水溶液で懸濁した。懸濁液を用い、エレクトロポレーション法にて組換えプラスミド(todD/pCDF)を上記表中の株No.2(tod2株)に導入した。todD/pCDFの導入処理をしたtod2株を、LB培地(100mg/Lのアンピシリン、20mg/Lのストレプトマイシン、1質量%のグルコースを含む)に植菌し、抗生物質耐性により形質転換株を選別して株No.3(tod2+todD株)を得た。
Among the above, strain No. 3 (tod2 + todD strain) is strain no. 2 (tod2 strain) was prepared by introducing the recombinant plasmid todD / pCDF. That is, the tod2 strain was inoculated into 4 ml of LB medium (containing 100 mg / L ampicillin and 1% by mass of glucose), and precultured at 30 ° C. overnight with stirring at 300 rpm. The OD 660 of the preculture was measured and found to be 9.05. Next, the preculture solution was inoculated into 100 ml of LB medium (containing 100 mg / L ampicillin and 1% by mass of glucose) so that OD 660 was 0.05, and 4.5 hours at 30 ° C. The culture was performed with stirring at 120 rpm. After incubation, centrifugation (7000 rpm, 10 minutes, 4 ° C.) was performed, and the precipitate (bacteria) was collected. 5 ml of 10% by weight glycerol aqueous solution was added to the cells to suspend them, and centrifugation (7000 rpm, 10 minutes, 4 ° C.) was performed to collect precipitates (cells) (washing step). After the washing process was repeated four times in total, the cells were suspended in 2 ml of 10% by mass glycerol aqueous solution. Using the suspension, the recombinant plasmid (todD / pCDF) was obtained from the strain No. in the above table by electroporation. 2 (tod2 strain). The tod2 strain treated with todD / pCDF was inoculated into LB medium (containing 100 mg / L ampicillin, 20 mg / L streptomycin, and 1% by weight glucose), and the transformed strain was selected by antibiotic resistance. Strain No. 3 (tod2 + todD strain) was obtained.
各組換えプラスミドの作製に用いたDNA断片を下表に示す。
The DNA fragments used for the preparation of each recombinant plasmid are shown in the table below.
上記の各DNA断片の合成に用いたプライマーおよびテンプレートを、下表に示す。
The primers and templates used for the synthesis of each of the above DNA fragments are shown in the table below.
なお、E.coli BL21(DE3)はタカラバイオ社より購入した。また、pET21-b(Novagen社製、アンピシリン耐性遺伝子をコードする配列を有する。)、およびpCDF Duet-1(Novagen社製、ストレプトマイシン(Sm)耐性遺伝子をコードする配列を有する。)はT7プロモーター配列を有する。
E.E. E. coli BL21 (DE3) was purchased from Takara Bio. In addition, pET21-b (Novagen, having a sequence encoding an ampicillin resistance gene) and pCDF Duet-1 (Novagen, having a sequence encoding a streptomycin (Sm) resistance gene) are T7 promoter sequences. Have
(2)形質転換微生物の調製
上記のtod1株、tod2株、tod2+todD株、todD_tod1株、およびtod2_todD株を用いて、実施例4における条件4(空気:N2=1:4、通気量1L/分、培養開始から4.5時間後に終濃度が10μMになるようにIPTGを添加)に準じて形質転換微生物の調製を行った。なお、pHの下限が6.5となるように、2N NaOHを随時添加して培養した。 (2) Preparation of transformed microorganism Using the above-mentioned tod1,strain 2, tod2 + todD, todD_tod1, and tod2_todD, condition 4 in Example 4 (air: N 2 = 1: 4, air flow 1 L / min) Then, after 4.5 hours from the start of the culture, a transformed microorganism was prepared in accordance with IPTG added so that the final concentration was 10 μM. In addition, it culture | cultivated by adding 2N NaOH at any time so that the minimum of pH might be set to 6.5.
上記のtod1株、tod2株、tod2+todD株、todD_tod1株、およびtod2_todD株を用いて、実施例4における条件4(空気:N2=1:4、通気量1L/分、培養開始から4.5時間後に終濃度が10μMになるようにIPTGを添加)に準じて形質転換微生物の調製を行った。なお、pHの下限が6.5となるように、2N NaOHを随時添加して培養した。 (2) Preparation of transformed microorganism Using the above-mentioned tod1,
tod1株、tod2株、tod2+todD株、todD_tod1株、およびtod2_todD株を培養した際の、培養液の溶存酸素濃度(DO)を図10に示す。
FIG. 10 shows the dissolved oxygen concentration (DO) of the culture solution when the tod1 strain, tod2 strain, tod2 + todD strain, todD_tod1 strain, and tod2_todD strain were cultured.
(3)形質転換微生物を用いたカテコール化合物の合成
反応開始時の菌体OD660を2.5に変更した以外は実施例4と同様の方法により、2-フェニルエタノール(PEA)を原料として2-(2,3-ジヒドロキシフェニル)エタノール(3-(ヒドロキシエチル)カテコール、HEC)を合成した。 (3) Synthesis of a catechol compound using transformed microorganisms 2-phenylethanol (PEA) was used as a raw material in the same manner as in Example 4 except that the cell OD 660 at the start of the reaction was changed to 2.5. -(2,3-Dihydroxyphenyl) ethanol (3- (hydroxyethyl) catechol, HEC) was synthesized.
反応開始時の菌体OD660を2.5に変更した以外は実施例4と同様の方法により、2-フェニルエタノール(PEA)を原料として2-(2,3-ジヒドロキシフェニル)エタノール(3-(ヒドロキシエチル)カテコール、HEC)を合成した。 (3) Synthesis of a catechol compound using transformed microorganisms 2-phenylethanol (PEA) was used as a raw material in the same manner as in Example 4 except that the cell OD 660 at the start of the reaction was changed to 2.5. -(2,3-Dihydroxyphenyl) ethanol (3- (hydroxyethyl) catechol, HEC) was synthesized.
反応開始から2時間後、および4時間後における反応液中の2-フェニルエタノール(PEA)および2-(2,3-ジヒドロキシフェニル)エタノール(HEC)量を、上記手法により測定した。また、2-フェニルエタノール(PEA)および2-(2,3-ジヒドロキシフェニル)エタノール(HEC)量から、カテコール化合物の選択率および反応速度を求めた。結果を図11~13、および下表に示す。下表において、実施例4と比較して反応速度がやや低下しているが、これは、反応に用いた菌体量が実施例4よりも少ないためである。
The amount of 2-phenylethanol (PEA) and 2- (2,3-dihydroxyphenyl) ethanol (HEC) in the reaction solution at 2 hours and 4 hours after the start of the reaction was measured by the above method. The selectivity and reaction rate of the catechol compound were determined from the amounts of 2-phenylethanol (PEA) and 2- (2,3-dihydroxyphenyl) ethanol (HEC). The results are shown in FIGS. 11 to 13 and the table below. In the table below, the reaction rate is slightly lower than in Example 4, but this is because the amount of cells used in the reaction is less than in Example 4.
図11に示す2-フェニルエタノール(PEA)消費量は、反応式(1)における前半の反応速度に対応する。また、図12に示す2-(2,3-ジヒドロキシフェニル)エタノール(HEC)生成量は、反応式(1)における後半の反応速度に対応する。図12、図13、および上表より、カセット(1)とカセット(2)とのコピー数の比を1:1~5:1とすることにより、反応式(1)における後半の反応が促進され、カテコール化合物の生成速度が向上し、選択率も向上していることが分かる。図11より、カセット(1)とカセット(2)とを同一のベクターにタンデムに組込んだ場合(todD_tod1株、tod2_todD株)、カセット(1)とカセット(2)とを別々のベクターに組込んだ場合(tod2+todD株)と比べて、反応式(1)における前半の反応が促進されることが分かる。
The 2-phenylethanol (PEA) consumption shown in FIG. 11 corresponds to the first half reaction rate in the reaction formula (1). Further, the amount of 2- (2,3-dihydroxyphenyl) ethanol (HEC) produced shown in FIG. 12 corresponds to the reaction rate in the latter half of the reaction formula (1). From FIG. 12, FIG. 13 and the above table, the second half reaction in the reaction formula (1) is promoted by setting the copy number ratio of the cassette (1) and the cassette (2) to 1: 1 to 5: 1. It can be seen that the production rate of the catechol compound is improved and the selectivity is also improved. From FIG. 11, when cassette (1) and cassette (2) are incorporated into the same vector in tandem (todD_tod1 strain, tod2_todD strain), cassette (1) and cassette (2) are incorporated into separate vectors. Compared to the case (tod2 + todD strain), it can be seen that the first half reaction in the reaction formula (1) is promoted.
[実施例7: プロモーターの種類]
(1)形質転換微生物の作製
上記の手法に準じて、T7プロモーターに代えて、tacプロモーターの下流に作動的に芳香環ジオキシゲナーゼ遺伝子群および芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を連結したカセット(1)を含む発現ベクターを導入した形質転換微生物(tacP-tod1株)を作製した。得られた形質転換大腸菌のグリセロールストックを調製し、後述の形質転換微生物の調製まで、-80℃で保管した。 [Example 7: Types of promoter]
(1) Preparation of transformed microorganism According to the above method, instead of the T7 promoter, a cassette (1) in which an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene are operatively linked downstream of the tac promoter is used. A transformed microorganism (tacP-tod1 strain) into which the expression vector was introduced was prepared. A glycerol stock of the obtained transformed Escherichia coli was prepared and stored at −80 ° C. until preparation of a transformed microorganism described below.
(1)形質転換微生物の作製
上記の手法に準じて、T7プロモーターに代えて、tacプロモーターの下流に作動的に芳香環ジオキシゲナーゼ遺伝子群および芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を連結したカセット(1)を含む発現ベクターを導入した形質転換微生物(tacP-tod1株)を作製した。得られた形質転換大腸菌のグリセロールストックを調製し、後述の形質転換微生物の調製まで、-80℃で保管した。 [Example 7: Types of promoter]
(1) Preparation of transformed microorganism According to the above method, instead of the T7 promoter, a cassette (1) in which an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene are operatively linked downstream of the tac promoter is used. A transformed microorganism (tacP-tod1 strain) into which the expression vector was introduced was prepared. A glycerol stock of the obtained transformed Escherichia coli was prepared and stored at −80 ° C. until preparation of a transformed microorganism described below.
組換えプラスミドの作製に用いたDNA断片を下表に示す。
The DNA fragments used for the production of the recombinant plasmid are shown in the table below.
上記の各DNA断片の合成に用いたプライマーおよびテンプレートを、下表に示す。
The primers and templates used for the synthesis of each of the above DNA fragments are shown in the table below.
なお、E.coli JM109はタカラバイオ社より購入した。また、pUC18(Clontech社製、アンピシリン耐性遺伝子をコードする配列を有する。)が有するプロモーターはlacプロモーターであるため、tacプロモーター配列を含むプライマーを用いて増幅したTacP/pUC18断片を用いて発現ベクターの構築を行った。なお、宿主としてJM109を用いた場合は、In-Fusion PCRクローニングキット(Takara社)のプロトコールに従ってクローニング後、クローニングの宿主としてE.coli JM109を用いた。
E.E. E. coli JM109 was purchased from Takara Bio Inc. In addition, since the promoter of pUC18 (Clontech, which has a sequence encoding an ampicillin resistance gene) is a lac promoter, the expression vector of TacP / pUC18 amplified using a primer containing a tac promoter sequence is used. Constructed. When JM109 was used as the host, cloning was performed according to the protocol of the In-Fusion PCR cloning kit (Takara), and then E. coli was used as the cloning host. E. coli JM109 was used.
(2)形質転換微生物の調製
tacP-tod1株を用いて、実施例3の条件(坂口フラスコ、OD660が0.4~0.5になった時点で終濃度が10~500μMになるようにIPTGを添加)に準じて形質転換微生物の調製を行った。 (2) Preparation of transformed microorganism Using tacP-tod1 strain, the conditions of Example 3 (Sakaguchi flask, OD 660 was adjusted to 0.4 to 0.5 so that the final concentration was 10 to 500 μM) A transformed microorganism was prepared according to (IPTG added).
tacP-tod1株を用いて、実施例3の条件(坂口フラスコ、OD660が0.4~0.5になった時点で終濃度が10~500μMになるようにIPTGを添加)に準じて形質転換微生物の調製を行った。 (2) Preparation of transformed microorganism Using tacP-tod1 strain, the conditions of Example 3 (Sakaguchi flask, OD 660 was adjusted to 0.4 to 0.5 so that the final concentration was 10 to 500 μM) A transformed microorganism was prepared according to (IPTG added).
(3)形質転換微生物を用いたカテコール化合物の合成
実施例3の方法に準じて、反応開始時の菌体OD660を2.5とし、2-フェニルエタノール(PEA)を原料として2-(2,3-ジヒドロキシフェニル)エタノール(HEC)を合成した。 (3) Synthesis of catechol compound using transformed microorganism According to the method of Example 3, the cell OD 660 at the start of the reaction was set to 2.5, and 2-phenylethanol (PEA) was used as a raw material. , 3-Dihydroxyphenyl) ethanol (HEC) was synthesized.
実施例3の方法に準じて、反応開始時の菌体OD660を2.5とし、2-フェニルエタノール(PEA)を原料として2-(2,3-ジヒドロキシフェニル)エタノール(HEC)を合成した。 (3) Synthesis of catechol compound using transformed microorganism According to the method of Example 3, the cell OD 660 at the start of the reaction was set to 2.5, and 2-phenylethanol (PEA) was used as a raw material. , 3-Dihydroxyphenyl) ethanol (HEC) was synthesized.
上記表に示す通り、IPTG濃度が5~100μMの場合、特に15~100μMの場合、反応速度(カテコール化合物の生成速度)が高く、カテコール化合物(2-(2,3-ジヒドロキシフェニル)エタノール)が効率的に生成されていた。
As shown in the table above, when the IPTG concentration is 5 to 100 μM, particularly 15 to 100 μM, the reaction rate (catechol compound formation rate) is high, and the catechol compound (2- (2,3-dihydroxyphenyl) ethanol) It was generated efficiently.
[組成物]
(組成物(1))
上記実施例5において2-(2,3-ジヒドロキシフェニル)エタノールを合成した反応液から、以下の手順により2-(2,3-ジヒドロキシフェニル)エタノール(本発明に係るカテコール化合物、3-(ヒドロキシエチル)カテコール、HEC)および2-(2-ヒドロキシフェニル)エタノール(本発明に係る一水酸化物)を含む組成物(1)を得た。 [Composition]
(Composition (1))
From the reaction solution in which 2- (2,3-dihydroxyphenyl) ethanol was synthesized in Example 5 above, 2- (2,3-dihydroxyphenyl) ethanol (catechol compound according to the present invention, 3- (hydroxyl) was synthesized by the following procedure. A composition (1) comprising ethyl) catechol, HEC) and 2- (2-hydroxyphenyl) ethanol (monohydroxide according to the invention) was obtained.
(組成物(1))
上記実施例5において2-(2,3-ジヒドロキシフェニル)エタノールを合成した反応液から、以下の手順により2-(2,3-ジヒドロキシフェニル)エタノール(本発明に係るカテコール化合物、3-(ヒドロキシエチル)カテコール、HEC)および2-(2-ヒドロキシフェニル)エタノール(本発明に係る一水酸化物)を含む組成物(1)を得た。 [Composition]
(Composition (1))
From the reaction solution in which 2- (2,3-dihydroxyphenyl) ethanol was synthesized in Example 5 above, 2- (2,3-dihydroxyphenyl) ethanol (catechol compound according to the present invention, 3- (hydroxyl) was synthesized by the following procedure. A composition (1) comprising ethyl) catechol, HEC) and 2- (2-hydroxyphenyl) ethanol (monohydroxide according to the invention) was obtained.
すなわち、1Lの反応液を遠心分離(5,000×g、30min、4℃)し、上清を回収し、塩酸により、pHを3に調整した。その後、pHを調整した上清をさらに遠心分離(5,000×g、30min、4℃)し、再度上清を回収し、100gの無水硫酸ナトリウムを添加した。その後、1Lの酢酸エチルにより抽出作業を2回行った。酢酸エチル相を無水硫酸ナトリウムにより脱水し、ろ紙(桐山製作所、No.4)にて溶液をろ過した。ろ液をロータリーエバポレーターにより濃縮し、濃縮物を得た。
That is, 1 L of the reaction solution was centrifuged (5,000 × g, 30 min, 4 ° C.), the supernatant was collected, and the pH was adjusted to 3 with hydrochloric acid. Thereafter, the supernatant whose pH was adjusted was further centrifuged (5,000 × g, 30 min, 4 ° C.), and the supernatant was collected again, and 100 g of anhydrous sodium sulfate was added. Then, extraction operation was performed twice with 1 L of ethyl acetate. The ethyl acetate phase was dehydrated with anhydrous sodium sulfate, and the solution was filtered with a filter paper (Kiriyama Seisakusho, No. 4). The filtrate was concentrated by a rotary evaporator to obtain a concentrate.
次に、濃縮物に対し、シリカゲル60(Merck社製)を、シリカゲル表面が乾燥するまで添加し、シリカゲル60を充填したカラムにロードした。カラムに溶離液(酢酸エチル:トルエン:酢酸=1:8:1(v:v:v))を通液し、50mlずつ分取した。サンプルの一部をTLC(酸化アルミニウム150F254中性(タイプT))により展開し、HEC以外にスポットが見られない画分をろ紙(桐山製作所、No.4)にてろ過し、ろ液を濃縮乾固し、組成物(1)を得た。
Next, silica gel 60 (manufactured by Merck) was added to the concentrate until the surface of the silica gel was dried, and loaded onto a column packed with silica gel 60. The eluent (ethyl acetate: toluene: acetic acid = 1: 8: 1 (v: v: v)) was passed through the column, and 50 ml each was collected. Part of the sample was developed with TLC (aluminum oxide 150F254 neutral (type T)), and the fraction where no spots were seen other than HEC was filtered with filter paper (Kiriyama Seisakusho, No. 4), and the filtrate was concentrated. After drying, a composition (1) was obtained.
組成物(1)は、100モルの2-(2,3-ジヒドロキシフェニル)エタノールに対し、0.13モルの2-(2-ヒドロキシフェニル)エタノールを含む。なお、2-(2,3-ジヒドロキシフェニル)エタノールおよび2-(2-ヒドロキシフェニル)エタノールの含有量は、下記条件のガスクロマトグラフィー分析により確認した。
Composition (1) contains 0.13 mol of 2- (2-hydroxyphenyl) ethanol with respect to 100 mol of 2- (2,3-dihydroxyphenyl) ethanol. The contents of 2- (2,3-dihydroxyphenyl) ethanol and 2- (2-hydroxyphenyl) ethanol were confirmed by gas chromatography analysis under the following conditions.
(GC分析条件)
装置: GC-2010(株式会社島津製作所製)
カラム: DB-17HT(Agilent社製)
カラムオーブンプログラム: (GC analysis conditions)
Equipment: GC-2010 (manufactured by Shimadzu Corporation)
Column: DB-17HT (manufactured by Agilent)
Column oven program:
装置: GC-2010(株式会社島津製作所製)
カラム: DB-17HT(Agilent社製)
カラムオーブンプログラム: (GC analysis conditions)
Equipment: GC-2010 (manufactured by Shimadzu Corporation)
Column: DB-17HT (manufactured by Agilent)
Column oven program:
気化室温度: 250℃
注入モード: スプリット
スプリット比: 25
制御モード: 線速度
線速度: 45.1cm/sec
圧力: 90.7kPa
検出器温度(FID): 340℃(内部標準物質:5mM 1-オクタノール)。 Vaporization chamber temperature: 250 ° C
Injection mode: Split split ratio: 25
Control mode: Linear velocity Linear velocity: 45.1 cm / sec
Pressure: 90.7kPa
Detector temperature (FID): 340 ° C. (internal standard: 5 mM 1-octanol).
注入モード: スプリット
スプリット比: 25
制御モード: 線速度
線速度: 45.1cm/sec
圧力: 90.7kPa
検出器温度(FID): 340℃(内部標準物質:5mM 1-オクタノール)。 Vaporization chamber temperature: 250 ° C
Injection mode: Split split ratio: 25
Control mode: Linear velocity Linear velocity: 45.1 cm / sec
Pressure: 90.7kPa
Detector temperature (FID): 340 ° C. (internal standard: 5 mM 1-octanol).
(組成物(2))
上記実施例5において2-(2,3-ジヒドロキシフェノキシ)エタノールを合成した反応液から、組成物(1)と同様の方法により、2-(2,3-ジヒドロキシフェノキシ)エタノール(本発明に係るカテコール化合物、3-(ヒドロキシエトキシ)カテコール、HEOC)および2-(2-ヒドロキシフェノキシ)エタノール(本発明に係る一水酸化物)を含む組成物(2)を得た。 (Composition (2))
From the reaction solution in which 2- (2,3-dihydroxyphenoxy) ethanol was synthesized in Example 5 above, 2- (2,3-dihydroxyphenoxy) ethanol (according to the present invention) was produced in the same manner as in composition (1). A composition (2) containing a catechol compound, 3- (hydroxyethoxy) catechol, HEOC) and 2- (2-hydroxyphenoxy) ethanol (monohydroxide according to the present invention) was obtained.
上記実施例5において2-(2,3-ジヒドロキシフェノキシ)エタノールを合成した反応液から、組成物(1)と同様の方法により、2-(2,3-ジヒドロキシフェノキシ)エタノール(本発明に係るカテコール化合物、3-(ヒドロキシエトキシ)カテコール、HEOC)および2-(2-ヒドロキシフェノキシ)エタノール(本発明に係る一水酸化物)を含む組成物(2)を得た。 (Composition (2))
From the reaction solution in which 2- (2,3-dihydroxyphenoxy) ethanol was synthesized in Example 5 above, 2- (2,3-dihydroxyphenoxy) ethanol (according to the present invention) was produced in the same manner as in composition (1). A composition (2) containing a catechol compound, 3- (hydroxyethoxy) catechol, HEOC) and 2- (2-hydroxyphenoxy) ethanol (monohydroxide according to the present invention) was obtained.
組成物(2)は、100モルの2-(2,3-ジヒドロキシフェノキシ)エタノールに対し、0.78モルの2-(2-ヒドロキシフェノキシ)エタノールを含む。なお、2-(2,3-ジヒドロキシフェノキシ)エタノールおよび2-(2-ヒドロキシフェノキシ)エタノールの含有量は、組成物(1)と同様の方法により確認した。
Composition (2) contains 0.78 mol of 2- (2-hydroxyphenoxy) ethanol with respect to 100 mol of 2- (2,3-dihydroxyphenoxy) ethanol. The contents of 2- (2,3-dihydroxyphenoxy) ethanol and 2- (2-hydroxyphenoxy) ethanol were confirmed by the same method as for composition (1).
図13に示す通り、カセット(1)とカセット(2)とのコピー数の比を任意に設定することにより、カテコール化合物の選択率を調節することができる。合成に用いた芳香族化合物原料のモル数をM1とし、ある反応時間の時点において残存している芳香族化合物原料のモル数をM2、反応式(1)の前半の反応により生成したジヒドロジオール誘導体のモル数をM3、生成したカテコール化合物のモル数をM4とすると、以下の数式3の関係が成立する。なお、任意の反応時間におけるM2、およびM4は、上記のLC-MS、GC-MSおよびガスクロマトグラフィーによる測定方法を任意に組み合せて測定することができる。
As shown in FIG. 13, the selectivity of the catechol compound can be adjusted by arbitrarily setting the copy number ratio between the cassette (1) and the cassette (2). The number of moles of the aromatic compound raw material used for the synthesis is M 1 , the number of moles of the aromatic compound raw material remaining at a certain reaction time is M 2 , and the dihydroform produced by the first half reaction of the reaction formula (1) When the number of moles of the diol derivative is M 3 and the number of moles of the produced catechol compound is M 4 , the relationship of the following formula 3 is established. Note that M 2 and M 4 at an arbitrary reaction time can be measured by arbitrarily combining the above-described measuring methods using LC-MS, GC-MS, and gas chromatography.
反応式(1)の前半の反応により生成したジヒドロジオール誘導体は、酸性条件下で容易に脱水して一水酸化物が生成する(例えば、J Ind Microbiol Biotechnol (2005) 32: 542-547)。従って、上記のM3を任意に設定することで、組成物に含まれる一水酸化物の量を調整することができる。
The dihydrodiol derivative produced by the first half reaction of the reaction formula (1) is easily dehydrated under acidic conditions to produce a monohydroxide (for example, J Ind Microbiol Biotechnol (2005) 32: 542-547). Therefore, the amount of monohydroxide contained in the composition can be adjusted by arbitrarily setting M 3 described above.
(安定性評価)
シリカゲル60を充填したカラムを用い、上記の組成物(2)をさらに2回カラム精製することで、HEOCを単離した(HEOC高純度品)。単離したHEOCでは、組成物(1)の欄で記載したGC分析においてHEOC以外のピークが検出されないことを確認した。このHEOC高純度品に、2-(2-ヒドロキシフェノキシ)エタノール(Ardrich社製)を添加することで、下表に示す組成物を調製した。 (Stability evaluation)
HEOC was isolated by further column purification of the above composition (2) twice using a column packed with silica gel 60 (HEOC high-purity product). In the isolated HEOC, it was confirmed that no peaks other than HEOC were detected in the GC analysis described in the column of the composition (1). The composition shown in the following table was prepared by adding 2- (2-hydroxyphenoxy) ethanol (manufactured by Ardrich) to this HEOC high-purity product.
シリカゲル60を充填したカラムを用い、上記の組成物(2)をさらに2回カラム精製することで、HEOCを単離した(HEOC高純度品)。単離したHEOCでは、組成物(1)の欄で記載したGC分析においてHEOC以外のピークが検出されないことを確認した。このHEOC高純度品に、2-(2-ヒドロキシフェノキシ)エタノール(Ardrich社製)を添加することで、下表に示す組成物を調製した。 (Stability evaluation)
HEOC was isolated by further column purification of the above composition (2) twice using a column packed with silica gel 60 (HEOC high-purity product). In the isolated HEOC, it was confirmed that no peaks other than HEOC were detected in the GC analysis described in the column of the composition (1). The composition shown in the following table was prepared by adding 2- (2-hydroxyphenoxy) ethanol (manufactured by Ardrich) to this HEOC high-purity product.
調製した組成物を空気下で60℃にて4日間保持し、目視によりこの組成物の着色の度合いを観察した。また、HEOCと一水酸化物との合計量が10mg/mLとなるようにエタノールにて組成物を希釈し、UV-VIS検出器(SPD-20A、株式会社島津製作所製)にて、UV-VISスペクトルを測定した。保存前後でのエタノール溶液のUV-VISスペクトルを、図14および15に示す。図14および15中、「0モル」、「0.01モル」、「0.05モル」および「1モル」は、それぞれの組成物において、100モルのHEOCに対する一水酸化物の量(モル)を意味する。
The prepared composition was kept under air at 60 ° C. for 4 days, and the degree of coloring of the composition was observed visually. In addition, the composition was diluted with ethanol so that the total amount of HEOC and monohydroxide was 10 mg / mL, and UV-VIS detector (SPD-20A, manufactured by Shimadzu Corporation) was used for UV- The VIS spectrum was measured. The UV-VIS spectra of the ethanol solution before and after storage are shown in FIGS. 14 and 15, “0 mol”, “0.01 mol”, “0.05 mol” and “1 mol” are the amounts of monohydroxide (moles) per 100 mol of HEOC in each composition. ).
保存試験の結果、一水酸化物を含まないHEOC高純度品と比較して、一水酸化物を含む組成物の方が、目視での観察で着色が薄かった。また、UV-VISスペクトルについては、試験に供した全ての組成物において、60℃で4日間保持した後は0日目でのスペクトルと比較して広い範囲にわたって吸光度が増加しているが、一水酸化物の添加によって吸光度の上昇が抑えられていることが分かる。UV-VISスペクトルのうち、褐変の指標として用いられるOD440については、100モルのHEOCに対して0.01モルの一水酸化物を含む組成物では50.1%の増加抑制率であった。なお、下表において、「OD440増加量」は、4日目のOD660の値から0日目のOD440を引くことによって求められる。
As a result of the storage test, the composition containing the monohydroxide was less colored by visual observation as compared with the HEOC high-purity product not containing the monohydroxide. As for the UV-VIS spectrum, in all the compositions used for the test, the absorbance increased over a wide range after being held at 60 ° C. for 4 days, compared with the spectrum on the 0th day. It can be seen that the increase in absorbance is suppressed by the addition of hydroxide. Among UV-VIS spectra for the OD 440 used as an indicator of browning, the composition containing 0.01 mole one hydroxide per 100 moles of HEOC was increased inhibition rate 50.1% . In the table below, the “OD440 increase amount” is obtained by subtracting the OD440 on the 0th day from the value of the OD660 on the 4th day.
(美白剤)
B16メラノーマ細胞を用いて、上記組成物(1)および組成物(2)のメラニン合成阻害活性を評価した。具体的には、細胞数が1×104細胞/ウェルとなるようにB16メラノーマ細胞(DSファーマメディカル社より購入)を6ウェルプレートに播種し、4mlのD-MEM培地(DSファーマメディカル社より購入、2mMグルタミン(和光純薬工業社製)、10%(w/v)ウシ胎児血清(AusGeneX社製)、および抗生物質(Penicillin G 100units/ml、Streptomycin Sulfate 100μg/ml(いずれも和光純薬工業社製))を含む)中で、37℃の5%CO2インキュベーター内にて24時間培養した。 (Whitening agent)
B16 melanoma cells were used to evaluate the melanin synthesis inhibitory activity of the composition (1) and the composition (2). Specifically, B16 melanoma cells (purchased from DS Pharma Medical) were seeded in a 6-well plate so that the number of cells was 1 × 10 4 cells / well, and 4 ml of D-MEM medium (DS Pharma Medical) Purchased, 2 mM glutamine (manufactured by Wako Pure Chemical Industries, Ltd.), 10% (w / v) fetal bovine serum (manufactured by AusGeneX), and antibiotics (Penicillin G 100 units / ml, Streptomycin Sulfate 100 μg / ml (both Wako Pure Chemical) Incubated for 24 hours in a 37 ° C. 5% CO 2 incubator.
B16メラノーマ細胞を用いて、上記組成物(1)および組成物(2)のメラニン合成阻害活性を評価した。具体的には、細胞数が1×104細胞/ウェルとなるようにB16メラノーマ細胞(DSファーマメディカル社より購入)を6ウェルプレートに播種し、4mlのD-MEM培地(DSファーマメディカル社より購入、2mMグルタミン(和光純薬工業社製)、10%(w/v)ウシ胎児血清(AusGeneX社製)、および抗生物質(Penicillin G 100units/ml、Streptomycin Sulfate 100μg/ml(いずれも和光純薬工業社製))を含む)中で、37℃の5%CO2インキュベーター内にて24時間培養した。 (Whitening agent)
B16 melanoma cells were used to evaluate the melanin synthesis inhibitory activity of the composition (1) and the composition (2). Specifically, B16 melanoma cells (purchased from DS Pharma Medical) were seeded in a 6-well plate so that the number of cells was 1 × 10 4 cells / well, and 4 ml of D-MEM medium (DS Pharma Medical) Purchased, 2 mM glutamine (manufactured by Wako Pure Chemical Industries, Ltd.), 10% (w / v) fetal bovine serum (manufactured by AusGeneX), and antibiotics (
次いで、本発明に係るカテコール化合物の終濃度が0.2mMとなるように組成物(1)または組成物(2)を培地に加えて48時間培養した。その後、同じ濃度のカテコール化合物を含む培地に培地交換し、24時間培養した。なお、メラニン合成阻害活性が知られている比較対象として、ヒドロキシチロソール(2-(3,4-ジヒドロキシフェニル)エタノール、東京化成工業、HT)およびコウジ酸(東京化成工業)を用いた(終濃度0.2mM)。
Subsequently, the composition (1) or the composition (2) was added to the medium so that the final concentration of the catechol compound according to the present invention was 0.2 mM, and cultured for 48 hours. Thereafter, the medium was changed to a medium containing the same concentration of the catechol compound and cultured for 24 hours. In addition, hydroxytyrosol (2- (3,4-dihydroxyphenyl) ethanol, Tokyo Kasei Kogyo, HT) and kojic acid (Tokyo Kasei Kogyo) were used as comparative objects with known melanin synthesis inhibitory activity (final). Concentration 0.2 mM).
次いで、細胞をPBS(-)にて洗浄し、0.25%(w/v)トリプシン/EDTA溶液2mlで細胞をプレートから剥がし、1mlの培地で細胞を回収した。細胞懸濁液を遠心分離(1,000×g、3min、4℃)して上清を廃棄した後、沈殿に1mlのリン酸緩衝液を加えて懸濁した。懸濁液の細胞数を粒子計数分析装置 CDA-1000 (sysmex社製)にて測定した。細胞懸濁液に1mlの0.5N水酸化ナトリウム水溶液を加え、超音波破砕機により2分間処理し、細胞を破砕した。細胞溶解液中のタンパク質濃度をCoomassie Protein Assay Kit(Pierce社)により測定した。また、細胞溶解液の475nmの吸光度(UV-VIS検出器(SPD-20A、株式会社島津製作所製)を測定し、メラニン濃度を測定した。なお、メラニン濃度は、合成メラニン(Sigma社)により検量線を作成して定量した。タンパク質濃度あたりのメラニン濃度を算出し、各試験試料によるメラニン合成阻害活性を評価した。その結果を図16に示す。
Next, the cells were washed with PBS (−), detached from the plate with 2 ml of a 0.25% (w / v) trypsin / EDTA solution, and the cells were collected with 1 ml of medium. The cell suspension was centrifuged (1,000 × g, 3 min, 4 ° C.) and the supernatant was discarded. Then, 1 ml of phosphate buffer was added to the precipitate and suspended. The number of cells in the suspension was measured with a particle counting analyzer CDA-1000 (manufactured by sysmex). 1 ml of 0.5N sodium hydroxide aqueous solution was added to the cell suspension, and the cells were treated with an ultrasonic disrupter for 2 minutes to disrupt the cells. The protein concentration in the cell lysate was measured by Coomassie Protein Assay Kit (Pierce). In addition, the absorbance at 475 nm (UV-VIS detector (SPD-20A, manufactured by Shimadzu Corporation)) of the cell lysate was measured, and the melanin concentration was measured using a synthetic melanin (Sigma). A line was prepared and quantified, the melanin concentration per protein concentration was calculated, and the melanin synthesis inhibitory activity of each test sample was evaluated, and the results are shown in FIG.
図16に示すとおり、本発明に係る組成物は、高い美白効果を有することが分かる。
As can be seen from FIG. 16, the composition according to the present invention has a high whitening effect.
以下に、美白剤の製造例を示す。
The following is an example of whitening agent production.
(酸素吸収剤)
グリセリン(100重量部)、塩化マンガン4水和物(6重量部)、上記の組成物(1)または組成物(2)(0.05重量部)および純水(65重量部)の混合液を調製した。この混合液を水酸化カルシウム(500重量部)に含浸させ、酸素吸収剤を得た。上記の酸素吸収剤約200mgを内径24mm、長さ20cmの試験管(容積62mL)に入れ、Wキャップ(アズワン製)にて蓋をして密封した。これを25℃にて20または24時間保持した後、下記のGC分析法にて、試験管内の酸素濃度を測定した。なお、比較対象として、上記のカテコール化合物に代えて、0.05または0.6重量部の5-メチルレゾルシンを用いた試験区を設定した。 (Oxygen absorber)
Liquid mixture of glycerin (100 parts by weight), manganese chloride tetrahydrate (6 parts by weight), the above composition (1) or composition (2) (0.05 parts by weight) and pure water (65 parts by weight) Was prepared. This mixed solution was impregnated with calcium hydroxide (500 parts by weight) to obtain an oxygen absorbent. About 200 mg of the above oxygen absorbent was put in a test tube (volume: 62 mL) having an inner diameter of 24 mm and a length of 20 cm, and sealed with a W cap (manufactured by ASONE). After maintaining this at 25 ° C. for 20 or 24 hours, the oxygen concentration in the test tube was measured by the following GC analysis method. As a comparison object, a test group using 0.05 or 0.6 parts by weight of 5-methylresorcin instead of the catechol compound was set.
グリセリン(100重量部)、塩化マンガン4水和物(6重量部)、上記の組成物(1)または組成物(2)(0.05重量部)および純水(65重量部)の混合液を調製した。この混合液を水酸化カルシウム(500重量部)に含浸させ、酸素吸収剤を得た。上記の酸素吸収剤約200mgを内径24mm、長さ20cmの試験管(容積62mL)に入れ、Wキャップ(アズワン製)にて蓋をして密封した。これを25℃にて20または24時間保持した後、下記のGC分析法にて、試験管内の酸素濃度を測定した。なお、比較対象として、上記のカテコール化合物に代えて、0.05または0.6重量部の5-メチルレゾルシンを用いた試験区を設定した。 (Oxygen absorber)
Liquid mixture of glycerin (100 parts by weight), manganese chloride tetrahydrate (6 parts by weight), the above composition (1) or composition (2) (0.05 parts by weight) and pure water (65 parts by weight) Was prepared. This mixed solution was impregnated with calcium hydroxide (500 parts by weight) to obtain an oxygen absorbent. About 200 mg of the above oxygen absorbent was put in a test tube (volume: 62 mL) having an inner diameter of 24 mm and a length of 20 cm, and sealed with a W cap (manufactured by ASONE). After maintaining this at 25 ° C. for 20 or 24 hours, the oxygen concentration in the test tube was measured by the following GC analysis method. As a comparison object, a test group using 0.05 or 0.6 parts by weight of 5-methylresorcin instead of the catechol compound was set.
その結果、組成物(1)を含む酸素吸収剤は、重量あたりの酸素吸収速度が0.890mL-O2/(g・h)であった。組成物(2)を含む酸素吸収剤は、重量あたりの酸素吸収速度が0.708mL-O2/(g・h)であった。5-メチルレゾルシンを0.05重量部含む酸素吸収剤は、重量あたりの酸素吸収速度が0.291mL-O2/(g・h)であった。5-メチルレゾルシンを0.6重量部含む酸素吸収剤は、重量あたりの酸素吸収速度が0.753mL-O2/(g・h)であった。結果を下表、図17および図18に示す(下表、図17、および18における値はn=3の平均値である)。
As a result, the oxygen absorbent containing the composition (1) had an oxygen absorption rate per weight of 0.890 mL-O 2 / (g · h). The oxygen absorbent containing the composition (2) had an oxygen absorption rate per weight of 0.708 mL-O 2 / (g · h). The oxygen absorbent containing 0.05 part by weight of 5-methylresorcin had an oxygen absorption rate per weight of 0.291 mL-O 2 / (g · h). The oxygen absorbent containing 0.6 part by weight of 5-methylresorcin had an oxygen absorption rate per weight of 0.753 mL-O 2 / (g · h). The results are shown in the table below and FIGS. 17 and 18 (values in the table below, FIGS. 17 and 18 are average values of n = 3).
上記のように、本発明に係る組成物を用いた酸素吸収剤は、高い酸素吸収性を示すことが分かる。5-メチルレゾルシンと比較した場合、本発明に係る組成物を用いた酸素吸収剤は、10分の1以下の少ない添加量でも同程度の酸素吸収性を示した。
As described above, it is understood that the oxygen absorbent using the composition according to the present invention exhibits high oxygen absorbability. When compared with 5-methylresorcin, the oxygen absorbent using the composition according to the present invention showed the same level of oxygen absorptivity even with a small addition amount of 1/10 or less.
(GC分析条件)
装置: GC-2014(株式会社島津製作所製)
カラム: Molecular Sieve 13X 6.0m3.00mmID(ジーエルサイエンス社製)
カラム温度: 60℃
検出器温度(TCD):140℃。 (GC analysis conditions)
Equipment: GC-2014 (manufactured by Shimadzu Corporation)
Column: Molecular Sieve 13X 6.0m3.00mmID (manufactured by GL Sciences Inc.)
Column temperature: 60 ° C
Detector temperature (TCD): 140 ° C.
装置: GC-2014(株式会社島津製作所製)
カラム: Molecular Sieve 13X 6.0m3.00mmID(ジーエルサイエンス社製)
カラム温度: 60℃
検出器温度(TCD):140℃。 (GC analysis conditions)
Equipment: GC-2014 (manufactured by Shimadzu Corporation)
Column: Molecular Sieve 13X 6.0m3.00mmID (manufactured by GL Sciences Inc.)
Column temperature: 60 ° C
Detector temperature (TCD): 140 ° C.
本出願は、2014年3月31日に出願された日本特許出願番号2014-074406号に基づいており、その開示内容は、参照され、全体として、組み入れられている。
This application is based on Japanese Patent Application No. 2014-074406 filed on March 31, 2014, the disclosure of which is incorporated by reference as a whole.
本発明の調製方法は、カテコール化合物の合成に利用できるほか、カテコール化合物の代謝性を有する微生物を宿主とすることによって、環境汚染物質の除去などの用途にも適用できる。
The preparation method of the present invention can be used for synthesizing catechol compounds, and can also be applied to uses such as removal of environmental pollutants by using microorganisms having metabolic properties of catechol compounds as hosts.
〔配列番号:11〕
todA-D断片1の増幅のためのPCRプライマー配列。
〔配列番号:12〕
todA-D断片1の増幅のためのPCRプライマー配列。
〔配列番号:13〕
pET21-b(+)断片の増幅のためのPCRプライマー配列。
〔配列番号:14〕
pET21-b(+)断片の増幅のためのPCRプライマー配列。
〔配列番号:15〕
pCDF断片の増幅のためのPCRプライマー配列。
〔配列番号:16〕
pCDF断片の増幅のためのPCRプライマー配列。
〔配列番号:17〕
todD断片の増幅のためのPCRプライマー配列。
〔配列番号:18〕
todD断片の増幅のためのPCRプライマー配列。
〔配列番号:19〕
tod/pET21-b断片の増幅のためのPCRプライマー配列。
〔配列番号:20〕
tod/pET21-b断片の増幅のためのPCRプライマー配列。
〔配列番号:21〕
カセット(1)断片1の増幅のためのPCRプライマー配列。
〔配列番号:22〕
カセット(1)断片1の増幅のためのPCRプライマー配列。
〔配列番号:23〕
カセット(2)断片1の増幅のためのPCRプライマー配列。
〔配列番号:24〕
カセット(2)断片1の増幅のためのPCRプライマー配列。
〔配列番号:25〕
カセット(1)断片2の増幅のためのPCRプライマー配列。
〔配列番号:26〕
カセット(2)断片2の増幅のためのPCRプライマー配列。
〔配列番号:27〕
todA-D断片2の増幅のためのPCRプライマー配列。
〔配列番号:28〕
todA-D断片2の増幅のためのPCRプライマー配列。
〔配列番号:29〕
TacP/pUC18断片の増幅のためのPCRプライマー配列。
〔配列番号:30〕
TacP/pUC18断片の増幅のためのPCRプライマー配列。 [SEQ ID NO: 11]
PCR primer sequence for amplification of todA-D fragment 1.
[SEQ ID NO: 12]
PCR primer sequence for amplification of todA-D fragment 1.
[SEQ ID NO: 13]
PCR primer sequence for amplification of pET21-b (+) fragment.
[SEQ ID NO: 14]
PCR primer sequence for amplification of pET21-b (+) fragment.
[SEQ ID NO: 15]
PCR primer sequence for amplification of pCDF fragment.
[SEQ ID NO: 16]
PCR primer sequence for amplification of pCDF fragment.
[SEQ ID NO: 17]
PCR primer sequence for amplification of todD fragment.
[SEQ ID NO: 18]
PCR primer sequence for amplification of todD fragment.
[SEQ ID NO: 19]
PCR primer sequence for amplification of tod / pET21-b fragment.
[SEQ ID NO: 20]
PCR primer sequence for amplification of tod / pET21-b fragment.
[SEQ ID NO: 21]
Cassette (1) PCR primer sequence for amplification offragment 1.
[SEQ ID NO: 22]
Cassette (1) PCR primer sequence for amplification offragment 1.
[SEQ ID NO: 23]
Cassette primer (2) PCR primer sequence for amplification offragment 1.
[SEQ ID NO: 24]
Cassette primer (2) PCR primer sequence for amplification offragment 1.
[SEQ ID NO: 25]
PCR primer sequence for amplification of cassette (1)fragment 2.
[SEQ ID NO: 26]
Cassette primer (2) PCR primer sequence for amplification offragment 2.
[SEQ ID NO: 27]
PCR primer sequence for amplification of todA-D fragment 2.
[SEQ ID NO: 28]
PCR primer sequence for amplification of todA-D fragment 2.
[SEQ ID NO: 29]
PCR primer sequence for amplification of TacP / pUC18 fragment.
[SEQ ID NO: 30]
PCR primer sequence for amplification of TacP / pUC18 fragment.
todA-D断片1の増幅のためのPCRプライマー配列。
〔配列番号:12〕
todA-D断片1の増幅のためのPCRプライマー配列。
〔配列番号:13〕
pET21-b(+)断片の増幅のためのPCRプライマー配列。
〔配列番号:14〕
pET21-b(+)断片の増幅のためのPCRプライマー配列。
〔配列番号:15〕
pCDF断片の増幅のためのPCRプライマー配列。
〔配列番号:16〕
pCDF断片の増幅のためのPCRプライマー配列。
〔配列番号:17〕
todD断片の増幅のためのPCRプライマー配列。
〔配列番号:18〕
todD断片の増幅のためのPCRプライマー配列。
〔配列番号:19〕
tod/pET21-b断片の増幅のためのPCRプライマー配列。
〔配列番号:20〕
tod/pET21-b断片の増幅のためのPCRプライマー配列。
〔配列番号:21〕
カセット(1)断片1の増幅のためのPCRプライマー配列。
〔配列番号:22〕
カセット(1)断片1の増幅のためのPCRプライマー配列。
〔配列番号:23〕
カセット(2)断片1の増幅のためのPCRプライマー配列。
〔配列番号:24〕
カセット(2)断片1の増幅のためのPCRプライマー配列。
〔配列番号:25〕
カセット(1)断片2の増幅のためのPCRプライマー配列。
〔配列番号:26〕
カセット(2)断片2の増幅のためのPCRプライマー配列。
〔配列番号:27〕
todA-D断片2の増幅のためのPCRプライマー配列。
〔配列番号:28〕
todA-D断片2の増幅のためのPCRプライマー配列。
〔配列番号:29〕
TacP/pUC18断片の増幅のためのPCRプライマー配列。
〔配列番号:30〕
TacP/pUC18断片の増幅のためのPCRプライマー配列。 [SEQ ID NO: 11]
PCR primer sequence for amplification of todA-
[SEQ ID NO: 12]
PCR primer sequence for amplification of todA-
[SEQ ID NO: 13]
PCR primer sequence for amplification of pET21-b (+) fragment.
[SEQ ID NO: 14]
PCR primer sequence for amplification of pET21-b (+) fragment.
[SEQ ID NO: 15]
PCR primer sequence for amplification of pCDF fragment.
[SEQ ID NO: 16]
PCR primer sequence for amplification of pCDF fragment.
[SEQ ID NO: 17]
PCR primer sequence for amplification of todD fragment.
[SEQ ID NO: 18]
PCR primer sequence for amplification of todD fragment.
[SEQ ID NO: 19]
PCR primer sequence for amplification of tod / pET21-b fragment.
[SEQ ID NO: 20]
PCR primer sequence for amplification of tod / pET21-b fragment.
[SEQ ID NO: 21]
Cassette (1) PCR primer sequence for amplification of
[SEQ ID NO: 22]
Cassette (1) PCR primer sequence for amplification of
[SEQ ID NO: 23]
Cassette primer (2) PCR primer sequence for amplification of
[SEQ ID NO: 24]
Cassette primer (2) PCR primer sequence for amplification of
[SEQ ID NO: 25]
PCR primer sequence for amplification of cassette (1)
[SEQ ID NO: 26]
Cassette primer (2) PCR primer sequence for amplification of
[SEQ ID NO: 27]
PCR primer sequence for amplification of todA-
[SEQ ID NO: 28]
PCR primer sequence for amplification of todA-
[SEQ ID NO: 29]
PCR primer sequence for amplification of TacP / pUC18 fragment.
[SEQ ID NO: 30]
PCR primer sequence for amplification of TacP / pUC18 fragment.
Claims (16)
- 芳香環ジオキシゲナーゼ遺伝子群および芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を導入した形質転換微生物を、5~100μMのイソプロピルβ-チオガラクトピラノシドを含む液で培養することを有する、形質転換微生物の調製方法。 A method for preparing a transformed microorganism, comprising culturing a transformed microorganism into which an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene have been introduced in a solution containing 5 to 100 μM isopropyl β-thiogalactopyranoside.
- 前記イソプロピルβ-チオガラクトピラノシドを含む液の溶存酸素濃度が、0mg/Lを超えて5mg/L以下である、請求項1に記載の調製方法。 The preparation method according to claim 1, wherein the solution containing isopropyl β-thiogalactopyranoside has a dissolved oxygen concentration of more than 0 mg / L and not more than 5 mg / L.
- 前記微生物が、大腸菌である、請求項1または2に記載の調製方法。 The preparation method according to claim 1 or 2, wherein the microorganism is Escherichia coli.
- 前記芳香環ジオキシゲナーゼ遺伝子群が、トルエンジオキシゲナーゼ遺伝子群である、請求項1~3のいずれか1項に記載の調製方法。 The preparation method according to any one of claims 1 to 3, wherein the aromatic ring dioxygenase gene group is a toluene dioxygenase gene group.
- 前記トルエンジオキシゲナーゼ遺伝子群が、シュードモナス・プチダ(Pseudomonas putida)に由来する、請求項4に記載の調製方法。 The preparation method according to claim 4, wherein the toluene dioxygenase gene group is derived from Pseudomonas putida.
- 前記芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子が、cis-トルエンジヒドロジオールデヒドロゲナーゼ遺伝子である、請求項1~5のいずれか1項に記載の調製方法。 The preparation method according to any one of claims 1 to 5, wherein the aromatic ring dihydrodiol dehydrogenase gene is a cis-toluene dihydrodiol dehydrogenase gene.
- 前記cis-トルエンジヒドロジオールデヒドロゲナーゼ遺伝子が、シュードモナス・プチダ(Pseudomonas putida)に由来する、請求項6に記載の調製方法。 The preparation method according to claim 6, wherein the cis-toluene dihydrodiol dehydrogenase gene is derived from Pseudomonas putida.
- 前記イソプロピルβ-チオガラクトピラノシドを含む液で培養した形質転換微生物が、2-フェニルエタノールを原料としたときに、2-(2,3-ジヒドロキシフェニル)エタノールを0.45mM/(h・OD660)以上の速度で生成する、請求項1~7のいずれか1項に記載の調製方法。 When the transformed microorganism cultured in the solution containing isopropyl β-thiogalactopyranoside uses 2-phenylethanol as a raw material, 2- (2,3-dihydroxyphenyl) ethanol is 0.45 mM / (h · The preparation method according to any one of claims 1 to 7, which is produced at a rate of OD 660 ) or more.
- 前記形質転換微生物は、前記芳香環ジオキシゲナーゼ遺伝子群および前記芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を、
イソプロピルβ-チオガラクトピラノシド誘導性プロモーター(1)ならびに前記プロモーター(1)と作動的に連結された前記芳香環ジオキシゲナーゼ遺伝子群および前記芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を含むカセット(1)と、
イソプロピルβ-チオガラクトピラノシド誘導性プロモーター(2)ならびに前記プロモーター(2)と作動的に連結された前記芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を含むカセット(2)とを、
前記カセット(1)と前記カセット(2)とのコピー数の比が1:1~5:1となるように導入した、請求項1~8のいずれか1項に記載の調製方法。 The transformed microorganism comprises the aromatic ring dioxygenase gene group and the aromatic ring dihydrodiol dehydrogenase gene,
An isopropyl β-thiogalactopyranoside inducible promoter (1) and the aromatic ring dioxygenase gene group operably linked to the promoter (1) and a cassette (1) comprising the aromatic ring dihydrodiol dehydrogenase gene;
An isopropyl β-thiogalactopyranoside inducible promoter (2) and a cassette (2) comprising the aromatic ring dihydrodiol dehydrogenase gene operably linked to the promoter (2),
The preparation method according to any one of claims 1 to 8, wherein the cassette (1) and the cassette (2) are introduced so that a copy number ratio is 1: 1 to 5: 1. - 請求項1~9のいずれか1項に記載の調製方法により調製された形質転換微生物を用いた、下記一般式(1):
で表されるカテコール化合物の製造方法。 The following general formula (1) using the transformed microorganism prepared by the preparation method according to any one of claims 1 to 9:
The manufacturing method of the catechol compound represented by these. - 前記カテコール化合物が、休止菌体反応によって製造される、請求項10に記載の製造方法。 The production method according to claim 10, wherein the catechol compound is produced by a resting cell reaction.
- 2-フェニルエタノールを原料としたときに、2-(2,3-ジヒドロキシフェニル)エタノールを0.45mM/(h・OD660)以上の速度で生成する、形質転換微生物。 A transformed microorganism that produces 2- (2,3-dihydroxyphenyl) ethanol at a rate of 0.45 mM / (h · OD 660 ) or more when 2-phenylethanol is used as a raw material.
- イソプロピルβ-チオガラクトピラノシド誘導性プロモーター(1)ならびに前記プロモーター(1)と作動的に連結された芳香環ジオキシゲナーゼ遺伝子群および芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を含むカセット(1)と、
イソプロピルβ-チオガラクトピラノシド誘導性プロモーター(2)ならびに前記プロモーター(2)と作動的に連結された芳香環ジヒドロジオールデヒドロゲナーゼ遺伝子を含むカセット(2)とを、
前記カセット(1)と前記カセット(2)とのコピー数の比が1:1~5:1となるよう微生物に導入されてなる、請求項12に記載の形質転換微生物。 An isopropyl β-thiogalactopyranoside inducible promoter (1) and a cassette (1) comprising an aromatic ring dioxygenase gene group and an aromatic ring dihydrodiol dehydrogenase gene operably linked to said promoter (1);
An isopropyl β-thiogalactopyranoside inducible promoter (2) and a cassette (2) containing an aromatic ring dihydrodiol dehydrogenase gene operably linked to said promoter (2),
The transformed microorganism according to claim 12, wherein the microorganism is introduced into the microorganism so that the copy number ratio between the cassette (1) and the cassette (2) is 1: 1 to 5: 1. - 前記プロモーター(1)および前記プロモーター(2)が、T7プロモーターまたはtacプロモーターである、請求項13に記載の形質転換微生物。 The transformed microorganism according to claim 13, wherein the promoter (1) and the promoter (2) are T7 promoter or tac promoter.
- 下記一般式(1):
で表されるカテコール化合物、および
下記一般式(3):
で表される一水酸化物を含み、
100モルの前記カテコール化合物に対する前記一水酸化物の割合が、0.002~5モルである、組成物。 The following general formula (1):
And a catechol compound represented by the following general formula (3):
Including a monohydroxide represented by
A composition wherein the ratio of the monohydroxide to 100 mol of the catechol compound is 0.002 to 5 mol. - 請求項15に記載の組成物を含む、美白剤、または酸素吸収剤。 A whitening agent or an oxygen absorbent comprising the composition according to claim 15.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016511899A JP6322862B2 (en) | 2014-03-31 | 2015-03-30 | Method for preparing transformed microorganism, and method for producing catechol compound using transformed microorganism prepared by the method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014074406 | 2014-03-31 | ||
JP2014-074406 | 2014-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015152179A1 true WO2015152179A1 (en) | 2015-10-08 |
Family
ID=54240501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/060004 WO2015152179A1 (en) | 2014-03-31 | 2015-03-30 | Method for preparing transformed micoorganisms and method for producing catechol compound using transformed microorganisms prepared by said method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6322862B2 (en) |
WO (1) | WO2015152179A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105567651A (en) * | 2016-03-22 | 2016-05-11 | 云南师范大学 | Heat-stable catechol 1,2-dioxygenase derived from animal manure metagenome and coding gene thereof, and preparation method of heat-stable catechol 1,2-dioxygenase |
CN108588043A (en) * | 2018-05-11 | 2018-09-28 | 遵义医学院 | A kind of monooxygenase complex and its application in chiral sulfoxide synthesis |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011239686A (en) * | 2010-05-14 | 2011-12-01 | Waseda Univ | Method of producing peptide and peptide derivative |
JP2012218795A (en) * | 2011-04-13 | 2012-11-12 | Mitsubishi Gas Chemical Co Inc | Exterior package of oxygen absorbing bulk powder containing porous substance |
WO2013151044A1 (en) * | 2012-04-05 | 2013-10-10 | 久光製薬株式会社 | Puncture device and method for manufacturing same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016188200A (en) * | 2015-03-30 | 2016-11-04 | 株式会社日本触媒 | Composition comprising catechol compound and monohydroxide, and skin-whitening agent and oxygen absorbent using the same |
-
2015
- 2015-03-30 JP JP2016511899A patent/JP6322862B2/en active Active
- 2015-03-30 WO PCT/JP2015/060004 patent/WO2015152179A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011239686A (en) * | 2010-05-14 | 2011-12-01 | Waseda Univ | Method of producing peptide and peptide derivative |
JP2012218795A (en) * | 2011-04-13 | 2012-11-12 | Mitsubishi Gas Chemical Co Inc | Exterior package of oxygen absorbing bulk powder containing porous substance |
WO2013151044A1 (en) * | 2012-04-05 | 2013-10-10 | 久光製薬株式会社 | Puncture device and method for manufacturing same |
Non-Patent Citations (3)
Title |
---|
BUI VP: "Enzymatic oxidation of aromatic substrates via toluene dioxygenase and catechol dehydrogenase: application to total synthesis of combretastatins A-1 and B-1", A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY, 2003, Retrieved from the Internet <URL:http://ufdc.ufl.edu/AA00014265/00001> * |
RAJ SM ET AL.: "Effect of process parameters on 3-hydroxypropionic acid production from glycerol using a recombinant Escherichia coli", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 84, 2009, pages 649 - 657, XP019737718 * |
WARD G ET AL.: "Biocatalytic synthesis of polycatechols from toxic aromatic compounds", ENVIRONMENTAL SCIENCE AND TECHNOLOGY, vol. 38, no. 18, 2004, pages 4753 - 4757, XP055228998, ISSN: 0013-936x * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105567651A (en) * | 2016-03-22 | 2016-05-11 | 云南师范大学 | Heat-stable catechol 1,2-dioxygenase derived from animal manure metagenome and coding gene thereof, and preparation method of heat-stable catechol 1,2-dioxygenase |
CN105567651B (en) * | 2016-03-22 | 2019-01-29 | 云南师范大学 | The thermal stability catechol 1,2- dioxygenase of the macro genomic source of animal wastes, its encoding gene and preparation method thereof |
CN108588043A (en) * | 2018-05-11 | 2018-09-28 | 遵义医学院 | A kind of monooxygenase complex and its application in chiral sulfoxide synthesis |
CN108588043B (en) * | 2018-05-11 | 2020-12-15 | 遵义医科大学 | Monooxygenase complex and application thereof in chiral sulfoxide synthesis |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015152179A1 (en) | 2017-04-13 |
JP6322862B2 (en) | 2018-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jiménez et al. | Tannin degradation by a novel tannase enzyme present in some Lactobacillus plantarum strains | |
Overhage et al. | Biochemical and genetic analyses of ferulic acid catabolism in Pseudomonas sp. strain HR199 | |
Furuya et al. | Catalytic activity of the two-component flavin-dependent monooxygenase from Pseudomonas aeruginosa toward cinnamic acid derivatives | |
Furuya et al. | Biotechnological production of caffeic acid by bacterial cytochrome P450 CYP199A2 | |
Milke et al. | Synthesis of the character impact compound raspberry ketone and additional flavoring phenylbutanoids of biotechnological interest with Corynebacterium glutamicum | |
Yunt et al. | Cleavage of four carbon− carbon bonds during biosynthesis of the griseorhodin a spiroketal pharmacophore | |
Montersino et al. | Functional annotation and characterization of 3-hydroxybenzoate 6-hydroxylase from Rhodococcus jostii RHA1 | |
CN106164260B (en) | A kind of Candida carbonyl reductase and the method for being used to prepare (R) -6- hydroxyl -8- chloroctanoic acid ester | |
Geib et al. | Cross-chemistry leads to product diversity from atromentin synthetases in Aspergilli from section Nigri | |
JP7142813B2 (en) | Hydroxylation of Branched Aliphatic or Aromatic Substrates Using Cytochrome P450s from Amycolatopsis lurida | |
Overhage et al. | Molecular characterization of the genes pcaG and pcaH, encoding protocatechuate 3, 4-dioxygenase, which are essential for vanillin catabolism in Pseudomonas sp. strain HR199 | |
Zeng et al. | Biochemical characterization of a type III polyketide biosynthetic gene cluster from Streptomyces toxytricini | |
Matsuzawa et al. | Alkylresorcylic acid synthesis by type III polyketide synthases from rice Oryza sativa | |
Conradt et al. | Biocatalytic properties and structural analysis of phloroglucinol reductases | |
Brzostowicz et al. | Identification of two gene clusters involved in cyclohexanone oxidation in Brevibacterium epidermidis strain HCU | |
KR20180099380A (en) | Recombinant e.coli producing equol and method for producing equol using thereof | |
Nishimura et al. | Expression and substrate range of Streptomyces vanillate demethylase | |
JP6322862B2 (en) | Method for preparing transformed microorganism, and method for producing catechol compound using transformed microorganism prepared by the method | |
Sone et al. | Bacterial enzymes catalyzing the synthesis of 1, 8-dihydroxynaphthalene, a key precursor of dihydroxynaphthalene melanin, from Sorangium cellulosum | |
WO2013043758A2 (en) | Compositions and methods regarding direct nadh utilization to produce 3-hydroxypropionic acid, derived chemicals and further derived products | |
Morohoshi et al. | Regulation of phenazine-1-carboxamide production by quorum sensing in type strains of Pseudomonas chlororaphis subsp. chlororaphis and Pseudomonas chlororaphis subsp. piscium | |
Kasuga et al. | Cloning of dfdA genes from Terrabacter sp. strain DBF63 encoding dibenzofuran 4, 4a-dioxygenase and heterologous expression in Streptomyces lividans | |
JP4998957B2 (en) | Hydroxylase gene and its use | |
JP2016188200A (en) | Composition comprising catechol compound and monohydroxide, and skin-whitening agent and oxygen absorbent using the same | |
Marin et al. | Genetic and functional characterization of a novel meta-pathway for degradation of naringenin in Herbaspirillum seropedicae SmR1 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15773187 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016511899 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase | ||
122 | Ep: pct application non-entry in european phase |
Ref document number: 15773187 Country of ref document: EP Kind code of ref document: A1 |